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Abstract

Rydberg atoms are often proposed as the basis of quantum computing

and quantum information protocols. One of the central reasons for

this is that they provide a strong and long-ranged interaction that can

be coherently switched on and off. This thesis details two techniques

which use the exaggerated properties of Rydberg atoms to manipulate

both the quantum state of the atom itself and that of the external light

field.

The first proposal initially focuses on the creation of many-body

quantum states from two-level atoms trapped in a two-dimensional

lattice. This approach uses the van der Waals interaction present

between alkali metal atoms in highly excited Rydberg s-states. The

approximate solution of the corresponding Hamiltonian is detailed in

the regime where the laser driving is the largest energy scale of the

system. The states which are most likely achieved using an oscillating

laser detuning are then determined. These states are then taken as the

basis for the creation of deterministic single-photons, whose properties

are shown to rely on the interplay between interatomic spacing and

the geometry of the lattice.

The second technique described uses the coupling between a Ry-

dberg atom and a moving electron to manipulate the atomic state.
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In this system, the atom is initially excited to a Rydberg s-state and

trapped at a finite distance from an electron waveguide. Two analyti-

cal methods are used to show that the final state of the atom depends

strongly on the direction and modulus of the electron momentum. A

complementary numerical simulation shows that the atoms may be

left in a polarised state, suggesting the possibility of using this setup

to ‘switch on’ permanent electric dipoles in the atoms. This investiga-

tion leads naturally to a system where multiple interacting atoms are

trapped close to the waveguide, allowing various many-body states to

be accessed.
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Chapter 1

Introduction

In this thesis there are two main research chapters, each investigating distinctly

different problems. For this reason, this introduction covers only the topics which

are common to both problems, with a second more focused introduction given at

the start of each research chapter.

1.1 An Overview of Cold Atom Physics

Cold atom physics is one of the most diverse and active research fields today. It

provides us with a unique opportunity to study a wide range of many-body sys-

tems in clean and decoherence-free environments [1–3]. Advances in our ability

to trap and cool atoms [4,5] led to the first observation in 1995 of a Bose-Einstein

Condensate (BEC) [6,7], a new state of matter first predicted 70 years earlier [8,9].

These seminal experiments paved the way for a wealth of theoretical and experi-

mental studies of the phenomena associated with a macroscopic occupation of the

quantum ground state. A few examples of the subsequently undertaken studies

are the observation of interfering condensates [10, 11], the optical confinement

and formation of condensates [12, 13], long-range phase coherence [14] and the

formation of quantised vortices [15,16]. In addition to these there have been nu-
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merous experiments that have achieved BEC with different atomic species. More

recently, there has been significant interest in the miniaturisation of the condens-

ing process with the use of atom chips [17–19], leading to a great advancement

in the fields of atom optics [20] and atom interferometry [21].

A key element of cold atom physics that has thus far been omitted in this

brief review is the optical lattice [22]. A simple description of this novel tech-

nique is the storage of cold atoms in artificial periodic potentials formed by the

superposition of counter-propagating laser beams. Trapping of the atoms relies

on the interaction between an induced atomic dipole moment and the external

electric field of the incident laser light, thus forming an optical dipole trap [23].

Using counter-propagating laser beams creates a standing wave in the associated

electric field, the detuning of the laser thus determining where the atoms are

trapped. For optical lattices created by red detuned lasers, it may be shown that

the atoms are attracted to the maxima in the electric field, whereas in the case

of blue detuned lattices the atoms are expelled from these maxima. Therefore,

creating a trap using blue detuned lattices is more complicated, requiring extra

potentials to be introduced to stop the atoms being completely expelled from the

laser field. However, it has been shown that it is possible to trap atoms using

blue detuned light [24, 25]. Optical lattices are therefore an incredibly versatile

tool in the study of many cold atom systems in the fact that both the geometry

and strength of the confining potential are easily varied. In order to vary the ge-

ometry of the system, the associated laser beams need merely be interfered under

a different angle. The depth of the confining potential is even simpler to vary, as

it is simply altered by changing the intensity of the incident laser beams. This

powerful technique is central to both the topics detailed in this thesis, therefore

remainder of this section outlines many, but by no means all, of the fields in which

optical lattices have been instrumental.
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It was Richard Feynman who initially championed the idea that the simulation

of one complex quantum system required a different highly controllable quantum

system [26–28]. The problem being posed by the simulation of a quantum system

is the scaling of its Hilbert space. The size of this complex vector space, in which

the wavefunctions of the quantum system exist, increases exponentially with the

size of the system. A measure of the system size is the number of variables

required to completely describe it. This scaling of the Hilbert space renders even

the problem of recording the quantum state of the system intractable using a

classical computer, as it requires an exponential amount of memory. The insight

Feynmann gave was to question whether this exponential growth of resources

could be bypassed by having the simulator itself a quantum system, thus obeying

the same equations of motion as the simulated system. This is the fundamental

description of a quantum simulator. A variety of possible systems which may be

used as these simulators are outlined in [29].

The quantum simulator finds some of its most striking realisations to date in

the simulation of condensed matter systems using optical lattices [30,31]. The fa-

mous Hubbard model [32], where interacting particles on a lattice are described by

only two parameters - their on-site interaction energy and a site-hopping poten-

tial - has long been used as an approximate model for the extremely complicated

problem of interacting electrons in condensed matter systems. This is the perfect

model to describe interacting particles in a zero temperature optical lattice. In-

deed one of the key predictions of the Hubbard model; the superfluid (tunnelling

dominant) to Mott insulator (on-site interaction dominant) phase transition, was

observed in an optical lattice in 2002 [33]. Further to these initial studies, where

the lattice was loaded with bosonic atoms, has been the realisation of the Mott

insulating state of fermionic atoms [34]. This is an important step, as it brings

the field closer to the case of electrons in a solid, where proximity to the Mott
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insulating phase has been proposed as a possible origin of high temperature su-

perconductivity [35].

Further to the idea of using one quantum system to simulate another, the idea

that the laws of quantum mechanics could also be used to enhance or supersede

the capabilities of classical computers has also been developed [36]. The fact that

quantum mechanical states may exist in superpositions allows the classical ‘bit’

of information to be replaced in a quantum computer by a quantum bit, or qubit.

These qubits may be viewed as two-level systems whose possible states, |0〉 and

|1〉, may also form superpositions following the laws of quantum mechanics. The

basis for the quantum computer itself is a quantum register [37] formed by an

entangled string of qubits. A quantum computation is performed when a unitary

operation is made on the state of the register, which may be decomposed into a

sequence of single- and two-qubit operations, the former performing a rotation of

a specific qubit in the register, and the latter entangling the two involved qubits.

The role of quantum entanglement in quantum computation is considered in [38],

where one its main applications is to provide exponential speed up of algorithms

over classical computation [39]. This ability has been famously demonstrated

with the predicted efficiency gain in the factorisation of large numbers using an

algorithm only possible on a quantum computer [40]. There have been many pro-

posals using cold atoms in optical lattices as the foundation for such a quantum

computer [41–44]. One such example is based on the formation of a Mott insula-

tor state with precisely one atom per lattice site where only one specific internal

state of the atom is trapped [45]. Overlapping two lattices that trap different

internal atomic states, which must be carefully chosen, may form the basis of a

quantum register, where moving one lattice relative to the other can implement

computation operations. Complementing this method is the more recent devel-

opment of single-site addressability of the lattice [46], which allows the internal
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state of the atom at a specific site to be changed.

This brief review has only scratched the surface of the astounding variety of

proposals and experiments being carried out in the world of cold atoms. This

thesis details two further areas of research, both of which rely on the ability to

trap and store atoms in regular arrays or by themselves. The following section

introduces the reader to the current state of research into quantum interfaces be-

tween light and atomic ensembles, which is particularly important for the systems

described in chapter 2.

1.2 Interactions between Light and Atomic En-

sembles

As discussed briefly in the previous section, the interaction between an atom and

an electromagnetic field is governed primarily by the electric field inducing an

atomic dipole moment which subsequently interacts with the inducing field. In

optical lattices, the frequency of the field is far detuned from any of the atomic

transition frequencies, so as to trap the atom rather than induce state transi-

tions in it. The focus here will be on near-resonant fields, such that a single

atom undergoes Rabi oscillations when subject to them. As neatly derived and

explained in [47], the presence of a strong and near-resonant laser field means

that only two atomic states are relevant to the dynamics, the ground and close

to resonance excited state, with the dominant population oscillating between the

two. An example of a level scheme and applied laser in this regime can be seen

in Fig. 1.1, where it is clear that as the frequency of the laser becomes further

detuned from that of the atomic transition, the population transfer is reduced

whereas the frequency of the oscillation is increased.

Of course, the situation becomes more complicated when the single atom is
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Figure 1.1: (a) Simplified representation of the level scheme of an atom
where a laser of Rabi frequency Ω = −〈e |d ·E0| g〉 is close
to resonance with the atomic transition |g〉 → |e〉. (b) The
resulting Rabi oscillations when the laser has three different
values of detuning; ∆ = 0 (black, solid), ∆ = 2.8Ω (blue,
dashed) and ∆ = 5.6Ω (red, dot-dash), where Pe is the prob-
ability of finding the atom in the excited state.

replaced by an interacting atomic ensemble. In this case collective excitation

states of the atomic ensemble may be coupled to the light field [48]. One of the

initial proposals to couple light and atomic ensembles was to map a squeezed

light state onto the spin state of the atomic ensemble [49]. The experimental

verification of this proposal [50], demonstrated that the storage of a quantum

state of light in an atomic ensemble was indeed possible and motivated the devel-

opment of numerous further approaches. An example of these is based on using

electromagnetically induced transparency [51] to reduce the speed of light in the

atomic ensemble [52] to zero, thereby creating an atomic memory for light [53].

The following paragraphs outline just a few fledgling technologies in which these

quantum memories, where the quantum state of light is stored in an atomic state,

could play a central role.

Once again, the main implementations of this technology, but by no means

the only ones, are found in the field of quantum computation and communication.

Specifically, atoms and photons fulfil the three main requirements for a distributed
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quantum computer network, which are outlined succinctly in [48] as: mapping the

light state onto a memory, storage and computing operations on the memory and

efficient retrieval of the memory state back into light for transport and further

operations. In the quantum computing sense, such a network may be seen as a

step towards a quantum computer with a very high number of qubits. Such a

large qubit number quantum computer, which is currently technologically out of

reach, may be simulated using a number of low qubit number computers between

which the quantum information is transferred in various channels [54]. The initial

outline of a quantum computer network may be found in [55], where examples of

proposals for state transfer between the computational nodes are given in [56,57].

The following ideas are based on using photons to transfer the quantum state

between nodes which are comprised of atomic ensembles.

One of the challenges of this model of a quantum computer is the efficient

transport of a quantum state between different memories in the network, which

is hampered by the information photon being absorbed by or depolarised within

an optical fibre. A proposal to overcome this issue is the idea of a quantum re-

peater [58]1, the building blocks of which are sources of entangled photons and

quantum measurement devices. It has been subsequently shown that a variation

on this scheme can be used to result in the entanglement of atomic ensembles

that are spatially separated [59]. A diagram representing how the necessary en-

tanglement between the ensembles is generated is provided in Fig. 1.3. This more

complicated scheme is capable of creating entanglement in collective excitation

1In general, a single quantum repeater has two sources each producing two entangled pho-
tons. The entangled state created from each source should be the same. After some distance
d, which is within the length over which entanglement is reliably conserved, one photon from
each source is measured. If the result of the measurement is the same for each photon then the
two remaining photons are entangled. An advantage here is that when the remaining photons
are counter-propagating, their entanglement now exists over a distance 2d. This scheme is
represented diagrammatically in Fig. 1.2. Adding another repeater and measuring one of the
resulting photons from each increases the entanglement distance to 4d and so on. This is a
simplified picture of a quantum repeater, but is intended to convey the main idea that such a
device may increase the distance over which quantum state transfer is reliable.
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Figure 1.2: A schematic representation of a quantum repeater. The mea-
surement of one photon each from the two sources of entan-
gled photons leaves the remaining two photons, one from
each source, entangled. This setup may be used to increase
the distance over which entanglement may be conserved.

states of atomic ensembles over distances greater than those possible with a sin-

gle photon and therefore may be used to copy the exact state of a system over

distance. The first steps towards the experimental achievement of this protocol

are documented in [60]. This initial paper shows how the write pulse generates a

photon which may subsequently be used for ensemble entanglement, with a later

read pulse transferring the ensemble state into a photon. Further studies focus

on the interpretation of the photon produced by the readout laser as retrieving

information from a quantum memory [61–64].

This section has introduced how the interactions between light and atomic

ensembles may be used in a number of applications in the field of quantum infor-

mation. A further use of this type of interaction is the generation of non-classical

states of light using ensembles of Rydberg atoms. This proposal, which is par-

ticularly relevant to the research presented in chapter 2, is presented in section

1.3.2, after the following section introduces Rydberg atoms and their properties.
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Figure 1.3: (a) The atomic level scheme required for the ensemble quan-
tum repeater. A classical laser with Rabi frequency Ω cou-
ples the levels |g〉 and |e〉 off resonantly with a photon sub-
sequently emitted on the transition |e〉 → |s〉. (b) Two en-
sembles are illuminated with the a pulse of the laser of Rabi
frequency Ω such that the transition |g〉 → |s〉 is achieved via
auxiliary level |e〉. With the initial pulse light filtered out
(not shown), the remaining light is interfered at a 50 − 50
beam splitter such that the ensembles are entangled when a
photon emitted with the |e〉 → |s〉 frequency and polarisation
is detected at either detector. The resulting entangled pairs
of atomic ensembles then act as the basis for an ensemble
quantum repeater. This image is an adapted version of that
found in [59].

1.3 Rydberg Atoms

The term ‘Rydberg atom’ refers to an atom whose valence electron is excited

to a very high principal quantum number, n ≫ 1. In this section, some of the

exaggerated properties of these atoms will be introduced, which is followed by a

review of proposals and experiments where they play a central role. It will be

shown that many properties of Rydberg atoms scale with their principal quantum

number. The idea of the principal quantum number itself was initially encoun-

tered in Bohr’s model of the atom, where the requirement of the quantisation of

the angular momentum of the valence electron in units of ~ was first introduced.
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Following the later development of quantum mechanics, it has also been shown

that this quantisation follows naturally from solution of the Schrödinger equation.

The scaling of the orbital radius of a Rydberg atom will be introduced first.

A simple calculation of this property utilises the classical model of the motion of

the single bound electron in a hydrogen atom,

mev
2

r
=

e2

4πε0r2
,

where me is the mass of the electron, e is its charge, r is the radius of its circu-

lar motion and 1/(4πε0) is the Coulomb constant. From Newton’s second law,

this equates the Coulomb interaction between the nucleus and electron with the

electron mass times the centripetal acceleration when the electron is in a circular

orbit with tangential velocity v. The requirement that the angular momentum of

the electron be quantised in units of ~ may be written as,

mevr = n~,

which may be rearranged into an expression for v. Substituting the tangential

velocity into Newton’s equation yields the expression for the radius of the orbit

r =
(4πε0)~

2

e2me

n2,

which clearly scales as the square of the principal quantum number, with the

prefactor recognised as the Bohr radius, a0. Therefore, when the outer electron

of any atom is in a highly excited state, it may be found at great distances

from the core of the atom, which consists of the nucleus and the other orbiting

electrons. This qualitative result is confirmed by solving the quantum mechanical

problem of the electron moving in the attractive central potential of the hydrogen
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nucleus, where the actual result changes to [65]

〈r〉 = a0
2

[
3n2 − l(l + 1)

]
,

and has introduced l, the orbital angular momentum quantum number of the elec-

tron. This result becomes important in chapter 3, where the minimum possible

distance between two separate quantum systems needs to be fixed.

Further scaling laws for Rydberg atoms can be gleaned from the Bohr model.

One that will be important in this thesis is the energy difference between adjacent

n states. The energy, W of an atomic state is obtained by summing the kinetic

and potential energies of the electron [66]

W =
mev

2

2
− e2

(4πε0)r
= − e2me

2(4πε0)2n2~2
= −1

2

1

a0(4πε0)

1

n2
,

where the fact that these energies are negative indicates that they are bound

states. From this, it is possible to find the scaling of the energies between adjacent

principal quantum number states of a Rydberg atom,

Wn+1 −Wn =
1

2a0(4πε0)

(
1

n2
− 1

(n+ 1)2

)

n≫1
=

1

2a0(4πε0)

2n+ 1

n4 + 2n3 + n2

n≫1≈ 1

2a0(4πε0)
n−3.

Therefore the higher lying Rydberg states lie closer together in energy with in-

creasing n.

One further scaling law for the Rydberg atoms is that of the transition dipole

moments, which will repeatedly be referred to in the research chapters of this

thesis. Depending on whether a change in principal quantum number is involved

in the dipole transition (there are no selection rules to govern a change of n),

analytical expressions for these can be very difficult to calculate, for example see
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the expression for the radial part only given in [67]. However, there is a simple

analytical expression for the radial transition dipole moment when the principal

quantum number is conserved, the derivation of this result will not be given here,

but is laid out nicely in [68] and is quoted in [66] as being

〈Rnl|r|Rnl+1〉 =
−3n

√
n2 − l2

2
a0,

whereRnl is the radial wavefunction of the hydrogen atom with quantum numbers

n and l. The scaling of the dipole transition elements for atoms in Rydberg states

with low angular momentum is therefore proportional to n2. Due to the extremely

large size of Rydberg atoms, the resulting scaling of the transition dipole moments

means that they are very sensitive to electric fields, a fact which will specifically

utilised in chapter 3, with relevant experiments provided in section 1.3.2 of this

introduction.

This section has briefly outlined the main scaling laws for atoms in Rydberg

states. Provided in table 1.1 are all of the scalings that are used in this thesis,

where a further point to note is the scaling of the radiative lifetime, which shows

Property Scaling

Binding Energy n−2

Energy between adjacent n states n−3

Orbital Radius n2

Transition Dipole Moment n2

Radiative Lifetime n3

Table 1.1: Scaling laws for some properties of Rydberg atoms. Those not
already examined are given in [66].

that these highly excited states are actually longer lived as the level of excitation

increases.

The following section of this introduction details the interaction between two

Rydberg atoms, which will be important in both research chapters of this thesis.
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1.3.1 Rydberg Atom Interactions

The interaction between two Rydberg atoms whose nuclei are separated by a

distance Rab ≡
∣
∣
∣~Rab

∣
∣
∣ which is much greater than the orbital radius of the specific

Rydberg state, 〈r〉 ≈ 3/2 × n2, is given by the dipole-dipole interaction. The

labels that are used to describe this interaction are shown in the schematic in

Fig. 1.4. Viewing the nuclei as single positive charges fixed in position, the full

Figure 1.4: Diagram showing the labels used in characterising the dipole-
dipole interaction.

Coulomb interaction potential may be written as

Vdd =
1

Rab

− 1

|~Rab + ~rb|
− 1

|~Rab − ~ra|
+

1

|~Rab + ~rb − ~ra|
,

where ~ra and ~rb are the vectors describing the positions of the valence electrons of

atoms a and b respectively, with ~Rab the displacement of the two nuclei. The four

terms all describe Coulomb interactions in atomic units; the first is that between

the two nuclei, the second and third are between each nucleus and the valence

electron of the other atom with the final term being that between the two valence

electrons. Under the assumption Rab ≫ ra, rb, where ra ≡ |~ra| and rb ≡ |~rb|, this

expression may be Taylor expanded about ra, rb = 0 to yield

Vdd ≈ ~ra · ~rb
~R3
ab

− 3

(

~ra · ~Rab

)(

~rb · ~Rab

)

~R5
ab

.
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To see the effect of this interaction, consider the example where two atoms are

initially laser excited to the same Rydberg state. As explained in [69], the dipole-

dipole interaction will cause dipole transitions to other states, of which there are

an infinite number. However, due to differing energy gaps and dipole transition

elements between these states, the interactions are dominated by the coupling

between only two of them [70]. The following characterisation of the strength of

this atomic interaction is based on the simple model described in [71].

For simplicity, the two atoms are initially excited to the state |ns〉, a situation

which will be expressed as |ss〉. A further simplification of the problem sees the

separation between the atoms be only in the z-direction, such that ~Rab = Rabẑ.

The dipole transition rules mean that the initial state only couples to those where

both atoms are in a p-state, but further approximations to the strength of these

transitions may be made. Using the spectrum of a rubidium atom, which may be

seen in Fig. 3.2(b), the p-states which are closest in energy to |ns〉 are |np〉 and

|(n− 1)p〉, therefore only the coupling to these states is considered, as illustrated

in Fig. 1.5, with Enp and E(n−1)p their respective energies, and the energy of the

Figure 1.5: Simplified level scheme of the two atoms which will be used
to characterise the Rydberg-Rydberg interaction.

initial state is set to zero. Using these as the only relevant states of the atom,

there are only three possible states to which the initial state is coupled,

|npp〉 = |np〉1 |np〉2 ,

|(n− 1)pp〉 = |(n− 1)p〉1 |(n− 1)p〉2 and

|nnpp〉 = 1√
2
(|np〉1 |(n− 1)p〉2 + |(n− 1)p〉1 |np〉2) .
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Furthermore, when considering that |Enp| ≈
∣
∣E(n−1)p

∣
∣, with |Enp| > 0 and

∣
∣E(n−1)p

∣
∣ < 0, the couplings to both |npp〉 and |(n− 1)pp〉 can be neglected

as these energy differences are much greater than that to |nnpp〉, Enp + E(n−1)p.

Including only these two states, the two atom Hamiltonian may be written as

H ≈






Enp + E(n−1)p
γ

R3
ab

γ
R3

ab

0




 ≡






δ V12

V12 0




 ,

where γ = 〈ss |~ra · ~rb − 3 (~ra · ẑ) (~rb · ẑ)|nnpp〉. The energies of the system are

found by diagonalisation of the Hamiltonian,

E± =
δ

2



1±

√

1 +

(
2V12
δ

)2


 ≈ δ

2
±
(
δ

2
+
V 2

δ

)

,

where the approximation considers the interaction energy smaller than the state

separation, V ≪ δ. The solution E− corresponds to the situation where the

atoms are initially in the state |ns〉 and therefore the atoms have been shown to

interact according to the van der Waals potential

VvdW(R12) = −V
2

δ
=

C6

R6
12

,

where C6 = γ2/(Enp + E(n−1)p) is the van der Waals coefficient and typically

scales as n11 [72, 73]. A simple way to estimate the scaling of this coefficient is

to recognise that the numerator is essentially the square of the product of two

transition dipole elements and the denominator roughly the energy level spacing,

the individual scalings of which are seen in table 1.1. Due to this scaling of

the interaction with the principal quantum number of the state, Rydberg atoms

typically interact with a strength in the region of MegaHertz over micrometre

distances [73]. Having briefly outlined the derivation of the Rydberg interactions
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presented in [70], this section now provides a short explanation of the Rydberg

(dipole) blockade, which is central to many of the proposals and experiments

introduced in section 1.3.2.

The strength of the Rydberg-Rydberg interaction leads to a phenomenon

called the Rydberg blockade, the observation of which is documented in [74] and

is beautifully explained in [75]. To understand this effect, consider two atoms

initially in the ground state, |g〉 and separated by a distance r. Considering this

ground state is coupled resonantly to the Rydberg state, |r〉, by a laser with Rabi

frequency Ω0, the state where both atoms are in the Rydberg state has energy

twice the atomic transition plus the energy of the interaction V (r) = C6/ |r|6. A

schematic representation of this situation can be seen in Fig. 1.6. Thus for both

Figure 1.6: A schematic showing how the energy level of the simultane-
ous excitation situation changes with atomic separation (red
curve) and how this is used to define the blockade radius, rb.
The blurred blue line represents the linewidth of the laser.

atoms to be excited simultaneously the interaction energy must be overcome by

the laser. The probability of simultaneous excitation thus rests on the linewidth

of the laser, which for strong laser driving is determined by the Rabi frequency.

Therefore, the atoms may not be simultaneously excited if the interaction energy

is larger than the Rabi frequency. This condition puts a limit on the separation
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below which the atoms may not be simultaneously in the Rydberg state as

rb ≈
(
C6

Ω0

) 1
6

,

which is known as the blockade radius.

The large distances over which Rydberg atoms interact and their sensitivity to

electric fields [76–78] arising from the nucleus-valence electron separation may be

used to interface different types of quantum system. In this context, the Rydberg

atom forms one element of what is termed a hybrid quantum system. This is a

particularly active research field with one of its main applications being the field

of quantum computing, where with careful design these hybrid devices may com-

bine the features of two very different quantum systems. In particular, advances

in quantum computing place ever tighter requirements on the level of control of

the quantum state. Various studies of interfacing a myriad of different quantum

systems with various solid state devices may be found in [79–83]. One recent

proposal couples Rydberg atoms to superconducting qubits via a nanomechani-

cal resonator [84], which is shown to be a system suitable for both information

storage and processing. A further composite system coupling a Rydberg atom to

a superconducting transmission line is described in section 1.3.2, where a general

overview of Rydberg experiments is provided. The idea of these hybrid quantum

systems is employed in chapter 3 of this thesis, where a Rydberg atom is coupled

to a moving electron to achieve quantum state control.

Having introduced the origin of the strong Rydberg-Rydberg interaction and

one of its main consequences, this section concludes with a review of the very

varied proposals where Rydberg atoms are a key feature, along with experiments

which have been carried out.
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1.3.2 Summary of Proposals and Experiments

Delving into the diverse world of Rydberg atom proposals and experiments, one

finds many applications are in the field of quantum information, a comprehensive

overview of which may be found in [69]. Many of these proposals are based on

the idea of using the Rydberg blockade to create quantum gates [85] between two

atoms, each of which may act as a qubit for quantum computing. Shortly after

this initial proposal was made, it was also shown that the Rydberg blockade could

be used to create quantum gates where the qubits are ensembles of atoms [86].

This second proposal uses the Rydberg blockade to ensure that only a single atom

within the blockade radius is in the Rydberg state. The qubits are then the state

where all atoms are in the ground state and the state which is a superposition

of all possible combinations where only a single atom in the blockade radius is

excited. The building blocks for this second regime were subsequently shown to be

achievable when the Rydberg blockade was used to produce a collective excitation

between two atoms in 2009 [87]. Further to the idea of using the Rydberg blockade

as a tool to create quantum gates, the storage and manipulation of a large number

of Rydberg atoms in a large-spacing optical lattice has recently been suggested as

the basis for a quantum simulator [88], which would also make use of the single

site addressability previously discussed [46].

The field focused on the interaction of ensembles of Rydberg atoms with quan-

tum states of light is particularly active. One proposal taking such an approach

is based on the use of a ring lattice occupied by Rydberg atoms to generate col-

lective excitation states [89,90]. Following a mapping scheme detailed in [91,92],

such collective excitations are shown to produce exotic states of light [93], where

the photon is emitted into a superposition of different directions. It is shown that

the emission distribution is governed by the coupling of the collective excitation

to the readout laser field, and specifically the degree to which the collective spin
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wave acts as a single degree of freedom on the scale of the laser wavelength. This

work has clear applications in the field of quantum memories, showing not only

that a particular excitation may be stored within an ensemble of atoms but also

that the excitation may be retrieved deterministically, with the features of the

excitation actually mapped into the retrieved photonic state. This work is ex-

tended in chapter 2 of this thesis, where Rydberg atoms are trapped in various

two-dimensional geometries, with a detailed description of how the atomic states

may be created and subsequently mapped into photonic states is provided. Fur-

thermore, there have been two very encouraging experiments using this type of

idea. One of these [94] creates a collective excitation in an atomic ensemble and

subsequently retrieves only a single photon when the initial excitation is stored

using very high principal quantum number states. The other [95] uses electro-

magnetically induced transparency to slow a single photon through an atomic

ensemble, whilst ensuring that the shift of energy levels of the atoms due to

the Rydberg-Rydberg interaction does not allow the similar storage of multiple

photons.

Many proposals place Rydberg atoms in optical lattices as the ideal tool for

the study of quantum many-body systems [96–98]. Whilst having great value

in aiding our understanding of fundamental physics, advances in experimental

techniques in this area of research will undoubtedly aid in the development of

the many other proposals relying on the creation of collective excitation states.

Indeed, as is shown in chapter 2 of this thesis, schemes are available that allow

many body states to be created in such systems. Many proposals use lasers in

order to create the specific collective excitations in the system, as will be seen

to be the case in chapter 2. However, there have also been detailed studies into

the changing of Rydberg states using collisions with either charged or neutral

particles, for a very detailed review of this topic see [99]. As is shown in [100],
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collisions of low energy electrons with Rydberg atoms can lead to changes in

the orbital angular momentum state of the atom, and so this technique could

be seen as complementary to the laser fields initially used to bring the atom to

the Rydberg state. The research detailed in chapter 3, uses a similar method

to control the state of a Rydberg atom using its interaction with a travelling

electron, although in this scheme there is a fixed minimum distance between the

two objects as the electron is guided. Whilst focusing mainly on how the passing

electron changes the state of a single Rydberg atom, the chapter concludes with

the description of when the electron passes a chain of interacting atoms. It is

shown here that entanglement may be created between the atoms when a single

electron passes the interacting ensemble. This is a very simple way to produce

very interesting quantum many-body states. The fact that the electron passes

the atoms within a waveguide is unique within the field of collisions of electrons

with Rydberg atoms and as shown in chapter 3 may even allow the creation of

permanent electric dipoles of the atom.

1.4 Structure of this Thesis

In conclusion of this introductory chapter, this brief section provides an overview

of the research presented in the following chapters. A more detailed summary of

each chapter may be found in its own introductory section. Chapter 2 describes

how non-classical states of light may be produced from collective excitation states

formed using Rydberg atoms in two dimensional lattices. First of all, as the laser

driving of the lattice system is rather complex, the Hamiltonian is introduced and

an approximate solution method outlined. This is then followed by a scheme for

the preparation of the collective excitation states, detailing both the excitation

spectra for perfectly prepared lattices and those where uncertainty in the atomic

positions is present. Following the derivation of an exact diagonalisation method
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for the Hamiltonian of this system, the focus moves to the generation of photons

from these excitations. The full derivation of the photonic angular distribution

is given, which is followed by distributions from the three lattice geometries con-

sidered, including once again those with finite uncertainty in the position of the

atoms. This chapter concludes with a section dedicated to summarising the main

results and suggesting some possible extensions.

In chapter 3, the research is distinctly different from that concerning Rydberg

atoms on a lattice. As alluded to previously, the research here focuses on the

interaction between a trapped Rydberg atom and a moving electron and how, by

tuning the momentum of the electron, it may be used to alter the initial atomic

state. Once again, this chapter starts with a detailed introduction of the Hamil-

tonian of the system and how the interaction part may be simplified under certain

conditions. An initial study of how the interaction affects the states of the sys-

tem is carried out using perturbation theory. Two more powerful techniques are

subsequently employed, approximate solution of the time-dependent Schrödinger

equation and Lippmann-Schwinger scattering theory, both of which are capable

of describing the changing state of the atom and yield identical results. Upon in-

troducing the real level structure of the atom, a numerical approach is employed

based on the Schrödinger equation method, the results of which for both rubidium

and lithium are detailed and compared. The analytical approach is then extended

to the case of multiple trapped interacting Rydberg atoms interacting with the

electron, and some preliminary results are given. Concluding this chapter is a

brief summary of the research presented along with a small number of possible

extensions and alternatives.



