Turn It This Way: Remote Gesturing in Video-Mediated Communication

Kirk, David Stanley (2007) Turn It This Way: Remote Gesturing in Video-Mediated Communication. PhD thesis, University of Nottingham.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (9MB) | Preview

Abstract

Collaborative physical tasks are working tasks characterised by workers 'in-the-field' who manipulate task artefacts under the guidance of a remote expert. Examples of such interactions include paramedics requiring field-surgery consults from hospital surgeons, soldiers requiring support from distant bomb-disposal experts, technicians inspecting and repairing machinery under the guidance of a chief engineer or scientists examining artefacts with distributed colleagues. This thesis considers the design of technology to support such forms of distributed working. Early research in video-mediated communication (VMC) which sought to support such interactions presumed video links between remote spaces would improve collaboration. The results of these studies however, demonstrated that in such tasks audio-video links alone were unlikely to improve performance beyond that achievable by simpler audio-only links. In explanation of these observations a reading of studies of situated collaborative working practices suggests that to support distributed object-focussed interactions it is beneficial to not only provide visual access to remote spaces but also to present within the task-space the gestural actions of remote collaborators. Remote Gestural Simulacra are advanced video-mediated communication tools that enable remote collaborators to both see and observably point at and gesture around and towards shared task artefacts located at another site. Technologies developed to support such activities have been critiqued; their design often fractures the interaction between the collaborating parties, restricting access to aspects of communication which are commonly used in co-present situations to coordinate interaction and ground understanding.

This thesis specifically explores the design of remote gesture tools, seeking to understand how remote representations of gesture can be used during collaborative physical tasks. In a series of lab-based studies, the utility of remote gesturing is investigated, both qualitatively, examining its collaborative function and quantitatively exploring its impact on both facets of task performance and collaborative language. The thesis also discusses how the configuration of remote gesture tools impacts on their usability, empirically comparing various gesture tool designs. The thesis constructs and examines an argument that remote gesture tools should be designed from a 'mixed ecologies' perspective (theoretically alleviating the problems engendered by 'fractured ecologies' in which collaborating partners are given access to the most salient and relevant features of communicative action that are utilised in face-to-face interaction, namely mutual and reciprocal awareness of commonly understood object-focussed actions (hand-based gestures) and mutual and reciprocal awareness of task-space perspectives. The thesis demonstrates experimental support for this position and concludes by presenting discussion of how the findings generated from the thesis research can be used to guide the design of future iterations of remote gesture tools, and presents directions for areas of further research.

Item Type: Thesis (University of Nottingham only) (PhD)
Supervisors: Rodden, Tom
Stanton Fraser, Danae
Keywords: Remote Gesturing, VMC, Video-Mediated Communication, CSCW, collaborative physical tasks, gesturing, deixis, collaboration
Subjects: Q Science > QA Mathematics > QA 75 Electronic computers. Computer science
Faculties/Schools: UK Campuses > Faculty of Science > School of Computer Science
Item ID: 10292
Depositing User: EP, Services
Date Deposited: 19 Jun 2007
Last Modified: 15 Oct 2017 08:55
URI: https://eprints.nottingham.ac.uk/id/eprint/10292

Actions (Archive Staff Only)

Edit View Edit View