
1

The Continuity of Monadic Stream Functions
Venanzio Capretta and Jonathan Fowler

School of Computer Science
University of Nottingham, UK

Email : {venanzio.capretta,jonathan.fowler}@nottingham.ac.uk

Abstract—Brouwer’s continuity principle states that all func-
tions from infinite sequences of naturals to naturals are continu-
ous, that is, for every sequence the result depends only on a finite
initial segment. It is an intuitionistic axiom that is incompatible
with classical mathematics. Recently Martı́n Escardó proved that
it is also inconsistent in type theory. We propose a reformulation
of the continuity principle that may be more faithful to the
original meaning by Brouwer. It applies to monadic streams,
potentially unending sequences of values produced by steps
triggered by a monadic action, possibly involving side effects. We
consider functions on them that are uniform, in the sense that
they operate in the same way independently of the particular
monad that provides the specific side effects. Formally this is
done by requiring a form of naturality in the monad. Functions
on monadic streams have not only a foundational importance, but
have also practical applications in signal processing and reactive
programming. We give algorithms to determine the modulus of
continuity of monadic stream functions and to generate dialogue
trees for them (trees whose nodes and branches describe the
interaction of the process with the environment).

Index Terms—monadic stream function, continuity, type the-
ory, functional programming, stream, monad, dialogue trees,
strategy trees

I. INTRODUCTION

Brouwer’s continuity principle is a non-standard intuitionis-
tic postulate, incompatible with classical mathematics. It states
that every function from infinite sequences of natural numbers
to natural numbers is continuous. Continuity, in this setting,
means that the value of the function on each specific input
depends only on a finite initial segment of the sequence.

We denote an arbitrary sequence by α = a0 / a1 / a2 /
· · · . We write α|n for the initial segment consisting of the
first n elements: α|n = a0 :: a1 :: . . . :: an−1 :: nil. (We use
the type theoretic notation that we introduce formally later:
infinite sequences, or streams, form a coinductive type with
constructor /; finite sequences, or lists, form an inductive type
with constructor :: plus empty list base case, nil.)

We say that two streams α and α′ are n-equal if their first n
elements are the same: α′ =n α if α′|n = α|n. The principle
is expressed by the following formula:

∀α,∃n,∀α′, α′ =n α⇒ f α′ = f α.

It states that the value of f on any input α depends only on
an initial segment α|n, so that on any other sequence α′ with
the same initial n elements, f will produce the same result.

Paolo Capriotti gave a vital contribution to the ideas in this article. We
originally discussed the issue of continuity of monadic stream functions with
Paolo and we developed together their application to dialogue trees. He came
up with the counterexample asktwice in Section VI.

The justification that Brouwer gave for the principle rests
on his philosophy of mathematics, specifically on his inter-
pretation of the meaning of infinite sequence and function.
The objects on which the functions operate are choice se-
quences, progressions of values that are completely free and
not governed to a generating rule. They may be produced
by a creative subject and are not necessarily algorithmic. On
the contrary, functions are effective procedures, consisting of
precise mental steps. A function can consult its sequence
argument one element at a time and must algorithmically
compute a result in a finite time. It follows that a function can
only obtain a finite number of sequence elements in the time
it takes it to produce the result. Hence, it must be continuous.

The relevance of intuitionistic mathematics to modern com-
puter science rests on the parallel between the philosophical
apprehension of mathematical objects as mental constructions
and their computational realization as data structures and
programs. A function is now an computational procedure.
Brouwer’s choice sequences can be reinterpreted as input
streams. These need not be data structures implemented on
a computer, but can be progressions of input values read from
some device.

The setup of Brouwer’s principle can be reformulated thus:
We have an interactive program that can ask the user to insert
a value at any point of its computation; after a finite number
of steps, the program must end and produce a result. It is
not essential to think that the sequence is provided by a user;
in scientific and real-world applications we may think of the
sequence as produced by a measuring device or by any other
signalling process. There is no predefined limit to the number
of input values that the program will ask for, but it can only
get a finite number of them if it needs to terminate. Therefore
the program is the realization of a continuous function in
Brouwer’s sense.

The most coherent and complete realization of the corre-
spondence between intuitionistic mathematics and computer
science is in Martin-Löf’s Type Theory. It is, at the same time,
a programming language and a formal system for the founda-
tions of mathematics. It is compatible with both intuitionistic
and classical mathematics. It has been very successful and led
to concrete implementations, notably the systems Coq [25] and
Agda [22], and useful applications.

We may now ask if the theory can be extended with
stronger constructive principles, specifically if we can add
the continuity principle to it. Unfortunately not: Recently
Martı́n Escardó discovered that the straightforward addition of
the continuity principle to type theory leads to contradiction

2

[11]. In the aftermath of the discovery, discussion focused
on analyzing the source of the problem and investigating
alternative formulations of the principle that are not lethal.
One solution, proposed by Escardó himself, is to adopt a
weaker notion of existential quantifier. One crucial point in his
paradox was that we can use the constructive content of the
existential quantification on the length n of the initial segment
to construct a function that turns out not to be continuous. By
weakening the existential quantifier, so that no extraction of
a witness is allowed, we prevent the construction of such an
evil function.

Here we propose an alternative formulation, based on a
different diagnosis of the paradox. The construction of the
evil function has an input sequence as a parameter. But in
Brouwer’s conception there is a clear distinction between
sequences, that are non-computable, and functions, that must
be effectively computable. Therefore we should not allow the
definition of a function to depend on a sequence. However,
in type theory all objects are intended to be internal to the
theory itself and we are authorized to use any object in
the definition of another. Specifically, infinite sequences are
realized as functions on the natural numbers. A sequence of
natural numbers is just a function α : N→ N. If we construe
functions as computable, which is essential for the justification
of the continuity principle, then so are infinite sequences,
contrary to the spirit of the principle.

We may substitute the representation of sequences as func-
tions N → N with a coinductive type of streams SA. An
element α : SA is built by using the constructor / an infinite
number of times. (Corecursion patterns tell us how we can
generate the infinite sequence by a finite process.)

There is a correspondence between SA and N → A,
which is one-to-one if we assume extensionality of functions
and bisimilarity of streams: functions are equal if they are
pointwise equal, streams are equal if they can simulate each
other. Therefore, the change of data type does not in itself
solve the issue. But it affords a way to generalize the notions.

A stream, as defined above, is still an internal object of type
theory. It is meant to be defined by some computational crite-
rion: it could be generated by a coalgebra [17], characterized
as the fixed point of a guarded equation [8], [16], or produced
by a guarded-by-destructors pattern [1].

We look for a notion of stream that comprises other ways
of generating the sequence of elements, in particular allowing
them to be given interactively. In functional programming,
specifically in the language Haskell, interactive programming
is realized by using the IO monad. While a basic type A
contains pure elements which are immutable data structures,
when we put it inside the IO monad we obtain an interac-
tive type (IOA) whose elements are values of A produced
through interaction and producing side effects. Other monads
characterize different kinds of side effects.

