Creation and manipulation of quantum states of light and cold atoms using Rydberg states

Laycock, Thomas Henry (2013) Creation and manipulation of quantum states of light and cold atoms using Rydberg states. PhD thesis, University of Nottingham.

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (15MB) | Preview


Rydberg atoms are often proposed as the basis of quantum computing and quantum information protocols. One of the central reasons for this is that they provide a strong and long-ranged interaction that can be coherently switched on and off. This thesis details two techniques which use the exaggerated properties of Rydberg atoms to manipulate both the quantum state of the atom itself and that of the external light field.

The first proposal initially focuses on the creation of many-body quantum states from two-level atoms trapped in a two-dimensional lattice. This approach uses the van der Waals interaction present between alkali metal atoms in highly excited Rydberg s-states. The approximate solution of the corresponding Hamiltonian is detailed in the regime where the laser driving is the largest energy scale of the system. The states which are most likely achieved using an oscillating laser detuning are then determined. These states are then taken as the basis for the creation of deterministic single-photons, whose properties are shown to rely on the interplay between interatomic spacing and the geometry of the lattice.

The second technique described uses the coupling between a Rydberg atom and a moving electron to manipulate the atomic state. In this system, the atom is initially excited to a Rydberg s-state and trapped at a finite distance from an electron waveguide. Two analytical methods are used to show that the final state of the atom depends strongly on the direction and modulus of the electron momentum. A complementary numerical simulation shows that the atoms may be left in a polarised state, suggesting the possibility of using this setup to ‘switch on’ permanent electric dipoles in the atoms. This investigation leads naturally to a system where multiple interacting atoms are trapped close to the waveguide, allowing various many-body states to be accessed.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Lesanovsky, I.
Fromhold, M.
Subjects: Q Science > QC Physics > QC350 Optics. Light, including spectroscopy
Faculties/Schools: UK Campuses > Faculty of Science > School of Physics and Astronomy
Item ID: 13800
Depositing User: EP, Services
Date Deposited: 07 Feb 2014 12:22
Last Modified: 19 Dec 2017 11:13

Actions (Archive Staff Only)

Edit View Edit View