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Abstract

Random graphs and networks are of great importance in many fields including
mathematics, computer science, statistics, biology and sociology. This research
aims to develop statistical theory and methods of statistical inference for random
graphs in novel directions. A major strand of the research is the development of
conditional goodness-of-fit tests for random graph models and for random block
graph models. On the theoretical side, this entails proving a new conditional
central limit theorem for a certain graph statistics, which are closely related to the
number of two-stars and the number of triangles, and where the conditioning is on
the number of edges in the graph. A second strand of the research is to develop
composite likelihood methods for estimation of the parameters in exponential
random graph models. Composite likelihood methods based on edge data have
previously been widely used. A novel contribution of the thesis is the development
of composite likelihood methods based on more complicated data structures. The
goals of this PhD thesis also include testing the numerical performance of the
novel methods in extensive simulation studies and through applications to real

graphical data sets.
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CHAPTER 1

Introduction

1.1 Background: Networks and Graphs

Networks are of great importance in the modern world, the internet and facebook
being two prominent examples. Moreover, the understanding and modelling of
networks is of major importance in many fields within the physical and social
sciences including Biology, Computer Science, Economics, Geography and Soci-
ology. The recent book by Kolaczyk (2010) gives an extensive account covering
theory and many applications from a statistical perspective. In recent times this
has been an active topic of research for statisticians; see, for example, the papers
by Bickel et al. (2011), Chatterjee and Diaconis (2013), Caimo and Friel (2013)
and Olhede and Wolfe (2014).

It is difficult to give a precise definition of a network which covers all cases of
possible interest, but broadly speaking a network consists of collection of units,
e.g. genes or people, plus information about the connections between them. In
many applications of network modelling, randomness (or stochasticity) is a key
feature of the network under consideration. In other situations, we may choose
to model uncertainty using randomness, without necessarily forming a judgment
as to whether the randomness is inherent in the network being studied. Ether
way, we are led to consideration of random networks.

From a mathematical perspective, a network is often modelled as a graph. Graph
theory is a well-established field of mathematics which is reviewed briefly in
Chapter 2. In short, a graph consists of two aspects: a set of vertices (or

nodes); and a set of edges which connect pairs of vertices. It would be an over-
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simplification to say that the study of networks is equivalent to the study of
graphs because networks of interest in real-world applications often have further
features or structure in addition to the structure represented by a graph. Nev-
ertheless, the graphical structure of a network is often of primary interest and is
an important object of study in its own right.

Just as it is important to consider random networks in many areas of applica-
tion, so it is important to consider random graphs. In fact, the study of random
graphs has been an active area of research within probability theory for over half
a century, starting with work of Erdés and Rényi (1959, 1960, 1961) and Gilbert
(1959). For up-to-date accounts of the theory of random graphs see the books by
Bollobas (2001) and Durrett (2010); see also Kolaczyk (2010) for an accessible
review of this large body of work.

Despite the progress in the theory of random graphs, it is fair to say that statistical
theory for the analysis of random graph models is still rather under-developed,
even though there have been some notable contributions in the past. No doubt
this is partly due to the difficulty in developing an asymptotic theory, as the
number of vertices of the random graph goes to infinity, for parameter estimators
in most of the random graph models which have been considered to date. This
difficulty arises because of the complex nature of the dependence structure in
such models. However, even allowing for this, there are still a number of basic
statistical questions which have not been addressed in the literature. The purpose

of this thesis is to consider several such questions.

1.2 Main Contributions of the Thesis

The first question to be considered is the joint asymptotic behavior of the random
graph statistics uy, the number of edges, us, the number of 2-stars, and w3, the
number of triangles in the Erdos-Rényi-Gilbert random graph model in which
each edge is present with probability p and the edges are statistically independ-
ent. In this asymptotic framework, the number of vertices in the graph goes to
infinity. It is proved that, suitably standardized, u;, us and us are jointly asymp-
totic normal. This finding is not surprising but what does seem surprising is

that the limiting covariance matrix has rank 1 rather than rank 3. Consequently,
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the limiting covariance matrix is degenerate. We suspect that this result may be
known but, despite an extensive search, we have not been able to find it anywhere
in the literature. The rank deficiency of the covariance matrix is a negative result
from the point of view of statistical inference.

The second question to be considered is whether this degeneracy can be removed
by conditioning uy and us on uy, the number of edges. It is proved that a condi-
tional central limit theorem holds in this case. Moreover, the limiting covariance
matrix has full rank 2. Thus, conditioning on u; removes the degeneracy. How-
ever, it turns that it is a major task to give a fully rigorous proof of this conditional
central limit theorem. This proof is the most substantial component of the thesis.
The primary statistical motivation for considering these central limit theorems
is to see whether they provide the basis for goodness-of-fit tests. Due to the
degeneracy in the unconditional central limit theorem mentioned above, the un-
conditional approach is not useful from the point of view of goodness-of-fit tests.
However, the conditional central limit theorem does lead to a potentially useful
conditional goodness-of-fit tests, especially in the context of block graph models,
considered later in the thesis.

The third question considered in the thesis is the use of novel composite like-
lihoods for parameter estimation in a widely-studied 3-parameter Exponential
Random Graph Model (ERGM). ERGMs and composite likelihood methods are
reviewed briefly in Chapter 2. Theoretical asymptotic analysis of these new estim-
ators does not seem possible using existing large-sample theory but their practical

performance is investigated in a simulation study.

1.3 Structure of the Thesis

The outline of the thesis is as follows. Chapter 2 contains review material on
random graphs, relevant results from probability and statistics and other miscel-
laneous mathematical results. Most of the material is standard and is included
for convenience. However, the final section of the chapter reviews some relevant
publications of more advance work on the probability and statistics of random
graphs.

Chapter 3 contains a statement and proof of the joint central limit theorem for

uq, us and us. The chapter also includes the statements and proofs of some ele-
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mentary counting lemmas which are useful for calculating second moments of s,
us. These lemmas are also used in Chapter 4.

The proof of the conditional central limit theorem, which as mentioned above
is quite challenging, is spread over Chapter 4 and Chapter 5. In Chapter 4 a
general conditional moment result is stated and proved. More specifically, the
general conditional moment result gives a precise estimate of the order of the
expectation of arbitrary products of centered identically distributed binary vari-
ables conditional on their total being fixed. This result, which we believe may
be of independent interest, plays a crucial role in the proof of conditional central
limit theorem which stated and proved in Chapter 5.

Chapter 5 contains some fairly complex counting approximation lemmas which
also play a vital part in the proof of the conditional central limit theorem. This
chapter also contains the statement and proof of the conditional central limit
theorem.

In Chapter 6, three new composite likelihood estimators are suggested for use in
a 3-parameter FRGM of interest. In Section 6.2 the composite likelihoods are
derived and computational algorithms are presented for their calculation, and in
Section 6.3, the results of a simulation study of these estimators is presented.
Finally, in Chapter 7, discussion, conclusions and possibilities for future research

are described.



CHAPTER 2

Review of Background and relevant

Techniques

2.1 Introduction

In this chapter we present technical background which is relevant to later chapters
in the thesis. In Section 2.2, random graph models are reviewed. Section 2.3
covers miscellaneous mathematical topics including the spectral decomposition
theorem for symmetric matrices, equivalence relations and partitions. In Section
2.4, some important topics in probability and statistics are covered, including the
projection method and the method of moments for proving central limit theorems,
both of which are important later in the thesis. A review of composite likelihood
methods is given in Section 2.5. Finally, a review of some more advanced literature

on the statistics and probability of random graphs is given in Section 2.6.

2.2 Background on Random Graph Models

The term network refers to a collection of elements and their relations. For math-
ematical purposes, a network is represented as a graph, as defined in graph theory.
Graph theory is a branch of mathematics which adds precision to this notion and
provides a body of definitions, tools and results for examining graphs and their

properties.
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2.2.1 Basic Terminology in Graph Theory

A graph G(V, FE) is a mathematical structure which consists of two sets, V' and
E. V is a nonempty finite set, whose elements are called vertices (or nodes). The
set I/ is a subset of V' x V, the Cartesian product of V' with itself, so that the
elements of E are pairs of vertices. We think of the elements of £ as edges. If
e = (u,v) € E where u,v € V, then we say that vertices v and v are adjacent. If
the ordering of u and v does not matter, i.e. if (u,v) is identified with (v, u), then
the edges are said to be undirected. If, on the other hand, the ordering of u and v
in (u,v) does matter, the graph is said to have directed edges. A directed graph
is abbreviated as digraph with the directions of the edges indicated by arrows.

Figure 2.1 (b), illustrates the form of digraph.

Figure 2.1: (a) A simple undirected graph. (b) A digraph

When an edge joins a vertex to itself, this is called loop, and if there is more than
one edge connecting two (different) vertices that is called multiple (or parallel)
edge. A graph without loops or parallel edges is called a simple graph. We will
dealing with the simple undirected graphs throughout this thesis. Figure 2.1 (a)

represents a simple undirected graph.

Throughout the thesis, the number of vertices, |V, will denoted by n and is called
the order of the graph. The number of edges, |E|, is called the size of the graph
and is denoted it by m.

The degree of a vertex is the number of edges with an end-point in that vertex.

Also, a vertex u € V is incident on an edge e € E if e = (u,v) or e = (v, u).

A graph is said to be connected if and only if any vertex in the graph can reached

from all other vertices in the graph by moving along edges, and the graph is said

6
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to be disconnected otherwise. A disconnected graph splits into components where
the vertices in each component are connected. Furthermore, a graph H(V3,, Ey)
is a subgraph of G(Vg, Eg) if V3 C Vg and Ey C Eg.

Complete Graph: In a simple graph, if each pair of vertices is connected, the graph
is said to be a complete graph. A complete graph with n vertices is denoted by
K,,. Figure 2.2 represents the /K, graph. Moreover, a complete subgraph is called

a clique.

Figure 2.2: The complete graph Ky

Bipartite Graph: Consider a graph G, and suppose V' can be partitioned into
two disjoint sets, A and B, in such a way that each edge in G links two vertices,
with one vertex from A and one from B. Then G is a bipartite graph, and in the
sociology literature it is called a two-mode network; see Newman (2010). Figure

2.3 represents a bipartite graph:

"

O

Figure 2.3: A bipartite graph

Bipartite graphs arise in Section 5.6 when we consider block models. Moreover,
when each vertex in set A is connected to all vertices in set B where A has ny
vertices and B has np vertices, this graph is called a complete bipartite graph and

denoted by K, Such a graph is represented in Figure 2.4.

ANB*

In graph theory, there are several ways to represent a graph mathematically. A
convenient representation of a graph for our purposes is the adjacency matriz.
Consider an undirected graph with n vertices with each vertex having a label

1,---,n. Consider y;; is a binary variable representing the presence or absence

7



CHAPTER 2: REVIEW OF BACKGROUND AND RELEVANT TECHNIQUES

Figure 2.4: A complete bipartite graph K34

of an edge between the vertices ¢ and j. Formally, for a simple undirected graph
of n nodes, consider the graph adjacency matrix y = {v;;}1<i<j<n, where y;; is a

binary indicator for edge {3, j}:

(2.2.1)

1 if there is an edge between ¢ and j;
Yij = .
0 otherwise.

For a simple undirected graph, we may define the adjacency matrix to be sym-
metric, with y;; = y;;, for all ¢ # j. Also since the graph is simple (i.e. no loops),
we define y; = 0 for all 7.

This thesis is concerned with random graph models. We briefly highlight some
of the most common random graph models which are widely studied in the liter-

ature.

2.2.2 Random Graph Models

We now briefly describe some important random graph models.

The Erd6s-Rényi-Gilbert Models. In a series of papers by Erdds and Rényi
(1959, 1960, 1961) and Gilbert (1959), random graph models are introduced. The
term random graph is used in this sense to refer to a model specifying a finite
collection G of graphs and a uniform probability P(.) over G. Precisely, for a
given n and m, the number of vertices and edges, or the order and the size of

the graph, respectively, there is a collection G of all graphs G(V, E') with assign
A !

probability P(G) = ( ) , for each G € G, where N = Z is the total number
m

of distinct pairs of vertices. In other words, in this model we choose uniformly m
distinct pairs of vertices at random from all possible pairs and link them by an
edge. To obtain a simple undirected graph, we restrict the vertices to be distinct
to avoid loops and multiple edges. Therefore, the graph is created by choosing

uniformly at random among the set of all simple graphs with exactly n vertices
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and m edges.

Most commonly studied is the closely-related random graph proposed by Gilbert
(1959), denoted RG(n, p), in which every possible edge occurs independently with
probability 0 < p < 1. In the RG(n,p) model, we fix the number of vertices and
the probability of presence an edge between distinct pairs vertices, but the number
of edges is not fixed. Then the definition of this random graph model, RG(n, p),
is the ensemble of graphs in which each simple undirected graph G appears with

n vertices and m edges with probability
P(G) =p™(1—p)"™™,

where N = n(n — 1)/2 is the number of possible edges. We focus here on ho-
mogeneous random graphs. However, there has been a large amount of attention
in defining and studying inhomogeneous random graphs, such as Bollobas et al.
(2007).

Exponential Random Graph Models. FExponential random graph models
are a family of probability distributions for a class of random graphs which can
be used for representing and analyzing data about social and other networks.
See, for example Kolaczyk (2010) for further details. There are many techniques
that measure properties of an observed graph which are useful for describing
and understanding the observed graph. However, for a particular number of ver-
tices, this observed graph represents one realization of a large number of possible
graphs, as the outcome of some stochastic mechanism. Therefore, the principal
goal is to estimate model parameter from data and then evaluate how well the
model represents the data. In other words, the observed network is seen as one
particular pattern of edges out of a large set of possible patterns. In general,
we do not know what stochastic mechanism generated the observed network,
and the goal in formulating a model is to suggest a reasonable and theoretically
principled hypothesis for this process; see (Robins, Pattison, Kalish and Lusher
(2007)). Fortunately, exponential families have a variety of common properties
which makes this class of distributions mathematically convenient for purposes
of inference and simulation.

Suppose G(V, E) is a random graph, and let y = {v;; }1<i<j<n be the (random)
adjacency matrix for G. As before, y;; = y;; is a binary random variable to indic-

ate the present or absence of an edge {i,j} € F, in the graph G, where i,j € V.
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An exponential random graph model (ERGM ) gives the joint distribution of the

elements in y, and has the following general form:

A Ba
PAY =y} = exp { S0 sly) - ¢<0>}7 (2.2.2)
f=1

a=1

where
uap() = [I s (2.2.3)
{i.j}€Hap
foreach a =1,--- ,Aand 8 =1, ---,B,, H,s consists of one or more pairs of
vertices; 0 = (01,--- ,04)7 is the parameter vector; and the normalising constant

¥(0) is given by

A Ba
Y(0) =log | Y exp{ZQaZuag(y)} , (2.2.4)

ye{0,1}N a=l p=1

where the outer sum in (2.2.4) is over all possible adjacency matrices, and N =
n(n — 1)/2. Different choices for A, By,---, B4 are considered in the models
(2.2.5)-(2.2.7) and (2.2.9) below. The representation of (2.2.2) is equivalent to
formula (6.24) in Kolaczyk (2010) but we find (2.2.2) more convenient because it
makes the role of the inner summation (over /) in the expanent of (2.2.2) more
explicit. The model (2.2.2) is an exponential family distribution with natural vec-
tor parameter 6 and sufficient statistics uap(y), a =1,--- ,Aand f=1,--- , B,.
Exponential families of random graphs are among the most extensively used.
They represent flexible models for complex networks, particularly social networks.
Exponential random graph models (ERGMs), also called P* models, are a family
of probability distributions for a class of random graphs. FRGMs are used, for
example, to represent structural of social network observed; see Snijders et al.
(2006).

We now consider several examples of ERGMs which have been considered in the

literature.

Bernoully random graphs. In this model the presence or absence of any edge is
independent of the presence or absence of all the other edges in a graph. So we

assume that y;; is independent of y;«;-, where {7, j} # {i*, j*}. This leads to the

10
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model

Py{Y =y} = exp { > i — w(e)}. (2.2.5)
1<i<j<n
In other words, every edge {3, j} is present in the graph independently with prob-
ability p;; = exp{0;;}/(1 + exp{0;;}).

Model (2.2.5) is obtained from model (2.2.2) by putting B; = --- = By = 1,
the number of elements in each H,gis 1 and A = N = n(n — 1)/2. Under the

assumption of homogeneity, i.e. 6;; = 6, Gilbert (1959) model is recovered, i.e.

PAY =} = exp {010 - v(0) . (2.26)

where L(y) = >_, ;yi; = m is the number of edges in the graph, and the prob-
ability of an edge being present will be p = exp{6}/(1 + exp{f}). In this case,
A=1and By =n(n—1)/2.

Block models. Block models can also be represented in terms of model (2.2.2).
For example, when the vertex set V' splits into two sets V; and V5, and there is

homogeneity both within and between sets, this leads to a model of the form

Po{Y =y} = exp {911L11(y) + 012L12(y) + 022 L22(y) — ¢(9)}7 (2.2.7)

where Li1(y) and Lao(y) are the number of edges connecting two elements of V;
and connecting two elements of Vs, respectively, and L5 is the number of edges
connecting an element of V; withe an element of V5. Clearly, (2.2.7) is of the form
(2.2.2) with A =3, By = ny(ny — 1)/2, By = na(ny — 1)/2 and By = nyny. We

return to block models in Section 5.6.

Markov random graphs. As before, let G denote a random graph. To define the
Markov property, let i, 7, k,l denote four distinct vertices. Then G satisfies the
Markov property if

P(yij,ykl\WSt) = P(yz‘j’TGSt)P@sz@St)a (2-2-8)

11
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where ‘rest” here consists of all the elements of y apart from y;; and y;. In words,
(2.2.8) says that y;; and yy are conditionally independent given the rest of the

elements of y.

Frank and Strauss (1986) characterize Markov graphs using the assumption that
the distribution remains the same when the vertices are relabeled. They use the
Hammersley-Clifford theorem (Besag, 1974) to prove a random graph is a Markov
graph iff the probability distribution can be written as (2.2.9).

The concept of Markov dependence for a random graph model was introduced
by Frank and Strauss (1986). This model defines that two potential edges are
dependent whenever they share a vertex, conditional on all other potential edges.
That is, the presence or absence of {i,j} in the graph will depend on that of
{i,k},{j,1}, for all k # 4,7 and [ # i, j, such random graph called Markov graph
and given by.

n—1

Py{Y =y} =exp { Z 0rSk(y) + 0, T (y) — ¢(9)}, (2.2.9)

where y is the adjacency matrix for a random graph, and S (y) = m is the number
of edges, Sy is the number of k-stars, for 2 < k < (n—1), and T'(y) is the number
of triangles. The statistics S, and T are defined by

Sily) = Z Yij number of edges,
1<i<j<n

Si(y) = Z < Yit ) number of k-stars (k > 2),
1<i<n k

T(y) = Z YijYinlYin number of triangles,
1<i<j<h<n

where ;. = Z;‘:l Yij, the degree of node i, = (01,...,0,)" is the parameter

vector of the distribution, and ¢ (0) is a normalizing constant,
n—1
»(0) = log Z exp {Z 0r.Sk(y) + QnT(y)}
ye{0,1}n(n=1)/2 k=1

which ensures that the sum of probabilities equals 1. It is obvious, when k = 1,

12
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S1(y) is a 1-star representing the number of edges. Clearly (2.2.9) is of the form
given in model (2.2.2) with A =n and

B - n(n—1)
2
B, — n(n—1)(n —2)
2!
1) (n—
4!
anl = n
B, — nn—1)(n—2)
3!
The model will be more tractable when 0y = ...,0,,_1 = 7 = 0, in which case

this distribution reduces to the Bernoulli graph model, where all edges occur
with the same probability €% /(1 + ¢%1) independently. Frank and Strauss (1986)
observed that parameter estimation is difficult when the probability distribution
depends on the number of edges, number of 2-stars, and the number of triangles

(03 =...=0,_1=0). This is known as triad model and has the form

P{Y =y} = exp{bhui(y) + O2us(y) + Osus(y) — ¥(0)}, (2.2.10)

where the parameter vector to be estimated is 6§ = (61, 0,,03)7, and the sufficient

statistics u(y) = (u1(y), u2(y), us(y)), considered important, is defined by

ui(y) = Z Yij number of edges
1<i<j<n

us(y) = Z Z YikYjk number of 2-stars
1<i<j<n k+i,j

uz(y) = Z YiiYikYik number of triangles,
1<i<j<k<n

and 1(0) is a normalizing constant. Thus, they assumed models of any one of
the three parameters given that the other two are fixed at 0, and elaborated
a simulation-based method to approximate the maximum likelihood estimation.
Moreover, they suggested a type of conditional logistic regression method to es-

timate all parameters.

13
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Verter degree models. Another type of FRGM is based on vertex degrees. This

models have the form

Po{Y =y} = exp { Z 0:yiv — %/1(9)}- (2.2.11)

where y;, = Z#j Yij, and 0 = (0y,- -+ ,0,,)7 is the parameter vector and as before

1(0) is chosen to ensure the probabilities sum to 1.

2.3 Relevant Mathematical Techniques and Res-

ults

This section contains some miscellaneous mathematical concepts and results used

later in the thesis.

2.3.1 Spectral Decomposition Theorem in Linear Algebra

A set of vectors zq, 23, ..., 2, € R™ is said to be linearly independent if there exists
no set of scalars ¢y, ¢, ..., ¢, not all zero, such that >\, ¢;z; = 0,,, the m-vector
of zeros. A m X m matrix A is said to be of rank r if the maximum number
of linearly independent columns is 7. Suppose now that A (n x n) is a square

matrix. Consider the quadratic form

n

rT Az = Z a5, (2.3.1)

ij=1

where z = (21, ...,z,)" and A = (a;;) is a symmetric matrix, i.e. AT = A where
T denotes transpose. This matrix A and the quadratic form are called positive
semidefinite if x7 Az > 0 for all x € R™. If 27 Az > 0 for all z # 0,,, the n x 1
vector of zeros, then A and the quadratic form are called positive definite. Let A
be a square, n X n symmetric matrix. A real scalar A is said to be an eigenvalue

of A if there exist a non-zero vector z in R™ such that

Ax = Xz (2.3.2)

14
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The vector x is then referred to as an eigenvector associated with the eigenvalue

A. The eigenvalues of the matrix A are solution of the characteristic equation

det(\] — A) =0, (2.3.3)

where the notation det refers to the determinant of a matrix. An important result
of linear algebra, called the spectral decomposition theorem, states that for any
symmetric matrix, there are exactly n eigenvalues, and they are all real; further,
that the associated eigenvectors can be chosen so as to form an orthonormal basis.
The result offers a simple way to decompose the symmetric matrix as a product

of simple transformations.

Theorem 2.1 (see e.g. Mardia et al. (1980))

We can decompose any real symmetric n X n matrix A with the spectral decom-

position
i=1
where the g; are n X 1 column vectors and the matrix Q) := [qi, ..., q,] Is orthonor-

mal (that is, QTQ = Q QT = I,), where I, is the n x n identity matrix, and
contains the unit eigenvectors of A, while the diagonal matrix A contains the

eigenvalues of A.

2.3.2 Equivalence Relation and Partitions

An equivalence relation on a set X is a relation ~ on X such that the following

properties are hold:

1. z ~a for all z € X . (The relation is reflexive.)

2. If x ~y, then y ~ z . (The relation is symmetric.)

3. fx ~yand y~ z,then z ~ z . (The relation is transitive.)

A partition of a set X is a set P = {A;,---, A,} of blocks that are subsets of X
such that the following holds.

1. If A; € P then A; # () for j =1,--- ,n, where () is the empty set.
2. U A = X.

15
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3. AN A =0if j # k.

If ~ is an equivalence relation on X, we define the equivalence class of a € X to
be the set [a] = {b € X]|a ~ b}

Result 1: [a| = [b] if and only if a ~ b.

Result 2: The set of all equivalence classes form a partition of X.

See, for example, Chapter 2 of Ayres (1965) for the above material.

A set X will said to be partially ordered (the possibility of a total ordering is not
excluded) by a binary relation R if for arbitrary a,b,c € X,

1. R is reflexive, i.e. aRa
2. R is anti-symmetric, i.e., aRb and bRa if and only if a = b

3. R is transitive, i.r., a/Rb and bRc implies aRec.
For more details see e.g Ayres (1965).

The type of partial ordering that is relevant in this thesis is that between the

partitions of a fixed finite set A. Suppose we are given two partitions of A,
1 2 2
T(l) = {UZE )7 o 7Ué¢1)} and T(Q) = {Ug )7 o 7U,§J’)}'

That is, for j = 1,2, Us,j) C A, Ugj)ﬂvgj) = (), the empty set, if v # 0, and
US- o = Ur, U§2) = A. Then we say that

T < 1@

ifforally=1,---,«, u@l)guff) for some d =1,---, .

We shell see in Chapter 5 that the diamond partition is 'larger’ than tilde parti-

tion.

2.4 Background in Probability and Statistics

Here, briefly, we will lay some foundation of terminology, notation, and concepts
of topics in probability and statistics, to be used in later chapters. An excellent

introduction to many of the probability and statistics concepts is the book by
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van der Vaart (2000). Mardia et al. (1980) gives excellent coverage of multivariate

analysis and related topics.

2.4.1 Univariate and Multivariate Normal Distributions

The normal distribution is most important and widely used distribution in statist-
ics, because of the central limit theorem; see subsection 2.4.3. It is also called the
Gaussian distribution after the mathematician Karl Friedrich Gauss. A normal
distribution for a random variable X with mean ;1 and variance o2 has probability

density function

1 z—p)2
e (2.4.1)

[l p,0) =

oV 21

Let X = (Xi,--,Xx)T be a random vector with mean vector u (k x 1) and

covariance matrix ¥ (k x k)
J251 011 01k

23 Okl ... Okk

A random vector X = (Xi,---, Xz)?, where X; € R, is said to have the mul-
tivariate normal distribution with mean p (k x 1) and covariance ¥ (k x k) defined
by u = E[X] and 3 = Cov(X) = E[(X — p)(X — pu)T], if every fixed linear com-
bination of its components Y = a1 X; + - - - + ap X} is normally distributed. That
is, for any constant vector a = (ay, ..., a;)T € R¥, the random variable Y = a7 X
has a univariate normal distribution N (&, 0?) with density (2.4.1), with € = u’a

and 02 = a’Xa.