We define a notion of stream that embodies the possibility
of its elements being produced through monadic actions.
The coinductive type SM,A, for a given monad M , has
elements of the form mconsm, where m is an M -action,
m : M (A× SM,A). This action, when executed, will produce
some side effects and give results consisting of an element of

A and a new monadic stream. For example, if M is the IO
monad, there will be some interaction with the user to obtain
the first element of the stream and the tail, which is again a
monadic stream that results in a new IO action. Other monads
result in different stream behaviours: the Maybe monad admits
the possibility of the action not giving a value, thus allowing
the sequence to terminate; the list monad allows the stream
to branch into many possible continuations; the state monad
allows the elements to depend on and modify a changing state,
the writer monad gives streams that, when read, produce some
output; and so on.

Now we come to the characterization of functions on
streams. We want a function to operate independently of how
the stream is produced. It shouldn’t matter if the stream is a
pure internal procedure or if it is an interactive process or if
it produces any other side effects. In other words, functions
should apply to monadic streams and be polymorphic on the
monad. Therefore, the type of functions we are interested in
is

∀M, SM,A →M B.

The variable M ranges over monads. A function f of this type
should operate in a uniform way independently of the monad.
We make this notion precise through a naturality condition. A
different way to characterize uniformity is through parametric-
ity [3]. Naturality is weaker. Its advantages are that it has a
more abstract and clear formulation and results in stronger
properties about the function.

Every natural monadic stream function is continuous:
Brouwer’s Principle becomes a theorem.

II. MONADIC STREAMS

Coinductive types are data structures that contain non-well-
founded elements (See Chapter 13 of the book by Bertot and
Casteran [4] for a good introduction). They have their roots
in the categorical theory of final coalgebras and have been
implemented in the major type theoretic systems, Coq, Agda
and Idris [5]. At present, their understanding still suffers from
tension between the abstract theory of coalgebras, with its sim-
ple characterization by finality, and the formal implementation,
with its syntactic conditions [20]. The best synthesis so far is
probably in the technique of copatterns [1], which offers an
easy syntactic format that transparently mirrors coalgebraic
definitions. For our purposes, we skip over syntactic details
and issues of unicity, decidability and extensionality.

We use an Agda-style notation, with the key words data
and codata marking inductive and coinductive types. As
simple examples of both, here are the definitions of the types
of lists and of pure streams.

data List(A) : Set
nil : List(A)
(::) : A→ List(A)→ List(A)

codata SA : Set
(/) : A→ SA → SA

Elements of data types are built bottom-up using construc-
tors in a well-founded way. It is necessary to have a non-
recursive constructor, nil in this case, to provide a basis for
the manufacture of lists. We can define them by directly giving
their structure, for example 2 :: 3 :: 5 :: 7 :: 11 :: nil.

3

Elements of codata types are built top-down, and there
may not be a bottom. We can apply the constructors in a
non-well-founded way. We do not need a non-recursive base
constructor (but we may have one). Since the structure of
coinductive objects can be infinite, we cannot usually define
them by directly giving their components. Instead, we use
recursive definitions that generate the streams step by step
when we unfold them.

Both inductive and coinductive types are fixed points of
functors. For the definition to make constructive sense in type
theory, the functor must be strictly positive, that is, in its
syntactic form the argument type must occur only on the
right-hand side of functional type formers. A more elegant,
less syntax-bound characterization is the notion of container
[2] (or dependent polynomial functor [12] in the categorical
literature).

Definition 1: A container is a pair 〈S, P 〉 with S : Set, a set
of shapes, and P : S → Set, a family giving a set of positions
for every shape. Every container defines a functor:

(S B P) : Set→ Set
(S B P)X = Σs : S. P s→ X.

An element of (S B P)X is a pair 〈s, xs〉 where s : S is a
shape and xs : P s → X is a function assigning an element
of X to every position in the shape s.

The carrier of the final coalgebra of a container is a type
ν(S B P) inhabited by trees with nodes labelled by shapes
s : S and branches labelled by the positions (P s) of the
node shape. So every element of t : ν(S B P) is uniquely
given by a shape, shape t : S, and a family of sub-elements,
subs t : P (shape t)→ ν(S B P).

The actual final coalgebra is the function

outν : ν(S B P)→ (S B P) (ν(S B P))
outν t = 〈shape t, subs t〉.

Using this terminology and notation, streams can be defined
by, SA = ν(A B λa.1). So streams are the final coalgebra
of the container with a shape for every element of A and a
single position in each shape. We will continue to use the more
intuitive codata formalism. The correspondence with the ν
formalism should be evident in every case.

Once we defined the coinductive type, we need a formal-
ism to program with it. Categorically, coinductive types are
final coalgebras. We can use their universal property as a
definitional scheme: Every coalgebra c : X → (S B P)X
has a unique anamorphism ĉ : X → ν(S B P) such that
outν ◦ ĉ = (S B P) ĉ ◦ c.

ν(S B P) outν //(S B P) (ν(S B P))

X

ĉ

OO

c //(S B P)X

(SBP) ĉ

OO

Since (S B P)X = Σs : S. P s → X , the coalgebra c has
two components c = 〈cS , cP 〉 with cs : X → S and cP : (x :
X) → (P s) → X . The commutativity of the diagram can
then be expressed by the two equations

shape (ĉ x) = cS x
subs (ĉ x) p = ĉ (cP x p).

We will continue to use the more intuitive recursive formal-
ism. The correspondence with coalgebraic definitions should
be evident in every case.

The only coinductive structure we are interested in here
is that of streams. However, we want to generalize it to
monadic streams, in which the constructor shields the head
and tail behind a monadic action. The justification of such
data formation requires the full range of final coalgebras for
containers. Given a monad M , the type of monadic streams
on M is defined as follows:

codata SM,A : Set
mconsM : M (A× SM,A)→ SM,A.

Categorically, we can see this type as the final coalgebra of the
functor F X = M (A×X). For it to make constructive sense,
it should be strictly positive, so we must put it in container
form. This is possible only if M itself is a container. Not
all monads are; for example the continuation monad is not
strictly positive. If M is itself a container, M = SM B PM ,
the above functor F can also be presented as a container with
shapes SF = Σs : SM .PM → A and positions PF 〈s, h〉 =
PM s. The shapes of F are shapes of M with the positions
ornamented [21] by elements of A. From now on we always
assume that the monad M is a container. (Thorsten Altenkirch,
in a personal communication, showed that monad containers
are exactly type universes closed under sum types.)

Pure streams are monadic streams for the identity monad Id:
the type of mconsId is isomorphic to that of (/) by currying:

mconsId : (A× SId,A)→ SId,A ∼= A→ SId,A → SId,A.

