A genetic programming hyper-heuristic for the multidimensional knapsack problemTools Drake, John H., Hyde, Matthew, Khaled, Ibrahim and Özcan, Ender (2014) A genetic programming hyper-heuristic for the multidimensional knapsack problem. Kybernetes, 43 (9/10). pp. 1500-1511. ISSN 0368-492X Full text not available from this repository.AbstractPurpose: Hyper-heuristics are a class of high-level search techniques which operate on a search space of heuristics rather than directly on a search space of solutions. The purpose of this paper is to investigate the suitability of using genetic programming as a hyper-heuristic methodology to generate constructive heuristics to solve the multidimensional 0-1 knapsack problem. Design/methodology/approach: Early hyper-heuristics focused on selecting and applying a low-level heuristic at each stage of a search. Recent trends in hyper-heuristic research have led to a number of approaches being developed to automatically generate new heuristics from a set of heuristic components. A population of heuristics to rank knapsack items are trained on a subset of test problems and then applied to unseen instances. Findings: The results over a set of standard benchmarks show that genetic programming can be used to generate constructive heuristics which yield human-competitive results. Originality/value: In this work the authors show that genetic programming is suitable as a method to generate reusable constructive heuristics for the multidimensional 0-1 knapsack problem. This is classified as a hyper-heuristic approach as it operates on a search space of heuristics rather than a search space of solutions. To our knowledge, this is the first time in the literature a GP hyper-heuristic has been used to solve the multidimensional 0-1 knapsack problem. The results suggest that using GP to evolve ranking mechanisms merits further future research effort. © Emerald Group Publishing Limited.
Actions (Archive Staff Only)
|