The multivariate normal distribution is said to be "non-degenerate" if and only
if the covariance matrix X is positive definite or, equivalently, if 3 has the full

rank k. In this case the distribution has density on R¥ given by

1 1 T—1
fx(zy, ... xp) = Wexp <—§(x —p) X (- /L))

Also, |X| is the determinant of ¥. The statistic (z — p)TS 7Y (z — i) in the non-
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degenerate case is known as the (square) Mahalanobis distance, which represents
the squared distance of the test point x from the mean p in the metric determined
by ¥71L.

2.4.2 Different Types of Stochastic Convergence

In this section, we provide a review of basic types of convergence of sequences of

random variables and vectors, and we will explain three of them.

Convergence in distribution. Let Y7,Y5,--- be a sequence of real random
vectors in R*, and let Y denote a random vector in R¥. For each n = 1,2,---

suppose F, denote the distribution function of Y,,; that is
Fn(y) = P(Ynl <y, Yo < yk)7

where y = (y1, -+ ,yx)? and Y, = (Y1, -+ ,ynr)’. Then the sequence Y, is said
to converge in distribution to the random vector Y as n — oo if

lim F,(y) = F(y),

n—o0

for every y € R* at which F is continuous, where F'(y) is the distribution function
of Y. This type of convergence also called weak convergence or convergence in

law, and written as Y, ey

Convergence in probability. A sequence Y, € RF is said to converge in

probability to Y if for every € > 0

lim P(]| Y, =Y ||>¢) =0,

n—oo
where || a || is the Euclidean norm for a € R, ie. || a ||= (aTa)¥/2 = (3F_, a2)/2.

This type of convergence is denoted by Y, == Y.

Almost sure Convergence. The sequence Y, is said to converge almost surely
to Y if
Plw: lim || Y,(w) —Y(w) ||=0) =1,
n—o0

and written as Y,, —» Y, where w is an element of the sample space Q. Note that,
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for each n, Y, and Y must be defined on the same sample space in convergence
almost surly and convergence in probability. However, this is not a requirement
in the definition of the convergence in distribution.

Other notations are useful, to avoid messy details in asymptotic calculation in
probability theory. We define the stochastic symbols o,(.) and O,(.). Let {X,,} be
a sequence of random variables. We say X,, = 0,(1) means X, 50 asn — oo,
while X,, = O,(1) means X,, is asymptotically bounded as n — oo, i.e. given
€ > 0, there exists an A = A(e) such that

P(|X,| =2 A) <k,

for n sufficiently large. More generally, let a,, is a sequence of positive numbers.
If we say X,, = op(a,) then this means that X, /a, = 0,(1), and likewise, X,, =
O(an) means X, /a, = Opy(1).

The following result is known as Slutsky’s lemma; see e.g. van der Vaart (2000),
p.11.

Lemma 2.1 (Slutsky.)
Let X,,, X andY,, be random vectors or variables. If X,, 4 X and Y, 9y ¢ for

a constant c, then

(G) X, +Y, -5 X +¢;
(ii) Y, X, -5 eX;

(iii) Y 'X, % ¢'X provided ¢ # 0.

This result is very useful for proving convergence in distribution and is used to

prove Corollary 2.1, which is used in Chapter 3.

2.4.3 Central Limit Theorem

The most famous example of the convergence in distribution is the central limit

theorem (CLT) case in the independent and identically distributed.

Theorem 2.2 (Multivariate CLT)
Let X; be a sequence of iid p-dimensional random vectors with E(X;) = u and

covariance matrix Cov(X;) = X. Then, if X = n~'>"" X, is the sample mean
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OfXZ‘,

V(X = ) =5 Ny(0,,%).

where 0,, is a zero vector.

2.4.4 Projections

To derive the limit distribution of a sequence of statistics T,,, we consider the
projection method due originally to Hoeffding (1948); see also van der Vaart
(2000). Projection is commonly used for showing that the sequence of statistics
T, is asymptotically equivalent to a sequence S,,, where the limit behavior of the
latter is known. Lemma 2.1 is the basis of this method, which shows that the
sequence T,, =T,, — S, + S,, converges in distribution to S if both T,, — S, 250
and 5, - 3.

Now assume a sequence of statistics 7,, and linear space S is given. For each n,
let §n be the projection of T}, on S; where §n is defined as the random variable in
S which minimises E(T —S,,)2; see van der Vaart (2000), Chapter 11. If the limit
behavior of §n is known, then the limiting behavior of the sequence 7,, follows

from that of S, provided the quotient Var(7,)/ Var( ) converges to 1.

Theorem 2.3 (van der Vaart (2000))

For each n, let S,, be linear space of random variables with finite second moments
that contain the constants. Let T, be a random variable with projection §n onto
S,.. If Var(T,)/ Var(S,) — 1 as n — oo then

T,— E(T,) 8,- E(Sn) v, 0 asm s oo (2.4.2)
sd(T) sd(Sy)

where sd(X) is the standard deviation of a random variable X .

Corollary 2.1

Assume that the conclusion of Theorem 2.3 holds and suppose in addition that

S, — E(S,) 4
—7§TH%N@n. (2.4.3)
Then T, B(T.)
n n d
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Proof: Now
T,—B(T,) [T.—ET,) S.—ES.)| | S—ES)
s { (T R } + E) (2.4.4)

From (2.4.2), the first term on the RHS of (2.4.4) goes to 0 in probability, while
the second term on the RHS of (2.4.4) is asymptotically standard normal by
assumption (2.4.3). Therefore the result follows from Slutsky’s Lemma. O
In Chapter 3 we will need to make use of the following multivariate version of
Corollary 2.1.

Corollary 2.2
Suppose that T,, = (1)1, - 7Tn,k)T is a sequence of random vectors and for each
n let S,, denote a linear space of random variables. For j = 1,--- |k and, for each

n, suppose that the projection of T, ; onto S, is written §ny Assume that

(i) fOI‘jzl,---,kZ,

Loy = BE(Tny) _ Sng = BlSng) o, 0; (2.4.5)
Sd<Tn,j) Sd(SnJ)
(ii) and
Sz L N0y, V), (2.1.6)
where R R .
S*: (Snl_E(SnJ) Snk_E(Snk))
! sd(S,q) sd(S, 1) ’
and
V* = lim Cov(S}) exists.
n—o0
Then

T =

n

<Tn,1 - E(Tn,l) Tn,k - E(Tn,k)

d *
Sd(TnJ) T Sd(Tn’k) ) — Nk(okv V )

Proof. We use the Cramér-Wold device; see p.16 of van der Vaart (2000). This
states that if (X,,),>1 and X are k-dimensional random vectors, then X, 4y X if

and only if for each fixed vector a, a’ X, A aTX , as n — 00. To prove Corollary
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2.2, it is therefore sufficient to show that for each fixed a = (ay,--- ,ax)?,
a’'T* SN N(0,a*V*a) as n — oo.

Using the inequality

>

Jj=1

k
<Y lel,
j=1

we have

k
" Ty — a"Si| < ayl

J=1

— E(T,;)  Snj—

T ; E
sd(Th,;) Sd(gn

(f”’j) . (2.4.7)

5J

From (2.4.5), each component on the right-hand side of (2.4.7) convergence to 0
in probability, and therefore

a’ T — aTg;'; 25 0.
Therefore we may apply Corollary 2.1 to obtain

T = JTTF—d"S +d" S
0,(1) +a” S
N(0,a’V*a),

J=

using (2.4.6). Consequently after applying the Cramér-Wold device we may con-
clude that
T —L5 Ni(0g, V).

O
Projection onto Sums:
Let X1, X5, -+, Xy be independent random vectors, and let S be the set of all

random variables of the form N
i=1

where g; : R — R is such that E(¢g?(X;)) < oo. This class is of interest, because
the convergence in distribution of the sums can be derived from the central limit

theorem. The projection of a random variable onto this class is known as its
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Hajek projection.

Lemma 2.2 (van der Vaart (2000))
Let X1, X5, -+, Xxn be independent random vectors. Then the projection of an

arbitrary random variable T with finite second moment onto the class S is given

by
N

=Y E(T|X;) - (n— 1)E(T).
i=1
For more explanations, see van der Vaart (2000). We will use the projection

method in Chapter 3 for prove the central limit theorem given there.

2.4.5 The Method of Moments

There are many methods for proving central limit theorems. One of these is the
projection method discussed in Subsection 2.4.4. A second important technique is
the method of moments. Here, weak convergence of the sequence of distributions
is proved by establishing that the moments converge. This approach requires

conditions under which a distribution is uniquely determined by its moments.

Theorem 2.4 (Billingsley (2012),p.412)
Let i be a probability measure on the line having finite moments oy, = ffooo a2k p(dr)
of all positive integer orders. If the power series Yoy r* /k! has a positive radius of

convergence, then p is the only probability measure with the moments oy, o, ....

Theorem 2.5 (Billingsley (2012),p.414)

Suppose that the distribution of X is determined by its moments, as in Theorem
2.4, that the X,, have moments of all orders, and that lim,_,., E[X!] = E[X"]| for
r=1,2,... Then X, -% X.

Theorem 2.5 will be used to prove the main central limit theorem in Chapter 5.

2.4.6 Conditional Expectation

For elementary properties of conditional expectation; see e.g. Billingsley (2012).
Let X,Y and Z denote random vectors. In the context considered here, all

expectations specified below exist and are finite. A particular result we shell use
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later is the following. For general functions f and g, we have

Ef(X)9(YV)|Z] = E[f(X)E[g(Y)|X, Z]|Z]. (2.4.8)

2.5 Composite Likelihood Methods

2.5.1 Types of Composite Likelihood

Many application areas use composite likelihood methods for statistical inference
for parameters (Varin et al. (2011)). The advantage of composite likelihood is
to reduce the computational complexity so that it is possible to deal with large
datasets and very complex models, especially when the use of standard likelihood
is not tractable. A composite likelihood function can be derived by multiplying
togather a collection of likelihood components. Each component is a conditional
or marginal probability density or probability mass function.

Suppose f(y;0) is a probability function of m-dimensional random vector y =
(Y1, ,Ym)! and for some unknown p-dimensional parameter vector 6 € ©. Let
{A1, ..., Ak} a set of marginal or conditional events with associated likelihoods
Lr(0;y) < f(y € Ag;6). A composite likelihood based on these components is a
weighted product

K
Lc(0ry) =[] £r0;9)",
k=1

with weights wy > 0 to be chosen; see Varin et al. (2011) for a helpful and up-
to-date review. In what follows, f is used as a generic symbol for a probability
density function or probability mass function.

Composite Conditional Likelthoods

Suppose that the observations yy, - - - , 4, have a neighborhood structure in that
y, has neighbors y,, s € N,., where for r =1,--+- ,m, N, C{1,--- ,m}, r ¢ N, is
the set of indices of the neighbors of y,.. One type of composite likelihood is the
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product of the conditional densities of a single observation given its neighbors,

=

Lo(0y) = f(wrl{ys : ys is a neighbor of y,.};0)

1
Il
i

I
3

Ty {ys, s € N, };0)

ﬁ
Il
—

Alternatively, composite likelihood can be construct by pooling pairwise condi-

tional densities
m

m—1
Loiy) =] f(yrelys; 0),
r=1 —+1

or by pooling full conditional densities

m

Lo@y) =[] Fly-:0),
r=1
where y_, denotes the vector of all the observations but excluding y,.. Which of
the above is used will depend in part on the structure of the problem and in part
on convenience.
Composite Marginal Likelthoods

Under independence assumptions, the most straightforward composite marginal
likelihood is

m

Lina(0;y) = [ f(0::6),
r=1
i.e. the observations yy,--- ,v,, are treated as independent. The marginal likeli-

hood allows inference only on marginal parameters. However, when parameters
linked to dependence are of interest, it is necessary to model blocks of observa-

tions, as in the pairwise likelihood (Varin et al. (2011)),

m—1 m
Lina0:y) = [T 1] f¥rvs0).
r=1 s=r+1

2.5.2 Asymptotic behavior of Composite Likelihood estim-

ators

Let X1, ..., X}, denote an IID sample from a population with distribution function

F. Suppose that we wish to construct an estimator of a parameter vector 6 €
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Qp C R? based on the sample X, ..., X,, and using an estimating function given
by

G(O) = Gil0) =) _G(X,0),

where G(X;,0) € R? i.e. G has the same dimension as . Assume 6, is such that

EF{G(Xl, 90)} = /G(I, eo)dF(ZE) = 0,

and consider the sequence of estimating equations for # given by
GO)=) Gi(0)=0, n=dd+1,.. (2.5.1)
i=1

Theorem 2.6
Under mild technical conditions, (2.5.1) admits a sequence of solutions (gn)j’f:d

with the following properties: as n — oo,

en L> 007

-~

ie. 0, is a consistent estimator of 0y; and
n2(6, — By) =% N4(0, H(6o)V (60)H (6p)"),

where
V(0) = Cov{G(X1,0)}, H(0) = [Ep{VsG(X.0)}7",
and Vg is the gradient operator.
The mild technical conditions referred to in the theorem are fairly complex to

state and, as we shall not be using this theorem in the thesis, we just refer to
van der Vaart (2000) for further details.

In the case where the composite likelihood is in fact a standard likelihood, it can
be seen that H(6) = i(f)~" where i(6) is the Fisher information matrix for a

single observation, and V' (0) = i(#). Therefore,

H(00)V (00)H(00)" = i(60)"i(6o)i(60) "
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and the standard result for maximum likelihood estimators

nz (0 — 6y) —% N{0,(6,) '}

is recovered.

In Chapter 6 we will consider some novel parameter estimators in exponential
random graph models based on new composite likelihoods. These new estimat-
ors are relatively easy to compute. However, it is unfortunately the case that
the asymptotic theory presented in this subsection is not applicable due to the

complex dependence structure.

2.6 More Advanced Topics

Rucinski (1988) gives necessary and sufficient conditions for asymptotic normality
of counts of a fixed graph in a classical random graph, RG(n,p), and also con-
siders Poisson convergence under some restrictive conditions. At random time,
Janson (1990) considers a random graph that evolves in time by adding new edges
and Janson (1990) proves a functional limit theorem for a class of statistics of

the random graph in this time-dependent setting.

Snijders (2002), considers estimation of the parameters of the ERGM triad model
using Markov chain Monte Carlo (MCMC) methods and using stochastic approx-

imation methods to approximate the solution to the likelihood equation.

Chatterjee and Diaconis (2013) provide a method for theoretical analysis of a
2-parameter submodel of the FRGM triad model which is will be discussed in
Section 6.4.

A strong point of ERGMs is that a discrete exponential family is formed with com-
monly used graph statistics as sufficient statistics (see Robins, Snijders, Wang,
Handcock and Pattison (2007)). However, the presence of the unknown normaliz-
ing constant, 1(#), makes parameter estimation in FRGMs extremely difficult to
handle from a statistical point of view, because it requires evaluating a sum over
a very large number of graphs and often too large to be feasible graphs. Geyer

and Thompson (1992) provide a Monte Carlo algorithm that uses samples from a
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distribution with known parameters to approximate the full likelihood, which is
then maximized to estimate the MLE. Bayesian approaches have been considered

by Caimo and Friel (2013) for example.

Other types of models of interest for random graphs are degree-based models,
where the focus is on the vertex degree distribution, see for example Olhede and
Wolfe (2012). By considering empirical counts of certain motifs in a graph, Bickel
et al. (2011) provide a general method of moments approach that can be used
to fit a large class of probability models. Moreover, graphs with a given degree
distribution ware studied by Britton et al. (2006) and Chatterjee et al. (2011).

However, degree distributions have not considered in this research.

Janson et al. (2004) provide exponential bounds for the upper tail for subgraph
counts, and Kunegis (2014) provides a software for computing the mean and
variance of subgraph counts in random graphs. Picard et al. (2008) provide an
analytical expression of the mean and variance of the motif count under any
exchangeable random graph model, and they approximate the motif count dis-
tribution by a compound Poisson distribution. Janson and Nowicki (1991) prove
results concerning the asymptotic behaviour of a class of statistics in various ran-

dom graph models.

Bloznelis and Gotze (2001) study orthogonal decomposition of general symmetric
statistics based on samples drawn without replacement from finite populations.
Furthermore, in terms of the Hoeffding decomposition, they provide bounds for
the reminders of the approximations, see van der Vaart (2000).

This provides a powerful approach for deriving limit distribution for symmetric
statistics based on data obtained by simple random sampling without replacement
from a finite population. Unfortunately the random graph statistics considered
in Chapters 4 and 5 are not symmetric statistics in the sense required, as we now
show.

Let T = t(Xy,- -, X,) denote a statistic based on simple random sample X, --- | X,
drawn without replacement from a finite population X = {zy,--- ,zx} con-
sisting of N units. We say that T is a symmetric statistic if ¢(z1,---,z,)

is a symmetric function of xy,---,x,. This means that for any permutation
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o:{1,---,n} —{1,--- ,n}, then
t(l’g(l),--- ,.Tg(n)) = t(xl,--- ,.Tn).

Here we will present a counter example to the claim that statistics of the type
considered in Chapters 4 and 5 are symmetric statistics; see Bloznelis and Gotze
(2001) and Bloznelis and Gotze (2002).

Example: Consider a statistic

A:Z Z (Wij — P)(Wir — p);

i=1 i£j<ki

which is scalar multiple of the statistic C defined in (4.6.1) and considered in
Chapter 5. This statistic is related to the number of 2-stars in the graph. The
y;; are the Bernoulli random variables defined in (2.2.1). Note that each term

(vi; — p)(yir — p) has repeated vertex 1.

For n = 4, we have

Aly) = ti(y12, 13, Y14, Y23, Y24, Y3.4)
= (X1, Xo, X3, X4, X5, X¢)
= (Y12 = p)(Y13 — p) + (V12 — p) (Y14 — ) + (Y13 — P) (Y14 — p)
+(y21 = p)(y23 — ) + (Y21 — P) (Y24 — p) + (y23 — P) (Y21 — P)
+(ys1 —P)(Ys2 — ) + (Y31 — ) (Y34 — p) + (Y32 — P) (Y31 — ),

Now if we permute the random variables, we get some terms with no common
vertex, i.e (yij — p)(Yuww — p), for i, j # u, v; for instance, swapping yio with y3,

we get the following

Aly) = to(Xo, X1, X3, X4, X5, Xe)
= (Y13 = p)(W12 = p) + (13 — ) (Y14 — p) + (Y12 — P) (Y14 — P)
+(ys1 —p)(y23 — ) + (y31 — P) (Y24 — P) + (Y23 — P) (Y214 — p)
+ (Y21 — p) (Y32 — p) + (Y21 — p)(Y3a — p) + (Y32 — P) (Y31 — p)-

29



CHAPTER 2: REVIEW OF BACKGROUND AND RELEVANT TECHNIQUES

As we notice, the fifth term in the summation, (y3; — p)(y24 — p), has no common
vertex, which mean the statistic, Cs is not a symmetric statistic, since permuta-
tion of the arguments of the statistic changes the original statistic. Thus we are

not able to use the results of Bloznelis and Gotze (2001) in Chapter 5.
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CHAPTER 3

Central Limit Theorem: for some

Random Graph Statistics

3.1 Introduction

The aim of this chapter is to state and prove a joint central limit theorem
(CLT) for three random graph statistics in the Erdés-Rényi-Gilbert random graph
model: the number of edges, the number of 2-stars and the number of triangles.
This CLT is stated in Theorem 3.1. Although this CLT seems a very basic result
to investigate, we have not been to find a statement of or reference to this result
in the literature.

The most interesting and important, and perhaps surprising, aspect of this result
is that it is degenerate in the following sense: the limiting covariance matrix of
the centred and scaled trivariate statistic has rank 1 rather than rank 3, as is
seen in Theorem 3.1. It is interesting to speculate that there is a connection
between the degeneracy present in Theorem 3.1 and the approximate degeneracy
of the 3-parameter exponential random graph model established by Chatterjee
and Diaconis (2013).

The proof of Theorem 3.1 uses the projection method; see van der Vaart (2000)
and Section 2.4.4. Also needed in the proof are several counting lemmas which
are needed to calculate the variances and covariances of the three statistics.
The outline of this chapter is as follows. In Section 3.2, notation is introduced
and the main result of the chapter, Theorem 3.1, is stated. In Section 3.3, the

counting lemmas needed in the proof of Theorem 3.1, and also used later on in the
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thesis, are stated and proved. In Section 3.4, the variances and covariances of the
three statistics under consideration are found using the lemmas in the previous

section. Finally, Theorem 3.1 is proved in Section 3.5.

3.2 The Central Limit Theorem

All graphs we consider here are simple (no loops or parallel edges), have a finite

number of vertices, and are undirected. Let

(3.2.1)

1 if there is an edge connecting vertex ¢ to vertex j;
Yij =
Y 0 otherwise.

Assume V,, = {1,2,...,n} is a set of n vertices. Then fori € V,,,j € V,,, i # j, we
have y;; = yj;.

By RG(n,p) we mean the following random graph: the y;; are independent and
identically distributed with Ply;; = 1] =p and Ply;; =0 =¢=1—p.

Let

up = Z Yij»

1<i<j<n
n

Uy = E E YijYik,
i=1 i£j<k#i

us = E YijYikYki-
1<i<j<k<n

Note that uy, us and ug are, respectively, the number of edges, the number of
2-stars and the number of triangles. Tt will be convenient to work with centred

and scaled versions of these statistics:

= h=P="r"1 (vi; — p), (3.2.2)
n(n—=1) n(n—1) 1<;§n ’
T, = - Uy = p* = : Z Z (yisyax — p°), (3.2.3)
n(n —1)(n —2) n(n—1)(n —2) = Wl
T et _ 3 g Y ;= 3 )
1<i<j<k<n

(3.2.4)
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Note that T4, Ty and Ty are, respectively, the edge density, the 2-star density
and the triangle density, each centred by its theoretical mean.

We are now in the position to state the main result of the chapter.

Theorem 3.1
Let Ty, Ty and T3 be as defined in (3.2.2), (3.2.3) and (3.2.4) respectively. Let
Gn(n,p), n = 1,2,--- denote a sequence of random graphs from Erdés-Rényi-

Gilbert model RG(n,p), i.e. the number of vertices is n and the probability of
an edge being present is p. Then

T,
n| Ty | -5 Ns(0s,2p(1 — p)a a”)
T

as n — oo, i.e. the limiting distribution of n(T, Ty, Ts)T is multivariate nor-

T

mal with mean the zero vector and covariance matrix 2p(1 — p)a a', where

a=(1,2p,3p*)T.

Remark 3.1
Theorem 3.1 tells us that the covariance matrix has rank 1, and therefore the

standardised joint limiting distribution of T, Ty and T's is degenerate.

The proof of Theorem 3.1 is given in Section 3.5.

3.3 Some Counting Lemmas

In this section we present some counting lemmas which will be useful when calcu-
lating the variances and covariances of the statistics Ty and T3 defined in (3.2.3)
and (3.2.4). The cases involving T'; are more elementary and do not require sep-
arate treatment. For example, when calculating the variance of T, we need to

evaluate

., 2 2
E[T,] = {n(n —1)(n—2) }
X Z Z Z Z E{(Yi5yin = 1°) Yapyary — 1) } -

=1 i£j<k#i a=1 a#f<yFa

(3.3.1)
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When evaluating (3.3.1), it is helpful to know, for fixed «, § and -, how many
choices of 4, j and k there are such that {{i,j},{i,k}} has (i) zero, (ii) one or
(iii) two elements in common with {{c, 8}, {c,~v}}. This is because the value
of E{(vijyi — P*)(YapYar — p*)} depends on whether we are in case (i), case
(ii) or case (iii). Results of this type are elementary but some care is needed.
The required counting results are presented in Lemmas 3.1-3.3 and are used in
Section 3.4. They are also used in the next chapter in Section 4.7 when calculating
conditional moments.

The following lemma is useful when calculating Var(T5).

Lemma 3.1

Consider a set of vertices V,, = {1,...,n} and fix o, 3,y € V,,, where o # 3,7
and f < 7. Define B,g, = {{c,8},{a,7}}, i.e a set consisting of two pairs.
Suppose now that we choose i,j,k € V,, with 1 # j,k and j < k, and define

Bijk = {{Z,j}, {Z, ]{?}} Then:

(i) The number of choices of the triple {i, j, k} withi # j, k and j < k such that
B and Bjjj, have no pair in common, i.e, Byg~ (| Bijr = 0, the empty set,

B (n — 3)(n* — 6)
(-6,

(ii) The number of choices of {i,j,k} with i # j,k and j < k such that B,

and Byjj, have precisely one pair in common, i.e. |Bygy () Bijr| = 1, is

4n — 10.

(iii) The number of choices of {i,j, k} with i # j, k and j < k such that B,g, =

Biji, the sets are the same, is 1.
Proof: To prove Lemma 3.1 , we have to consider three cases.

Case (i) Here, B;j, has no pairs in common with Bygy, 1,e, Bijx () Bagy = 0.

There are precisely four ways in which Case (i) can arise.

1. ("¢ in the middle"), i = «, j # a,f,7 and k # «, 3,7, ], leads to
(n — 3)(n — 4) instances for unordered pairs when i # j, k and j # k,

and therefore
(n—3)(n—4)

> (3.3.2)
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instances for ordered pairs when j < k.
2. ("iinaterminal"),i = 8, j # «, fand k # «, B, j leads to (n—2)(n—3)

instances for unordered pairs when ¢ # j, k and j # k, and therefore

(n—2)(n—3)
2

(3.3.3)

instances for ordered pairs when j < k.
3. ("iin a terminal"), i =, j # a,y and k # «, 7, j, leads to (n—2)(n —

3) instances for unordered pairs when i # j, k and j # k, and therefore

(n—2)(n - 3)
2

(3.3.4)

instances for ordered pairs when j < k.

4.1 # o,8,7, j # i and k # i,7, (n — 3)(n — 1)(n — 2) instances for
unordered pairs when ¢ # j, k and j # k, and therefore

(n—=3)(n—1)(n—2)
2

(3.3.5)

instances for ordered pairs when j < k.