Chapter 2

Photon Emission from a Rydberg

Atom Lattice

2.1 Introduction and Background

The drive to understand the quantum interface between light and atomic ensem-

bles has been underway for well over a decade [48]. One of the initial studies of

this interface [49] showed that it was possible to map the squeezing of a light beam

onto the spin states of an atomic ensemble, and helped to show that proposals re-

lying on the coherent coupling between the two systems were feasible. Examples

of these proposals which will be relevant here are those of implementation of quan-

tum information processing protocols [86, 101–104], quantum memories [61–64]

and the often closely related creation of deterministic and manipulable photon

sources [62, 105–108]. Such photon sources rely on the ability to create entan-

gled atomic many-body states and map them efficiently onto the desired photon

states [91, 93, 109, 110]. The current myriad of techniques available for the trap-

ping and manipulation of ultracold atoms [1] places them as one of the front

running candidates for the creation of these required atomic many-body states.
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Enhancing the already impressive range of systems available by the use of these

techniques is our ability to excite the trapped atoms to Rydberg states [66], which

have strong state-dependent interactions and thus allow atomic interactions over

distances of several micrometres [69, 88, 111].

An example of work emerging from the use of the strong interactions between

cold trapped Rydberg atoms is the observation of electromagnetically induced

transparency in such a system [112], which is the phenomenon best described

in [51] as occurring when ‘an opaque atomic transition is rendered transparent to

radiation at its resonance frequency’. A comprehensive review of the theory and

experiments on this topic may be found in [113], though specific knowledge in this

area is not required for the reader to follow the work presented in this thesis. This

study has not only lead to the advancement of the theoretical methods employed

to describe such a system [114], but also to proposals for their application in the

ever-growing field of quantum information [115]. However, as brilliant as this

work may be, it is not directly related to what will be considered here. Recent

work combining the features of cold atoms and Rydberg states which will be

relevant here is the proposal of a ring lattice occupied by Rydberg atoms for the

generation of collective excitations [89, 90]. The subsequent mapping of these

collective excitations resulted in the creation of non-classical states of light [93]

when a single photon is emitted from the lattice. The properties of this photon

were shown to be dependent upon the interplay between the ring geometry and

nature of the specific atomic excitation initially realised.

This chapter details the extension of the work detailed in [89, 90, 93] to three

medium-scale complex two-dimensional lattice geometries: square, triangular and

hexagonal. Such geometries, which increase in complexity, may be realised with

the aid of microtrap array technology [116], which not only allows the creation

of complex lattices, but may also be reconfigured with relative ease. While there
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are many similarities between this work and the one-dimensional system, it will

become apparent that the Jordan-Wigner transformation used to solve the Hamil-

tonian of the one-dimensional system is not applicable in two-dimensions, and an

alternative is introduced. The solution of the Hamiltonian allows in a specific laser

regime defines collective atomic states in the system, the excitation properties of

of which are thoroughly investigated. Following from this, the aim is to map

these atomic states onto states of light, the procedure for which is described prior

to a detailing of the states which may be obtained. Numerical investigations on

the effect of atomic position uncertainty on both the atomic and photonic states

are also detailed, such that the results are related to effects that will undoubtedly

be encountered in an experimental situation.

The chapter is structured as follows. Section 2.2 introduces the system and its

Hamiltonian and shows that a two-level description is valid. Section 2.3 details

the solution of the Hamiltonian when it is limited to the regime where the laser

driving is dominant and describes the approximate spectrum resulting from this

parameter choice. Provided in section 2.4 is a description of how the initial state

of the system may be prepared, followed by a detailed analysis of the creation of

the many-body states and the associated excitation spectra for each of the three

lattice geometries. This section concludes with an explanation of the source of

the common features seen in each geometry and a brief analysis of how they are

affected by the introduction of atomic position uncertainty. Before making use of

these many-body states to create quantum states of light, section 2.5 describes

a numerical method for exact diagonalisation of the Hamiltonian, subsequently

comparing these exact results with those valid only in the strong laser driving

regime. Following from the comparison of these results, section 2.6 presents

the full derivation of how the atomic excitations may be mapped onto quantum

states of light, and culminates in an expression for the angular density matrix
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of the resulting photonic state. Concluding the research part of this chapter,

section 2.7 illustrates the photonic distributions expected from the most likely

excited states of the three lattice geometries before going on to describe their

robustness when atomic positional uncertainty is introduced. Finally, the chapter

concludes in section 2.8, where a brief summary of the results is provided, along

with suggestions for possible extensions.

2.2 System and Hamiltonian

The system and the its Hamiltonian are described in this opening section. Initially

the focus will be on the Hamiltonian describing the atoms in the lattice and how

this may be solved under certain conditions and how the resulting excited states

may be accessed. The work laid out here is then used in sections 2.6 and 2.7,

which show how photonic states may be produced from the atomic excitations

and provide an analysis of these, respectively. The main element of the system

is a gas of atoms trapped in a regular two-dimensional lattice with a total of N

sites. The lattice spacing a is of the order of a few micrometres and each site

is to be considered deep, such that the vibrational states within each site are

well approximated by the harmonic oscillator eigenstates and tunnelling between

the sites is absent. In this setup, the lattice is uniformly filled with a single

atom per site, the internal degrees of freedom of which are approximated by a

two-level system1. These two levels are the ground state, |g〉, and a Rydberg ns-

state, |r〉, where n is the principal quantum number and s refers to the angular

momentum quantum number l being zero. This lattice system is subject to a laser

with Rabi frequency Ω0 and detuning ∆ which couples the two atomic states.

A diagram showing the lattice parameters and the internal level scheme of the

1This is a simplified picture of the atom as the Rydberg states are typically accessed via
two-photon absorption [117], where a third off-resonant state is used as an intermediate step in
the excitation process
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atoms can be seen in Fig. 2.1(a), where the aim to produce non-classical photons

Figure 2.1: (a) A diagram showing the two dimensional square lattice
with lattice spacing a and the internal level structure of each
individual trapped atom. How the laser with Rabi frequency
Ω0 is used to write a specific collective excitation state onto
the lattice is described in section 2.4.1.(b) An illustration of
the intended photon production from a collective excitation
stored in the lattice. This process uses a second laser, with
the resulting photonic states shown in section 2.7.

from such a lattice is illustrated in part (b) of the figure. This figure shows the

specific example of a square lattice, though other geometries are considered in

the following sections.

The Hamiltonian of the non-interacting system may be written as

H0 = Ω0

N∑

i=1

(

b̂†i r̂i + r̂†i b̂i

)

+∆
N∑

i=1

n̂i, (2.1)

where b̂†i

(

b̂i

)

and r̂†i (r̂i) define the bosonic creation (annihilation) operators of a

ground state or Rydberg atom in the lowest vibrational eigenstate of lattice site

i, respectively, with n̂i the number operator for Rydberg atoms at site i, defined
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as

n̂i = r̂†i r̂i.

It should be noted that atomic units are used throughout this chapter, the defini-

tions of these being given in appendix A. The atoms in the lattice interact when

in the Rydberg state via the van der Waals interaction. This scales as C6/r
6 where

r is the distance between the two atoms, therefore being heavily dependent on

the lattice spacing a. The notation C6 in this interaction represents a polynomial

in the principal quantum number of the atom, having a leading power of n11 for

ns-states [73], thus illustrating one of the reasons why Rydberg atoms are such at-

tractive candidates for strongly interacting lattice systems. With the presence of

such a strong Rydberg-Rydberg interaction, ground-Rydberg and ground-ground

interactions may safely be neglected here. The interaction Hamiltonian may thus

be written as

Hint =
∑

i 6=j

Vijn̂in̂j ,

where the interaction coefficients are

Vij =
C6

2 |Ri −Rj|6
, (2.2)

with Ri denoting the position of the atom at site i and the factor of 1/2 com-

pensating the double counting due to the summation over both i and j.

As there are only two possible states in this regime it is possible to use spin-

1/2 algebra in order to analyse the system. The two possible atomic states may

therefore be represented as

|g〉i =






0

1






(i)

and |r〉i =






1

0






(i)

.
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A set of ladder operators may subsequently be defined using the Pauli matrices

as

σ̂i
+ =

1

2

(
σ̂i
x + iσ̂i

y

)
≡






0 1

0 0






(i)

and σ̂i
− =

1

2

(
σ̂i
x − iσ̂i

y

)
≡






0 0

1 0






(i)

,

such that σ̂i
+ replaces a ground state atom by an excited atom at the site i,

with σ̂i
− doing the opposite. The atom laser Hamiltonian (2.1) is subsequently

modified to include these ladder operators by performing the substitutions

b̂†i r̂i → σ̂i
− and r̂†i b̂i → σ̂i

+

to yield

H0 =
N∑

i=1

[

Ω0σ
i
x +∆n̂i

]

, (2.3)

where σ̂i
x = σ̂i

+ + σ̂i
− swaps the atomic state at site i. The number operator may

also be conveniently written in terms of the Pauli matrices as

n̂i =
1

2

[

Î
i + σ̂i

z

]

,

where Îi represents a 2×2 identity matrix acting on site i. The total Hamiltonian

of the system may thus be written as

H =
N∑

i=1

[

Ω0σ̂
i
x +∆n̂i +

∑

j 6=i

Vijn̂in̂j

]

. (2.4)

Before finding the solution of this Hamiltonian, it is important to note that the

ladder operators from which it is constructed obey neither bosonic or fermionic
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algebra. Instead they obey the standard spin commutation relations [118]

{
σ̂i
+, σ̂

i
−
}
= 1 and

{
σ̂i
±, σ̂

i
±
}
= 0

[
σ̂i
+, σ̂

j
−
]
= δijσ̂

i
z and

[
σ̂i
±, σ̂

j
±
]
= 0 ∀ i, j, (2.5)

which obey anti-commutation and commutation relations whether they belong

to the same or different sites, respectively. This algebra makes a solution of the

system very difficult to find, as approximate procedures to solve these systems are

more readily available for those which are either wholly bosonic or fermionic. The

following section addresses this issue in two steps and within a certain parameter

regime.

2.3 Solution of the Hamiltonian

This section describes the method used to obtain the eigenstates and eigenener-

gies of the Hamiltonian (2.4), which is only approximate and must be carried out

in a specific parameter regime. The system is assumed to be in the strong driving

regime, where the laser driving Ω0 is its largest energy scale. This is represented

as Ω0 ≫ V nn, |∆|, with V nn = C6/a
6 being the maximum strength of the inter-

action, which occurs between atoms in neighbouring lattice sites. As alluded to

previously, the process of obtaining the approximate eigenvalues and eigenstates

of the system in this regime will be performed in two steps. The first step is to

make the dominant term diagonal, which is done by means of a unitary rotation

of the form

UR =
N∏

i=1

exp
[

−iπ
4
σi
y

]

≡
N∏

i=1






1√
2

− 1√
2

1√
2

1√
2






(i)

,
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and performs the transformations σ̂z → −σ̂x and σ̂x → σ̂z. Application of this

rotation to the Hamiltonian brings it into the form

H ′ = U †
RH0UR = Ω0

N∑

i=1

σ̂i
z +

∆

2

N∑

i=1

(

Î− σ̂i
x

)

+
1

4

∑

i 6=j

Vij
(
σ̂i
+σ̂

j
− + σ̂i

−σ̂
j
+

)

+
1

4

∑

i 6=j

Vij
(
σ̂i
+σ̂

j
+ + σ̂i

−σ̂
j
−
)
− 1

2

N∑

i=1

Vijσ̂
i
x +

1

4

∑

i 6=j

Vij , (2.6)

where it is clear that the first term is now diagonal. However, the problem

remains that the ladder operators obey neither bosonic or fermionic algebra. The

second step of the process is to remove this issue. As explained in the following

section, this is achieved by application of the Holstein-Primakoff transformation,

which expresses the Hamiltonian in terms of operators which obey purely bosonic

algebra.

2.3.1 The Holstein-Primakoff Transformation

This section will detail how the Holstein-Primakoff transformation [119] is used

to convert the spin operators introduced in the previous sections into opera-

tors which obey purely bosonic algebra. The previous work on Rydberg atoms

trapped in a ring configuration [90] used the Jordan-Wigner transformation [120]

to convert the spin operators to those which obey canonical fermionic algebra.

Analogues for this transformation in two dimensions are very complex [121], and

so this alternative Holstein-Primakoff method is used. Following the notation

used in [122], the Holstein-Primakoff transformation makes the following substi-
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tutions

σ̂i
− →

√
2S

√

1− â†i âi
2S

âi

σ̂i
+ →

√
2S â†i

√

1− â†i âi
2S

σ̂i
z → 2

(

â†i âi − S
)

,

with S being the spin of each particle and â†i (âi) bosonic operators creating

(annihilating) non-interacting bosonic excitations at the site i. These transformed

operators obey the original spin commutation relations (2.5), thus preserving the

physics of the system. As spin-1/2 algebra has been used to describe the system

up to this point, this transformation may be simplified by inserting S = 1/2 to

yield the final transformation,

σ̂i
− →

√

1− â†i âi âi

σ̂i
+ → â†i

√

1− â†i âi

σ̂i
z → 2

(

â†i âi −
1

2

)

. (2.7)

At this point, the transformed ladder operators may be inserted into the

Hamiltonian (2.6), which allows it to be rewritten as

HHP = 2Ω0

N∑

i=1

(

â†i âi −
1

2

)

− ∆

2

N∑

i=1

[

â†i

(

1− â†i âi

) 1
2
+
(

1− â†i âi

) 1
2
âi

]

+
1

4

∑

i 6=j

Vij

[

â†i

(

1− â†i âi

) 1
2
â†j

(

1− â†j âj

) 1
2
+
(

1− â†i âi

) 1
2
âi

(

1− â†j âj

) 1
2
âj

+ â†i

(

1− â†i âi

) 1
2
âi

(

1− â†j âj

) 1
2
âj +

(

1− â†i âi

) 1
2
âiâ

†
j

(

1− â†j âj

) 1
2
]

− 1

2

∑

i 6=j

Vij

[

â†i

(

1− â†i âi

) 1
2
+
(

1− â†i âi

) 1
2
âi

]

+
N∑

i=1

{

1

4

∑

i 6=j

Vij +
∆

2

}

.

(2.8)
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Up to this point this transformation is exact, though it has introduced square

roots of bosonic operators, which are difficult to treat in practical calculations.

For this reason, the approximation is made that the system will remain in a

subspace where the total number of bosonic excitations present is much smaller

than the number of sites. This may be expressed as

Nb =
∑

i

〈

â†i âi

〉

≪ N,

such that the boson number expectation value
〈

â†i âi

〉

≪ 1 for all sites i. This

allows what is referred to in [122] as the ‘1/S expansion’ to be performed, which is

a Taylor expansion of the square roots in the Hamiltonian (2.8) about
〈

â†i âi

〉

= 0.

This yields
√

1− â†i âi ≈ 1− â†i âi
2

− â†i âi
8

− â†i â
†
i âiâi
8

+ . . .

where the operators have been put in normal order [123]. The 1/S expansion

is further explained in [124]. Substituting this expansion into the Hamiltonian

and keeping only terms quadratic or lower in the bosonic operators yields the

approximate Hamiltonian of the system in the low excitation number subspace

HHP ≈ 2Ω0

N∑

i=1

(

â†i âi −
1

2

)

− ∆

2

N∑

i=1

(

â†i + âi

)

+
1

4

∑

i 6=j

Vij

[

â†i â
†
j + âiâj + â†i âj + â†j âi

]

− 1

2

∑

i 6=j

Vij

(

â†i + âi

)

+
N∑

i=1

(

∆

2
+

1

4

∑

i 6=j

Vij

)

, (2.9)

the terms and eigenstates of which are analysed in the following section.



2.3 Solution of the Hamiltonian 33

2.3.2 Constrained Dynamics

The final bosonic Hamiltonian (2.9) shows that the two step diagonalisation pro-

cess applied has achieved the diagonalisation of the laser driving term such that

σ̂x → 2â†i âi − 1. It is straightforward to show that the eigenstates of σ̂
(i)
x are

|±〉i =
1√
2
{|g〉i ± |r〉i} ,

such that σ̂i
x |±〉i = ± |±〉i. Using the diagonalised bosonic form of this operator

it can be shown that the equivalent bosonic states are |−〉i ≡ |0〉i, where the site i

is void of bosonic excitations, and |+〉i ≡ |1〉i = â†i |0〉i, where a single excitation

is present at the site. Therefore each eigenstate of the dominant laser driving

term has a well defined number of bosonic excitations.

In further analysis, the system Hamiltonian (2.9) has four distinct terms, three

of which have different effects on the on the number of bosonic excitations in the

system. The Hamiltonian contains an overall energy offset, which does not change

the relative energy levels of the system and is formed from those terms which do

not contain any bosonic operators,

E0 = −N
(

Ω0 −
∆

2

)

+
1

4

∑

i 6=j

Vij . (2.10)

Following from this energy offset, there are those terms which will not change the

number of excitations in the system,

H1 = 2Ω0

N∑

i=1

â†i âi +
1

4

∑

i 6=j

Vij

[

â†i âj + â†j âi

]

, (2.11)

as they contain the same number of creation and annihilation operators. There

are also a number of terms which may change the number of bosonic excitations
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in the system by one, which may be gathered together to form

H2 = −∆

2

N∑

i=1

(

â†i + âi

)

− 1

2

∑

i 6=j

Vij

(

â†i + âi

)

, (2.12)

and contain unpaired creation and annihilation operators. Finally, there are those

terms which may change the number of bosonic excitations in the system by two

at a time,

H3 =
1

4

∑

i 6=j

Vij

[

â†i â
†
j + âiâj

]

.

These three distinct terms therefore form the full Hamiltonian as

HHP = E0 +H1 +H2 +H3

and may be used to describe the dynamics of the system.

The excitation number conserving part of the Hamiltonian (2.11) contains

the dominant laser driving term. This defines a coarse energy structure of the

system where manifolds of quasi-degenerate states are separated by energy gaps of

approximately 2Ω0. These manifolds are formed by the states where the number

of bosonic excitations in the system, Nb, is the same. An illustration of this

energy structure is given in Fig. 2.2, where the actions of the different parts of

Figure 2.2: An illustration of how the manifolds of the system are de-
fined by the number of bosonic excitations present, Nb. Also
shown is how the three parts of the Hamiltonian can stimu-
late transitions between/within the manifolds.
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the Hamiltonian are also shown. The second term in H1 does not change the

number of excitations in any given state of the system, thus it couples states

in the same manifold and can be seen to have a strength of the order of the

terms in Vij. The remaining parts of the full Hamiltonian, H2 and H3, create or

destroy one or two bosonic excitations in the system, respectively. As a result, the

states that they couple are separated in energy by 2Ω0 and 4Ω0 respectively. The

associated transitions are therefore strongly suppressed and using second order

perturbation theory [125] may be shown to have rates proportional to ∆2/Ω and

(V nn)2/Ω, which are very small quantities in the strong driving regime.

As a result of the chosen parameter regime, it is clearly the Hamiltonian H1

(2.11) which governs the dynamics of the entire system. Therefore, to obtain

the form of the eigenexcitations of the system in this regime, H1 requires diag-

onalisation. Since the first term of H1 is already diagonal this amounts to the

diagonalisation of Vij as
∑

ij

U †
kiVijUjm ≡ Dkm,

where Dkm is a diagonal matrix containing its eigenvalues. Using Vij ≡ Vji, this

diagonalisation process allows this part of the Hamiltonian to be written as

H1 =
∑

k

εkb̂
†
kb̂k, (2.13)

where the operators b̂†k are defined as

b̂†k =
N∑

i=1

â†iUik (2.14)

and the eigenvalues εk = 2Ω0 + Dk/2. Hence it can be seen that the operator

b̂†k creates a collective excitation of energy εk in the system, as it is defined as a

superposition of all the single site excitation operators â†i , where the coefficients
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are given by the eigenvectors of Vij .

It is now possible to write down the approximate eigenstates of the system

and their corresponding eigenenergies. The ground state of the system is that

which contains no bosonic excitations, such that it may be written as

|0〉 =
N∏

i=1

|0〉i , (2.15)

where |0〉i is the state where there are no bosonic excitations present at site i.

This state has energy E0 as defined in equation (2.10). There are N possible

states of the first excited manifold, as there are N different b̂†k creation operators.

These may then be written

|1k〉 = b̂†k |0〉 (2.16)

and have eigenenergies given as E1k = E0 + εk. Making sure not to repeat

any of the combinations of two excitations in the system (ensured by taking

j ≥ i = 1, 2, . . . N), the manifold with Nb = 2 has N(N + 1)/2 possible states,

which are written as

|2ij〉 =
1

√
1 + δij

b̂†i b̂
†
j |0〉 (2.17)

and have energy E2ij = E0 + εi + εj. A state with any number Nb of bosonic

excitations may be created by application of Nb collective excitation creation op-

erators to the zero excitation state, |0〉. The limit on the number comes in the

form of the previously described 1/S expansion, which means that the Hamilto-

nian H1 (2.11) is only valid in the limit where the number of bosonic excitations

is much smaller than the number of sites of the lattice.

This section has detailed how an approximate bosonic description of the sys-

tem may be formed in the strong laser driving regime. This allows the Hamil-

tonian to be split up into terms describing inter- and intra-manifold couplings,

where the manifolds themselves are denoted by the number of bosonic excita-
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tions present in the system. The following section details how the ground state

of the system may be formed experimentally and the transitions to the collective

excitation states stimulated.

2.4 Excitation of the Many-Particle States

This section describes how the many particle states of the system may be accessed

experimentally. The method detailed here follows the description in [126] that was

first proposed in [89,90]. The state in which the experiment is initially prepared

will be that where all atoms are in the ground state |g〉, which may be written as

|init〉 =
∏

i

|g〉i .

The first step in the process aimed at generating the collective excitations is to

create from this experimental starting point the ground state of the Hamiltonian

H1 (2.11), which is given in the previous section as equation (2.15). The process

described here will consist of two laser pulses, and requires that the atom has a

third available state, which will be labelled as |s〉i, and in practice may correspond

to an extra state of the hyperfine ground state manifold. This new level scheme

can be seen in Fig. 2.3, which also shows the Rabi frequencies of the lasers that

will be used to make the atoms undergo state transitions. Note that the two

lasers shown in this diagram are only to be used in this state preparation as a

sequence of pulses with a given duration, where the previously mentioned laser

of frequency Ω0 is turned off. This is also a simplified picture of the atom, as

accessing the Rydberg state |r〉 will often require multiple photon absorption.

The first laser pulse is of the laser with Rabi frequency Ωgs, which is on resonance

with the transition |g〉i → |s〉i, and has a duration of τ1 = π/(2Ωgs). As described

in the context of the Rabi model of absorption and emission of radiation by atoms
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Figure 2.3: The level scheme of the atom and the Rabi frequencies con-
necting them where a second stable state |s〉 has been intro-
duced. This stable state may in practice be an extra state of
the hyperfine ground state manifold.

in [47], a pulse of this duration relative to the transition frequency is known as

a π/2-pulse, and leaves the atom in a coherent superposition state between the

two states involved. This first laser pulse thus produces the transition

∏

i

|g〉i
τ1−→
∏

i

1√
2
{|g〉i + i |s〉i} .

The second pulse is of the laser with Rabi frequency Ωrs, which is on resonance

with the atomic transition |s〉i → |r〉i. This pulse has duration τ2 = π/Ωrs, which

constitutes a π-pulse and transfers the population of the state |s〉i to |r〉i. This

second laser may be represented as

∏

i

1√
2
{|g〉i + i |s〉i}

τ2−→
∏

i

1√
2
{|g〉i − |r〉i} ≡ |0〉 ,

whose result is the state in which all atoms are in the state |−〉, and is the desired

ground state of the bosonic Hamiltonian. In order for this process to be efficient,

the laser with Rabi frequency Ωrs has to be strong enough to overcome the energy

shifts due to the interaction between Rydberg atoms, which are explained in

section 1.3.1. Thus to avoid reductions in efficiency of the second laser pulse due

to the Rydberg blockade the second laser must fulfill Ωrs ≫ Nnn×V nn, where Nnn
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is the number of nearest neighbours to each site for the particular two-dimensional

geometry.

Having explained how the ground state of H1 (2.11) may be prepared exper-

imentally, the following will explain how varying the experimental parameters

allows the collective excitation states of the system to be accessed. This ex-

planation follows that for the one-dimensional Rydberg lattice described in [75].

The transitions induced will take the system from the ground state with Nb = 0

and energy E0 to those where a small number of collective bosonic excitations

are present. The transfer of the system between different Nb manifolds may be

brought about in single steps by the use of the laser detuning term of H2 (2.12),

H∆ = −∆

2

N∑

i=1

(

â†i + âi

)

, (2.18)

due to the fact that it may create or annihilate single bosonic excitations in

the system. A problem with using this parameter to induce transitions is the

suppression due to implementation of the strong laser driving regime, as explained

in section 2.3.2. However, what is particularly useful about this term is the fact

that the detuning is a controllable quantity, and by making it oscillate such that

∆(t) = ∆osc cos(ω∆t),

it is possible to couple the manifolds when the frequency ω∆ matches the energy

between them. The details of this process are outlined in the next section.

2.4.1 Addressing the Many-Body States

The first part of this section details how the oscillating detuning will allow transi-

tions to be induced between the bosonic ground state |0〉 and those states where

a single bosonic excitation is present, |1k〉 = b̂†k |0〉. This method is used exten-
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sively for the ring lattice in [75,89,90] and here a more detailed derivation will be

presented of the results obtained in [126]. Being interested only in the diagonal

part of the Hamiltonian, H1 (2.13), which defines the energy levels of the states,

and the detuning term, the matrix elements of the Hamiltonian H = H1 + H∆

may be shown to be

〈1k |H| 1k〉 = εk

〈1k |H| 0〉 = −∆osc

2

∑

q

U †
kq cos(ω∆t)

〈0 |H| 1k〉 = −∆osc

2

∑

q

Uqk cos(ω∆t)

〈0 |H| 0〉 = 0,

where the energy offset E0 has been set to zero. The first step to show that the

oscillating detuning may make the system undergo transitions is to move to a

frame of reference which rotates with the same frequency as the detuning. This

is achieved with a unitary rotation of the form

U∆ =






eiω∆t 0

0 1




 ,

within which, as explained in appendix C, an effective Hamiltonian H ′ may be

defined as

H ′ = U∆HU
†
∆ − iU∆∂tU

†
∆

which acts on the rotated states of the system, U∆ |0〉 and U∆ |1k〉. The matrix

form of the effective Hamiltonian after the rotating wave approximation [127]
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may be written as

H ′ =






εk − ω∆ 0

0 0




− ∆osc

4

∑

q






0 U †
kq

Uqk 0




 ,

which shows that, in this frame, the ground and first excited manifolds are

brought closer together by an energy of ω∆. Thus, when the oscillation frequency

ω∆ is tuned to match the energy gap between the manifolds, it effectively acts

an on resonance laser with a Rabi frequency proportional to ∆osc. The effective

Rabi couplings between the states may be quantified by the intensity of this ef-

fective laser, which is calculated as the absolute value squared of the transition

(off-diagonal) matrix elements.

The first transition which has to occur is that from the ground state |0〉 to

one of the states in the first excited manifold. The intensity of these transitions

can be calculated as

I1(k) ≡ |〈0 |H ′| 1k〉|2 =
|∆osc|2
16

∣
∣
∣
∣
∣

N∑

q=1

Uqk

∣
∣
∣
∣
∣

2

. (2.19)

The validity of the rotating wave approximation as considered in [128, 129], im-

plies that in this particular implementation the energy difference between the

manifolds (∼ Ω0) must be much larger than the detuning, i.e. |∆osc| ≪ Ω0, which

is already ensured in this strong laser driving regime. Also, in defining the above

transition intensity, the assumption has been made that only the ground state

|0〉 and a single state in the first excited manifold |1k〉 are involved, thus forming

a two-level description. Such an approximation is only valid if the separation

between the levels within a manifold is much larger than the Rabi frequency of

the inter-manifold transitions. In this system, the energy separation of the states

within a manifold is proportional to V nn with the effective Rabi frequency being
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proportional to ∆osc. This requirement therefore refines further the inequality

describing the constrained dynamics, such that now |∆osc| ≪ V nn must also be

ensured.

The intensity of the transitions from the states of the first excited manifold to

those of the second excited manifold may be calculated using the same procedure

as those from the ground state. Perhaps the most important feature results from

the matrix elements of the Hamiltonian when the states |1k〉 (2.16) and |2ij〉

(2.17) are the involved states, which may be shown to be

〈2ij |H| 2ij〉 =
1

1 + δij
(εi + εj)

〈2ij |H| 1k〉 =
1

√
1 + δij

∆osc

2

∑

q

(

δkjU
†
iq + δkiU

†
jq

)

cos (ω∆t)

〈1k |H| 2ij〉 =
1

√
1 + δij

∆osc

2

∑

q

(δkjUqi + δkiUqj) cos (ω∆t)

〈1k |H| 1k〉 = εk.

The time-dependent part of these elements is once again removed using the pro-

cedure of moving to a rotating frame of reference and applying the rotating wave

approximation, as previously discussed. The intensity of the transition is then

calculated as the square of the coupling matrix elements as

I2(k; ij) ≡ |〈1k |H| 2ij〉|2 =
δkjI1(i) + δkiI1(j) + 2δkjδkiI1(k)

1 + δij
. (2.20)

Stemming from the matrix elements themselves, it is clear that this intensity of

the transition between these two manifolds will be zero unless at least one of the

excitations present in the double excitation state is the same as that in the initial

singly excited state. This fact appears in the delta functions in the numerator of

the expression, which all require either i = k or j = k for the intensities to be

non-zero. This is the first of two selection rules for the allowed excitations of the
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system, the second stems from the geometry of the lattice and will be shown in

the next section to affect transitions from the ground state as well as those to

higher excitation states.

2.4.2 Excitation Properties

This section describes the properties of the states that are achievable using the

method of the oscillating detuning previously outlined. This is done for three

different lattice geometries: square, triangular and hexagonal. When the one-

dimensional analogue of this system was proposed [75], it was possible to justify

an approximation that only the nearest-neighbour interactions need be consid-

ered. This is due to the fact that the next-nearest-neighbour interaction is a

factor 1/26 = 1/64 weaker than that of the nearest-neighbour. In the three two-

dimensional setups considered here, an explanation is provided of the limits of

such an approximation. The collective states attainable will be described by the

probability of the bosonic excitation being found at a single lattice site, and as

this is common to all three geometries, is explained first.

A single excitation in the system created using the oscillating detuning may

be written as |1k〉 = b̂†k |0〉 and has energy E1k = E0 + εk. In order to picture the

distribution of this collective excitation among the lattice sites, the expectation

value

Nu(k) = 〈1k |n̂u| 1k〉

may be evaluated, where n̂u = â†uâu is the number operator for the bosonic

excitation on the uth lattice site. Using the definition of the collective excitation

operators (2.14), this expectation value is shown to yield the simple result

Nu(k) ≡ |Uuk|2 .
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This expression therefore describes the probability of finding a bosonic excitation

on site u of the lattice considering that it contains the collective excitation state

|1k〉. Examples of these excitations can be seen throughout the following sections.

This procedure may be repeated for any number of excitations present in the

system, although increasing complexity is encountered with increasing number of

collective excitations. The position expectation value for two excitations in the

system may be written as

Nu(i, j) = 〈2ij |n̂u| 2ij〉 ,

where the double collective excitation states |2ij〉 are as given in (2.17). The full

expression for two excitations in the system follows from this as

Nu(i, j) =
1

1 + δij

[

|Uui|2 + |Uuj|2 + δij

(

U †
iuUuj + U †

juUui,
)]

,

examples of which are given in the following sections. It should be noted that the

figures showing the transition intensities (Figs. 2.4-2.11) represent the various col-

lective excitation states by their energy eigenvalue Dk/2, as given in section 2.3.2.

The value of 2Ω0 subtracted from the detuning oscillation frequency represents

the energy separation between the excitation number manifolds.