Interesting instantiations are obtained by using other mon-
ads. Some of them are important in later chapters. If we choose
the Maybe monad, we obtain co-lists, sequences of elements
that may or may not be finite. The elements of MaybeX are
copies of each element x : X , Justx, and an error element
Nothing.

When we instantiate the definition of monadic streams
with Maybe we obtain the type SMaybe,A, with two dis-
tinct ways to construct streams (although there is only
one constructor) according to the monadic action. If the
monadic action is Nothing, we get an empty stream ob-
ject: nil = mconsMaybe Nothing. If the monadic action
is Just, we get a head element and a tail: a / α =
mconsMaybe (Just 〈a, α〉). Both finite lists and pure streams can
be injected in SMaybe,A. A list a0 :: · · · ::an ::nil is represented as
mcons (Just 〈a0, . . .mcons (Just 〈an,mcons Nothing〉) . . . 〉).

The list constructor is itself a monad, so it makes sense
to consider SList,A. This turns out to be the set of finitely
branching trees with edges labelled by elements of A. An
element of it has the form mcons (〈a0, α0〉::〈a1, α1〉::〈a2, α2〉::
· · · :: nil) where a0, a1, a2 are elements of A and α0, α1, α2

are monadic streams in SList,A.
Another interesting instantiation uses the state monad.

This characterizes computations whose side effects consist
in reading and modifying a state value in some type S:
StateS X = S → X × S. A monadic action of type X
reads the present state and produces a result in X and a new
state. A monadic stream in SStateS ,A is an infinite sequence

4

of values such that the evaluation of each component depends
on and modifies the current state. An element of it has the
form mconsh, where h : S → A × SState,A × S. As a
simple example, here is the state-monadic stream of Fibonacci
numbers.

fib gen : SStateN×N,N
fib gen = mcons (λ〈a, b〉.〈b, fib gen, 〈b, a+ b〉〉)

This is in fact a constant stream, in the sense that it recursively
calls itself with no variation. It generates a dynamically
changing stream when we execute it with a varying state
containing the pair of the last two Fibonacci numbers we
computed.

runstr : SStateS ,A → S → SA
runstr (mconsh) s = let 〈a, α, s′〉 = (h s)

in a / (runstrα s′)
fib : SN
fib = runstr fib gen 〈0, 1〉

A special case of the state monad is the writer monad.
It is a state monad in which the monadic actions only
write into the state, they never read it. The state space
itself is a monoid 〈I, e, ∗〉: the initial state is the unit e and
each action produces a value in I that is inserted into the
state by the operation ∗. Formally, WriterI X = X × I .
Elements of SWriterI ,A are essentially streams of pairs
〈a0, i0〉 / 〈a1, i1〉 / 〈a2, i2〉 / · · · where an : A and in : I
for every n. (Formally, the order of the arguments is
different, because of the way the products associate: α =
mcons 〈〈a0, (mcons 〈〈a1, (mcons 〈〈a2, . . .〉, i2〉)〉, i1〉)〉, i0〉).
The intuitive idea is that the evaluation of consecutive
elements of the stream will generate successive states i0,
i0 ∗ i1, i0 ∗ i1 ∗ i2, and so on.

Remark on Monad Notation: We use return/bind notation
for monads. The operation return lifts a pure value a : A into
the monad, (return a) : M A, and the bind operation takes a
monadic action m : M A along with a function f : A→M B
and binds the results of the action to the function (m>>=f) :
M B. We also use do notation which is a convenient syntax for
expressing bind operations. A do block contains a sequence
of bindings and expressions, resulting in a monadic value. So,
for example: do x0 ← m0

x1 ← m1

return e

 means
m0 >>= (λx0.
m1 >>= (λx1.
return e)).

III. PURE FUNCTIONS

The main subject of this article is the study of pure functions
on streams, where pure means that the operations of the
function do not depend on how the stream is produced.
Therefore we require these functions to operate on monadic
streams and be polymorphic on the monad. We impose a
naturality condition that specifies that the function works in
the same way independently of the monad: it must be the same
function instantiated to each monad, rather than a collection
of different functions, each specifically defined for a particular
monad.

Definition 2: Let M0, M1 be two monads with respective
operators return0, >>=0 and return1 and >>=1. A monad
morphism is a natural transformation, φ : M0

.→ M1, that
respects the monad operations by satisfying the following
laws:

φA ◦ return0 = return1

φB (m>>=0 f) = (φAm)>>=1 (φB ◦ f)

We want to extend the notion of naturality to monadic
stream functions. In order to do this, we must lift monad
morphisms to streams, by applying them to every action in
the stream.

Definition 3: Given a monad morphism φ : M0
.→ M1, its

lifting to streams is a family of morphisms on monadic streams

Sφ,A : SM0,A → SM1,A

Sφ,A (mconsm) = mcons (φ̂Am)

where φ̂A : M0 (A× SM0,A)→M1 (A× SM1,A)

φ̂A = φA×SM1,A
◦M0 (idA × Sφ,A)

= M1 (idA × Sφ,A) ◦ φA×SM0,A
.

(equal by naturality of φ)

M0 (A× SM0,A) M0 (idA×Sφ,A) //

φA×SM0,A

��
φ̂A

++

M0 (A× SM1,A)

φA×SM1,A

��
M1 (A× SM0,A) M1 (idA×Sφ,A)

//M1 (A× SM1,A)

This is a typical corecursive definition: we give equations for
a function Sφ,A that generates a coinductive object in SM1,A.
Circularly, Sφ,A depends on φ̂ which in turns calls Sφ,A.
Careful analysis of the structure of the equations shows that
the recursive call generates subobjects of the output streams,
while the top structure is given directly. This guarantees that
the equation is guarded and the definition productive.

We have now the conceptual framework to specify exactly
what it means for a polymorphic function to be uniform on
all monads.

Definition 4: A monadic stream function f : ∀M,SM,A →
M B is natural in M if this diagram commutes for all monads
M0, M1 and morphisms φ : M0

.→M1:

SM0,A
fM0 //

Sφ,A
��

M0B

φB

��
SM1,A fM1

//M1B

φB ◦ fM0
= fM1

◦ Sφ,A.

Notice that naturality for f implicitly states that all the
monadic side effects returned in the output must have been
generated by evaluating the monadic actions in the input
stream. Only thus changing the effect in the input by a monad
morphism φ can be equivalent to changing the monadic actions
in the input stream by Sφ,A.

Definition 5: A function g : SA → B is pure if there exists
a monadic stream function f : ∀M,SM,A → M B natural in
M , such that g = fId.

As an example, we define the function on streams that
returns the index of the first non-decreasing element:

nodec : SN → N

nodec (x0 / x1 / α) =

{
1 if x0 ≤ x1
nodec (x1 / α) + 1 otherwise.