Consequently, the number of choices for ordered pairs when j < k in Case

(i) is

(n—3)2(n—4) +(n_2)(n_3)+(n—l)(n;Q)(n—?))
:(n;B)(n—4+2n—4+(n—l)(n—Z)) (3.3.6)
_ (n —3)(n* - 6)
5 :

Case (ii) Here, B;;; has one pair in common with Bag,, i,e, |Bijr () Bagy| = 1.

There are precisely eight ways in which Case (ii) can arise.

1. (" in the middle"), i = a,j = 5,k # «, 5,7.
2. ("i in the middle"), i = o,k = ,j # «, 53, 7.
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3. ("i in the middle"), i = o, j = v,k # «, 5, 7.
4. ("i in the middle"), i = a, k = 7,5 # «, 5, 7.

Each of the subcases above has (n — 3) instances. The remaining for cases

are as follows.

5. ("i in a terminal"), i = 3, = a, k # «, B.
6. ("i in a terminal"), i = 8,k = o, j # «, B.
7. ("7 in a terminal"), i = =,k # a,n.
8. (" in a terminal"), i = =a,j # a,n.

In each of subcases 5-8 there are (n — 2) instances. Therefore, the number

of choices for unordered pairs when i # j, k and j # k in Case (ii) is

4(n—3) +4(n — 2).

Therefore, the number of choices for ordered pairs when j < k in Case (ii) is

SiA(n = 3) +4(n — 2)] = 4n — 10, (33.7)

Case (iii) Finally, B;;; has precisely two elements in common with B,gs,, ie,
| Biji () Bag| = 2, which leads to either i = «, j = S and k =, or i = a,
j =~ and k = 3, (2 instances) for unordered pairs when i # j, k and j # k.

Therefore, there is just one instance for ordered pairs when j < k. U

Remark 3.2
To check Lemma 3.1, note that the sum of the numbers in (3.3.6), (3.3.7) and
Case (iii) is

(n —3)(n? - 6) n(n —1)(n — 2)

2 Y

+4n—10+1= (3.3.8)

which is the number of ways of selecting 1, j, k from V,, with i # j, k and j < k.

The following lemma is useful when calculating Var(T's).

Lemma 3.2
Consider a set of vertices V,, = {1,....n} and fix o, 3,y € V,,, where a < 8 <
7. Define Eam = {{o, 8}, {B8,7},{7,a}}, i.e a set consisting of three pairs.
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Suppose now that we choose i,j,k € V,, with i < j < k, and define El-jk =

{{i,5},{j,k},{k,i}}. Then:

(i) The number of choices of the triple {i, j, k} with i < j < k such that Eaﬂ'y

and Eijk have no pair in common, i.e, Eam N Eijk = (), the empty set, is

(n —3)(n* — 16)
6

(ii) The number of choices of {i,j, k} with i < j < k such that Ea/gv and Bijy

have precisely one pair in common, i.e. |B,g, () Bijx| = 1, is

3(n —3).

(iii) The number of choices of {i,j,k} with i < j < k such that éam = §ijk,

the sets are the same, is 1.
Proof: To prove Lemma 3.2, once again we have to consider three cases:

Case (i) Here, Eijk has no pairs in common with Eaﬁv, ie, Eijk ﬂgaﬁv = 0.
There are precisely two ways in which Case (i) can arise, when ¢, j, k are

unordered:

1. one of 4, j, k is equal one of «, /3, v, therefore 9(n — 3)(n — 4) instances;

2. all are different, leading to (n — 3)(n — 4)(n — 5) instances.

Therefore, the number of instances in Case (i) of choices 4, j, k with i # j

k # i, (i.e. with no ordering imposed on i, j, k), is
9(n—3)(n—4)+ (n—3)(n—4)(n —5).

Therefore, the number of instances of choices i, j, k with i < j < k, (ordered

elements), in Case (i) is

9(n —3)(n—4) N (n—3)(n—4)(n—1>5) _ (n—=3)(n—4)(n—5+9)
3! 3! ) 6 ’
- ("_3)(6" —10 (339
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Case (ii) Here, Eijk has one pair in common with Ea,ﬁ"y; ie, ]émk N Eam] =1.
The number of choices i, 7,k with i # j # k # i, (i.e. with no ordering

imposed on i, j, k), in Case (ii) is
18(n — 3).

Therefore, the number of choices of 4,7,k in Case (ii) with i < j < k,

(ordered elements), is
18(n — 3)

=3 —3) (3.3.10)

Case (iii) Finally, §ijk has precisely three pairs in common with Ea,@'y; ie,
Eijk = §a67| = 3, the number of choices of 7, j, k with i < j < k in Case
(i) is 1. O

Remark 3.3

As a check, that the sum of the numbers in (3.3.9), (3.3.10) and Case (iii) of

Lemmad3.2 is

(n — 3)(n* — 16)
6

+3n—3)+1= , (3.3.11)
the number of ways of selecting i, j, k from V,, with i < 5 < k.

The following lemma is useful when calculating Cov(T, T's)

Lemma 3.3

Consider a set of nodes V,, = {1,...,n} and fix o, 5,y € V,, where a # 3,7
and f < . Define B.g, = {{a,5},{a,7}}, ie a set consisting of two pairs.
Suppose now that we choose i,j,k € V,, with i < j < k , and define Eijk =
{{i,7},{J, k},{k,i}}, i.e a set consisting of three pairs. Then:

(i) The number of choices of the triple {i, j, k} with i < j < k such that B,s,

and S;j, have no pair in common, i.e, Bug, ﬂéwk = (), the empty set, is

(n —3)(n*— 10).
6

(ii) The number of choices of (i,j, k) with i < j < k such that B,, and Ewk
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have precisely one pair in common, i.e. |Byg () Bijx| =1, is

2(n —3).

(iii) The number of choices of {i,j,k} with i < j < k such that B,s, and Eijk

have precisely two pair in common, i.e. |Bygy () Ewk| =2 is 1.
Proof : We have to consider three cases to prove Lemma 3.3:

Case (i) First we consider the case in which Eijk has no pairs in common with
B, 1€, Eijk () Bagy = 0. There are precisely five ways in which Case (i)

can arise, when 7, 7, k are unordered:

1. nomne of i, j, k equals «, 3,7, [(n—3)(n—4)(n—>5) instances];
2. one of 4, j, k equals a, [3(n — 3)(n — 4) instances];

3. one of i, 7,k equals (3 , [3(n — 3)(n — 4) instances];

4. one of i, j, k equals 7 , [3(n — 3)(n — 4) instances];

5. two of i, 7, k equals 8 and ~, [6(n — 3) instances].

Therefore, the number of choices i, j, k with i # j # k # ¢ in Case (i) is

(n=3)n—4)(n—=5)+3n—-3)(n—4)+3(n—3)(n—4) +
3(n—3)(n—4)+6(n—3)
= (n—3)(n*-10)

Therefore, the number of choices i, j, k with i < j < k in Case (i) is

(n—3)
6

(n* — 10). (3.3.12)

Case (ii) Now we consider the case when B, has one pair in common with
Bogy, i€, |§Z]k () Bagy| = 1. The number of choices 4, j, k with i # j # k # i
in Case (ii) is

12(n — 3)
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Therefore, the number of choices i, j, k with i < j < k in Case (ii) is

12(n — 3)

g =2n—3) (3.3.13)

Case (iii) Finally, the case in which Eijk has precisely two pairs in common
with Bag,, ie, |§ijkﬂBa5,y| = 2, Therefore, the number of choices i, j, k
with ¢ < j < k in Case (iii) is 1. O

Remark 3.4

Note that the sum of the numbers in (i), (ii) and (iii) of the Lemma 3.3 by

summing (3.3.12), (3.3.13) and Case (iii)

(n — 3)(n* —10)
6

+2n—3)+1= : (3.3.14)

the number of ways of selecting i, j, k from V,, with i < j < k.

3.4 Calculation of Variances and Covariances

We now present the means , variances and covariances involving 7'y, T's and T's.

Proposition 3.1

Consider a random graph RG(n,p) as defined in Subsection 2.2.2, and let T, T
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and T3 denote the statistics defined in (3.2.2)-(3.2.4) respectively. Then

E[T,] = 0, k=1,2,3; (3.4.1)
Var [T,] = %; (3.4.2)
Var[Ts] = — (:(_2711)@51 2)1?3(1 —p)
R 12>(n - 2)192(1 —1°); (34.3)
Var[Ts] = -~ (n18_<7z)?n31 2)195(1 —p)
ot 16))(71_2)193(1 —°); (3.4.4)
Cov [T1,Ts] = ﬁp%l —p); (3.4.5)
Cov [T1,T;] = ﬁp?’(l —p); (3.4.6)
Cov[T5,Ts] = - (nli(?)zn?)i 51 =)
+n(n — 1?(% — 2)p3(1 —p?). (3.4.7)

The proofs of the expectations in (3.4.1) are immediate. We will present the proofs

of the properties (3.4.2)-(3.4.7) in the following Lemmas 3.4 - 3.9 , respectively.

Lemma 3.4

In the setting of Proposition 3.1,

Var(T) = %

Proof: Fix a,p €V, where 1 < a < < n. Then,

E[T,) = E L_ > Was —p)Ts
n(n —1) =
= ﬁ > El(yas — p)T1], (3.4.8)
a<p
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and
El(uns = 2)T1] = E |(op = 1)y (05 =
= ﬁE (Yap — P)* + (Yap — D) Z (yi; — )
(i.5)2 e )
= ﬁ‘far(yag) + O, (349)
_ _n(nz_ e —p) (3.4.10)

where in (3.4.9) the second expectation is zero because y;; and y,3 are independent
if {a, B} # {i,j} and y,,, are 1ID Bernoulli with probability p. Therefore, from
(3.4.8) and (3.4.10) and using the fact that E[T,] = 0, from (3.4.1) with k = 1,

—2

VarTy) = BT =t 3 Ellwes ~pTi)

1<a<f<n
2 2
= —— ————p(1 —p),

n(n —1) 1@;@ n(n—1)

2p(1 —p)

n(n—1)"
as required. O
Lemma 3.5
In the setting of Proposition 3.1,

7 4(2n —5) 3 2 2
Var(Ty) = 1-— 1—p%).

Proof: Fix «, 5,7 €V, where a # 5,ac # v and § <. The n(n —1)(n —2)/2
choices of i, j, k € V,, such that i # j, k and j < k split into three cases

Case (i) {{i,7},{J, k}} has no elements in common with {{«, 5}, {«,v}}. From

Lemma 3.1 , there are (n — 3)(n? — 6)/2 such instances).

Case (ii) {{i,7}, {4, k}} has precisely one element in common with {{«, 5}, {«a,v}}.

From Lemma 3.1 , there are (4n — 10) such instances.
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Case (iii) {{i,j},{i,k}} = {{a, 8}, {a,7}}, i.e, a =4, B = j and v = k. There

is one such instance.

Now

P*) (Wijyir — 0°) }

E{(YapYary —

Therefore, using Lemma 3.1,

= E{yaﬁya'yyijyik - p2yaﬁya'y

- p2yz‘jyik + p4},

= E{yaﬁya'yyijyik} - p4:

p4_p4:0
= q pP-p'=p(1-p)

in Case (i);

in Case (ii);

p*—pt= p2(1 — pz) in Case (iii).

E{(Yapyay — P") T2} = n(n 12) (n—2) Z Z E {(YapYary — 1°) Yisyix — P°) }
i=1 i£j<k#i
= s f)(n =3 { (n - 3)5” —6) 0+ (4n —10)p%(1 — p)
L= )],
= s 12)(n ) {(4n —10)p°(1 —p) + P*(1 = p*)} .
(3.4.11)
Consequently, since E[T,] = 0, and using (3.4.11),
Var(Ty) = E[Ti],
= o) (n %) Zl #Z# E{(YasYay — ") T2},
:{n(nl }ZZ{n—lO( )
a=1 a#f<y#a
+p*(1 =)},
- e (U= 00 )+ 2= ),
as required. O
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Lemma 3.6

In the setting of Proposition 3.1,

18(n — 3)
n(n—1)(n—2

Var(T3) = )p5(1 —-p)+ ORI 2)193(1 - ).

Proof: Fixa, 3,7 € V,, where a < 8 <. The w choices of 7, j, k € V,,,
with ¢ < 7 < k split into three cases.

Case (i) {{i,7},{4,k},{k,i}} has no elements in common with {{«, 5},{5,~7}
,{7,a}}. From Lemma 3.2 there are (n — 3)(n? — 16)/6 such instances;

Case (ii) {{:,7},{J, k}, {k,i}} has precisely one element in common with {{«a, 5}
AB,7}, {7, a}}. From Lemma 3.2 there are 3(n — 3) such instances;

Case (iii) {{7,j},{J,k}, {k,i}} is equal to {{a, B}, {B,7}, {7, a}}, ie. a =1,

£ =7 and v = k. There is one such instance.

Now

E{(YasYpyYra — P°) (Yi¥jyes — P°)}
= E{YapYsyYralij¥jryri — psyaﬂyﬁvym - pgyijyjkyki + pﬁ}
= E{YasYsyYra¥ii¥inyri} — P,
p°—p® =0 in Case (i);
= p° —p®=p°(1 —p) in Case (ii);
p? —pb =p*(1 —p?®) in Case (iii).
Using Lemma 3.2,

E{(Yapys¥ra — 1°)T'3}

~ aln- 16; (n—2) > E{Wesverthe — 1)) iy — )}

1<i<j<k<n

N 1(;(71 pY {3(n=3)p’(L—p) +p* 1 - p")} . (3.4.12)
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Consequently, since E[T3] = 0 and using (3.4.12),

Var(Ty) = B{T.},

~ (- 1(;(71 —2) > E{Wepysivha — 1T},
1<a<f<y<n
6 2
_ {3(n = 3)p°(1 —p) +p*(1 - p*)},
{n(n —1)(n—2) } 1<a<;<~/<n

- n(n — 1(;(71 —2) {3(n=3)p*(1L—p)+p*1—p")},

as required. O

Lemma 3.7

In the setting of Proposition 3.1,
S — 4
Cov(Ty,Ty) = ——
n

Proof: Fix a,f € V,,, where o < 5. The n(n—1)(n—2)/2 choices of i, j, k € V,,
with ¢ # j, k j < k splits into two cases.

Case (i) Either {7, j} or {i, k} is equal to {a, f}. The number of such instances
is 2(n — 2).

Case (ii) Neither {7, j} or {i, k} is equal to {«, §}. By substraction, the number

of such cases is

n(n—l)(n—2)_2<n_2) _ (n* —n)(n —2) —4(n — 2)
2 2
(n—2)(n* —n—4)

2

Now

El(yap — ) Wisyir — P°)] = ElYapyis¥ir — PYisyik — P*Yap + ]
= E[yaﬁyijyik] - P3
p* = p*=p*(1—p) in Case (i);
{ pPP—p*=0 in Case (ii).
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Therefore,

El(yas —p)Ta] = pyes 12) Z > {yaﬁ_ )(yijym—ﬁ)}

i=1 i#£j<k#i
(n—2)(n? —n —4) 0}
5 .

ﬁp (1 —p).

)

Finally, since E[T,] = E[T,] =0,

COV(Tl, TQ) = E[TlTQ] s

2 _
= E[(Yap — p)T]
n(n —1) 1<o§<n
4 2
= 1—
TP (1=p),
as required. 0
Lemma 3.8
In the setting of Proposition 3.1,
— = 6
Cov(Ty,T3) = ———p*(1 — p).
ov(T1,Ts) n(n — 1)19 (1-p)

Proof: Fix a,f €V, where o < . The n(n—1)(n—2)/6 choices of i, j, k € V,
with ¢ < j < k splits into two cases.

Case (i) One of {i,5}, {i,k} and {j, k} is equal to {a, 5}. The number of such

instances is (n — 2).
Case (ii) None of {i,j}, {i,k} or {j,k} are equal to {«, 3}. By substraction,
the number of such cases is

n(n —1)(n — 2) (n—2)(n* —n—6)

2 ~n-2) = 6
_ (n—2)(n+2)(n—23)
6
(n* = 4)(n = 3)

46



CHAPTER 3: CENTRAL LIMIT THEOREM: FOR SOME RANDOM GRAPH
STATISTICS

Now
E[(yaﬁ - p) (yijyjkyki - pg)] = E[yaﬁyijyjkyki — PYijYikYki — pgya,@ + P4]
= E[yaﬁyijyjkyki] - p4
P =p'=p’(1—p) in Case (i);
pt—pt=0 in Case (ii).
Therefore,

El(yap —p)Ts] = ( 16<n ~9) > E{(yaﬁ — P)(iyikri — PB)}

n(n—1) 1<i<j<k<n
6 3 (n?> —4)(n — 3)
= —n(n6_ 1)293(1 —p).

Finally, since E[T] = E[T3] =0,

COV(Tl, Tg) = E[TIT?)] 9

2 _
= El(yap — p)T's]
n(n —1) KC;@
6 3
_ 1—
PP (1-p),
as required. O
Lemma 3.9
In the setting of Proposition 3.1,
— = 12(n — 3)
Cov(T5,T3) = (11— (1 —p).
ov(T2 T3) n(n—l)(n—2)p ( p)+n(n—1)(n—2)p (1=p7)

Proof: Fix «,5,7 € V,,, where a # 5,7 and f < . The n(n — 1)(n — 2)/6
choices of 7, j, k € V,, with ¢« < j < k splits into three cases.

Case (i) {i,7}, {7, k} and {j, k} has no elements in common with {{«, 5}, {a,v}}.

—3)(n?-10 .
(")(+) such instances.

From Lemma 3.3, there are
Case (ii) {i,j}, {i,k} or {j,k} has precisely two elements in common with
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{{a, B}, {a,7}}. From Lemma 3.3, there are 2(n — 3) such instances.

Case (iii) {i,75}, {i,k} or {j,k} has precisely one element in common with

{{a, B},{a,v}}. From Lemma 3.3, there are one such instances.

Now
E[(YapYar — P2) Wiyt — P°)] = ElYapYar¥ijYiriei — D Yis¥ikYei — P YapYay + D)
= ElYosYor¥ijYiryi] — D°
PP —p°=0 in Case (i);
= pt—p®=p*(1—p) in Case (ii);
p?—p° =p*(1 —p?) in Case (iii).
Therefore,
E[(Yas —p)Ts] = 0 > EX Waplar — 1) Wigyinumi — 9°) ¢,
nn—1)(n—-2) &£ 7 79
1<i<j<k<n
6 (n? —10)(n — 3) A
= 0+2(n—3)p*(1 —
6
= 2(n — 3)p*(1 — 3(1—p?)}. 3.4.13
Mn—UW—Zﬁ(n )p*(1=p)+p°(1—p°)} ( )

Consequently, from (3.4.13), and since E[T,] = E[T5] = 0,

COV(TQ,Tg) = E[ 273],

a n(n — 12)(n —2) Z Z E[(YapYor — p2)T3]

afla#6<v#a

ol atfcrta |

e T U AU R A ey I

as required. O

Remark 3.5
We can summarize a general expectation formula for the statistics T, Ty and
T}, as following:

S 2rs
E[T,T,] ~ — IO prs=1(1 - p), (3.4.14)
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for r,s = 1,2,3. Consequently, since E[Ty] =0 for k =1,2,3,

_ _ 2

Var(Ty) = E[11T:] ~ ﬁp(l - D),
_ _ 8

Var(Ty) = E[T5T5] ~ ﬁpz)’(l - D),
— — 18

Var(T3) = E[T3T3] ~ ﬁlf(l - D),

— 4
Tsz] ~ ﬁpz(l—p%

— 6
T3] ~ ﬁp?’(l—p),

_ S 12
COV(TQ, Tg) = E[TQTg] ~ ﬁle(l — p)

COV(Tl, TQ) =F

—

COV(Tl,Tg) =F

—

3.5 Proof of Theorem 3.1

We first note that T satisfies a central limit theorem and then apply the projec-

tion method to T and T'5. Since

— 2
T1=m Z (yij — )

1<i<g<n

is the sample mean of centred independent and identically distributed Bernoulli(p)

random variables, T satisfies a central limit theorem:

T-BN) _ o=V n g4,y

sd(T) 2p(1—p) " \/2p(1—p)

Note for future reference that

Var(T,) = —ip(g - f)) .

Projection of T':

Counsider

_ 2 - )
Tz:n(n—l)(n—Q)Z > (wiyin — ).

i=1 itj<ki
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Then
— 2
ETslyap]l = E|Ya Yo + Y Yrs | — 2(n —2)p*|ya
T a1 -2) [ ﬁ(k;} k;ﬁ ﬂ) 5
2 2
- n(n_ 1)(71—2) [yaﬁ2(n_2)p_2(n_2)p ]’
4
- TL(H—Z—)l)(yaﬁ _p>a

because of independence of the y;;. Consequently, from Lemma 2.2, the projec-

tion, say Sy, of T onto the IID random variables {yij }i<icjcn 18

S = > E[Talyas] — (n — 1)E[T),
1<a<p<n
4p
= (Z/aﬁ - D),
n(n—1) KO;@
= 2pT}. (3.5.1)

The variance of the projection §2 is the following:

Var(Sy) = Var(2pT,),
= 4p*Var(T)),

8p°(1 —p)
n(n—1)"
8p°(1 —p)

n2 ’
which from Lemma 3.5 is equivalent to Var(Ts), as n — oo. Consequently, due
to Theorem 2.3,

Ty — E[T,] _ Sy — /2[@] g
Sd(T2> Sd(SQ)
and in view of (3.5.1), (2.4.2) holds and so we may apply Corollary 2.1 to conclude
that

9

Ty — E[T
T — B[] 4, N(0,1), as n — oo.
Sd(TQ)

Projection of T':
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Consider
— 6
Ty = YiiYirYki = P°).
3 n(n—1)(n — 2) Ki;}g@f J95kk )
Then
_ 3 .
E|T = A — 3
[ 3‘yaﬁ] n(n _ 1)(n — 2) E yaﬁ(k?ézaﬁ yﬁkyka) (n 2)]9
_ 6 _ 2 3
e
- n(n—1) Yap — B/

Consequently, from Lemma 2.2 the projection, say §3, of T'5 onto the IID random

variables {y;; }1<icj<n 18

Sy = Y E[Tslyas] — (n — 1)E[T}]
1<a<p<n
6p?
= m Z (Yap — ),
1<a<f<n

The variance of the projection §3 is the following:

Var(§3) = Var(3p2Tl),

= 9p4Var(Tl),
18p°(1 — p)
n(n—1) "~

18p°(1 — p)
n2

Y

which from Lemma 3.6 is equivalent to Var(7T'), as n — oo. Consequently, due
to Theorem 2.3,
T’y _E[TB] 53— ?[53] .0
sd(Ts3) sd(S3)
and in view of (3.5.2), (2.4.2) holds and so we may apply Corollray 2.1 to conclude
that

Y

T3 — E[T
3—_ML>N(O,1), as n — oo.
Sd(Tg)
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To complete the proof, we apply Corollary 2.2.
The covariance matrix of nS = (S, S5, 55)7 = nT4(1,2p, 3p)7) is

1 1
n*Var(T1) | 2p (1 2p 3p2> ~ 2p(l—p)| 2p (1 2p 3p? )
3p? 3p?

Because of the rank of covariance matrix is 1 as opposed to 3, the joint probability
distribution of T4, Ty and T’ is degenerate. O

3.6 Summary

In this chapter we proved a joint central limit theorem (CLT) for the following
three statistics assuming the Erdos-Rényi-Gilbert random graph model: the num-
ber of edges, u;, the number of 2-stars, us, and the number of triangles, us. The
standardised version of these statistics is jointly trivariate normal in the limit as
the number of vertices, n, goes to infinity. However, the most interesting finding
is that the limiting covariance of the standardised variables has rank 1 as opposed
to rank 3.

In the following chapter we present various moment results, including the import-
ant Theorem 4.1, which are used in Chapter 5 to prove Theorem 5.1, a conditional

central limit theorem for us and ugz conditional on wuy, the number of edges.
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CHAPTER 4

Conditional Moment Results for
Random Graph Models

4.1 Introduction

In the previous chapter it was proved in Theorem 3.1 that the joint distribution
of (T, T4, T3)", suitably standardized, is asymptotically trivarate normal as n —
00, but is degenerate in the sense that the limiting covariance matrix has rank 1
rather than 3. The main goal of this chapter and the next is to prove a conditional
central limit Theorem for (T3, T5)” given T}, and show that the limiting bivariate
normal distribution is non-degenerate in the sense that its covariance matrix has
full rank 2. A key part of proving the conditional central limit theorem in Chapter
5 is precisely describing the behavior of the conditional expectation of general

products of the form

E { f[(yiu,ju - D)

u=1

Yoy = m], (4.1.1)

1<i<j<n

where m = Np and N = n(n — 1)/2. Note that in (4.1.1) the expectation is

conditional on the event zl<i<j<n Yij = m.

Remark 4.1
Here we mention an important point concerning notation. In Chapter 3, p denoted
the probability of an edge being present in the homogeneous Bernoulli random

graph model. In contrast, in this chapter and the next, p is always defined by
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p = m/N, where m, the number of edges in the graph, is the variable we condition

on.

The main result of this chapter is Theorem 4.1, which describes the behavior
of conditional expectations of the form (4.1.1) as n — oco. A second goal is to
find all first and second conditional moments of (Cy, C’3), conditional on the event
> i<icj<n Yij = M, where Oy and C are defined in (4.6.1) and (4.6.2) respectively.
On this conditioning event, the quantities Cy and C'5 are related to Ty and T3
by a simple linear transformation; see Section 4.6.

The outline of this chapter is as follows. In Section 4.2, the main results of
the chapter, Theorem 4.1, is stated. In Section 4.3, some useful expressions
concerning sampling without replacement from a finite population of zero-one
variables are presented. A selection of lemmas needed in the proof of Theorem
4.1 are stated and proved in Section 4.4, and in Section 4.5 Theorem 4.1 is proved.
Finally, in Section 4.6, the variables C', and Cj are introduced, and their first

and second moments are calculated in Section 4.7.