Square Lattice

This section describes the achievable many-body states of the system when the

atoms are held in a square lattice, a pictorial example of which may be seen

in Fig. 2.1(a). In contrast to the one-dimensional case, in the square lattice

the next-nearest-neighbour is a distance
√
2a away, instead of 2a, and there are

four of them, instead of two. Therefore, the nearest-neighbour approximation is

not valid for most sizes of square lattice. For the nearest-neighbour approxima-
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tion to be valid, the interaction strength when there are only two neighbouring

excited atoms in the system, V nn, must be much greater than that where the

maximum possible number of next-nearest-neighbours are excited, V nnn
max . It may

be shown that, for all sizes of square lattice, described by Lsq =
√
N , there are

(Lsq − 1)2 pairs of interacting atoms for those configurations where all possi-

ble next-nearest-neighbouring atoms are excited. As the distance between the

next-nearest-neighbours is
√
2a, the previously given equality may be evaluated

as

V nn ≫ V nnn
max =⇒ C6

a6
≫ (Lsq − 1)2

C6
(√

2a
)6

The solution of this inequality yields the limit below which the nearest neighbour

approximation is comfortably valid to be Lsq ≪ 4
√
2+1 ≈ 6.7, which limits it to

only small lattice sizes. For this reason, the full interaction matrix Vij without

the nearest-neighbour approximation is calculated and diagonalised in order to

find the eigenvectors which appear in the expressions for the intensities I1 (2.19)

and I2 (2.20) that are evaluated in this section.

The intensity profile for the transitions from the ground state to the first ex-

cited manifold in an Lsq = 10 square lattice are shown in Fig. 2.4, with insets

showing the excitation position probability for the three single collective excita-

tion states with the highest transition intensity. What is clear in the figure is

that out of the one hundred possible single collective excitation states, there are

less than ten states for which the transition intensity is finite. Furthermore, the

state with the highest transition intensity is that with the highest energy, which

in this notation is represented as |1N〉.

A description of the intensities to the double excitation manifold is now given,

making sure that the initial state is one which has a finite transition intensity

from the ground state. In this case, the choice is made to have the starting

single collective excitation state as the one with the highest transition intensity,
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Figure 2.4: Normalised intensity profile for the transitions |0〉 → |1i〉 for
the Lsq = 10 square lattice. Inset are the excitation proba-
bility distributions for the three most likely excited collective
excitation states. The energies are given in units of V nn.

|1N〉, as shown in Fig. 2.4. The intensities of the transitions from |1N〉 → |2iN〉

are shown in Fig. 2.5, which clearly shows that there are a limited number of

accessible states. The insets showing the bosonic probability distributions of the

three most likely excited double excitation states are very similar to those shown

for the single excitation states in Fig. 2.4. The reason for this is that with one

of the excitations being fixed as that which is already present in the system, the

second excitation is effectively produced from the ground state of the system.

Thus the most likely second excitations to be produced are those which are most

likely produced from the ground state.

Triangular Lattice

This section gives details of the most likely excited states of a system where both

the internal and external geometries are equilateral triangles, as is illustrated in

Fig. 2.6. This figure shows a small triangular lattice with Ltri = 4 sites per side,
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Figure 2.5: The normalised intensity profile for the transitions |1N 〉 →
|2iN 〉 for an Lsq = 10 square lattice. Inset are the excita-
tion probability distributions for the three most likely excited
double collective excitation states. The energies are given in
units of V nn.

which is how the triangular lattices are characterised. For reference, the total

number of sites is given by the binomial coefficient

Ntri =






Ltri + 1

2




 ≡ (Ltri + 1)!

2(Ltri − 1)!
=
L2
tri + Ltri

2
.

In the triangular lattice case, a central site (i.e. not near the edges of the lat-

tice) has six nearest-neighbours and three next-nearest-neighbours, which are

a distance
√
3a away. Therefore, the expectation is that taking only nearest-

neighbours to describe the interaction would be slightly more robust in the tri-

angular case than for the square lattice, but will ultimately not hold for larger

lattices. It may be shown that the number of pairs of next-nearest-neighbours in

the triangular lattice is (1/2)(Ltri − 2)(Ltri − 1). Following the same approach as

detailed for the square lattice, the interaction energy when all the next-nearest-

neighbouring atoms are excited must be less than that when only two neighbour-
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Figure 2.6: The equilateral triangular lattice with lattice spacing a which
is considered in this section.

ing atoms are in the Rydberg state in order for the nearest-neighbour approxi-

mation to be valid. The inequality is thus formed as

V nn ≫ V nnn
max (tri) =⇒

C6

a6
≫ C6(L

2
tri − 3Ltri + 2)

2(
√
3a)6

which after rearrangement may be solved to find Ltri ≪ 8.87 in order for the

nearest-neighbour approximation to be valid. As expected, this is a slightly

greater number than that found for the square lattice, but ultimately is still

a very tight constraint. Therefore, the full interaction matrix Vij is diagonalised

without using the nearest-neighbour approximation in order to find the transition

intensities and state distributions described in this section.

The intensity profile for the transitions from the ground state to the first

excited manifold in an Ltri = 10 triangular lattice are shown in Fig. 2.7, where

the insets show the bosonic probability distributions of the three single collective

excitation states with the highest transition intensities. As in the case of the

square lattice, there are very few states which have a finite transition intensity.

The state with the highest transition intensity in the triangular lattice is that

with the highest energy, |1Ntri
〉, equivalent to the square lattice case. Also in line

with the square lattice case, it appears that this is a collective excitation state

where, upon repeated measurements, the bosonic excitation would most likely be
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Figure 2.7: Normalised intensity profile for the transitions |0〉 → |1i〉
for the Ltri = 10 triangular lattice. Inset are the excitation
probability distributions for the three most likely excited col-
lective excitation states. The energies are given in units of
V nn.

found at the centre of the lattice.

As previously described, the intensity of the transitions from the first excited

states to the double collective excitation states may be calculated. As Fig. 2.7

shows the highest energy state, |1Ntri
〉, having the largest transition intensity, this

state is chosen as the initial state from which to calculate the second order tran-

sition intensities |1Ntri
〉 → |2iNtri

〉. The results of this calculation are illustrated in

Fig. 2.8, which shows that the distributions of the accessible states are comprised

of that of the initial |1Ntri
〉 state and those single collective excitation states which

have the highest transition intensities from the ground state.

Hexagonal Lattice

This section details the most complicated system geometry which will be de-

scribed; that of a hexagonal lattice where the external dimensions form a rhom-
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Figure 2.8: Normalised intensity profile for the transitions |1Ntri〉 →
|2iNtri〉 for the Ltri = 10 triangular lattice. Inset are the
excitation probability distributions for the three most likely
excited double collective excitation states. The energies are
given in units of V nn.

bus. Such a lattice with Lhex = 6 is illustrated in Fig. 2.9, where the sites are

Figure 2.9: An illustration of the hexagonal lattice whose external geom-
etry is a rhombus. Shown with dotted lines are the absent
or unoccupied sites.

chosen such that there is never an occupied site in the tighter corner of the rhom-

bus, thus making the analytic expressions (slightly) simpler to deal with. For

reference, the number of sites in the lattice for a rhombus with Lhex sites per

side (the characterising Lhex includes the dotted sites shown in Fig. 2.9) and the
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restriction on where the sites are, may be calculated as

Nhex =
2

3
Lhex(Lhex − [Lhexmod 3]) + δ[Lhexmod 3],1

(
2Lhex + 2

3

)

+ δ[Lhexmod 3],2

(
4Lhex − 2

3

)

,

where [a mod n] is the modulo operation and yields the remainder of a/n.

As shown for the previous geometries, first an analysis is presented showing

why it is not possible to use the nearest-neighbour approximation in the two

dimensional case. In this hexagonal case, each lattice site has three nearest-

neighbours and six next-nearest-neighbours, which are each a distance of
√
3a

away. This is the opposite case to that of the triangular lattice, so it is expected

that the hexagonal lattice is much less likely suited to the nearest-neighbour

approximation. The number of pairs of next-nearest-neighbours in a hexagonal

lattice formed from a rhombus of side length Lhex can be calculated as

Nhex
nnn = (Lhex − 2)Lhex −

(
Lhex − [Lhexmod 3]

3
+ 2

)

. (2.21)

Thus, in order for the nearest-neighbour approximation to be valid, the case where

only two neighbouring atoms are excited must have a much higher energy than

that where all possible Nhex
nnn next-nearest-neighbouring atoms are excited. This

is not as straightforward as in previous cases, as the expression for the number

of next-nearest-neighbours (2.21) clearly has the issue that there are effectively

three conditions which depend on the value of [Lhexmod 3]. The choice is therefore

made to use the situation where [Lhexmod 3 = 2] as an example, as this is the

worst case for the nearest-neighbour approximation as it has the highest number
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of next-nearest-neighbour pairs. The inequality may then be written as

V nn ≫ V nnn
max (hex) =⇒

C6

a6
≫ C6

(
√
3a)6

[

(Lhex − 2)Lhex −
(
Lhex + 4

3
+ 2

)]

and may be solved to find the condition Lhex ≪ 6.62 in order for the nearest-

neighbour approximation to be valid. This has shown that, as expected, the

nearest-neighbour approximation will only be valid for very small lattices, with a

limit smaller than that found in both the triangular and square cases. Therefore,

the following details the results gained using diagonalisation of the full interaction

matrix without application of the nearest-neighbour approximation.

The intensity profile for the transitions from the ground state to the first

excited state manifold of the Lhex = 11 hexagonal lattice is shown in Fig. 2.10,

where the insets show the three single excitation states to which the transition

Figure 2.10: Normalised intensity profile for the transitions |0〉 → |1i〉 for
the Lhex = 11 hexagonal lattice. Inset are the excitation
probability distributions for the three most likely excited
collective excitation states. The energies are given in units
of V nn.

intensities are highest. Once again, the highest transition intensity corresponds

to the single collective excitation state with the highest energy, |1Nhex
〉, which, as
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precisely referred to in [126], is the closest state to a uniformly shared collective

excitation.

In aiming to conclude the section showing the collective excitation states which

are most likely generated, the final results presented here are those transition

intensities from the most likely excited single excitation state, |1Nhex
〉 to the ac-

cessible states of the doubly excited manifold |2iNhex
〉. These results are shown in

Fig. 2.11, which shows that there is clearly one dominant peak, being that of the

Figure 2.11: Normalised intensity profile for the transitions |1Nhex
〉 →

|2iNhex
〉 for the Lhex = 11 hexagonal lattice. Inset are the

excitation probability distributions for the three most likely
excited collective excitation states. The energies are given
in units of V nn.

transition intensity to the state containing two copies of the highest energy single

excitation state. The secondary peaks correspond to those states containing the

initial state and the second and third most likely excited single excitation states.

What should be noted in both diagrams relating to the hexagonal lattice is that

the second and third highest intensity peaks are very close to being of the same

order, whereas in the previously explained cases there was a more pronounced

gap in both the intensity and energy.
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It has clearly been the case in all the geometries considered that the highest

energy state always has the largest transition intensity. Increasing the system size

in all cases only acts to increase the number of secondary peaks. The following

section explains how, although belonging to different lattice geometries, these

states have very similar properties.

2.4.3 Selection Rules for Accessing the Many-Body States

The previous sections concerned with various geometries of the system have shown

that the majority of the transition intensities between the different excitation

manifolds are zero. As this section explains, the reason for this is rooted in the

symmetries of the various geometries, each of which will be considered here.

Each of the three geometries considered here belong to a different dihedral

symmetry group [130], the square lattice belonging toD4, the triangular belonging

to D3 and the hexagonal (when constructed as described in section 2.4.2, with

no sites in the tighter corners of the rhombus) D2. These three groups consist of

the following transformations,

Square

• Cyclic group C4: Rotations of 2πn/4 about the centre with n =

1, 2, 3, 4.

• Fx, Fy: Flips about the horizontal and vertical axes.

• Fu, Fv: Flips about the two main diagonals.

Triangular

• Cyclic group C3: Rotations of 2πn/3 about the centre with n = 1, 2, 3.

• Fa, Fb, Fc: Flips about the three axes through the vertices.

Hexagonal



2.4 Excitation of the Many-Particle States 55

• Cyclic group C2: Rotations of 2πn/2 about the centre with n = 1, 2.

• Fi, Fii: Flips about the two axes running corner to corner.

which are illustrated in Fig. 2.12, where subfigure (c) makes clearer the require-

Figure 2.12: The three system geometries and their symmetries. (a) The
square lattice showing the four symmetry axes. (b) The
triangular lattice showing the three symmetry axes. (c)
The hexagonal lattice showing the two axes of symmetry.

ment described in section 2.4.2, which ensures that the hexagonal lattice con-

tained within the dimensions of a rhombus will always fulfil the two symmetries

illustrated.

Upon inspection of both the full system Hamiltonian H, (2.4), and that de-

scribing the detuning in the bosonic system H∆, (2.18), it may be seen that they

conserve all symmetries relating to the geometry of the system. This is justified

by looking at the terms contained in each Hamiltonian: the full system Hamil-

tonian contains both a spin-flip term and two counting terms, with the detuning

Hamiltonian creating or annihilating bosonic excitations at each site. As all the

terms contained operate on each site independently and in the same way, both

conserve all symmetries of the system itself. Therefore, when the initial state is

an eigenstate of the previously quoted symmetry operators, the time evolution is

restricted to the subspace spanned by states with the same quantum number with

respect to these operators. The experimental initial state |init〉 describes when

the atom at each lattice site is in the ground state. Moreover, the bosonic ground
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state has each site void of bosonic excitations. Thus, these uniform states, be-

ing symmetric, are eigenstates of the all the operators which form the symmetry

groups with eigenvalue +1. Such states which have eigenvalue +1 with respect

to all symmetry operators of their geometry belong to the subspace A1, which is

called totally symmetric. Therefore, only the collective excitation states which

belong to the totally symmetric subspace may be accessed when the time evolu-

tion under Hamiltonians H and H∆ is considered.

These symmetries explain why only a small number of the possible collective

states of the system have non-zero transition intensities, as seen in the previous

sections describing each of the three geometries. Furthermore, from the insets

of the figures in these sections, the bosonic densities at each site of the lattice

clearly show that the states with these finite transition intensities belong to the

subspace A1. Of course, this reasoning is not restricted to only transitions from

the ground state of the system. The previous section also detailed the transition

from the singly to doubly excited states. The single collective excitation state is

only accessible if it is a member of subspace A1, thus having eigenvalue +1 with

respect to all symmetry operators of the system. The subsequent transition to the

double collective excitation states once again uses the method of the oscillating

detuning, therefore the same selection rules must be followed. It has already been

documented that one of the collective states in the double excitation manifold

must be the same as that present in the initial single excitation state. Including

now these symmetry selection rules, there will only be the same number of possible

transitions from each single excitation state as there is from the ground state to

the single excitation manifold.
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2.4.4 Transition Intensities to Imperfect Lattices

As detailed in the previous subsection, it is the geometry of the lattice which

governs the transition profiles seen where only a handful of the possible states

are likely to be excited. However, in an experimental setup the atoms are very

unlikely to be fixed perfectly to the centres of the lattice sites. This short subsec-

tion details how the transition intensities between the ground and singly excited

states are altered when uncertainty in the atomic position is introduced, as the

symmetries discussed in the previous section are lifted.

To quantify the effect of the uncertainty in position, each atom is distributed

at a random position about the centre of its respective lattice site with a fi-

nite standard deviation σ 6= 0, which is considered isotropic (see Fig. 2.1).

Shown in Fig. 2.13 is the normalised transition intensity profile for an Lsq = 10

Figure 2.13: (a) Normalised intensity profile for the transition from the
ground state to those in the single excitation manifold for an
Lsq = 10 square lattice when the positions of the atoms are
randomly distributed about the centre of the lattice sites
with standard deviation σ. The red vertical lines show the
position of the four most prominent transition intensities
seen in Fig. 2.4. The horizontal black line shows the cross
section of the profile seen in (b) for σ/a = 0.025. (c) The
same cross section for σ/a = 0.05.

square lattice averaged over 104 realisations each of a range of uncertainties up

to σ/a = 0.05. For each realisation, the system is initialised with atoms ran-

domly distributed about the centre of each lattice site such that they fulfil the



2.4 Excitation of the Many-Particle States 58

desired position uncertainty. The full interaction matrix is then calculated and

diagonalised followed by the calculation of the transition intensity to each single

collective excitation state. At the end of each realisation of the same position

uncertainty, the intensity results are summed to the previous ones and stored

within discrete bins referring to the energy of each transition. It is these results

for a range of different uncertainties which are normalised to the highest intensity

and combined to form Fig. 2.13.

In Fig. 2.13, it is clear that as the uncertainty in atomic position increases,

the initial sharp transition intensities become broader and shift towards higher

energies. Such a shift towards higher energy transitions may be attributed to

the lattice geometry, and may be explained by considering a shift in position of

just a single atom. Consider a perfect lattice (σ = 0) where only a single atom

may be moved from the centre of its lattice site. This atom may move in six

possible directions, i.e. ±x̂, ±ŷ or ±ẑ. If the atom moves in the xy-plane, it

will be closer to at least one of its neighbouring atoms (considering here a lattice

which is infinite in size). The atomic interaction thus increases, as it grows as

1/r6. Conversely, if the atom moves in the ẑ direction, it is definitely further

away from its neighbours than previously, and the interaction is reduced. In this

case of a single atom being allowed to move, four of the six possibilities give

rise to a larger interaction energy. This therefore explains the overall shift of

the transitions to higher energies observed in Fig. 2.13. Considering now a finite

lattice size, as the number lattice sites increases, the proportion of the sites on

its boundaries becomes smaller and therefore the shift to higher energies becomes

more pronounced. The broadening of the transition lines may be attributed to

the fact that the atoms are distributed randomly, meaning that the symmetry of

the system discussed in section 2.4.3 is removed. Therefore, there are small but

finite transition intensities to states that were not previously possible, and those
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states which most closely resemble the states of the perfect lattice have varying

energies depending on the particular atomic distribution.

The same analysis for an Lsq = 7 square lattice is produced in previous work

[126], which will allow the reader to analyse how these results are common for

varying lattice sizes. This same reasoning may be applied to either of the other

lattice geometries previously considered.

Before going on to show how the collective excitations may be mapped onto

quantum states of light, which is done in section 2.6, the following section details

the steps towards an exact numerical diagonalisation of the Holstein-Primakoff

transformed Hamiltonian (2.9). Such a diagonalisation procedure is subsequently

applied and used to test the validity of the eigenstates and eigenenergies found

in the strong laser driving regime.

2.5 Exact Diagonalisation of the Holstein Pri-

makoff Hamiltonian

It is possible to perform an exact diagonalisation of the Holstein-Primakoff trans-

formed Hamiltonian of this system (2.9) without being restricted to the strong

driving regime which is documented in the preceding sections. This section follows

the prescription detailed in [131] for the algorithm allowing such a diagonalisa-

tion, with necessary proofs reproduced and the conditions such that it is valid for

this specific lattice Hamiltonian outlined. After the procedure has been detailed,

it will be applied to the system Hamiltonian in order to provide a measure of the

validity of the eigenspectrum found in the strong laser driving regime.

The original paper [131] details the diagonalisation of the quadratic boson
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Hamiltonian, which may be written in the form

H =
m∑

r′,r=1

[

α̂†
r′D1r′rα̂r + α̂†

r′D2r′rα̂
†
r + α̂r′D3r′rα̂r + α̂r′D4r′rα̂

†
r

]

, (2.22)

where α̂ (α̂†) are bosonic annihilation (creation) operators obeying the usual

commutation relations and Dnr′r represents the element in the r′th row and rth

column of the nth block of matrix D. For the procedure given, there are conditions

placed upon the block matrix D whereby its off-diagonal blocks, D2 and D3, are

symmetric and the diagonal blocks, D1 and D4, are Hermitian. In the following,

a matrix fulfilling these requirements will be written as

Dreq =






A B

B∗ A∗




 .

Upon inspection of the Hamiltonian of the lattice system in question (2.9), it

is not quite in the form where its corresponding matrix M fulfils the above

requirement, as there are no terms âiâ
†
i that have a prefactor of Ω0, which would

fulfil the requirement of it being Hermitian. This is rectified using the bosonic

commutation relations such that the first term of (2.9) may be rewritten as

2Ω0

N∑

i=1

â†i âi ≡ Ω0

N∑

i=1

(

â†i âi + â†i âi

)

= Ω0

N∑

i=1

(

â†i âi + âiâ
†
i − 1

)

= −NΩ0 + Ω0

N∑

i=1

(

â†i âi + âiâ
†
i

)

.

This allows the specific form of the matrix Dreq corresponding to the lattice
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system Hamiltonian to be defined as

M =






M1 M2

M†
2 M∗

1




 ,

where the blocks are given by

(M1)ij =
Vij
4

+ δijΩ0 and (M2)ij =
Vij
4
.

The next step of the process groups together the creation and annihilation

operators into a single vector, which is written as

â† =
(

â†1, â
†
2, . . . , â

†
N , â1, â2, . . . , âN

)

,

such that the quadratic part of the Hamiltonian (2.9) is now written as

Hquad ≡ −NΩ0 + â†Mâ. (2.23)

The diagonalisation of this Hamiltonian is performed, using the terminology em-

ployed in [131], para-unitarily. Such a para-unitary diagonalisation is described

by a transformation of the bosonic operator vectors, â and â†, to new vectors γ̂

and γ̂† of the form

γ̂ =T â

γ̂† =â†T †,

where γ̂† is of the same form as â† (containing both creation and annihilation

operators) with the entries the new operators γ̂† and γ̂. The 2N square para-
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unitary transformation matrix T thus transforms Hquad into a diagonal form as

H ′
quad = â†Mâ = â†T † (T †)−1 MT −1T â = γ̂†E γ̂

where E is the diagonal matrix given by

(
T †)−1 MT −1 = E ≡ 1

2
diag (ω1, ω2, . . . , ωN , ω1, ω2, . . . , ωN ) . (2.24)

The special form of the diagonal eigenvalue matrix E seen here, where the second

N entries are a repeat of the first N , is reliant upon the specific block form of

Dreq and the condition that T is para-unitary. For a proof of this statement, the

reader is referred to the original paper [131].

Aside: Para-Unitarity of T Before going on to describe the al-

gorithm proposed in [131], it is important that the main points of

the para-unitary matrix are explained. As with a unitary transforma-

tion, a para-unitary transformation must conserve the commutation

relations, which in the case of the vectors previously described, are

written as

[
âr, â

†
r

]
=







1 r ≤ N

−1 r ≥ N.

Conservation of these bosonic operators through the transformation

is ensured by a para-unitary matrix of which fulfils the condition

T ĨT † = Ĩ,

where Ĩ is the para-identity matrix which has firstN diagonal elements

equal to 1 and second N diagonal elements equal to −1. With the

aid of this equation, it may also be shown that a para-unitary matrix
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and its inverse are related as

T =






U W

V X




 and T −1 =






U † −V †

−W † X†




 , (2.25)

which is used in the diagonalisation algorithm.

The following subsection details how the algorithm given in [131] may be

applied to the lattice Hamiltonian, and the conditions under which it is valid. Said

conditions rely on the matrix M having the properties detailed in this section,

with the procedure itself using other concepts also introduced here.

2.5.1 Exact Diagonalisation Algorithm

The algorithm for exact diagonalisation of the bosonic Hamiltonian (2.22) pro-

posed in [131] relies on the matrix Dreq being positive-definite [132]. In general,

a Hermitian matrix A is positive definite if v̂†Av̂ is real and positive for all non-

zero complex vectors v̂. In the specific case of the quadratic part of the lattice

Hamiltonian (2.23), which is defined by the matrix M containing all positive

real entries, positive definiteness is ensured under the condition that the laser

driving elicits a diagonally dominant matrix [133]. This condition places a less

stringent condition on the strength of the laser driving than that of the strong

driving regime considered in section 2.3, but does require that the diagonal (Rabi

frequency elements) are larger than both the sum of the other elements in the

same row and the sum of the other elements in the same column. The numerical

verification of this condition comes in the first step of the procedure.

If and only if the matrixM is positive-definite, it may be decomposed asM =

K†K, where the 2N square matrix K is formed by a Cholesky decomposition [134]

ofM. The matrix K is a 2N square matrix which contains non-zero entries only in

the leading diagonal and the entries above it, which is known as upper-triangular.
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The next step is to unitarily diagonalise the matrix KĨK† using a unitary matrix

U whose columns are arranged such that the first N diagonal elements of the

resulting matrix L are positive, and the second N negative. Assuming the as yet

unknown matrix T , which para-unitarily diagonalises M, exists, the matrix U

may be defined as

U = KT −1E− 1
2 , (2.26)

where the matrices E± 1
2 are those with the entries of E (2.24) to the power ±1

2
.

This matrix may be proved to be unitary by the following calculation

U †U = E− 1
2

(
T −1

)†K†KT −1E− 1
2 = E− 1

2

(
T −1

)† MT −1E− 1
2 = E− 1

2EE− 1
2 = Î,

where Î represents a 2N standard identity matrix. Using properties of the Her-

mitian conjugate found in [135], it may be shown that U diagonalises the matrix

KĨK† according to the scheme

U †
[

KĨK†
]

U ≡ U−1UU †
[

KĨK†
]

UU † (U †)−1
= U−1

[

KĨK†
] (

U †)−1

= E 1
2T K−1

[

KĨK†
] (

K†)−1 T †E 1
2

= E 1
2T ĨT †E 1

2 = E 1
2 ĨE 1

2 = L,

where
(
T †)−1

= (T −1)
†
has been used, and overall shows that the resulting

diagonal matrix L has the first N entries those of E with the second N entries

the negative of those of E . The diagonal matrix E resulting from the para-unitary

diagonalisation of M (2.24) is simply found as E = ĨL.

Before providing a procedure for finding the form of the para-unitary matrix

T , it is important to show that it is indeed of this particular form. The para-

unitarity of the matrix T may be proved using the form of U , which defines
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T −1 = K−1UE 1
2 , as

(
T −1

)†
ĨT −1 = E 1

2U † (K†)−1
ĨK−1UE 1

2 = E 1
2U † (K†)−1

ĨK−1UE 1
2 = E 1

2L−1E 1
2 = Ĩ,

where the fact that KĨK† is Hermitian was used to find the form of L−1. Also

using the form of T found from U , it may be shown that T −1 diagonalises M

according to the scheme given in (2.24) as

(
T †)−1 MT −1 ≡

(
T −1

)†MT −1 = E 1
2U † (K†)−1 [K†K

]
K−1UE 1

2 = E .

So far, it has been shown that this scheme of para-unitary diagonalisation is

possible. In what follows the meanings of the steps detailed above are considered.

The Cholesky decomposition of the matrix M may be performed numerically,

as may the subsequent unitary diagonalisation of the matrix KĨK†. At this point,

it is likely that the eigenvectors which form the diagonalising matrix U need re-

ordering such that they form the matrix L. The form of the unitary matrix U

(2.26) may now be used to find the columns of T −1 using the equation UE 1
2 =

KT −1. This procedure may be simplified using the specific form of the matrix T ,

which will now be investigated. In order for the form of the linear transformation

from operators â to γ̂ to be of the form γ̂ = T â, the matrix T must transform

the γ̂† creation operators such that their composition is the exact Hermitian

conjugate of the annihilation operators γ̂. In order for this to be the case, T

must have the block form,

T =






P Q

Q∗ P ∗




 .

The inverse of a matrix with this block form may be formed simply using the
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property of a para-unitary matrix given in (2.25), which yields

T −1 =






P † − (Q∗)†

−Q† (P ∗)†






and shows that that only the first N columns of T −1 require calculation using

UE 1
2 = KT −1, with the second N being found using the block form above.

The calculation of the para-unitary matrix detailed here thus completes the

para-unitary diagonalisation of the quadratic part of the lattice Hamiltonian,

which is now written as

H ′
quad = −NΩ0 + γ̂†E γ̂,

and the focus now switches to removing the linear terms from the full Hamilto-

nian.

2.5.2 Removal of the Linear Terms

To obtain an exact diagonalisation of the system Hamiltonian (2.9), the linear

terms must be accounted for. The procedure detailed in this section follows that

originally proposed in [136], and will focus specifically on the lattice Hamilto-

nian. The linear part of the Hamiltonian must first be written in terms of the

â vectors containing both the creation and annihilation operators introduced in

the previous section

H ′
lin = −∆

2

N∑

i=1

(

â†i + âi

)

− 1

2

∑

i 6=j

Vij

(

â†i + âi

)

≡ ~J â+ â† ~J†,
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where the elements of the row vector ~J may be written as

~Jr =







−1
4

(

∆+
∑N

r′ 6=r Vrr′
)

r ≤ N

−1
4

(

∆+
∑N

r′ 6=r−N V(r−N)r′

)

N < r ≤ 2N.

It should be noted here that the external factor of 1/4 is included as both the

creation and annihilation operators appear in each of the vectors â and â†.

Following such a re-writing of the linear part, the procedure detailed in the

previous section which diagonalises the quadratic part of the Hamiltonian may

be performed on all the terms. This performs the transformation

H ′ = E0 −NΩ0 + â†T † (T †)−1 MT −1T â+ ~JT −1T â+ â†T
(
T †)−1 ~J†

= E0 −NΩ0 + γ̂†E γ̂ + ~JT −1γ̂ + γ̂† (T †)−1 ~J†,

where, as before,
(
T †)−1 MT −1 = E . The next step is to make an element-wise

shift of the γ̂ vectors,

γ̂ = β̂ + t and γ̂† = β̂† + t†,

where the entries of t are complex numbers, which may be inserted into the full

Hamiltonian to yield

H ′ =E0 −NΩ0 + β̂†Eβ̂ + β̂†
(

Et+
(
T †)−1 ~J†

)

+
(

~JT −1 + t†E
)

+ t†Et+ ~JT −1t+ t†
(
T †)−1 ~J†,

and leaves the bosonic commutation relations unaffected. The choice of the vector

which shifts the bosonic operators may be made such that it removes the terms

linear in the bosonic operators from the Hamiltonian. This cancellation requires
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satisfying the condition

Et+
(
T †)−1

= 0

and may be achieved by defining the elements as

tr = −

[(
T †)−1 ~J†

]

r

Err
and t†r = −

[

~JT −1
]

r

Err
.

With this definition made, the linear shift of the operators completely removes

the linear terms from the full Hamiltonian, such that it may be written as

H ′ = E0 −NΩ0 + β̂†Eβ̂ + t†Et+ ~JT −1t+ t†
(
T †)−1 ~J†. (2.27)

The final step of the procedure is to put the Hamiltonian into fully diagonal

form. The Hamiltonian where the linear terms have been removed (2.27) is in

terms of vectors containing both the creation and annihilation operators, such

that terms of the form β̂iβ̂
†
i are still present. Taking into account that the second

N entries of the diagonal matrix E are the same of the first N , an N ×N matrix

E 1
2
whose diagonal entries are the first N entries of E is defined. This allows the

diagonal part of the Hamiltonian to be put into conventional form as

β̂†E β̂ ≡
N∑

j=1

[(

E 1
2

)

jj
β̂†
j β̂j +

(

E 1
2

)

jj
β̂jβ̂

†
j

]

=
N∑

j=1

[(

E 1
2

)

jj
β̂†
j β̂j +

(

E 1
2

)

jj

(

1 + β̂†
j β̂j

)]

=
N∑

j=1

(

E 1
2

)

jj
+ 2

N∑

j=1

(

E 1
2

)

jj
β̂†
j β̂j,

where the commutation relations have been used to put the relevant operators

into normal order. The final expression for the exactly diagonalised Hamiltonian
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may be written as

H ′ = E0 −NΩ0 + t†Et+ ~JT −1t+ t†
(
T †)−1 ~J† +

N∑

j=1

(

E 1
2

)

jj
+ 2

N∑

j=1

(

E 1
2

)

jj
β̂†
j β̂j

and may be used as a measure of the accuracy of the diagonalisation used in the

strong driving regime.

