Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain

Kelly, Sara, Chapman, R.J., Woodhams, S., Sagar, Devi Rani, Turner, J., Burston, J.J., Bullock, C., Paton, K., Huang, J., Wong, A., McWilliams, D.F., Okine, B.N., Barrett, D.A., Hathway, G.J., Walsh, D.A. and Chapman, V. (2013) Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Annals of Rheumatic Disease, 74 . pp. 252-259. ISSN 1468-2060

Full text not available from this repository.

Abstract

Objectives Blockade of transient receptor potential vanilloid 1 (TRPV1) with systemic antagonists attenuates osteoarthritis (OA) pain behaviour in rat models, but on-target-mediated hyperthermia has halted clinical trials. The present study investigated the potential for targeting TRPV1 receptors within the OA joint in order to produce analgesia.

Methods The presence of TRPV1 receptors in human synovium was detected using western blotting and immunohistochemistry. In a rat model of OA, joint levels of an endogenous ligand for TRPV1, 12- ydroxyeicosatetraenoic acid (12-HETE), were quantified using liquid chromatography-tandem mass spectrometry (LCMS/MS). Effects of peripheral administration of the TRPV1 receptor antagonist JNJ-17203212 on afferent fibre activity, pain behaviour and core body temperature were investigated. Effects of a spinal administration of JNJ-17203212 on dorsal horn neuronal responses were studied.

Results We demonstrate increased TRPV1 immunoreactivity in human OA synovium, confirming the diseased joint as a potential therapeutic target for TRPV1-mediated analgesia. In a model of OA pain, we report increased joint levels of 12-HETE, and the sensitisation of joint afferent neurones to mechanical

stimulation of the knee. Local administration of JNJ- 17203212 reversed this sensitisation of joint afferents

and inhibited pain behaviour (weight-bearing asymmetry), to a comparable extent as systemic JNJ-

17203212, in this model of OA pain, but did not alter core body temperature. There was no evidence for

increased TRPV1 function in the spinal cord in this model of OA pain.

Conclusions Our data provide a clinical and mechanistic rationale for the future investigation of the therapeutic benefits of intra-articular administration of TRPV1 antagonists for the treatment of OA pain.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/718452
Schools/Departments: University of Nottingham, UK > Faculty of Medicine and Health Sciences > School of Life Sciences > School of Biomedical Sciences
University of Nottingham, UK > Faculty of Science > School of Biosciences
University of Nottingham, UK > Faculty of Medicine and Health Sciences > School of Life Sciences
University of Nottingham, UK > Faculty of Science > School of Pharmacy
Identification Number: https://doi.org/10.1136/annrheumdis-2013-203413
Depositing User: Hathway, Gareth
Date Deposited: 19 Jul 2016 09:31
Last Modified: 04 May 2020 16:39
URI: https://eprints.nottingham.ac.uk/id/eprint/35039

Actions (Archive Staff Only)

Edit View Edit View