4.2 General Conditional Moments Theorem

The theorem below describes the asymptotic behavior of conditional moments of
arbitrarily high order when n, the number of vertices in a random Erdos-Rényi-
Gilbert graph, goes to infinity, and where the conditioning is on m = m(, the
number of edges present in the random graph with n vertices. Equivalently, m(
is the number of yi(;l) equal to 1 in the sample of size N™ where N™ = n(n—1)/2

is the maximum number of possible edges.

The main theorem of this chapter is now stated.

Theorem 4.1

Consider a sequence of finite populations of N™ = n(n — 1)/2 binary variables
(n)

(i.e. zero-one variables) y;;”, 1 < i < j < n, and suppose that for each n,

Zl<i<j<n yi(;l) = m™. Suppose also that for each n we sample q observations

Yivgis " Yig,dg

randomly, without replacement, from the full set (y;;)1<i<j<n of binary variables.

Let r1,---,7, denote any fixed positive integers. Finally, assume that for n
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sufficiently large, p™ = m™ /N™ ¢ (a,b) for some constant a and b satisfying
0<a<b<1. Then

q

H(yiu,ju — i)

u=1

E m™ | = O(N~IHHD/2]), (4.2.1)

where N = N || denotes the largest integer not greater than x, i.e,
x| = m(m:{h € Z‘h < x},

and

q
t=> Iy, (4.2.2)
u=1
where

I — 1 if A is true;
4= 0 if A is false.

Theorem 4.1 plays a crucial role in the proof of the conditional central limit the-
orem stated in Theorem 5.1 in Chapter 5, but we also believe it is of independent

interest.

Remark 4.2
(i) Note that the expectation in (4.2.1) is with respect to simple random sampling

from a finite population.

(ii) In the formulation of the theorem, we have taken the population size to be
N® =n(n —1)/2 and we have used two indices, i, and j,. These choices
are purely to make the link with random graphs clear. We could have used

a single index 1, in the statement of the theorem if we had wanted to.

4.3 Sampling without Replacement from a Finite

Binary Population

Suppose that a population consists of N elements, each of which is either a success

or a failure. Suppose that the proportion of successes is p, and the number of
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successes in the population is then m = Np. To make inferences about p we take a
simple random sample of size s without replacement. Interest centers here on the
joint distribution of Y7, --- Y, drawn from the population without replacement,
where Y; is the number of successes on the ith draw (trial). The Y; are binary
valued since on each draw we get either a success Y; = 1 or we get a failure ¥; = 0.
The Y; are not independent so the trials are not Bernoulli trials. Clearly P(Y; =
1) = Np/N = p, the proportion of successes in the population, and P(Y; = 0) =
(N — Np)/N =1 — p. Now consider samples of size 2 (i.e. s = 2), selected

without replacement. Then

NpNp—1 N 1
R (]

N—-Np Np N
N N-1 N-1
NpN-—-Np N
N N—-1 N-1
N—-NpN—-Np-—-1 N 1
PY =012 =0)=—F= =37 :N—1<1_p)2(1_m>

(4.3.1)

PY,=0,Y,=1) =

P(Yi=1,Y,=0) =

Define

Ty = P(iilYi =, iu V) =s— r). (4.3.2)

i=1

Note that, 7, s, is the probability of selecting r successes and s — r failures in
a simple random sample of size s selected from the population without replace-

ment. Then

2\ N 1
=PY,=1Y,=1)= — (1 - —
2,0 Yy y X2 ) (2>N_1P( Np)’

To2 = P(Y1=0,Y,=0) = (3) %(1 —») (1 B m) (4.3.3)

T =PY1=1Y,=0)+PY1=0,Y2=1),
2\ N
= —p(1 —p).
(1) v Pl —p)
Now suppose we are selecting a simple random sample of size s = 3 without
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replacement from the finite binary population of size N, and let r denote number
of ones. Then 3 — r is the number of zeros, where the possible values of r are
0,1,2,3. From (4.3.2) the probability of having r ones and 3 — r zeros is 7,5,
Then

= () (5 (55) (55)

~NW —]1V>3<N —! _”>3<1 ) ﬁ) (1 - ﬁ)
o @ (%) (]Xfp—_ 11) (jfvv?—_ 22)’

oo () ()
()

3N3 ) 1
N gt P (1 TN —p>>’

= () (7)) (5=) (=)
“wor 01 5)

(4.3.4)

For the general case and under simple random sampling without replacement, the
probability of selecting a particular sequence of length s with r ones and s — r

zeros is given by

M) (N —m)s—r _
Nes)
mm—1)---(m—r+1)(N—-—m)(N—m-—1)---(N—m—s+r+1)
N(N-=1)---(N—-s+1) ’

where e.g. my =m(m —1)---(m —r+1) for r > 1 and mg = 1. Therefore,
the probability of selecting a sample of size s without replacement having r ones

and s — r zeros is given by
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Ty s—r

mr(N _ m)s—r N$ |:m(T (N — m)(s—r):|

mr(N _ m)sfr

pr(1_p)s—7~]]\>:) {(1_%)..(1_rll).(l_Nim)..

(-
EZ; N® {m...m_r+1)(N—m)-"(N—m_3+r+1)},
(-

:)pr(l - p)s—r_]]\zj) [ﬁ (1 - Nip) [_H_l (1 - ﬁ)] . (435)

using the fact that m = Np and N —m = N(1—p). Also, we define H;;é(l — L)

Np
to be 1 when 7 = 0, and [[3_ " (1 — ﬁ) to be 1 when r = s.

4.4 Some preliminary lemmas

The following lemmas will be used in the proof of Theorem 4.1. We will start

with the following definition.

Definition 4.1

Let Ay, = {1,....,k} and o, = (o, ..., ), and consider a function f.(«y), where
r < k, which calculates the summation of the product of all subsets of components

of a, of size r. Define

frla) = Z HOéj, (4.4.1)

CCA|Cl=r jeC

k
where the sum is over the ( ) distinct subsets of A, with precisely r elements.
r

In the case r = 0 it is natural and convenient to define
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folay) = 1. (4.4.2)

Moreover, from Definition 4.1, two results will be presented in Lemma 4.1.
Lemma 4.1

Let Ay = {1,...,k} and oy, = (11, ..., ), and consider the function f,(«,,) defined
in (4.4.1) and (4.4.2). Then for r > 1,

frla, 1) = (ﬁ%) + arp1froi(a,), (4.4.3)

=1

and fori=1,---,r,
freivi(ap 1) = a1 fr—i(,) + froiva(a,). (4.4.4)

Proof: From (4.4.1) we have

f'r(Qr+1> = Z HO‘jﬂ

CCAr41:|Cl=r jeC
= term not involving ;.1 + terms involving a1,

- <ﬁai>+ar+1 > 1T

CCA,:|Cl=r—-1 jeC

= (HO@) "—Oér—i-lfr—l(gr)?
=1

from the definition of f,_;(a,). This establishes (4.4.3).
To prove (4.4.4), we see that

froin(@) = > 1T

CCAr41:|Cl=r—i+1 jeC
= term involving a,.,; + terms not involving a1,

= Qr4l Z HC“J‘ + Z Haj’

CCA:|Cl=r—i jeC CCA,:|Cl=r—i+1 jeC
= ar—i—lfr—i(gr) + fr—i+l(gr)>

from the definition of f,_;(«,) and f,_;11(q,.); see (4.4.1). O
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The following lemma, which builds on Lemma 4.1, will be useful in Part I of the

proof the Theorem 4.1 in Section 4.5.

Lemma 4.2
With Ay = {1, ...,t} and o, = («vy, ..., ) defined as before, and z any real number,

we have

H H @ + Z ft r at) (445)

=1

where f; () is defined in (4.4.1).

Proof: To proof the formula (4.4.5), we use the induction technique. The
lemma certainly holds when & = ¢t = 1 provided we define fo(oy) = 1. When
k=t=2,

H(ai—z) = (g —2)(ag — 2),

= aap — z(ag + ag) + 27,

= H i — zfi(ay) + 2° folay)

= HO‘Z""Z ) 2" for (),

as required. So, (4.4.5) holds for £ = 2. Assume now that (4.4.5) holds for k = ¢,
and consider k =t + 1. Then

t+1 t

H(ai—z) = (g1 — 2) H

i=1 =1

= (o1 — 2) HO“ + Z 2|, (4.4.6)

using the induction assumption. Expanding the RHS of (4.4.6),
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t t
RHS = ozt+1Hoz,~ — zHozi
i=1 i=1
t t

0y Z(_l)izift—i(%) -z Z(_l)izift—i(gt)
i=1 i=1
t+1

= Hozz —Z{Haz+@t+1ft 1 at)}

Z(_Uizi{fti(gt)aﬂrl + fi—it1 (Qt)} + (—1)t+12t+1 (4.4.7)

= Hai — 2fi(ai)

i=1
+ Z Z ft i+1 04t+1) + (_1>t+1zt+1f0(%+1)a (4.4.8)

t+1 t+1

= Haz+z Z ft i+1 at+1)

where in moving from (4.4.7) to (4.4.8), we have made use of (4.4.3) and made
multiple use of (4.4.4). Then, (4.4.5) holds for k =t + 1, and by the principle of
induction it therefore holds for all positive integers k. O
The following result is well-known but for convenience we provide a statement

and proof.

Lemma 4.3

Let t and « be integers such thatt > 0 and 0 < a < t. Then

zt:(—l)r (i) r® = 0. (4.4.9)

Proof: We prove the formula (4.4.9) using the induction technique, with the
beginning step when ¢t = 2 and a = 0, 1,2. For a = 0, the LHS of (4.4.9) will be

i(—l)*(i) - <—1>0(§) n <—1>1(f) ey @
— 1-2+41
= 0.
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For a = 1, the LHS of (4.4.9) will be

2520—1)T<i>7w = (—4)0(3)()+-(—1)1(?) +—(—1)2(§>2
= 0-242
= 0,

and for a = 2, the LHS of (4.4.9) will be

S Q) - e

= 1-2+4
£ 0.

So, (4.4.9) holds for t =2 and a = 0 and 1.
Assume, for t = k and « = 0,...,k — 1, (4.4.9) holds. Now let t = k + 1 and
consider « = 0, ..., k. Then for o = 0, the LHS of (4.4.9) will be

%(—1)’"(’“ ! 1) = (1-1H,

r=0
= 0’

from the binomial theorem. Fix o € {1,...,k}. The LHS of (4.4.9) will be

S (e = e ()
k+1 ) k1)1 -
- ;<_1) s!(/gi—i- 1 z s)!S'S ’
k+1
. s <k+ 1)' a—1
"E:“i)@—1wk+1—gf ‘

s=1
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Let r=s—1. Then

Z(—wﬂ(k“)(rﬂ)a = k) e,

e r+1

_ <k+1>T§kj<1>r(f ilm(a_l_j) (a; 1)’
e 0: (a ]— 1) Tzk;_l)r (i) I

E\ .
because Zfzo(—l)”( )rﬁ = 0 for j = 1,2,....,k — 1, by using the inductive
r
assumption. Thus, (4.4.9) holds for ¢ = k + 1. Therefore, (4.4.9) is true for
0<a<tandt=1,2,... 0

Define the quantity T,(r) as follows

1 a=0,r=20;
To(r)=14 0 a>r; (4.4.10)

D i<iycociqer 1 la TS <

The quantity T, (r) will play an important role in the proof of Theorem 4.1. The
key property of T, (r) we need is stated and proved in Lemma 4.4

Lemma 4.4

Let T, (r) be as defined in (4.4.10). Then for all integers satisfying 0 < a < r,
T,(r) is a polynomial in r of degree 2a.

Remark 4.3

The quantity T, (r) can be written as T, (r) = f,(d,), and 9, = (1,...,r), where
fo is defined in (4.4.1). However, it is more convenient below to use separate

notation.
Proof: First of all, we calculate T,(r) in the cases @ = 1 and o = 2, assuming

r = «; otherwise, T, (r)=0, from definition (4.4.10).

Case: a =1, r > a. Here
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<3

1
1 1
i:1z 27“(7"—}— )

which is a polynomial in r of degree 2o = 2.

Case: a =2, r > «. In this case, using the standard result

r

S %7’(7‘ 1)+ 1), (44.11)

=1

we have

1<i<y<r
1 .
= 5 > ij, (4.4.12)
1<i#j<r
1
- 5{ I } (14.13)
1<4,5<r =1

B %H <7«2+1>} _ér(rm(zrm],

= {r+3r—4r—2]

1)
= T+ [r—l 37“—1—2)1,

which is a polynomial in r of degree 2a = 4. In (4.4.12), the summation is over
all ¢ # j, including ¢ > j and j > ¢; and the first summation in (4.4.13) is over

all 4, 7 with no restriction.

We now consider the following inductive hypothesis:

P.: T,(r) is polynomial in r of degree 2ac when r > a.

We already know from above that P; and P, are true. We shall now show that
if « > 0 and P, is true then P, is also true, i.e.

Poi1: Tor1(r) is a polynomial in r of degree 2(a+ 1) when r > a + 1.
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Consider the general case

To(r)= ) i1eevia

1<11<<’La<7'

There are two types of terms in the sum: those for which ¢, = r, and those for

which i, < r. The sum of all the terms of the first type is given by

§ i1l AT =T § i1 a1,

1<i1 <. <ig=r 1<i1 << -1 <r—1 (4.4.14)

=r T,1(r—1),

by definition of T,_;(r — 1); see (4.4.10).

The sum of all the terms of the second type, with i, < r, is given by

Y iia=Ta(r— 1), (4.4.15)

1<i1 <. <ig <r—1

again by definition. Therefore combining (4.4.14) and (4.4.15), we have the iden-
tity

To(r) =To(r —1) +1Th—1(r —1). (4.4.16)

It will be slightly more convenient to work with the identity

Tor1(r+1)=Topa(r)+ (r+ 1)To(r), (4.4.17)

obtained by replacing o and r in (4.4.16) by a + 1 and r + 1, respectively.

Now
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due to cancelation and the fact that 7,4 () = 0 from (4.4.10). Therefore, using
(4.4.17),

r

Torr(r+1) =Y (j + DTa(j)- (4.4.18)

Jj=a

We now use the inductive hypothesis P, and write

2a
Ta(G) =Y A i,
k=0

i.e. we may write T,(j) as a polynomial in j of degree 2«, where the coefficients

Agf} depend on a but not on j.

Therefore, equating coefficients of powers of 7,

Tonr(r+1) = Y _(j+DTa(),

Jj=«
r 20
= S G+ny A
j=a k=0
2a+1 T
_ Z B[Ea]z jk7 (4419)
k=0 Jj=a
where
A k= 0;
B = Al Al 1<k < 20
Al k=2a+1.
Now

r a—1
b= Y=Yk
j=1 j=1

= ij - gk(a>7

j=1
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where gi(«) depends only on k and «a, and not j.

It is well known that Z;zl 4% is a polynomial in r of degree k + 1. This follows
from the result that

1 1 kE+1 -
k+1 - Bz k+1—i 4.4.20
ZJ k;+1 T +k+1z( i ) r (4.4.20)

where B; are the Bernoulli numbers; see Conway and Guy (1996), page 106.

Since the largest power of j in (4.4.19) is (2 + 1), it follows from (4.4.20) that
(4.4.19) is a polynomial in 7 of degree 2a+ 1+ 1 =2(a+ 1).
Finally, we want to show T, (7 + 1) is a polynomial of degree 2(a + 1) in r + 1,

not r. To see this is the case, write
2(a+1)

Ton(r+1)= Y Clk,

k=0
ot (4.4.21)

_ Z C[CX'H] )k

Expanding and using the binomial theorem, we obtain

(r+1-—1)F= g (?) (r+1)'(=1)",

and after substitution in (4.4.21), we get

2(a+1)

=0

(a+1) 2(a+1) i
NS <—1>k-lc,£“*”(l),

=0 k=l
2(a+1)

_ Z D a+1]
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Then, by replacing r + 1 by r, we have

for all integers » > « + 1. Therefore, P, is implied by P, and the lemma is

proved.

4.5 Proof of the General Conditional Moments

Theorem

The proof is a quite lengthy, so we split it into two parts, Part T and Part II.
In Part I, it will be shown that proving the results in the general case reduces to

proving the result in the case

rn=..=r,=1,q¢=t, (4.5.1)

where t is defined in (4.2.2). In other words, r, = 1 for all u = 1,--- | ¢, and for
no u is r, > 1. Then, in Part II, the result will be proved under condition (4.5.1).

Part I:

Define A = {u : r, = 1} and B = {u : r, > 1}. Then A(\B = ¢, the
empty set, and AUB = {1,...,q}. Also, define 3% = {y;,;, : u € A} and
yg) = {¥i,.j. 1 © € B}. In this notation,

s — ") = [H(yiu,ju - p(”))] [H(yiu,ju - p(’“)”] . (45.2)

u=1 ucA ueB

The situation considered here relates to formula (2.4.8) when the following sub-
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stitution are made:

X =y, Y=y, Z=m,

FX) =[] Wi — 2™,

ueB

9V) = [[ Wiy — ™).

u€A

(4.5.3)

Since the sampling here is equivalent to finite population sampling, all the expect-
ations indicated in (2.4.8) and (4.5.3) can be expressed as finite sums. Moreover,
since |f(X)| in (4.5.3) is bounded above byl, the theorem will follow if it can be
proved that

n n n |l
E T Wige — 0™)|m™, 45| = 0N, (4.5.4)

u€A

for all possible yg), where N = N There are only a finite number of possible

outcomes of the vector ygl). In particular, for n sufficiently large there are 297
possible values. A further point to note is that, due to the nature of the sampling,
i.e. simple random sampling without replacement, conditioning on m and
y™ in (4.5.4) is equivalent to conditioning on m™ = m — > uen yl(:)]u This
simplification is used below.

Consideration of the LHS of (4.5.4) leads to the following conclusions. The con-
ditional distribution of yﬁln) given yg) and m(™ corresponds to simple random
sampling without replacement with sample size reduced from N to N® =
N® — (g —t); the number of ones in the finite population is reduced from m™
to m™ =m — Y ueB yf:)ju, and the number of zeros in the finite population is

reduced from N® — m® to N® — m®),

Let us now suppose that the theorem holds in all cases in which condition (4.5.1)
is satisfied. Then, in view of comments in the previous paragraph, it can be
concluded that

= O(N~=2 ]y, (4.5.5)
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where p(® = % and N = N™. Now N(”)/N(”) converges to 1 as n — o0
because N™ = N®) — (¢ —t) and ¢ and t are fixed, so we can replace the RHS
of (4.5.5) by O(N-L%)).

So (4.5.4) will follow from (4.5.5) if it can be shown that

n n ~ (n 7|t
BT, - ™)@ | = E +O(N"L=),

u€A

[T, —p™)m

ucA

But 0< Fep 01, < ¢ 1 50

"

P = Fw
m™ =37 5 Yiua
N — (g —1)

m(™ e Yiudu
N(n) N(n)
L — 3
P = O(5t)
1+ O(N(ﬂ )

= p"W+ 0N

uniformly over ygl). Moreover, using Lemma (4.2),

H<yzu Ju H{ y'Lu ]u <A‘(n) p(n))}
u€A ucA
— () _ )
g@“"”“ ) (4.5.6)

3 -y S T, e

CCA:|C|=t—r wueC

where the sum in the final line is over all subsets C of A with ¢t — r elements.

Therefore, taking expectation in (4.5.6), conditional on m™, we find that
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BT, = 5)|mt
lucA i
B T t
= E [T, — ™)@ | + 3 (~1y7 3 - pyr
luceA i r=1

xE | > [T, —pt)|m™

CCA:|C|=t—r ueC

= BT, = p™)me | +
uEA
t
oo 3 s| 0 <o) i
r=1 CCA:|C|=t—r. ueC
t
n n ~(n —r _ | t=r+1
— B |TL0, - p)|m™ | + S oo, (45.7)
u€eA r=1

assuming in the final line that the theorem holds in all cases satisfying (4.5.1).

But for all integers satisfying 1 < r < t,

r+ V_;HJ > V;lJ (4.5.8)

Consequently, Part I follows from (4.5.7).

Part II:

For the remainder of the proof it is assumed that condition (4.5.1) holds, i.e.
Tl:...:rq:landq:t.
Therefore, using (4.3.5), the probability of selecting a sequence of length ¢ having

r ones and ¢ — r zeros, m.;_,, we get
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E [ - p)'m]
= Z Wr,tfr(l - p)r(_p)tia

(L—p)p" " (1),

t

r—1 j B r—1 o 1 .
= (1 B N_p> - ;( 1) (Np)aTa(r 1), (4.5.10)

and

t—r—1 B I —t—r—l o 1 o
1T (1 —N(l—p)) = “( 1) —<N(1_p))BT5(t 1),  (45.11)

where T,(r) is defined in (4.4.10). Consequently, using (4.5.10) and (4.5.11),
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— Z (—1)>*? Np) (V= p))BTa(r — )Tt —r—1)

a=0 B=0
t—2 min(r—1,y)
1 1 1
= N (-1 = > — T (r = DT, a(t—r—1)
v=0 N7 a=maz(0,y—t+r+1) p (1 o p)'V
(4.5.12)
2 1 K1 1
— Z(_1)77 3 EWTO‘(T ~ DT, ot —1r —1) (4.5.13)
v=0 a=0

We can change min(r — 1,+), the upper limit of summation in (4.5.12) to =, the
upper limit of summation in (4.5.13), because T,(r — 1) =01if (r — 1) < a < 7,
from the definition of T,,(r) in (4.4.10). Also, We can change max(0,y—t+r+1),
the lower limit of summation in (4.5.12) to 0, the lower limit of summation in
(4.5.13). Then by substituting (4.5.13) into (4.5.9) and writing

we obtain
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Using Lemma 4.4, for fixed ¢ and variable 7,
To(r— 1Ty _o(t —r—1)

is a polynomial of degree 2a + 2(v — ) = 2. Therefore, from Lemma 4.3,

S -1y (i) Tolr — )Tyt —r —1) = 0,

r=0

for all v such that 2v < t. However, for v > t/ 2, these equations are not equal
0. Therefore, the leading term in (4.5.14) is == where v* is the smallest 7 such
that 29* > t. Soy* = L if ¢ is even and 7* = % if ¢ is odd; i.e. v* = [51], the

t+1

integer part of ==. The proof is now complete. O

4.6 Preliminaries for C5 and Cj

Rather than work with T and T3, the 2-star and triangle densities, respectively,
it will be more convenience to work with the equivalent variables C, and Cj

defined below:

n

62 = ( 12) n — 2 Z Z yzg yzk - p) (461)

i=1  iFj<k#i

Cs = . . =)y -y —p), (46.2)

( 1)< ) 1<i<j<k<n

A1
where p = N Zl<i<jgnyi]"

Lemma 4.5
Ifp=N-! Zl<z‘<j<n yi; then Cy = Ty, where C5 is defined in (4.6.1) and Ty is
defined in (3.2.3).

Proof: Starting from the definition of C in (4.6.1), we have

— 2
C2:n(n—1)n—2Z Z (vis = P)(Yir = P)

i=1 iFj<k#i

, (4.6.3)

" nln—1)(n-2) Z Z (visyin + P* = P(yis + yir)

i=1  itj<ksi
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Now

n n

1
(n_l n_2 Z Z ylj+yzk _5 (n—l n—9 ZZZ yzj‘i‘ylk

=1  iAj<k#i i=1 j#i k#i,j
2
~a(n—1)(n—2) ZZZ%
i=1 j#i k#i,j
9 n
= 2)y;
TRV IP P Dt L
9 n
n n(n—l);;yw
9 n
2 n(n—l);;yw

Consequently, using (4.6.3) and (4.6.4), we have

62 - ( (n—l n—2 Z Z y%gyzk+p ) 2

i=1  iFj<k#i

= o 12) Z > (v +0* — 20%)

i=1 iFj<k#i

2
= T Z > (Waya —

i=1  iFj<k#£i

as required. O

Lemma 4.6
When p = N‘lzKKKn Yi; then Cy = T — 3pT,, where Cs, T, and T are
defined in (4.6.2), (3.2.3) and (3.2.4) respectively.
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Proof: Starting from the definition of C3 in (4.6.2), we have

Vel 6
Cs = n(n—1)(n — 2) 1<i<jz<k<n(yij — )Yk — P)(Yri — D)
_ 6
" onn—1)(n—2)
Z {yijyjkyki —p* — (Vi + YijYh; + YikUi) + 0 (Yij + yjn + yk@)}
1<i<j<k<n
6

= Z (YiYirYni — )

n(n—1)(n —2) 1<i<j<k<n

_n( Z Z Z YiiYir + YijYrj + YirYi)

i=1 j#i k#i,j

- (n_l ) S (s ) (4.6.5)

i=1 j#i k#i,j

In the two lines above we used the fact that

Z (yZJyzk + yljykj + y]kykl — Z Z Z yzyyzk + yz]ykj + ygkykz)

1<i<j<k<n =1 j#i k#i,j

and

S Wit e+ ) = ZZZ (Vi + Yk + Yri)-

1<i<j<k<n i=1 j#i k#i,j

Since the adjacency matrix is symmetric, then (4.6.5) becomes

— 6
Cs = Z (yijyjkyki_p3)

n(n—1)(n — 2) 1<i<j<k<n

( n_2 Zzzywyzk

i=1 j#i k#ij

+n( Z >_(n =2y

zlj;éz

n

—= 6
= b ome 1f(n =D R D Ty Z 2

i=1 iFj<k#i i=1 j#i
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since Y., Z#i yi; = n(n — 1)p, twice the number of edges. Then

o = B (g I, )+

i=1  iAj<k#i
= Ts5—3p (i = pz)
(n(n —1)(n—2) 121 i;&j;#i ]
= Tg — BPTQ7
as required. )

In the next section we focus on finding conditional means, variances and covari-

ances of Cy and Cs.

4.7 First and Second Moments of Cs and Cj

Here we will calculate all the conditional first and second moment of our statistics,
Cy and Cj3 in the conditional case. Specifically, we find E[Cy|m)], Var[Cy|m],
E[Cs|m], Var[C3|m], and Cov[Cy, C3|m].

For an arbitrary random graph RG(n,p), n is the number of vertices, and p is
the sample mean of the number of edges in the graph. The number of possible
edges in the graph is
n(n—1)

2
Therefore, the number of edges present is Np, and the number of absent edges is

N — Np.