5

This function is pure: we can easily generalize it to all monadic
streams:

nodec : ∀M, SM,N →M N
nodec (mconsm0) = do 〈x, α〉 ← m0

nodec′ x α
nodec′ : N→ ∀M,SM,N →M N
nodec′ x0 (mconsm0) = do

〈x1, α1〉 ← m0

if x0 ≤ x1 then return 1
else M (+1) (nodec′ x1 α1)

When instantiated with the identity monad, this function
is equal to the previous definition on pure streams. If we
instantiate it to the Maybe monad, it becomes a function on
colists: it returns Just of the index of the first non-decreasing
element, if such element exists; if the colist is finite and
decreasing, it returns Nothing.

If we instantiate nodec with the list monad, it becomes
a function on (non-well-founded) finitely branching trees,
returning a list of values. The function follows all the paths
in the tree in a left-to-right lexicographic order, it returns the
indices of the first non-decreasing element of each path, when
they exist (some paths may be finite and decreasing).

One might ask why we didn’t define nodec as follows:

noend : ∀M,SM,N →M N
noend (mconsm0) = do
〈x0,mconsm1〉 ← m0

〈x1,mconsm2〉 ← m1

if x0 ≤ x1 then return 1
else M (+1) (noend (mconsm1))

This new function noend is directly recursive, taking the tail
of the monadic stream as its argument. If we instantiate noend
with the Id monad it behaves as the original nodec. However,
noend is actually not well-founded: while the definition of
nodec′ is clearly recursive on its first argument, no such
recursion justifies noend. To see this consider the following
stream on the State monad:

flipper : SStateN,N
flipper = mcons (λn.〈〈n, flipper〉,mod (n+ 1) 2〉)

The flipper stream returns the current state, irrespective of
the position in the stream, and then repeatedly flips the state
between 0 and 1. If we consider (noend flipper 1), we find it
does not terminate. Each call to noend reads two decreasing
values, 1 and 0, and the state returns to its initial value of 1.
The recursive call is applied to the same stream, flipper, and
therefore the evaluation loops.

The problem arises because we evaluate a monadic action
twice: while this returns the same value for some monads, for
example Id and List, for others, for example State, we may
get different results. The monadic nodec avoids this problem
by only reading each monadic action once and then passing
the value as an argument for further comparisons.

IV. MONADIC CONTINUITY

Now we would like to prove that pure functions are neces-
sarily continuous.

We begin with a more modest task: Can we test when a pure
function is (syntactically) constant? Deciding the constancy
of a stream function is in general undecidable, but we are
interested in detecting functions that return a value without
even reading any of their input.

Theorem 1: Let f : ∀M,SM,A →M B be natural in M . If
there exists b : B such that fMaybe (mcons Nothing) = Just b,
then for every monad M and every α : SA, fM α = returnM b.

Proof: There is no general monad morphism between
Maybe and a generic monad M . To bridge the gap between
the instantiation of f for Maybe and form M , we use an
intermediate instantiation of f with an error monad, ErrorM ,
whose error values are the monadic actions of M :

data ErrorM A : Set
Pure : A→ ErrorM A
Throw : M A→ ErrorM A

with the following return and >>= operators:

return = Pure
Pure a >>= f = f a
Throw m>>= f = Throw (m>>=M (merge ◦ f))
where mergeM : ErrorM

.→M
mergeM,A(Pure a) = return a
mergeM,A(Throwm) = m.

The mergeM,A function is a monad morphism between ErrorM
and M that merges the Throw and Pure values into the monad
M . This is used in the bind operation for ErrorM but also
provides the link in our proof between the bridging monad
ErrorM and the monad M . The second link, between ErrorM
and Maybe, is provided by a second monad morphism that
forgets the monadic value in Throw:

forget : ErrorM
.→ Maybe

forgetA (Pure a) = Just a
forgetA (Throwm) = Nothing.

Naturality of f in the monad tells us that the following two
squares commute:

SMaybe,A
fMaybe //MaybeB

SErrorM ,A
fErrorM //

Sforget,A

OO

Smerge,A

��

ErrorM B

forgetB

OO

mergeB

��
SM,A

fM //M B

forgetB ◦ fErrorM = fMaybe ◦ Sforget,A
mergeB ◦ fErrorM = fM ◦ Smerge,A.

We can lift a monadic stream into the ErrorM monad with
the stream function SThrow,A (note that Throw is not a monad
morphism; however, it can be lifted to streams in the same
way). Observe that since forget (Throwm) = Nothing for
every m, then Sforget,A (SThrow,A α) = mcons Nothing for
every α.

6

It is immediate that merge ◦ Throw = id and subsequently
Smerge,A◦SThrow,A = id. By commutativity of the upper square
we have:

forgetB (fErrorM (SThrow,A α)) = fMaybe (Sforget,A (SThrow,A α))
= fMaybe (mcons Nothing)
= Just b

where the last step is the assumption. Since forgetB only
returns a Just value for Pure inputs, it follows that
fErrorM (SThrow,A α) = Pure b. Commutativity of the lower
square then gives:

fM α = fM (Smerge,A (SThrow,A α))
= mergeB (fErrorM (SThrow,A α))
= mergeB (Pure b)
= returnM b

This gives us an effective test for syntactic constancy of
pure functions. A similar idea helps us to prove that f must
be continuous. (In fact, continuity can probably be obtained as
a direct consequence of decidability of syntactic constancy [6,
Section 7].) We can find a monadic instantiation that forces f
to compute the modulus of continuity at every stream.

We use the writer monad with the monoid 〈N, 0,max〉. A
monadic stream for this monad, α : SWriterN,A is essentially
a stream of pairs of elements of A and natural numbers:
α ∼ 〈a0, n0〉 / 〈a1, n1〉 / 〈a2, n2〉 / · · · . When we evaluate
the elements of the stream, we write out the maximum value
of the nis of all the read elements.

We lift each pure stream α = a0 / a1 / a2 · · · : SA to a
writer-monadic stream that decorates each element with its
index: αι ∼ 〈a0, 0〉 / 〈a1, 1〉 / 〈a2, 2〉 / · · · . Formally we can
define it as follows:

−ι : SA → SWriterN,A

αι = index 0α
where index : N→ SA → SWriterN,A

indexn (a0 / α) = mcons 〈〈a0, index (n+ 1)α〉, n〉

According to the intuitive explanation, when we evaluate a
monadic stream inside this Writer monad, we should obtain
the maximum index of the elements that were actually read.
This gives an immediate suggestion for the computation of the
continuity modulus.

modulus :: (∀M,SM,A →M B)→ SA → N
modulus f α = π1 (fWriterN αι) + 1

A variant of the proof of Theorem 1 shows that this function
indeed computes a correct modulus of continuity.

Theorem 2: Let f : ∀M,SM,A → M B be natural in
M . The function (modulus f) computes a correct modulus
of continuity for fId, that is

∀α, α′ : SA, α′ =(modulus f α) α⇒ fId α
′ = fId α.

