
University of Nottingham

Doctoral Thesis

Machine Learning for Improving
Heuristic Optimisation

Author:

Shahriar Asta

Supervisor:

Dr. Ender Özcan

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Automated Scheduling, Optimisation and Planning (ASAP) Research Group

School of Computer Science

September 2015

http://www.nottingham.ac.uk/
http://www.cs.nott.ac.uk/~axk/
http://www.cs.nott.ac.uk/~exo/
http://www.asap.cs.nott.ac.uk/
http://www.nottingham.ac.uk/computerscience/index.aspx

Abstract

Heuristics, metaheuristics and hyper-heuristics are search methodologies which have

been preferred by many researchers and practitioners for solving computationally hard

combinatorial optimisation problems, whenever the exact methods fail to produce high

quality solutions in a reasonable amount of time. In this thesis, we introduce an ad-

vanced machine learning technique, namely, tensor analysis, into the field of heuristic

optimisation. We show how the relevant data should be collected in tensorial form, an-

alyzed and used during the search process. Four case studies are presented to illustrate

the capability of single and multi-episode tensor analysis processing data with high and

low abstraction levels for improving heuristic optimisation. A single episode tensor anal-

ysis using data at a high abstraction level is employed to improve an iterated multi-stage

hyper-heuristic for cross-domain heuristic search. The empirical results across six dif-

ferent problem domains from a hyper-heuristic benchmark show that significant overall

performance improvement is possible. A similar approach embedding a multi-episode

tensor analysis is applied to the nurse rostering problem and evaluated on a benchmark

of a diverse collection of instances, obtained from different hospitals across the world.

The empirical results indicate the success of the tensor-based hyper-heuristic, improv-

ing upon the best-known solutions for four particular instances. Genetic algorithm is a

nature inspired metaheuristic which uses a population of multiple interacting solutions

during the search. Mutation is the key variation operator in a genetic algorithm and

adjusts the diversity in a population throughout the evolutionary process. Often, a fixed

mutation probability is used to perturb the value at each locus, representing a unique

component of a given solution. A single episode tensor analysis using data with a low

abstraction level is applied to an online bin packing problem, generating locus dependent

mutation probabilities. The tensor approach improves the performance of a standard

genetic algorithm on almost all instances, significantly. A multi-episode tensor analysis

using data with a low abstraction level is embedded into multi-agent cooperative search

approach. The empirical results once again show the success of the proposed approach

on a benchmark of flow shop problem instances as compared to the approach which

does not make use of tensor analysis. The tensor analysis can handle the data with

different levels of abstraction leading to a learning approach which can be used within

different types of heuristic optimisation methods based on different underlying design

philosophies, indeed improving their overall performance.

Acknowledgements

I am deeply grateful to Dr. Ender Özcan, my supervisor who generously rendered help

and encouragement during the process of this thesis. Whatever I have accomplished

in pursuing this undertaking is due to his guidance and thoughtful advice. To him my

thanks.

I would like to thank the examiners, Professor Robert John and Professor Shengxiang

Yang, for their valuable comments.

My greatest debt is, as always, to my parents and my lovely wife who persistently

rendered me the much needed support in my academic endeavours.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables vii

1 Introduction 2

1.1 Research Motivation and Contributions 6

1.2 Structure of Thesis . 8

1.3 Academic Publications Produced . 10

2 Background 11

2.1 Metaheuristics . 11

2.1.1 Iterated Local Search . 12

2.1.2 Evolutionary Algorithm . 14

2.2 Hyper-heuristics . 16

2.2.1 Selection Hyper-heuristics . 16

2.2.1.1 Heuristic Selection and Move Acceptance Methodologies 17

2.2.2 Generation Hyper-heuristics . 18

2.2.3 Hyper-heuristics Flexible Framework (HyFlex) 20

2.3 Machine Learning . 25

2.3.1 k-means clustering . 27

2.3.2 Learning from demonstration . 28

2.3.3 Tensor Analysis . 29

2.3.3.1 Notation and Preliminaries 31

2.3.3.2 CP Factorisation . 34

2.3.3.3 Tucker Factorisation . 37

2.3.3.4 Tucker vs. CP Decomposition 38

2.4 Machine Learning Improved Heuristic Optimisation 39

2.5 Summary . 43

3 A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic

Search 44

3.1 Introduction . 45

3.2 Proposed Approach . 46

iii

Contents iv

3.2.1 Noise Elimination . 46

3.2.2 Tensor Construction and Factorisation 48

3.2.3 Tensor Analysis: Interpreting The Basic Frame 50

3.2.4 Final Phase: Hybrid Acceptance 51

3.3 Experimental Results . 52

3.3.1 Experimental Design . 53

3.3.2 Pre-processing Time . 54

3.3.3 Switch Time . 58

3.3.4 Experiments on the CHeSC 2011 Domains 60

3.3.4.1 Performance comparison to the competing algorithms of
CHeSC 2011 . 62

3.3.4.2 An Analysis of TeBHA-HH 63

3.4 Summary . 66

4 A Tensor-based Selection Hyper-heuristic for Nurse Rostering 68

4.1 Introduction . 68

4.2 Nurse Rostering . 70

4.2.1 Problem Definition . 70

4.2.2 Related Work . 73

4.3 Proposed Approach . 75

4.3.1 Tensor Analysis for Dynamic Low Level Heuristic Partitioning . . 77

4.3.2 Parameter Control via Tensor Analysis 79

4.3.3 Improvement Stage . 80

4.4 Experimental Results . 82

4.4.1 Experimental Design . 82

4.4.2 Selecting The Best Performing Parameter Setting 82

4.4.3 Comparative Study . 83

4.5 Summary . 89

5 A Tensor Analysis Improved Genetic Algorithm for Online Bin Pack-

ing 90

5.1 Introduction . 90

5.2 Online Bin Packing Problem . 92

5.3 Policy Matrix Representation . 94

5.4 A Framework for Creating Heuristics via Many Parameters (CHAMP) . . 95

5.5 Related Work on Policy Matrices . 97

5.5.1 Apprenticeship Learning for Generalising Heuristics Generated by
CHAMP . 98

5.6 Proposed Approach . 100

5.7 Experimental Results . 102

5.7.1 Experimental Design . 102

5.7.2 Basic Frames: An Analysis . 103

5.7.3 Comparative Study . 105

5.8 Summary . 107

6 A Tensor Approach for Agent Based Flow Shop Scheduling 108

6.1 Introduction . 108

6.2 Permutation flow shop scheduling problem (PFSP) 109

Contents v

6.3 Proposed Approach . 112

6.3.1 Cooperative search . 113

6.3.2 Metaheuristic agents . 114

6.3.3 Construction of tensors and tensor learning on PFSP 114

6.4 Computational Results . 115

6.4.1 Parameter configuration of tensor learning 116

6.4.2 Performance comparison of TB-MACS to MACS on the Talliard
instances . 119

6.4.3 Performance comparison of TB-MACS to MACS on the VRF In-
stances . 124

6.4.4 Performance comparison of TB-MACS and MACS to previously
proposed methods . 124

6.5 Summary . 126

7 Conclusion 128

7.1 Summary of Work . 128

7.2 Discussion and Remarks . 129

7.3 Summary of Contribution . 132

7.4 Future Research Directions . 134

Bibliography 136

List of Figures

1.1 Domain barrier in hyper-heuristics [1]. 3

2.1 A selection hyper-heuristic framework [1]. 20

3.1 The schematic of our proposed framework. 47

3.2 The tensor structure in TeBHA-HH. The black squares (also referred to
as active entries) within a tensor frame highlight heuristic pairs invoked
subsequently by the underlying hyper-heuristic. 48

3.3 A sample basic frame. Each axis of the frame represents heuristic indexes.
Higher scoring pairs of heuristics are darker in color. 51

3.5 Comparing the performance of TeBHA-HH on the first instance of various
domains for different values of tp. The asterisk sign on each box plot is
the mean of 31 runs. 58

3.6 Comparing the model fitness in factorisation, φ (y axis of each plot), for
various noise elimination strategies. Higher φ values are desirable. The
x-axis is the ID of each instance from the given CHeSC 2011 domain. . . 59

3.7 Comparing the performance (y axis) of TeBHA-HH on the first instance
of various domains for different values of ts (x axis). The asterisk sign on
each box plot is the mean of 31 runs. 60

3.8 Average objective function value progress plots on the (a) BP and (b)
VRP instances for three different values of ts where tp = 30 sec. 61

3.9 Box plots of objective values (y axis) over 31 runs for the TeBHA-HH
with AdapHH, SR-NA and SR-IE hyper-heuristics on a sample instance
from each CHeSC 2011 problem domain. 64

3.10 Ranking of the TeBHA-HH and hyper-heuristics which competed at CHeSC
2011 for each domain. 65

3.11 The interaction between NA and IE acceptance mechanisms: (a) The
search process is divided into three sections, (b) a close-up look on the
behaviour of the hybrid acceptance mechanism within the first section in
(a), (c) the share of each acceptance mechanism in the overall performance
stage-by-stage. 66

5.1 An example of a policy matrix for UBP (15, 5, 10) 96

5.2 CHAMP framework for the online bin packing problem. 96

6.2 The progress plot for TB-MACS and MACS using 16 agents while solving
tai-051-50-20 from 20 runs. The horizontal axis corresponds to the time
(in seconds) spent by an algorithm and the vertical axis shows the makespan.122

vi

List of Tables

2.1 Some selected problem domains in which hyper-heuristics were used as
solution methodologies. 16

2.2 The number of different types of low level heuristics {mutation (MU),
ruin and re-create heuristics (RR), crossover (XO) and local search (LS)}
used in each CHeSC 2011 problem domain. 22

2.3 Rank of each hyper-heuristic (denoted as HH) competed in CHeSC 2011
with respect to their Formula 1 scores. 22

3.1 The performance of the TeBHA-HH framework on each CHeSC 2011 in-
stance over 31 runs, where µ and σ are the mean and standard deviation
of objective values. The bold entries show the best produced results com-
pared to those announced in the CHeSC 2011 competition. 62

3.2 Average performance comparison of TeBHA-HH to AdapHH, the winning
hyper-heuristic of CHeSC 2011 for each instance. Wilcoxon signed rank
test is performed as a statistical test on the objective values obtained over
31 runs from TeBHA-HH and AdapHH. ≤ (<) denotes that TeBHA-HH
performs slightly (significantly) better than AdapHH (within a confidence
interval of 95%), while ≥ (>) indicates vice versa. The last column shows
the number of instances for which the algorithm on each side of ”/” has
performed better. 63

3.3 Ranking of the TeBHA-HH among the selection hyper-heuristics that were
competed in CHeSC 2011 with respect to their Formula 1 scores. 63

4.1 Instances of nurse rostering problem and their specifications (best known
objective values corresponding to entries indicated by * are taken from
private communication from Nobuo Inui, Kenta Maeda and Atsuko Ikegami). 73

4.2 Statistical Comparison between TeBHH 1, TeBHH 2 and their building
block components (SRIE and SRNA). Wilcoxon signed rank test is per-
formed as a statistical test on the objective function values obtained over
20 runs from both algorithms. Comparing algorithm x versus y (x vs. y)
≥ (>) denotes that x (y) performs slightly (significantly) better than the
compared algorithm (within a confidence interval of 95%), while ≤ (<)
indicates vice versa. 85

4.3 Comparison between the two proposed algorithms and various well-known
(hyper-/meta)heuristics. The second and third columns contain the best
objective function values achieved by TeBHH 1 and TeBHH 2 respectively.
Fourth column gives the earliest time (seconds) among all the runs (20) in
which the reported result has been achieved. Same quantities (minimum
objective function values and earliest time it has been achieved) are also
reported for compared algorithms in columns five and six. 86

vii

List of Tables viii

5.1 Standard GA parameter settings used during training 97

5.2 Features of the search state. Note that the UBP instance defines the
constants C, smin, and smax whereas the variables are s the current item
size, and r the remaining capacity in the bin considered, and r′ is simply
r − s. 99

5.3 Performance comparison of the GA+TA, GA, the generalized policy achieved
by the AL method, BF and harmonic algorithms for each UBP over 100
trials. The ‘vs’ column in middle highlights the results of the Wilcoxon
sign rank test where > (<) means that GA+TA is significantly better
(worse) than the compared method to the method in the left and right
column within a confidence interval of 95%. Similarly, ≥ shows that
GA+TA performs slightly better than the compared method (with no
statistical significance). The sign = refers to equal performance. 106

6.1 Mean RPD values achieved by different number of agents (4,8 and 16)
by the TB-MACS and MACS approaches on the Taillard benchmark in-
stances over 20 runs and their performance comparison to NEH and NE-
GAVNS (Zobolas et. al[2]). The best result is marked in bold style. The
‘vs’ columns highlights the results of the Wilcoxon signed rank test where
> (<) means that TB-MACS is significantly better (worse) than MACS
within a confidence interval of 95% for any given number of agents. Sim-
ilarly, ≥ (≤) shows that TB-MACS performs slightly better (worse) than
MACS (with no statistical significance) for any given number of agents. . 120

6.2 Best of run RPD values achieved for different number of agents on the
Taillard benchmark instances over 20 runs. The lowest value for each
instance is marked in bold. 121

6.3 Mean RPD achieved for 16 agents on large instances provided in Vallada et
al. [3] where only one replicate for each algorithm is run (VRF Hard Large
benchmarks). The best average result in each row can be distinguished
by the bold font. The ‘vs’ columns highlight the results of the Wilcoxon
signed rank test where > (<) means that TB-MACS is significantly better
(worse) than MACS within a confidence interval of 95%. Similarly, ≥ (≤)
shows that TB-MACS performs slightly better (worse) than MACS (with
no statistical significance). The performance of TB-MACS and MACS is
also compared to the NEH [4], NEHD [5], HGA [6] and IG [7] algorithms. 125

Acronyms 1

Acronyms

AdapHH Adaptive Hyper-Heuristic

AL Apprenticeship Learning

ALS Alternating Least Square

CHAMP Creating Heuristics viA Many Parameters

CHeSC Cross-domain Heuristic Search Challenge

CP Decomposition Canonical Polyadic Decomposition

HyFlex Hyper-heuristic Flexible framework

IE Improving or Equal

LS Local Search heuristic

MACS Multi-Agent Cooperative Search

MU Mutation heuristic

NA Näıve Acceptance

RR Ruin-Recreate heuristic

SRNA Simple Random heuristic selection with Näıve Acceptance strategy

SRIE Simple Random heuristic selection with Improving or Equal acceptance strategy

TB-MACS Tensor-Based Multi-Agent Cooperative Search

TeBHH Tensor-Based Hyper-Heuristic

TeBHA-HH Tensor-Based Hybrid Acceptance Hyper-Heuristic

XO Crossover heuristic

Chapter 1

Introduction

Heuristics have been used as rule-of-thumb approaches to solve computationally diffi-

cult optimisation problems, since exact methods often fail to produce solutions with a

reasonable quality in a em reasonable amount of time. Throughout the time, numerous

heuristics have been designed and successfully applied to particular problems. It has

been observed that different heuristics have different performances on different problem

domains or even on different instances from the same problem domain.