2.5.3 Validity of the Strong Driving Solutions

In this final section concerning the exact diagonalisation of the lattice Hamilto-

nian, the state energies found in the strong laser driving regime will be compared

with those found from the exact diagonalisation. A comparison of the energies

found using the two approaches for an Lsq = 10 square lattice with ∆ = 0 may be

seen in Fig. 2.14. In this figure the energy offset E0 has been neglected in both

cases, which sets the zero excitation state to have energy zero and allows the

manifold separation of approximately 2Ω0 predicted in the strong driving regime

to be seen. Qualitatively, this figure shows that the two spectra converge as the

ratio Ω0/V
nn increases, which is to be expected. For the smallest laser driving,

shown in Fig. 2.14(a), the whole of the strong laser driving regime spectrum is

shifted up in energy from that of the exact diagonalisation calculation by approx-

imately 3Ω0. Of course, the strong laser driving calculation is not expected to

deal with a situation where the laser driving and atomic interactions are of the

same order, therefore such a difference is expected. Close inspection also shows

that the internal structure of the manifold is different in the two cases. Increasing

the ratio of Ω0/V
nn, as seen in Fig. 2.14(b) and (c) shows that this overall offset

reduces as the strong laser driving regime becomes more valid. What these two

figures also show is that the internal structures of the manifolds are almost iden-

tical once Ω0/V
nn = 100. A final remark on this figure is that, as described in
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Figure 2.14: Figure showing how spectra of the singly excited manifold
compare for the strong laser driving regime (blue/left) and
exact diagonalisation (red/right) for an Lsq = 10 square
lattice. The three values of the laser driving are: (a)
Ω0/V

nn = 1, (b) Ω0/V
nn = 10 and (c) Ω0/V

nn = 100.

section 2.3.2, when the strong laser driving regime is valid both spectra suggest

quasi-degenerate manifolds separated by approximately 2Ω0 (as E0=0 here).

In order to quantify the difference in the spectra given by the strong driving

regime and the exact diagonalisation scheme, the average percentage error of the

states in the single excitation manifold is calculated. The percentage error for

each state of the manifold is carried out as
(
EED

1k
− ESD

1k

)
/EED

1k
× 100 where ED

and SD refer to the exact diagonalisation and strong driving regimes respectively.

The resulting averages for various lattice sizes and laser driving strengths are given

in table 2.1, and clearly show a trend of increasing inaccuracy as the lattice size

increases. The values given in the table show that the laser driving Ω0/V
nn > 10

in order for the strong driving regime calculation to be within 10% of the exact

diagonalisation regime for the lattice sizes considered here. Also, as is to be
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L
5 10 15 20 25

Ω0

V nn

5 1.38 6.12 15.36 31.6 60.97
10 0.34 1.47 3.45 6.4 10.47
25 0.054 0.23 0.549 0.975 1.546
50 0.014 0.058 0.134 0.243 0.383
100 0.0034 0.0145 0.0336 0.0606 0.0955

Table 2.1: Average percentage error of the strong laser driving single
excitation state energies for ∆ = 0 and different values Ω0/V

nn

and lattice sizes L =
√
N .

expected, the strong laser driving regime becomes more accurate as the laser

driving becomes more dominant. The trend that the strong driving regime is

less accurate the larger the lattice size is also to be expected, as the sources of

error come from terms depending on the atomic interactions and laser detuning.

As in the results presented here the laser detuning ∆ is set to zero, the error

comes purely from the atomic interactions, which are obviously greater for larger

lattices.

This section has detailed the numerical method which may be applied to

exactly diagonalise the lattice Hamiltonian (2.9), with a comparison of the results

from the two different methods provided. The low level of the errors given in table

2.1 justify confidence in the results detailed in the previous sections, which are

based on the strong laser driving calculation. Having shown this, the following

section details how to create quantum states of light using the collective excitation

states described in section 2.4.

2.6 Single Photon Sources

This section details how to create quantum states of light from the collective

excitation states which are thoroughly analysed in section 2.4. The description

given here is based on the schemes developed in [91] and explained for a one-
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dimensional Rydberg lattice in [93]. As the reader will discover, the states of light

generated are essentially mapped directly from the quantum collective excitation

state of the atoms in the lattice, therefore being quantum in nature themselves.

2.6.1 Mapping to a Stable State

The limited lifetime of the Rydberg atoms places time constraints on any further

manipulation of the collective state, which will be an issue for an experimental

setup. Therefore the collective excitations are mapped onto superpositions of the

two stable states |g〉 and |s〉 used previously in section 2.4 in order for tha atom

to photon mapping to be applied. This process is explained here.

Recalling that, as explained in section 2.3.1, the single site bosonic states

|0〉i and |1〉i = â†i |0〉i are equivalent to the single atom states |−〉i and |+〉i
respectively, using two laser pulses it is possible to perform the following mapping.

Inversion of the laser pulses given in the introductory part of section 2.4, such

that the π-pulse of the laser with Rabi frequency Ωrs is applied first followed by

the π/2-pulse of the laser with Rabi frequency Ωgs, performs the sequences

|0〉i ≡ |−〉i =
1√
2
{|g〉i − |r〉i}

τ2−→ 1√
2
{|g〉i − i |s〉i}

τ1−→ |g〉i

|1〉i ≡ |+〉i =
1√
2
{|g〉i + |r〉i}

τ2−→ 1√
2
{|g〉i + i |s〉i}

τ1−→ i |s〉i ,

such that the bosonic state |0〉i is mapped onto the atomic state |g〉i and |1〉i is

mapped onto i |s〉i. This sequence of laser pulses maps the bosonic excitations

onto the two atomic hyperfine ground states, and therefore may be used to store

the single and double collective bosonic excitations studied in the previous sec-

tions. In terms of the many-body atomic states, the single excitation state given
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in (2.16) may be written as

∣
∣
∣Ψ

(1)
k

〉

=
N∑

l=1

Ulkσ
(l)
sg |init〉 , (2.28)

with the double excitation state (2.17) similarly expressed as

∣
∣
∣Ψ

(2)
ij

〉

=
N∑

l,m=1

UliUmjσ
(l)
sg σ

(m)
sg |init〉 ,

where the operator σ
(k)
sg = |s〉k 〈g|.

2.6.2 The Atom-Light Hamiltonian

The storage of the collective excitation in a stable configuration using two hyper-

fine ground states, |g〉i and |s〉i, is detailed in section 2.6.1. In order to produce

quantum states of light from such atomic states, a third level of the atom is re-

quired, |a〉i, which, as illustrated in Fig. 2.15, forms a lambda scheme with the

Figure 2.15: Scheme for the mapping from a collective excitation state to
the photonic state. A laser with Rabi frequency ΩL couples
the states |s〉 and |a〉 off resonantly. The photon is then
released on the decay of the atomic level |a〉 to |g〉.

two ground states. The state in which the collective excitation is stored, |s〉i, is

coupled off resonantly to the auxiliary state |a〉i by the application of a classical

laser field with Rabi frequency ΩL, detuning ∆L and momentum kL. By care-

ful choice of the atomic levels used, the decay of the state |a〉i back to |s〉i may

be neglected, such that photons with momentum q are emitted into the electro-
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magnetic field when the state |a〉i decays to the atomic ground state |g〉i. A level

scheme of this nature is described in [91], which uses a cycling transition provided

by the rubidium 87 D2 line [137]. The basic idea of this scheme uses states where

a two-photon transition is required to take the atom from |s〉 to |a〉, such that a

single photon decay of the state |a〉 back to |s〉 is forbidden. However, the decay

of the atom from |a〉 to |g〉 is dipole allowed and thus photons may be emitted

on this transition. In 87Rb, suggested levels are |s〉 =
∣
∣52S1/2, F = 1,mF = 1

〉
,

|g〉 =
∣
∣52S1/2, F = 2,mF = 2

〉
and |a〉 =

∣
∣52P3/2, F = 3,mF = 3

〉
, where F rep-

resents the total angular momentum of the atom and mF is the total angular

momentum projection along z, which will allow the experimental procedures de-

tailed in [91] to be implemented.

For a single atom, the Hamiltonian of this system may be written as

H =ωs |s〉 〈s|+ ωa |a〉 〈a|+ ωg |g〉 〈g|+
∑

qλ

ωqλâ
†
qλâqλ

+ ΩL

[
e−i(kL·r−ωLt) |s〉 〈a|+ ei(kL·r−ωLt) |a〉 〈s|

]

+ (Ωem + Ω∗
em) (|g〉 〈a|+ |a〉 〈g|) , (2.29)

where the first three terms are the energies of the states |s〉, |a〉 and |g〉 respec-

tively. The operators â†qλ (âqλ) are the creation (annihilation) operators of the

qth mode of the photonic field with energy ωqλ and unit polarization vector êqλ,

(q · êqλ = 0), such that the fourth term describes the energy of the photons

in the electromagnetic field. The photonic operators follow the usual bosonic

commutation relations, expressed as

[

âqλ, â
†
q′λ′

]

= δq,q′δλ,λ′ .

The term on the second line describes the interaction of a two level atom with
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a linearly polarised classical laser field of Rabi frequency ΩL = ELdas/2 in the

rotating wave approximation, as derived in appendix B. The final term describes

the interaction of the atom with a quantized electromagnetic field, with effective

Rabi frequency to the mode ωqλ given by

Ωem =
∑

qλ

√
ωqλ

2ǫ0V
dga · eqλeiq·râqλ,

calculated from the quantized electric field derived in [129]. This expression

contains the normalisation volume V , the vacuum permittivity ǫ0 and the dipole

matrix element of the |g〉 → |a〉 transition, dga.

The mapping to the photonic state takes place when the atoms undergo the

transition |a〉 → |s〉 with the emission of a photon. This process may be described

under a particular parameter regime, which is detailed here. The first step is the

application of a unitary transformation which reduces the energy of the auxiliary

state |a〉 by an amount ωL. This unitary transformation is written as

Ua = eiωLt |a〉 〈a|+ |s〉 〈s|+ |g〉 〈g|

and, as explained in appendix C, may be used to find an effective Hamiltonian

H ′ for the system

H ′ = UaHU
†
a − iUa∂tU

†
a .

Application of this transformation to the initial Hamiltonian (2.29) yields the

transformed Hamiltonian

H ′ = (ωa − ωL) |a〉 〈a|+ ωs |s〉 〈s|+ ωg |g〉 〈g|+ ΩL

(
e−ikL·r |s〉 〈a|+ eikl·r |a〉 〈s|

)

+ (Ωem + Ω∗
em)
(
eiωLt |a〉 〈g|+ e−iωLt |g〉 〈a|

)
+
∑

qλ

ωqλâ
†
qλâqλ, (2.30)

which clearly shows the reduction in energy of the auxiliary state. The assump-
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tion is subsequently made that |∆L| ≫ ΩL, where ∆L = ωa − ωL is the detuning

of the laser frequency from the atomic transition frequency. Under this condition,

it may be assumed that the population of atoms in the auxiliary state is a con-

stant, allowing it to be adiabatically eliminated [127]. This process is detailed in

appendix D, where it can be seen to induce small shifts of the energies of the two

ground states (Hamiltonian (D.1)). Neglecting these small energy shifts, which

amounts to the approximation that the detuning is much greater than the Rabi

frequencies, the Hamiltonian may be approximated as

H ′ ≈ ωs |s〉 〈s|+ ωg |g〉 〈g|+
∑

qλ

ωqλâ
†
qλâqλ

− ΩL (Ωem + Ω∗
em)

∆L

(
e−i(kL·r−ωLt) |s〉 〈g|+ ei(kL·r−ωLt) |g〉 〈s|

)
. (2.31)

where the auxiliary level has been removed.

The next step in the simplification of this Hamiltonian is a second unitary

transformation, which increases the energy of the state |s〉 by energy ωL. The

unitary transformation which performs this increase in energy of |s〉 may be

written as

Us = e−iωLt |s〉 〈s|+ |g〉 〈g| ,

such that following the procedure for application of the transformation as in

appendix C, the Hamiltonian reads

H ′′ = ωL |s〉 〈s|+
∑

qλ

ωqλâ
†
qλâqλ −

ΩL (Ωem + Ω∗
em)

∆L

(
e−ikL·r |s〉 〈g|+ eikL·r |g〉 〈s|

)

where the bare energies of both the hyperfine ground states |g〉 and |s〉, ωg and

ωs respectively, have been set to zero.

To this point, the Hamiltonian has only described a single atom at position r

interacting with a laser. Extending to the case of multiple atoms, each at position
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rα, the atomic transition operator may be written as

σ̂α = |g〉α 〈s| ,

which may be shown to have the following commutation relations

[
σ̂α, σ̂β

†] = 0 if α 6= β

{
σ̂α, σ̂

†
α

}
= 1,

such that they obey neither bosonic or fermionic algebra. These operators may

be inserted into the Hamiltonian, which is extended to an N atom system to yield

H ′′ =
N∑

α=1

ωLσ̂
†
ασ̂α+

∑

qλ

ωqλâ
†
qλâqλ−

ΩL (Ωem + Ω∗
em)

∆L

N∑

α=1

(
e−ikL·rα σ̂†

α + eikL·rα σ̂α
)
.

Close inspection of this Hamiltonian reveals terms that do not conserve energy,

such as those where an atom becomes excited whilst emitting a photon and vice

versa, σ̂†
αâ

†
qλ and σ̂αâqλ respectively. Upon insertion of time evolution of the free

field and free atom operators [47], these terms may be neglected in the rotating

wave approximation under the assumption that the laser detuning is small. Under

this condition, removal of these terms from the Hamiltonian leaves it written in

the beamsplitter form seen in [92],

HBS =
N∑

α=1

ωLσ̂
†
ασ̂α +

∑

qλ

ωqλâ
†
qλâqλ

−
N∑

α=1

∑

qλ

(

Kqλe
i(q−kL)·rα âqλσ̂

†
α +K∗

qλe
−i(q−kL)·rα â†qλσ̂α

)

, (2.32)

where

Kqλ =

(
ΩL

∆L

)√
ωqλ

2ǫ0V
dga · eqλ,
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which, as explained in [91, 93], is essential for the atom photon mapping to be

calculated. This is referred to as a beam-splitter Hamiltonian as the atom-light

interaction (final) term describes the annihilation of an atomic excitation resulting

in the creation of a photonic excitation or vice-versa [48].

This section has detailed the steps and approximations made to form a beam-

splitter Hamiltonian, which describes the interaction of a three level system with

both a quantised and a classical field.

2.6.3 The Atom-Photon Mapping

This section provides an explanation of how the atom photon mapping comes

about and the approximations required for it to be valid. As in [126], the reader

is directed to the original work for the mathematical details of the derivation of

the operator determining the photonic modes into which light is emitted, [91,92].

The details provided here will give the reader sufficient knowledge to interpret

the results of when the mapping is applied to the two dimensional lattice systems

considered in this work.

The state of the system before the atom-photon mapping is applied may be

written as

|ψ(0)〉 = |Ψ〉at |0〉ph ,

where |0〉ph is the photon vacuum and the initial atomic state may be written as

|Ψ〉at =
∑

n1,...,nN

Ψn1,...,nN
σ̂†
n1
. . . σ̂†

nN
|0〉at ,

where |0〉at is the state where all atoms are in the ground state, |0〉at =
∏

i |g〉i, and

the coefficient Ψnα
is the coefficient of the atomic operator σ̂†

nα
, which performs the

transition |g〉nα
→ |s〉nα

. These coefficients therefore define the initial collective

excitation state of the system. As detailed in the previous section, the classical
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laser with Rabi frequency ΩL will transfer such an atomic state into a photonic

state after a period of time much greater than the lifetime of the auxiliary state.

The aim is thus to find an expression for the photonic state |Φ〉ph after the atomic

state has decayed

|ψ(t)〉 = Uph(t) |ψ(0)〉 = |0〉at |Φ〉ph ,

where Uph(t) = e−iHBSt is the time-evolution operator, withHBS as given in (2.32).

Using the fact that this operator is unitary (U †
phUph = I) and that it does not

affect the vacuum state (Uph(t) |vac〉 = |vac〉), which is that void of both atomic

and photonic excitations, |vac〉 = |0〉ph |0〉ph, the state of the system at time t

may be written explicitly as

|ψ(t)〉 =Uph(t) |ψ(0)〉

=
∑

n1,...,nN

Ψn1,...,nN

(

Uph(t)σ̂n1U
†
ph(t)

)

. . .
(

Uph(t)σ̂nN
U †
ph(t)

)

|vac〉 . (2.33)

The explicit expression for the state at time t (2.33) shows that it is defined

by the form of the transformed atomic operators, which may be written as

Uph(t)σ̂αU
†
ph(t) ≡

∑

qλ

gαqλ(t)â
†
qλ +

∑

β

hαβ(t)σ̂
†
β,

where gαqλ(t) and hαβ(t) are the coefficients of the photonic and atomic parts,

respectively. These coefficients are found by multiplying the expression from the

left by âqλ and σ̂β respectively and taking the vacuum expectation value, which

yields

〈

vac
∣
∣
∣ âqλUph(t)
︸ ︷︷ ︸

=âqλ(t)

σ̂†
α U

†
ph(t)

∣
∣
∣vac

〉

︸ ︷︷ ︸

=|vac〉

=
∑

q′λ′

gαq′λ′(t)
〈

vac
∣
∣
∣âqλ(t)â

†
q′λ′

∣
∣
∣ vac

〉

+
∑

β

hαβ(t)
〈
vac
∣
∣âqλσ̂β

†∣∣ vac
〉
= gαqλ(t)
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and

〈

vac
∣
∣
∣ σ̂βUph(t)
︸ ︷︷ ︸

=σ̂β(t)

σ̂†
α U

†
ph(t)

∣
∣
∣vac

〉

︸ ︷︷ ︸

=|vac〉

=
∑

qλ

gαqλ(t)
〈

vac
∣
∣
∣σ̂β(t)â

†
qλ

∣
∣
∣ vac

〉

+
∑

γ

hαγ(t)
〈
vac
∣
∣σ̂βσ̂γ

†∣∣ vac
〉
= hαβ(t),

where the fact that states of differing excitation number are orthogonal has also

been used. For times much greater than the atomic decay time, t ≫ τ = 1/Γag

(where Γag is the decay rate of the atom from |a〉 to |g〉) the state will be purely

photonic and therefore the atomic coefficient hαβ(t ≫ τ) = 0. The atom-photon

mapping may therefore, in the limit of long times, be expressed as the unitary

transformation

Uph(t)σ̂
†
αU

†
ph(t)

t≫τ
=
∑

qλ

gαqλ(t)â
†
qλ,

such that the resulting state relies on the coefficients

gαqλ(t) =
〈
vac
∣
∣âqλ(t)σ̂

†
α

∣
∣ vac

〉
, (2.34)

which in turn depend on the time evolution of the photonic annihilation operator.

The first step to find the time dependency of the photonic annihilation oper-

ator is to find its equation of motion in the Heisenberg picture, the starting point

of which is [92]

˙̂aqλ(t) = i [HBS(t), âqλ(t)] ,

as the annihilation operator has no explicit time dependence. Calculation of this
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result may be written as

i [HBS, âqλ] = i
[ N∑

α=1

ωL

[
σ̂†
ασ̂α, âqλ

]

︸ ︷︷ ︸

=0

+
∑

q′λ′

ωq′λ′

[

â†q′λ′ âq′λ′ , âqλ

]

︸ ︷︷ ︸

=−â
q′λ′δq,q′δλ,λ′

−
N∑

α=1

∑

q′λ′

(

Kq′λe
i(q′−kL)·rα

[
âq′λ′ σ̂†

α, âqλ
]

︸ ︷︷ ︸

=0

+K∗
q′λe

−i(q′−kL)·rα
[

â†q′λ′σ̂α, âq

]

︸ ︷︷ ︸

=−σ̂αδq,q′δλ,λ′

)]

˙̂aqλ(t) =− iωqâqλ(t) + i
∑

β

K∗
qλe

−i(q−kL)·rβ σ̂β(t), (2.35)

where in the second step the position index has been changed to β such that there

are no duplicate indices when the expression is later substituted into that for the

gαqλ coefficients, (2.34). The choice was also made in the first step to neglect the

notation showing that the operators are functions of time, for aesthetic reasons,

though they are re-inserted in the final step. Solution of this differential equation

yields

âqλ(t) = e−iωqλtâqλ(0) + iK∗
qλ

∑

β

e−i(q−kL)·rβ
∫ t

0

dτ e−iωqλ(t−τ)σ̂β(τ),

which may be substituted into the expression for the photon state coefficients

(2.34) to yield

gαqλ(t) = iK∗
qλ

∑

β

e−i(q−kL)·rβ
∫ t

0

dτ e−iωqλ(t−τ)
〈
vac
∣
∣σ̂β(τ)σ̂

†
α

∣
∣ vac

〉
. (2.36)

Therefore, the coefficients describing the generation of the photonic state from

the collective excitation have a dependence on the time evolution of the atomic

annihilation operator.
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Atomic Operator Evolution in the Low Excitation Limit

This section outlines how the time evolution of the atomic operators may be

derived in the low excitation number limit in which the initial system will be. Such

a derivation is provided in [91, 93], which also give details of the full derivation

which is not in this limit [92, 138].

As discussed thoroughly in section 2.4, the excitation regime detailed here is

reliable only for those states where the number of excitations in the system is

low. Using the matrix form of the atomic transition operators, the commutation

relations may be shown to be

[

σ̂α, σ̂
†
β

]

= δα,βσ̂z ≡ −δα,β
(

Î− 2n̂(s)
α

)

,

where n̂
(s)
α is the number of atoms in the state |s〉 at site α. Now, under the

approximation that the system is limited to the subspace where the excitation

number is much lower than the number of sites of the lattice, the expectation

value
〈

n̂
(s)
α

〉

≪ 1. The commutation relations may therefore be approximated as

those of bosons
[

σ̂α, σ̂
†
β

]

≈ δα,β,

such that the atomic transition operators may be replaced by bosonic operators

σ̂†
α → ĉ†α and σ̂α → ĉα.

Under this approximation, the coefficients describing the creation of photons from

the atomic state (2.36) may be written as

gαqλ(t) ≈ iK∗
qλ

∑

γ

e−i(q−kL)·rγ
∫ t

0

dτe−iωqλ(t−τ)
〈
vac
∣
∣ĉγ(τ)ĉ

†
α

∣
∣ vac

〉
, (2.37)
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such that it is the time correlation function of the bosonic operators that defines

the photonic state created.

The time correlation function of the bosonic operator is calculated from the

time evolution of the operator itself. This is governed by the master equation

[92,138]

˙̂cγ(t) =
∑

α,β

[
e−ikL·rαβJαβ

(
ĉ†αĉγ ĉβ − ĉγ ĉ

†
αĉβ
)
+ eikL·rαβJ∗

αβ

(
ĉ†αĉγ ĉβ − ĉ†αĉβ ĉγ

)]

where all operators on the right hand side are taken to be at time t, rαβ = rα−rβ

and the matrix J , defined and explained in [93], contains details of multiple scat-

tering events. In short, this matrix defines an operator that accounts for light

scattering at multiple atoms as well as the interatomic dipole-dipole interactions

and depends mainly on the relative orientation of the atomic transition dipole

moments and the ratio between the interparticle separation and the wavelength

of the laser, a/λL [92]. The master equation is vastly simplified by the recog-

nition that it only contains one term which is not in normal order [123], the

rearrangement of which leads to

d 〈ĉγ(t)〉
dt

= −
∑

β

e−ikL·rγβJγβ 〈ĉβ(t)〉 ,

the equation of motion for the bosonic annihilation operator. To simplify the fol-

lowing steps the phase defined by the exponential is absorbed into the operators,

which yields
d
〈
ĉ′γ(t)

〉

dt
= −

∑

β

Jγβ
〈
ĉ′β(t)

〉
,

where ĉ′γ(t) ≡ eikL·rγ ĉγ(t). In order to solve this equation of motion, which allows

evaluation of the time correlation function seen in (2.37), the non-Hermitian
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matrix J is written in terms of its eigenvalues κ and the eigenvector matrix χ as

Jγβ =
∑

mn

χγnκnδmnχ
−1
mβ.

Defining the eigenmodes of J as

C
(α)
k (τ) =

∑

γ

χ−1
kγ

(
ĉ′γ(τ)ĉ

′†
α

)
,

the quantum regression theorem for the time correlation function of a bosonic

operator [139,140]

d
〈
ĉ′γ(τ)ĉ

′†
α

〉

dτ
= −

∑

β

Jγβ
〈
ĉ′γ(τ)ĉ

′†
α

〉
. (2.38)

may be used to find their equation of motion as

d
〈

C
(α)
k (τ)

〉

dτ
= −κk

〈

C
(α)
k (τ)

〉

.

The solution of this simple equation,

〈

C
(α)
k (τ)

〉

= e−κkτ
〈

C
(α)
k (0)

〉

,

is related to the time correlation function seen in (2.37), in such a way that it

may be used to find

〈
ĉ′γ(τ)ĉ

′†
α

〉
=
∑

k

χγk

〈

C
(α)
k (τ)

〉

=
∑

k

χγke
−κkτ

〈

C
(α)
k (0)

〉

=
∑

kl

χγke
−κkτχ−1

kl

〈
ĉ′l(0)ĉ

′†
α

〉
,
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such that

eikL·rγα
〈
ĉγ(τ)ĉ

†
α

〉
≡
∑

kl

χγke
−κkτχ−1

kl e
ikL·rlα

〈
ĉlĉ

†
α

〉

︸ ︷︷ ︸

=δlα

〈
ĉγ(τ)ĉ

†
α

〉
= eikL·rαγ

∑

k

χγke
−κkτχ−1

kα .

This result may thus replace the time correlation in the definition of gαqλ(t) (2.37)

such that it becomes

gαqλ(t) = iKqλe
−i(ωqλt−kL·rα)

∑

γk

e−iq·rγχγk

∫ t

0

e(iωqλ−κk)τdτχ−1
kα

= iKqλe
−i(ωqλt−kL·rα)

∑

γk

χγke
−iq·rγ e

(iωqλ−κk)t − 1

iωqλ − κk
χ−1
kα . (2.39)

The final step in the derivation is to apply the fact that the interesting regime is

that where t ≫ 1/Γag, and since the eigenvalues κ ∝ Γag, the exponential e−κkt

may be approximated as zero. In the limit of long times the final expression for

the light generation coefficients may be written

gαqλ(t) ≈ −iKqλe
−i(ωqλt−kL·rα)

∑

γ,k

e−iq·rγ χγkχ
−1
kα

iωqλ − κk
, (2.40)

which may now be used to find the angular photon distribution.

2.6.4 The Angular Density Matrix of the Single Photon

State

This section concerns the description of the angular distribution of the emitted

photon when only a single atomic excitation is present in the system. Using the

bosonic operators given in the last section, the atomic state containing a single
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collective excitation may be written as

|ψ(0)〉 = |Ψ〉at |0〉ph =
N∑

j=1

ψj ĉ
†
j |0〉at |0〉ph ,

where the coefficient ψj describes the particular collective excitation. The corre-

sponding photonic state resulting after a large enough time may then be written

as

|ψ(t≫ τ)〉 = |0〉at |Φ〉ph =
∑

j,q,λ

ψjgjqλ(t)â
†
qλ |0〉at |0〉ph . (2.41)

The angular distribution of the state of the emitted photon is governed by the

angular density matrix per solid angle, which is defined as [91]

ρ(Ωq̂) =
V

(2π)3

∑

ν

∫ ∞

0

dq
〈
ψ(t≫ τ)

∣
∣â†qν âqν

∣
∣ψ(t≫ τ)

〉
q2, (2.42)

where |q| = q = ωqλ/c, is the modulus of the wavevector of the emitted pho-

tonic state. The expectation value of the final photonic state |0〉at |Φ〉ph may be

evaluated by insertion of its explicit expression (2.41) to yield

〈
â†qν âqν

〉
=
∑

j,k,λ

∑

j′,k′,λ′

ψjψ
∗
j′gjkλ(t)g

∗
j′k′λ′(t)

〈

ψ(t≫ τ)
∣
∣
∣âk′λ′ â†qν âqν â

†
kλ

∣
∣
∣ψ(t≫ τ)

〉

=
∑

j,j′

ψjψ
∗
j′gjqν(t)g

∗
j′qν(t).

Insertion of this expression for the expectation value and that of the photon

creation coefficients (2.40) into the density matrix per solid angle allows it to be

expressed as

ρ(Ωq̂) =

(
ΩL

∆L

)2
1

2ǫ0

d2ga
(2πc)3

∑

j,j′

eikL·(rj−rj′)ψjψ
∗
j′

∑

ν

(

d̂ga · eqν
)2

×
∑

γm
βn

χγmχ
−1
mj (χβn)

∗ (χ−1
nj′

)∗ Iγnβm(Ωq̂),
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with

Iγnβm(Ωq̂) =

∫ ∞

0

e−i
ωqν
c

q̂·(rγ−rβ)

(κ∗n + iωqν)(κm − iωqν)
ω3
qνdωqν (2.43)

where in these expressions the dipole matrix elements have been expanded as

dga = dgad̂ga under the assumption that the laser is linearly polarised and the

transition matrix element is real, such that d̂ga is the unit vector in the direction

of the dipole transition.

The integral Iγnβm(Ωq̂) (2.43) is evaluated in [91] and as explained within is

justified in the limit where the time it takes for the collective excitation to decay

is much shorter than the time taken for light to pass through the extent of the

system. In [91], this condition is represented as Γn/c ≪ 1/L, where Γn is the

collective decay rate of the atomic state, c is the speed of light and L is the length

of the system. The worst case for the collective decay rate for the small systems

investigated here may be estimated from the descriptions given in this reference,

where it can be seen to be comfortably valid. Note also that in this limit the

dependence of the photon distribution on the wavelength of the atomic transition

is removed. The integral thus takes the form

Iγnβm(Ωq̂) =
2πω3

L

κ∗n + κm
e−i|kL|q̂·(rγ−rβ),

such that the full expression for the angular density matrix is found to be

ρ (Ωq̂) =
3Γag

4π

∑

j,j′

eikL·(rj−rj′)ψjψ
∗
j′

∑

ν

(

d̂ga · eqν
)2

×
∑

γ,m
βn

e−i|kL|q̂·(rγ−rβ)χγmχ
−1
mjχ

∗
βn

(
χ−1
nj′

)∗

κ∗n + κm
. (2.44)

This expression, though close to completion, may be further simplified by the
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introduction of the matrix

Bmj (Ωq̂) = χ−1
mj

N∑

γ=1

e−i|kL|q̂·rγχγm,

yielding

ρ (Ωq̂) =
3Γag

4π

∑

j,j′

eikL·(rj−rj′)ψjψ
∗
j′

∑

ν

(

d̂ga · eqν
)2∑

m,n

Bmj (Ωq̂)B∗
nj′ (Ωq̂)

κ∗n + κm
.

Converting this into matrix form simplifies the notation somewhat

ρ (Ωq̂) =
3Γag

4π

∑

ν

(

d̂ga · eqν
)2∑

j,j′

ψ̃†
j′

[
B† (Ωq̂)AB (Ωq̂)

]

j′j
ψ̃j

=
3Γag

4π

∑

ν

(

d̂ga · eqν
)2

ψ̃†B† (Ωq̂)AB (Ωq̂) ψ̃, (2.45)

where ψ̃j = eikL·rjψj and the elements of the matrix A are defined as

Anm =
1

κ∗n + κm
.