Proof: We can formulate this continuity conjecture in a
slightly different way by extending the claim about Maybe-
monadic streams. We use now the WriterN monad in place
ErrorM in Theorem 1. There we used it as a mediation step
from M -streams to Maybe-streams, injecting all M -actions

into Throw elements to force its truncation to the empty list.
Now we can do a similar operation, but truncating a stream
α = a0 / a1 / a2 / · · · after the m-th element, where m+ 1 =
(modulus f α). Define, as before, two monad morphisms from
the writer monad to Maybe and Id:

φ : WriterN
.→ Maybe

φX 〈x, n〉 =

{
Justx if n ≤ m
Nothing otherwise

ψ : WriterN
.→ Id

ψX 〈x, n〉 = x

Naturality of f in the monad tells us that the following two
squares commute:

SMaybe,A
fMaybe //MaybeB

SWriterN,A
fWriterN //

Sφ,A

OO

Sψ,A
��

WriterNB

φB

OO

ψB

��
SA fId

//B

φB ◦ fWriterN = fMaybe ◦ Sφ,A
ψB ◦ fWriterN = fId ◦ Sψ,A.

Starting with αι : SWriterN,A, we know that (fWriterN αι) =
〈b,m〉 for some b : B. Using the commutativity of the lower
rectangle, we discover that

fId α = fId (Sψ,A αι)
= ψB (fWriterN αι)
= ψB 〈b,m〉
= b.

Following the upper route, by the definition of φ and of its
lifting to streams, we have that (Sφ,A αι) = [a0, . . . , am]; so
we discover that (fMaybe [a0, . . . , am]) = φB 〈b,m〉 = Just b.

If we now take another pure stream α′ such that α′ =m

α, we also have (Sφ,A α′ι) = [a0, . . . , am]. This forces
(fWriterN α

′
ι) = 〈b,m′〉 for some m′ and consequently

(fId α
′) = b.

V. MONADIC APPROXIMATIONS

Theorem 2 shows that a pure function has a modulus of
continuity. We may ask if this is true at a more abstract level:
is there a general notion of “modulus” that makes sense for any
monad and can we construct it for every polymorphic function
on monadic streams? Continuity is achieved by showing that
a finite initial segment α|n of the stream is sufficient to
determine the value of (fId α). For a general monad, we
may look at well-founded approximations of the monadic
stream. For example, streams with respect to the list monad are
finitely branching non-well-founded trees; an approximation
is obtained by cutting each branch at a finite depth. This,
however, does not work in general: for the list monad we
get indeed an version of Theorem 2 stating that the value of
fList α depends only on a finite approximation; however, for
other non-discrete monads, for example the state monad, this
is not true: the result of f may indeed depend on an infinite
amount of information from α.

The definition of the modulus function uses the writer
monad to produce the index of the furthest read element. The

7

first step in that direction was αι, where we decorated each
entry in the stream with its index. With a small variation of the
definition, we can decorate each entry with the list of elements
of the stream up to that point. We use the writer monad with
the list monoid 〈List(A), ∗, nil〉, taking as monoid operation
the longer of two lists, giving preference to the second:

nil ∗ l = l
l ∗ nil = l
(a0 :: as) ∗ (b0 :: bs) = b0 :: (as ∗ bs).

We lift every stream to one inside SWriterList(A),A by deco-
rating every element with the initial segment of the stream
leading to it.

−κ : SA → SWriterList(A),A

ακ = decorate nilα
where decorate : List(A)→ SA → SWriterN,A

decorate l (a0 / α) =
mcons 〈〈a0, decorate (l ++ [a0])α〉, (l ++ [a0])〉

Intuitively we have that

ακ ∼ 〈a0, [a0]〉 / 〈a1, [a0, a1]〉 / 〈a2, [a0, a1, a2]〉 / · · · .

We can directly extract the prefix sufficient for the computation
of a monadic function with a modification of the modulus:

approx :: (∀M,SM,A →M B)→ SA → List(A)
approx f α = π1 (fWriterList(A) ακ).

Let us write α l to state that the list l is an initial segment
of the stream α, that is, l approximates α (notation inspired
by formal topology [9], [24]). An alternative formulation
of continuity states that this approximation is sufficient to
determine the result.

Theorem 3: Let f : ∀M,SM,A →M B be natural in M .

∀α, α′ : SA, α′ (approxα)⇒ fId α
′ = fId α.

Proof: By a modification of the proof of Theorem 2.
Let us generalize the definition of approximations to any

monad. For container-monad, SM,A is a set of non-well-
founded trees. An approximation consists of a well-founded
trees with leaves representing unknown information.

data LM,A : Set
unknownM : LM,A

lconsM : M (A× LM,A)→ LM,A.

The approximation relation between SM.A and LM,A is
defined inductively by the following rules.

α unknown

m M l

mconsm lcons l

where M is the lifting of to the monad, a relation between
M (A× SM,A) and M (A×LM,A. If M is a container, M =
〈S, P 〉, the relation states that the elements must have the same
shape and related components in corresponding positions (with
the same A-elements): if m = 〈sm, hm with sm : A and
hm : P sm → A × SM,A and if l = 〈sl, hl with sl : A and
hl : P sl → A× LM,A, then

m M l iff sm = sl ∧
∀p : P sm, π0 (hm p) = π0 (hl p) ∧

π1 (hm p) π1 (hl p).

This allows us to formulate a continuity principle for every
monad.

Definition 6: Let f : ∀M,SM,A → M B be natural in M
and let M be a specific monad, the continuity principle for M
states that

∀α : SM,A,∃l : LM,A, α l ∧
∀α′ : SM,A, α

′ l⇒ fM α′ = fM α.

Although it may be possible, for finitary monads (containers
for which every shape has a finite number of positions), to
generalize the definition of approx and the proof of Theorem
2, the continuity principle is not true in general. As a coun-
terexample, consider the following function and observe what
happens when we apply it to a stream in the state monad.

misTake : ∀M, SM,N →M [N]
misTakeM (mconsm) = do (n,)← m

takeM n (mconsm)

take : ∀M,N→ SM,A →M [A]
takeM 0α = return []
takeM (sucn) (mconsm) = do (a,m′)← m

M (a ::) (takeM nm)

The function misTake reads the first element of the stream, n,
and returns the first n elements of the stream, including the
head n itself.

Now consider the following set of streams in the state
monad.

goleft : SId,N → SStateN,N
goleftα = mcons (λn.〈n, ifzeron (atleftα) 0̄, 0〉)

where atleft : SId,N → SStateN,N
atleft (a :: α) = mcons (λn.

ifzeron 〈a, atleftα, 0〉 〈0, 0̄, n〉)
0̄ : ∀M.SM,N
0̄M = mcons (return 〈0, 0̄M 〉)

The first monadic state action of goleftα returns the initial
state and changes the state to 0. The tail depends of the value
of the state: if it is non-zero, we return the zero stream; if it
is zero, we return the first element of α and recurse. If we
picture an element of SStateN,N as a tree in which every node
branches according to the state value, then goleftα has the
value of the state in the the nodes at depth one, then it is zero
everywhere except on the leftmost spine, where it contains the
elements of α.

