Analysis of localized solutions in coupled Gross-Pitavskii equationsTools Qadir, Muhammad Irfan (2013) Analysis of localized solutions in coupled Gross-Pitavskii equations. PhD thesis, University of Nottingham.
AbstractBose-Einstein condensates (BECs) have been one of the most active areas of research since their experimental birth in 1995. The complicated nature of the experiments on BECs suggests to observe them in reduced dimensions. The dependence of the collective excitations of the systems on the spatial degrees of freedom allows the study in lower dimensions. In this thesis, we first study two effectively one-dimensional parallel linearly coupled BECs in the presence of external potentials. The system is modelled by linearly coupled Gross-Pitaevskii (GP) equations. In particular, we discuss the dark solitary waves and the grey-soliton-like solutions representing analogues of superconducting Josephson fluxons which we refer to as the fluxon analogue (FA) solutions. We analyze the existence, stability and time dynamics of FA solutions and coupled dark solitons in the presence of a harmonic trap. We observe that the presence of the harmonic trap destabilizes the FA solutions. However, stabilization is possible by controlling the effective linear coupling between the condensates. We also derive theoretical approximations based on variational formulations to study the dynamics of the solutions semi-analytically.
Actions (Archive Staff Only)
|