Compressed air energy storage for large-scale renewable energy systems for a case study of Egyptian gridTools Ramadan, Omar (2016) Compressed air energy storage for large-scale renewable energy systems for a case study of Egyptian grid. PhD thesis, University of Nottingham.
AbstractAll across the world, attention is turning to renewable energies to serve at least as a partial substitute to fossil fuels in the global energy mix, braking the latter’s depletion and providing a greener solution for a more sustainable future. However, the intermittent nature of most renewable energy sources, wind and solar in particular, raises major concerns over the integration of these technologies, on a large scale, to grid systems. This thesis focuses on large-scale renewable energy storage systems, primarily compressed air energy storage (CAES) systems, which are particularly well suited for renewable energy applications. CAES can play a major role in shaping the future of renewable energy systems for not only can it bring load levelling to the system, but it can also add substantial value by providing ancillary services to the grid. The main focus of this research is adiabatic CAES which endeavours to minimize the use of natural gas by using recuperators and thermal energy storage systems, where the heat from the air during the compression stages is absorbed by a heat transfer fluid, stored, and then supplied back during the expansion process.
Actions (Archive Staff Only)
|