Metaheuristics are search methodologies that provide guidelines for heuristic optimisa-

tion [8]. Once implemented and tailored for a specific problem domain or even a specific

class of instances in a domain, metaheuristics similar to heuristics often cannot be reused

and applied to another domain or even a different class of instances in some cases. In

other words, they often lack generality. Another issue is that they come with a set of

parameters which often influences their performance, hence they require tuning which

is a time consuming and costly process. Generality, re-usability, simplicity and solution

quality are among the few peculiarities required in a powerful high level search method.

In order to achieve a higher level of generality, automated intelligent search methodolo-

gies, namely hyper-heuristics have emerged [9–17]. High level hyper-heuristics operate

on the space of low level heuristics which operate on the solutions. This indirect opera-

tion is usually achieved by devising a method to control/manage/mix or even generate

low level heuristics through a domain barrier (Figure 1.1). No problem domain specific

information flow is allowed from the domain level to the hyper-heuristic level during the

whole search process. Hyper-heuristics can either select/manage a set of fixed heuristics

or generate new heuristics to solve a given problem. The former is referred to as selection

hyper-heuristics and the latter as generation hyper-heuristics. Also, depending on the

way they handle the feedback from the search process, they can be grouped into learning

and no learning methods [13]. A selection hyper-heuristic has two main components:

2

Chapter 1. Introduction 3

heuristic selection method and move acceptance method. The heuristic selection method

decides which low level heuristic to apply to the solution in hand at each search step,

creating a new solution. Then the move acceptance method is used to decide whether

the old solution should be replaced by the new one or not.

Figure 1.1: Domain barrier in hyper-heuristics [1].

Ideally, hyper-heuristics are designed to be general in the area of application, simple in

design and off-the-shelf when it comes to re-usability. Furthermore, to increase their

generality, they incorporate automated features which enables them to adapt to the

difficulties of uncharted territory. This being the ideal case, there is still a huge chasm

between where hyper-heuristics stand today and the ideal point. This is not to say

that hyper-heuristics have achieved little. These algorithms have met some of the ex-

pectations with respect to generality. However, much needs to be done and a long way

should be covered in order to bring hyper-heuristics to an ideal point. Improvement

in generality and re-usability without compromising the quality of solutions achieved is

imperative if one’s goal is achieving the ideal hyper-heuristic.

One way to deal with the problem of generality in (hyper-/meta) heuristics is to consider

using machine learning techniques. Machine learning is the science of learning useful

rules and recognising hidden patterns from example data [18, 19]. These examples are

either presented as data or are acquired from direct interaction with the environment,

leading to offline and online variants of machine learning algorithms respectively. Of-

fline machine learning techniques use training algorithms to mine the data for hidden

patterns. This is while online algorithms build up a generalized model gradually as they

interact with the environment they are inhabiting. Furthermore, supervised and un-

supervised training approaches are possible. In supervised machine learning, example

data is accompanied by the desired output for each decision point. The desired output

is usually provided by a human expert which is why the approach is called supervised

learning. In case such supervision is missing, the task of learning is un-supervised. The

patterns/rules discovered by machine learning algorithms are powerful in describing the

Chapter 1. Introduction 4

data. They can be used as state-action mappers by choosing the right action in various

unseen decision points. They can also be used as classifiers to group new arriving data

to their respective classes. The predictive power of machine learning techniques has

enabled researchers to solve a variety of challenging problems such as face recognition

[20], natural language processing [21] and bioinformatics [22] among others.

Search algorithms can greatly benefit from machine learning approaches and their gen-

eralisation power. Patterns extracted by machine learning algorithms can be used to

further refine the operations of the search algorithm and improve it’s performance. Since

machine learning approaches build generalizable models of the data provided to them,

search algorithms can use this general model and apply it to a wider range of problems

and their instances. This way, one could expect higher levels of generality from the

search algorithms. Different ways exist to combine search methods and machine learn-

ing approaches. In cases where data can be gathered from the performance of the search

algorithm, this data can be presented in supervised or un-supervised form to the ma-

chine learning algorithm. The learning procedure can then extract hidden patterns and

useful rules and pass it over to the search algorithm which in turn uses this information

to refine its operations. One such cycle is referred to as a learning episode. Repeating

this cycle leads to a multiple episode learning system.

Combining search algorithms and machine learning can also be approached from a

memetic computing point of view. Memetic computing is an umbrella term for al-

gorithms with various components where there is interaction between the components

[23, 24]. The notion of memes as a unit of cultural transmission is interpreted as search

strategy in Memetic Algorithms [25]. A learning (hyper-/meta) heuristic can also be

perceived as a memetic computing algorithm. Considering various components of a

selection hyper-heuristic, they constantly interact with one another while the learning

mechanism uses these interactions to continuously generate new guidelines using which

the algorithm improves its performance. Memetic computing is a general term and is

not exclusive to population-based approaches where a pool of candidate solutions is used

during the search. In fact, efficient single point memetic computing algorithms which

use one candidate solution only have been introduced [24, 26, 27].

Data abstraction level can have a determining impact on the performance of a machine

learning algorithm both in terms of accuracy and expressiveness. Data is regarded

as highly abstract whenever it has a simple structure and/or the amount of detail it

contains is small. Conversely, the presence of complexities, concrete structures and a

high amount of details in data decreases it’s abstraction level. Such data is considered

to have low level of abstraction [28]. Depending on the level of abstraction in data,

the performance of a machine learning algorithm may vary. Highly abstract data are

Chapter 1. Introduction 5

often easy to model, though, the model is not necessarily very accurate. The accuracy

in prediction depends on what features the data contains and whether these features

have good discriminative properties. The output of a given machine learning method on

abstract data is also expected to be fairly understandable. Data with low abstraction

level is hard to model, however, more complexity in such data leads to more general

models with high predictive power given a proper choice of the learning technique and

efficient training procedure. The output of the learning algorithm is also expected to be

complex and thus hard to interpret. This is not to say that abstract data are useless or

that one should only consider non-abstract data for learning purposes. On the contrary,

abstract data can be very useful whence the data features are carefully designed and the

data is properly collected.

Different search algorithms utilize different design paradigms. Some algorithms (such

as hyper-heuristics) are high level methods and use abstract information to perform the

search. Some hyper-heuristic frameworks use a conceptual domain barrier. This domain

barrier restricts the flow of information from the search space to the high level strategy.

Often, this information only contains the objective function value along with the indices

and types of low level heuristics available for a given problem domain. Thus, the infor-

mation using which the hyper-heuristics performs the search are minimal. Consequently,

the trace the hyper-heuristic leaves behind also contains minimal information and can

be regarded as highly abstract data. There are also hyper-heuristic algorithms which

do not use the domain barrier concept [29]. These hyper-heuristics re-formulate the

representation of the candidate solution in form of heuristics. Thus, low level heuristics

in these cases have more information on the solution space compared to the hyper-

heuristics which use the domain barrier. However, they still don’t deal with the solution

space directly. Naturally, the trace left behind by these hyper-heuristics is less abstract.

Finally, there are domain specific metaheuristics which search directly in the solution

space. The data provided by these algorithms is rich as it contains the solutions them-

selves and is not abstract. Abstraction levels in data produced by various algorithms

using different design perspectives is illustrated in Figure 1.2(a).

Thus, while embedding machine learning algorithms in search methodologies, one needs

to consider certain criteria. The machine learning should be able to extract useful

patterns from various domains with very different natures. The models generated by

the learning technique should have a reasonably high level of generality and reduce the

frequency of training for new and unseen problem instances/domains. It also needs to

improve upon the performance of the heuristic it is attached to. Finally, the machine

learning approach should be able to deal with various levels of data abstraction if it would

be considered as a fitting learning technique for a wide range of search and optimisation

algorithms.

Chapter 1. Introduction 6

1.1 Research Motivation and Contributions

Using machine learning techniques to improve the performance of search algorithms is

not a new strategy. Several studies have been conducted on the role of machine learning

in improving the performance of search algorithms [30–35]. However, they suffer from

few drawbacks and usually fail to satisfy crucial criteria. Some of these algorithms lack

sufficient generality, high performance, agility and in some cases originality and novelty.

Working on domain independent data and operating on data with different levels of

abstraction are also important issues which are usually ignored.

In this study, we introduce an advanced machine learning technique, namely, tensor

analysis, into the field of heuristic optimisation. This is the first time that tensor analysis

is used in heuristic optimisation. Tensor analysis approaches use data in form of multi-

dimensional arrays and collecting data in this form can sometimes be difficult. The

data discussed here is collected from the search history produced by running a given

(hyper-/meta) heuristic for a short amount of time. In this study, we show how this

trace data is collected in a tensorial form. We also provide guidelines as to how to

analyze this data and interpret the results. Moreover, we show how to use the results

and embed the tensor analysis approach in various heuristic optimisation algorithms.

To show the efficiency of the proposed approach, different case studies with different

optimisation methods has been considered in our experiments. Both single and multiple

learning episodes have been considered with data of different levels of abstraction to

show that the proposed approach is capable of producing good quality results in different

conditions. Figure 1.2(b) shows the relation between different approaches proposed in

this study and the data abstraction level. The circles beside each method is the order

in which they will be described later.

A single episode tensor analysis using data with a high abstraction level is utilized to

improve a multi-stage hyper-heuristic for cross-domain heuristic search. The empiri-

cal results using the Hyper-heuristic Flexible (HyFlex) framework [36] on six different

problem domains show that significant performance improvement is possible [37]. The

problem domains in HyFlex include Bin Packing (BP), Satisfiability (Max-SAT), Per-

sonnel Scheduling (PS), Flow-shop Scheduling (FS), Vehicle Routing Problem (VRP)

and the Travelling Salesman Problem (TSP). Our results suggest that the proposed ap-

proach is powerful and capable of producing high quality solutions. Interestingly, it was

observed that, tensor analysis, when interpreted correctly, transforms the underlying

hyper-heuristic into an iterated local search algorithm [38–40] where the candidate solu-

tion is periodically subjected to intensification followed by diversification. This can also

be seen as a memetic computing approach in which a good analysis on the correlation

Chapter 1. Introduction 7

between low level heuristics has been made and a good balance between intensifying and

diversifying operations is achieved.

Encouraged by the previous results, in order to investigate whether the proposed ap-

proach is capable of extracting useful pattern continuously, we shifted our focus towards

the multi-episode performance of the proposed approach. A similar approach embedding

a multi-episode tensor analysis is applied to the nurse rostering problem. This approach

is evaluated on a well-known nurse rostering benchmark consisting of a diverse collection

of instances obtained from different hospitals across the world. The empirical results

indicate the success of the tensor-based hyper-heuristic, improving upon the best-known

solutions for four particular instances.

Moving to lower levels of data abstraction, the tensor analysis approach is embedded

in a genetic algorithm framework. Genetic algorithm is a well-known population-based

metaheuristic, inspired from biological evolution, which uses multiple candidate solutions

during the search process. Mutation in a genetic algorithm is the key variation operator

adjusting the diversity in a population throughout the evolutionary process. Often, a

fixed mutation probability is used to perturb the value of a gene (locus), representing a

component of a solution. The genetic algorithm framework considered here is a hyper-

heuristic algorithm which dismisses the usage of the domain barrier concept. Instead,

the framework re-formulates the representation of the candidate solutions in form of

ranking heuristics. Therefore, the data provided to the tensor analysis approach has

a lower abstraction level compared to the data acquired from the HyFlex framework.

