Coerced Mechanical Coarsening of Nanoparticle AssembliesTools Blunt, MO, Martin, CP, Ahola-Tuomi, M, Pauliac-Vaujour, E, Sharp, Peter, Nativo, P, Brust, M and Nativo, P (2007) Coerced Mechanical Coarsening of Nanoparticle Assemblies. Nature Nanotechnology, 2 . pp. 167-170. Full text not available from this repository.AbstractCoarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures.
Actions (Archive Staff Only)
|