N =

Proposition 4.1

Let (yij)1<i<jen denote the adjacency matrix of Erdos-Rényi-Gilbert random
graph. Let Cy and C3 be the statistics defined in (4.6.1) and (4.6.2) with
p = N3 icjcn¥ij. Then, conditional on the event Y7, ., . yi; = m, the

following results hold.
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E :62 m = —7%; (4.7.1)

E :63 m - 2&1__5)&__22];); (4.7.2)

Var :62 m = - (ip i(i)znp )_2 5+ O(n™); (4.7.3)
Var _63 ml = <ip i(i)znp )_3 5+ O(n~%); (4.7.4)
Cov |Cy,C3lm| = O(n™). (4.7.5)

Statements (4.7.1) - (4.7.5) are proved in Subsections 4.7.1-4.7.6, respectively.

4.7.1 First Conditional Moment of C,

Lemma 4.7
In the notation used above, the conditional covariance of y;; and y;,, j # k, given

the number of edges is

p(1 —p)
N_-1"

E | (yij — ) (Yin —p)‘m} —

Proof: In a population consists of binary variables, zeros and ones, in (4.3.2)we
defined 7, ;_, as the probability of choosing r ones and s —r zeros when sampling
without replacement. In this case, the sample size is 2 (i.e. s =2 and r =0,1,2).

The conditional covariance of y;; and y;x, 7 # k, given m, the number of edges, is
2
B = 0 =] = X ma-prcp ars)
r=0

where all the results of 7,2, where r = 0, 1,2 are presented in (4.3.3).

78



CHAPTER 4: CONDITIONAL MOMENT RESULTS FOR RANDOM GRAPH
MODELS

Then by substitution in (4.7.6) using the equations in (4.3.3), we get

E (yz‘j—p)(yik—p)’m} = %{(1_1\%)_2+(1_N(11—p)
Np*(1—=p)* [(1—p+p)
TTON-1 {Np(l—p)}’
p(1 —p)
N—1"

O

To find the first conditional moment of Cy, E[Cy|p], we need to use Lemma 4.7.

n

Thus the conditional expectation of C5 is
m] = b n(n—l 52 2 (- yzk—m‘m]
i=1 iFj<k#i

- n(n—12)n—2Z 2 [y” <yi’“_p)‘m]

E {@

1=1 iF#j<k#i
- (51
T VY
(1 —p)
N—-1"

4.7.2 First Conditional Moment of Cj;

Lemma 4.8
In the notation of context, the conditional expectation of vy;;, y;; and yy; given

the number of edges is

E | (yi — p)(yin — ) (yrs — p)’m} - 28571__1])))(%__221;)‘

Proof: Conditional on the number of edges m,
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E [(yij —p)(Yir — ) (ir. — p)‘m}
=Y s (1=p)(=p)* ", (4.7.7)
= mo3(=p)* + m2(1 = p)(=p)* + 12,1 (1 = p)*(=p) + m30(1 — p)°,

where, m,3_,; 7 =0,---,3, is defined in (4.3.4). Then by substitution in (4.7.7),

we get

E |:(yz'j =)Wk = P)(yri — p) ‘m]

N2

-~ AN p?’(l—p)?’{ = & ]

(N —1)(N —2) N2p2  N2(1 — p)?

2 3 3 2 2 2
T AL {—ngm_py ((1-p) —p)],
_ 2p(1—p)(1 —2p)

NN =2) "

To find the first conditional moment of C3, E[Cs|m], we need Lemma 4.8. Thus
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the conditional expectation of triangles statistic is

E [63 m] = E [n o 16) D) 1<i§<:k<n(yij = )Yk —P)(Yri — p)’m]
— ey X F |- 0 - - )]
B 6 - 2p(1 — p)(1 — 2p)
- n(n—1)(n-2) Ki;k@( (N =1DN =2) )

2p(1 —p)(1 — 2p)
(N-1)(N-2)"

4.7.3 Second Conditional Moment of C,

To derive the second conditional moment of the centered 2-stars density, Cs, we

should derive the following conditional expectation,

2 [y = 1) 0 = P) e — 2) i —p>\p] |
here we have three cases:

Case (i) Two edge in common, i.e. i =i*, j = j* and k = k*;
Case (ii) One edge in common, i.e. i =*, j = j* and k # k*;
Case (iii) No edge in common, i.e. {7,7}, {3, k}, {i*, 7%}, {7, k*}, all are differ-

ent.

Now, we will investigate each case in detail.

Case (i):
In this case when we have two edge in common, i.e. ¢ =¢*, 7 = j* and k = k*.

The number of instance in this case is 1, see Lemma 3.1. This case reduces the
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expectation to

E | (yij — p)*(yi — p)°

n@ = S (- (),

= 7To,2p4 + (1 — P)2P2 + ma0(1 — p)47

= %Pz(l - p)? {pz(l - m*'
2M1—m+41—m%1—;%ﬂ

_ Np*(1 —p)* -1

= 2o

where 7,5, 7 =0,1,2, are defined in (4.3.3).
Case (ii):

In this case when we have one edge in common, i.e. i = ¢*, j = j* and k # k*.
The number of instance in this case is (4n — 10), see (3.3.7) in Lemma 3.1. This

case reduces the conditional expectation to
£ (s = e = o~ )]

Let r = number of 1’s, and 2 — r = number of 0’s, where r = 0, 1, 2. Consider the
probability of having 0 in the first term then r ones in the rest and 2 — r zeros
in the rest is 79, 2_,, and the probability of having 1 in the first term then 7 ones
in the rest and 2 — r zeros in the rest is 7y, 2_,. The conditional expectation as

following

£ [0y~ 0~ ) — ]

) ) (4.7.8)
= > Tora-r (1= 0) (=0) "+ Y Tiar(1 = p)* (=p)*

r=0 r=0

where
N — Np
7—0;7”,2—7' - N —9 7T7',2—T7
and
_ N
Tr2—r = N — 27Tr,27ra

where 7,5, 7 =0,1,2, are defined in (4.3.3).
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However, we can apply simply Theorem 4.1, and we note that ¢ = 2, therefore
the leading term in (4.7.8) is O(N™!).

Case (iii):

In this case there is no edge in common between 2-stars, i.e. {i,j}, {7, k}, {i*, 7%},
{j*,k*}, all are different. The number of instance in this case is 5%(n? — 6), see
(3.3.6) in Lemma 3.1. Let r = number of 1’s, and 4 — r = number of 0’s, where
r =0,1,2,3,4. Consider the probability of having r ones and 4 —r zeros is m, 4_,.

The conditional expectation of Case(iii) is

E | (s = )ik = p)(w5e5+ — D)o —p) M O PENCR E e
= (4.7.9)

The corresponding probabilities, 7, 4—,, again obtained by considering sampling
without replacement from a finite binary population, and using formulas in (4.3.5).
Simply, we can apply Theorem 4.1, and we note that t = 4, thus the leading term
in (4.7.9) is O(N2).

To calculate the conditional expectation, E[?g |p], for the three cases, we have to
multiply each case by its number of instances, which already found it in Lemma
3.1 in Subsection 3.3. The number of instances in each case are:

1, 4n — 10 and 252(n? — 6) in cases (i), (ii) and (iii) respectively.
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Finally,

2

E {62

d

== DS M SIS

=1 itj<kti it=1  i*Ejr<k*£i

B (s = )0 = D)o~ ) — ”M

- n(n — n—QZ Z n(n —1)( n—2)

=1 z;é]<k7éz

i Z K |:(yij = P)(Wir. — P)Wirj= — P)(Yirrr — p)'m]

=1 Rt <k i

- n(n —1)( n—QZ Z n(n —1)( n—2)

=1 z¢]<k’;£z

[pQ(l —p)? + (4n — 10)O(N 1) + - 3(n2 — 6)O(N‘2)} ,
2 2 2 —1 -1
) P*(1=p)?+0Mm ) +0(n)],
B 2172(1 —p)2 4
= am-Dm-g o)

4.7.4 Second Conditional Moment of C5

To drive the second conditional moment of the centered triangles density, C3, we

should drive the following conditional expectation,

B |t = 90 = )0 = D)oy~ D)o =)o =)
here we have also three cases, as the statistic number of 2-stars:

Case (i) Two edge in common, i.e. i =i*, j = j* and k = k*;
Case (ii) One edge in common, i.e. i =i* j = j* and k # k*;

Case (iii) No edge in common, i.e. {i,7},{j, k}, {k, i}, {i*, 7%}, {5* k*}, {k*, i},

all are different.

Now, we will investigate each case in detail.

84



CHAPTER 4: CONDITIONAL MOMENT RESULTS FOR RANDOM GRAPH
MODELS

Case (i):
In this case when we have two edge in common, i.e. ¢ = ¢*, 7 = j* and k = k*.
The number of instance in this case is 1, see Lemma 3.2. This case reduces the

expectation to

E [(yij — )’ (yjr — 0)* (yri — p)zlm] = i;m,g_r (A-p?4" [(-»)?]"".

and by substitution in (4.3.4), we get

E |:(yij —0)* (Y — P)*(Yi — p)z"m}

NS
= —p*(1—p)’

= %p?’(l—p)?’
{ 3 3 301-p? 301-pf % 2(1—19)3}
N(l-p N N Np N2 (1—p)*  N?p? |’

=

Ny P

- PP |1- o) o).
~ p’(1—p)°.

Case (ii):
In this case when we have one edge in common, i.e. i = ¢*, j = j* and k # k*.
The number of instance in this case is 3(n — 3), see (3.3.10) in Lemma 3.2. This

case reduces the conditional expectation to

E | (yij — 0)*(jr — p) (ki — ) Wjene — P)(Yres- — D) ’m] :
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Let r is the number of 1’s, and 4 — r is the number of 0’s, where r = 0,1,2, 3, 4.
Consider the probability of having 0 in the first term then r ones in the rest and
4 — r zeros in the rest is 79,,4_,, and the probability of having 1 in the first term
then r ones in the rest and 4 — r zeros in the rest is 71,,4—,. The conditional

expectation as following

E [(yij — )* Wik — ) Wki — D) Wjere — D) Wrwi» — D) ’m]

4 4 (4.7.10)
=Y T0rar(L=p) (=p)* "+ D Tima (1= p)** (=p)*
r=0 r=0
where
N — Np
7_0;7’,4—r N _ 4 77-7’,4—7‘7
and
Np

Tird—r = mﬂm—r,
where 7,4, 7 =0,1,2,3,4, are defined as a general case in (4.3.5).

However, we can apply simply Theorem 4.1, and we note that ¢ = 4, therefore
the leading term in (4.7.10) is O(N~2).

Case (iii):

In this case there is no edge in common between triangles, i.e. {7,j}, {7, k}, {k,},
{i*, 7°}, {7*, k*}, {k*,i*}, all are different. The number of instance in this case is
m_?’)(cw, see (3.3.9) in Lemma 3.2. Let r = number of 1’s, and (6 — r) =
number of 0’s, where r = 0, 1, ..., 6. Consider the probability of having r ones and

6 — r zeros is m.6_,. The conditional expectation of C2 given m, Case(iii), is
E [(yij — )Wk — P) (ki — P)(Wirj= — P)(Yjee — D) (Ykriz — D) ‘m}

= > mer(l=p)(=p)°, (4.7.11)
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where
6 N6 6 7’—1 ( a ) 6—7“—1 ( 5 )
Tr6r = —7p (1 —=p)" - — ==,
i (T) Ne) e U Np ﬁUO N(1—p)

and
Nig)y = N(N = 1)(N = 2)(N = 3)(N — 4)(N - 5)

However, we can simply apply Theorem 4.1. We note that ¢ = 6, therefore the
leading term of the conditional expectation of 632) given m, Case(iii) in 4.7.11 is
O(N3)

To calculate the conditional expectation, E[Uﬁ |p], for the three cases, we have to
multiply each case by its number of instances, which already found it in Lemma
3.2 in subsection 3.3. The number of instances in each case are:

1, 3(n — 3) and ("_3)(6& in cases (i), (ii) and (iii) respectively.

d

- (n<n—16><n—2>)2 2 2

I<i<j<k<n 1<i*<j*<k*<n

Finally,

2
3

E[é

E [(w = D)Wk — )kt — D)W — D)5 — D) ete — D) M

6 6
 n(n—1)(n-2) Z n(n—1)(n — 2) Z

1<i<j<k<n 1< <g*<k*<n

B (s = )00 = )0 = )~ PN — ) —pM

6 6
 n(n—1)(n-2) Z n(n—1)(n —2)

6 \ ; y By
" aln—1)(n-2) P’(1=p)"+0(n") + 0],
__6pP(1—p)°
n(n—1)(n—2)
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4.7.5 Limiting Conditional Variances of C, and Cj

We examine the limiting variance of standardized version of Cs.

Var

nn—1)(n—2) — —
\/ 2p%(1 — p)? (02_E(02’m))]
_ onn—=1)(n—2)r 21— EX(Colm
= g |E@lm) - B Colm)]

nin—1)(n—2) [ 2p*(1 —p)° pz(l—p)Q]

2p?(1-p)* [n(n—1m-2) (N-1)

_ onn-1nr-2)7 2p*(1-p?* 1
= T |nln- D) O<N2)}’
= 1+0(n™).

Also, the limiting variance of standardized version of Cs.

Var 6p3(1 —p)?

\/nm— e =2 @, —E@\m»]

_ onn—=1)(n—-2)r i) — EX(Culm
o 6p3(1 — p)3 _E(O3| ) — E*(C3| )},
_ on(n=Dn-=-2)] 6p’1-p°  *(1-p)? o
- 6p*(1 —p)® [nn—1)(n—-2) (N—l)Q(N—2)2(1 2p)°|
L=

6 1—p) |nn—Dn-2)  N|

= 1

4.7.6 Limiting Conditional Covariance of Cs and C;

We examine the covariance of standardized C; and Cf5 to proof it is leading to 0.

Cov [\/n(“ — D=2 @, - B(Cym)) \/ nn D =2) (@, — B(Cyjm))

2p*(1 —p)? 6p*(1 —p)?
- ;pjgf"_ - )2; [E(CaChlm) — E(Calm)E(Cslm)] (4712)
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So,

=2 ECam)E(Colm) = O(:)00~*)0(n™)

where N = O(n?), then

Cov [\/n(n e (62 - E(aﬂm)) ’ \/n(n T (63 - E(€3|m))

2p*(1 — p)? 6p*(1 —p)?
_ ”(7”‘12;5121(7”‘_;;)E(6263|m). (4.7.13)

To find E(C5C3|m), we have three cases:

Case (i): No edge in common, where here ¢t = 5, and the number of instances is
(n—3)(n*-10) .
6 )

Case (ii): One edge in common, where here ¢t = 3, and the number of instances
is 2(n — 3);

Case (iii): Two edge in common, where here t = 1, and the number of instances

is 1.

See Lemma 3.3. Therefore
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E(Ugag |m)

n

9 6
= | a2 2 20 P P

a=1 B<y

> (i — )ik — ) ki — p)]

2 - 6
" n(n—1)(n—2) ; ; n(n—1)(n — 2) (4.7.14)
Z E[(Yap — 1) Wary — 2)(Wi5 — 2) W5k — ) (Yri — D))
~n(n— 1(;(71 —2) [(n - 3)((7; - 10)O(N_3) +2(n—3)O(N~*) + O(N7)
= =g 007+ 00 + 0

=0(n % +0n % +0n>).

Finally, by substitution (4.7.14) in (4.7.13), we have

nn—1)(n-2) — — nn—1)(n—-2) — —
Cov [\/ 221 = p)? (Ca — E(Cslm)), \/ 6571 — ) (Cs — E(C5|m))
_ n(n—1)(n —2) E(CyCslm)
12p°(1 — p)®
= 0(n®) [0O(n~ %) +0(n~% +0(n?)]

= O(n?

4.8 Summary

The main result of this chapter, Theorem 4.1, describes the asymptotic behavior
as the number of vertices, n, goes to infinity, of a family of conditional expecta-
tions under the Erdés-Rényi-Gilbert random graph model, where the conditioning
is on m = m(, the number of edges in the graph. A second goal of this chapter
was to find all first and second conditional moments of (C; and C3), and the
covariance between them, where (Cy and C3) are defined in (4.6.1) and (4.6.2)
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respectively. The results in this chapter play a vital role in the proof of Theorem

5.1, the conditional central limit theorem in the next chapter.
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CHAPTER 5

Central Limit Theorem:

Conditional Case

5.1 Introduction

The statistics Ty, T and T3, defined in (3.2.2) - (3.2.4) denote, respectively,
the edge density, the 2-stars density and the triangle density in a random graph.
In Theorem 3.1 we proved that, under the FErdés-Rényi-Gilbert random graph
model, the vector (T, T, T3)", suitably standardized, satisfies a central limit
theorem. What is noteworthy about this results, however, is that the limiting
3 X 3 covariance matrix has rank 1, so that the limiting multivariate Gaussian
distribution is degenerate. This result seems some what surprising. We have not
been able to find this result in the literature.

In this chapter, our main aim is to prove that this degeneracy is removed when we
condition on the edge density qu =T, +p=m/N = p, where m is the number of
edges present and N = n(n—1)/2 as before. The result we prove in Theorem 5.1 is
equivalent to the following: Conditional on qu, (T3, T3)T suitably standardized
satisfies a conditional central limit theorem with a limiting covariance matrix
which has full rank 2. However, in Theorem 5.1 it turns out to be more convenient
to work with the statistics Cy and C3 defined in (4.6.1) and (4.6.2) respectively.
In fact, C'y and Cj are closely related to Ty and T'5, on the event qu: Lemma 4.5
tells us that Cy = T, and Lemma 4.6 tells us that C'3 = T3 — 3pT5. Therefore,
working with T, and T5 conditional on Tlf — p is equivalent to working with C,

and C’s conditional on T, = p after a linear transformation.
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The proof of Theorem 5.1, the main results of the chapter, uses the method of
moments (see Section 2.4.5 of Chapter 2) and is split into three components: The
proofs of Propositions 5.1, 5.2 and 5.3. The key results needed in these proofs
are Theorem 4.1 and some counting lemmas, Lemma 5.1-5.4.

The outline of this chapter is as follows. In Section 5.2 we state the conditional
central limit theorem in Theorem 5.1 and we also state the component results,
Propositions 5.1-5.3. In Section 5.3 we state and prove the counting lemmas,
Lemma 5.1-5.4, and in Section 5.4 we prove the Propositions 5.1-5.3, thereby
completing the proof of Theorem 5.1. Finally, we present some numerical results
in Section 5.5 which explore how good the conditional Gaussian approximation
for (Cy, C3)T is for various choices of p and n, and in Section 5.6 we investigate

real-world network data.

5.2 The Conditional Central Limit Theorem

Recall that p = N~* ZKKK” yij. Define standardized versions of Cy and Cj as

follows:

Oy,
n(n—1)(n —2) Yo D iy —»a—p) (5.2.1)

1 itj<ksi

- Hmmremn) & 2 S now .

9-1 1 n
B {n(n —1)(n—2) } 2 (i = )i —p), (5.2.2)

where, by definition

n

> (i —p)ya—p) = (w5 = ) (wax = ), (5.2.3)
i Ak =1 A kA,

3

*
~
*
<.
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and

C; =

I
By —

n(n —1)(n—2) .Z (Y5 = P) (i = P)(Yri = p); (5.2.4)

1

= é{n(n—l } Z Yo D = 2) (s — )y — ),

=1 j#i  k#i,j

- {n(n —61;71 ) }2 > W =)k — p) (s — ), (5.2.5)

i#jthi

again using the equivalence in (5.2.3). Although equivalent, in subsequent calcu-
lations it will be more convenient to use (5.2.2), where j and k are not ordered,
than (5.2.1), where j and k are ordered; and it will be more convenient to use
(5.2.5), where i, j and k are not ordered, than (5.2.4), where ¢, j and k are
ordered.

The following conditional central limit theorem for the two statistics Cy and Cj

is conditional on m, the number of edges present in the graph.

Theorem 5.1

Consider a sequences of random graphs with n vertices and adjacency matrices

(yf?) and define N™ = n(n—1)/2,n = 1,2,---. Suppose that, for each
1<i<j<n

n,

(i) conditionalon ) ; ;c, yz(;L) m™ = NWp™ the zero-one variables y(”)(l <

(%)

i < j < n), are identically distributed.
(ii) Asn — oo, pi™ =m /N®™ Ly po e (0,1).

Then, conditional on m™, i.e. conditional on the event ZKKJ.@ yfjn) =m™, we

Cy ‘ I 0 py(1—po)® 0 (5.2.6)
Cs ? 0/ \o pa(1 —po)? o

as m — oo, i.e. the limiting distribution of (Cy, C3)T|m™ is bivariate normal

have
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with mean the zero vector and covariance matrix, diag{p3(1 — po)?, pa(1 — po)?},

and we notice that Cy and C3 are independent.

Remark 5.1

In the follows we will simplify notation by writing y(ﬁ)

(]

and N™ = N. Note that the p used in the definition of Cy in (5.2.2) and Cs in
(5.2.5) is actually p™ = m™ /N

Preliminaries Comments on the Proof: The proof is based on the method
of moments; see e.g. Billingsley (2012), Chung (2001) and Chapter 2, Section
2.4.5. A key role is played by Theorem 4.1, formula (4.2.1). It has already been

shown that E[Cylm] = O(n~2%) and E[C3/m] = O(n™) in (4.7.1) and (4.7.2)
respectively. It follows that

E |olm] = \/”(” - 12)(” ~2 02 = 0(n}) (5.2.7)
Elcylm| = \/”<“ - 1é<” =2 0(n—1) = O(n-) (5.2.8)

Also, from the results for Var(Cy|m), Var(Cs|m) and Cov(Cy, C3|m) obtained in

Proposition 4.1, it follows immediately that

Var(Cy|m) — pa(1 —po)?, Var(Cslm) — pi(1 —po)?, Cov(Cy, Cslm) — 0,
(5.2.9)
as n — oo. Consequently, the first and second moments for C5 and Cj already
obtained are consistent with what is stated in (5.2.6).
It remains to show that all the higher order moments of Cy and C3 (conditional
on m) converge to the corresponding moments of the bivariate normal given in
(5.2.6). Specifically, to apply the method of moments approach, we need to show

that for each pair of non-negative integers r and s,
E[C5C5|m] — E[Z]Z5] = E[Z]|E|Z;] (5.2.10)

as n — 0o, where (7, Z)* is bivariate normal with mean (0,0)” and covariance
matrix diag{p3(1 — po)?, p3(1 — po)®}. Note that the equality is valid in (5.2.10)

because, due to the covariance matrix of (Z;, Z»)T being diagonal, and because
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(Z1, Z3)T is bivariate normal, Z; and Z, are independent.

It has already been show in (5.2.7)-(5.2.8) that (5.2.10) holds for all integers r
and s satisfying 0 < r + s < 2. It remains to show that (5.2.10) holds for all
non-negative integers r and s such that r 4+ s > 3.

It will be helpful to split the proof into three cases:

Case I the marginal conditional moments of Cy (r > 3, s = 0).
Case II the marginal conditional moments of C (r =0, s > 3).

Case III the joint conditional moments of Cy and C3 (r > 1,s > 1,7 + s > 3).

Case I, II and III are covered below in Propositions 5.1, 5.2 and 5.3, respectively.

The proofs of these propositions are given in Section 5.4. 0]

Proposition 5.1
Assume that the conditions Theorem 5.1 hold. Then for each fixed r > 1,

o [0 if 1 is odd:
E[Crjm] "3 ifriso
(r — DUph(1 —po)" if ris even

where (r —1)!l = (r—1)(r —3)...5.3.1 for even r. Consequently, since the limiting
conditional moments of Cy are the same as those of Z ~ N(0,p2(1 — po)?), we

may conclude that Cy 2 N(0,p3(1 — po)?).

Proposition 5.2
Assume that the conditions Theorem 5.1 hold. Then for each fixed s > 1,

I 0 if s is odd;
E[C;‘m] i}{ 1 S1S O }

(s — 1)!!pgs/2(1 —po)%/? if s is even,

Consequently, since the limiting conditional moments of C5 are the same as those
of Z ~ N(0,p3(1 — po)?®), we may conclude that Cs - N(0,p3(1 — po)?).
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Proposition 5.3
Assume that the conditions Theorem 5.1 hold. Then for r,s > 1,

BC5Cglmy 2 L DM = Dlp(1 - po) Py (1= po)*/ if 1,5 even;
278 0 otherwise

Consequently, since the limiting joint conditional moments of Cy and C3 are the
same as those of the corresponding joint moments of Z; ~ N(0,p3(1 — py)?) and
Zy ~ N(0,p3(1 — po)?), where Z, and Zy are independent and normal, it follows

that Cy and C3 are asymptotically independent and normal.

Before proving Propositions 5.1-5.3, we provide some preliminary results. These

results depend on some counting arguments which are quite complicated.

5.3 Some Counting Lemmas

In this section we make use of two types of equivalence relation: Tilde equivalence
relations, defined in subsection 5.3.1; and diamond equivalence relations, defined
in subsection 5.3.2. Tilde equivalence relations are relevant when we want to
count the number of tilde singletons, i.e. the number of tilde equivalence classes
with one element. The number of tilde singletons will play the role of ¢ in The-
orem 4.1. In contrast, diamond equivalence relations are more convenient to use
when we counting indices as in the key Lemma 5.1. As will be seen, there is
actually a relationship between the two types of equivalence relation considered:
A given tilde equivalence relation uniquely determines a diamond equivalence re-
lation. However, the uniqueness does not go the other way. There are many tilde
equivalence relations which determine the same diamond equivalence relation.