Finally, using the fact that the unit vector in the direction of the transition dipole

moment can be composed into three directions defined by the polarisation and

propagation vectors of the emitted photon (eq1, eq2 and q̂) as

(

d̂ga · eq1
)2

+
(

d̂ga · eq2
)2

+
(

d̂ga · q̂
)2

= 1,

the sum over the polarisation may be found as

∑

ν

(

d̂ga · eqν
)2

≡
[

1−
(

d̂ga · q̂
)2
]

.

Substitution of this representation of the sum yields the final expression for the
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angular density matrix per solid angle as

ρ(Ωq̂) =
3Γag

4π

[

1−
(

d̂ga · q̂
)2
]

ψ̃†B† (Ωq̂)AB (Ωq̂) ψ̃, (2.46)

which describes the probability of the photon being emitted into each direction

around the atomic ensemble and will be used in the following sections to calculate

the spatial distribution of the emitted photons.

2.7 The Emitted Photons

This section gives details of the single photon states that are produced from

the collective atomic excitations using the mapping described in the previous

section. The results for all three geometries are presented in this section, where

the systems have been set up such that there are many common features. Firstly,

it is considered that the lattices are in the xy-plane, with the atoms fixed perfectly

at the centre of each lattice site. Secondly, as can be ensured by appropriate

choice of the atomic levels, the dipoles of the atomic transition |g〉i → |a〉i are

aligned and perpendicular to the plane of the lattice, d̂ga ‖ ẑ. The third and

final parameter to be set is that of the laser momentum kL, which is also set

perpendicular to the plane of the lattice, kL ‖ ẑ. The fixing of these parameters

leaves the form of the photon distribution resting purely on the ratio between

the lattice spacing a and the laser wavelength λL. The following sections detail

the photonic distributions from each of the three lattice geometries when the

collective atomic excitation present is that with the highest transition intensity.

2.7.1 Square Lattice Emission

This section describes the angular photon distribution for four different ratios

a/λL. The initial atomic state and the resulting photonic states for an Lsq = 7



2.7 The Emitted Photons 90

square lattice are illustrated in Fig. 2.16, which shows that the ratio a/λL has

Figure 2.16: (a) Bosonic position expectation for the state |1N 〉. (b-e)
The angular photon distributions for Lsq = 7 square lattices
with: (b) a/λL = 0.1, (c) a/λL = 0.25, (d) a/λL = 0.95, (e)
a/λL = 1.2. The red arrow represents the direction of the
photon mapping laser, which is perpendicular to the lattice
plane in the top row and out of the page in the bottom row.

a dramatic impact on the photonic state produced. The smallest illustrated ra-

tio a/λL = 0.1, shown in 2.16(a), produces a slightly perturbed dipole emission

pattern. This is due to the fact that the atoms couple to the field as almost

a single degree of freedom, as indeed the whole lattice will actually fit within

a single wavelength of the laser. However, the ratio and size of the lattice are

clearly sufficient to alter the dipole emission pattern such that the lattice geom-

etry leaves its mark, making the distribution square in appearance. When the

ratio is reduced to a/λL = 0.05 a standard circular dipole emission pattern is

seen, therefore the lattice geometry has no effect. Increasing the ratio of inter-

particle spacing to wavelength to a/λL = 0.25, the distribution for which is seen

in Fig. 2.16(c), changes the photon emission profile into that where the photon

is emitted into a superposition of directions that form two cone-shaped beams.

Here the information about the geometry of the lattice is mapped into the shape

of the two conical distributions, which, upon closer inspection, have square bases.

There is a relatively large gap in the ratio a/λL to the next distribution shown,
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a/λL = 0.95. This choice was made as the majority of the intermediate ratios

merely show a crossover between the two regimes, the low ratio cones gradually

reducing in intensity while the four perpendicular beams seen in 2.16(d) gain in

prominence. The result shown in Fig. 2.16(d) once again shows that the lattice

geometry is imprinted on the photonic state, with the four beams emitted perpen-

dicular to the sides of the lattice. Furthermore, the beams are also perpendicular

to the incident photon mapping laser, which will avoid problems with noise in

the photon detection process. The final panel of the figure, Fig. 2.16(e), shows

the photonic angular distribution when the minimum interparticle separation is

greater than the mapping laser wavelength. This shows a similar distribution to

that where a/λL = 0.95, though the four emitted beams are now split in two. In

this case, the distribution will be given by the interference of the emission from

a regular array of dipoles, which are coupled independently to the laser.

This section has detailed the results for photon emission from a square lattice

with the highest energy collective bosonic excitation initially present. The follow-

ing section details how the features seen here are also present in the triangular

lattice case.

2.7.2 Triangular Lattice Emission

The angular photon distributions for the Ltri = 7 triangular lattice with four

different ratios a/λL are shown in Fig. 2.17, along with the bosonic excitation

position expectation value of the initial atomic state, which has been chosen to

be that with the highest transition intensity, |1Ntri
〉. The result for the smallest

ratio of interparticle spacing to mapping laser wavelength, a/λL = 0.1, shown in

Fig. 2.17(b), shows once again a slightly altered dipole emission pattern. In this

triangular case, the shape of this near-dipole emission pattern includes features

related to both the external geometry of the system and the shaped formed by
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Figure 2.17: (a) Bosonic position expectation for the state |1Ntri〉. (b-e)
The angular photon distributions for Ltri = 7 triangular
lattices with: (b) a/λL = 0.1, (c) a/λL = 0.4, (d) a/λL =
0.9, (e) a/λL = 1.25. The red arrow represents the direction
of the photon mapping laser, which is perpendicular to the
lattice plane in the top row and out of the page in the
bottom row.

its neighbouring atoms. The internal triangular geometry of the system means

that the central sites have six neighbours, thus being surrounded by a regular

hexagon, as may be seen in 2.17(a). The emission pattern is an irregular hexagon

with three symmetry axes, which are oriented in line with those of the lattice

from which it is produced. An increase of the interparticle spacing to wavelength

ratio to a/λL = 0.4, as shown in Fig. 2.17(c), yields the emission pattern of

two pyramidal shaped beams which have a triangular base. As with the square

lattice, information about the geometry of the system is mapped into the emitted

photon. For ratios 0.4 < a/λL < 0.95, the emission pattern shows a mixture of

those shown in Fig. 2.17(c) and (d), with the two cones gradually decreasing in

amplitude while the three beams gain intensity. As seen in 2.17(d), there are very

small remnants of the conical beams visible, but the distribution is dominated

by three beams emitted perpendicular to both the sides of the lattice and the

mapping laser itself. What is also clear in this emission pattern is the emergence

of three further beams, which, although at this point are much lower in intensity

than the three main beams, appear to be emitted from the corners of the lattice.
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Indeed, in between a/λL = 0.95 and that seen in the final subfigure, 2.17(e), these

secondary peaks grow to an intensity equal to that of those which are emitted

from the sides of the lattice. Increasing the ratio to a/λL = 1.25 the peaks begin

to split in the z-direction. Further increase of the a/λL ratio (not shown) sees

the beams in Fig. 2.17(e) split into two separate beams that eventually become

perpendicular to each other, one 45◦ above the lattice plane and one 45◦ below

it. This final image suggests that the emission pattern becomes dominated by

the interference of individual dipole emissions arranged in a triangular lattice.

This section has shown that the emission patterns for the triangular lattice

rely on both its external geometry and how the atoms are arranged within. This

was not apparent in the square case as the central lattice sites always have neigh-

bours arranged in a geometry which is the same as the overall lattice shape. This

interplay is further highlighted in the following section, which details the emis-

sion from the lattice with the external geometry of a rhombus and a honeycomb

internal structure.

2.7.3 Hexagonal Lattice Emission

The final set of photon distributions presented are those from the hexagonal

lattice. The results for an Lhex = 11 hexagonal lattice are shown in Fig. 2.18,

where the first subfigure is the bosonic position expectation value of the single

excitation state with the highest energy. Once again, for very small ratios of

the interparticle spacing to the mapping laser wavelength, an emission pattern

closely resembling that of a single dipole is found. In this case it is the external

geometry of the lattice which dominates, such that the dipole emission pattern is

distorted to the shape of a rhombus. Increasing the interparticle separation in the

hexagonal lattice case does not yield the emission pattern of two cones that was

seen in both the previous cases. Instead, Fig. 2.18(c) shows four clearly defined
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Figure 2.18: (a) Bosonic position expectation for the state |1Nhex
〉. (b-e)

The angular photon distributions for Lhex = 11 hexago-
nal lattices with: (b) a/λL = 0.05, (c) a/λL = 0.3, (d)
a/λL = 0.65, (e) a/λL = 1.05. The red arrow represents
the direction of the photon mapping laser, which is perpen-
dicular to the lattice plane in the top row and out of the
page in the bottom row.

peaks, two from each face of the lattice. Further increase of the interparticle

spacing relative to the mapping laser wavelength such that a/λL = 0.65 produces

another interesting result, as seen in Fig. 2.18(d). In this case, there are six

highly focused beams emitted perpendicular to the mapping laser, each one in a

direction parallel to those along which nearest-neighbours of each lattice site lie.

This is in contrary to the beams previously seen emitted perpendicular to the

sides of the lattice, and is likely a result of the interplay between internal and

external geometries. The final subfigure, Fig. 2.18(e), shows a transition to where

the distribution appears as a number of interacting dipole emission patterns, as

was seen for the previous lattice geometries, and occurs when the atoms in the

lattice couple to the laser independently.

This section in particular has highlighted the complicated nature of the in-

terplay between the internal and external geometries of the lattice when the

collective excitations are used to generate single photons. It should be noted that

these emission patterns are the same as those that can be calculated for arrays
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of classical dipoles with the corresponding dimensions. Thus, there is nothing

inherently quantum about the emission patterns themselves, although the singly

occupied lattice system with a very small number of collective excitations present

is a quantum system and may be mapped onto quantum states of the light field.

2.7.4 Uncertainty in Atomic Position

Unfortunately, due to the finite strength of the atomic confinement and finite

temperature of any experiment, it is inevitable that perfect lattices are impos-

sible to achieve in practice. This section shows how taking into account the

uncertainty in the atomic positions affects the photonic state produced. To per-

form this calculation, the atoms are randomly distributed around the centres of

the lattice sites with a finite isotropic standard deviation, σ 6= 0. As a result,

the initial assumption that the width of the external atomic wavefunction was

negligible compared to the interparticle separation, σ/a → 0, breaks down. Ex-

amples of the results obtained when the atoms are randomly distributed about

the centres of an Lsq = 7 square lattice of a/λL = 0.95 can be seen in Fig. 2.19,

which shows the possible differences to those of the perfect trapping case seen in

Fig. 2.16(b). The lowest standard deviation of the atoms about the centre of the

lattice sites, seen in Fig. 2.19(a), shows that the atomic state is very close to that

of the perfect trapping case (2.16(b)) and therefore the photonic state varies very

little. In the second figure, 2.19(b), the standard deviation of the distribution

is doubled to σ/a = 0.05, and is seen to greatly affect the collective excitation

state. However, the photonic state produced by this distribution retains the qual-

itative features of the perfect distribution in that it still shows four perpendicular

emitted beams. The examples of atomic distributions provided in 2.19(c) and

(d), showing σ/a = 0.075 and σ/a = 0.1 respectively, show that the distribution

of the emitted photonic state steadily diverges from that of the perfect trapping
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Figure 2.19: Examples of the atomic distributions and resulting photonic
states when the atoms are randomly distributed about the
centre of the sites of an Lsq = 7 square lattice with a/λL =
0.95 and (a) σ/a = 0.025 (b) σ/a = 0.05 (c) σ/a = 0.075
and (d) σ/a = 0.1. The red arrow represents the direction
of the photon mapping laser, which is perpendicular to the
lattice plane.

case. Whilst the perpendicular beams are retained up to this level of uncertainty,

they become increasingly noisy and asymmetric, which is to be expected.

The results for the square lattice are qualitatively representative of the other

lattices that have been considered, both of which retain their qualitative features

over this range of σ/a, but with increasing noise. Therefore this final section

shows a degree of robustness of the photonic states when certain elements of the

experimental uncertainty are introduced. It should be noted that the emission

pattern is expected to retain its qualitative features in the case where a small

number of lattice sites are completely unoccupied, though this case has not been

investigated.

2.8 Summary and Outlook

This chapter has shown how quantum states of light may be produced from col-

lective excitations stored in an atomic ensemble. Focus was at first placed upon

the situation where the laser driving is the dominant energy scale of the system.

Such a regime allows the atomic operators to be converted to bosonic operators
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via application of the Holstein-Primakoff approximation, such that the system

has a coarse energy spectrum formed of quasi-degenerate manifolds defined by

the number of bosonic excitations present. Following a description of how these

manifolds may be coupled by the application of an oscillating laser detuning, it is

shown that the excitation spectra are governed by conservation of the symmetry

properties of the initial state, which is in turn dependent on the lattice geome-

try. The validity of the solutions obtained in the strong laser driving regime are

then evaluated using a numerical exact diagonalisation technique, the derivation

of which is detailed. This shows that the two methods clearly converge when

the laser driving becomes dominant in the numerical approach, such that the

reliability of the results is confirmed. Attention then turns to the generation of

non-classical states of light from the obtainable collective excitation states, where,

after an extensive derivation, the angular photonic distributions are illustrated

for each of the three lattice geometries. A common theme to these distributions

is that the lattice geometry is essentially mapped into the photonic angular dis-

tribution. Furthermore, for certain parameter regimes the photonic distributions

are seen to be in directions strictly perpendicular to the lasers applied to the

system.

This work has shown that it is possible to map an atomic ensemble in a collec-

tive excitation state onto the state of a single photon, thus creating a determin-

istic source of single photons. One example where this ability to convert between

atomic and photonic states is a quantum network where the atomic states act

as quantum memories with photons transferring information between them [141].

Especially, this is a possible method to achieve one of the three requirements for

a distributed quantum computer networks outlined in [48], namely the retrieval

of a quantum state from an atomic memory.

There are a number of conceivable ways in which the work detailed here
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may be extended or taken in a different direction. Section 2.7 was concerned

only with the case where both the incident laser and the atomic dipoles are

aligned in a direction perpendicular to the lattice. Simple extensions to this

case may be envisaged as having the dipoles all aligned in one direction, but

not necessarily aligned with the readout laser and either or both not aligned

perpendicular to the lattice plane. These situations are all accounted for in the

equations given in section 2.6, but have not been considered here. One obvious

extension is to further increase the dimensions of the system to atoms trapped in

a three dimensional lattice, where the Holstein-Primakoff transformation allowing

solution of the Hamiltonian will still be valid. A completely separate extension to

this work would be the case of a lattice small enough such that only a single site

may be in the Rydberg state at any one time due to the Rydberg blockade [74].

This situation may guarantee that only a single collective excitation is present in

the lattice, though the relevant energy scales still require investigation.



Chapter 3

Rydberg State Control using

Electrons

3.1 Introduction and Background

The relentless drive to understand quantum many-body systems continually stim-

ulates research aiming to increase the accuracy and diversity of quantum state

control. One particular area where this is apparent is in those many-body sys-

tems made possible by high accuracy trapping and manipulation of ultracold

atoms [1]. Aiming to utilise these high degrees of control, ultracold atoms in

optical lattices [22] have formed the basis for a number of quantum computing

proposals [41–44]. These require two internal states of the atom being used to

form a quantum bit, which is the basis for storage, retrieval and processing of

quantum information [142]. Such proposals place stringent demands upon ones

ability to create and manipulate the quantum state of the system, this fact being

one of the driving forces behind the study of interfacing quantum systems with

solid state devices [79–83].

Atoms in Rydberg states [66] are frequently proposed as suitable candidates
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for quantum computation [69,85,143–145] and have proved exceptionally useful in

the study of the complex dynamics of many-body systems [74,87,96–98]. This is

down to the techniques that have been developed to precisely control the internal

state of the atom. The extreme sensitivity of these atoms to electromagnetic fields

is well documented [76–78] and their typical level spacings allow microwave fields

to be used to induce transitions between neighbouring Rydberg states [146,147].

While the use of microwave fields to alter the state of Rydberg atoms is a

very powerful technique, it has also been recognised that collisions between the

atom and various other particles may change the atomic state. A very detailed

report on theoretical descriptions of collisions between Rydberg atoms and both

charged and neutral particles may be found in [99]. Part of this report expands

upon previous work [100] detailing how collisions between Rydberg atoms and low

energy electrons may lead to changes in the orbital angular momentum state of

the atom. Whilst the problem of collisions between Rydberg atoms and electrons

has long been treated using classical Monte Carlo methods [148–150], with some

of the earlier results being used to produce analytic formulae for ionisation and

populations rates [151], it has not been until relatively recently that they have

been treated quantum mechanically [152]. Further to these theoretical descrip-

tions, Rydberg state changes have been observed experimentally in cold Rydberg

gases [153–155] where they are attributed to collisions with electrons which have

been released when a small proportion of the atoms ionise. This mechanism for

the formation of such an ultracold plasma is explained in the first of these three

references, [153]. The route which will be explored here is closely related to these

collisional ideas, but aims to actively control the state of the Rydberg atom. This

chapter thus describes how this control may be achieved using the interaction of

the Rydberg atom with a passing guided electron [156]. It will be shown that

this relatively simple technique may be used to excite the atom to a quantum
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state which has a permanent electric dipole, and that the required parameters

are achievable using current technology.

This chapter is structured as follows. Section 3.2 introduces the system and

the full form of its Hamiltonian. Section 3.3 gives a detailed description of a

preliminary investigation of the interaction inherent in the system, which is based

upon perturbation theory. This method is then superseded in section 3.4 by two

analytic techniques which, under certain assumptions, are capable of describing

the changing state of the atom with the passage of the electron. This section

concludes with an analysis of the results from these two methods. Inevitably with

such a complex system, a numerical analysis is required and this is described in

section 3.5, where a comprehensive analysis of the results for both rubidium and

lithium is provided. The final aspect of this research is found in section 3.6, which

describes how the analysis may be extended to a system of multiple trapped and

interacting Rydberg atoms, and concludes with the results for a two atom system.

The chapter concludes with a brief summary of the research presented, along with

a small number of possible extensions. This may be found in section 3.7.

3.2 System and Hamiltonian

The system considered here, shown in Fig. 3.1, is composed of two elements

and will serve as the basis for all the methods described in this chapter, with

any variations being described when necessary. The first element is an electron

confined to move in a single dimension, which defines the x-axis of the system.

The quantum state of such an electron can be written as a linear combination of

either the continuum of states in the position basis |x〉 or the continuum (when

the wire is considered infinite in length) of states in the momentum basis |k〉.

The second element of the system is an alkali atom trapped at a perpendicular

distance Y from the wire and initially in a |ns〉 Rydberg state (n ≫ 1) [66],
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Figure 3.1: A schematic of the system considered. A Rydberg atom is
trapped a distance Y from a quantum wire which directs a
single electron moving with momentum ki. This depiction
of the atom represents the fact that the atom may change
state on the passage of the atom, as detailed throughout this
chapter.

where n is the principal quantum number of the state and s represents that the

orbital angular momentum quantum number l = 0. Introducing also the magnetic

quantum number, m, with the quantisation in the z-direction, the set of atomic

states will be written as

|α〉 = |nlm〉 = Rnl(r)Y
m
l (θ, ϕ)

where Rnl are the radial wavefunctions specific to the atomic species in question

and Y m
l are the spherical harmonic functions. Note that in writing the atomic

states in this form, the fine structure splitting brought about by the spin orbit

interaction [157] has been neglected, which is justified towards the end of section

3.3.2. In writing the atomic states in this hydrogenic form a simplified model

of the Rydberg atom is assumed, where it consists of a single valence electron

and a positive core formed by the atomic nucleus and the other bound electrons.

The distance between the free electron and the centre of mass of the atom is

~R = (x, Y, 0) and the relative coordinate of the valence electron and the nucleus

is ~r = (xa, ya, za).
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The Hamiltonian of the system has three terms,

H = HE +HA +Hint, (3.1)

and it should be noted that atomic units are to be used throughout this section,

the definitions of which can be seen in appendix A. In the momentum basis, the

Hamiltonian describing the one-dimensionally confined electron is written as

HE =

∫

dk
k2

2
|k〉 〈k| ⊗ IA, (3.2)

where k2/2 is the kinetic energy of the electron and IA =
∑

α |α〉 〈α| is the

identity operator on the atomic Hilbert space. The Hamiltonian of the atom can

be written as

HA = IE ⊗
∑

α

Eα |α〉 〈α| , (3.3)

where IE = (L/2π)
∫
dk |k〉 〈k| is the identity operator represented in the contin-

uum of 1D electron momentum states, L is the length of the wire within which

the electron is confined and Eα is the energy of the atomic state |α〉. The eigen-

states of the composite system before the interaction is introduced are written as

|k, α〉 = |k〉⊗|α〉 and have an associated energy Ek,α = Eα+ k2

2
. The Hamiltonian

describing the interaction between the two elements of the system is a Coulomb

potential, written as

Hint =
1

|~r − ~R|
− 1

|~R|
. (3.4)

This contains both the repulsive interaction between the electron in the wire

and the valence electron (first term) and the attractive interaction between the

electron in the wire and the atomic core (second term).

It is considered that the atomic trapping distance Y be on the order of mi-

crometres. Thus, when considering that the orbital radius of the valence electron
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may be estimated as 〈r〉 ≈ 3/2 × n2 [66], it can be approximated that for the

experimentally accessible Rydberg states (n = 90 demonstrated in [74]), Y ≫ |~r|

and a Taylor expansion of the interaction about |~r| = 0 may be performed. The

zeroth order term in the Taylor expansion of the first term in Hint (3.4) can be

shown to be 1/|~R|, and therefore to zeroth order Hint ≈ 0. Therefore the first

order expansion is performed and found to be

Hint ≈
x̂x̂a + Y ŷa

(x̂2 + Y 2)
3
2

=
1

2

[

(x̂a + iŷa)
x̂− iY

(x̂2 + Y 2)
3
2

+ (x̂a − iŷa)
x̂+ iY

(x̂2 + Y 2)
3
2

]

, (3.5)

which approximately describes the interaction between the two systems. In this

expression, x̂ is the position operator of the one-dimensionally confined electron

with x̂a and ŷa being the position operators of the valence electron relative to the

nucleus. The final form separates the wire electron position operators from those

of the valence electron and allows this interaction to be written in the atomic

basis,

Hint =
1

2(x̂2 + Y 2)
3
2

∑

αα′

[

µαα′(x̂− iY ) |α〉 〈α′|+ µ∗
α′α(x̂+ iY )|α′〉 〈α|

]

, (3.6)

where

µαα′ = 〈α|x̂a + iŷa|α′〉

are the dipole matrix elements of the transition |α〉 → |α′〉.

3.3 Preliminary Investigation

The investigation of this system begins under the assumption that the energy scale

of the interaction is much less than the energy scales of the individual systems.

This section details how perturbation theory [158] can be used to assess how the

energy levels of the system are changed with the introduction of the interaction.
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The first order corrections to the energy levels of the system are defined as

E
(1)
k,α = 〈k, α |Hint| k, α〉 ,

where Hint is defined in (3.6). These first order corrections may be shown to be

zero using the form of the dipole matrix elements provided in appendix E, which

show that in order for a dipole matrix element to be non-zero both the orbital

angular momentum and magnetic quantum numbers of the states involved must

be different by ±1. Obviously this cannot be the case for the diagonal elements

seen in the first order correction expression.

The second order corrections to the energy levels are worked out using

E
(2)
k,α =

∑

k′ 6=k
α′ 6=α

|〈k′, α′ |Hint| k, α〉|2
Ek,α − Ek′,α′

,

where, given that the interaction can indeed be taken as a perturbation, we are

interested only in the shift of the state |ns〉, in which the atom is initially prepared.

Therefore, the only states |α′〉 which contribute to this energy shift are those

where a transition from |ns〉 is allowed by Hint. As the interaction Hamiltonian

only allows dipole transitions, it may be written in the basis containing only

the initial atomic state, |ns〉, and the two p-states, |n′p+〉 (m = +1) and |n′p−〉

(m = −1), to which dipole transitions are allowed. There are no selection rules to

govern a change in principal quantum number, n. Taking this into account, the

interaction Hamiltonian may be written using the basis {|n′s〉 , |n′p+〉 , |n′p−〉}∀n′

as

H
(2)
int =

1

2(x̂2 + Y 2)
3
2

∑

n′,n′′

µn′n′′

[

(x̂− iY ) (|n′s〉 〈n′′p−| − |n′′p+〉 〈n′s|)

(x̂+ iY ) (|n′′p−〉 〈n′s| − |n′s〉 〈n′′p+|)
]

, (3.7)
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where

µn′n′′ = ±〈n′s |xa ± iya|n′′p∓〉 = ±〈n′′p∓ |xa ∓ iya|n′s〉

are the transition dipole matrix elements between the |n′s〉 and |n′′p〉 states.

The electron is assumed to be confined to a wire of length L, such that the

states which it may occupy are written as

〈x |k〉 =
1√
L
eikx, with k =

2πj

L

and j an integer. Taking the limit L → ∞ means that the possible values

of momentum which the electron may take become a continuum, therefore the

difference between them dk = 2π/L→ 0, and the sum over k′ may be turned into

an integral
∑

k′ → L/2π
∫
dk′ [159]. In this limit, the expression for the second

order correction to the energy levels is written as

E
(2)
k,α =

L

2π

∑

α′ 6=α

∫ ∞

−∞
dk′

∣
∣
∣

〈

k′, α′
∣
∣
∣H

(2)
int

∣
∣
∣ k, α

〉∣
∣
∣

2

Ek,α − Ek′,α′

. (3.8)

Expressions for the matrix elements
〈

k′, α′
∣
∣
∣H

(2)
int

∣
∣
∣ k, α

〉

may also be found ana-

lytically

〈

k′, n′p+

∣
∣
∣H

(2)
int

∣
∣
∣ k, ns

〉

= −µnn′

2L

∫ ∞

−∞
dx ei(k−k′)x x− iY

(x2 + Y 2)
3
2

= − iµnn′

L
F(k − k′)

〈

k′, n′p−

∣
∣
∣H

(2)
int

∣
∣
∣ k, ns

〉

=
µnn′

2L

∫ ∞

−∞
dx ei(k−k′)x x+ iY

(x2 + Y 2)
3
2

=
iµnn′

L
G(k − k′),

where

F(k − k′) = (k − k′)K0(Y |k − k′|)− |k − k′|K1(Y |k − k′|) (3.9)

G(k − k′) = (k − k′)K0(Y |k − k′|) + |k − k′|K1(Y |k − k′|) (3.10)
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and Kn is the nth modified Bessel function of the second kind. The functions

F(k − k′) and G(k − k′) are momentum space coupling functions between the

two states of the system, as the integral amounts to a Fourier transform of the

position space coupling found in Hint.

These expressions highlight a problem with such a perturbative approach.

There is the possibility that the second order correction (3.8) could diverge at the

point where Ek,p = Ek′,s provided that the momentum space coupling functions

F and G are non-zero for these momentum differences. This amounts to the

kinetic energy difference between the states of the electron being equal to the

energy difference between the atomic states which are coupled by the interaction.

Therefore, the validity of such a perturbative approach is questionable. However,

before abandoning this method, an investigation is carried out which limits the

kinetic energy to being much lower than the atomic energy level differences. This

is detailed in the following section.

3.3.1 The Born Oppenheimer Approximation

In this section the Born Oppenheimer approximation [160] is applied to the sys-

tem. In this context, it is assumed that the electron is travelling slowly enough

that the atomic energy shifts may be calculated as if it was fixed in position.

Therefore the energy shifts found are Stark shifts dependent upon the strength

of the electric field experienced by the atom due to the electron. Quantifying

this, the kinetic energy of the electron is restricted to being much less than the

energy gap between the initial state |ns〉 and any of the possible |n′p〉 states,

|∆En′p| = |En′p − Ens|, which avoids the points at which the second order pertur-

bation predicts a divergence. The position of the electron x is thus a quasi-static

variable which parameterises the effective interaction between the confined elec-

tron and the atom. The validity of this approximation rests on the assumption
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that the kinetic energy of the electron in the wire can be completely neglected.

To enforce this, HE is neglected from the Hamiltonian, resulting in an effective

Hamiltonian written as HBO = H
(2)
int (x) + HA, where H

(2)
int (x) = H

(2)
int with the

operator status of x̂ removed. The system then remains limited to the s- and

p-state subspace.

Assuming the atom is initially prepared in the state |ns〉, the second order

correction to its energy level may be written in the Born Oppenheimer approxi-

mation as

E(2)
ns (x) =

∑

n′,υ=±

∣
∣
∣

〈

n′pυ

∣
∣
∣H

(2)
int (x)

∣
∣
∣ns
〉∣
∣
∣

2

Ens − En′p

.

The number of states that need to be included in the summation in order to reach

convergence depends upon the choice of atomic species. Rubidium is taken here,

the spectrum and transition dipole moments of which can be seen in Fig. 3.2. The

(a) Absolute value of the radial transition
dipole elements µ55n′ for a rubidium atom.

(b) Spectrum of rubidium around the state
|55s〉.

Figure 3.2: Radial transition dipole elements |µ55n′ | and energy spectrum
for rubidium.

plot of the transition dipole moments, Fig. 3.2(a), is dominated by µ55 (µnn ≡ µn)

and µ55,54, which combined with the spectrum, Fig. 3.2(b), shows that only the

states |55p±〉 and |54p±〉 are going to contribute significantly to the shift of the

energy of |55s〉. Having also verified that the spectrum and form of the transition

dipole elements maintain a similar form for a wide range of principal quantum
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numbers (omitted), the important principal quantum number manifolds in these

energy shifts will be those of the initial n along with those of n−1. The expression

is then written as

E(2)
ns (x) ≈

1

2(x2 + Y 2)2

(

µ2
n

Ens − Enp
+

µ2
n,(n−1)

Ens − E(n−1)p

)

,

the maximum magnitude of which will clearly be found when x = 0, and will be

written as

Emax =
1

2Y 4

(

µ2
n

Ens − Enp
+

µ2
n,(n−1)

Ens − E(n−1)p

)

, (3.11)

the sign of this being evaluated in the following paragraph.

Turning once more to the properties shown in Fig. 3.2, it is clear that µn >

µn,n−1 and |Enp| > |En−1p|, with Enp > 0 and En−1p < 0 when offset such that

Ens = 0. This means Emax is actually a minimum when the atom is prepared in

the state |ns〉, which opens up the possibility of bound states of the atom and

electron system forming. Expanding about the minimum of E
(2)
ns to second order

we may write

E(2)
ns ≈ 1

2
ω2x2; ω =

√
2

Y 3

(

µ2
n

Ens − Enp
+

µ2
n,(n−1)

Ens − E(n−1)p

) 1
2

and assume that the lowest energy bound states are roughly one-dimensional

harmonic oscillator states with energy EnHO
= (nHO+1/2)ω [161]. Using quantum

defect calculations [162] and numerically generated rubidium wavefunctions, the

scalings of the quantities in the large brackets are estimated as follows; µn ≈

0.9n2, µn,(n−1) ≈ 0.8n2, ∆Enp = Enp−Ens ≈ 0.5n−3 and ∆E(n−1)p = E(n−1)p−Ens ≈

−0.6n−3. These allow the maximum value of the energy shift, Emax (3.11), to be

estimated as

Emax ≈ − 4

15

n7

Y 4
.
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An estimate of the harmonic trapping frequency ω can thus be found in the same

way, yielding

ω ≈ 4√
15

n
7
2

Y 3
,

which allows a rough estimate of the number of bound states possible as

nbound ≈ |Emax|
ω

− 1

2
≈ n

7
2

√
15Y 3

− 1

2
.

Using this approximation with principal quantum number n = 55 and Y = 2.5µm

the number of bound states may be estimated as nbound ≈ 6. Although this is

a low number, it acts only as an order estimate as the harmonic approximation

assumes the spectrum of bound states to be linear. These bound states can

be seen using numerical diagonalisation of the full problem when the electron

kinetic energy is very small. This simulation of the system shows 12 bound

states, double that predicted by the analytics. The six lowest energy numerically

calculated bound states along the x-direction, ψn(x), can be seen in Fig. 3.3.

