Central limit theorems and statistical inference for some random graph models

Baaqeel, Hanan (2015) Central limit theorems and statistical inference for some random graph models. PhD thesis, University of Nottingham.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (4MB) | Preview

Abstract

Random graphs and networks are of great importance in any fields including mathematics, computer science, statistics, biology and sociology. This research aims to develop statistical theory and methods of statistical inference for random graphs in novel directions. A major strand of the research is the development of conditional goodness-of-fit tests for random graph models and for random block graph models. On the theoretical side, this entails proving a new conditional central limit theorem for a certain graph statistics, which are closely related to the number of two-stars and the number of triangles, and where the conditioning is on the number of edges in the graph. A second strand of the research is to develop composite likelihood methods for estimation of the parameters in exponential random graph models. Composite likelihood methods based on edge data have previously been widely used. A novel contribution of the thesis is the development of composite likelihood methods based on more complicated data structures. The goals of this PhD thesis also include testing the numerical performance of the novel methods in extensive simulation studies and through applications to real graphical data sets.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Wood, A.T.A.
O'Neill, P.D.
Subjects: Q Science > QA Mathematics > QA273 Probabilities
Faculties/Schools: UK Campuses > Faculty of Science > School of Mathematical Sciences
Item ID: 29294
Depositing User: Baaqeel, Hanan
Date Deposited: 07 Sep 2015 08:47
Last Modified: 16 Dec 2017 04:29
URI: https://eprints.nottingham.ac.uk/id/eprint/29294

Actions (Archive Staff Only)

Edit View Edit View