Wind energy in the built environment: a design analysis using CFD and wind tunnel modelling approach

Campos-Arriaga, Liliana (2009) Wind energy in the built environment: a design analysis using CFD and wind tunnel modelling approach. PhD thesis, University of Nottingham.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (21MB) | Preview

Abstract

Renewable energies are a critical element for reducing greenhouse gases emissions and achieving a sustainable development. Until recently, building integration of renewable sources was focused on solar technologies. Nevertheless,building integrated wind turbines can and must be part of the solution to the global energy challenge.

This research investigated the potential of integrating small vertical wind turbines between medium-rise buildings. Wind velocities were measured around 7 fifteenstorey

towers. The measurements were carried out for nine different configurations,using a boundary layer wind tunnel and computational fluid dynamics (CFD) simulations.

Computed and measured results showed reasonable agreement. The differences were more apparent at ground level. It was established that building orientation and the separation between buildings defines to a great extent the wind environment around buildings. It was found that a distance between buildings of 15 metres and an orientation of θ=260˚ produced the higher augmentation factors. This configuration produced up to 17,812kWh in a typical Nottingham UK year, using six vertical wind turbines of 2.5kW each.

Results suggested that the use of CFD as a visualisation tool is extremely useful at design stages in projects involving the integration of wind turbines. Nevertheless, the results of CFD simulations are highly dependent on the type of roughness modification applied to the wall functions, the choice of the turbulence model and the modelling of the inlet wind velocity profile.

Because servicing buildings accounts for around half of the UK’s total energy consumption, the need to reduce the consumption of fossil fuels is central to good building design. That is why the architectural practice must respond professionally by delivering buildings that successfully integrate wind energy technologies, which can only be achieved if the designer actively engages with the environmental design principles and improves his understanding of building physics.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Riffat, Saffa
Omer, Siddig
Keywords: Renewable energy, environmental design, sustainable architecture, fluid dynamics, wind turbines.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ807 Renewable energy sources
Faculties/Schools: UK Campuses > Faculty of Engineering > Built Environment
Item ID: 10806
Depositing User: EP, Services
Date Deposited: 09 Dec 2009 11:41
Last Modified: 15 Oct 2017 18:33
URI: https://eprints.nottingham.ac.uk/id/eprint/10806

Actions (Archive Staff Only)

Edit View Edit View