Also included in this figure are the energy levels for a harmonic potential (dashed

lines) of the same depth, calculated using the energy difference between the two

lowest energy numerical bound states as the harmonic frequency ω. This shows

why more bound states are found than are predicted. The harmonic spectrum is

linear in its energy spacing, which gives the six equally spaced predicted bound

states seen in the figure. As the harmonic approximation breaks down, the bound

state energies become closer together and therefore more are possible.

The harmonic approximation appears to be valid for the low energy bound

states, which allows an estimate to be made for the characteristic timescale of

the trapped electron as

τE =
2π

ω
.

For the electron and atom to form a bound state this timescale must be much
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Figure 3.3: The six lowest energy bound states possible, ψn(x), and the
potential for a |55s〉 rubidium atom trapped Y = 2.5µm from
the electron wire. Dashed lines represent the energies for a
harmonic potential of this depth.

shorter than the lifetime of the Rydberg atom. An electron trapped by a |55s〉

rubidium atom at Y = 2.5µm has a characteristic timescale of τE ≈ 25ns, very

short considering that the lifetime of this atomic state is 191µs at zero tempera-

ture [163].

Having shown that it is possible to gain some understanding of the system

in the limit where the electron momentum is very small, the following section

details an analysis aimed at going beyond this approximation.

3.3.2 Beyond Perturbation Theory

It is expected that the passage of the electron could change the internal state of

the atom if its momentum were to change in order to conserve energy. In this

case, the kinetic energy of the electron cannot be neglected as it is a process

of this type which could cause the divergence in the second order perturbative
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energy correction. This section describes the solution of the time-independent

Schrödinger equation using the full system Hamiltonian, H (3.1), an approach

that has recently been used to determine the fraction of atoms transferred to

higher angular momentum states in an interacting cold Rydberg gas [155]. The

state of the system will be written as

|Ψ〉 =
∑

n′,α

∫ ∞

−∞
dx ψn′α(x) |x, n′α〉 ,

where the position basis |x〉 is chosen as a convenient basis in which to express the

interaction and ψnα(x) is a continuous function describing the coefficients of the

component states |x, nα〉. The Schrödinger equation for such a state is written

as

E
∑

n′,α

∫ ∞

−∞
dx ψn′α(x) |x, n′α〉 =

∑

n′,α

∫ ∞

−∞
dx ψn′α(x)H |x, n′α〉 ,

where the eigen-equations for the coefficients may be obtained by multiplying

from the left by 〈x′, n′′α′|. The assumption is made that the atom is allowed to

make only a single transition from its initial state, |ns〉, thus limiting the basis

to only this initial state and the |n′p±〉 states. The eigenvalue equations are then

written as

E
∑

n′,α

∫

dx ψn′α(x) 〈x′ |x〉 〈n′′p+ |n′α〉 =
∑

n′,α

∫

dx ψn′α(x) 〈x′, n′′p+ |H| x, n′α〉

E
∑

n′,α

∫

dx ψn′α(x) 〈x′ |x〉 〈n′′p− |n′α〉 =
∑

n′,α

∫

dx ψn′α(x) 〈x′, n′′p− |H| x, n′α〉

E
∑

n′,α

∫

dx ψn′α(x) 〈x′ |x〉 〈ns |n′α〉 =
∑

n′,α

∫

dx ψn′α(x) 〈x′, ns |H| x, n′α〉 ,

where the integrals are over all x and in the third equation the fact that the only

possible s-state is the initial state (|ns〉) has been used. With knowledge of the

truncated basis interaction Hamiltonian provided previously (3.7), these three
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equations may now be written

Eψn′′p+(x) =

(

−∂
2
x

2
+ ∆En′′p

)

ψn′′p+(x)−
∑

n′

µn′n′′

2
A∗(x)ψn′s(x)

Eψn′′p−(x) =

(

−∂
2
x

2
+ ∆En′′p

)

ψn′′p−(x) +
∑

n′

µn′n′′

2
A(x)ψn′s(x)

Eψns(x) =− ∂2x
2
ψns(x) +

∑

n′

µnn′

2

(

A∗(x)ψn′p−(x)− A(x)ψn′p+(x)

)

,

where the initial state |ns〉 has been taken to have energy zero and A(x) represents

the position space coupling function

A(x) =
x+ iY

(x2 + Y 2)
3
2

.

The first two equations may be simplified using the fact that the only s-state in the

basis is that with principal quantum number n when using the single transition

approximation. Therefore, n′ in the first two equations may be replaced with

n. Converting to the basis |k, n′α〉, which diagonalises HA +HE, corresponds to

making the substitution

ψn′α(x) =
∑

k

Ck,n′α
eikx√
L

of discrete coefficients in the momentum space plane wave basis, yielding

E
∑

k

Ck,n′p+

eikx√
L

=

(

−∂
2
x

2
+ ∆En′p

)
∑

k

Ck,n′p+

eikx√
L
− µnn′

2
A∗(x)

∑

k

Ck,ns
eikx√
L

E
∑

k

Ck,n′p−

eikx√
L

=

(

−∂
2
x

2
+ ∆En′p

)
∑

k

Ck,n′p−

eikx√
L
+
µnn′

2
A(x)

∑

k

Ck,ns
eikx√
L

E
∑

k

Ck,ns
eikx√
L

=− ∂2x
2

∑

k

Ck,ns
eikx√
L
+
∑

n′,k

µnn′

2

(

A∗(x)Ck,n′p−−A(x)Ck,n′p+

)eikx√
L
,
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where n′′ has been replaced by n′ as the principal quantum number associated

with the p-states. Multiplying these equations by
∫ L/2

−L/2
dx e−ik′x/

√
L and con-

verting the sum over k into an integral (as explained in the introduction part of

section 3.3) transforms these equations to

ECn′p+(k
′) =

(
k′2

2
+ ∆En′p

)

Cn′p+(k
′)− µnn′

4π

∫

dk

∫

dx A∗(x)ei(k−k′)xCns(k)

ECn′p−(k
′) =

(
k′2

2
+ ∆En′p

)

Cn′p−(k
′) +

µnn′

4π

∫

dk

∫

dxA(x)ei(k−k′)xCns(k)

ECns(k
′) =

k′2

2
Cns(k

′) +
µnn′

4π

∫

dk

∫

dx
(
A∗(x)Cn′p−(k)− A(x)Cn′p+(k)

)
,

where the wire has been taken to be infinite in length and so the momentum

space coefficients have become continuous functions, and all integrals are over all

space or momentum. The integrals over x are now carried out to finally yield

ECn′p+(k
′) =

(
k′2

2
+ ∆En′p

)

Cn′p+(k
′)− iµnn′

2π

∫

dk F(k − k′)Cns(k)

ECn′p−(k
′) =

(
k′2

2
+ ∆En′p

)

Cn′p−(k
′) +

iµnn′

2π

∫

dk G(k − k′)Cns(k)

ECns(k
′) =

k′2

2
Cns(k

′) +
iµnn′

2π

∫

dk
(

F(k − k′)Cn′p−(k)− G(k − k′)Cn′p+(k)
)

,

where the definitions of F and G are given in equations (3.9) and (3.10), respec-

tively.

In order to find an analytic solution to these equations, it is important to

know the form of the momentum space coupling functions F and G. These can

be seen in Fig. 3.4, where it is clear that the peak value of F(k − k′) is found

at (k − k′) = −δFG whereas that of G(k − k′) is found at (k − k′) = δFG. It

has not been possible to find an analytic expression for δFG, though it is clear

that it changes with the value of Y . The assumption is now made that the

coefficients Cns(k
′), Cn′p+(k

′) and Cn′p−(k
′) vary very slowly over the width of
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Figure 3.4: A plot showing the form of F(k − k′) and G(k − k′) whose
peak values both occur at |k − k′| = |δFG |. Y = 1 here for a
clear scale. Atomic units are used here.

F(k− k′) and G(k− k′). The interpretation of such an approximation is that the

|k, ns〉 state is only coupled to those states where the atom is in a p-state and

the electron momentum varies by exactly ±δFG. The coupling functions are thus

approximated as the value of their integral in momentum space multiplied by a

delta function, written as

F(k − k′) ≈ − π

Y 2
δ[k − (k′ − δFG)]

G(k − k′) ≈ π

Y 2
δ[k − (k′ + δFG)]

where δ[k] is the Dirac delta function. This leads to

ECn′p+(k
′ + δFG) ≈

(
(k′ + δFG)

2

2
+ ∆En′p

)

Cn′p+(k
′ + δFG) +

iµnn′

2Y 2
Cns(k

′)

ECn′p−(k
′ − δFG) ≈

(
(k′ − δFG)

2

2
+ ∆En′p

)

Cn′p−(k
′ − δFG) +

iµnn′

2Y 2
Cns(k

′)

ECns(k
′) ≈ k′2

2
Cns(k

′)− iµnn′

2Y 2

(

Cn′p−(k
′ − δFG) + Cn′p+(k

′ + δFG)
)

where the momentum has been shifted from the previous equation such that Cns
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is always described as having the momentum k′. Final simplifications to be made

to this equation are the introduction of an effective detuning

∆k± = ∆En′p +
1

2

[
(k ± δFG)

2 − k2
]

and an effective coupling Ωeff = µnn′/(2Y 2), which allows the final form to be

found as

ECn′p+(k
′ + δFG) ≈

(

∆k+ +
k′2

2

)

Cn′p+(k
′ + δFG) + iΩeffCns(k

′)

ECn′p−(k
′ − δFG) ≈

(

∆k− +
k′2

2

)

Cn′p−(k
′ − δFG) + iΩeffCns(k

′)

ECns(k
′) ≈ k′2

2
Cns(k

′)− iΩeff

(

Cn′p−(k
′ − δFG) + Cn′p+(k

′ + δFG)
)

.

The points at which each detuning goes to zero (∆k± → 0) signify the points

at which the coupling to the respective state is expected to be maximum. The

results are intriguing, as the solution for the coupling to the state |n′p+〉, k+, is

found to be

k+ = −δ
2
FG + 2∆En′p

2δFG

whereas that for the state |n′p−〉, k−, is

k− =
δ2FG + 2∆En′p

2δFG
.

This shows that the incident direction of the electron effectively selects which

magnetic sublevel is most likely populated.

This system of equations may be solved analytically to find the eigenener-

gies and eigenstates of the system. This is done using Mathematica and so the

expressions are not easily presentable and are omitted here. A plot of how the

eigenenergies vary with the momentum of the electron can be seen in Fig. 3.5,
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where the basis has been limited to those states with the initial principal quantum

Figure 3.5: A plot showing how the energy eigenvalues of the system vary
with the electron momentum k. The quadratic dispersion
has been removed such that the avoided crossings are clearly
seen. This is for a |55s〉 rubidium atom trapped Y = 2.5µm
from the electron wire. Both the momentum and energies
are in atomic units.

number and the quadratic dispersion relation of the electron removed. The plot

shows avoided crossings (rather than divergences) around k± plus a third one at

k = 0. This indicates that atomic state mixing occurs around these points. The

third avoided crossing at k = 0 is also easily accounted for as both the p-states

have the same energy. Another point which can be gained from this analysis is

a measure of the strength of the coupling, which is calculated as the separation

of the energy levels at their closest point. For this system the strength of the

coupling is found to be 2Ωeff = µnn′/Y 2.

So far, it has been assumed that the fine structure splitting of the p-states

may be neglected as the electron couples the two fine structure states equally.

This figure for the coupling strength may be used to evaluate this approximation.

Clearly a real atom has fine structuring of its atomic levels brought about by
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spin-orbit coupling. The spin-orbit interaction leads to an increase in the energy

level of the p-states if the spin of the valence electron is ms = 1/2, whereas it

leads to a reduction in their energy if the valence electron has spin ms = −1/2.

The energies of each p-state shift by the same amount for a given spin of the

valence electron, which is due to the coupling of the electron spin coupling to the

orbital angular momentum l.

In order for the fine structure of the atom to be neglected, i.e. the coupling

is to that of the two fine structure states equally, it must be the case that the

coupling must be large compared to the energy spacing between the states. As

previously shown, the coupling between the s- and p-states is approximately 2Ωeff.

The fine structure splitting is found using the corrected result quoted in [164],

νfs =
(
86935.7(7)(n∗)−3 − 233.5(5)(n∗)−5

)
GHz

which reproduces the results given in [165]. Here n∗ is the effective principal

quantum number, defined as n∗ = n− δn,l,j, where δn,l,j is the quantum defect of

the atomic species. The simple inequality which governs when the fine structure

may be neglected is thus given as 2Ωeff ≫ νfs. Using the expression previously

quoted for Ωeff, the condition upon the initial principal quantum number for

rubidium may be shown to be n & 33.

This analysis has shown that there are specific values of electron momentum

for which the coupling to the atom changes its dispersion relation. Qualitatively

this signifies that at these points the electron and atom form a composite quantum

system, where a measurement of electron momentum could allow the state of the

atom to be inferred. Unfortunately, a numerical approach of the same form of that

which was successful for the bound states fails in the case of unbounded states.

Such a problem was encountered in a similar approach detailed in [166], and is due

to the fact that there are a continuum of possible states into which the system
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may be scattered. It is therefore troublesome to evaluate the approximation

that the coupling function is narrow compared to the scale on which the state

coefficients change. At this point this analysis is abandoned in favour of two

further analytical techniques, both of which are capable of predicting the final

state of the atom for a given momentum of the electron. What will become clear

is that both of the following procedures corroborate the prediction that incident

direction selects the preferred atomic magnetic sublevel.

3.4 Analytic Analysis

The aim of this work is to calculate how an electron travelling with a given initial

momentum ki can change the internal state of the atom. This section provides the

details of two analytical approaches, solution of the time-dependent Schrödinger

equation and a solution of the Lippmann-Schwinger scattering equation, which

are aimed at achieving this goal in the weak coupling limit. It will become clear

that the results of these two methods support each other, while both confirming

properties predicted in the preliminary investigation.

3.4.1 Time-Dependent Schrödinger Equation

The first approach detailed is not only analytically solvable under certain condi-

tions but will go on to form the basis of a numerical exploration of the system,

detailed in section 3.5. Here the solution of the time dependent Schrödinger

equation is detailed, the implications of which are represented once the result is

confirmed by the Lippmann-Schwinger scattering method. Taking the full Hamil-

tonian of the system H, the Schrödinger equation governing the dynamics of the
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system may be written as

i∂tψ(x, t) = Hψ(x, t),

where ψ(x, t) represents the composite wavefunction of the system. This function

can be written as

ψ(x, t) = f(x, t)eikx,

where f(x, t) is a spinor containing the envelope function corresponding to each

atomic state for the plane wave with momentum k. Upon application of the

system Hamiltonian, the Schrödinger equation becomes

i∂tf(x, t) = −1

2
∂2xf(x, t)− ik∂xf(x, t) +

[

V (x) +
k2

2

]

f(x, t),

in which the plane wave is a common factor to both sides, so has been removed,

and V (x) = HA +Hint with Hint as given in (3.6), such that the approximation

Y ≫ |~r| is taken. The appearance of k2/2 in the final term of the expression

may be neglected as it merely describes a universal shift of the system energies,

not depending on either x or t. The first term describes the dispersion of the

electron wavepacket, which may be neglected under certain conditions. Assuming

that the envelope function varies slowly with x, i.e. |∂2xf | ≪ |k∂xf |, the highest

order derivative in the previous expression may be neglected. This is the slowly

varying envelope approximation [167]. With the spreading term thus neglected,

the equation is finally written as

i∂tf(x, t) = −ik∂xf(x, t) + V (x)f(x, t). (3.12)

It is now possible to move to a frame of reference where the electron is at

rest, which is achieved by means of the unitary transformation U = e−kt∂x . Upon
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application of this transformation, the Schrödinger equation becomes

i∂tg(x, t) = U †V (x)Ug(x, t),

where g(x, t) = U †f(x, t). Using the fact that ∂†x = −∂x, the Baker-Campbell-

Hausdorff formula [168] is used to work out how V (x) is written in this frame.

The result is

U †V (x)U = V (x) + kt∂xV (x) +
1

2
k2t2∂2xV (x) + . . .

which one recognises a Taylor expansion of the potential V (x+kt). The problem

has thus been reduced to that of a stationary electron subject to a time dependent

potential,

i∂tg(x, t) = V (x+ kt)g(x, t). (3.13)

To further simplify this problem, contrary to the Lippmann-Schwinger ap-

proach (to be detailed in section 3.4.2), the assumption is made that the state

change of the atom does not change the momentum distribution of the electron.

This is equivalent to stating that the energy equivalent of the variance in mo-

mentum space of the electron wavepacket is much greater than the atomic state

energy difference ∆En′l′ = En′l′ − Ens. Thus the electron is insensitive to momen-

tum changes ∼
√
2En′l′ and so there is no back-action caused by the changes it

induces in the atomic state. This condition means that the state of the electron

is the same regardless of the state of the atom, allowing the separation

g(x, t) = ϑ(x)ϕ(t)

to be made, where ϑ(x) describes the time-independent shape of the electron

wavepacket and ϕ(t) describes the position-independent state of the atom. The
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electronic degree of freedom may now be traced out, leaving an equation for the

time evolution of the atomic state. This is performed as a multiplication by ϑ∗(x)

and an integral over position, yielding

i∂tϕ(t) =

∫

dx ρ(x)V (x+ kt)ϕ(t),

where ρ(x) = |ϑ(x)|2 such that
∫
dx ρ(x) = 1 for any normalised electronic

wavepacket. A final simplification to this equation is the assumption that the

trapping distance, Y , is much greater than the spatial width of the wavepacket,

∆x. This allows the electron to be treated as a point charge and the substitution

ρ(x) ≈ δ[x] to be made, where the atom is assumed to be trapped at x = 0. The

equation governing the dynamics of the atomic part of the system may thus be

written as

i∂tϕ(t) = V (kt)ϕ(t), (3.14)

and forms the basis of an analytical expression for the first order transition am-

plitudes in the weak coupling limit, explained in the following subsection.

The Weak Coupling Regime

The weak coupling regime is that where it can be assumed that the atom will only

undergo a single state transition. Once again, this means that the only possible

final states of the atom are |ns〉 and |n′p±〉. The interaction Hamiltonian (3.7),

where kt takes the place of x, therefore replaces V (kt) in (3.14). The atomic

spinor may be written for the coupling to a single n′ manifold as

ϕ(t) =









Cn′p+(t)

Cn′p−(t)

Cns(t)









,
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with Cn′p+(t), Cn′p−(t) and Cns(t) representing the coefficients of the atomic states

|n′p+〉, |n′p−〉 and |ns〉 at time t, respectively. This allows the Schrödinger equa-

tion for an electron travelling with momentum ki to be written as

i∂tϕ(t) =










∆En′p 0 −µnn′

2Y 2

kit/Y−i

[(kit/Y )2+1]
3
2

0 ∆En′p +
µnn′

2Y 2

kit/Y+i

[(kit/Y )2+1]
3
2

−µnn′

2Y 2

kit/Y+i

[(kit/Y )2+1]
3
2

+
µnn′

2Y 2

kit/Y−i

[(kit/Y )2+1]
3
2

0










ϕ(t),

where a common factor of Y has been extracted from the position space coupling

functions. This equation is now written in terms of the unitless momentum

κ = ki/(Y |∆En′p|) and time τ = |∆En′p| t,

i∂τϕ(τ) =









λn′ 0 −ηnn′F(τ)

0 λn′ +ηnn′F∗(τ)

−ηnn′F∗(τ) +ηnn′F(τ) 0









ϕ(τ), (3.15)

where

F(τ) =
κτ − i

[(κτ)2 + 1]
3
2

is the position space coupling function,

ηnn′ =
µnn′

2Y 2 |∆En′p|

is a measure of the coupling strength and

λn′ = ∆En′p/ |∆En′p|

is the sign of ∆En′p. The weak coupling regime is now clearly defined as the region

where ηnn′ ≪ 1.
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A set of coupled differential equations may be formed from (3.15),

iĊn′p+ = λn′Cn′p+(τ)− ηnn′F(τ)Cns(τ)

iĊn′p− = λn′Cn′p−(τ) + ηnn′F∗(τ)Cns(τ)

iĊns = ηnn′F(τ)Cn′p−(τ)− ηnn′F∗(τ)Cn′p+(τ),

which may be solved approximately in the weak coupling limit using the knowl-

edge that the atom is initially in the state |ns〉 and most likely remains there.

This is equivalent to the assumption Cns(τ) = 1 such that the first two of the

previous equations may be approximated as

iĊn′p+ = λn′Cn′p+(τ)− ηnn′F(τ)

iĊn′p− = λn′Cn′p−(τ) + ηnn′F∗(τ).

Using the knowledge that Cn′p±(−∞) = 0, the solutions of these equations are

Cn′p+(τ) = iηnn′eiλn′τ

∫ τ

−∞
F(τ ′)eiλn′τ ′

Cn′p−(τ) = −iηnn′eiλn′τ

∫ τ

−∞
F∗(τ ′)eiλn′τ ′

respectively. The transition amplitude is found by taking the absolute value

squared of these coefficients when τ → ∞, the result of which yields

σn′p± =
∣
∣Cn′p±(∞)

∣
∣
2
= 4

∣
∣
∣
ηnn′

κ2

∣
∣
∣

2
∣
∣
∣
∣
λn′

κ

|κ|K0

(
1

|κ|

)

∓K1

(
1

|κ|

)∣
∣
∣
∣

2

. (3.16)

Before detailing the implications of this result, a different derivation of it will

be performed as a confirmation, which uses the Lippmann-Schwinger scattering

equation and is detailed in the following section.
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3.4.2 Scattering Solution

The second of the two approaches treats the changing state of the system as

a scattering problem. As described in this section, this applies the Lippmann-

Schwinger equation [169], which will be shown to replicate the expression for the

transition amplitude (3.16) gained in the Schrödinger equation analysis. Due to

conservation of energy, on the event that the atomic state changes it is expected

that the kinetic energy of the electron changes accordingly, a situation which this

method treats very well (demonstrated in [170]). This method therefore treats

this as a scattering problem where the state of the scattering centre is changed

during the interaction.

First of all a general overview of this powerful approach is provided, such

that the reader has a template for the specific case to which it is subsequently

applied. It is required that both the non-interacting and interacting systems

share a continuous spectrum of eigenvalues, thus being written as

Ĥ0 |φ〉 = E |φ〉 and (Ĥ0 + V̂ ) |ψ〉 = E |ψ〉 ,

respectively. Assuming that this condition on the eigenvalues is satisfied, it must

also be ensured that the eigenstates of the interacting system |ψ〉 reduce to those

of the non-interacting system |φ〉 as the interaction strength V is reduced to zero.

The solution of this problem may be written

|ψ〉 = |φ〉+ 1

E − Ĥ0

V̂ |ψ〉 , (3.17)

where an infinitesimal imaginary quantity may be added to the denominator of

the second term in order to avoid divergences when operating on eigenstates of

Ĥ0. With this inclusion, this solution is the Lippmann-Schwinger equation and
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may be written as

|ψ〉 = |φ〉+ Ĝ0V̂ |ψ〉 , (3.18)

where

Ĝ0 = lim
ε→0

1

E − Ĥ0 + iε

is the Green’s function or single particle propagator, which ensures that the scat-

tered particle propagates away from the scattering centre [171]. Equation (3.18)

is solved approximately using an iterative method to yield the Born series. The

zeroth order approximation of this series is |ψ〉 = |φ〉, the first order approxi-

mation subsequently obtained when this is inserted into the right hand side of

(3.18). Inserting the result of the previous iteration as |ψ〉 in (3.18) an infinite

number of times yields the Born series

|ψ〉 =
∞∑

n=0

(

Ĝ0V̂
)n

|φ〉 .

The Born approximation truncates this series at n = 1, yielding

|ψ〉 = |φ〉+ Ĝ0V̂ |φ〉 (3.19)

and is valid when k is very large and/or the scattering is very weak, such that the

scattered wave can be considered a plane wave. Using the Born approximation

describes only first order scattering events, application of the next term in the

Born series allows the description of second order scattering and so on. This

current analysis focuses only on results gained using the Born approximation.

The result found when truncating the series at n = 2 for this system is given in

appendix F, where interpretations of each resulting term are provided.

This Lippmann-Schwinger scattering approach subject to the Born approx-

imation may now be applied to the current system. For this to be valid it is
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assumed that the channel which confines the electron is infinite in length, mean-

ing that both the non-interacting and interacting systems will have the same

eigenvalue spectrum provided by the continuum of possible electron kinetic ener-

gies. The non-interacting Hamiltonian in the general case may be identified here

as H0 = HA+HE and thus the interaction V = Hint. The normalised initial state

of the system, where the electron is far from the atom is

|φ〉 =
√

L

2π
|ki, ns〉 ,

where L is the length of the confining electron wire and the identity in momentum

space is as previously defined (Section 3.2). In order to find the wavefunction of

the final state of the system |ψ〉 in the position basis, the Lippmann-Schwinger

equation (3.19) is multiplied from the left by 〈x| such that it may be written as

〈x |ψ〉 = 〈x |φ〉 + 〈x |G0Hint|φ〉 .

Evaluation of this expression requires inserting both the position basis electron

Hilbert space identity, IE =
∫∞
−∞ dx |x〉 〈x|, and a decomposed version of the

atomic Hilbert space identity, IA =
∑

n,β |nβ〉 〈nβ|, twice. The result of this is

written

〈x |ψ〉 = 〈x |φ〉 +
∑

n′,n′′

β′,β′′

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′ 〈x |G0| x′, n′β′〉

× 〈x′, n′β′ |Hint| x′′, n′′β′′〉 〈x′′, n′′β′′ |φ〉 , (3.20)

where the Born approximation now provides a means to reduce the size of the

Hilbert space. The first step towards such a reduction is the calculation of

the overlap 〈x′′, n′′β′′ |φ〉 using both the orthogonality of the atomic states and
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〈x |k〉 =
√

1/Leikx. This reveals

〈x′′, n′′β′′ |φ〉 =
1√
2π
eikix

′′

δn′′,nδβ′′,s,

which allows the removal of the sums over β′′ and n′′ from (3.20), leaving

〈x |ψ〉 = 〈x |φ〉 +
∑

n′,β′

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′ 〈x |G0| x′, n′β′〉 〈x′, n′β′ |Hint| x′′, ns〉 eikix

′′

.

(3.21)

It has already been shown that only dipole transitions are allowed under the

action of Hint and therefore once again the interaction Hamiltonian in the basis

of only s and p states may be used (3.7).

Evaluation of the interaction Hamiltonian matrix element seen in (3.21) is

now carried out, where x̂ |x′′〉 = x′′ |x′′〉 and 〈x |x′〉 = δ[x− x′] are used to reduce

the full form of the Lippmann-Schwinger equation to

〈x |ψ〉 = 〈x |φ〉 + 1

2
√
2π

∑

n′,β′

µnn′

∫ ∞

−∞
dx′ 〈x |G0| x′, n′β′〉

×
[

δβ′,p−

x′ + iY

(x′2 + Y 2)
3
2

− δβ′,p+

x′ − iY

(x′2 + Y 2)
3
2

]

eikix
′

,

where the integral over x′′ has also been evaluated. Here the procedure outlined

in [172] for calculating matrix elements of the Green’s function is detailed for

the case of the system concerned. Applying a plane wave expansion the element

instantly becomes

〈x |G0| x′, n′β〉 = L

(2π)2

∫ ∞

−∞
dk′
∫ ∞

−∞
dk′′ 〈k′| ei(k

′x−k′′x′)

Ei −H0 + iε
|k′′, n′β′〉 ,

where Ei has been inserted to signify the energy of the initial state. The fact

that |k′′, n′β′〉 is an eigenstate of H0 with eigenenergy Ek′′,n′β′ = En′β′ + k′′2/2

can now be used along with the overlap of the momentum eigenstates, 〈k |k′〉 =
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(2π)/L× δ[k − k′], to reduce this expression to

〈x |G0| x′, n′β〉 = 1

2π

∫ ∞

−∞
dk′

eik
′(x−x′)

Ei − k′2

2
− En′β′ + iε

|n′β′〉 .

The final form of this matrix element must therefore be found using contour

integration, which starts by identifying the points at which the integrand diverges,

k′ = ±γ, where in this case γ =
√
2Ei − 2En′β′ + 2iε. The matrix element is thus

re-written as

〈x |G0| x′, n′β〉 = − 1

π

∫ ∞

−∞
dk′

eik
′(x−x′)

(k′ − γ)(k′ + γ)
|n′β′〉 . (3.22)

By definition, ε is an infinitesimal quantity, therefore a Taylor expansion of γ

using this fact yields

γ =
√

2Ei − 2Eβ + 2iε ≈
√

2Ei − 2Eβ +
iε

√
2Ei − 2Eβ

≈
√

2Ei − 2Eβ + iε,

within which the second step is a renormalisation of ε. Extension of k′ into the

complex plane, k′ = k′R+ ik
′
I, means that the exponential in the numerator of the

matrix element becomes eik
′
R(x−x′)ekI(x

′−x) allowing the contours to be identified.

The probability of a scattering event occurring must approach zero as |k′| → ∞,

as in this limit the time for such an event becomes infinitesimal. Such a condition

can be seen to rest on the imaginary part of k′. Considering x > x′ (x < x′),

then 〈x |G0| x′, n′β〉 → 0 for kI → ∞ (kI → −∞) and thus we must close the

contour on the upper (lower) half plane of the Argand diagram, thus encircling

only the pole at k′ =
√

2Ei − 2εEn′β′+iε
(
k′ = −

√
2Ei − 2εEn′β′ − iε

)
. The real

part of the integral must be in the positive direction, and so for x > x′ (x < x′)

this is achieved by an anti-clockwise (clockwise) contour. This integral may be

evaluated using Cauchy’s integral formula [173] and the Residue theorem [174],
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which are combined to form

∮

ζ

f(z)dz = 2πi
N∑

k=1

I(ζ, ak) lim
z→ak

(z − ak)f(z),

where ak is the kth pole of the function f(z), ζ is the contour to be integrated

over and I(ζ, ak) is the winding number of the contour about the pole, where the

anti-clockwise contours are defined positive. Application of this theorem to the

integral defined in (3.22) yields

〈
x
∣
∣G+

0

∣
∣ x′, n′β

〉
=− iei

√
2Ei−2En′β′ (x−x′)

√
2Ei − 2En′β

|n′β′〉

and

〈
x
∣
∣G−

0

∣
∣ x′, n′β

〉
=− ie−i

√
2Ei−2En′β′ (x−x′)

√
2Ei − 2En′β

|n′β′〉

for the positive and negative poles respectively. Knowing the regions where these

two solutions are valid, x > x′ (x < x′) for the positive (negative) poles, a single

expression for the matrix element may be expressed as

〈x |G0| x′, n′β〉 = − ie
i
√

2Ei−2En′β′ |x−x′|
√

2Ei − 2En′β′

|n′β′〉 , (3.23)

which ensures that the propagation of the particle after the scattering event is

from x′ to x, as is required for a physically viable result.

With the realisation that in (3.23), the condition x > x′ (x < x′) amounts

to an electron scattered in the positive (negative) x-direction, it is important

to note the direction in which it is initially travelling. With this in mind, the

modification is made that the initial momentum is written as λ |ki|, where λ =

sign(ki) and λ = +1(−1) signifies an electron initially moving in the positive

(negative) x-direction. This makes it necessary that the reflection (transmission)
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of the electron be included in the expression using the index σ = −1 (σ = +1).