The counterexample is made by applying a stream goleftα
to misTake. The result of an application is a function which
when applied to initial state n returns the first n elements of
the left spine of goleftα. Equationally:

misTake (goleftα)n = 0 :: α|n−1 (1)

This contradicts the continuity principle because an arbitrarily
large amount of the left spine can be read depending on
the initial state - any well-founded approximation of goleftα
would have to truncate this spine. We note that it is important
for the counterexample that misTake re-evaluates the first
monadic action, as otherwise the left-most spine would not
be returned.

8

Next we give two important relations between the monadic
stream goleftα and its approximations, before giving a proof
of the contradiction. . First we define leftof which takes the
left spine of an approximation:

leftof :: LStateN,A → LId,A

leftof (lconsm) = let 〈a, α, 〉 = m 0 in a :: leftof α
leftof unknown = unknown

Firstly, for any approximation of a goleft stream, leftof gives
us a truncation of the left-most spine:

goleftα l =⇒ ∃n.leftof l = 0 :: α|n−1 (2)

Secondly, two goleft streams only differ on their left spine.
This can be stated using approximations as so:

goleftα l ∧ (0 / α′) leftofl =⇒ goleftα′ l (3)

We are now ready to prove that the continuity principle does
not hold for StateN. Suppose, towards a contradiction, that l
is an approximation to goleft 0̄ which satisfies the continuity
principle for misTake. Using equation 2 we have n such that:

leftof l = 0 / 0̄|n−1 = 0̄|n

Take α = 0̄|n−1 ++ 1̄ then it follows directly that
0 / α leftof l. Using equation 3 we have that goleftα is
approximated by l, i.e. goleftα l. We can now apply the
continuity principle to give:

misTake (goleftα) = misTake (goleft 0̄)

However using (1) we have

misTake (goleft 0̄)(n+ 1) = 0 :: 0̄|n

but

misTake (goleftα)(n+ 1) = 0 :: α|n = 0 :: 0̄|n−1 ++ [1]

which contradicts the equality given by the continuity princi-
ple.

VI. DIALOGUE TREES

In their characterization of continuous functions on streams
Ghani, Hancock and Pattinson [13], [14] define a type of
dialogue trees whose paths represent the successive calls that
an effective procedure makes on the elements of a stream. The
idea of a data structure representing interaction goes back to
Brouwer and was used by Kleene in his article about higher-
order functionals [19]. Martı́n Escardó used them to give a
concise proof of continuity of the functional of system T [10].
They are called strategy trees by Bauer et al. [3], who use them
to characterize pure stream programs in ML-like languages.

A dialogue tree has nodes representing a single interaction
with the input stream or the return of an output result. Since the
procedure must be terminating, the tree must be well-founded.

data DialogueA,B : Set
Answer : B → DialogueA,B
Ask : (A→ DialogueA,B)→ DialogueA,B

A tree can have two forms: an immediate answer (Answer b)
corresponding to a constant function returning b without

reading any element of the input stream, or a branching con-
struction (Askh) with h : A → DialogueA,B corresponding
to a function that reads the next element of input stream, a,
and then continues as (h a). This leads to the definition of the
evaluation function that associates a continuous function to a
tree, by structural recursion on the tree:

eval : DialogueA,B → SA → B
eval (Answer b)α = b
eval (Askh) (a / α) = eval (h a)α.

The function (eval t) is continuous for every tree t. The vice
versa is challenging. In their paper, Ghani et al. prove it
negatively: If a function has no representation as a dialogue
tree then it is not continuous. In recent work, Tarmo Uustalu
and one of us [7] gave a constructive proof based on Brouwer’s
Bar Induction Principle.

The evaluation operation is readily generalized to monadic
streams:

meval : DialogueA,B → ∀M, SM,A →M B
(meval (Answer b))M α = return b
(meval (Askh))M (mconsm) =

m>>= λ〈a, α〉.(meval (h a))M α

Also in this case, the vice versa is the challenging direction
of the correspondence. How can we construct a dialogue tree
from a monadic stream function? We can observe that the
dialogue tree type former DialogueA is itself a monad on B:

return = Answer
(Answer b)>>= g = g b
(Askh)>>= g = Ask (λa.h a >>= g).

l

So it makes sense to consider streams on it, SDialogueA,A. These
streams actually correspond to the representation of stream
processors in another work by Ghani, Hancock and Pattinson
[15]. In particular, we can represent the identity processor
that repeatedly reads an element from the input stream and
immediately returns it to the output streams:

ιA : SDialogueA,A

ιA = mcons (Ask (λa.Answer 〈a, ιA〉)).

Using ιA we can define a tabulation function, which converts
a monadic stream function into a dialogue tree:

tabulate : (∀M, SM,A →M B)→ DialogueA,B
tabulate f = fDialogueA ιA

Theorem 4: The function tabulate is a left inverse of the
evaluation operation, meval:

∀t : DialogueA,B , tabulate (meval t) = t.

Proof: By induction on the dialogue tree t.
In the base case the dialogue tree is of the form Answer b,

we have:

tabulate (meval (Answer b)) = (meval (Answer b))DialogueA ιA
= return b = Answer b

9

In the inductive case the dialogue tree is of the form Askh,
we have:

tabulate (meval (Askh))
= (meval (Askh))DialogueA ιA
= (Ask (λa.Answer 〈a, ιA〉))>>=

λ〈a, α〉.(meval (h a))M α
= Ask (λa.Answer 〈a, ιA〉>>=

λ〈a, α〉.(meval (h a))M α)
= Ask (λa.(meval (h a))DialogueA ιA)
= Ask (λa.tabulate(meval (h a)))
= Askh (by induction hypothesis).

The tabulate function however is not the right inverse
of meval, as meval(tabulate f) is not necessarily the same
function as f . This can be seen already on pure streams α,
eval (fDialogueA ιA)α is not always equal to fId α, as we can
see from the following counterexample by Paolo Capriotti:

asktwice : ∀M, SM,A →M A
asktwiceM (mconsm) = do 〈a0, α0〉 ← m

〈a1, α1〉 ← m
return a1.