However, the level of abstraction is higher than metaheuristics as the genetic algorithm

still doesn’t search in the solution space directly. A multiple episode tensor analysis

using data with a low abstraction level is applied to an online bin packing problem,

generating locus dependent mutation probabilities. The empirical results show that the

tensor approach improves the performance of a standard Genetic Algorithm on almost

all instances, significantly [41].

Finally, a multi-episode tensor analysis using data with a low abstraction level is embed-

ded into multi-agent cooperative search approach. Unlike former optimisation frame-

works considered earlier, the multi-agent approach searches directly in the solution space

providing data with the lowest level of abstraction possible. The empirical results once

again shows the success of the proposed approach on a benchmark of flow shop problem

instances.

As a conclusion, the tensor analysis approach is powerful in that it generates high quality

solutions. It also is capable of operating on a wide range of problems, exhibiting cross-

domain performance and requires short training time. Moreover, it can handle data from

various ends of the abstraction spectrum leading to an approach that can be embedded

Chapter 1. Introduction 8

(a)

(b)

Figure 1.2: (a) algorithms with different underlying design philosophies produce data
with different levels of abstraction (b) the machine learning methodology proposed in
this study has been integrated to various heuristic optimisation methods and therefore

on data with different abstraction levels.

within different types of heuristic optimisation methods with different underlying design

philosophies and indeed improve their performance (Figure 1.2(b)).

1.2 Structure of Thesis

The thesis is structured as follows:

� Chapter 1 introduces the thesis topic and relevant concepts.

Chapter 1. Introduction 9

� Chapter 2 provides the background and literature survey. A detailed discussion

on metaheuristics and hyper-heuristics is provided in this section. Also, since

the methodology used here heavily relies on machine learning, basic data science

concepts and details of advanced methods used in this work are covered in this

section.

� Chapter 3 introduces a tensor-based hyper-heuristic for cross-domain heuristic

search. An extensive set of experiments has been conducted across thirty problem

instances from six different domains of a benchmark. A report of the results from

those experiments along with analytic discussions regarding the proposed approach

is given in this section.

� Chapter 4 investigates the usefulness of multiple learning episodes at each run of

a heuristic optimisation method, unlike the previously proposed approach which

uses a single learning episode. Can the proposed approach extract new patterns

in subsequent episodes? An extensive discussion on the experimental results, de-

scribed in this section, reflects on these questions and shows that the proposed

approach is indeed powerful and capable of pattern detection as the search state

changes.

� Chapter 5 Unlike the studies in Chapters 3 and 4 where the focus was on selection

hyper-heuristics, in this chapter, generation hyper-heuristics and the role of tensor

analysis in improving the performance of such hyper-heuristics are considered.

The tensor learning is used to detect patterns indicating mutation probabilities

for each locus of a chromosome in the genetic algorithm. The experimental result

of the proposed approach shows that, similar to selection hyper-heuristics, the

tensor learning approach can improve the performance of the the generation hyper-

heuristic significantly.

� Chapter 6 focuses on the idea of using tensor analysis with a massive extension.

The framework discussed in previous chapters is extended to a distributed agent-

based learning system. Agents which use different metaheuristics during the search

construct tensorial data and the proposed method is used to extract patterns from

the experience of various agents, each using different search policies.

� Chapter 7 presents the conclusions of the research outcome and points out some

future research directions.

Chapter 1. Introduction 10

1.3 Academic Publications Produced

The following academic articles, conference papers and extended abstracts have been

produced as a result of this research.

� Shahriar Asta, Ender Özcan, Tim Curtois, A Tensor-Based Hyper-heuristic for

Nurse Rostering, Submitted. [Journal]

� Shahriar Asta, Ender Özcan, Simon Martin, Edmund K. Burke, A Multi-agent

System Embedding Online Tensor Learning for Flowshop Scheduling, Submitted.

[Journal]

� S. Asta and E. Özcan, A Tensor Analysis Improved Genetic Algorithm for Online

Bin Packing, Proceedings of the Annual Conference on Genetic and Evolutionary

Computation (GECCO ’15), Madrid, Spain, 2015. [Conference [41]]

� S. Asta and E. Özcan, A Tensor-based Selection Hyper-heuristic for Cross-domain

Heuristic Search, Information Sciences, vol. 299, pp. 412–432, 2015. [Journal [37]]

� S. Asta and E. Özcan, An Apprenticeship Learning Hyper-Heuristic for Vehicle

Routing in HyFlex, IEEE Symposium Series on Evolving and Autonomous Learn-

ing Systems (IEEE SSCI - EALS 2014), Orlando, Florida, USA, pp. 65–72, 2014.

[Conference [42]]

� S. Asta, E. Özcan, A Tensor-based Approach to Nurse Rostering, Proceedings

of the 10th International Conference of the Practice and Theory of Automated

Timetabling, E. Ozcan, E. K. Burke, B. McCollum (Eds.), ISBN: 978-0-9929984-

0-0, pp. 442–445, 2014. [Conference [43]]

� Shahriar Asta, Ender Özcan, Andrew J. Parkes, Batched Mode Hyper-heuristics,

the 7th Learning and Intelligent OptimizatioN Conference (LION13), Catania,

Italy, LNCS 7997, pp. 404–409, 2013. [Conference [44]]

� Shahriar Asta, Ender Özcan, Andrew J. Parkes, A. Şima Etaner-Uyar, Generaliz-

ing Hyper-heuristics via Apprenticeship Learning.EvoCOP 2013: 169–178, 2013.

[Conference [45]]

Chapter 2

Background

This chapter provides an overview of the basic concepts in heuristic optimisation. More-

over, an in-depth description of the methodologies used in this study, together with

related scientific literature review is given.

2.1 Metaheuristics

Pearl [46] defined heuristic as an intelligent search strategy for computer problem solving.

In the field of optimisation problems, a heuristic can be considered as an educated guess

or a ‘rule of thumb’ search method for finding a reasonable solution within a reasonable

time. In many application areas, exact methods might fail to provide a solution to a

given computationally hard problem. Although the heuristic algorithms are designed

to speed up the process of discovering a high quality solution, there is no guarantee for

achieving optimality. Heuristics are often problem-dependent methods that work well

for an instance of a problem and may or may not be used to solve another instance of

another problem or even the same problem.

The term metaheuristic was first used by Glover [47] to describe Tabu Search and has

recently been defined in [8] as “a high-level problem-independent algorithmic framework

that provides a set of guidelines or strategies to develop heuristic optimisation algo-

rithms.”. Metaheuristics can be broadly classified into population-based metaheuristics,

also called multi-point metaheuristics, and single-solution metaheuristics, also called

single-point metaheuristics. The population-based metaheuristics, such as, Evolution-

ary Algorithms [48], consist of a collection of individual solutions which are maintained

in a population while the single-solution metaheuristics, such as, Tabu Search [47], dif-

fer from population-based in that they improve and maintain a single solution. The

11

Chapter 2. Background 12

capabilities of exploration (diversification), being able to jump to the other regions of

the search space and exploitation (intensification), being able to perform local search

within a limited region using accumulated experience, and maintaining the balance in

between them are crucial for a metaheuristic, influencing its performance. Different

metaheuristics have different ways of maintaining that balance.

There is a slight confusion about metaheuristics being problem domain independent or

specific. The confusion arises from the fact that the “implementation” of a relevant

heuristic optimisation algorithm is also often referred to as using the same name for

the metaheuristic “framework”. The framework is applicable across different domains,

however the implementation of a metaheuristic is domain specific. For example, the

implementation of tabu search for bin packing problem can not be used for solving the

traveling salesman problem. Metaheuristics (i.e., their implementations) have to be tai-

lored for a specific problem domain and often, they are successful in obtaining high

quality solutions for that domain. However, metaheuristics being a subset of heuristics

come with no guarantee for the optimality of the obtained solutions. Moreover, they can-

not be used for solving an instance from another problem domain. The maintenance of

metaheuristics could be costly requiring expert intervention. Even a slight modification

in the description of the problem could require maintenance. Almost all metaheuristics

have parameters and their performance could be sensitive to the setting of those pa-

rameters. There are automated parameter tuning methods, such as F-race [49], REVAC

[50] and ParamILS [51] to overcome this issue. The parameter tuning process increases

the overall computation time of an approach while searching for a high quality solution

to a given problem instance. However, there could be a trade-off and a higher quality

solutions could be obtained for a given problem in the expense of spending more time

on tuning. A selected set of well known metaheuristics, including Iterated Local Search

and some Evolutionary Algorithms are briefly described in the following sections.

2.1.1 Iterated Local Search

Iterated Local Search (ILS) ([38–40]) can be considered as a modification to local search

(hill climbing) methods. Local search methods are a relatively simple class of metaheuris-

tics, based on the concept of locality between candidate solutions for a given problem.

A typical local search algorithm moves through the search space from one solution to

another within a neighbourhood, where a neighbour is defined as any state that can be

reached from the current solution through some modification. In the case that a local

search method will only move from one solution to another when that move results in

some improvement with respect to a particular objective function, it is referred to as

hill climbing. In cases where no improving neighbours are available, the local search/hill

Chapter 2. Background 13

climbing method can get stuck in local optima. ILS is designed to remedy this shortcom-

ing [38]. The ILS method (Algorithm 1) operates iteratively by applying local search

(lines 2 and 5) to a given solution followed by perturbing the solution (line 4). After

each cycle of local search and perturbation, the new solution and the old solution are

checked against an acceptance criteria which ultimately decides whether to accept the

new solution or to continue from the old solution (line 6). Thus, ILS performs a search in

the space of local optima and in doing so, it maintains a balance between intensification

and diversification during the search.

Algorithm 1: Iterated Local Search (adopted from [38])

1 s0 ← generate initial solution;
2 s∗ ← localSearch(s0);
3 while not termination do

4 s′ ← perturbation(s∗, history);
5 s′∗ ← localSearch(s′);
6 s∗ ← acceptanceCriterion(s∗, s′∗, history);

7 end

Ever since its introduction, ILS has been applied on a wide range of problems such as

Capacitated Vehicle Routing Problem [52], Scheduling Problem [53], Aircraft Landing

Problem [54], Quadratic Assignment Problem [55] and Team Orienteering Problem [56].

Moreover, numerous variants of the ILS approach including hybridisation with other

methods has emerged during the time. In [57], a variant of the ILS approach is proposed,

in which instead of a single perturbation and a single local search heuristic, several

operators of each type are available. At each perturbation stage, the proposed variant

selects a perturbation operator at random and applies it. This is while, in the local

search stage, all available local search operators are applied in sequence so that one local

search heuristic operates on the solution created by applying the local search heuristic

before it. This framework was applied in a cross-domain fashion on a range of problem

domains (Bin Packing, Permutation Flowshop and Personnel Scheduling) and produced

high quality results. In a later work [58], this ILS variant was modified to cater for more

adaptiveness and the integration of the extreme value-based adaptive operator selection

strategy which uses credit assignment [59]. The new variant was tested on a range of

well-known Capacitated Vehicle Routing Problem instances and produced good results.

A multi-start ILS combined with Mixed Integer Linear Programming was proposed in

[60] to solve a real-world periodic vehicle routing problem with time window. In [61]

the ILS algorithm is hybridized with the Variable Neighbourhood Descent as the search

engine.

A detailed account of the ILS approach, more variants and application areas can be

Chapter 2. Background 14

found in [38]. However, what is interesting (a point also confirmed in [38]) is that, meta-

heuristics which incorporate local search heuristics at some point in the algorithm can

be considered as iterated local search. In other words, these metaheuristics, iteratively,

generate some solution which is passed to a local search heuristic to exploit the solution

in its neighbouring area. Whether this is performed in periodic intervals or in an irreg-

ular manner does not change the fact that what such metaheuristic is essentially doing

is a form of iterated local search.

2.1.2 Evolutionary Algorithm

Evolutionary algorithms are a class of search techniques inspired from the natural process

of evolution. Genetic Algorithms [62] (GAs) form a subclass of evolutionary algorithms,

which, as illustrated in Algorithm 2, iteratively modifies a population of solutions from

one generation (i.e., iteration) to the next via the use of mutation and crossover op-

erators, perturbing a solution or recombining multiple solutions, respectively. Better

candidate solutions have a higher chance to undergo crossover. At each generation, the

old solutions get replaced by new solutions based on their fitness values, indicating the

quality of solutions with respect to an evaluation (objective) function.

Algorithm 2: Genetic Algorithm

1 t← 0;
2 P (t)← initialize population;
3 evaluate population P (t);
4 while not termination do

5 PP (t)← P (t).selectParents();
6 PC(t)← reproduction(PP (t));
7 mutate(PC(t));
8 evaluate(PC(t));
9 P (t+ 1)← buildNextGenerationFrom(PC(t), P (t));

10 t← t+ 1;

11 end

Memetic Algorithms (MA) were introduced by Moscato [25] as a set of evolutionary

algorithms that make heavy use of hill climbing. The term meme refers to a piece of

know-how or an instruction unit which is transmissible and replicable. A simple MA in-

troduces a local search phase into a Genetic Algorithm after crossover and mutation have

been performed during the evolutionary process (Algorithm 3). Since their emergence,

MAs and subsequent variants of MAs have been applied to a wide variety of prob-

lems including: educational timetabling [63–67], multi-objective optimisation problems

[68, 69], permutation flow shop scheduling [70], protein folding [71], quadratic assign-

ment problem [72] drug therapies [73], and the travelling salesman problem [74, 75]. In

Chapter 2. Background 15

addition to the application of MAs to solve practical optimisation problems, a number

of studies have sought to understand the concepts underpinning MAs and the behaviour

of memes [76]. Indeed the performance of an MA has been observed to be strongly

linked to the choice of local search mechanism used [77]. For the interested reader, a

comprehensive survey of Memetic Algorithms is offered by Neri et al. [23].

