New light on plant ash glass found in Africa: evidence for Indian Ocean Silk Road trade using major, minor, trace element and lead isotope analysis of glass from the 15th—16th century AD from Malindi and Mambrui, KenyaTools Biehl, Peter F., Siu, Ieong, Henderson, Julian, Qin, Dashu, Ding, Yu, Cui, Jianfeng and Ma, Hongjiao (2020) New light on plant ash glass found in Africa: evidence for Indian Ocean Silk Road trade using major, minor, trace element and lead isotope analysis of glass from the 15th—16th century AD from Malindi and Mambrui, Kenya. PLOS ONE, 15 (8). e0237612. ISSN 1932-6203
Official URL: http://dx.doi.org/10.1371/journal.pone.0237612
AbstractSeventeen glass vessels and twenty glass beads recovered from the excavations at the ancient city of Malindi and the archaeological site of Mambrui in Kenya, east Africa were analysed using electron probe microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The results show that all of the glass samples are soda-lime-silica glass. They belong to the high alumina -plant ash glass type, characterised by high alumina and relatively low calcium contents, widely distributed in eastern (10th- 16th centuries AD) and southern Africa (13th - 15th centuries AD), Central Asia (9th- 14th centuries AD) and southeast Asia (12th- 13th centuries AD), made with plant ashes and sands. This is an understudied glass type for which previous research has indicated there were three types. When compared with published research on such glasses using Zr, Ti, Ba, Cr, La, Li, Cs, Na2O, MgO and CaO we have identified at least four different compositional groups of v-Na-Al glass: Types A, B, C and D. By comparing the results with contemporary v-Na-Al glass vessels and beads from Central Asia, Africa, and southeast Asia we show that most of the Malindi and Mambrui glass share similar characteristics to the compositions of Mapungubwe Oblate and some of the Madagascar glass beads from southern Africa. They belong to Type A v-Na-Al glass which is characterised by an elevated level of Ti and Ba and a relatively high ratios of Cr/La, relatively low Zr concentrations and low ratios of Zr/ Ti. Differences in Zr, Li, MgO and Na2O concentrations in Type A glass indicates that there are subgroups which might derive from different glass workshop(s) specialising in Type A v- Na-Al glass production. Comparison with the chemical compositions of glass from Ghazni, Afghanistan and Termez, Uzbekistan, and by using lead isotope analysis, we suggest v-Na- Al glass was manufactured in Central Asia and possibly worked into vessels and beads there. Copyright: © 2020 Siu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Actions (Archive Staff Only)
|