Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots

Makarovsky, Oleg, Turyanska, Lyudmila, Mori, N., Greenaway, Mark, Eaves, Laurence, Patanè, Amalia, Fromhold, Mark, Lara-Avila, Samuel, Kubatkin, Sergey and Yakimova, Rositsa (2017) Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots. 2D Materials, 4 (3). 031001. ISSN 2053-1583

Full text not available from this repository.

Abstract

We report a simultaneous increase of carrier concentration, mobility and photoresponsivity when SiC-grown graphene is decorated with a surface layer of colloidal PbS quantum dots, which act as electron donors. The charge on the ionised dots is spatially correlated with defect charges on the SiC-graphene interface, thus enhancing both electron carrier density and mobility. This charge-correlation model is supported by Monte Carlo simulations of electron transport and used to explain the unexpected 3-fold increase of mobility with increasing electron density. The enhanced carrier concentration and mobility give rise to Shubnikov-de Haas oscillations in the magnetoresistance, which provide an estimate of the electron cyclotron mass in graphene at high densities and Fermi energies up to 1.2 × 1013 cm-2 and 400 meV, respectively.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/866859
Keywords: SiC-graphene, Unipolar charge correlation, Colloidal quantum dots, Monte Carlo simulations
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Physics and Astronomy
Identification Number: 10.1088/2053-1583/aa76bb
Depositing User: Eprints, Support
Date Deposited: 06 Jun 2017 14:35
Last Modified: 04 May 2020 18:50
URI: https://eprints.nottingham.ac.uk/id/eprint/43417

Actions (Archive Staff Only)

Edit View Edit View