In addition to the traditional MAs which combine evolution and local search, a separate

branch of adaptive MAs which use multiple memes emerged [78]. A subset of adaptive

MAs evolve memes as part of the genotype for each individual in a population. Such

algorithms are usually referred to as self-adaptive or Multi-meme Memetic Algorithms

(MMAs) [79] and transfer memes from one generation to the next using inheritance

mechanisms. Generally an MMA will contain individuals made up of both genetic and

memetic material, with memes co-evolved during evolution. Özcan et al. [80] imple-

mented two adaptive MAs as hyper-heuristics for cross-domain heuristic search.

Algorithm 3: Memetic Algorithm

1 t← 0;
2 P (t)← initialize population;
3 evaluate population P (t);
4 while not termination do

5 PP (t)← P (t).selectParents();
6 PC(t)← reproduction(PP (t));
7 mutate(PC(t));
8 localSearch(PC(t));
9 evaluate(PC(t));

10 P (t+ 1)← buildNextGenerationFrom(PC(t), P (t));
11 t← t+ 1;

12 end

MAs are special cases of a broader concept in computational intelligence, namely, Memetic

Computing (MC) [81, 82]. Currently, memetic computation serves as an umbrella term

which includes any methodology which consists of several interacting components. Fur-

thermore, the notion of memetic computing is not exclusive to population-based methods

[24, 26, 27]. Single point search methods which operate on one candidate solution only

are also covered by the concept of memetic computation. Subsequently, in a learning

single point heuristic which learns patterns/rules from the search environment to im-

prove it’s performance, the extracted patterns are memes which are passed to other

components of the heuristic to make decision making more efficient.

Chapter 2. Background 16

2.2 Hyper-heuristics

Hyper-heuristics have emerged as effective and efficient methodologies for solving hard

computational problems [10]. They perform search over the space formed by a set of

low level heuristics, rather than solutions directly [15]. Burke et al. [13] defined a

hyper-heuristic as “a search method or learning mechanism for selecting or generating

heuristics to solve computational search problems”. Hyper-heuristics are not allowed to

access problem domain specific information. It is assumed that there is a conceptual

barrier between the hyper-heuristic level and problem domain where the low level heuris-

tics, solution representation, etc. reside. This specific feature gives hyper-heuristics an

advantage of being more general than the existing search methods, since the same hyper-

heuristic methodology can be reused for solving problem instances even from different

domains. A hyper-heuristic either selects from a set of available low level heuristics

or generates new heuristics from components of existing low level heuristics to solve

a problem, leading to a distinction between selection and generation hyper-heuristic,

respectively [13]. Also, depending on the availability of feedback from the search pro-

cess, hyper-heuristics can be categorized as learning and no-learning. Learning hyper-

heuristics can be further categorized into online and offline methodologies depending

on the nature of the feedback. Online hyper-heuristics learn while solving a problem

whereas offline hyper-heuristics process collected data gathered from training instances

prior to solving the problem. Many researchers and practitioners have been progres-

sively involved in hyper-heuristic studies for solving difficult real world combinatorial

optimisation problems ranging from channel assignment to production scheduling (Table

2.1). More on hyper-heuristics can be found in [11, 15, 83].

Table 2.1: Some selected problem domains in which hyper-heuristics were used as
solution methodologies.

Problem Domain [Reference] Problem Domain [Reference]

Channel assignment [84] Job shop scheduling [9]
Component placement sequencing [85] Sales summit scheduling [1]
Examination timetabling [86] Space allocation [87]
Nurse rostering [88] University course timetabling [88]
Orc quest, logistics domain [89] Vehicle routing problems [90]
Packing [91] Production scheduling [92]

2.2.1 Selection Hyper-heuristics

A selection hyper-heuristic has two main components: heuristic selection and move

acceptance methods. While the task of the heuristic selection is to choose a low level

heuristic at each decision point, the move acceptance method accepts or rejects the

Chapter 2. Background 17

resultant solution produced after the application of the chosen heuristic to the solution

in hand. This decision requires measurement of the quality of a given solution using an

objective (evaluation, fitness, cost, or penalty) function. Over the years, many heuristic

selection and move acceptance methods have been proposed. The following sections

provide a review of these techniques, though, a comprehensive survey on hyper-heuristics

including their components can be found in [11, 15].

2.2.1.1 Heuristic Selection and Move Acceptance Methodologies

In this section, we describe some of the basic and well known heuristic selection ap-

proaches. [93, 94] are the earliest studies testing simple heuristic selection methods as a

selection hyper-heuristic component. One of the most basic and preliminary approaches

to select low level heuristics is the Simple Random (SR) approach requiring no learn-

ing at all. In SR, heuristics are chosen and applied (once) at random. Alternatively,

when the randomly selected heuristic is applied repeatedly until the point in which no

improvement is achieved, the heuristic selection mechanism is Random Gradient. Also,

when all low level heuristics are applied and the one producing the best result is chosen

at each iteration, the selection mechanism is said to be greedy. The heuristic selection

mechanisms discussed so far do not employ learning. There are also many selection

mechanisms which incorporate learning mechanisms. Choice Function (CF) [93, 95, 96]

is one of the learning heuristic selection mechanisms which has been shown to perform

well. This method is a score-based approach in which heuristics are adaptively ranked

based on a composite score. The composite score itself is based on few criteria such

as: the individual performance profile of the heuristic, the performance profile of the

heuristic combined with other heuristics and the time elapsed since the last call to the

heuristic. The first two components of the scoring system emphasise on the recent

performance while the last component has a diversifying effect on the search.

In [89], a Reinforcement Learning (RL) approach has been introduced for heuristic selec-

tion. Weights are assigned to heuristics and the selection process takes weight values into

consideration to favour some heuristics to others. In [88], the RL approach is hybridized

with Tabu Search (TS) where the tabu list of heuristics which are temporarily excluded

from the search process is kept and used. In [97] a selection hyper-heuristic based

on Particle Swarm Optimisation was proposed to solve the resource provisioning-based

scheduling in grid environment. [98] proposed a selection hyper-heuristics based on the

Ant Colony Optimisation algorithm to schedule intercell transfers in cellular manufac-

turing systems. There are numerous other heuristic selection mechanisms. Interested

reader can refer to [11] for further detail.

Chapter 2. Background 18

As for the move acceptance component, currently, there are two types of move acceptance

methods: deterministic and non-deterministic [11]. The deterministic move acceptance

methods make the same decision (as for acception/rejection of the solution provided

by a heuristic) irrespective of the decision point. In contrast to deterministic move ac-

ceptance, non-deterministic acceptance strategies incorporate some level of randomness

resulting in different decisions for the same decision point. The non-deterministic move

acceptance methods almost always are parametric, utilising parameters such as time or

current iteration.

Initial studies on selection hyper-heuristics focused on some simple move acceptance

methods, such as Improvement Only (IO) [93], Improvement and Equal (IE) [99] and

Naive Acceptance (NA) [57, 93]. The IO acceptance criteria only accepts solutions

which offer an improvement in the current objective value. The IE method accepts all

solutions which result in objective value improvement. It also accepts solutions which

do not change the current objective value. Both IO and IE strategies are deterministic

strategies. The NA strategy is a non-deterministic approach which accepts all improving

and equal solutions by default and worsening solutions with a fixed probability of α.

Although there are more elaborate move acceptance methods, for example, Monte-Carlo

based move acceptance strategy [85], Simulated Annealing [100], Late Acceptance [101],

there is strong empirical evidence that combining simple components under a selection

hyper-heuristic framework with the right low level heuristics could still yield an improved

performance. [102] shows that the performance of a selection hyper-heuristic could vary

if the set of low level heuristics change, as expected. [103] describes the runner up

approach at a high school timetabling competition, which uses SR as heuristic selection

and a move acceptance method with 3 different threshold value settings. Moreover,

there are experimental and theoretical studies showing that mixing move acceptance

can yield improved performance [104–106]. More sophisticated acceptance algorithms

can be found in the scientific literature [11].

2.2.2 Generation Hyper-heuristics

Genetic Programming (GP) is one of the most commonly used techniques to generate

hyper-heuristics [107–110]. Some problem domains for which GP is used to construct

either a heuristic or component of a solution method include job shop scheduling [111],

0/1 knapsack [112], uncapacitated examination timetabling [113], satisfiability problem

[114] and strip packing [115]. Drake et al. [116] used grammatical evolution to gener-

ate components of a variable neighbourhood search approach for solving vehicle routing

Chapter 2. Background 19

problem. A recent work in [117] provided an evolutionary approach based on gene ex-

pression programming to generate selection hyper-heuristic components for cross domain

search.

Another emerging approach in generation hyper-heuristics is the use of data mining

techniques to automatically generate new effective heuristics. In [45], apprenticeship

learning (AL) technique was used to generalize hyper-heuristics in the Bin-Packing do-

main (see Chapter 5 for details). The AL method has a wide range of applications in

control and robotics and is heavily based on Inverse Reinforcement Learning (IRL)[118].

Inspired by the IRL approach, the main idea in [45] is to create an algorithm which learns

what course of action to take, by simply watching a couple of other algorithms which

perform well in various problem domains. That is, the algorithm learns the behaviour

of an expert algorithm by constructing a dataset via recording the actions of experts at

each state of the search process. The classifier produced from this dataset is used to

predict the best action at a given search state while dealing with an unseen problem

instance. The AL-based approach in [45] was trained on small problem instances and

was capable of generalising the extracted knowledge to larger problem instances. The

major drawback of the approach proposed in [45] was that the definition of the search

state was problem dependent.

In a later study [42], the work in [45] was extended by providing a general, problem

domain independent state definition. The authors also investigated whether an AL

hyper-heuristic is able to perform similar (or better) than the expert algorithm on a

given problem domain. Furthermore, various hyper-heuristic components from which

expert knowledge can be extracted were analysed. The modified framework was applied

to various instances of the vehicle routing problem and it was observed that the gener-

ated AL hyper-heuristic is able to outperform the expert on the majority of instances

exhibiting an impressive performance.

In [35] Learning Classifier Systems (LCS) are used to generate hyper-heuristics which

solve Constraint Satisfaction Problem (CSP). LCS are adaptive rule-based systems which

automatically generate a set of rules from the data [119]. Therefore, the LCS is trained

in an offline manner on a set of training instances and necessary rules are generated.

This rule set is then used as a selection hyper-heuristic to decide which heuristic to

choose at each step of the search. The result of applying the proposed framework on

various CSP test instances showed that the proposed approach provides reasonably good

solutions which are competent with some of the well-known algorithms in the field.

Also, in [120], an evolutionary process is used to evolve back propagation neural networks

which in turn predicts which heuristics to use at each search step. The generated neural

network is hence a selection hyper-heuristic and the evolutionary process creating this

Chapter 2. Background 20

neural network is considered to be a generation hyper-heuristic. The proposed framework

is designed for CSP problem instances. For each new problem instance a new neural

network has to be trained (offline). The work in [35] and [120] was later modified to

generate selection hyper-heuristics using logistic regression [34].

2.2.3 Hyper-heuristics Flexible Framework (HyFlex)

Hyper-heuristics Flexible Framework (HyFlex) [36] is an interface to support rapid de-

velopment and comparison of various (hyper-/meta) heuristics across various problem

domains. The HyFlex platform promotes the reusability of hyper-heuristic components.

In HyFlex, hyper-heuristics are separated from the problem domain via a domain bar-

rier [1] to promote domain-independent automated search algorithms. Hence, problem

domain independent information, such as the number of heuristics and objective value

of a solution, is allowed to pass through the domain barrier to the hyper-heuristic level

(Figure 2.1). On the other hand, pieces of problem dependent information, such as,

problem representation and objective function are kept hidden from the higher level

search algorithm. Restricting the type of information available to the hyper-heuristic to

a domain independent nature is considered to be necessary to increase the level of gen-

erality of a hyper-heuristic over multiple problem domains. This way the same approach

can be applied to a problem from another domain without requiring any domain expert

knowledge or intervention.

Figure 2.1: A selection hyper-heuristic framework [1].

Chapter 2. Background 21

HyFlex v1.0 is implemented in Java respecting the interface definition and was the

platform of choice at a recent competition referred to as the Cross-domain Heuristic

Search Challenge (CHeSC 2011) 1. The CHeSC 2011 competition aimed at determin-

ing the state-of-the-art selection hyper-heuristic judged by the median performance of

the competing algorithms across thirty problem instances, five for each problem domain.

Formula 1 scoring system is used to assess the performance of hyper-heuristics over prob-

lem domains. In formula 1 scoring system, for each instance, the top eight competing

algorithms receive scores of 10, 8, 6, 5, 4, 3, 2 or 1 depending on their rank on a specific

instance. Remaining algorithms receive a score of 0. These scores are then accumulated

to produce the overall score of each algorithm on all problem instances. The competing

algorithms are then ranked according to their overall score. The number of competitors

during the final round of the competition was 20. Moreover, a wide range of problem

domains is covered in CHeSC 2011. Consequently, the results achieved in the competi-

tion along with the HyFlex v1.0 platform and the competing hyper-heuristics currently

serve as a benchmark to compare the performance of novel selection hyper-heuristics.

