Nanopore sequencing and assembly of a human genome with ultra-long readsTools Jain, M., Koren, S., Miga, K.H., Quick, J., Rand, A.C., Sasani, T.A., Tyson, J.R., Beggs, A.D., Dilthey, A.T., Fiddes, I.T., Malla, S., Marriott, H., Nieto, T., O'Grady, J., Olsen, H.E., Pedersen, B.S., Rhie, A., Richardson, H., Quinlan, A.R., Snutch, T.P., Tee, L., Paten, B., Phillippy, A.M., Simpson, J.T., Loman, N.J. and Loose, M. (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology . ISSN 1546-1696 Full text not available from this repository.
Official URL: https://www.nature.com/articles/nbt.4060
AbstractWe report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ~30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ~3 Mb). Next, we developed a protocol to generate ultra-long reads (N50 > 100kb, up to 882 kb). Incorporating an additional 5×-coverage of these data more than doubled the assembly contiguity (NG50 ~6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4 Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length and closure of gaps in the reference human genome assembly GRCh38.
Actions (Archive Staff Only)
|