Machine learning for improving heuristic optimisationTools Asta, Shahriar (2015) Machine learning for improving heuristic optimisation. PhD thesis, University of Nottingham.
AbstractHeuristics, metaheuristics and hyper-heuristics are search methodologies which have been preferred by many researchers and practitioners for solving computationally hard combinatorial optimisation problems, whenever the exact methods fail to produce high quality solutions in a reasonable amount of time. In this thesis, we introduce an advanced machine learning technique, namely, tensor analysis, into the field of heuristic optimisation. We show how the relevant data should be collected in tensorial form, analysed and used during the search process. Four case studies are presented to illustrate the capability of single and multi-episode tensor analysis processing data with high and low abstraction levels for improving heuristic optimisation. A single episode tensor analysis using data at a high abstraction level is employed to improve an iterated multi-stage hyper-heuristic for cross-domain heuristic search. The empirical results across six different problem domains from a hyper-heuristic benchmark show that significant overall performance improvement is possible. A similar approach embedding a multi-episode tensor analysis is applied to the nurse rostering problem and evaluated on a benchmark of a diverse collection of instances, obtained from different hospitals across the world.
Actions (Archive Staff Only)
|