With these inclusions, the full expression of the Lippmann-Schwinger equation

may be written

〈x |ψ〉 = 〈x |φ〉 − i

2
√
2π

∑

n′,β′

µnn′eiλσkfx

kf

∫ ∞

−∞
dx′eiλ(|ki|−σkf )x

′

×
[

δβ′,p−

x′ + iY

(x′2 + Y 2)
3
2

− δβ′,p+

x′ − iY

(x′2 + Y 2)
3
2

]

,

where kf =
√
2Ei − 2En′β′ , whose physical interpretation will be explained shortly.

The integral over x′ thus amounts to a Fourier transform of the coupling in real

space, leading to its momentum space equivalent. Such integrals have already

been carried out in section 3.3, the change here being the argument of the expo-

nential has changed to iλ(|ki| − σkf )x
′. These integrals just yield the twice the

imaginary unit multiplied by the familiar F and G functions ((3.9) and (3.10))

with the argument (k−k′) replaced by (λ(|ki|−σkf )). This completes the deriva-

tion of the scattered part of the equation.

The unscattered part of the equation (the simple 〈x |φ〉) now using |φ〉 =
√

L/2π
∣
∣λ |ki| , ns

〉
is straightforward to evaluate, yielding

〈x |φ〉 =
1√
2π

∑

n′,β′

eiλ|ki|xδn′,nδβ′,s |n′β′〉 ,

which confirms that both the momentum of the electron and state of the atom

remain unchanged. The final state of the system may thus be written as

〈x |ψ〉 =
1√
2π

∑

n′,β′

λ,σ=±1

[

eiλ|ki|x δn′,n δβ′,s + µnn′

ei(λσkf )x

kf

{

δβ′,p−G
(

λ(|ki| − σkf )
)

− δβ′,p+F
(

λ(|ki| − σkf )
)
}]

|n′β′〉 , (3.24)



3.4 Analytic Analysis 132

where the scattered part shows that the electron is left with momentum kf if the

state of the atom is changed as it passes by, which is easily shown to conserve

energy. Using this equation, it is possible to find the probability that the atom

will make a transition from the initial state to one of the p-states. This transition

amplitude is calculated as the square of the scattering amplitude, which is the

amplitude of the outgoing wave relative to the ingoing wave. The transition

amplitude to any state |n′p〉 is thus written as

σn′p =

∣
∣
∣
∣

〈x, n′p |ψ〉
〈x, ns |φ〉

∣
∣
∣
∣

2

.

Calculating the transition amplitudes to the p+- and p−-states of the atom yields

σn′p± =

∣
∣
∣
∣

µnn′

kf

∣
∣
∣
∣

2 ∣
∣
∣ (λ(|ki| − σkf ))K0 [Y |λ(|ki| − σkf )|]

∓ |λ(|ki| − σkf )|K1 [Y |λ(|ki| − σkf )|]
∣
∣
∣

2

, (3.25)

where it is clear that the only difference between the amplitudes to the different

magnetic states is the sign of one of the Bessel functions.

First of all, it is prudent to note that upon investigation of this result, the

probability for a an electron to be reflected upon its interaction with the atom

is nothing more than infinitesimal. This is most likely due to the fact that the

Lippmann-Schwinger equation deals only with situations in which the momentum

of the scattered particle is high, such that the potential is smooth on the scale of

its associated wavelength. The index representing transmission and reflection, σ,

is hereafter set such that the reflection is neglected.

There is one final approximation that can be made to (3.25), which will make

it more general. The assumption ∆En′p = En′p − Ens ≪ k2i is made such that

a Taylor expansion of kf yields kf ≈ |ki| − ∆En′p/ |ki| to first order. This is a

clearly valid assumption, as when considering a |55s〉 rubidium atom the energy
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gap ∆E55p ≈ 3.415 × 10−6Eh equates to an electron kinetic energy of a mere

0.09meV. Typical energies of the guided electrons described in [156] are 1 to 10

eV, but the authors describe a goal of reducing the lower limit of this range. Then

using κ = ki/(Y∆ |En′p|) the expression can be written

σn′p± ≈
∣
∣
∣
∣

µnn′

Y 2∆En′pκ2

∣
∣
∣
∣

2 ∣
∣
∣
∣

κ

|κ|
∆En′p

|∆En′p|
K0

(
1

|κ|

)

∓K1

(
1

|κ|

)∣
∣
∣
∣

2

, (3.26)

which takes into account the two possible incident directions along with the fact

that ∆En′p can change sign for changing n′. This result then describes the final

population of the |n′p±〉 states. The prefactor is recognised as 4× η2nn′ × 1/ |κ|4,

which remarkably makes the result exactly the same as that found using the

Schrödinger equation method (3.16). The analytic results of these two very dif-

ferent yet complementary methods are briefly analysed in the following section.

3.4.3 Interpretation of the Transition Amplitude Result

This section briefly describes the results of the two analytic solutions of the

system, which predicted the same result for the transition amplitude (3.26). This

result predicts a decrease in transition amplitude with an increase in either the

trapping distance or the energy difference between the states concerned. The

expression also makes possible an estimate of the maximum transition amplitude,

which is ∼ 5 × η2nn′ and occurs at κ ≈ ±0.7. Taking the example of a |55s〉

rubidium atom trapped 2.5µm from the wire this will equate to an electron kinetic

energy of Ekin ≈ 0.172eV.

The results of this analysis are profound, as seen in Fig. 3.6 for the case of a

|55s〉 rubidium atom. First the situation where the principal quantum number

is conserved is considered, which can be seen in Fig. 3.6(a). The first point

to note is that the direction of incidence of the free electron selects which of
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σ
−

σ

σ

σ

Figure 3.6: (a): Transition amplitudes for transitions from |55s〉 to both
|55p+〉 and |55p−〉 as a function of the scaled momentum
κ of the electron for a rubidium atom trapped Y = 2.5µm
from the electron wire. (b): Transition amplitudes for tran-
sitions |55s〉 to |55p+〉 (solid/red), |54p+〉 (dashed/purple)
and |56p+〉 (dotted/green).

the two magnetic sublevels are populated with higher probability. This remains

qualitatively the same for other values of the initial principal quantum number

and trapping distance Y . These results predict the possibility of selecting the

magnetic state of the atom using only the direction of the incident electron, as

was seen in the preliminary investigation in section 3.3.

The situation is not so clear when a change of principal quantum number of

the atom is considered, which is illustrated in Fig. 3.6(b). Here, the results are

given for a rubidium atom initially in the |55s〉 state for transitions to |n′p+〉

states with n′ = n − 1, n and n + 1. It then becomes clear that a change in

principal quantum number defines the incident electron direction that makes the

corresponding transition amplitude largest. The explanation of this phenomenon

becomes clearer when investigating the form of the transition amplitude (3.26).

In this expression, the sign of the K0 component depends clearly on the sign of

both the initial momentum and the sign of the energy difference between the two

states. As this particular subset of Bessel functions are positive for all positive

arguments, it is therefore the case that the transition amplitudes will be maximum
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when the two Bessel functions included are of the same sign. For the p+-state

illustrated in Fig. 3.6(b), this is therefore the case when k and ∆En′p are of the

opposite sign. Conversely, for the p−-state, the maximum transition amplitude

occurs when k and ∆En′p are of the same sign.

It is clear that the shape of the transition amplitude is consistent whether

considering a change of principal quantum number or not, and there appear to

be three distinct regions. The first is the very low |κ| region, where the transition

probability remains zero. The reason for this is likely the fact that the interaction

changes the atomic energy levels adiabatically, thus after the electron has passed

there is very little chance of the atom having changed state. The intermediate

region is that range of |κ| around which the transition amplitude is maximum,

which is the result of the energy levels being changed quickly enough that state

changes may occur, but also for long enough that they actually have time to do

so. The third region is the tail off of the transition amplitude occurring at high

|κ|, which may be reasoned as the states being changed quickly enough to allow

population changes, but the change of the levels happens for an increasingly short

time as the momentum increases. Note that κ = 0 is not a case considered here

and, whilst not clear in the figure, transition amplitudes for this zero momentum

case are not given.

A final parameter which may be of interest experimentally is the total tran-

sition amplitude, which is calculated as the sum of all the possible single state

transition amplitudes and is thus a measure of the probability that the atom

undergoes a transition at all. The total transition amplitude is expressed as

ς = 8
∑

n′

η2nn′

[

K2
0

(
1

|κ|

)

+K2
1

(
1

|κ|

)]

.

This shows that for momenta of the same magnitude but different direction, the

total probability of a transition occurring is the same, but as previously shown the



3.5 Numerical Analysis 136

magnetic sublevels contributing to the probability are different for the different

directions.

The results presented here are only valid in the weak coupling limit, thus the

following section details a numerical simulation of the system, which is capable

of going beyond this limit.

3.5 Numerical Analysis

It is clear that to investigate beyond the weak coupling limit a numerical simu-

lation of the system is required. A numerical simulation of the dynamics given

by (3.14) for a real, multi-level atom is therefore carried out, with the electron

treated as a point charge as previously described. These simulations use numeri-

cally generated wavefunctions for the atomic species and energy levels calculated

using quantum defect theory. The aim of the simulation is to determine the state

of the atom after the electron has reached a point where the interaction between

the two systems has become negligible. This section will present a comprehen-

sive analysis of the results for two different atomic species, rubidium and lithium,

which have considerably different spectra (Fig. 3.7), and will then go on to present

a brief comparison of the species.

In the following sections, the simulations are carried out using the details

for atoms initially in the |55s〉 state, but in such a way that the results can be

generalised to other initial principal quantum numbers. The scaled momentum

κ = ki/(Y |∆Enp|) is used such that for any value of n the species scalings of µn

and ∆Enp may be used to calculate the trapping distance Y required to generate

ηn ≡ ηnn, which defines the coupling strength of the simulation.
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Figure 3.7: Comparison of the spectra of rubidium (blue) and lithium
(red) around the |55s〉 state. The thick lines for lithium
represent the energies of the states with l > 2, where those
of l > 3 are degenerate.

3.5.1 Rubidium

Previously, the assumption was made that Y must be large enough that the

electron may be considered a point like particle. Therefore, the value of ηn when

the atom is trapped at a distance Y = 10 〈r〉 from the electron wire will be

referred to as its reference value. Thus for a rubidium atom in the state |55s〉

trapped at this distance, the reference coupling value ηRb
55 ≈ 0.18. An estimate

of the highest attainable coupling strength at such a trapping distance is found

to be ηRb
125 ≈ 0.5, thus this will be the limit on the coupling strength set in the

simulations.

In these simulations the electron will always travel to the right, starting at a

distance of 15Y to the left of the atom where the results are presented once it has

reached 40Y to the right of it. The extended region to the right accounts for the

fact that the atom will have reached a higher angular momentum state during

the interaction, and these more highly excited states are more easily coupled to

each other.
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Shown in Fig. 3.8 are the probabilities for the atom to remain in the initial

state and undergo transitions of first, second or greater than second order, where

(a) The probability that the atom remains
in the initial 55s-state.

(b) The probability that the final atomic
state is a p-state.

(c) The probability that the final atomic
state is a d-state.

(d) The probability that the final atomic
state has l > 2.

Figure 3.8: How the probabilities of the various states of the rubidium
atom vary with η and κ. The insets show cross sections of
η = 0.25, η = 0.375 and η = 0.5.

the insets show cross sections for fixed η and varying κ, with σl =
∑

n′ σn′l. The

first subfigure shows the probability of the atom remaining in the initial state,

and shows the electron has to be moving very slowly and the system has to be

set up such that η > 0.1 for there to be any significant population transfer. The

second subfigure, Fig. 3.8(b), shows the probability that the atom has made a

transition to any of the p-states in the system, thus meaning it has undergone

a first order transition. The shape appears to mimic that of the void of initial

state probability in Fig. 3.8(a), although the maximum transition amplitude here

is only σp ≈ 0.5, where the initial state probability actually falls to near zero.
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The probability of the atom to be in any d-state is shown in Fig. 3.8(c), where

the shape of the probability distribution for the d-states is very similar to that

for the p-states but is restricted to higher η and lower κ, which is expected as

more time is required for this second order transition and a higher coupling will

make the transition faster. The overlap of these two regions thus suggests that

the atom is likely to be found in a superposition state composed mostly of p- and

d-states for a large proportion of the region where it is very unlikely to be found

in its initial state. Shown in the final subfigure, Fig. 3.8(d), is the probability

that the atom is found in some state other than an s-, p- or d-state. The region

where these higher order transitions have occurred is quite clearly limited to the

region where κ < 2 and η > 0.3 for reasons outlined previously. The maximum

transition amplitude here is σl>d ≈ 0.5, which shows that using a low momentum

electron and choosing a setup to yield a high η value may create an atom whose

valence electron is in a high angular momentum state.

It is possible to calculate the expectation values of the orbital angular mo-

mentum and magnetic quantum numbers of the final state of the atom. How

far from their initial values of zero these expectation values are found to be may

be taken as a measure of how effective the setup is at achieving atomic state

manipulation. These expectation values are calculated from the final state of the

atom using 〈ψf |L̂2|ψf〉 = 〈L2〉 = 〈l(l + 1)〉 and 〈ψf |L̂z|ψf〉 = 〈m〉, where |ψf〉

is the final state of the atom which is a superposition of the free space atomic

states. The expectation value of the orbital angular momentum quantum number

will therefore be estimated as
√

〈L2〉. These expectation values can be seen in

Fig. 3.9, which is another way of illustrating that a higher coupling strength aids

the transition from the initial s-state. The expectation value of the orbital angu-

lar momentum quantum number seen in Fig. 3.9(a), is clearly greater than zero

for all values of κ for each of the three values of η illustrated. It also shows that
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Figure 3.9: Plots showing the variation with κ of the expectation values
of (a) the orbital angular momentum quantum number 〈l〉 ≈
√

〈L2〉 and (b) the magnetic quantum number 〈m〉 for three
values of η.

the highest attainable values are found when κ < 2, with the value approach-

ing zero as κ increases. Moving to Fig. 3.9(b), it is clear that 〈m〉 < 0 for the

majority of the κ range, which was expected from the analytics as the transition

amplitude to the state |np−〉, σnp− , tends to be the largest for this electron di-

rection. The small region where 〈m〉 > 0 is likely due to complicated dynamics

where in the final state n′ > n, such that the preferred transition is to a state

whose average magnetic quantum number is positive. This figure also confirms

that the preferred final state is the initial one as κ increases, as both
√

〈L2〉 and

〈m〉 approach zero.

The polarisation of the atom after the passage of the electron may also be cal-

culated, which will be a measure of whether the passage of the electron switches

on a state of the atom which may act as a permanent dipole (for the lifetime of

the final atomic state). The x- and y-direction polarisations of the atom will be

quantified as 〈x〉 and 〈y〉 respectively. No polarisation is seen in the z-direction as

there is no component of the electron-atom interaction Hamiltonian in this direc-

tion for this system geometry. Also, the magnetic quantum number is a measure
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of the projection of the angular momentum of the valence electron onto the quan-

tisation axis, which in this case is the z-axis, as shown in Fig. 3.1. Therefore, a

relationship between the polarisations 〈x〉 and 〈y〉 and the expectation value 〈m〉

shown in Fig. 3.9 is not easily visualised. Shown in Fig. 3.10 are the direction

and magnitude of the polarisation for selected values of κ when η = 0.5, where

Figure 3.10: (a) Diagram showing the magnitude and direction of the
polarisation for twelve selected κ values for η = 0.5. (b)
Full profile of the same polarisation in 〈x〉 and 〈y〉 and (c)
Three dimensional plot of the same data with a colour code
corresponding to the values seen in (a).

an intriguing result is observed. Despite the atom being most likely found in a

state with high angular and magnetic quantum numbers at low values of κ (see

Fig. 3.9), the highest values of the polarisation are actually seen around κ ≈ 1.

This maximum polarisation is of the order of µn. What is also clear is that at

their maximum values 〈y〉 > 〈x〉, which accounts for the elliptical spiral seen in

the inset showing the three-dimensional plot of how polarisation varies with κ.

This section has shown that the passage of an electron may be used to alter the

state of a rubidium atom such that it is left with some degree of polarisation. The

following section details a similar analysis applied to a lithium atom. This section
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is followed by one which compares the two species and explores results found

using parameters which may be realised with currently available experimental

techniques.

3.5.2 Lithium

Referring once again to the reference value of the coupling as that where the atom

is trapped at a distance Y = 10 〈r〉 from the electron wire, it may be shown to

be ηLi55 ≈ 0.36 for a lithium atom initially in the state |55s〉. This reference limit

may be increased to ηLi150 ≈ 1 when the atom is initially in the state |150s〉, thus

this will be the limit set in these calculations.

The orbital angular momentum states of lithium become degenerate when

l > 3 [175] and are thus subject to the linear Stark effect [176]. Thus what

appear to be well separated principal quantum number manifolds in the bare

energy spectrum (Fig. 3.7) may become much closer when subject to an electric

field [177]. This is useful when assessing how many principal quantum number

manifolds need to be included in the simulation such that it converges. As the

quantum defects of the degenerate states are zero, it is possible to analyse the

effect of the electric field due to the electron by using the effect of an electric

field on the states of a hydrogen atom [66]. In hydrogen, adjacent principal

quantum number manifold energy levels cross at the Inglis-Teller limit of the

electric field [178], which is given as EIT ≈ 1/(3n5). The strongest electric field

experienced by the atom due to the electron is when they are closest to each other,

i.e. when x = 0, and at this point is calculated as 1/Y 2. Taking the reference

value ηLi55, the maximum experienced field for this set up is Eel = 4.7 × 10−10,

which is slightly smaller than the Inglis-Teller field EIT = 6.6×10−10, where both

are in atomic units. Thus in the following analysis, which uses values for a lithium

|55s〉 state, two lower and one higher principal quantum number manifolds were
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taken, such that the problem converged.

Once again the simulations always describe an electron travelling to the right,

where this time the electron travels the extended distance of 80Y to the right of

the atom. This choice is made as an attempt to counteract the fact that lithium

has many degenerate energy levels that will be coupled by any magnitude of

electric field, and tests of the numerics showed that for the smallest value of Y

chosen, the change of atomic levels at this extended distance is negligible. Shown

in Fig. 3.11 are the probabilities for the lithium atom to remain in its initial state

and undergo transitions of first, second and higher than second orders. The first

(a) The probability that the atom remains
in the initial 55s-state.

(b) The probability that the final atomic
state is a p-state.

(c) The probability that the final atomic
state is a d-state.

(d) The probability that the final atomic
state has l > 2.

Figure 3.11: How the probabilities of the various states of the lithium
atom vary with η and κ. The insets show cross sections of
η = 0.4, η = 0.6 and η = 0.8.

subfigure, Fig. 3.11(a), shows the same trends as for the rubidium atom, where

it appears that η > 0.15 before any transition is expected and then for high
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values of the coupling the probability of finding the atom in the initial state may

fall to zero. Looking at the very small κ region, subfigure 3.11(b) shows that

for all η the smallest value of κ when p-states will be populated is consistenly

higher than in the case of rubidium. This is likely due to the fact that the

|np〉 and |nd〉 states are considerably closer together in energy in lithium than

they are in rubidium and thus the time required for a second order transition

is much shorter. Therefore, in the case of lithium, the higher order transitions

may occur at higher electron momentum. This trend is again the case for the

transition amplitudes of the d-states, due to the fact that the f -state quantum

defect in lithium is extremely small such that the d- and f -states are almost

degenerate. The higher order transition times between these states are therefore

very small. These observations are confirmed by what is seen in Fig. 3.11(d),

where the transitions to states with l > 2 are limited to the region where κ < 2

and η > 0.25. Once again, it is high η setups and low momentum electrons which

will yield the highest order transitions.

It is also informative to calculate the expectation values of orbital angular

momentum and magnetic quantum numbers of the final state of the lithium

atom, as was performed for rubidium. These are illustrated in Fig. 3.12, where it is

clear that for certain setups it is possible to reach very highly excited states of the

lithium atom. These states are populated by using a high coupling strength setup,

as seen in Fig. 3.12(a), where even for relatively low coupling strength (η = 0.4)

it is possible to achieve
√

〈L2〉 > 5 for low electron momentum. Once again the

prediction that an electron travelling to the right will most likely populate states

of the atom with m < 0 is confirmed in Fig. 3.12(b). Both figures combined

confirm that as the electron momentum increases it is more likely that the atom

does not change state.

The polarisation of the lithium atom after the passage of the atom has been
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Figure 3.12: Plots showing the variation with κ of the expectation val-
ues of (a) the orbital angular momentum quantum number
〈l〉 ≈

√

〈L2〉 and (b) the magnetic quantum number 〈m〉
for three values of η.

calculated such that, as with rubidium, it is quantified using the expectation

values 〈x〉 and 〈y〉 of the final atomic state. The polarisation for a setup where

the coupling η = 1 can be seen in Fig. 3.13, where the arrows on the main

part of the diagram show the magnitude and direction of the polarisation colour

coded to coincide with the spiral representation of the full range inset. This

result contrasts quite strikingly with that for rubidium in the fact that for low

values of momentum the lithium atom shows clear positive x-polarisation and

negative y-polarisation compared to the small negative x- and y-polarisations

seen previously. The maximum values once again appear to be around the region

κ ≈ 1, beyond which they steadily approach zero, when the probability of the

atomic state changing begins to become very small. Similar to the rubidium case,

for the higher values of κ the polarisation takes an elliptical form as 〈y〉 > 〈x〉,

which is most likely due to the geometry of the system being the same in both

cases.

This and the previous section have detailed how the numerical simulation

was carried out for both lithium and rubidium, and it has been shown that
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Figure 3.13: (a) Diagram showing the magnitude and direction of the
polarisation for twelve selected κ values for η = 1. (b) (b)
Full profile of the same polarisation in 〈x〉 and 〈y〉 and (c)
Three dimensional plot of the same data with a colour code
corresponding to the values seen in (a).

the states which are most likely excited draw parallels to the analytics detailed

in section 3.4. As previously noted, the results for both atomic species were

achieved taking values of µn and ∆Enp for an atom initially in the state |55s〉,

varying the trapping distance to change η. Therefore, when values of η greater

than the quoted reference values are used, the trapping distance Y < 10 〈r〉 and

the presented results should only be taken as a guide for using higher n atoms

to achieve the same coupling. The following section directly compares results for

rubidium and lithium with the trapping distance fixed at Y = 10 〈r〉, and also

compares the results directly with the low coupling regime analytics.

3.5.3 Species Comparison

This section focuses on the similarities and differences between the final states

of the two atomic species, how the numerics compare to the analytics and the
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implications these results have on experimental setups. Here, the atom will always

be trapped at the distance Y = 10 〈r〉 from the electron wire, and thus the

coupling strengths will be those referred to as the reference values. The chosen

initial states for rubidium are |55s〉, whose orbital radius 〈r〉 ≈ 0.24µm gives the

reference coupling value η55 = 0.18, and |72s〉, which has an orbital radius of

〈r〉 ≈ 0.41µm and yields a reference coupling of η72 = 0.25. The chosen initial

states for lithium are |38s〉, whose orbital radius 〈r〉 ≈ 0.11µm gives the reference

coupling value η38 = 0.25, and |55s〉 whose reference coupling is η55 = 0.36 (orbital

radius being approximately the same as that for rubidium). The compositions of

the final states for these chosen systems can be seen in Fig. 3.14, which clearly

(a) Initial state probabilities and transi-
tion amplitudes for a rubidium atom ini-
tially in the: |55s〉 state (top) and |72s〉
state (bottom).

(b) Initial state probabilities and transi-
tion amplitudes for a lithium atom initially
in the: |38s〉 state (top) and |55s〉 state
(bottom).

Figure 3.14: Initial state probabilities (σns), transition amplitudes (σp,
σd and σl>2) and analytic approximation of the p-state oc-
cupation (Ap) for two different states of: (a) A rubidium
atom and (b) a lithium atom.

shows the results that have already been commented upon: the probability of

the atom remaining in the initial state is lower for higher values of coupling and

the lower values of κ are where the highest order transitions are likely to occur.

These features are common to the four examples given here.
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The result for rubidium, Fig. 3.14(a), shows good agreement with the analytic

result (3.16) when the coupling is low and, as expected, breaks down when the

coupling is increased. This is due to the fact that the analytic result only takes

into account first order scattering events, not those of higher order that are present

in the numerics, which also accounts for the fact that the analytics over-estimate

σp in all cases. The numerical and analytic results do not show as strong an

agreement in the case of lithium, seen in Fig. 3.14(b). It is clear in both cases that

Ap is significantly greater than the numerical value, while the peak value occurs

at a lower κ. To account for the varying success of the analytic approximation,

one refers back to the differences between the atomic spectra of these two species,

Fig. 3.7. The analytic results take into account only the initial s-state of the atom

and the neighbouring p-states. The spectrum of rubidium shows that the smallest

energy differences between the p- and d-states are of the order of those between

the closest s- and p-states, thus this is a good approximation. In contrast, the

principal quantum number manifolds of lithium are well separated, with the p-

states being very close in energy to the higher l-states, which make higher order

transitions in lithium much more likely than in rubidium, as can be seen in

Fig. 3.14(b). Transitions higher than second order in rubidium are omitted from

Fig. 3.14(a), as they have very small transition amplitudes.

Specific examples are now given of the transition probabilities for different

values of the kinetic energy. In each set up, the minimum probability for the

atom to be found in its initial state consistently occurs at a very low momentum.

For example, a rubidium atom with initial state |55s〉 has a minimum initial

state probability of σ55s = 0.73 occurring at an electron kinetic energy of 0.18eV,

the highest energy of the four configurations considered here. Taking this into

consideration, provided here are kinetic energy values for each setup considered

which fall within an achievable range with existing electron waveguide technology



3.5 Numerical Analysis 149

[156] and yield 0.8 ≤ σns ≤ 0.9. For a |55s〉 rubidium atom this energy range

is 0.39 ≤ Ekin ≤ 1.28eV, which rises slightly to 0.65 ≤ Ekin ≤ 1.55eV for an

initial |72s〉 state. The ranges and values are slightly greater when looking at the

lithium atom cases: a |38s〉 initial state yields the kinetic energy range 0.54 ≤

Ekin ≤ 1.56eV, which again rises slightly to 0.74 ≤ Ekin ≤ 1.56eV for an initial

|55s〉 state. For all four cases the population in the p-state ranges from σp ≈ 0.18

at the low end of this energy range to 0.1 at the high end.

In the previous sections it was shown that the atom will be left in a polarised

state after the passage of the electron. A direct comparison of these four chosen

setups is now given, illustrated in Fig. 3.15. In the case of rubidium, the po-

(a) Polarisation of the final atomic state of
a rubidium atom of initial state |55s〉 state
(top) and |72s〉 (bottom).

(b) Polarisation of the final atomic state of
a lithium atom of initial state |38s〉 state
(top) and |55s〉 (bottom).

Figure 3.15: Polarisations of the final state of the atom for (a) rubidium
and (b) lithium for varying κ.

larisation looks very similar for both initial states. For the entire range of κ it

appears that both the 〈x〉 and 〈y〉 oscillations are centred around zero, having

an overall envelope function determining their maximum value. The maximum

value of 〈x〉 is approximately 2µRb
n /5 and is first obtained at a value κ ≈ 0.45,

being obtained once more in the higher κ maximum of the envelope function. The

case is slightly different for 〈y〉, whose maximum value is approximately 3µRb
n /5

obtained at κ ≈ 1.1. For the higher values of κ the polarisation approaches zero,
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as the atomic state is very unlikely to change in the high momentum limit. The

fact that these results are qualitatively the same for varying ηn implies that both

chosen values are still in the weak coupling regime, which is not the case for those

previously provided in Fig. 3.10.

Clearly the final polarisation of the lithium atom, 3.15(b), is different to that of

the rubidium atom. In this case the distribution is also rapidly oscillating, though

these oscillations show a smaller and more consistent amplitude than those for

rubidium and the values around which they oscillate also vary as a function of

κ. As was the case in rubidium, the rapid oscillations also reduce in frequency

for increasing κ, but their amplitude increases very little in the intermediate κ

region and is also slower in reducing to zero as κ increases further. For low κ, the

mean value of the oscillations is small and positive for 〈x〉 and slightly larger but

negative for 〈y〉. This separation increases with ηn as can be seen in Fig. 3.13,

which is well outside the weak coupling regime, as is illustrated for the higher κ

region.

3.5.4 Comparison with Previous Work

The unique feature of the work detailed here is the fact that the electron is con-

fined to move along a set path where only its momentum is allowed to vary.

Therefore it is very difficult to provide accurate comparisons with previous work.

For instance, the work reviewed in [66] is concerned with the case where the free

electron has an impact parameter smaller than the radius of the valence electron,

such that the state of the atom may be changed along with both the momen-

tum and direction of the electron. The quantum analysis considered in [152]

presents results that are the most closely related to those detailed in the previous

sections, as it considers only very low energy electrons. Although this study is

concerned with direct collisions between the electron and a sodium atom, which
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introduces the possibility of atomic ionisation, it also considers those collisions

that change state of the atom. Though the results presented are for sodium, they

are qualitatively similar to those given here in the fact that the final principal

quantum number of the atom is most likely the initial one n along with n − 1,

n− 2 or n+ 1 with energy conservation also being observed. Hopefully the work

presented here will stimulate further studies concerned with the electron having

a fixed trajectory, which may be used to enhance these results.

This section has thoroughly detailed the numerical investigation of the system

for both lithium and rubidium atoms trapped close to the electron wire. Before

providing an analytic description of a multiple trapped atom system, a brief

description is given which validates that the lifetime of the initial state is great

enough that it will not decay during the passage of the electron.

3.5.5 Lifetime Considerations

It must be ensured that the internal atomic dynamics take place on a timescale

much shorter than the lifetimes of the initial atomic state, such that the chance

of an atomic state decaying during the interaction is negligible. The electron

travels a distance of d×Y during the simulation, where d = 55 for rubidium and

d = 95 for lithium, and the time it takes to traverse this distance is calculated as

tE = dY/vE, where vE is the speed of the electron. In atomic units vE ≡ k and

thus vE = κY∆Enp in the scaled units used here. The condition which must be

satisfied is thus

κ≫ d

∆EnptA
,

where tA is the lifetime of the initial state, where values quoted are from [163].

Focusing first on rubidium, an analysis is given of the system that was used

to give the results detailed in section 3.5.1, which used an atom initially in the

state |55s〉 and varied Y to generate a wide range of η. Using ∆Enp calculated
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using quantum defect theory, dRb = 55 and tRb
A ≈ 191µs, the inequality yields

κ ≫ 2 × 10−6, approximately four orders of magnitude smaller than that used

in the simulation. It is thus the case that the atomic lifetime is much greater

than the simulation time in the results presented for rubidium. Moving on to

lithium, once again the results given for varying η, section 3.5.2, use the state

|55s〉 and varying Y . These simulations use a slightly greater dLi = 95, which

when inserting the lifetime tLiA = 133.6µs yields the slightly larger κ≫ 8.1×10−6,

still approximately four order of magnitude smaller than any values used in the

simulations.

The calculation detailed here may be performed for any setup being considered

numerically or experimentally to test its feasibility, where d need only be the

length of the region where the interaction is considered significant, as estimated

here. Furthermore, this analysis may also come to use when considering the

electron interacting with a chain of interacting Rydberg atoms, which is the case

considered in the following section.