The CHeSC 2011 problem domains include Boolean Satisfiability (SAT), One Dimen-

sional Bin Packing (BP), Permutation Flow Shop (FS), Personnel Scheduling (PS),

Travelling Salesman Problem (TSP) and Vehicle Routing Problem (VRP). Each domain

provides a set of low level heuristics which are classified as mutation (MU), local search

(LS)(also referred to as hill climbing), Ruin and Re-create (RR) and crossover (XO)

heuristics (operators). Each low level heuristic, depending on it’s nature (i.e. whether

it is a mutational or a local search operator) comes with an adjustable parameter. For

instance, in mutational operators, the mutation density determines the extent of changes

that the selected mutation operator yields on a solution. A high mutation density indi-

cates wider range of new values that the solution can take, relevant to its current value.

Lower values suggest a more conservative approach where changes are less influential.

As for the depth of local search operators, this value relates to the number of steps com-

pleted by the local search heuristic. Higher values indicate that local search approach

searches more neighbourhoods for improvement. Table 2.2 summarizes the low level

heuristics for each domain of CHeSC 2011 and groups them according to their type (e.g.

MU, RR, XO and LS).

The description of each competing hyper-heuristic can be reached from the CHeSC 2011

website. The ranking of twenty CHeSC 2011 participants is provided in Table 2.3. The

top three selection hyper-heuristics that generalize well across the CHeSC 2011 problem

domains are multi-stage approaches of AdapHH [121], VNS-TW [122] and ML [123].

1http://www.asap.cs.nott.ac.uk/external/chesc2011/

Chapter 2. Background 22

Table 2.2: The number of different types of low level heuristics {mutation (MU),
ruin and re-create heuristics (RR), crossover (XO) and local search (LS)} used in each

CHeSC 2011 problem domain.

Domain MU RR XO LS Total

SAT 6 1 2 2 11
BP 3 2 2 1 8
PS 1 3 5 3 12
PFS 5 2 4 4 15
TSP 5 1 3 4 13
VRP 3 2 3 2 10

Table 2.3: Rank of each hyper-heuristic (denoted as HH) competed in CHeSC 2011
with respect to their Formula 1 scores.

Rank HH Score Rank HH Score

1 AdapHH [121] 181 11 ACO-HH [124] 39
2 VNS-TW [122] 134 12 GenHive [125] 36.5
3 ML [123] 131.5 13 DynILS [126] 27
4 PHUNTER [127] 93.25 14 SA-ILS [N/A] 24.25
5 EPH [128] 89.75 15 XCJ [N/A] 22.5
6 HAHA [129] 75.75 16 AVEG-Nep [130] 21
7 NAHH [131] 75 17 GISS [132] 16.75
8 ISEA [133] 71 18 SelfSearch [134] 7
9 KSATS-HH [135] 66.5 19 MCHH-S [136] 4.75
10 HAEA [137] 53.5 20 Ant-Q [138] 0

The winning algorithm, AdapHH is a multi-phase learning hyper-heuristic [121]. AdapHH

adaptively determines the subset of low-level heuristics to apply at each phase. The du-

ration with which each heuristic is applied is also dynamically determined during the

search. The algorithm accepts only improving solutions in the absence of which the

algorithm refuses to accept worsening solutions until no improvements are observed

within an adaptively adjusted number of iterations. The parameters of each low-level

heuristic are dynamically modified via a reinforcement learning method. This is while

low-level heuristics are selected based on a quality index measure. This measure uses few

weighted performance metrics to compute the quality index for each heuristic. Among

these metrics are the number of new best solutions explored, the total improvement and

worsening during the run and also the current phase and finally the remaining execution

time. A heuristic with a quality index less than the average of the quality indexes of all

the heuristics is excluded from the selection process in the corresponding phase. Using a

tabu style memory, the number of phases in which the heuristic is consecutively excluded

is maintained. Whenever this number exceeds a threshold the heuristic gets excluded

Chapter 2. Background 23

permanently. AdapHH also employs a relay hybridisation with which effective pairs of

heuristics which are applied consecutively are identified.

The hyper-heuristic algorithm which ranked the second in the competition, VNS-TW

[122], is a two phase algorithm. The first phase consists of applying mutational or ruin

and recreate type of low-level heuristics to a population of initial solutions. Subsequently,

all the local search heuristics are applied until no more improvements are observed. In the

next phase, the algorithm shifts from a population-based method into a single solution

approach in which the best solution achieved in the first phase is used. Iteratively, A

circular priority queue of mutational heuristics is formed based on the severity of changes

that they imply. Subsequent to the application of heuristics a local search is applied.

This approach was ranked first in the Personnel Scheduling problem domain and second

in the overall.

The third ranking hyper-heuristic which is proposed in [123], namely ML, relies explicitly

on intensification and diversification components during the search process. A solution

is generated initially which goes through a diversification stage by the application of a

mutational or ruin-recreate low-level heuristic. The solution achieved at this stage is

then subjected to a local search heuristic for further improvement. The local search

heuristic is applied until no further improvements can be achieved. The acceptance

mechanism, accepts improving solutions as well as the cases where the solution has not

improved over the last 120 iterations.

The PHunter hyper-heuristic [127] was the algorithm which ranked fourth in the CHeSC

2011 competitions. PHunter imitates the actions of a traditional pearl hunter. In the

PHunter algorithm the low level heuristics are grouped as either local search (intensifier

heuristics) or non-local search. The former imitates the diving behaviour of a pearl

hunter while the latter is equivalent to the resurfacing behaviour of the pearl hunter

following a change in the search area for another dive. Furthermore, dives (local search)

are grouped into shallow and deep dives. A shallow dive is a local search with low depth

of search parameter value while a deep dive assigns higher values to the parameter depth

of search. Also, a tabu list is employed to enlist undesired intensification and diversi-

fication moves. The PHunter algorithm determines portfolios for categorized low level

heuristics by training and using a C4.5 decision tree [139]. It then uses these portfolios

in various conditions where each condition is estimated through an adaptation stage at

the beginning of the search. The search procedure is based on repeated intensification

and diversification and can generally be described as a type of Iterated Local Search

(ILS).

The remaining hyper-heuristics in Table 2.3 employ a variety of interesting concepts.

The hyper-heuristic proposed in [128] which is based on Evolutionary Programming

Chapter 2. Background 24

with Co-evolution, simultaneously evolves population of both solutions and heuristics.

The HAHA algorithm [129] is an interesting hyper-heuristic which repeatedly switches

between single-point and population-based search strategies. The algorithm is an online

learning hyper-heuristic with embedded adaptation mechanism to guide the selection of

low level heuristics. In contrast to other CHeSC 2011 contestants, the hyper-heuristic

proposed in [131] uses a non-adaptive method by discarding the dominated heuristics in

tuning procedure. This pre-processing step results in a fixed (non-adaptive) algorithm

schemata which is used to solve all the instances. The ISEA algorithm [133] uses Evolu-

tionary Algorithm to guide an Iterated Local Search through the search landscape. The

Hybrid Adaptive Evolutionary Algorithm (HAEA) [137] takes a probabilistic approach

to adapt the likelihood of selecting and applying low level heuristics as the search makes

progress. The algorithm proposed in [135] combines Simulated Annealing, Tabu Search

and Reinforcement Learning to construct a hyper-heuristic. Heuristics are chosen from

a tabu list while simulated annealing is used as the acceptance methodology. Reinforce-

ment learning has been used in the sense that heuristics with good performance are

rewarded during the search. In [124] Ant Colony Optimisation has been used as the

higher level strategy to select low level heuristics. The hyper-heuristics in [125] uses a

five phase approach based on the Genetic Hive algorithm. The core of the algorithm

repeatedly performs intensification, stagnation and diversification steps throughout the

search. The hyper-heuristic in [126] proposes the use of Dynamic Iterated Local Search to

adaptively adjust the intensity of the mutation operator within a hyper-heuristic which

is based on ILS. The study in [130] proposes a hyper-heuristic (AVEG-Nep) which is

based on reinforcement learning. In heuristics research community, it is usually said that

a (hyper-/meta) heuristic uses reinforcement learning whenever a rewarding scheme is

used to reward well performing components of the algorithm. However, in machine

learning and robotics community where this algorithm was invented and later modified,

only having a rewarding scheme does not suffice to consider the algorithm as a member

of reinforcement learning group of algorithms. The standard definition and formulation

of this popular and powerful approach is given in [140]. The AVEG-Nep hyper-heuristic

stays loyal to this formulation and can be considered as a real reinforcement learning-

based hyper-heuristic. The algorithm proposed in [132] uses a generic iterated simulated

annealing method as the higher level strategy to select low level heuristics and decide

whether or not to accept the outcome. In the hyper-heuristic proposed in [134] self

search is used to decide on the selection of the next heuristic during the search. This de-

cision is based on a variety measures: variation in quality of solutions, application time,

frequency of applying each heuristic and the number of times a low level heuristic fails to

yield a difference in the quality of the current solution. The algorithm proposed in [136]

assumes that heuristic selection follows a Markov chain which models the probability

of moving from one low level heuristic to another. This model is then used as a core

Chapter 2. Background 25

decision making mechanism for heuristic selection throughout the search. Finally, the

hyper-heuristic proposed in [138] is an agent-based system which combines Ant Colony

Optimisation algorithm with a reinforcement scheme. The Ant-Q algorithm is a con-

structive hyper-heuristic which aims at building a good sequence of low level heuristics

to be applied on the problem instance.

Following the competition, the hyper-heuristics community started to recognize the

CHeSC 2011 competition results as a benchmark for evaluating the performance and

generality level of a selection hyper-heuristic. There is a growing number of studies eval-

uating the performances of new selection hyper-heuristics on the CHeSC 2011 bench-

mark. [141] tested a variant of choice function hyper-heuristic over the CHeSC 2011

benchmark. An adaptive neighbourhood iterated local search is proposed and applied

on HyFlex problem domains [142, 143]. In [144], an iterated local search method is tested

on HyFlex problem domains. [145] evaluated variants of late acceptance-based selection

hyper-heuristics on the CHeSC 2011 benchmark and points out the best configuration

for the late acceptance strategy which accepts the current solution if its quality is better

than the quality of a solution obtained from a certain number of iterations ago.

HyFlex was later extended in [44] where it was modified to cater for new problem

domains, more instances and accommodate batch processing of problem instances by

lifting the per-instance time constraint. Instead of considering a time cap for each

instance and each run, an overall time limit was introduced leaving hyper-heuristics free

to decide on how much of the overall time they would spend on a given instance. The

new version (HyFlex v1.1 as opposed to HyFlex v1.0 which was used in CHeSC 2011)

was the framework of choice for the Second Cross-Domain Heuristic Challenge (CHeSC

2014). The public problem instances considered in this new challenge were chosen from:

Boolean Satisfiability (SAT), One Dimensional Bin Packing (BP), Permutation Flow

Shop (FS) and Personnel Scheduling (PS) problems. The hidden instances used in the

competition were chosen from: Personnel Scheduling, Multi-dimensional Knapsack and

Vehicle Routing problems. The competition consisted of two different tracks: single and

multi-threaded.

2.3 Machine Learning

Machine learning is the science of learning useful rules and recognising hidden patterns

from example data [18, 19]. These examples are either presented as data or are acquired

from direct interaction with the environment, leading to offline and online variants of

machine learning algorithms respectively. Offline machine learning techniques use train-

ing algorithms to mine the data for hidden patterns. This is while online algorithms

Chapter 2. Background 26

build up a generalized model gradually as they interact with the environment they are

inhabiting. Furthermore, supervised, semi-supervised and un-supervised training ap-

proaches are possible. In supervised machine learning, example data is accompanied by

the desired output for each decision point while in unsupervised learning desired output

is not provided. Semi-supervised techniques have access to the desired output during

the training only.

Machine learning techniques can be considered as efficient theory-based heuristics, how-

ever, they use some sort of probabilistic, statistic or derivative information/inference to

produce predictive models [18, 19]. Perhaps the most evident difference between ma-

chine learning techniques and other heuristics (such as metaheuristics and evolutionary

algorithms) is that rather than trying to optimize a given objective function (which is

the case in most heuristics) they instead build a model of the objective function using

statistical, probabilistic or gradient methods. (Semi-) Supervised approaches tend to

do this using example data provided to them in training while unsupervised methods

usually draw inference from the data without considering a desired output. Moreover,

(hyper-/meta)heuristics can also be considered and used for machine learning, however,

this is out of scope of this study.

Traditionally, a supervision dataset contains records of data where each record is a vector

consisted of feature values which describe the attributes of a decision point. The desired

output (also called label, decision or action) given for each record is usually provided

by human experts (hence the term supervised). Data labels describe a class label, an

action to be taken or a desired value for the given record (decision point). A dataset in

supervised learning can thus be formulated as in the following equation.

D = {(φi
e, ai)} , i = 1 · · ·N (2.1)

where D denotes the dataset which is a set of N feature records/vectors (φi
e) and their

respective action labels (ai). A feature vector, is a vector of length r where r is the

number of features in a given dataset. Unlike supervised learning, in un-supervised

learning, feature vectors are not labelled. Thus, a dataset prepared for an un-supervised

learning method can be expressed with the following equation.

