The continuity of monadic stream functions

Capretta, Venanzio and Fowler, Jonathan (2017) The continuity of monadic stream functions. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'17), 20-23 Jun 2017, Reykjavik, Iceland.

Warning
There is a more recent version of this item available.
[thumbnail of monadic_continuity_LICS2017.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (302kB) | Preview

Abstract

Brouwer’s continuity principle states that all functions from infinite sequences of naturals to naturals are continuous, that is, for every sequence the result depends only on a finite initial segment. It is an intuitionistic axiom that is incompatible with classical mathematics. Recently Mart́ín Escardó proved that it is also inconsistent in type theory. We propose a reformulation of the continuity principle that may be more faithful to the original meaning by Brouwer. It applies to monadic streams, potentially unending sequences of values produced by steps triggered by a monadic action, possibly involving side effects. We consider functions on them that are uniform, in the sense that they operate in the same way independently of the particular monad that provides the specific side effects. Formally this is done by requiring a form of naturality in the monad. Functions on monadic streams have not only a foundational importance, but have also practical applications in signal processing and reactive programming. We give algorithms to determine the modulus of continuity of monadic stream functions and to generate dialogue trees for them (trees whose nodes and branches describe the interaction of the process with the environment).

Item Type: Conference or Workshop Item (Paper)
Additional Information: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Keywords: monadic stream function, continuity, type theory functional programming, stream, monad, dialogue trees, strategy trees
Schools/Departments: University of Nottingham, UK > Faculty of Science > School of Computer Science
Related URLs:
Depositing User: Capretta, Venanzio
Date Deposited: 04 Apr 2017 11:16
Last Modified: 08 May 2020 12:15
URI: https://eprints.nottingham.ac.uk/id/eprint/41715

Available Versions of this Item

Actions (Archive Staff Only)

Edit View Edit View