This function executes the monadic action of the stream twice,
so reading the head of the stream twice, then returns the second
value that it obtained. On pure streams this simply means
that it reads the first value twice, a0 and a1 are the same:
asktwiceId (a0 /α) = a0. So the behaviour is the same as that
of a function that returns the first input it gets:

askonce : ∀M,SM,A →M A
askonceM (mconsm) = do 〈a0, α0〉 ← m

return a0

But if we instantiate it with monads that have side effects,
the head of the stream might have changed after the first
reading. For example, if we instantiate asktwice and askonce
with the state transformer monad and apply it to a simple state
increment stream, we get different results.

incr : SStateN,N
incr = mcons (λs.〈s, incr, s+ 1〉)

runstr (askonce incr) 0 = 0
runstr (asktwice incr) 0 = 1

Now, if we generate a dialogue tree by applying asktwice to
the identity stream processor and then we evaluate this tree,
we obtain a function that reads the first two element of the
stream and returns the second.

asktwiceDialogueA ιA
= asktwice (mcons (Askλa.Answer〈a, ιA〉))
= do 〈a0, α0〉 ← Askλa.Answer〈a, ιA〉

〈a1, α1〉 ← Askλa.Answer〈a, ιA〉
return a1

= Askλa0.do 〈a1, α1〉 ← Askλa.Answer〈a, ιA〉
return a1

= Askλa0.Askλa1.Answer a1

This leads to a slightly different monadic stream function: in-
stead of evaluating the original input action twice, it evaluates
it once and then uses the monadic action of the tail.

meval (asktwiceDialogueA ιA) (mconsm) =
do 〈a0, (mconsm0)〉 ← m
〈a1, (mconsm1)〉 ← m0

return a1

When applied to a pure stream, this function returns
the second element, not the first as asktwice does:
eval (asktwiceDialogueA ιA) (a0 /a1 /α) = a1. We can note that
this non-correspondence is caused by the fact that asktwice
evaluates the input monadic action m twice. In the original
function, this means that we read the same stream element
twice, but in the dialogue tree it results in two consecutive
requests for input.

We see that there is a discrepancy between two different
ways of obtaining the next element of the stream, which the
evaluation to a dialogue tree conflates. A monadic action m :
M A can be seen as a channel through which values of type A
are transmitted; every time we evaluate it, we request a new
transmission. On the other hand, evaluating a richer action
m0 : M (A × SM,A) returns a value of type A and a new
channel m1; at this point we have the choice of which channel
we use next.

This observation tells us that a simple action M A can
already be used to produce a sequence of values of type A.
Indeed Jaskelioff and O’Connor [18] show that there is a one-
to-one correspondence between dialogue trees in DialogueA,B
and monadic functions of type ∀M,M A→M B.

VII. RELATED AND FUTURE WORK

Monadic streams are a powerful abstraction that already
found concrete applications. Perez, Bärenz and Nilsson [23]
used them to give a mathematically coherent and practical
implementation of Functional Reactive Programming. Thus,
aside from the theoretical interest in the foundations of math-
ematics and computer science, the study of monadic stream
functions has important applications.

Three recent articles ([3], [18], [10]) studied the closely
related topic of pure functions on a type of streams encoded
by the type N → M A, its relation to dialogue trees and its
use to prove the continuity of functional programs.

Bauer, Hofmann and Karbyshev [3] give a precise definition
of purity for higher-order functionals in languages with side
effects, for example ML. A function f : (int→ int)→ int is
called pure if the only side effects that it generates are due to
the evaluation of its argument.

This is done by interpreting such functions as polymorphic
monadic functionals of type Func =

∏
T∈Monad(A→ T B)→

T C. The formal definition of purity is formulated on the basis
of a relational semantics. A functional is pure (or monadically
parametric) if its instantiations by different monads are related
by this semantics. This is an abstract way of specifying that
the functional behaves in the same way on all monads.

They use dialogue trees, which they call strategy trees, as
a representation of functionals. Their representation is a slight
generalization of the dialogue trees used by Ghani et al.’s in

10

their paper[13], [14] that we also used in the present paper.
The type Tree is inductively defined by two constructors:
Ans : C → Tree, that specifies a constant; Que : A →
(B → Tree) → Tree, that specifies an interaction in which
the function makes an query of type A, receives a response of
type B, and produces a new tree to continue the computation.
It is easy to show how every tree can be interpreted as pure
functional in Func. Vice versa, a pure functional F : Func
gives a tree by instantiation to the continuation monad with
Tree as result type: fun2treeF = FContTree Que Ans. The
authors prove that purity implies that the transformations from
trees to functional and vice versa are inverse of each other
(Theorem 12).

Among the applications, the authors show how to compute
a modulus of continuity for functionals on the Baire space
B = N → N. Call such a functional F : B → N pure if it is
the instantiation of a monadically parametric function to the
identity monad: F̄ :

∏
T∈Monad(N → T N) → T N, F = F̄Id.

The authors prove that such a functional is continuous (for
every f : B, the computation of F f depends only on an initial
segment of f). They give an explicit calculation of the modulus
of continuity:

modulusF f = max (snd (F̄StateList()N (instr f) nil))
where instr f : N→ StateList()NN

instr f = λa.λl.〈f a, l ++ [a]〉.
Jaskelioff and O’Connor [18] give representation theorems

for polymorphic higher order functionals. Their general type
is: ∀F.(A → F B) → F C where F ranges over a class of
functors. Depending to the class of functors considered, we
get different concrete representations of the functionals. For
example, if F ranges over all functors, then the functionals are
represented exactly by the type A× (B → C): a functional h
is necessarily of the form h = λg.F (k) (g a) for a : A and k :
B → C. For pointed functors (with a natural transformation
ηX : X → F X) the representation is A× (B → C) +C. For
applicative functors (having in addition a natural operation
?X,Y : (F X × F Y) → F (X × Y)) the representation is
Σn:N(An × (Bn → C)).

These representation results have a common structure: a
general Representation Theorem formulated in categorical
language. First they establish that for any small category
F of endofunctors on sets that contains at least RA,BX =
A×(B → X), we have:

∫
F∈F (A→ F B)→ F X ∼= RA,B X

which corresponds to the isomorphism for functors: ∀F.(A→
F B) → F X ∼= A× (B → X). For classes of functors with
extra structure (pointed functors, applicatives, monads), the
representation theorem can be applied through an adjunction.
Suppose that F is such a class of functors with structure, E
a small class of endofunctors on sets. Assume that there is
an adjunction between a forgetful functor F → E and a free
functor ∗ : E → F , so that (∗) a U . Then the representation
theorem is

∫
F∈F (A→ UF B)→ UF X ∼= UR∗A,B X.

When we instantiate the representation theorem to monads,
we obtain that the type of polymorphic monadic higher order
functions is isomorphic to the free monad on RA,B . In Haskell
notation this becomes

∀m.Monadm⇒ (a→ mb)→ mx ∼= Free (PStore a b)x

where Free and PStore are the Haskell implementation of the
free monad construction and of RA,B .

Escardó [10] gives a new short and simple proof of the
know result that any function f : (N → N) → N definable
in Gödel’s system T is continuous. The proof utilizes an
auxiliary interpretation of system T in which natural numbers
are interpreted as well-founded dialogue trees.

His definition of dialogue trees is more general than ours.
A dialogue has three type parameters X,Y, Z: X is the type
of queries that can be asked by a function, Y is the type of
possible answers to a query, Z is the type of results that the
function can return. If X = N then we represent functions
on streams of elements of Y (of type N → Y) which return
a result of type Z. The dialogue trees have internal nodes
decorated with a query of type X , branching according to the
response type Y , and leaves of result type Z:

data D (X,Y, Z : Set) : Set
η : Z → DX Y Z
B : (Y → DX Y Z)→ X → DX Y Z.