Consider (5, which is given by

n

Cy={mmn-n-2y""7 > > ] —P) Wik, —P).
i1#£j1£k1#£0 irZjrFkr#ir u=1
(5.3.1)
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and Cf%, which is given by

C; = {6n(n—1)(n—2)}"""”

n

<y > Hws =D @rake = P Grass = ),(5:3.2)

i1 #j17#k1 0 trFJrFkrFir u=1

where (5.2.3) has been used repeatedly. First, we give some definitions. Define

N, ={1,..n}, (5.3.3)
A = (s Jus ku cu=1,..,7) € N iy # Ju # ku # iu} (5.3.4)

and .
T(y, A) = [ [ Wiasn = P) Giuk — P), A€ A, (5.3.5)

u=1

Since there is a one-to-one relationship between A, ,, and the set of those (iy, ju, ku :
uw =1,...,7) which appear on the RHS of (5.3.1), it follows that we have the iden-
tity

Cy ={2n(n—1)(n—2)}"? > T(y A), (5.3.6)

A€Arn

where the sum in (5.3.6) is over all elements A of A, ,,.

5.3.1 Definition of Tilde Equivalence Relation

Now consider a general A € A, ,,. It is seen that T'(y, A) depends on (and only

on) those y;; with index sets
Ll = {i17j1}7 L2 = {ilu kl}a Ty L27’*1 = {iT7jT}J LZT‘ = {i“ kT} (537)

Using the given A € A, ,,, define an equivalence relation ~ on the set { Ly, Lo, ..., Lo, }

as follows:

for L,, L, € {L1, Lo, ..., Lo.}, L, ~ L, if and only if L, = L,. (5.3.8)

Remark 5.2
When assessing equality in (5.3.8), the L, and L, in (5.3.7) are treated as sets
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with two elements rather than as ordered pairs. Note that y;; = y;; due to the

fact that we are considering graphs with undirected edges.

The relation ~ is easily seen to be:

(1) reflexive (L, ~ L), because L, = Ly;

(ii) symmetric (L, ~ L, if and only if L, ~ L,), because L, = L, if and only if
LU - Lu7
(iii) transitive (L, ~ L, and L, ~ L,, implies L, ~ L,,), because L, = L, and

L,= L, then L, = L,,.

Therefore it is an equivalence relation, which determines a partition of the set
{Ly, Ly, ..., Ly, } corresponding to equivalence classes. Let us write T") = {v;, ...u5}
for a typical partition of {Lq, ..., Lo, }, where Ule vy ={Lq, ..., Ly, } and v,Nv;s =
(0, the empty set, unless 6 = +. The v, are called the blocks of the partitions.

Let us now define

A [T = {A € A,,|A determines partition Y7}, (5.3.9)

Since each A € A, , determines one and only one partition of {Ly, ..., Lo, }, we

have the identity

Cy={2nn—-1)n-2}""7 Y Y T(y. A, (5.3.10)

0TI A€A, »[T(E7)]

where 0 is an abbreviation for the minimal partition {{L;},...,{Lo,}}, 1 is an

abbreviation for the maximal partition {L;, Lo, ..., Lo, }, and

A= |J  AalY®), (5.3.11)

0<T L1

and the ordering is with respect to the partial ordering of set partitions; see
Chapter 2. Note that the union in (5.3.11) is over all distinct partitions of the
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set {Lla LQ, ceey LQT}-

Finally, we define the number of singletons in partition Y?") = {v;,...,v5} as

follows:

t=8(Y®) = card {y € {1,..., 8} : |v,| = 1},

where card is that for cardinality, i.e. number of elements, and |v,| = card{v, }.

Example: Note that, for C3, where r = 3, we have to configure three potential
2-stars as in Figure 5.1. We use the notation for L, in (5.3.7) with r = 3.

There are several cases for these three 2-stars. To illustrate, we will explain

jl kl j2 k2 j3 k3

Figure 5.1: Three potential 2-Stars in Case 1. Here, none of the L,, are equal,

ie. Ly # Ly if u #wv.

three cases in detail.

Case 1.

Case 2.

Suppose there are no equalities among the L,. Here we have Ly, --- , Lg; all
are different. The resulting partition is a set of 6 blocks, one block for each of
L., since there are no equalities in this case. So T = {v;,--- ,vs}, where
Uy = {Ly}, u=1,--- 6. Therefore, we have 6 blocks each of them has size

1, i.e. Ju,| = 1. Consequently, the number of singletons in this case is t = 6.

Two distinct equalities among the L,; see Figure 5.2. Suppose we have,
Ly = L3; Ly = Ly; Ls # Lg; Ly, Lo, Ls, Lg all differint. In this
case we have 4 blocks, T(26) = {v1, 09, 03,04}, where v; = {Ly, L3}; vy =
{L2, La}; vs = {Ls}; vs = {L¢}-

Therefore we have 2 blocks of length 1. Consequently, the number of

singletons in this case is ¢t = 2.

100



CHAPTER 5: CENTRAL LIMIT THEOREM: CONDITIONAL CASE

jl kl j2 kz j3 k3

Figure 5.2: Three potential 2-Stars in Case 2. Here, L1 = L3 (red)and Lo =
Ly (blue), and all other L,, are distinct.

Case 3. Equalities among two distinct triples; see for instance Figure 5.3, and let

we have

L1:L3:L57£L2:L4:L6.

In this case we have 2 blocks, Téﬁ) = {v1,v9}, where vy = {Lq, L3, Ls}; vy =

I I, I

jl k1 j2 kz j3 k3

Figure 5.3: Three potential 2-Stars in Case 3. Here, L1 = Lg = L5 (red) and
L2 = L4 = L6 (blue) and L1 75 LQ.

{Ls, Ly, Lg}. Because of none blocks of length 1, the number of singletons
in this case is t = 0.
5.3.2 Definition of Diamond Equivalence Relation

Let us consider an equivalent relation /¢, this time on the set {Ly, ..., L,} rather
than {Ly, ..., Lo, }, where here

Z1 = {i1§j1,k1}, e 7zr = {ir;jmkr}-

In the definition of Ly,--- , L,, note that there is a semi-colon after the indices
i1,-- -, i, respectively. This is to ensure that for a given L,,, there is a unique way

to construct two pairs of indices {i,,j,} and {i,, k,} from L,. As will be seen
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below, this semi-colon will enable us to relate the diamond equivalence classes to
the tilde equivalence classes. The diamond equivalent relation 'Q’ is defined as
follows:

For Ly, L, € {Li,...,L,}, we say that L,0L, if at least one of the set equalities
{iw Ju} = {iv; Jo} o1 {in, ju} = {iv, ko } or {iu, ku} = {iv, o} or {iu, ku} = {iv, ko }
holds.

Clearly from the definition ‘¢’ is seen to be reflexive, symmetric and transitive
and it therefore defines an equivalence relation. Let us use a bar to denote
the corresponding partition of {L, ..., L}, i.e. T = {U1,...,Us}, with blocks
U, C {Li, ..., L,}. Let b, = [U,], the number of elements in block ©.,. The blocks

U, are of two types:

(i) Those consisting of a single element , L, say, of {Li,..., L,}, corresponding
to a pair {iy, j.} and {i,, k,}; blocks of this type will be called diamond

singletons.

(ii) Those blocks consisting of two or more elements of {Ly, ..., L, }.

The blocks in (ii) contain elements (i.e. pairs) which satisfy equality constraints.
Let ¢y denote the number of blocks of T, of type (i), i.e. the number of diamond
singletons. Let « denote the number of blocks of type (ii) of size by, ..., b, respect-
ively, and suppose that these blocks have, respectively, ¢1,...,%, singletons with
respect to the tilde equivalence relation.

Note: to calculate the number of tilde singletons ¢, in a diamond block U, of
type (ii), we proceed as follows. Suppose U, = {L,, : = 1,--- ,b,}. Then for
each L,, in the block, construct the two pairs {4, ju, } and {i.;, k., }, noting the
semi-colon in the definition of the L, = {iy; ju, ku}. Finally, count the number of

tilde singletons, ¢, among the 2b, pairs {i,,, ju, } and {iy,, ky,}, 6 =1, ,b,.

5.3.3 Counting Indices over a Diamond Block

Lemma 5.1
Let v, denote any block of TV, Suppose that |U,| = b, > 2, and let t., denote
the number of tilde singletons in v,. Write §, for the number of ways of choosing

the indices
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{lugs Jus> Kug b, 0 =1,-++,bs.

Then
f, = O{n' ™ B> a5 n — oo, (5.3.12)

where
1 ift, > 1,
I(t,>1) = K
0 otherwise,

is an indicator function.

Proof: Due to the connectedness of the set U, with respect to the diamond equi-
valence relation ¢, there exist sequences u,--- ,up, € {1,--- ,r}and vy, -+, v o €
{1,--+ ,r} such that o, = {L,,," - ,fubv}, and the diamond relations

Ly, O Ly, (5.3.13)
L, O L, forsome vy € {uy,us} (5.3.14)
Ly, O L, forsome vy € {uy,us, us} (5.3.15)
fver O fubw for some w5 € {uy, -+, up,—1} (5.3.16)

The cases t, = 0, t, = 1 and ¢, > 1 are considered separately. When convenient

we shall write b(v) by b,.

Fort, = 0. First we focus on L,,, and consider the number of choices for the
indices {iy,, ju,, ku, }- As there are no constraints apart from i,, # ju, # ku, #
iw,, there are O(n?®) choices for the indices i,,, j,, and k,,. Now we consider L,,,.
Due to the relation L,,OL,, in (5.3.13), there are at most O(n) choices which
have not already been fixed by the relation (5.3.13). This is because at least one
of {4y, Jup } OF {iu,, kuy } is equal to at least one of {iy,, ju, } or {iy,, ky, }. Similar

arguments show that the number of choices of indices for each of

{luss Juss Kug}s 0 =3,-++,by — 1,

is at most O(n). However, because t, = 0, neither of {iy), ju)} o {iv(y), ko)
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can be a tilde singleton with respect to the tilde equivalence relation. Therefore

all three of the indices iy(), ji(), kt(y) must have already been determined by the

earlier @y, jus, kug, 0 = 1,--- ,by, — 2, through the tilde equivalence relation, see
Figure 5.4.
Jul kul Juz kuz Ju3 kuS Jub(y) kub(‘/)
O(n3) O(n) O(n) o 1

Figure 5.4: The potential 2-Stars in the block .

Therefore
f, = O0n*.0(n""?%) = O0(n'*™). (5.3.17)

For t, = 1.  Without loss of generality, we can arrange for the unique tilde
singleton in ¥, to belong to L,,. As in the case t, = 0, there are O(n?) ways
of choosing the indices in L,, and at most O(n) ways of choosing the indices in
each of L, ,furl.

Finally, because there is only one tilde singleton in this case, which has already

appeared in L, , it follows that the indices Gaup(y s Jupgsy k have already been

Ub ()

determined by the tilde equivalence relation. Therefore, as in case ¢, = 0,

f, =0n*).0(n"?%) = O(n't™). (5.3.18)

For t, > 1. In this case we cannot rule out the possibility that Eu,w con-
tains a tilde singleton, so there are potentially O(n) ways of choosing the indices

k while still responding the tilde equivalence relation. Therefore

bup(a) > Juncy) » Py

in this case

f, = O(n?*).0(n"1) = O(n*™). (5.3.19)

Putting (5.3.17), (5.3.18) and (5.3.19) together, we obtain (5.3.12). O

The next Lemma plays a crucial role in the proof of Proposition 5.1 below. It
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turns out that, with minor modifications, essentially the same result can be used

to prove Proposition 5.2 and Proposition 5.3, as is discussed below.

5.3.4 Counting Lemma for Proposition 5.1

The following Lemma is for counting indices over a tilde partition, Y37,

Lemma 5.2
Let t = 2ty + 23:1 t., denote the number of tilde singletons of Y. Define

3 3|t
Bz = o1+ 2| =1 3.2
2r+2M (5.3.20)

Then a,,,[Y?")], the cardinality of the set A, ,[Y®"] defined in (5.3.9), satisfies

O(nFme=) ift > 1
ey = O (5.3.21)
O(n™+2) ift =0,

where « is the number of diamond blocks of type (ii) in the diamond partition
T determined by the tilde partition Y7,

Proof: First, let T = {v1,--- ,Us} denote the diamond partition determ-
ined by the tilde partition Y?7. Without loss of generality it is assumed that
Uy, -+ ,Uq are type (ii) diamond blocks and Tyq1,- -+ ,Upg are the singleton dia-
mond blocks, with ty = 8 — a. Note that for each diamond singleton block, {L,}
say, there are O(n3) ways of choosing the indices i,, j, and k,. Therefore the

number of ways of choosing the indices for the t3 diamond singleton blocks is

{O(n?)}o = O(n?). (5.3.22)

Since the blocks U, are disconnected from each other, it follows that, as n — oo,

Y] = O(m™)O(] [ 1,)

v=1
O(n3t0)0(na+2$:1 by+325 I(tw>1))
= O(n")
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where f, is defined in Lemma 5.1 and
E=3tg+a+> b+ > It,>1)
y=1 y=1

Now, r = to+ > o V=1 b, from the definition of these quantities. Moreover, o <
r}-

a
(r —to)/2 since each type (ii) block contains at least two elements of {L1, ..., L
Therefore,

r—1 -
E<3t0+( 5 0)+(r—t0)+ZI(t7>1)

y=1

3r 3t -
:—T+—°+th > 1).

Now consider a block U, of type (ii) such that ¢, > 2. If, for a given v, we move
all (if ¢, is positive and even) or all but one (if ¢, > 3 is odd) of the singletons
in block 7 into blocks of type (i), then we decrease the sum of indications by 1,
but we increase E by at least 3 5 because 1y increases by at least 1. Therefore,
to maximise E we should move all the tilde singletons into blocks of type (i) if
t is even, and if ¢ is odd we should move all but one of the tilde singletons into
blocks of type (i). The maximum value of E given ¢ = 2, + 3 _°_, ¢, is therefore
as stated in (5.3.20).

On the other hand, if t =0 then ¢ty =0,¢, =0,y =1,--- ,o, 7 = 23:1 b, and
then £ = a + r, so the second part of (5.3.21) follows immediately. O

5.3.5 Counting Lemma for Proposition 5.2

Lemma 5.2 plays a key role in the proof of Proposition 5.1. Lemma 5.3 and
Lemma 5.4, stated below, play exactly analogous roles in the proofs of Proposi-
tion 5.2 and Proposition 5.3, respectively, as we shall now discuss.

Lemma 5.3 is relevant to Proposition 5.2 in which powers C% of (35 defined
n (5.2.5) are considered. In this case we defined the tilde relation on the set
{Li, -+, L3}, where foru=1,--- | r,

106



CHAPTER 5: CENTRAL LIMIT THEOREM: CONDITIONAL CASE

{iy,ju} ifv=1
Lyw-1y40 = § {ju, ku} ifv=2 (5.3.23)
{ky,i,} ifv=3

The equivalence relation is defined as before: for L, and L, in {L;,---, L3, }:
We define L, ~ L, if we have the set equality L, = L,; and, since tilde defines
an equivalence relation, a given set of equalities involving the L, will lead to a
partition of {Ly,--- , L3, }. A typical such partition will be denoted by T®"): note

the analogy with Y7 above. Moreover, in exactly the same way as before, T(7)

determines a diamond partition T = {D1,--+,03} on the set {Ly,---,L,},
where now L, = {iy, ju, ku}, w = 1,--- 7, with no need for the semi-colon. Let
[ TB"] denote the number of choices of {iy, ju,ky : u = 1,--- 7} C N7,

see (5.3.3), which satisfy the equality constrains implied by T®") and satisfy
by # Ju # ky # 1, for u =1,--- 7. Then the following analogue of Lemma 5.2
holds.

The set {Ly,--- , L,} is defined in exactly the same way, and the diamond relation
is now defined by

L,OL, if at least one of {iy, ju}, {ju,ku} or {ku,i,} is equal to at least one of
{iv, ju}s {do kot or {ky, i}

Lemma 5.3

Let t denote the number of tilde singletons in the partition Y®7) of the set
{Ly,---, Ls.} defined by (5.3.23). Then

O(nfma=) ift > 1

ar,n[fr(&‘)] = .
O(n™) ift=0,

where, as before, E,,.. is given by (5.3.20) and « is the number of diamond blocks

of type (ii) in the diamond partition T determined by tilde partition Y®").

Proof: The statement and proof of the analogue of Lemma 5.1 required here
is identical to that of Lemma 5.1. The proof of Lemma 5.3 is the same as that
of Lemma 5.2, even though the definition of the underlying set {Lq,--- , L3} is
slightly different. 0
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5.3.6 Counting Lemma for Proposition 5.3

In the final case, Proposition 5.3, moments of the form C5C% are considered.

Here, the underlying set is defined by
{L17 Ty L2T7 L27‘+17 Ty L2T+38}

where, foru=1,---,r,

{in,u} ifv=1
Loyu—1)4v = 5.3.24
2u=+ { (iw k) ifv =2, (5.3.24)

and foru=r+1,--- r+s,

{iw, Ju} ifo=1
L2r+3(u—r—1)+v = {]u, k’u} ifv = 27 (5325)
{ku,i,} ifv=3,

The tilde relation is defined in the same way as before, i.e. L, ~ L, if the
set equality L, = L, holds. Partitions of the set {Ly,--, Lo,13s} are written
T(r:35)  The diamond relation is defined in the same way as before but now
on the set {Ly,- -, L.} Let a,,,[T?%)] denote the number of choices of
{iws Jus by :u = 1,--- 7+ s} C N5 see (5.3.3), with i, # j, # k, # i, such
that the equalities implies by the partition Y373 are respected. The analogue

of Lemma 5.2 in this case is as follows.
Finally we give the counting lemma needed for Proposition 5.3.

Lemma 5.4
Let t denote the number of tilde singletons in the partition Y2735 of the set
{Ly,---, Loy13s} defined by (5.3.24) and (5.3.25). Then

O(nfmx) ift > 1

@r,s,n[T(Qngs)] _ '
O(n+5+2) ift =0,

where « is the number of diamond blocks of type (ii) in the diamond partition
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Y determined by tilde partition Y% and

3 3 3|t
Emax:_ - =l a5
2r+ 2s+ 2{2J

Proof: The details of the proof are very similar to those of Lemma 5.2 and

Lemma 5.3, and are omitted.

5.4 Proof of Propositions 5.1-5.3

Proof of Proposition 5.1: TLet S(Y(2") denote the number of tilde singletons
in the partition Y7, For the moment, fix Y(") and suppose that S(T?") =t >
1. The contribution of Y to the expectation E[C5|m] is given by

2—1 r/2
{n(n —1)(n—2) } Y. ElT(y, A)fm); (5.4.1)

AEA [T

see (5.3.5), (5.3.6) and (5.3.10).

From the general conditional moment results in Theorem 4.1,
BIT(y, A)m] = O(n~21+0/2]) (5.4.2)

Moreover, from Lemma 5.2 with ¢ > 1, the cardinality of the set A, [Y?"],

namely a,,[Y?"], is of order given by

aﬁﬂ[fr(%‘)] -0 {n3r/2+3Lt/2j/2} (543)

Therefore, using the fact that | > 7, ¢;| < 277, |¢j], (5.4.1) is bounded as follows:
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Hn(n—z&n—m}m > BT A

Ae AT (2]

< fotal L2

ACA[T (0]

E[T(y,Anm]\

= O~ 37"/2)%n[T(”)]O(n*Q“t“)/zJ),

— O(nf?»r/?) (3r/2+3Lt/2J/2)O(n72t(t+1)/2j)’ (5.4.4)
(
(n

I
S

/2 243(0/2) (22 (14 1) /2]

31t/2]/2—2| (t+1)/2j)
O(n=) if t>
O(n=0/4) if t >

(nft/zl)'

1 is even,
1

is odd,

I
Qf—’HQ

In (5.4.4), the first term comes from the factor outside the sum in the definition
of (5, the second term comes from Lemma 5.2 and the third term comes from
Theorem 4.1.

Since, for given r, the number of partitions of the set with 2r elements is finite, we
may conclude that the total contribution of all partitions T?" with S(T®") =
t > 1to the sum (5.4.1) is also O(n~*/4) for fixed r, and therefore this contribution
is negligible as n — oc.

Now consider those partitions T") with S(Y®") = ¢t = 0. Using Lemma 5.2
again, along with the fact that o < |r/2], where « is the number of diamond

blocks of type (ii),

-1 r/2
{n(n _21)(n ) } > acapren) | ET(y, A)|m]‘ = O(n~ )0 (n"+t*)0(1),
= O(na—r/2>7

= o(1). (5.4.5)

unless a = r/2, in which case (5.4.5) is O(1). Since, as noted above, a < /2],
a = r/2 is only possible when r is even. Therefor when r is odd, the sum (5.3.10)

convergence to 0 as n — oo.
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In the remainder of the proof, we only need to consider those partitions Y
with 7 even, t =0 and o = r/2.

The number of ways of dividing » = 2s objects into s blocks of size 2 is given by

(r—1)=(r—1)(r—3)---3.1. (5.4.6)

This result follows easily from an induction argument.
We also need to include a factor 2° due to the fact that there are two ways

of forming diamond block of size 2 (see Figure 5.5) with no singletons from
zu = {Zuajw ku} and Zv = {iv;jva kv} :

pair {i,, j,} with {i,,7,} and pair {i,, k,} with {i,,k,};

or pair {iy, j,} with {i,, k,} and pair {i,, k,} with {i,, j,}.

Figure 5.5: There are two ways of forming diamond block of size 2 with no
singletons.

when calculating F[Cf|m], where C} is written as in (5.3.1), we have shown that
with 7 even, we may restrict attention to the situation where all diamond blocks
are of size 2 and no tilde singletons are present. In this case, using the size 2
block structure, with tilde singletons absent, we may write a typical term in the

expectation of the multiple sum on the RHS of (5.3.1) as

S

L H(yiuﬂ'u - p)Q(yiuku - p)2’m] ~ gE {(yiuju - p)z(yz‘uku - 29)2‘7”]

~ {p*(1-p)*}°
=p"(1-p),

(5.4.7)
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where r = 2s. Therefore, using (5.4.6), we may conclude that, still assumingr =

2s is even,

E[C3lm] ~ 27°n ¥ P 22%p7 (1 — p)"(r — I,
= (r— D" (1=p), (5.4.8)
= (r = Dlipg(1 = po)”

as required, since p —— py as n — oo by assumption. Therefore, Proposition 5.1

holds and the proof is complete. O

Proof of Proposition 5.2: This has exactly the same structure as the proof of
Proposition 5.1. However, there are some minor differences in the details, which

we now list.

1. The set on which the tilde equivalence relation is defined is expanded from
{L1,-+, Lo} to {Lq,- -+, L3 }; see (5.3.23)

2. As before, we define the diamond equivalence relation on Ly, --- , L,, but
now we may define L, = {4y, ju, k. }, i.e. we do not need to distinguish i,
from j, or k,, because now all three pairs {iy, ju}, {ju, ku} and {ky,i,} are

all present.

3. The role that Lemma 5.2 plays in the proof of Proposition 5.1 is played by
Lemma 5.3 in the proof of Proposition 5.2.

4. As in the proof of Proposition 5.1, it is established that when r is odd,
E[C5|m] — 0 as n — oo and when r = 2s is even, the only non-negligible
contributions are those corresponding to all diamond blocks being of size 2
with no tilde singletons present. In this case, a typical term in the expect-

ation of the multiple sum on the RHS of (5.3.2) is given by

g

~1]E [(yz-uju = 2)*Wiaku — ) (Yruin — D)’
u=1

s

Wi = P’ Wi = P)* Wk — )

u=1

E

m] (5.4.9)

~ {1 -p)’}
— p3r/2(1 . p)3r/2’
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5. Using (5.3.2), (5.4.6) and (5.4.9), and still assuming r = 2s is even, the
analogue of (5.4.6) is

B(Clm] ~ 675 /0¥ 26 (1 — p) /2 — 1),
= (r— DIPP/2(1 = p)>/?, (5.4.10)
Ly (r = D)UY (1 = po)7?,

as required, since p —— pp as n — oo by assumption. 0

Proof of Proposition 5.3:

The structure of this proof is exactly the same as that of Proposition 5.1 and
Proposition 5.2, but there are a few minor differences in the details which are

now explained.

1. The tilde equivalence relation is defined on the set
{Ll> ety L2r7 L2T+1, ey, L2r+35}; see (5324) and (5325)

2. The diamond equivalence relation is defined on {Ly, -+ , Ly, Lyy1, -+ , Lyyst

where

u

z . {Zuajuaku} u:17"'7r>
{iw, Jus ku} u=r+1,--- r+s.
The role of the semi-colon in {i,; j., k,} has been explained above in Sub-

section 5.3.2.

3. The role that Lemma 5.2 plays in the proof of Proposition 5.1 is played by
Lemma 5.4 in the proof of Proposition 5.3.

4. Lemma 5.4 and Theorem 4.1 together imply that E[C5C5|m] — 0 unless
both r and s are even. When r and s are even, the only non-negligible
contributions are from those diamond partitions in which all diamond blocks

are of size 2 and no tile singletons are present.

5. When r and s are both even and ¢ = 0, the only ways to arrange

{Ly,--+ ,Ly,Lyy1, , Ly} into blocks of size 2 are as follows: each block
is either of the form {L,, L,} where either u,v € {1,--- ,r} or u,v €
{r+1,---,r+ s}. In this case «, the number of diamond blocks, is given
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by o = (r+s)/2. Then

E[C5C5|m]  ~ 9—1/2,,=3r/2G—5/2,, ~35/29r/2 /2 r4s+(r+s)/2
(1= p)p*2(1 = p)*2(r — 1)1(s — 1)
~ (r=1DN(s—=1)p"(1 - p>rp33/2(1 _p)33/27

AN (r— (s — D!pp(1 — po)’”pgs/Q(l B po)gs/z

. . P .
as required, since p — pg as n — oo by assumption. 0

5.5 Numerical Results

The purpose of numerical study to be presented in this section is to examine how
accurate the conditional Gaussian approximation based on Theorem 5.1 is for
particular choices of n and m = Np.

We implemented the R Core Team (2014) program version 3.1.2 for simulating
random graphs RG(n, m) which assign equal probabilities to graphs with n nodes
and exactly m edges. We chose the values n = 100, 200, 500, 1000 and p = m/N =
0.1,0.3,0.5,0.7 and 0.9, where N = n(n — 1)/2. In each case we ran M = 1000

Monte Carlo repititions, and random vectors

—(1) (M)
av_ (G s
Uél) A 6§M)
were simulated, where US) and Uéi) are the statistics defined in (4.6.1) and (4.6.2)

respectively.

