'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'

Li, Jingpeng and Aickelin, Uwe (2004) 'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'. In: 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), LNCS 3242, 2004, Birmingham, UK.

This is the latest version of this item.

Full text not available from this repository.

Abstract

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Item Type: Conference or Workshop Item (Paper)
RIS ID: https://nottingham-repository.worktribe.com/output/1021636
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Computer Science
Depositing User: Aickelin, Professor Uwe
Date Deposited: 22 Oct 2007 13:44
Last Modified: 04 May 2020 20:31
URI: https://eprints.nottingham.ac.uk/id/eprint/620

Available Versions of this Item

Actions (Archive Staff Only)

Edit View Edit View