2D and 3D digital shape modelling strategiesTools Rueda Lopez, Silvia (2010) 2D and 3D digital shape modelling strategies. PhD thesis, University of Nottingham.
AbstractImage segmentation of organs in medical images using model-based approaches requires a priori information which is often given by manually tagging landmarks on a training set of shapes. This is a tedious, time-consuming, and error prone task. To overcome some of these drawbacks, several automatic methods were devised. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in Active Shape Modelling, which has encountered several challenges. The most crucial among these are: (C1) defining and characterizing landmarks; (C2) obtaining landmarks at the desired level of detail; (C3) ensuring homology; (C4) generalizing to n>2 dimensions; (C5) achieving practical computations. This thesis proposes several novel modelling techniques attempting to meet C1-C5. In this process, this thesis makes the following key contributions: the concept of local scale for shapes; the idea of allowing level of detail for selecting landmarks; the concept of equalization of shape variance for selecting landmarks; the idea of recursively subdividing shapes and letting the sub-shapes guide landmark selection, which is a very general n-dimensional strategy; the idea of virtual landmarks, which may be situated anywhere relative to, not necessarily on, the shape boundary; a new compactness measure that considers both the number of landmarks and the number of modes selected as independent variables.
Actions (Archive Staff Only)
|