We also calculated the Mahalanobis statistics
i) (A0 T 1 (=
Z() - (Q - Hn,p) Kn,p <Q(Z) - /1/ )
where, from (4.7.1) and (4.7.2),

L ( BTy ) ) ( ~p(1=p)/(N —1)) )
Fy 0 2p(1 — p)(1 - 2p){(NV — 1)(N - 2)}

E[C5]
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and from (4.7.3)-(4.7.5),

aild (@) (1) 2p?(1—p)2
Vop = ( vai(gz—)(i) COV(CQ—@)C ) ) = ( b 6 3(? )? ) '
7 COV(CQ ,C3 ) Var(C’3 ) 0 W
Note that under Theorem 5.1, the Z® should have approximately a y2 distribu-
tion.
Based on the 1000 Mont Carlo runs for each combination of n and m = Np

considered, we produced the following output.

(A) Normal QQ plots for Cy and C5 and x2 QQ plots for Z.

(B) Approximate confidence intervals for the three quartiles of Z.

(A): QQ plots for Cy,C3 and Z.

In Figures 5.6-5.8 QQ plots are presented for p = 0.1,0.5 and 0.9 and for n =
100, 500, 1000. The QQ plots for other choices of n and p were not presented
because they were broadly similar. In QQ plots for C, and C; the relationship
between the empirical and theoretical quantiles is approximately linear when the
theoretical quantiles of N(0,1) lie between approximately -2 and 2. However,
there is some modest departure from linearity in the extreme tails, as might be
expected.

In the x3 quantile plots for Z, in the bottom row of Figures 5.6-5.8, some care is
needed in interpreting the results because the scale of the horizontal axis changes.
However, it is seem that the region over which the plot is linear is increasing as

n increases in each case.

(B): Approximate confidence intervals for the three quartiles of Z.

To compare the empirical quartiles of Z with the theoretical quartiles of x3, we
constructed confidence intervals for the theoretical quartiles based on Z(0), ... Z(m),
Let Z) < -+ < Z(m) denote the order statistic based on Z(l), e ,Z(m). Then

we constructed the approximate confidence intervals according to

Z(mr) + 1.96\/V&1“<Z(mr)) re (0, 1), (551)

where Var(Z(,,,) is approximated by
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r(1—r)

Var(Zmr) = (@)

(5.5.2)

where f is the probability density function of x3. In the above, r = 0.25,0.5 and
0.75 and @Q; is the j™ quartile of x2 (i.e. j = r/0.25 where r = 0.25,0.5,0.75).
The approximations (5.5.1) and (5.5.2) are based on central limit theorems for

quantiles; see e.g. van der Vaart (2000).
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Figure 5.6: Q-Q Plots of Cy,C3, and Z when p = 0.1 and n = 100, 500, 1000.
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Figure 5.7: Q-Q Plots of C5,C3, and Z when p = 0.5 and n = 100, 500, 1000.
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Figure 5.8: Q-Q Plots of C5,C3, and Z when p = 0.9 and n = 100, 500, 1000.
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In Figure 5.9, we illustrate the confidence intervals for Q1, Q2, Q3 of X3, but only
displayed when p = 0.1,0.5,0.9. We note that the most intervals contain the

theoretical quartiles of x3, which are:

Q1 = 058
Qs = 2.77.

The width of the confidence intervals of ()1 is less than the width of confidence
intervals of ()9, and the width of the confidence intervals of () is less than the

width of confidence intervals of ()s.

In conclusions, the data of C'y and C5 in Q-Q plots appear to be normally dis-
tributed. Whereas, the data of Z in Q-Q plots appear to be X%Q) distributed.
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Figure 5.9: Error Bar Plots for Confidence Intervals of Q1, Q2, Q3 of Z,when
n = 100, 200, 500, 1000, for p = 0.1,0.5,0.9.

5.6 Block Graph Models and Numerical results

In this section, we consider a random graph model with vertices split into classes.
Such models are known as block models. A general introduction to block models
was given by Faust and Wasserman (1992).

Here we consider graphs with h different types of vertices. We are interested
in developing conditional tests based on Theorem 5.1 for statistics such as the
density of 2-stars and the density of triangles given the number of edges. Let A,
denote the set of vertices of type a, a = 1,2,...,h. So, A,(As = ¢ if a # [,

and UZ:1 A, =V, the full set of vertices. Let n, and m, denote the number
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of vertices and edges, respectively, in block a and define p, = m,/N, where
Ny =n4(ng —1)/2.

We will look at the density of 2-stars and triangles among A, to A, connections,
and also look at the density of 2-stars among A, to Az connection (o # (). In
the first case, we shall condition on the number of A, to A, edges, and in the

second case we condition on the number of A, to Ag edges.

Applying Lemma 4.5 and Lemma 4.6 to block «, it is seen that

6‘210‘ — na( _1 _2 Z Z yU pa yzk_pa)

i€ 3, kGA \{ }

" na(ne — 1) (na —2) Z Z (YijYin — D) (5.6.1)

i€ 3, kGA \{ }

= TS
and
o 6
Foo (¥i7 = pa) (Y = Pa) (Yri = Pa)
3 na(na — 1)<no¢ - 2) 1<i<§<:]g<n ’ ’
i,5,k€Aq
6
_ (YijYjryni — P2) — 3Pa
na(na - 1)(na - 2) 1<z‘<jz<k<n ™
i,5,k€Aq
o D9 2, )
7s kEA \{ i}

= Tga - 3paTga

where T, is defined in (5.6.1) and T’ is defined by

. 6
o _ > Wiy — PY).
3 Na (e — 1)(na — 2) 1<i<j<k<n ]]
i,J,k€EAa
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Let mq,p denote the number of edges connecting vertices in A, with vertices in
Ag, and define p,g = maps/nanp. Then, using similar calculations to these used

to prove Lemma 4.5,

—af
C = i « i el
> — 5_122y3 Pap) Uik — Pag)
ZeAa]kEA/g
_ 2pa,8
- nng 5_1 Z Z yzgyzk+paﬁ) nng 6_1 Z Z ylj+ylk
zEAa 7, keA/j 1€Aq 4, keAﬁ
— ijJi -2 X )
{n Tlﬁ ,3—1 2_: Z y]yk+paﬁ)} Pag
leAa]keAﬁ
= = 1) Z > Wigyix — Pls):
B ng =1 j<k
’LEAa]kEAg
= 7

The quantities Uﬁ“ and Tﬁ“ are defined similarly. Note that usually T;’B # Tﬁ“
and O3 # C5°.

5.6.1 Numerical Results

We aim in this section to use the conditional central limit theorem, Theorem 5.1,
to examine goodness-of-fit of a random block model applied to real data. Recall
the statistics Cy and Cj, first defined in (4.6.1) and (4.6.2), respectively. Here

we work with standardised versions, Z, and Z3, defined by

= (C; — B(C,))/Var(T;), j =23, (5.6.2)

where the conditional means and variances of Cy and C are given in Proposition
4.1.

The approach we use is to obtain blocks, or subsets, of vertices is community
detection algorithms. The problem of detecting communities in networks has
received a lot of recent interest, for example, Arias-Castro and Verzelen (2013)
and Birmele et al. (2012). There are different types of algorithms to find the
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community structure, for instance, FastGreedy, Walktrap, edge.betweenness and
spinglass algorithms; see e.g. Lancichinetti and Fortunato (2009). We use the
igraph package to implement the algorithms. Community structure refers to the
occurrence of subsets of vertices in a graph that are more densely connected
internally than with the rest of the graph. This inhomogeneity of connections
suggests that the network has certain natural divisions within it. We give very
partial descriptions, so the reader might want to search the review by Fortunato
(2010) to find more information concerning community detection.

First of all we apply the approach to a simulated Erdos-Rényi-Gilbert random
graph in order to illustrate and clarify what the procedure is. The main output
is in Table 5.2. Then we apply the procedure to a real dataset, the main outputs
here being Table 5.3, Figure 5.12 and Figure 5.13.

5.6.1.1 Block Graph Models in a Simulated Random Graph

We use the R program, in particular the igraph package, to generate an Erdos-
Rényi-Gilbert random graph. Set n = 20, m = 24, i.e. RG(20,24), then N =
n(n —1)/2 =190, is the maximum number of edges, and p = m/N = 0.1263158;
see Figure 5.10. The standardized statistics Z and Z3 are defined in (5.6.2), and

we obtained the following results for the whole random graph.

® ©
® @
@ e
®
) ®
®

@

Figure 5.10: A simulated Erdos-Renyi-Gilbert random graph with n = 20
vertices and m = 24 edges.
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n m p 2-stars triangles Z, Z3 Z
20 24 0.1263158 56 3 0.5312366 0.4170583 0.45615

We notice the random graph in Figure 5.10 has 56 2-stars and 3 triangles, while
the probability of an edge being present is p = 0.13. Then we implemented the
Fastgreedy algorithm, see Lancichinetti and Fortunato (2009), to partition the
graph into subgraphs with dense connections within the subgroups and sparser
connections between them. Thus we get 6 types of vertices as shown in Figure
5.11 with difference sizes as Table 5.1.

Figure 5.11: Blocks obtained using the Fastgreedy algorithm in Erdos-Renyi-
Gilbert random graph with n = 20 vertices and m = 24 edges.

Table 5.1: The sizes of blocks in Erdos-Rényi-Gilbert random graph with n =
20 vertices and m = 24 edges.

Block | A1 Ay A3 Ay A5 Ay
SizeHG 4 3 4 2 1

Then we calculated Z; and Z3 within the subgraphs. Thus we obtained the
following results in Table 5.2.
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Table 5.2: The results of block graph models of Erdds-Rényi-Gilbert random
graph with n = 20 vertices and m = 24 edges.

nim,|p Zs Zs A
A |66 |04 -0.845294 | -0.0200631 | 0.7149244
As || 414 | 0.6666667 | 0.2598076 | 4.914392 24.21875
As || 3 ]2 |0.6666667 | 0 10.25305 105.125
Ay || 4 |4 | 0.6666667 | 0.2598076 | 4.914392 24.21875
As |21 |1 NA NA NA
Ag |1 10 | NA NA NA NA

From the results in Table 5.2, we found the values of Z; within the subgraphs is
reasonable and consistence with Theorem 5.1, the conditional central limit the-
orem. However, most the values of Z3 within the subgraphs are large and are not
consistence with Theorem 5.1. We believe this is a small sample effect. We note
that, when the number of 2-stars or triangle equal zero, Zs or Z3 , respectively,
yield NA, meaning * Not Available’.

5.6.1.2 Block Graph Models applies to a Real Data Set

We use the immuno dataset from built-in data set in blockmodeling package. We
first of all calculated Z; and Z3 using the full dataset and obtained the following

results.

dataset m p 2-stars triangles Z5 Z3

K
IMmuno H 1316 6300 0.0073 58656 9485 -6.597 781.6

Both Z, and Z3 are outside the numerical range, but note that Z3 is much further
outside than 2.

To investigate the goodness-of-fit test in block models, we analyse community
structures of this dataset. A network is said to have community structure if it

can be divided into subsets of vertices with dense connections within the subsets
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and sparser connections between the subsets.

We used algorithms for community detection to partition the set of vertices with
dense connections internally and spares connections between communities. In
particular, the Fastgreedy algorithm was implemented and produced the following

block sizes.

Figure 5.12: Graph of immuno dataset.

Block H Al A2 A3 A4 A5 A6
Size H 136 106 355 100 299 320
We also implement Walktrap algorithm for forming blocks. This gave different

block sizes but broadly similar results in terms of goodness-of-fit.
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Figure 5.13: Applying Fastgreedy algorithm in immuno dataset.

Table 5.3: The results of block graph models of immuno dataset to obtain 6
blocks.

n m D Zy Zs Z

Ap || 136 | 597 | 0.06503268 | -1.739917 | 79.61699 | 6341.892
Ay || 160 | 503 | 0.09038634 | -2.010289 | 61.87462 | 3832.51
As || 355 | 1644 | 0.02616376 | -1.588977 | 210.0418 | 44120.08
Ay || 100 | 450 | 0.09090909 | -0.851095 | 58.47941 | 3420.565
Ay || 299 | 1454 | 0.03263675 | -1.797357 | 179.9231 | 32375.54
Ag || 320 | 1489 | 0.0291732 | -3.072335 | 187.5388 | 35180.25

If the Erdos-Rényi-Gilbert model, referred to below as the null model, holds
within subgraphs then Z; and Z3 in each row will each be standard normal and
independent. It is noteworthy that in all rows in Table 5.3, Z5 is either within
range of a standard normal or just outside, indicating that the number of 2-stars
is not much different to what we would expect under the null model, given the

number of edges present in each subgraph. In contrast,the statistic Z3 is way out
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of the range of a standard normal, indicating there are many more triangles than
one would expect under the null model. Similar findings - that 7, is approximately
within rang and negative, while Z3 is way out of the range and positive - were
obtained when looking at other dataset. This suggest that the triangle statistic
will often be more sensitive to departures from the null model than the 2-star

statistic.

5.7 Summary

In this chapter we proved Theorem 5.1, a conditional central limit theorem for
the number of 2-stars and the number of triangles given the number of edges. The
result was proved under the Erdos-Rényi-Gilbert random graph model assuming
that the number of vertices, n, goes to infinity. In Section 5.6 we applied a
goodness-of-fit statistic to blocks in a fitted block model based on real-world
network data.

The main purpose of the following chapter is to explore three new composite
likelihood methods for Exponential Random Graph Model (ERGM) defined in

(6.1.1) and compare their performances.
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Composite Likelihood for
Exponential Random Graph Models

6.1 Introduction

Exponential random graph models (ERGMs) have already been reviewed in
Chapter 2; see Section 2.2 and Section 2.6. In this chapter we focus on a widely-
studied 3-parameter FRGM which was mentioned in (2.2.10) above and is stated

here again for convenience:

P{Y =y} = exp{01u1(y) + Oauz(y) + Osuz(y) — (0)} (6.1.1)

where y = (vij)1<i<j<n 15 the adjacency matrix of the random graph of n vertices,
the parameter vector to be estimated is 6 = (61,05, 03)", ui(y) = 321, i, Yij 18
the number of edges, us(y) = > ", Z#Kk# Yi; Vi is the number of 2-stars and
uz(y) = ZKKKK” YijYjkYki 1S the number of triangles.

Exact maximum likelihood estimation of 6 is intractable unless n, the number
of vertices, is quite small, because evaluation of 1)(f) requires summation of 2V
terms where N = n(n — 1)/2. A widely-used method of parameter estimation
for model (6.1.1) is composite likelihood; see Section 2.5 of Chapter 2. However,
so far as we are aware, the only type of composite likelihood that has been used
for estimating the vector parameter, 6, in (6.1.1) is the one where the component

likelihoods are the conditional distribution of each edge given knowledge of all
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the other edges. More specifically, the composite likelihood LE](Q, y)) given by

LYy = ] Lu® (6.1.2)

1<i<j<n

where L;;(0) = P(y;;|rest, ), where 'rest’ means all y,5 with o < 8 and (o, 8) #
(7,7). This composite likelihood has been used by a number of authors; see for
example Snijders and Van Duijn (2002).

The purpose of this chapter is to explore three new composite likelihoods for
model (6.1.1) and compare their performance with that of (6.1.2). The first of

these new composite likelihoods is:

L3, y) = H II L) (6.1.3)

i=1 i£j<k#i

where L;1(0) = P(yij, yir|rest,0), and ‘rest’ now means all .5, 1 < a < f < n),

except for y;; and y;z. The second new composite likelihood is given by

LGy = [ L), (6.1.4)

1<i<j<k<n
where L;;,(0) = P(vij, Yjk, Yri|rest, ), and 'rest’ now means all y,p5, 1 <a < <
n), except for y;;, y;r and yi;. Finally, The third new composite likelihood is
given by

LYoy = I Lunl0), (6.1.5)

1<i<j<k<l<n
where L;j(0) = P(Yij, Yik, Vit Yjk, Yii; Yk |rest, 0), and 'rest’ now means all y,g,
1 <a < B < n), except for i, YinYit, Yjk Yjts Yni-

The motivation for considering the new composite likelihoods (6.1.3)-(6.1.5) is
that, including the joint distribution on two or more y;;’s conditional on the rest
we may hope to retain more information concerning the dependence structure
of the y;;. As will be seen, from computational point of view, the composite
likelihoods (6.1.3)-(6.1.5) are tractable. Unfortunately, the standard asymptotic
theory for composite likelihood in Chapter 2 can not be applied because the
required independence assumptions do not hold, and the asymptotic theory of

(6.1.3)-(6.1.5) as n — oo is unknown. However, it is possible to study the nu-
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merical performance of the new estimators in simulation studies and this we do
later in the chapter.

The outline of this chapter is as follows. In Section 6.2 we determine the com-
posite likelihoods in (6.1.2)-(6.1.5) more explicitly and provide algorithms for
calculation them. In Section 6.3 we present simulation results concerning the
performance of the estimators. Finally, we briefly explore connections with the
work of Chatterjee and Diaconis (2013).

6.2 Composite Likelihood for ERGMs

In this section we derive explicit expressions for the composite likelihoods (6.1.2)-

(6.1.5). We also present computational algorithms for calculating them.

6.2.1 Calculation of Composite Likelihood (6.1.2)

Define

P(y,jlrest,0) = Pp{Yi; = vij|Ynr = yni for all {h, k} # {i,75}}.
Then
P(yslrest,0) o exp{Oiyi; + 0205 Y (Yir + yje) + O39s5 Y Yintn}
k#£i,j ki)
X exp{@lyij + ngijSij + 93yz’j,-rz’j}
o exp{yi;0i;}

where
0; = 01+ 0,5+ 05T}, (6.2.1)
where
Sij = Z (yir + yjk), (6.2.2)
ki,
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and

Tij = Zyikyjk: (6-2-3)
k#i,j

Therefore, N
1504

P(yj|rest,0) = explyiifii} 3} .

1 + exp{6;;}

Lemma 6.1
The composite log-likelihood function, 1;(0), for the composite likelihood (6.1.2)

ho)= > (ygég-—log{l—FeXp(éé)}>,

1<i<j<n
where @j is defined in (6.2.1).

An algorithm for calculating [, (@) is now given in Algorithm 1.

Algorithm 1 Calculation of the composite likelihood 14 (#) in (6.1.2).

Step 0 Input the adjacency matrix y = (v;;)1<; j<n of an undirected graph,

Step 1 Calculate y;y = 0 Yir, i =1,...,n, and T(i,j) = D 7, YirYjk,
1<i<j<n,

Step 2 Set I; =0,

Step 3 For 1 <i < j < n, calculate
D =6 + 02(yiy — yij + yj+ — vij) + 05T(, j),
=1+ (y;; D — log(c))
where ¢ =1 + €”,

Step 4 Return [;.

Note that, Algorithm 1 avoids the storage of the S;; and Tj;, which results in

7R
greater computationally efficiency.
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6.2.2 Calculation of Composite Likelihood (6.1.3)

Continuing with the model (6.1.1), we now explore composite likelihood based

on pairs y;; and y,s given the rest. These probabilities are of the form

P(yij, yaplrest, 0)
= P@{Yz’j = Yij, Yop = yaﬁ|th = yni, for all {h,k} # {i,j} and {h, k} # {a, B}},

and we have two cases:

Case 1: « and 3 are both different to ¢ and j.
Case 2: One of o and (3 is equal to one of 7 or j.
The composite likelihood (6.1.3) in Case 1 is

P(yij, Yaplrest,0) o exp{0i(yij + yas) + 02(y;; Z (Yir + Yjr) + Yap Z (Yak + Ypr)) +

ki, k#a,B
Os(yis > Yiklik + Yos D YakYor)}
ki, k#a,B

exp{01(Yij + Yap) + 02(Yi;Sij + YapSas) + 03(vi; Tij + YasTus) }
exp{yij0ij + Yaptap )

where

é;'j = 01 + 025, + 05135,

Oap = 01 + 02505 + 05T 3,

where S;; and S,s are defined by (6.2.2) and T;; and T, are defined by (6.2.3).
We notice that, in Case 1, the two random variable y;; and y,s are treated as
independent. Therefore, it is unlikely that Case 1 will lead to an improvement
over [1(f) in Lemma 6.1. We therefore explore Case 2.

Consider Case 2 with A = {{i,a}, {7, 5}}, ya = {Yup : {u,v} € A} and yue =
{Yuw : {u,v} € A%}, where A° is the compliment of A in the edge set E. In this
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case the conditional distribution of yac is

Po{Ya=yalYae =ya} o< exp{i(yia + vis) + O2(Yialis + Via( D Yik + Y Yok)
k#i,a,8 k#i,«

+yis( Z Yir + Z Ypr)) + 03(ViaYisYos
ki, B k£i,3

+Yia Z YikYak + Yip Z YirYsr) }

k#i,0,8 k#i,a,8
o exp{bh (Yia + Yig) + 02(ViaVig + YiaSia,s + YisSis.a)

+03(YiaYisYa,s + YiaLia,s + VigLia) }
X exp{¥Yiabti,iap + Yigl1,i8.a + YiaVipb2iap}

where
al,ia,ﬁ =01 + 025,08 + 03150, (6.2.4a)
Oriso =01+ 02Sis.0 + 05Tip 0. (6.2.4b)
52720,8 = 0y + 03Yap, (6.2.4¢)
and
Sia,,é’ = Z Yik + Z Yok = Yit+ + Yot — 2yia —Yip (625)
k#i,a,8 ki,
and
Tzia,ﬁ = Z YikYak = Tia — YisYas, (626)
k#i,a,8

with corresponding definition for Sz, and Tig . Therefore

exp{¥iab1,ia + Vis01.i3 + ViaVis02,i0p

Z;m:o 231%6:0 exXpl¥ialia + Yiglis + Vialigh2ias}
(6.2.7)

PQ{YA = yA|YAc = yAc} =

From (6.2.7), we construct a composite log-likelihood function as follows.

Lemma 6.2
The composite log-likelihood function, [5(0), for the composite likelihood (6.1.3)
is given by

12(0) = Z Z Yiabvia,p + Yiplis.e + Yialisb2,i0s — 108(Ciasip)
i=1 a<BiFo,p
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where c;q,i5 is the normalization constant

1 1

Cia,if = Z Z exXp{¥iatiias + Vistis.a + YiaYiphaias}
Yia=0 yzBZO

where 5171-075, 51,%0” and 5271-&,5 are defined in (6.2.4).

An algorithm for calculating [5(0) is now given in Algorithm 2.

Algorithm 2 Calculation of the composite likelihood I5(#) in (6.1.3).

Step 0 Input the adjacency matrix y = (v;;)1<ij<n, of an undirected graph,

Step 1 Calculate yiy = > 7 Yir, ¢ = 1,...,n, and T(i,5) = D1, Yirljr, 1 <
1< 7 <n.

Step 2 Set I, = 0.

Step 3 Fori=1,...,n, a <, i # «a, i # [3, calculate
Dy = 01 + 02[(Yi+ — Yia — Yis) + Yot — Yia)] + 03(T(4, @) — YigYas)
Dy = 01 + 0a[(Yir — Yia — Vi) + (st — Yip)] + 03(T'(4, B) — YiaYsa)
D3 = 0y + 03ya
la = ly + D1Yia + Dayip + Dsyiayiy — log(c)
where ¢ = 1 + eP1 + P2  P1HP24Ds

Step 4 Return [s.

6.2.3 Calculation of Composite Likelihood (6.1.4)

Let A = {{i,a},{i,ﬁ},{a,ﬁ}}, Yya = {yu,v : {U,U} € A}7 Ype = {yu,v : {U7U} €
A°}, and define

P(yalyaco) = Po{Ya = ya|Yac = yac}.
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Than

P(yA’yAC,G) (S8

where

where

exp{01 (Yia + Vig + Yas) + 2((ViaYis + YiaVas + YisYas)

e Y Wik +vor) F s > Wikt Ys) Yo Y (Yo + Ysk))
k#i,o,0 k#i,a,0 k#i,a,8

+03((YialisYos) + Yia D Yiklok +Yis D, Yiklpk +Yas D Yaksk)}
k#i,a,08 k#i,,8 k#i,a,8

exp{01 (Yia + Yis + Yap) + O2((ViaYis + YiaVap + YisYas)
+YiaSiap + YigSig.a T YapSas,i) + 03(YiaVisYas)
+yme,5 + yz’BTiﬂ,a + yaﬁTaﬁ,i)}

exp{¥iabiia + Yis01.ip + Yap01.08 + 02(YiaVis + YiaYas + YisYas)

+03(YiaYisYas) }
gl,ioc,ﬁ = i+ QZSia,,B + 03150 3, (6.2.8a)
51,2‘6,5 = O+ 92Siﬂ,a + 05T o, (6.2.8b)
O1api = 01+ 02505+ 03Tng,, (6.2.8¢)
Sias = > Wik + Yar): (6.2.9)

kii’avﬁ

with corresponding definition for Sw,a and S‘agﬂ», and T}, s is defined in (6.2.6)

with corresponding definition for Tjz, and T,4;. Therefore

P@{YA = yA‘YAc = yAc} =

Ciop €XD{Yiab1,i0 + Yip01,ip + Yas0h,a5 + 02 (Yialis + YiaYas + YisYas) + OsVialisas

(6.2.10)
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where c;op is the normalization constant given by

1 1 1
Ciaf = Z Z Z eXP{yiagl,m + yz’b’glﬂ'ﬁ + yaﬁgl,aﬁ

yia=0 yi3=0 yaB=0

+ 02 (YiaYis + YiaYap + YisYas) + 03(YiaYisYas)} (6.2.11)

From 6.2.10, we construct a composite log-likelihood function as follows.

Lemma 6.3
The composite log-likelihood function, l3(6), for the Calculation of composite
likelihood (6.1.4) as following

I500) = > Yiabria + Yishhis + YasOrap + 02(ViaYis + Yialas + YisYas)
i<a<f

+ O3(YiaVipYas) — 10g(Ciap)

where c;op is defined in (6.2.11), and glm, 5172-5, and 5271-0475 are defined in (6.2.8).

A convenient algorithm for calculating [3(0) is given in Algorithm 3.
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Algorithm 3 Calculation of the composite likelihood I3() in (6.1.4).

