A study of evolutionary multiobjective algorithms and their application to knapsack and nurse scheduling problemsTools Le, Khoi Nguyen (2011) A study of evolutionary multiobjective algorithms and their application to knapsack and nurse scheduling problems. PhD thesis, University of Nottingham.
AbstractEvolutionary algorithms (EAs) based on the concept of Pareto dominance seem the most suitable technique for multiobjective optimisation. In multiobjective optimisation, several criteria (usually conflicting) need to be taken into consideration simultaneously to assess a quality of a solution. Instead of finding a single solution, a set of trade-off or compromise solutions that represents a good approximation to the Pareto optimal set is often required. This thesis presents an investigation on evolutionary algorithms within the framework of multiobjective optimisation. This addresses a number of key issues in evolutionary multiobjective optimisation. Also, a new evolutionary multiobjective (EMO) algorithm is proposed. Firstly, this new EMO algorithm is applied to solve the multiple 0/1 knapsack problem (a wellknown benchmark multiobjective combinatorial optimisation problem) producing competitive results when compared to other state-of-the-art MOEAs.
Actions (Archive Staff Only)
|