D = {(φi
e)} , i = 1 · · ·N (2.2)

Features and labels can take their values from real or integer numbers or even have

nominal values. Given a dataset, depending on the existence of record labels, supervised

or un-supervised training algorithms can be chosen and applied on the data. However,

Chapter 2. Background 27

prior to training, data is usually split into training and test datasets. The former is used

to build a predictive model which is then applied on the latter to evaluate the accuracy

of the built model. The training is where the learning occurs and the output of the

training algorithm is a model which describes the data in a generalized manner. The

resulting model can have various applications depending on the data and objective of

the training algorithms. When the goal is classification, the model is used to assign each

unseen data record to the right class label. In case the objective is sequential decision

making, given that a training algorithm which properly fits this purpose is chosen (i.e.

Q-Learning), the model can be used as a state-action mapper which decides what to

do next given an unseen state. In summary, the predictive power of machine learning

techniques has enabled researchers to solve a variety of challenging problems such as

face recognition [20], natural language processing [21] and bioinformatics [22] among

others. In what follows, a description of machine learning methods used in this study is

provided.

2.3.1 k-means clustering

The k-means algorithm is an un-supervised machine learning method which partitions

the data into k mutually exclusive clusters where k is given a priori. It partitions the

example data such that records confined in each cluster are as close as possible to one

another (minimum within cluster distance) while being as far from records in other

clusters as possible (maximum between clusters distance). Several metrics can be used

to measure the distance. Some popular distance metrics are Euclidean distance and

cosine similarity [18]. Each cluster is identified by a central point referred to as cluster

centroid. Centroids are simply the mean of the feature values of the records in the

cluster. Hence, centroids have the same dimension as each record of the example data

(i.e. both have a length of r).

Having a dataset D (as in Equation 2.2), the k-means algorithm partitions the data into

k clusters using the following equation to minimize the within cluster distance for all

the points j in each cluster.

argmin
C

k
∑

j=1

∑

i∈cj

(

||φi − φcj ||
)2

(2.3)

where C = {c1, c2, · · · ck} is the set of all cluster centroids, the jth centroid is denoted

by cj and φcj is its feature vector. The algorithm which actually achieves this is based

on Expectation-Maximisation for which a pseudo code is given in Algorithm 4.

Chapter 2. Background 28

Algorithm 4: The k-means clustering algorithm.

1 Initialize cluster centroids to random points φc1 , φc2 , · · · , φck ∈ R
r ;

2 while not converged do

3 for (each record i = 1 · · ·N in the dataset) do

4 assign record i to cluster with centroid cj where cj ← argmincj ||φ
i − φcj ||

2
;

5 end

6 for (each centroid j = 1 · · · k) do

7 φcj =
∑N

i=1
1{i∈cj}φi

∑N
i=1

1{i∈cj}
;

8 end

9 end

In Algorithm 4, first cluster centroids are randomly initialized (line 1). Then each feature

vector φi is assigned to the closest cluster represented by the centroid point cj (line 3 to

5). The distance metric here is the Euclidean distance (i.e. ||φi−φcj ||). In the subsequent

step, the coordinates of the centroids are updated. The notation 1{i ∈ cj} is a check

which determines whether the record i belongs to cluster cj . Thus, the numerator of the

fraction in line 7, is the sum of feature values of the records belonging to cluster cj and

the denominator is the count of these records. The resulting value is hence the centroid

feature values/coordinates.

2.3.2 Learning from demonstration

Learning from Demonstration (LfD) is the task of learning a policy from demonstration

data provided by an expert. This technique is also referred to as Apprenticeship Learning

(AL), imitation learning, learning by watching or programming by demonstration [118].

Throughout this study, we will refer to this technique as apprenticeship learning. In the

recent years, the focus of the study on AL has been mainly in the field of robotics and

control where a robot learns a task from the demonstrations provided by a human expert.

The ever increasing presence of the robots in environments where the end-users are not

experts in robotics, control or programming makes useful utilisation of robotic facilities

a hard task which requires constant robotic-expert intervention. AL techniques are

introduced to simplify the interaction of non-robotics-experts with robots. Employing

AL techniques, the end-user will not have to be a robotic-expert in order to construct

an engineered and efficient control algorithm for the robot. AL is a technique in which

an agent learns a task, policy, model of a system or a set of rules from demonstrations

provided by a human demonstrator which is referred to as the expert. The term expert

refers to the end-user of the robot/agent with sufficient knowledge in the field in which

the robot/agent is supposed to operate and it does not refer to an expert in robotics,

Chapter 2. Background 29

algorithm design or programming. It is assumed that the actions of the expert reflect

the optimum policy, an assumption which may not always be true.

The demonstration dataset is precisely as in Equation 2.1 where the features describe

a state for each time unit and the label is the action chosen by the expert at that

time unit. The dataset transfers expert’s knowledge to the agent. What distinguishes

apprenticeship learning from other supervised learning methods though is that in ap-

prenticeship learning an explicit reward function or criteria is not used. That is, the

robot/agent learns to imitate a complicated task and the data presented to the task is

highly abstract (like welding a car’s roof in case of industrial robots) [118]. Once the

dataset is provided various machine learning techniques such as Inverse Reinforcement

Learning[118], Gaussian Mixture Models [146], Confidence-Based Learning [147] and

Dogged Learning [148] can be used to act as a state-action mapper for the robot/agent.

There is no reason why the same cannot be done in heuristic optimisation. There are

some algorithms which serve as state-of-the-art algorithm and have high performances in

a number of problem domains. These algorithms can be viewed as experts in the context

of apprenticeship learning. Furthermore, more than one expert can be employed where

each expert has high performance in at least one problem domain different than other

experts. Data could be collected from the trace of these experts on the problem instances

they are good at. It is expected that, similar to expert data in robotics, the collected

data is highly abstract. A generalized model can be built using this data, resulting in a

learned machine which theoretically could perform at least as good as the experts on all

the problem domains. In this study, the feasibility of this theory has been put to test.

In the coming sections a report of these trials is given. Also, the challenges encountered

during experiments are presented.

2.3.3 Tensor Analysis

Many problems produce data of a nature which is best described and represented in high

dimensional data structures. However, for the sake of simplicity, the dimensionality of

data is often deliberately reduced. For instance, in face recognition, the set of images

of various individuals constitutes a three dimensional data structure where the first

two dimensions are the x and y coordinates of each pixel in each image and the third

dimension is the length of the dataset. This is while, in classical face recognition (like

the eigenface method), each face image is reduced to a vector by concatenating the pixel

rows of the image. Consequently, the dataset, which is 3D (or maybe higher) in nature,

is reduced to a 2D dataset for further processing. However, [149] shows that by sticking

to the original dimensionality of the data and representing the dataset as a 3rd-order

Chapter 2. Background 30

tensor, better results are achieved in terms of the recognition rate. This is due to the

fact that collapsing the naturally 3D data into a matrix results in loss of information

regarding the dependencies, correlation and useful redundancies in the feature space

[150]. On the other hand, representing the data in its natural high dimensional form

helps with preserving the latent structures in the data. Employing tensor analysis tools

helps in capturing those latent relationships ([151], [152]). A good example of this

is given in [153] where the goal is to classify specific human actions (such as waving

hands, running and jugging) in a set of videos. Each instance in the dataset is a video

containing one of the desired actions performed by a human actor. Each video in itself

is three dimensional. That is, video frames are stacked one after another to form a three

dimensional data structure (or a 3rd−order tensor). Video tensors of a specific action are

then concatenated to one another resulting in a three dimensional corpora representing

the given action (each video is a three dimensional array, hence, concatenating them

will also result in another three dimensional array). Having a tensor for each action

available in the dataset, [153] used tensor analysis to classify human actions in unseen

videos and detect body part motions most associated to each action automatically.

Similar applications have been registered in various research areas such as hand written

digit recognition [154], image compression [155], object recognition [156], gait recognition

[157], Electroencephalogram (EEG) classification [158], Anomaly detection in streaming

data [159], dimensionality reduction [150], tag recommendation systems [160] and Link

Prediction on web data [161].

Tensor decomposition (a.k.a tensor factorisation) is used to detect latent relationships

between various modes of data. The reason why factorisation works in this context

and is able to extract latent relationships between various modes of data lies in the

elegant mechanism with which it deals with high dimensional datasets. Tensor fac-

torisation merges information from various dimensions of data by generalising matrix

Singular Value Decomposition (SVD) to higher dimensions and applying it to all modes

of data [171]. Several factorisation methods exists in the literature. Higher Order SVD

(HOSVD) [162], Tucker decomposition [163], Parallel Factor (a.k.a PARAFAC or CAN-

DECOMP or CP) [164] and Non-negative Tensor Factorisation (NTF) [165] are among

numerous factorisation methods proposed by researchers. Tucker decomposition has ap-

plications in data compression [166], dimensionality reduction [149] and noise removal

[167] among others. Also CP decomposition has been used for noise removal and data

compression [168]. In addition, it has a wide range of applications in many scientific

areas such as Data Mining [169] and telecommunications [170]. There are few other

factorisation methods which mainly originate from CP and/or Tucker methods. Each of

these methods (such as INDSCAL, PARAFAC2 and PARATUCK2) are widely known

in specific fields such as chemometrics or statistics. For more details on these methods

Chapter 2. Background 31

the reader is referred to [171]. Also, the studies in [172] and [173] provide very detailed

comparison between factorisation methods.

2.3.3.1 Notation and Preliminaries

Tensors are multidimensional arrays and the order of a tensor indicates its dimension-

ality. Each dimension of a tensor is referred to as a mode. In our notation, following

[171], a boldface Euler script letter, boldface capital letter and boldface lower-case letter

denote a tensor (e.g., T), matrix (e.g., M) and vector (e.g., v), respectively. The entries

of tensors, matrices and vectors (and scalar values in general) are indexed by italic lower-

case letters. For example, the (p, q, r) entry of a 3rd−order (three dimensional) tensor

T is denoted as tpqr. Also, the nth element in a sequence is denoted by a superscript in

parenthesis. For instance, A(n) denotes the the nth matrix in a sequence of matrices.

Please note that, in this study, we only deal with 3rd-order tensors and all definitions

and discussions are based on this assumption.

Tensor analysis involves a huge amount of indexing. Carelessness in dealing with indexes

can lead to serious computation errors and undesired results. Luckily, there exists a

convention using which the perils of indexing errors can be diminished. One of the most

frequent practices in tensorial operations is extracting sub-data from tensor. This is

useful both during the construction of the tensor and analysing it. Tensor sub-data can

have the form of a sub-tensor or a sub-array. Since tensors have multiple dimensions,

there are more than one way to access this sort of sub-data. Subtensors and subarrays

are achieved by fixing a subset of indices. For example, given a 3rd-order tensor T and

fixing the second and third indices, one can extract fibers of the tensor (Figure 2.2(a)).

Since the sub-array being extracted is corresponding to the first index (first mode) the

vector t:qr is referred to as the mode-1 fiber. Similarly tp:r and tpq: are mode-2 and

mode-3 fibers (figures 2.2(b) and 2.2(c)). Moving a step higher, one can extract slices of

a tensor by fixing only one index. For example, fixing the first index results in a matrix

Tp:: which is called the horizontal slice (Figure 2.2(d)). Lateral (T:q:, Figure 2.2(e)) and

frontal (T::r, Figure 2.2(f)) slices can be achieved in similar fashion.

Apart from indexing methods, several tensorial operations exist which are frequently

used in tensor-based analytic approaches. Covering all of these operations is out of

the scope of this thesis as they are not directly used here. However, here we explain a

relevant operation which is used during the factorisation procedure.

Tensor matricisation is a procedure to transform a tensor to a matrix. It is also known

as unfolding and flattering. Similar to indexing operations, there are many ways to

Chapter 2. Background 32

(a) Mode-1 column fibers: t:qr (b) Mode-2 row fibers: tp:r (c) Mode-3 tube fibers: tpq:

(d) Horizontal slices: Tp:: (e) Lateral slices: T:q: (f) Frontal slices: T::r

Figure 2.2: Fibers and Slices of a 3rd-order tensor T (adopted from [171]).

matricize a tensor. However, the only way relevant to this thesis is the mode-n matrici-

sation approach. Given a tensor T , its mode-n matricisation is denoted by T(n) which

arranges the mode-n fibers of the tensor to be the columns of the resulting matrix. That

is, the tensor element indexed as (i1, i2, i3) maps to the (in, j) element in the resulting

matrix where

j = 1 +

3
∑

k=1,k 6=n

(ik − 1)Jk with Jk =

k−1
∏

m=1,m¬n

Im (2.4)

This operation can be clarified better through an example. Suppose that T ∈ R
3×4×2 is

a 3rd-order tensor with the following two frontal slices:

T::1 =









1 2 3 4

5 6 7 8

9 10 11 12









,T::2 =









13 14 15 16

17 18 19 20

21 22 23 24









Chapter 2. Background 33

Then, the following are matricisation of T in the first, second and the third modes

respectively:

T(1) =









1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24









T(2) =















1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24















T(3) =

[

1 5 9 2 6 10 3 7 11 4 8 12

13 17 21 14 18 22 15 19 23 16 20 24

]

Another useful tensorial operation is multiplication which includes tensor-tensor, tensor-

matrix and tensor-vector multiplications. Though quite similar in principle, tensor mul-

tiplication can be much more complex than matrix/vector multiplication. There are var-

ious ways of multiplying tensor with other tensors of similar or different orders, however,

here we only discuss the n-mode matrix product of a tensor which is the only multiplica-

tion operation directly relevant to this study. Given a N th-order tensor T ∈ R
I1×I2···×IN

and a matrix M ∈ RJ×In , the n-mode multiplication (denoted by T ×n M) results in

a N th-order tensor I1 × · · · In−1 × J × In+1 × · · · × IN . The resulting tensor can be

expressed as in the following equation element wise.