Of specific interest are dialogues over the Baire type N→ N,
represented by the type former B = DNN.

A system T higher-order functional f : (N → N) → N
is given a non-standard interpretation by replacing the plain
natural numbers N with dialogue trees the return naturals,
Ñ = BN = DNNN. The interpretation utilizes the monadic
operations of dialogue trees: zero becomes just returning 0, the
successor operator is lifted by the monadic functor; primitive
recursion is interpreted by the use of the bind operation. The
continuity of the dialogue tree interpretation is established.

We obtain an operator on functions between dialogue trees
f̃ : (Ñ→ Ñ)→ Ñ. We can the apply it to a generic sequence
of type Ñ → Ñ to obtain a dialogue tree that will turn out
to be exactly a representation of the original f . The generic
sequence is constructed so as to make the following diagram
commute:

Ñ generic //

decodeα

��

Ñ
decodeα

��
N α //N

This is achieved simply by adding an extra step of interaction
to the dialogue: generic replaces every leaf of the form (ηm)
with B (λn.η n)m. This idea is analogous, but not the same, as
our definition of tabulate, which also instantiates the monadic
function with the dialogue tree monad and applies it to the
identity processor ιA.

Finally, the interpretation is shown to be equivalent to the
standard interpretation of system T.

Future Work. An important next step in this line of work is
to extend Escardó’s characterization of functionals of system
T to richer type systems. Does every function definable in
some form of (dependent) type theory have a representation
as a monadic function or dialogue tree?

Another avenue of exploration is the application to concrete
functional programming. Already the work of Perez, Bärenz
and Nilsson [23] shows that programming with monadic
streams is very effective to create functional interactive appli-
cations. A complete understanding of the computation power

11

and logical properties of these functions will be useful in
practice.

REFERENCES

[1] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.
Copatterns: Programming Infinite Structures by Observations. In Sym-
posium on Principles of Programming Languages, 2013.

[2] Michael Abott, Thorsten Altenkirch, and Neil Ghani. Containers -
constructing strictly positive types. Theoretical Computer Science,
342:3–27, September 2005. Applied Semantics: Selected Topics.

[3] Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev. On monadic
parametricity of second-order functionals. In Frank Pfenning, editor,
Foundations of Software Science and Computation Structures - 16th
International Conference, FOSSACS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, volume 7794 of Lecture
Notes in Computer Science, pages 225–240. Springer, 2013.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004.

[5] Edwin Brady. Idris: A language with dependent types. http://www.
idris-lang.org/. Accessed: 2016-10-10.

[6] Venanzio Capretta. Coalgebras in functional programming and type the-
ory. Theoretical Computer Science, 412(38):5006–5024, 2011. CMCS
Tenth Anniversary Meeting.

[7] Venanzio Capretta and Tarmo Uustalu. A coalgebraic view of bar
recursion and bar induction. In Bart Jacobs and Christof Löding, editors,
Foundations of Software Science and Computation Structures - 19th
International Conference, FOSSACS 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634
of Lecture Notes in Computer Science, pages 91–106. Springer, 2016.

[8] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and
Tobias Nipkow, editors, Types for Proofs and Programs. International
Workshop TYPES’93, volume 806 of Lecture Notes in Computer Science,
pages 62–78. Springer-Verlag, 1993.

[9] Thierry Coquand, Giovanni Sambin, Jan M. Smith, and Silvio Valentini.
Inductively generated formal topologies. Ann. Pure Appl. Logic, 124(1-
3):71–106, 2003.

[10] Martı́n Hötzel Escardó. Continuity of Godel’s system T functionals via
effectful forcing. Electr. Notes Theor. Comput. Sci., 298:119–141, 2013.
Proceedings of the 29th Conference on the Mathematical Foundations
of Programming Semantics (MFPS 2013).

[11] Martı́n Hötzel Escardó and Chuangjie Xu. The inconsistency of a
brouwerian continuity principle with the curry-howard interpretation.
In Thorsten Altenkirch, editor, 13th International Conference on Typed
Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw,
Poland, volume 38 of LIPIcs, pages 153–164. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[12] Nicola Gambino and Martin Hyland. Wellfounded trees and dependent
polynomial functors. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs, International Work-
shop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised
Selected Papers, volume 3085 of Lecture Notes in Computer Science,
pages 210–225. Springer, 2003.

[13] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous functions
on final coalgebras. Electr. Notes Theor. Comput. Sci., 164(1):141–155,
2006. Proceedings of the Eighth Workshop on Coalgebraic Methods in
Computer Science (CMCS 2006).

[14] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous functions
on final coalgebras. Electr. Notes Theor. Comput. Sci., 249:3–18, 2009.
Proceedings of the 25th Conference on Mathematical Foundations of
Programming Semantics (MFPS 2009).

[15] Neil Ghani, Peter Hancock, and Dirk Pattinson. Representations of
stream processors using nested fixed points. Logical Methods in
Computer Science, 5(3), 2009.

[16] Eduardo Giménez. Codifying guarded definitions with recursive
schemes. In Peter Dybjer, Bengt Nordström, and Jan Smith, editors,
Types for Proofs and Programs. International Workshop TYPES ’94,
volume 996 of Lecture Notes in Computer Science, pages 39–59.
Springer, 1994.

[17] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222–259, 1997.

[18] Mauro Jaskelioff and Russell O’Connor. A representation theorem for
second-order functionals. J. Funct. Program., 25, 2015.

[19] Stephen Cole Kleene. Recursive functionals and quantifiers of finite
types I. Transactions of the American Mathematical Society, 91(1):1–
52, 1959.

[20] Conor McBride. Let’s see how things unfold: Reconciling the infinite
with the intensional (extended abstract). In Alexander Kurz, Marina
Lenisa, and Andrzej Tarlecki, editors, CALCO, volume 5728 of Lecture
Notes in Computer Science, pages 113–126. Springer, 2009.

[21] Conor McBride. rnamental algebras, algebraic ornaments. To appear in
Journal of Functional Programming, 2010.

[22] Ulf Norell, Andreas Abel, Nils Anders Danielsson, Makoto
Takeyama, and Catarina Coquand. The Agda User Manual, 2016.
http://agda.readthedocs.io/en/latest/.

[23] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. Functional reactive
programming, refactored. In Geoffrey Mainland, editor, Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan,
September 22-23, 2016, pages 33–44. ACM, 2016.

[24] Giovanni Sambin. Some points in formal topology. Theor. Comput. Sci.,
305(1-3):347–408, 2003.

[25] The Coq Development Team. The Coq Proof Assis-
tant. Reference Manual. Version 8.5. INRIA, 2016.
http://coq.inria.fr/refman/index.html.

