An investigation of multi-objective hyper-heuristics for multi-objective optimisationTools Maashi, Mashael (2014) An investigation of multi-objective hyper-heuristics for multi-objective optimisation. PhD thesis, University of Nottingham.
AbstractIn this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function.
Actions (Archive Staff Only)
|