(T ×n M)i1···in−1jin+1···iN
=

In
∑

in=1

ti1···iNmjin (2.5)

For instance, given the tensor T in the example above and the matrix M below:

M =

[

1 3 5

2 4 6

]

The multiplication of tensor T and matrix M on the first mode (T ×1 M) results in a

new tensor Y with the following two frontal slices respectively:

Y::1 =

[

61 70 79 88

76 88 100 112

]

Chapter 2. Background 34

Y::2 =

[

169 178 187 196

220 232 244 256

]

One of the operators used in tensor calculations (particularly during factorisation) is

the Khatri-Rao product ([174] and [171]). Where matrices A ∈ R
I×K and B ∈ R

J×K

are given, their Khatri-Rao product (denoted by A ⊙ B) is a matrix of size (IJ) ×K

defined by:

A⊙B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK] (2.6)

where ⊗ is the Kronecker product. An example of the Kronecker product of two vectors

a and b is given below.

a⊗ b = abT =















a1

a2

a3

a4















[

b1 b2 b3

]

=















a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

a4b1 a4b2 a4b3















Further practical examples of the operators mentioned above and description of many

other operators can be found in [175] and [171].

The operation widely used to extract the latent relationship between various modes of

data is factorising (decomposing) the tensor into its basic factors. Basic factors are

then used in different ways depending on the objective of the algorithm. The tensor

decomposition methods are mainly generalisations of the Singular Value Decomposition

(SVD) to higher dimensions. Higher Order SVD (HOSVD) [162], Tucker decomposition

[163], Parallel Factor (a.k.a PARAFAC or CANDECOMP or CP) [164] and Non-negative

Tensor Factorisation (NTF) [165] are among numerous factorisation methods proposed

by researchers. A description of the two most popular factorisation methods, namely,

the CP factorisation approach and the Tucker method is given in the following sections.

2.3.3.2 CP Factorisation

Assume that we have a 3rd-order tensor denoted by T with a size P ×Q×R. CP decom-

position utilizes the Alternating Least Square (ALS) algorithm [176, 177] (Algorithm 5),

in which tensor T is approximated by another tensor T̂ as in Equation 2.7.

Chapter 2. Background 35

T̂ =

K
∑

k=1

λk ak ◦ bk ◦ ck (2.7)

λk ∈ R+, ak ∈ R
P , bk ∈ R

Q and ck ∈ R
R for k = 1 · · ·K, where K is the number of

desired components. Each summand (λk ak ◦ bk ◦ ck) is called a component while the

individual vectors are called factors (Figure 2.3). λk is the weight of the kth component

achieved by normalizing the vectors ak, bk and ck. Most tensor toolboxes (including

the Matlab Tensor Toolbox [206] used in this study) sort the resulting components in

decreasing order of their weights.

Note that “◦” is the outer product operator. The outer product of three vectors produces

a 3rd-order tensor. For instance, given K = 1, Equation 2.7 reduces to T̂ = λ a◦b◦c, in

which T̂ is a 3rd-order tensor which is obtained by the outer product of three vectors a,

b and c. Subsequently, each tensor entry, denoted as t̂pqr is computed through a simple

multiplication like apbqcr.

Figure 2.3: Factorising a tensor to K components.

The outer product ak ◦bk in Equation 2.7 quantifies the relationship between the object

pairs, i.e., score values indicating the “level of interaction” between object pairs in

component k [171]. The purpose of the ALS algorithm is to minimize the error difference

between the original tensor and the estimated tensor, denoted as ε as follows:

ε =
1

2
||T − T̂ ||

2

F (2.8)

where the subscript F refers to the Frobenious norm. That is:

||T − T̂ ||
2

F =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

(

tpqr − t̂pqr
)2

(2.9)

The ALS algorithm (Algorithm 5) operates as follows. The algorithm takes a tensor

and the desired number of components as input (lines 1 and 2). The algorithm can

also be provided with a maximum number of iteration (line 3), though, modern ALS

algorithms rarely need this input as they terminate the loop whenever there is no more

Chapter 2. Background 36

Algorithm 5: The Alternating Least Square algorithm - CP decomposition of a 3rd-
order tensor

1 In: T ∈ R
P×Q×R (the tensor to be factorized);

2 In: K (number of desired components);
3 In: M (number of iterations);

4 A(0) ∈ R
P×K ,B(0) ∈ R

Q×K ,C(0) ∈ R
R×K ← Initial guess;

5 for (i = 1 · · ·M) do

6 A(i+1) ← T(1)/(C
(i) ⊙B(i))

T
(solving least square to update A);

7 B(i+1) ← T(2)/(C
(i) ⊙A(i+1))

T
(solving least square to update B);

8 C(i+1) ← T(3)/(B
(i+1) ⊙A(i+1))

T
(solving least square to update C);

9 normalize columns of A(i+1),B(i+1) and C(i+1) (storing norms as λ);

10 end

11 return λ,AM ,BM ,CM

improvement in the approximation error (Eq.2.8). The algorithm then generates initial

guesses for the three factor matrices A(0), B(0) and C(0). Starting from these initial

guesses, the ALS algorithm fixes B and C and solves for A (line 6) where T(1) is the

mode-1 matricisation (definition: Section 2.3.3.1) of the given tensor and the solution

to the least square problem is expressed by the following equation:

Ai+1 = argmin
Â∈RP×K

‖ T(1) − Â
(

Ci ⊙Bi
)T
‖
2

F
(2.10)

Subsequently, the algorithm fixes the updated Ai+1 and the existing C matrices to

update the matrix B (line 7) with improved values where these values are achieved by

solving the least square problem given in Equation 2.11.

Bi+1 = argmin
B̂∈RQ×K

‖ T(2) − B̂
(

Ci ⊙Ai+1
)T
‖
2

F
(2.11)

Similar to the last two steps, updated Ai+1 and Bi+1 are fixed and used to solve the

least square problem in Equation 2.12 to generate an updated Ci+1 (line 8).

Ci+1 = argmin
Ĉ∈RR×K

‖ T(3) − Ĉ
(

Bi+1 ⊙Ai+1
)T
‖
2

F
(2.12)

This cycle continues until some convergence criterion is met or the maximum number

of iterations is reached. At each iteration the factor vectors of each factor matrix are

normalized to length 1 vectors and the weight of each factor is inserted into its corre-

sponding location in the weight vectors λ.

Chapter 2. Background 37

After applying the factorisation method, in addition to the CP model, a measure of

how well the original data is described by the factorized tensor can be obtained. This

measure (model fitness), denoted as φ, is computed using the following equation:

φ = 1−
||T − T̂ ||F
||T ||F

(2.13)

where the value φ is in the range [0, 1]. The φ value is an indicator which shows how

close the approximated tensor is to the original data. In other words, it measures the

proportion of the original data represented in the approximated tensor T̂ . A perfect

factorisation (where T = T̂) results in φ = 1, while a poor factorisation results in

φ = 0, hence as the φ value increases, so does the factorisation accuracy. More on tensor

decompositions and their applications can be found in [171].

As well as representing data in a concise and more generalizable manner which is immune

to data anomalies (such as missing data), tensor factorisation methods offer additional

interesting utilities. Those methods allow partitioning of the data into a set of more

comprehensible sub-data which can be of specific use depending on the application ac-

cording to various criteria. For example, in the field of computer vision, [178] and [153]

separately show that factorisation of a 3rd-order tensor of a video sequence results in

some interesting basic factors. These basic factors reveal the location and functionality

of human body parts which move synchronously.

2.3.3.3 Tucker Factorisation

Tucker decomposition was first introduced in [163], [179] and [180] and is a generalisa-

tion of the CP method with few modifications. Tucker decomposition is a higher order

PCA and has it’s applications in data compression [166], dimensionality reduction [149]

and noise removal [167]. Unlike CP factorisation in which factorising a 3rd-order tensor

results in vectors as basic factors of each component, in the Tucker approach, decompo-

sition of a 3rd-order tensor results in a core tensor (G) which is transformed by a matrix

along each mode of the data (Figure 2.4). Thus, using Tucker decomposition method, a

3rd-order tensor T of size P ×Q×R is approximated by the tensor T̂ as in the following

equation.

T̂ = G ×1 A×2 B×3 C =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

gpqrap ◦ bq ◦ cr (2.14)

Chapter 2. Background 38

where ×n refers to multiplication along mode n (definition: Section 2.3.3.1). A ∈ R
I×P ,

B ∈ R
J×Q and A ∈ R

K×R are factor matrices and can be thought of as the principal

component in each mode. The entries of the core tensor G ∈ R
I×J×K , say gijk, represent

the level of interaction between different principal components.

Figure 2.4: Factorising a tensor using the Tucker decomposition method.

2.3.3.4 Tucker vs. CP Decomposition

Perhaps the best way to compare the two popular factorisation approaches is to con-

trast their approximations of the original tensor. Contrasting Eq.2.7 (CP) with Eq.2.14

(Tucker), it is evident that the former provides a simple to understand approximation

of the tensor. The CP factorisation produces three basic factors whereas the Tucker

decomposition includes a core tensor (G) which is difficult to understand and interpret.

On the other hand, an interesting property of the CP decomposition method is that its

unique (under mild conditions) [171]. That is, the rank one tensors achieved (i.e. each

tensor in the right hand side of the Eq.2.7) are the only possible combination that sum

up to the original tensor. This is while the Tucker decomposition does not provide a

unique approximation of the original tensor.

In our study, as we shall see in future sections, we use tensor analysis for ranking and

partitioning purposes. Thus, uniqueness of the basic factors is a most crucial condi-

tion. Moreover, compared to Tucker decomposition, CP factorisation produces easy to

interpret basic factors. This is particularly desirable in the context of heuristics. Some

applications (such as video, speech and text) produce easy-to-understand contents be-

cause there is a certain semantic concept naturally associated with the data. This is

not the case in the data produced by hyper-heuristics. Therefore, it is very desirable to

choose a decomposition method which offers some level of simplicity in the process of

interpreting the basic factors. Therefore, we have chosen to use the CP decomposition

as the method to factorize tensors in this study.

Chapter 2. Background 39

2.4 Machine Learning Improved Heuristic Optimisation

Using machine learning techniques to improve the performance of search algorithms is

not a new strategy. In continuous optimisation where the variables in objective function

take real numbers as values, machine learning approaches have been used to influence cer-

tain aspects of the optimisation algorithm. The learning can be applied in different ways

influencing different components of the evolutionary algorithms such as population ini-

tialisation [181, 182] (using orthogonal experimental design and opposition-based learn-

ing respectively), modelling objective function [183] (using artificial neural networks),

reducing number of function evaluations [184] (using Gaussian processes and surrogate

models), problem scale reduction [185] (using principal component analysis), problem

structure learning [186] (using Bayesian networks), parameter adaptation [187] (using

cluster analysis) and operator adaptation [188] (using reinforcement learning respec-

tively). More about integrating machine learning methods in optimisation algorithms

in continuous domain can be found in [189].

In this study however, we focus on combinatorial (discrete) optimisation where the vari-

ables of the objective function take on discrete values. Optimisation algorithms in dis-

crete domain have also considered using machine learning to improve their performance

[30–35, 190, 191]. However, compared to the continuous domain, the number of studies

in this area is a lot less. Although previous studies are certainly valuable introducing a

very powerful technique in heuristic optimisation, and provide insights which have led

to the work presented in this dissertation, they usually suffer from few drawbacks and

fail to satisfy some of the criteria enlisted below.

� Generality: Often, machine learning algorithms are combined with heuristics to

improve their performance on a sub-class of instances of a single problem domain.

While this may achieve a satisfying result for a particular study there is no evidence

of sufficient generality over various problem domains.

� Domain Independent Data: Data used for various machine learning algorithms

are usually domain dependent [32, 120]. It is not clear if the same approach can be

used when the dataset evolves even if the problem stays the same. It seems that

in most cases, the learning algorithm changes as the data changes. For instance,

following the sequence of research in [34, 35, 120]) it is clear that the mining

technique needs revision when the problem/data changes. This on its own is not

a deficiency and the studies in [34, 35, 120] present valuable conclusions which

encourages us to choose the right technique in our approach.

Chapter 2. Background 40

� Performance: Sometimes, a machine learning technique is embedded into the

heuristic optimisation process, however, it does not perform well at all [130, 136].

Looking at the lowest ranking hyper-heuristics of the CHeSC 2011 competition

in Table 2.3 it becomes clear that some of the most well-known machine learning

algorithms such as Reinforcement Learning or Markov Decision Processes fail to

provide hyper-heuristics with a reasonably good level of adaptation. These algo-

rithms are by no means considered as weak methodologies in the pattern recogni-

tion community. In fact, they are very powerful and numerous studies exist in the

literature to prove this point and illustrate their popularity.