Step 0 Input the adjacency matrix y = (vi;)1<i,j<n, of an undirected graph,

Step 1 Calculate yiy = > o Yk, ¢ = 1,...,n, and T(i,5) = D ;1 YirYjk, 1 <
1 <j<n,

Step 2 Set I3 =0,
Step 3 For 1 <1 < a < 8 < n, calculate

D1 = 01+ 02[(Yir — Yia — Yig) + War — Yai — Yap)] + 03{T (i, @) — YigYas}
Dy = 01+ 02[(yir — Yia — vig) + (st — Ysi — Ysa)] + 0s{T (7, B) — YiaYsa }
Ds = 01+ 02[(Yat — Yai — Yap) + W+ — Ysi — Ysa)] + 03{T (v, B) — Yailys:}

Step 4 Calculate

1 1
c= Z Z Z exp{¥iatias + Yigb1.iga + Yapt ap.
yia=0 yif=0 yaB=0
+ 02(YiaYis + YiaYas + YipYas) + 03YiaYisYas

and

ls = ls + D1Yia + Doyig + D3Yas + 02(YiaVis + YiaYas + YisYap)
+ 03yiaYisYas — log(c)

Step 5 Return [3.

6.2.4 Calculation of Composite Likelihood (6.1.5)

Let A = {{i,j}.{i,a}.{,8}.{j,a}, {J, B}, {e, B}}, ya = {wi; : {i.j} € A} and
yae = {yij : {1,7} € A}, and define

P(yalyac) = Po{Ya = ya|Yae = yac}.
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Then

P(yalyae) o exp{01(yij + Yia + Yig + Yia + Yjp + Yap)
F02((YijVja + Vij¥is + Yij¥is + Vij¥ia + YjaYas
+YiaYai + Yja¥is + YasYai + YapYsi + YapYsi + Ypi¥sj + Ypilia)

+Yij Z (Yir + Yjr) + Yia Z (Yir + Yar)
k;éi,j,a,ﬁ k7£7:7j7a’ﬁ

+Yip Z (Yir: + Ysr) + Yja Z (Yjr + Yar)
kii’j’a7ﬂ kil’]’aﬁg

+Yis Z (Y + Ysr) + Yas Z (Yar + Ysr))
k+#i,5,0,8 k#i,0,8

+03((YijYiaYia + Yij¥ipYis + YiaVisYas + YjaYisYas)
TYij Z YirYjk + Yia Z YikYok + Yip Z YirYpk

k¢z7j7aﬂ k¢i’j’a7ﬁ k¢i7j7a’ﬂ
+Yja Z YikYak + Yjp Z YikYpk T Yap Z YakYpr) }
k#i,j,0.8 k#i,5,0,8 k#i,j,0.8

o< exp{01(Yij + Yia + Yip + Yja T Yjs + Yap)
+02((Wiyja + Yis¥is + Yishis + Yij¥ia + Yjalap
FYjalai + YjalYjs T YapYai + YasYsi + YapYs; + YsiYsj + YsiYia)
HYijSij,apViaSia,is T YisSisja T YjiaSiais + YjsSisia + YapSas,i)
+93<(yijyiayja + Yij¥ipYis + Yia¥ipYap + yjayj/a’yab’>
TYii Tijap + YiaTias + YisTiga + YiaTjas + YisLipia + YapTap, i)}
x 690]9{%]‘51@ + Yiabia + yiﬁal,iﬁ + yjﬁl,ja + yjﬁlu‘ﬁ + yaﬁgmﬂ
+02(VijYja + Yij¥is + Yij¥ig + YijYia + YjaYas
+YjaYai + Yjaljs + YapYai + YapYsi + YapYsi + YsiYsj + YsiYia)
+03(YijYiaVja + Vij¥isV¥is + YiaVisYas + YjalisYas)

where

Sijas = > (Wi + i),
k#i,3,0,8

Tijag = Z YikYjks (6.2.12)
k#i,j,0,8

thij = O+ 025508+ 0315508,
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with corresponding definition for Sia jg, Sig jas Sja.ip, Ojsia and Sup.;, and with
corresponding definition for T5, s, Tig ja, Tja,ig, 1js,ia and Tup;, and with cor-

responding definition for al,m, 5171'57 51,]'0” al,jg, 51@6-

Therefore

PG{YA = yA‘YAc = yAc} = c—lexp{yingij + ymgl’m + yiﬁalﬂﬂ + yjagl,ja
+Yj501,j6 + Yasbr.0p + 02A + 03B},

where

A =Yij¥ja + Yij¥ig T Yi;Yig + Yij¥ia + YjaYas + YjaYait
Yialis + YapYai + YapYsi + YapYs; T Ysi¥si + Ypilfias
B =yijYiaYjo + Yij¥ipYis + YiaVisYas + YjaYisYas;
1 1 1 1 1 1 _ N
c=2_2. 2.0 2 2 o{uutiy + vl
Yi5=0 ¥ia=0 y;3=0 Y0 =0 y;5=0 yos=0

+ Yigbris + Yjabtja + Y0155 + Yapbiap + O2A + 03B}

(6.2.13)

Lemma 6.4
The composite log-likelihood function, 1.(0), for the composite likelihood (6.1.5)

as following

i<j<a<p

where L4(0) is the log of the composite likelihood (6.1.5)

La(0) = yijgl,ij+yia§1,ia+yi651,i6+yja§1,ja+yj5§17j5+ya5§17a5+92A+93B—lOg(C)

where A, B and ¢ are given in (6.2.13), and 5172-]-, élm, 517]@, 517]-5, 51@5 are defined
in (6.2.12)

A convenient algorithm for calculating [4(0) is given in Algorithm 4.
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Algorithm 4 Calculation of the composite likelihood 14(#) in (6.1.5).

Step 0 Input the adjacency matrix y = (vi;)1<i,j<n, of an undirected graph,

Step 1 Calculate yiy = > o Yk, ¢ = 1,...,n, and T(i,5) = D ;1 YirYjk, 1 <
1 <j<n,

Step 2 Set I, =0,

Step 3 For 1 <1< j <a < f <n, calculate

Dij =0, + 62[ Yi+ — YijYia — ylﬁ) + (yj+ —Yji = Yja — yjﬂ)]
+05{T(i,J) = Yialjo — YisYs3}

Dio =01 + 05[(Vit — YijYia — ¥is) + (Yat+ — Yai — Yaj — Yas)]

(

(

+ 03{T (i, @) = YijYaj — YisYas}

Dig =01 + 02[(Yi+ — Yij¥ia — Yip) + (Ys+ — Ysi — Ypj — Ypa)]

+ 03{T(i, B) — Yijysj — YiaYpo}

Djo =01 + 02[(Yj+ — Yjilja — Yi8) + Wat — Yai — Yaj — Yas)]

+ 03{T'(i, @) = YijYaj — YiBYap}

Dijg =01 + 0:2[(yj+ — Yji¥ja — Ysip) + Us+ — Ysi — Ysj — Ysa)]
+05{T'(j. B) — Yji¥pi — Yjalpa}

Dag =01 + 02[(Yar — YailYiaj = Yap) + (Ys+ — Ysi — Ys; — Ysa)]
+ 03{T (v, B) — YaiVYpi — YajVs;}-

Calculate A and B defined in (6.2.13).

Step 4 Calculate ¢ defined in (6.2.13), and

ly = s+ vi; Dij + YiaDia + YigDig + YjaDja + YisDjp + YapDap
+ 6, A+ 65B — log(c)

Step 5 Return ly.

6.3 Simulation Studies of the Composite Likeli-
hood

6.3.1 Introduction

In this section we explore by simulation the four composite likelihood estimators

derived in Section 6.2 and computed using Algorithm 1 - Algorithm 4. As before,
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y = (¥ij)1<i,j<n denotes the adjacency matrix for a random graph with n vertices,
and y;; = y;; and y; = 0 as we only consider simple undirected graphs here.

We focus on the fitting of two models: the 3-parameter model

Po{Y =y} = exp{01ui(y) + Oaua(y) + O3us(y) — ¥s(0)}, (6.3.1)

and 2-parameter model with probabilities given by

BY =y} = exp{bhus(y) + bsus(y) — ¢(0)}, (6.3.2)

where, as before, u1(y), us(y) and uz(y) denote, respectively, the number of edges,
the number of 2-stars and the number of triangles. In subsection 6.3.2 we present
simulation results for the four composite likelihood estimators of the 3-parameter
model (6.3.1), and in subsection 6.3.3 we present simulation results for the cor-
responding estimators for the 2-parameter model (6.3.2).

In all cases we have simulated from the homogeneous Bernoulli random graph
model with 8, = #3 = 0 in (6.3.1) and 5 = 0 in (6.3.2). Ideally, we would also
have explored simulations from models (6.3.1) and (6.3.2) with non-zero 6, and
03. However, this would have required the use of an iterative MCMC simulation
method such as Metropolis-Hastings or Gibbs sampler. Not only would this have
greatly increased the computing resources needed, but there would also have been
uncertainty about whether the MCMC procedure had converged. In our current
work we have opted to obtained reliable results for more limited set of cases
(0 = 03 = 0), rather than obtain possibly unreliable results in a broader set of
cases. However, simulation studied with 0 # 0 and/or 63 # 0 is an interesting
topic for further work.

Throughout this section, the number of Monte Carlo runs is M = 100 in each

case.

6.3.2 Numerical Results for the 3-Parameter Model

In this subsection, the Root Mean Squared Error (RMSE) for an estimator 6%

based on Monte Carlo realisations
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is given by

M
YEEOENESy {@’” ) = 602 + (857171 — ) + (6”15 - 03>2},

=1

’ (6.3.3)
where in all examples 6 = (6, 05,05)" is of the form (61,0,0)7, and k = 1,2,3,4
corresponds to estimators based on the composite likelihoods calculated in Al-
gorithm 1- Algorithm 4, respectively.
Numerical results are shown in Table 6.1. When n = 10, RMSE(4) is the smal-
lest in each case, followed by RMSE(3), with the difference being greatest when
0, = 2. However, when n > 20, the RMSE results for the four estimators are very
similar indeed. We also note that as n increases, the RMSE for each estimator
decreases steadily, suggesting that the estimators are consistent under the homo-
geneous Bernoulli model at least, a result we have not proved theoretically. A
further conclusion we draw is that for these estimators performance as measured

by RMSE becomes worse as 0; increases.
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Table 6.1: The Root Mean Squared Error (RMSE) of different composite like-
lihood estimators of the four methods, implemented using the al-
gorithms mentioned in Section 6.2, assuming 2 = 3 = 0 and 6;
varying, with n the number of nodes, and the number of Monte
Carlo runs M = 100. Cases with n = 50 and n = 100 were not
calculated for RMSE(4) due to the run time being too long.

0, n—10 n—20 n—30 n—=>50 n—100
-2 RMSE(1) || 16.79983 7.616962 1.650574 0.5476716 0.3746696
RMSE(2) || 15.3608 7.449942 1.788648 0.5474275 0.3745891
RMSE(3) || 15.02113 7.521577 1.735983 0.5470767 0.3744534
RMSE(4) || 14.98221 7.669413 1.951661 0.5465144 ———
-1 RMSE(1) || 12.90397 1.63242 1.039710 0.6503136 0.4377969
RMSE(2) || 8.796941 1.616878 1.037407 0.6494742 0.4377857
RMSE(3) || 8.533732 1.606362 1.034880 0.6491427 0.4377313
RMSE(4) || 8.475723 1.589709 1.030610 ~—— —_—
0 RMSE(1) || 4.983311 2.295181 2.094724 1.347965 0.7484166
RMSE(2) || 4.526295 2.271271 2.085905 1.3472  0.7483615
RMSE(3) || 4.309999 2.257489 2.078797 1.346123  0.7482923
RMSE(4) || 4.036978 2.22743  2.06983 — —_—
1 RMSE(1) || 57.68832 6.030356 3.659141 2.858981  1.835285
RMSE(2) || 58.27078 5.988627 3.645089 2.857446  1.835245
RMSE(3) || 57.61023 5.963112 3.637414 2.855695  1.834834
RMSE(4) || 55.2161 5.913037 3.617684 — —_—
2 RMSE(1) || 275.3757 121.9528 14.1641  8.708826  5.96737
RMSE(2) || 313.8732 120.5589 14.15409  8.70749  5.973889
RMSE(3) || 160.8919 124.9955 14.14478 8.705931  5.961482
RMSE(4) || 120.8304 126.3075 13.92554 — —

Monte Carlo estimators of the correlation matrices of the 5(’“), k=1,23,4, are

given below in (6.3.4)-(6.3.7) respectively for the case n = 30 and 6, = 0, values

we chose because they correspond to the center of Table 6.1.

The correlation matrix of #%) based on Monte Carlo realisations (%) 1,---, gx) [M]
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was calculated as

M
1 —~ (1) —
k) _ p) L w1k NI _ k) kT (k)
Corr D {Mjé (9 [71(0'[7]) 0 (0 ))}D
where

o1& 1 1 1

5k _ G G

0 —Mélﬁ 7], D —dlag{ PERNOL k)}
j:

and, for a =1, 2, 3,

=1

where 8" = (éik),éék’,éék))? The correlation matrices were found to be

1.0000000 —0.9275569  0.3470725
Corr™ = | —0.9275569 1.0000000 —0.6686536 |, (6.3.4)
0.3470725 —0.6686536  1.0000000
1.0000000 —0.9275396  0.3486106
Corr® = | —0.9275396 1.0000000 —0.6698873 |, (6.3.5)
0.3486106 —0.6698873  1.0000000
1.0000000 —0.9273094 0.3502174
Corr® = | —0.9273094 1.0000000 —0.6716093 |, (6.3.6)
0.3502174 —0.6716093  1.0000000
and
1.0000000 —0.9273055 0.3517414
Corr™ = | —0.9273055 1.0000000 —0.6728100 (6.3.7)
0.3517414 —0.6728100  1.0000000
There are two main points to note about (6.3.4)-(6.3.7). First, in all cases 6"

and @Ek) are highly correlated, while in contrast 5@ and @ék) are both somewhat

less correlated with

similar.

0

. Second, the four correlation matrices are remarkably

Scatterplots of the components of each of the four estimators based

on Monte Carlo realisations are shown in Figure 6.1. These plots corroborate
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the findings in (6.3.4)-(6.3.7). Broadly similar results were obtained with other

choices of 6; and n, when n > 20.

Method 1, Theta1=0, n=30 Method 2, Theta1=0, n=30
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Figure 6.1: Scatter plots for components of 51, 52, :9\3 and 54 when #; = 0 and
n = 30, based on M = 100 Monte Carlo runs.

In Figure 6.2, QQ plots are shown of the squared Mahalanobis distances against
the x2 quantiles. Let

vy = {57 ARGV )T | -7 @y

denote the sample covariance matrix of #%) based on Monte Carlo realisations
9®)[j], j=1,--- , M. Then for each 6®[j] define

~,

™ = @W[f] - 0)T (Vi) (@[5 - 6),

J

where 6 = (0,0,0)” in the example considered. If the normal approximation
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o) ~ N3(0, Vi) is good, then Tj(k), j=1,---, M, will be approximately x3.

Q-Q plot of Mahalanobis, Method 1, D* vs. quantiles of %3 Q-Q plot of Mahalanobis, Method 2, D? vs. quantiles of 2
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Figure 6.2: Mahalanobis to compare between CLEs for the full model, when
1 =0 and n = 30.

It is seen from Figure 6.2 that, apart from a single outlier which appears at the
some location on all four plots, the x2 approximation to the Tj(k) looks to be very
good for each of the four estimators. Moreover, as found previously, the behavior

of the four estimators is very similar.

Finally, we look at the sample correlation of 6’&1), 9,(12), 9&3) and 6’((14) fora=1,2,3.

The relevant correlation matrices were founded to be

1.0000000 0.9999919 0.9999844 0.9999646
0.9999919 1.0000000 0.9999958 0.9999858

Corry = : (6.3.8)
0.9999844 0.9999958 1.0000000 0.9999910

0.9999646 0.9999858 0.9999910 1.0000000
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1.0000000
0.9999867
0.9999789
0.9999432

Corry =

1.0000000
0.9999816
0.9999801
0.9999324

Corrs =

0.9999867
1.0000000
0.9999949
0.9999785

0.9999816
1.0000000
0.9999986
0.9999805

0.9999789
0.9999949
1.0000000
0.9999860

0.9999801
0.9999986
1.0000000
0.9999826

0.9999432
0.9999785
0.9999860
1.0000000

, (6.3.9)

0.9999324
0.9999805
0.9999826
1.0000000

: (6.3.10)

again in the case 6; = 0 and n = 30. The correlations of each component across

estimators are remarkably high, and certainly high than we would have expected.

These finding are confirmed in the scatterplots in Figure 6.3.
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6.3.3 Numerical Results for the 2-Parameter Model

In this case we just focused on two estimators of the parameters in model (6.3.2):
these based on the composite likelihoods calculated in Algorithm 1 and Algorithm
3. The RMSE for an estimator %) based on Monte Carlo realisations 6(*) [7],
j=1,---,M,is given by

RMSE(k) = % > {@&’“) [ — 0:1)2 + (65[5] — w}, (6.3.11)

where in all examples 63 = 0 and here we limit attention to k = 1 and k = 3.
The RMSEs are presented in Table 6.2 for this case. As can be seen from Table
6.2, there are some differences in RMSE(1) and RMSE(3) in the same cases when
n < 30, and when they are different, RMSE(1) is smaller than RMSE(3). How-
ever, for each value of 6, the two estimators are essentially identical when n is
sufficiently large. This last findings was calculated by further simulations which

have not included here.
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Table 6.2: The Root Mean Squared Error (RMSE) of two composite likelihood
estimators in model (6.3.2), implemented using Algorithm 1 and
Algorithm 3 mentioned in Section 6.2, assuming 03 = 0 and 6;
varying, with n the number of nodes, and the number of Monte
Carlo runs M = 100.

0, n—=10 n=20 n=30 n=50 n=100
-2 RMSEL | 12.87015 5.893478  2.801062 0.2449863 0.1195854
RMSES3 | 13.79034 5.943486  2.709793 0,2448274 0.1196195
-1 RMSE1 | 6.603481 0.4712673 0.3349784 0.2046826 0.1384643
RMSE3 | 6.360478 0.4651426 0.3337344 0.2043459 0.1384179
0 RMSEL | 1.287476 0.6367887 0.5146259 0.4166038 0.2379807
RMSE3 | 1.204182  0.628152 0.5112811 0.4158055 0.2377244
1 RMSEL | 4507642 1.507897 1.273537  0.731839 0.5128981
RMSE3 | 4.168313  1.488465  1.255581 0.7301646 0.5118664
2 RMSE1 | 51.15089 3.620943  3.360931  2.082709  1.182569
RMSE3 | 54.08247 3.568708  3.334704  2.082709  1.181996
4 RMSEL | 1032746  153.56  139.8623 15.45466  9.316641
RMSE3 | 103.8711 185.2349  158.3944 1541858  9.312107
6.4 Connection with Chatterjee and Diaconis (2013)

There has been some interesting and important recent theoretical work on model
(6.3.2) by (Chatterjee and Diaconis (2013)). They consider the model on simple

graphs with n vertices given by

66
Py, 0, = exp{26,u;(y) + 73u3 — n*, (01, 05)} (6.4.1)

where, as before, u;(y) and us(y) denote the number of edges and the number
of triangles in the graph and y is the adjacency matrix. They prove that, with
high probability , when n is large, §; € R and 03 > 0, a realisation y from (6.4.1)
is essentially the same as an Erdos-Rényi-Gilbert graph generated by including
edges independently with probability that the maximizing value of the following
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function:

Pn(01,03) ~ sup (91u + 3u® — %ulog(u) — %(1 —u)log(1 — u)) . (6.4.2)

0<u<l1

The optimum value is denoted u*(fy,63). In other words, most realizations of
this model look like realisations of the Erdos-Rényi-Gilbert simple model. Here,
almost all graphs are essentially empty graphs or complete graphs. Chaterjee and

Diaconis produced the first proofs of "degeneracy " observed in theses models.

After calculating v* from our simulation, we notice when that 3 < 0 have differ-
ent behavior, with most values of u* being greater than or equal 0.5 for 63 < 0,
and most values of u* being less than or equal 0.5 for 3 > 0. These results fit in
with the results in Chatterjee and Diaconis (2013), as can be seen in Figure 6.4

and Figure 6.5.
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6.5 Summary

In this chapter we explore three new composite likelihoods, defined in (6.1.3)-
(6.1.5), for the estimation of the parameters in the triad Exponential Random
Graph Model (ERGM) given in (6.1.1). These new composite likelihoods are
based on the conditional distributions of more complicated data structures than
in the standard and widely-used composite likelihood in which the components
consist the conditional distribution of an edge being present given knowledge of
the rest of the edge data.

Our numerical results indicate that the new composite likelihoods perform well in
the examples considered. However, our findings are inconclusive in that there is
no evidence that the new composite likelihoods perform better than the standard
one except possibly when the graph is small (e.g. with n = 10 vertices).

One limitation of our simulation study is that we only simulated from the ho-
mogeneous Bernoulli random graph model. This was due to the large amount
of computer time that would be needed to simulate from a general triad FRGM

using the Markov Chain Monte Carlo procedure.
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Summary, Conclusion and Further

Research

In this chapter we first summarize the main results and conclusions of the thesis.

Then we discuss possible directions for further research.

7.1 Summary of the Thesis

The new material in the thesis is contained in Chapters 3-6. In Chapter 3, the
main result is Theorem 3.1. This result gives a central limit theorem for three
random graph statistics, the number of edges, u;, the number of 2-stars, uy, and
the number of triangles, us. The results is proved under the Bernoulli random
graph model in which the presence or absence of each potential edge is an in-
dependent Bernoulli random variable with fixed probability p of an edge being
present. Theorem 3.1 was proved using the projection method. That a joint cent-
ral limit theorem holds for these statistics is not a surprise. The surprising aspect
of this theorem is that the limiting covariance matrix has rank 1 as opposed to
rank 3 and therefore the limiting trivariate normal distribution is degenerate. We
have not been able to find mention of this result anywhere in the literature. From
the point of view of the key statistical motivation for proving this central limit
theorem, which is to construct goodness-of-fit tests, this degeneracy result is a
negative one.

In order to see this degeneracy can be removed by conditioning we investigated

whether it is possible to prove a central limit theorem for us and ug, the number
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of 2-stars and the number of triangles, respectively, conditional on u;, the number
of edges. Tt turns out that such a central limit theorem does holds and, moreover,
the limiting conditional covariance matrix of us and wug, suitably standardised,
has full rank 2, and therefore the limiting bivariate normal distribution is non-
degenerate. However, we were could not see how to use the projection method
in this case because conditioning on the number of edges induced dependency
between the Bernoulli random variables. As an alternative we used the method
of moments. The proof turned out to be very long and is covered in two chapters,
Chapter 4 and Chapter 5.

The main result in Chapter 4, Theorem 4.1, gives the order of the expectation
of a general product of central Bernoulli random variables subject to their (non-
centred) sum, >, ¥ij = m, being fixed. Theorem 4.1 plays a crucial role
in the proof of the conditional central limit theorem and it may also be of inde-
pendent interest.

Theorem 5.1, the most substantial result in the thesis, states the joint central
limit theorem for us and w3 conditional on wuy, the number of edges. In addition
to using Theorem 4.1, the proof of Theorem 5.1 depends on some fairly complic-
ated counting lemmas. These counting lemmas are stated and proved in Chapter
5. In Section 5.6, goodness-of-fit tests based on Theorem 5.1 are applied to sub-
graphs of real network data via a fitted block model.

In Chapter 6, three new composite likelihood estimators were investigated for
estimating the 3 parameters of the so-called triad Exponential Random Graph
Model (FERGM). The three new composite likelihoods are based on the condi-
tional likelihoods of more complex data structures than simply the conditional dis-
tribution of each edge given the rest of the edge data, which is what is done withe
the standard composite likelihood estimator for the triad FRGM. The asymptotic
theory of the three new estimators seems to be intractable but simulation res-
ults suggest that all of the new estimators perform well. However, the numerical
results do not provide any evidence that the new estimators are better than the
standard composite likelihood estimator apart from possibly the case n = 10. In
fact, all four estimators have remarkably similar behavior in all cases considered
when n > 20.
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7.1.1 Discussion and Further Research

It is of interest to apply the conditional goodness-of-fit tests based on the Ma-
halanobis distance using the statistics C5 and C5 in the central limit result in
Theorem 5.1. We made a start on this in Section 5.6 but it would be of interest
to look at many other real network data examples, in conjunction with different
ways of determining the blocks. While it is usually the case that the Erdds-Rényi-
Gilbert random graph model will not be adequate for most real network data, we
believe that for some block graph models the random graph hypothesis within
blocks will sometimes be of interest.

Indeed, we could choose blocks to minimise a suitable goodness-of-fit statistic
based on Theorem 5.1 using some kind of stochastic search method such as sim-
ulated annealing. Developing such a procedure would be of potential interest.

A limitation of our simulation study in Chapter 6 is that we only used data sim-
ulated from the homogeneous Bernoulli model. This was due to the fact that
simulating from the general triad ERGM is expensive because a Markov Chain
Monte Carlo (MCMC) method is required, and it would have been very expens-
ive in computing time if we had simulated from the models using MCMC in the
simulation study. In addition, there would have been uncertainty in the interpret-
ation of the results due to the question of whether the MCMC simulations had
converged. Nevertheless, our current results concerning the new estimators are
inconclusive and it will be necessary to simulate from general models within the
triad ERGM before the efficacy and usefulness of our new composite likelihood
estimators can be fully evaluated.

One more direction for future research will now be mentioned. We have shown
that conditioning on the number of edges makes the difference between a degen-
erate and non-degenerate central limit theorem for us and ug in the Erdos-Rényi-
Gilbert model. Chatterjee and Diaconis (2013) have shown that a 2-parameter
submodel of the triad FRGM based on u; and ug exhibits certain pathologies.
It would be interesting to know whether or not conditioning on u; removes these
pathologies in the case of the 2-parameter submodel and the full 3-parameter
triad ERGM. The results of this thesis gives some hope that conditioning will

have a beneficial effect on statistical inference in the triad ERGM.
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