Novel sustainable evaluation approach for multi-biomass supply chain

How, Bing Shen (2018) Novel sustainable evaluation approach for multi-biomass supply chain. PhD thesis, University of Nottingham.

[img]
Preview
PDF (Thesis - as examined) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (24MB) | Preview

Abstract

After the oil crisis held in 1973 and 1979, academicians and industry players have noticed the importance and necessity of having alternative and sustainable energy sources in future. Biological wastes, also named as “Biomass” has been cited as one of the significant sustainable energy sources. Biomass poses an ideal and substantial potential to achieve a sustainable system. However, the development of biomass industry is still relatively sluggish due to the lack of confidence of the investor to venture in this relatively new green business. This is most probably attributed to the low-maturation of biomass technologies compared to other conventional technologies, high logistics cost required for biomass transportation and uncertain market penetration barrier for the biomass-derived products. This raises the importance of having a proper biomass management system and a systematic evaluation approach to assess the sustainability performances of the biomass industry.

Therefore, the ultimate goal of this thesis is to develop a sustainable multi-biomass supply chain with the aims of optimising all three sustainability dimensions simultaneously. A sustainable multi-biomass supply chain is referred as the integrated value chain of the green products, which derived from various types of biomass, starting from harvesting stage to the final products delivery stage. This thesis discusses in detail on the relevant previous research works toward the introduction of novel evaluation approach to attain different sustainable objectives (i.e., economic, environmental and social) simultaneously. The evaluation approach encompasses various components, including (i) model reduction by using P-graph integrated two-stage optimisation approach; (ii) consideration of vehicle capacity constraint for detailed transportation cost estimation; (iii) integration of various sustainability indexes using various optimisation techniques.

On top of that, two novel debottlenecking approaches, one through principal component analysis (PCA) method; while another through P-graph framework, which able to identify and remove barriers that limit the sustainability performance of the biomass supply chain, are proposed. Aside from this, this thesis also aims to reduce the gaps between the researchers and industry players by developing some user-friendly and non-programming-background dependent decision-making tools. Thus, decision-makers are able to understand the insight of their problems easily without requirement of strong mathematical background. A case study in Johor, a southern state in Malaysia, which is endowed with extensive biomass resources, is used to demonstrate the effective of the proposed approaches.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Lam, Hon Loong
Foo, Dominic
Friedler, Ferenc
Keywords: biomass, supply chain management, sustainability index, debottlenecking, optimisation.
Subjects: T Technology > TP Chemical technology
Faculties/Schools: University of Nottingham, Malaysia > Faculty of Science and Engineering — Engineering > Department of Chemical and Environmental Engineering
Item ID: 49091
Depositing User: HOW, BING SHEN
Date Deposited: 21 Aug 2018 04:40
Last Modified: 07 May 2020 17:16
URI: https://eprints.nottingham.ac.uk/id/eprint/49091

Actions (Archive Staff Only)

Edit View Edit View