3.6 Extension to a Chain of Atoms

This section details how to use the Lippmann-Schwinger technique to describe the

situation where there are multiple identical atoms trapped a distance Y from, and

uniformly distributed along, a length of the electron wire. Two atoms labelled a

and b will thus be separated by a distance Rab = ((a− b)Rs, 0, 0), as illustrated in

Fig. 3.16, where Rs is the distance between neighbouring atoms. The interaction

between the atoms is of the dipole-dipole form, written in general for two atoms

as [179]

Vdd =
~ra · ~rb
|~Rab|3

− 3

(

~ra · ~Rab

)(

~rb · ~Rab

)

|~Rab|5
,
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Figure 3.16: An illustration of the geometry and labels of the multiple
atom system.

where ~ra and ~rb are the positions of the valence electrons of atoms a and b respec-

tively. As here the atom separation only has a component in the x-direction, the

dipole-dipole interaction of the many-atom system in question may be written

explicitly as

Vdd =
1

R3
s

N∑

a 6=b

1

|a− b|3
(~ra · ~rb − 3xaxb), (3.27)

where the sum accounts for the interaction between all the atoms in the system.

The focus of this investigation is how the passage of the electron affects the

chain of interacting atoms, thus the interaction between the atoms themselves

should be included in H0 of the Lippmann-Schwinger equation (3.18). However,

this is contrary to the fact that H0 goes on to form the free-particle propagator

in this approach, as the interaction between the atoms is not diagonal. In order

to apply this approach, one must take the basis where Vdd is diagonal. The

transformation which diagonalises Vdd will also be applied to the electron atom

interaction, thus treating the atoms as an ensemble rather than individually.

This diagonalisation of Vdd and transformation of the interaction will be detailed

here before gaining an analytic scattering result using the Lippmann-Schwinger

equation.

Once again, it is assumed that the atoms are trapped at a distance much fur-
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ther from the electron wire then their valence electron orbital radii, 〈r〉. Taking

the Born approximation, as in the single atom case, the transition amplitudes

from the initial state (all atoms in the |ns〉 state) to those where one scattering

event has taken place (one atom in the |n′p〉 state) will be calculated. As pre-

viously shown, the electron only couples the |ns〉 state to the |n′p+〉 and |n′p−〉

states, thus the zazb term of (3.27) may be eliminated as it only acts on atomic

states where the p0-state is present. Also, as Vdd ∝ 1/R3
ab, only the nearest neigh-

bour interaction will be considered. Defining the ensemble atomic excited state

as |n′p±〉u ≡
∣
∣
∣ns(1), ns(2), . . . , n′p±

(u), . . . , ns(N)
〉

such that the uth atom in the

chain is the one in the state |n′p〉, the dipole-dipole interaction may be written

as

V
(BA)
dd =

µ2

4R3
s

∑

n′,n′′

µnn′µnn′′

N∑

u=1

[

3 |n′′p+〉u+1 u〈n′p−| − |n′′p−〉u+1 u〈n′p−|

− |n′′p+〉u+1 u〈n′p+|+3 |n′′p−〉u+1 u〈n′p+|+h.c.
]

.

The first step is to diagonalise the spin part of the dipole-dipole interaction,

which allows a more compact version of it to be written down, as the atomic

states present are then written as superpositions. The spin diagonalised basis is

written as |n′χ〉u, where the excited (uth) atom is now in the state χ = ± with +

representing it being in the symmetric superposition state |+〉 = (|p+〉+|p−〉)/
√
2

and − representing it being in the anti-symmetric superposition state |−〉 =

(|p+〉 − |p−〉)/
√
2. The dipole-dipole interaction is written in this new basis as

V
(sd)
dd =

1

4R3
s

∑

n′,n′′

µnn′µnn′′

N∑

u=1

[

2
(

|n′′+〉u+1 u〈n′+|+ |n′+〉u u+1〈n′′+|
)

− 4
(

|n′′−〉u+1 u〈n′−|+ |n′−〉u u+1〈n′′−|
)]

,

which is split into parts describing the atoms in either the |+〉 or |−〉 state, which
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have different prefactors due to the diagonalisation. The position dependent part

of this interaction, which may be separated as

Hpos =
N∑

u=1

[

|u〉 〈u+ 1|+ |u+ 1〉 〈u|
]

,

needs now to be diagonalised. There are no periodic boundary conditions to this

system, so the ansatz is made that the vth positional eigenstate is of the form

|ψv, n
′χ〉 =

N∑

u=1

cos[αuv + β] |n′χ〉u .

First ignoring the boundary terms, the eigenvalue problem for the bulk of the

system,

cos[α(u+ 1)v + β] + cos[α(u− 1)v + β] = ξ cos[αuv + β],

may be solved to find ξ = 2 cos[αv]. Turning now to the boundaries, u = 1 can

be used to find

cos[2αv + β] = 2 cos[αv] cos[αv + β]

and obtain β = −1/2. Solving the equivalent equation for u = N it is possible to

find α = π/(N + 1) such that the normalised eigenstates take the form

|ψv, n
′χ〉 =

√

2

N + 1

N∑

u=1

sin

[
uvπ

N + 1

]

|n′χ〉u , (3.28)

which have the energy eigenvalues

Ev,n′χ = ∆En′p − (1∓ 3)
µ2
nn′

2R3
s

cos

[
vπ

N + 1

]

. (3.29)

From the eigenstates, the unitary matrix that will diagonalise Vdd can be defined
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as

Uuv =

√

2

N + 1
sin

[
uvπ

N + 1

]

, (3.30)

where the next required step is to apply this unitary transformation to the

electron-atom interaction matrix.

As an analogue to the single atom case, the initial state of the atomic system

is chosen to be that where all the atoms are in the state |ns〉. In this many-body

basis such a state will be written as |s〉. Thus referring back to the single atom

calculation, only terms of the electron-atom interaction Hamiltonian concerning

excitation from the state |s〉 are required. In the |n′p±〉u basis, the electron-atomic

ensemble interaction for excitation from the |s〉 state can be written as

Hint =
N∑

u=1

∑

n′

µnn′

2

[

(x̂−Ru) + iY

[(x̂−Ru)2 + Y 2]
3
2

|n′p−〉u 〈s|

− (x̂−Ru)− iY

[(x̂−Ru)2 + Y 2]
3
2

|n′p+〉u 〈s|
]

,

which is the part relevant to the Lippmann-Schwinger equation under the ap-

proximations taken here. To write this in the basis where Vdd is diagonal,

|ψv, n
′χ〉 =

∑N
u=1 Uuv |n′χ〉u, the coefficient of |n′p−〉u 〈s| above is written as

Au =
(x̂−Ru) + iY

[(x̂−Ru)2 + Y 2]
3
2

,

such that the matrix element for use in the Lippmann-Schwinger equation can be

written as

〈ψv, n
′χ |Hint| s〉 = µnn′

N∑

u=1

U∗
vu√
2
(iIm(Au)δχ,+ − Re(Au)δχ,−). (3.31)

This matrix element may be used in the Lippmann-Schwinger equation written in

the form given in (3.20), where now n′ and n′′ represent the many body eigenstate



3.6 Extension to a Chain of Atoms 157

label (v) and β′ and β′′ represent the spin degree of freedom (χ). Taking |φ〉 =

|ki, s〉 and knowing the form of the interaction matrix elements (3.31), the Green’s

function matrix element can be gained from that in the single atom case (3.23),

where once again n′ may be replaced by the many-body eigenstate label and β′

is taken to represent the spin degree of freedom. For the multiple atom system,

the Lippmann-Schwinger equation is thus written as

〈x |Ψ〉 = 〈x |φ〉 +
∑

n′,v,χ
σ,λ

µnn′

2

(

−e
iλσkfx

kf

)∫

dx′ × eiλ(|ki|−σkf )x
′

×
∑

u

U∗
vu

(

iIm(Au(x
′))δχ,+ − Re(Au(x

′))δχ,−

)

|n′χ〉u

where Au(x) is the coefficient Au with the operator status of x removed, σ = +(−)

represents a transmitted (reflected) electron and λ signifies the initial direction

of travel. A final simplification to this expression is found by evaluation of the

integral over x′, which can be shown to be

∫

dx′eiax
′

Re(Aj(x
′)) =eiaRj2iaK0 [Y |a|]

∫

dx′eiax
′

Im(Aj(x
′)) =eiaRj2i |a|K1 [Y |a|] ,

and provide us with everything required to calculate the scattering amplitudes.

The transition amplitude σv,n′χ to the state |ψv, n
′χ〉 is found by taking the

absolute value squared of the scattering amplitude from the Lippmann-Schwinger

equation. This will be done here for the electron initially travelling in the positive

direction and transmitted past the atom, as once again it can be shown that the

transition amplitude for a reflected electron is effectively zero. The full expression
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is given as

σv,n′χ =
2µ2

nn′

k2f

[

|ki − kf |2K2
1(Y |ki − kf |)δχ,+ + (ki − kf )

2K2
0(Y |ki − kf |)δχ,−

]

×
N∑

p,q=1

eikf (p−q)RsU∗
vqUpv

where kf =
√

k2i − 2Ev,n′χ, with Ev,n′χ the energy of the many-body eigenstate

|ψv, n
′χ〉 as given in (3.29) and Upv are the elements of the unitary matrix (3.30),

which digonalises Vdd. This may be cast into a much simpler form using knowledge

of the variables in the system. First of all, µ2/R3
s appears in Ev,n′χ, where in

atomic units µ ∼ 103 and Rs ∼ 105 for atoms trapped micrometres apart, thus

µ2/R3
s ≪ ∆En′p and so Ev,n′χ ≈ ∆En′p. The previously used assumption that

the electron kinetic energy is much greater than the atomic energy level splitting

(∆En′p ≪ k2) is used, allowing the Taylor expansion of
√

k2i − 2∆En′p about

∆En′p = 0. Introducing, as in the single atom case, the scaled momentum κ =

ki/(Y∆ |En′p|) and coupling ηnn′ = µnn′/(2Y 2 |∆En′p|), the transition amplitude

may be written as

σv,n′χ ≈ 8η2nn′

κ4

[

K2
1

(
1

κ

)

δχ,+ +K2
0

(
1

κ

)

δχ,−

]

×
N∑

p,q=1

eikf (p−q)RsU∗
vqUpv.

This may be simplified by performing the sum over the unitaries, which may be

shown to be

N∑

p,q=1

eikf (p−q)RsU∗
vqUpv =

1

2(N + 1)

(

sin
(
αv

N
2

)

sin
(
αv

2

) + (−1)n+1 sin
(
βv

N
2

)

sin
(
βv

2

)

)2

,

where

αv =
vπ

N + 1
+
Rs

κY
and βv =

vπ

N + 1
− Rs

κY
.
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The transition amplitude is then finally written as

σv,n′χ =
4

N + 1

(ηnn′

κ2

)2
[

K2
1

(
1

κ

)

δχ,+ +K2
0

(
1

κ

)

δχ,−

]

×
(

sin
(
αv

N
2

)

sin
(
αv

2

) + (−1)n+1 sin
(
βv

N
2

)

sin
(
βv

2

)

)2

, (3.32)

whose magnitude depends on the coupling strength ηnn′ multiplied by a function

whose form depends on the multi-atom state and the ratio of the atomic separa-

tion to the trapping distance. As in the single atom case, this result will only be

valid in the weak coupling limit, where ηnn′ ≪ 1.

It is also possible to calculate the total transition amplitude, which may be

taken as a measure of the probability that the atom undergoes any of the possible

transitions. This is shown to be proportional to the number of atoms N , and is

written as

σn′p = 8N
(ηnn′

κ2

)2
[

K2
1

(
1

κ

)

+K2
0

(
1

κ

)]

.

Limiting the transitions to those where the principal quantum number remains

the same, the previous analysis may be used to find the states of a two atom

system and their energies (before approximations are made). The possible states

of the system may be shown to be

|ψ1, 55+〉 = 1
2

(

|55p+, 55s〉+ |55p−, 55s〉+ |55s, 55p+〉+ |55s, 55p−〉
)

|ψ1, 55−〉 = 1
2

(

|55p+, 55s〉 − |55p−, 55s〉+ |55s, 55p+〉 − |55s, 55p−〉
)

|ψ2, 55+〉 = 1
2

(

|55p+, 55s〉+ |55p−, 55s〉 − |55s, 55p+〉 − |55s, 55p−〉
)

|ψ2, 55−〉 = 1
2

(

|55p+, 55s〉 − |55p−, 55s〉 − |55s, 55p+〉+ |55s, 55p−〉
)

,

which have energies E1,55+ = ∆E55p − µ2
55/2R

3
s, E1,55− = ∆E55p + µ2

55/R
3
s, E2,55+ =

∆E55p + µ2
55/2R

3
s and E2,55− = ∆E55p − µ2

55/R
3
s respectively. Before showing the

transition amplitudes associated with these states, it is important to note that
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these states are entangled, as it is not possible to separate the state of the first

atom from that of the second. The transition amplitudes for these four possible

states of the system are shown in Fig. 3.17(a). It is clear that the form of the

(a) First order transition amplitudes for
the four states of the double atom system.

(b) Total first order transition amplitude
for the double atom system.

Figure 3.17: Single state (a) and total (b) transition amplitudes for the
two atom case. The values are for a rubidium atom initially
in the |55s〉 state with Y = 2.5µm and Rs = 2Y .

amplitude for varying κ depends on the form of the entangled state, where those

with |ψ2〉 show one dominant peak with the |ψ1〉 form showing two much smaller

peaks. Fig. 3.17(b) shows that the total transition amplitude yields a result

reminiscent of that for the single atom case. It has been shown that by interacting

with a passing electron the atomic ensemble may undergo transitions to entangled

states. Selecting the momentum of the atom will therefore allow one of the states

to be produced, which will have applications in the fields of quantum information

and computing.

This section has presented the general multi atom case and a brief analysis

of the two atom system, which shows that the results are clearly related to those

of the single atom case. The following section gives a description of two possible

regimes for the multiple atom system, and evaluates their feasibility.
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3.6.1 Interatomic Interaction Dominated and Electron-

Atom Interaction Dominated Regimes

There will be two distinct regions to the multiple atom case: that where the

atomic dipole-dipole interaction dominates and that where the electron-atom in-

teraction dominates. This short section is dedicated to an analysis of whether

these two regions are realistically achievable with this type of approach. In order

to find an estimate of where the boundary between the two lies, the maximum

strength of the electron-atom interaction (where the electron is closest to one of

the atoms) is equated with the dipole-dipole interaction. Taking the form of the

electron-atom interaction after the Taylor expansion (3.5) and inserting x = 0, its

strength may be estimated using the expectation value 〈y〉 after the interaction as

〈y〉 /Y 2. Using also the expectation values 〈x〉 and 〈y〉 from the appropriate sin-

gle atom calculation in the numerator of the dipole-dipole interaction (3.27) and

writing it as D = 〈ya〉 〈yb〉−2 〈xa〉 〈xb〉, the inequality which yields the boundary,

R0
s, may be solved as

R0
s =

3

√

DY 2

〈y〉 . (3.33)

This does highlight a problem with using the dipole-dipole interaction to produce

novel results in the multiple atom case: it is comparatively weak. For example,

taking values which should be achievable for a |55s〉 rubidium atom and are ex-

pected to give a high polarisation, α = 0.225 and Ekin ≈ 0.87eV, the above

equation gives that R0
s ≈ 0.35µm, which is only slightly greater than the atomic

orbital radius. Thus the dipole-dipole approximation will break down before the

separation distance is small enough for it to become dominant. Obviously the

atoms still interact strongly at shorter distances, but it becomes a much more dif-

ficult problem to treat. However, what has been shown analytically in this section

is that even well into the region where the electron-atom interaction is dominant,
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the dipole-dipole interaction still has an effect on the possibly achievable states,

as seen in Fig. 3.17.

3.7 Summary and Outlook

The various sections in this chapter have shown how controlling the momentum of

an electron may be used to manipulate the internal state of a Rydberg atom. An

analytic approximation for the changing of the atomic state in the weak coupling

limit was found via two different methods, which predicted that the incident

direction of the electron selects which magnetic sublevel is most likely populated.

The time-dependent Schrödinger equation was subsequently used as the basis of

a numerical exploration of the system, allowing the validity of the analytics to

be analysed for two different atomic species. It is shown that the analytics and

numerics compare very well in the case of rubidium, and not so well in the case of

lithium. This difference is attributed to the two species having distinctly different

spectra. The number of dipole transitions the atom is likely to have made during

the passage of the electron is quantified by the average orbital angular momentum

and magnetic quantum numbers of the final state, and it is shown that the final

state may be very far from the initial s-state. The final state of the atom was also

used to calculate its final polarisation, which shows that it is possible to use the

electron to create a permanent dipole moment of the atom, though this would only

have the lifetime of the final atomic state itself. If the lifetime of these states is

sufficiently long, this may allow proposals based around polar molecules [180,181]

to be realised with these switchable atomic dipole moments. The final section

detailed the extension of the analytic approach to a chain of N interacting atoms,

and gives a brief description of the possible regimes achievable.

It is clear throughout this analysis that more exotic states of the atom are

reached when the coupling strength ηn is high. There are two main reasons
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why this coupling strength may not be made arbitrarily high. The first is the

difficulty in reaching Rydberg states with high principal quantum numbers, where

usually multi-photon resonances are required. The second is the requirement

of a minimum distance between the electron and the atom. Such a minimum

distance has already been used such that in the theoretical sense the electron

may be treated as a point charge. An even clearer reason is apparent from the

experimental side, where it must be ensured that the effects of the electron guiding

field on the atom are minimal. One possible alternative which would allow the

interaction strength to be increased would be to replace the electron by a highly

charged ion. The description of such a system would be very similar to that given

here, though the energy scales would be very different and could therefore yield

further interesting results.
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Appendix A

Atomic Units

The following table provides the conversion factors between atomic and SI units.

Quantity Atomic Units SI Units (3.s.f)
Mass me = 1 9.11× 10−31kg
Charge |e| = 1 1.60× 10−19C
Angular Momentum ~ = 1 1.05× 10−34J.s
Coulomb Constant ke = 1/(4πε0) = 1 8.99× 109N.m2.C−2

Length a0 = ~
2/(kemee

2) = 1 5.29× 10−11m
Energy Eh = kee

2/a0 = 1 27.2eV
Time ~

3/(k2emee
4) = 1 2.42× 10−17s

Electric Field kee/a
2
0 = 1 5.14× 1011V.m−1

Table A.1: Table showing the definition of the atomic units and their
values in SI units.



Appendix B

Interaction of a Two-Level Atom

with a Classical Field

This appendix details the derivation of the interaction of a two-level atom with

a classical laser field, which is included in the Hamiltonian of the lambda system

(2.29). This forms part of the basis of the generation of quantum states of light

from the collective bosonic excitations of the lattice system. The derivation pre-

sented here follows closely that presented in [182]. As a simple case here, which

is also taken at a later point in the main derivation, the laser is assumed to be

linearly polarised. In this example, such polarisation is along the x-axis, such

that the electric field at position r may be written as

E(r, t) = EL(r, t) cos(kL · r− ωLt),

where EL(r, t) is a slowly varying envelope function, with ωL the optical frequency

and kL the wavevector. The atom may be assumed to have only two levels if the

transition is dipole allowed and far detuned from all other atomic transitions.

Thus, in this case, the two levels involved are |s〉 and |a〉, whose transition fre-

quency is ωa (for simplicity setting ωs = 0). The envelope function may be
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approximated as constant so long as it varies on a length scale much longer than

the optical wavelength, 2π/ |kL|, and a timescale much slower than the optical

frequency, ωL. Under these conditions, the envelope function may be approxi-

mated as EL(r, t) ≈ ELêx, where êx is the unit vector in the x-direction and EL is

the (real) amplitude. Using the definition given in [47], the interaction between

an atom and electric field is given by

Hint = −d̂ · E(r, t),

where d̂ = −er̂ is the dipole moment operator. Using the fact that the atom does

not have a permanent electric dipole when in either the state |a〉 or |s〉 and the

electric field is polarised in the x-direction, the dipole operator may be written

as

d = −(das |a〉 〈s|+ d∗
as |s〉 〈a|),

where das = d∗
as = 〈a |x| s〉 êx due to the choice of polarisation direction.

The Hamiltonian describing the interaction between the atom and classical

electric field is thus given as

Hint = ΩL

(
ei(kL·r−ωLt) + e−i(kL·r−ωLt)

)
(|a〉 〈s|+ |s〉 〈a|) ,

where the cosine term has been decomposed into exponentials and the Rabi fre-

quency is thus written as ΩL = dasEL/2 with das = dasêx . To simplify this

Hamiltonian, it is first transformed to the interaction picture, such that rapidly

oscillating terms may be identified and neglected when applying the rotating

wave approximation [127]. To express the Hamiltonian in the interaction picture,

a unitary transformation of the form

UI = eiH0t
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is performed, where H0 = ωa |a〉 〈a|. The matrix form of this operator can be

shown to be UI = |s〉 〈s| + eiωat |a〉 〈a|, such that, in the interaction picture, the

Hamiltonian is expressed as

H
(I)
int = UIHintU

†
I =ΩL

[ (
ei(kL·r+(ωa−ωL)t) + e−i(kL·r−(ωL+ωa)t)

)
|a〉 〈s|

+
(
ei(kL·r−(ωL+ωa)t) + e−i(kL·r+(ωa−ωL)t)

)
|s〉 〈a|

]

. (B.1)

The rotating wave approximation neglects the rapidly oscillating terms, which in

this case are those of frequency ωL+ωa, and the Hamiltonian is thus approximated

as

H
(I)
int ≈ ΩL

[
ei(kL·r+(ωa−ωL)t) |a〉 〈s|+ e−i(kL·r+(ωa−ωL)t) |s〉 〈a|

]
.

Transforming back to the Schrödinger picture by the inverse of this transformation

yields the interaction Hamiltonian in the rotating wave approximation, which is

valid so long as the detuning ∆L = ωL−ωa ≪ ωL+ωa. Omitting the intermediate

steps, this inverse transformation yields

Hint = U †
IH

(I)
intUI = ΩL

[
ei(kL·r−ωLt) |a〉 〈s|+ e−i(kL·r−ωLt) |s〉 〈a|

]
,

which describes the interaction of the atom with a linearly polarised electric field

in the rotating wave approximation. This transformation can be easily shown to

leave the atomic part of the Hamiltonian unaffected.



Appendix C

Transformation to a Rotating

Frame

In sections 2.4.1 and 2.6.2 the relevant Hamiltonian is transformed such that it

describes the system in a rotating frame. This brief appendix details how such a

unitary rotation is performed. Such a transformation allows the time dependence

to be removed from the Hamiltonian when the rotating wave approximation is

applied. Introducing the general unitary rotation matrix U , an effective Hamilto-

nian must be defined which acts on the rotated states of the system and obeys the

time-dependent Schrödinger equation. With the original Hamiltonian represented

as H, this process is carried out as

i~∂t |ψ〉 = H |ψ〉

i~U∂tU †U |ψ〉 = UHU †U |ψ〉

i~U∂tU † |φ〉 = UHU † |φ〉

i~UU † + i~U∂t
(
U † |φ〉

)
= UHU † |φ〉

i~∂t |φ〉 =
(
UHU † − i~U∂tU †) |φ〉 ,
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where |φ〉 = U † |ψ〉 is the state of the system in the rotating frame. The final line

of the derivation defines the effective Hamiltonian in the rotating frame as

H ′ = UHU † − i~U∂tU †,

as this line is the time-dependent Schrödinger equation for the state in the rotating

frame. Note here that ~ as been included to make the Schrödinger equation easier

to identify, where atomic units are more commonly used in the rest of this text.

The main body of text refers to altering the energy of one of the atomic states

by a certain frequency using a transformation of this type. Taking the simple

case of a two level atom of Rabi frequency 2Ω and electric field frequency ωL, the

Hamiltonian may be written as

H =






ωa 0

0 0




+ 2Ω






0 1

1 0




 cos(ωLt),

where ωa is the energy difference between the two states, and atomic units are

used. The matrix used to move to a frame rotating with the frequency of the

laser may be written as

U =






eiωLt 0

0 1




 ,

which can easily be shown to be unitary. Upon application of the process to

transform to a rotating frame, the effective Hamiltonian may be shown to be

H′ =






ωa − ωL 0

0 0




+ Ω






0 1 + e2iωLt

1 + e−2iωLt 0




 ,

where the cosine term describing the oscillating electric field has been split into

exponentials. This clearly shows that the energy of the excited state has been
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reduced in energy by the frequency of the laser. It is also the point at which

the rotating wave approximation [127] may be applied to remove the rapidly

oscillating terms in each off-diagonal element, which is valid when the laser is

near resonant with the atomic transition, ωL ≈ ωa. As is also encountered in

the text, it is sometimes necessary to increase the energy of one of the states of

the system. This may be done by changing the sign of the exponential in U and

applying the same procedure.



Appendix D

Adiabatic Elimination of the

Auxiliary State

The effective Hamiltonian of the lambda system where the energy of the auxiliary

state |s〉 has been reduced by an amount ωL (2.30) may be simplified under the

assumption that the laser detuning is far from resonant. This assumption leads

to the approximation that the population of the auxiliary state is approximately

constant. This appendix details how this approximation may be used to adia-

batically eliminate the auxiliary level from the lambda system. Using the time

dependent Schrödinger equation, i∂t |ψ〉 = H ′ |ψ〉, with the effective Hamiltonian

(2.30) and each of the three atomic levels of the system yields the three coupled

differential equations

iȧ = H ′ |a〉 = (ωa − ωL) |a〉+ e−ikL·r |s〉+ (Ωem + Ω∗
em) e

−iωLt |g〉

iṡ = H ′ |s〉 = ωs |s〉+ eikL·r |a〉

iġ = H ′ |g〉 = ωg |g〉+ (Ωem + Ω∗
em) e

iωLt |a〉 ,

where the dot represents the first temporal derivative. The assumptions previ-

ously mentioned amount to the statement ȧ ≈ 0, which allows an expression for
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the state |a〉 in terms of the other two states to be gained from the first of these

equations, yielding

|a〉 ≈ −ΩL

∆L

e−ikL·r |s〉 − Ωem + Ωem

∆L

e−iωLt |g〉

where ∆L = ωa−ωL. Inserting this expression and that of its Hermitian conjugate

into the Hamiltonian (2.30) allows the removal of the auxiliary state, such that

it may be simplified to

H ′ ≈
(

ωs −
Ω2

L

∆L

)

|s〉 〈s|+
(

ωg −
(Ωem + Ω∗

em)
2

∆L

)

|g〉 〈g|+
∑

qλ

ωqλâ
†
qλâqλ

− ΩL(Ωem + Ω∗
em)

∆L

(
e−i(kL·r−ωLt) |s〉 〈g|+ ei(kL·r−ωLt) |g〉 〈s|

)
. (D.1)

This completes the adiabatic elimination of the auxiliary state, a final step being

to neglect the corrections to the ground state energies, which yields the Hamil-

tonian given in the main body of the text as equation (2.31).



Appendix E

Atomic Transition Dipole

Elements

Using the spherical harmonics, the atomic transition dipole matrix elements can

be shown to be

〈ψnlm |x̂a + iŷa|ψn′l′m′〉 =
(√

(l −m+ 2)(l −m+ 1)

(2l + 1)(2l + 3)
δl′,l+1

−
√

(l +m− 1)(l +m)

(2l + 1)(2l − 1)
δl′,l−1

)

δm′,m−1Rnl,n′l′

and

〈ψnlm |x̂a − iŷa|ψn′l′m′〉 =
(√

(l −m)(l −m− 1)

(2l − 1)(2l + 1)
δl′,l−1

−
√

(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
δl′,l+1

)

δm′,m+1Rnl,n′l′

where Rnl,n′l′ = 〈Rn,l |r|Rn′,l′〉 are the radial transition dipole matrix elements,

which may be estimated analytically using [67].



Appendix F

Lippmann-Schwinger Scattering

Beyond the Born Approximation

This appendix gives the result of the Lippmann-Schwinger equation for the single

trapped atom system for the first order beyond the Born approximation. This

result is gained by using the result of the Born approximation case (3.24) (where

an electron travelling to the right and transmitted is subsequently assumed) and

inserting it as the state |φ〉 in the Lippmann-Schwinger equation for this system

(3.20). The result is

〈
x
∣
∣ψ(2)

〉
=

1√
2π

[

eikix |nis〉+
∑

n1,β1

{eik
(1)
f

x

k
(1)
f

µni,n1

×
(

δβ1,p+G(ki − k
(1)
f )− δβ1,p+F(ki − k

(1)
f )
)

|n1, β1〉

+
∑

n2,β2

[µni,n1

k
(1)
f

eik
(2)
f

x

k
(2)
f

(

δβ1,p−G(ki − k
(1)
f )
{

δβ2,sµn2,n1F(k
(1)
f − k

(2)
f )

+ µn2β2,n1,β1

[

δβ2,d0F(k
(1)
f − k

(2)
f ) + δβ2,d−2G(kf (1)− k

(2)
f )
]}

− δβ1,p+F(ki − k
(1)
f )
{

− δβ2,sµn2,n1G(k
(1)
f − k

(2)
f ) + µn2β2,n1,β1

×
[

δβ2,d0G(k
(1)
f − k

(2)
f ) + δβ2,d+2F(k

(1)
f − k

(2)
f )
]})]

|n2, β2〉
]
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where k
(1)
f =

√

k2i − 2∆En1,β1 is the electron momentum after the first scattering

event, k
(2)
f =

√

k2i − 2∆En2,β2 is the electron momentum after the second scat-

tering event, ni is the initial principal quantum number of the atom, n1 and n2

are the principal quantum numbers of the atom after one and two scattering

events respectively, β1 can represent the states |p±〉, whereas β2 may represent

the states |s〉 and |d0,±2〉. The transition dipole moments µna,nb
are of the form

given in section 3.3, whereas those written as µn1β1,n2β2 need to be calculated from

µn1β1,n2β2 = 〈n1β1 |xa + iya|n2β2〉+ 〈n1β1 |xa − iya|n2β2〉

using the forms of the matrix elements given in appendix E.

Despite the complicated form of this expression, the interpretation is straight-

forward. The first term (that preceding the state |nis〉) describes the state where

no scattering event has occurred, thus the atomic state and electron momentum

remain the same. The two terms preceding the state |n1β1〉 describes the state

of the system when only a single order scattering event has taken place, in which

case the atomic state will be |n1p±〉, with the electron changing momentum to

k
(1)
f to conserve energy. The terms which follow those describing first order and

precede the state |n2β2〉, describe the state after the various possibilities for sec-

ond order scattering have occurred. These terms therefore describe the final state

of the system when the atom undergoes a first order transition to |n1, β1〉 and

then undergoes a second order scattering event leaving it in the state |n2, β2〉.

The electron is thus left with the energy conserving momentum k
(2)
f . Although

not shown here, it is possible to rewrite the beyond Born approximation expres-

sion in terms of the unitless momentum κ as was done in section 3.4. Doing this

shows that the terms describing second order scattering events are of the order

η2, which can be seen in this form as roughly µ2/(k
(1)
f k

(2)
f ), and thus makes them

less likely to occur than the first order scattering, as is expected.
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In principle it is possible to gain an expression describing the third order

scattering events using this method, though it is expected that the result will be

extremely complex and perhaps not so informative.
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Mol. Opt. Phys. 38 S295

[74] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G

and Saffman M 2009 Nature Phys. 5 110

[75] Olmos B and Lesanovsky I 2011 Phys. Chem. Chem. Phys. 13 4208

[76] Carter J D, Cherry O and Martin J D D 2012 Phys. Rev. A 86 053401

[77] Sørensen A S, Van Der Wal C H, Childress L I and Lukin M D 2004 Phys.

Rev. Lett. 92 63601

[78] Tauschinsky A, Thijssen R M T, Whitlock S, van Linden van den Heuvell

H and Spreeuw R J C 2010 Phys. Rev. A 81 063411

[79] Cetina M et al. 2011 Hybrid approaches to quantum information using ions,

atoms and photons Ph.D. thesis Massachusetts Institute of Technology

[80] Wimberger S 2011 Eur. Phys. J. D 63
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183601

[109] Scully M O, Fry E S, Ooi C H R and Wódkiewicz K 2006 Phys. Rev. Lett.
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