Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

Wieland, Maria B., Slater, Anna G., Mangham, Barry, Champness, Neil R. and Beton, Peter H. (2014) Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films. Beilstein Journal of Nanotechnology, 5 . pp. 394-401. ISSN 2190-4286

Full text not available from this repository.

Abstract

We show that thin films of C60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS). This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/1000104
Additional Information: This article is part of the Thematic Series "Physics, chemistry and biology of functional nanostructures II".
Keywords: polymerisation; porphyrin; surface; thin film; transfer
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Chemistry
University of Nottingham, UK > Faculty of Science > School of Physics and Astronomy
Identification Number: 10.3762/bjnano.5.46
Depositing User: Eprints, Support
Date Deposited: 15 Feb 2016 14:03
Last Modified: 04 May 2020 20:18
URI: https://eprints.nottingham.ac.uk/id/eprint/31699

Actions (Archive Staff Only)

Edit View Edit View