The antimicrobial and bile acid mediated control of Clostridium difficile infectionTools Dempster, Andrew William (2018) The antimicrobial and bile acid mediated control of Clostridium difficile infection. PhD thesis, University of Nottingham.
AbstractClostridium difficile is an anaerobic, Gram-positive, endospore forming bacillus and is the leading cause of nosocomial infection. Symptoms range from mild diarrhoea to the potentially fatal intestinal complications pseudomembranous colitis and toxic megacolon. The prerequisite for C. difficile infection (CDI) is the perturbation of the healthy microbiota of the gut by broad spectrum antibiotics. It is therefore important to develop therapies which take this in to account, either by minimal disruption of the resident gut microbiota, or by reinstating the protective nature of the gut microbiota. The novel antimicrobial fidaxomicin (FDX) is the first in a new class of macrocyclic antibiotics, with a narrow spectrum of activity for C. difficile. FDX exerts its bactericidal activity by binding to RNA polymerase (RNAP) and inhibiting transcription. The minimum inhibitory concentrations were determined for six clinically relevant isolates of C. difficile and the effect of the drug on spore germination and outgrowth was assessed. Inhibition of C. difficile occurs at low concentrations (0.03 – 0.05 µg/mL) and it was found that FDX does not inhibit the initiation of spore germination, but effectively halts outgrowth at an early stage. The effect of mutations in the β subunit of RNAP were also investigated in terms of susceptibility to FDX and any potential fitness costs incurred to the bacterium. Three separate single nucleotide polymorphisms (SNPs), T3428A, T3428G, G3427T, in the rpoB gene were found to confer reduced susceptibilities to FDX. However, the clinical relevance of these mutations is unclear, as mutants appeared to be attenuated in terms of growth, toxin production and virulence in the hamster model of infection.
Actions (Archive Staff Only)
|