� Agility: Training episodes usually take a considerable time and even sometimes

mixed with parameter tuning [117]. Long training scenarios most often result in

more accurate predictive systems for the problem instances used in the training

stage. However, this in turn can lead to over-fitting and a poor performance

on unseen problem instances. Also, long training periods are not useful in real-

time problems where a quick sub-optimal solution is preferred to a better solution

achieved after a long run time.

� Originality: In some cases, the claim is that a specific machine learning approach

is used, however, the learning methodology is over-simplified to the point that it no

longer resembles/follows the original learning method. As an example, the study in

[192] proposed a hyper-heuristic which uses reinforcement learning for adaptation.

What the algorithm really does however, is simply exhibiting a greedy behaviour

with respect to some rewarding scheme. Reinforcement learning in its true form

can be found in [18] and compared to what has been proposed.

� Data Abstraction Levels: Machine learning algorithms used in the context of

heuristics optimisation are not applied to data with various levels of abstraction.

This is useful since it shows the flexibility of the learning approach. An off-the-shelf

learning approach which can be integrated in a wide variety of heuristic optimisa-

tion methods regardless of their underlying design philosophy and improve their

performance should be more appreciated than scattered use of different methods

in different optimisation algorithms.

� Novelty: There are various novel and high performance machine learning ap-

proaches in the literature with very interesting properties. For example, apart

from the technique which is used in this study for the first time, interesting ad-

vanced machine learning methods such as Conditional Random Fields [193], Deep

Learning [194] and Deep Reinforcement Learning [195] could be investigated. Ma-

chine learning algorithms are getting smarter and more efficient every day. It

would be scientifically interesting to use these new methods along with classical

Chapter 2. Background 41

mining techniques to see whether interesting patterns which were previously un-

known exist. Most of the optimisation algorithms to date, rarely use these novel

methods and often opt for the classical approaches.

A proper integration of machine learning approaches with heuristic optimisation tech-

niques, should consider all of the above mentioned criteria and ideally satisfy them all.

To further clarify these issues a review on the heuristic optimisation approaches which

use machine learning at some stage during the search is given here.

In one of the rare studies where authors have tested their learning optimisation approach

on multiple domains, [30] proposes an offline learning method to construct rules using

which the algorithm escapes local optima. In order to construct the dataset, first, a set

of randomly chosen local optima points are considered. The following procedure is then

followed for each point A in the set of randomly chosen local optima points. For each

local optima A, close local optima points B are chosen. The proximity is calculated

using the Euclidean distance metric between two points and a distance threshold is

used to select close local optima for each given point. Subsequently, pairs in the form

of (A,B) are constructed for each local optima A and points B which are close to A.

If the value of the objective function value improves when moving from A to B, then

the pair (A,B) is regarded as an improving pair. Otherwise, it is labelled as a non-

improving pair. Furthermore, if the number of local optima points close to A are less

than a given lower bound then the point A is discarded all together. The reason for

this strategy is that a local optima with few local optima in it’s proximity does not

offer much clue as to how to escape it. Constructing all the pairs for each given local

optima results in a paired dataset. The learning process, based on binary classification

approach, is formulated as a mathematical programming problem which outputs a set

of guiding rules. Using these rules, the algorithm is guided to escape a local optimum

in unseen problem instances. The experiments on two problems, namely, Constrained

Task Allocation Problem and the matrix bandwidth minimisation problem show that

by using the learned rules, a simple tabu search algorithm achieves competitive results

compared to the state-of-the-art approaches in both problem domains.

In [31] several classification approaches are used to mine the trace of a Peckish hyper-

heuristic [196] on instances of the training scheduling problem [197], [198]. The extracted

knowledge is then tested on other runs of the same problem domain. The training set

consists of several domain dependent features (domain barrier is not considered here) and

is multi-labelled. The classifiers considered in this study are either variants of decision

trees or associative classification algorithms. More specifically Partial Decision Trees

(PART) [199], the RIPPER algorithm [200], Classification Based on Associations (CBA)

approach [201], Multi-class Classification based on Association Rules (MCAR) [202]

Chapter 2. Background 42

algorithm and Multi-class Multi-label Associative Classification (MMAC) approach [203]

are compared to each other. The results show that the MMAC approach performed best

due to its acknowledgement of multiple class values per dataset record. Furthermore, it

was observed that the decision tree approach constructs trees with unnecessary branches.

The authors claim that this unnecessary branching is related to the unbalanced nature

of their dataset. Also, it is not clear why a multi-label classification problem has been

subjected to approaches such as decision trees while methods specifically designed for

this sort of data could be considered and compared to the method proposed by the

authors.

In [32] heuristic policies are learned using a reinforcement learning algorithm. That is,

the bin packing problem is re-formulated as a temporal difference learning scheme [18].

A state description is provided for both online and offline bin packing problems. A value

function representing the average performance of the learned heuristic over the problem

domain is approximated using temporal difference learning. The experimental results

show that this algorithm, though not very powerful when compared to some well known

methods, produces good quality solutions.

In [33] machine learning is used to generate behavioural search drivers for a Genetic

Programming (GP) method. It has been argued in this study that conventional fitness

function in GP does not necessarily provide an ideal guidance. Instead, it has been

proposed to use machine learning to complement the guidance provided by the fitness

function. To this effect, a synthesized training dataset is produced. In order to produce

the dataset synthetic program trees are generated. A simple random walk (using simple

mutations) is applied to the tree which is assumed to be the optimal solution. Applying

the random walk results in moving away from the original program tree. After the

random walk is finished, the resulting tree is vectorized. This vector which naturally

describes the program behaviour is treated as a feature vector and is added to the

dataset. The label of the feature vector is the distance between the tree (which the

feature vector represents) and the initial tree which is the expected output. Note that

the label represents the expected number of steps to reach the optimal solution from

the tree achieved after the random walk. The C4.5 algorithm [139] is applied on the

dataset resulting in a classifier. The properties of the classifier is then used to define

the behavioural fitness of unseen program trees. The experimental results show that the

behavioural guidance achieves its objective.

Machine learning enhanced heuristics have also been considered for Constrained Satis-

faction Problems (CSP). In a series of studies, Learning Classifier Systems (LCS) [35],

back propagation neural networks citeOrtiz-BaylissTRC11 and logistic regression [34]

are separately used to generate selection hyper-heuristic for CSP.

Chapter 2. Background 43

2.5 Summary

In this section, definitions, basic concepts and explanation regarding the techniques

which have been used throughout this study were covered. This paves the way for

studying the role of tensor analysis in heuristic optimisation. The first such application

of tensor learning in the field of heuristic research is thus presented in the next chapter

where tensor analysis is used to improve the performance of a simple hyper-heuristic.

Chapter 3

A Tensor-based Selection

Hyper-heuristic for Cross-domain

Heuristic Search

The search history formed by a heuristic, metaheuristic or hyper-heuristic methodol-

ogy constitutes a multi-dimensional data. For example, when populations of several

generations of individuals in a Genetic Algorithm (GA) are put together, the emerging

structure representing the solutions and associated objective values changing in time is

a third order tensor. Similarly, the interaction between low level heuristics as well as

the interaction between those low level heuristics and the acceptance criteria under a

selection hyper-heuristic framework are a couple of examples of various modes of func-

tionality in a tensor representing the search history. This chapter represents a method

which captures the trail of a hyper-heuristic in the form of a third order tensor and

analyzes it to detect the latent relationship between low level heuristics and the hyper-

heuristic. A multi-stage hyper-heuristic is then built which uses these latent patterns to

perform search on various instances of several problem domains taken from the HyFlex

framework.

The data captured from the hype-heuristic is highly abstract and is constructed using

indexes of low level heuristics chosen by the underlying selection hyper-heuristic and the

objective function values achieved during the search. Complex structures such as can-

didate solution representation and neighbourhood information are thus missing. During

discussions on the experimental results we will show that the proposed method is able

to deal with high level of abstraction in data and extract useful patterns using which the

performance of a very primitive and simple hyper-heuristic is significantly improved.

44

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 45

3.1 Introduction

Many adaptive (hyper-/meta) heuristics make use of their search history to construct

models which are used to improve their performance. Algorithms such as reinforcement-

based hyper-heuristics or hyper-heuristics embedding late acceptance or tabu search

components are few examples. The performance of such algorithms is usually confined

with memory restrictions. Moreover, the memory often contains raw data, such as

objective values or visited states and those components ignoring the hidden clues and

information regarding the choices that influences the overall performance of the approach

in hand.

In this chapter, a tensor-based selection hyper-heuristic is proposed. In the proposed

approach, we represent the trail of a selection hyper-heuristic as a 3rd order tensor to

represent the search history of a hyper-heuristic. The first two modes of the tensor

are indexes of subsequent low level heuristics selected by the underlying hyper-heuristic

while the third mode is the time. Having such a tensor filled with the data acquired

from running the hyper-heuristic for a short time and decomposing it, hopefully reveals

the indices of low level heuristics which are performing well with the underlying hyper-

heuristic and acceptance criteria. This is very similar to what has been done in human

action recognition in videos using tensor analysis [153], except that, instead of examining

the video of human body motion and looking for different body parts moving in harmony,

we records the trace of a hyper-heuristic (body motion) and look for low level heuristics

(body parts) performing harmoniously. Naturally, our ultimate goal is to exploit this

knowledge for improving the search process.

Tensor analysis is performed during the search process to detect the latent relationships

between the low level heuristics and the hyper-heuristic itself. The feedback is used to

partition the set of low level heuristics into two equal subsets where heuristics in each

subset are associated with a separate move acceptance method. Then a multi-stage

hyper-heuristic combining a random heuristic selection with two simple move acceptance

methods is formed. While solving a given problem instance, heuristics are allowed to

operate only in conjunction with the corresponding move acceptance method at each

alternating stage. This overall search process can be considered as a generalized and

a non-standard version of the iterated local search [204] approach in which the search

process switches back and forth between diversification and intensification stages. More

importantly, the heuristics (operators) used at each stage are fixed before each run on a

given problem instance via the use of tensors. To the best of our knowledge, this is the

first time tensor analysis of the space of heuristics is used as a data science approach

to improve the performance of a selection hyper-heuristic in the prescribed manner.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 46

The empirical results across six different problem domains from the HyFlex benchmark

indicate the success of the proposed hyper-heuristic mixing different acceptance methods.

3.2 Proposed Approach

The low level heuristics in HyFlex are divided into four groups as described in Sec-

tion 2.2.3. The heuristics belonging to the mutational (MU), ruin-recreate (RR) and

local search (LS) groups are unary operators requiring a single operand. This is while,

the crossover operators have two operands requiring two candidate solutions to produce

a new solution. In order to maintain simplicity as well as coping with the single point

search nature of our framework, crossover operators are ignored in this chapter and MU,

RR and LS low level heuristics are employed. The set of all available heuristics (except

crossover operators) for a given problem domain is denoted by a lower-case bold and

italic letter h throughout this section. Moreover, from now on, we refer to our frame-

work as Tensor-Based Hybrid Acceptance Hyper-heuristic (TeBHA-HH) which consists

of five consecutive phases: (i) noise elimination (ii) tensor construction, (iii) tensor fac-

torisation, (iv) tensor analysis, and (v) hybrid acceptance as illustrated in Figure 3.1.

The noise elimination filters out a group of low level heuristics from h and then a tensor

is constructed using the remaining set of low level heuristics, denoted as h−. After ten-

sor factorisation, sub-data describing the latent relation between low level heuristics is

extracted. This information is used to divide the low level heuristics into two partitions:

hNA, hIE . Each partition is then associated with a move acceptance method, that is

naive move acceptance with α = 0.5 (NA) or improving and equal moves (IE) respec-

tively. This is equivalent to employing two selection hyper-heuristics, Simple Random-

Naive move acceptance (SR-NA) and Simple Random-Improving and Equal (SR-IE).

Each selection hyper-heuristic is invoked in a round-robin fashion for a fixed duration of

time (ts) using only the low level heuristics associated with the move acceptance compo-

nent of the hyper-heuristic at work (hNA and hIE , respectively) until the overall time

limit (Tmax) is reached. This whole process is repeated at each run while solving a given

problem instance. All the problems dealt with in this chapter are minimising problems.

A detailed description of each phase is given in the subsequent sections.

3.2.1 Noise Elimination

We model the trace of the hyper-heuristic as a tensor dataset and factorize it to parti-

tion the heuristic space. Tensor representation gives us the power to analyse the latent

relationship between heuristics. But this does not mean that any level and type of noise

is welcome in the dataset. The noise in the dataset may even obscure the existing latent

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 47

Figure 3.1: The schematic of our proposed framework.

structures. Thus, reducing the noise is a necessary step in constructing datasets. Under

the selection hyper-heuristic framework in which low level heuristics are chosen ran-

domly, if the heuristics of a certain type (e.g. mutation, ruin-recreate, etc) consistently

generate highly worsening solutions, then such a heuristic group is considered as poor

performing, causing partial re-starts which is often not a desirable behaviour. Hence,

the tensor dataset produced while heuristics belonging to such a heuristic group are used

can be considered noisy (noise is generally defined as undesired data) and that heuristic

type can be treated as source of the noise. Thus, in our proposed approach, using the

methodology explained below, we identify the heuristic group which causes noise at the

start and eliminate it to create a less noisy dataset.

The type of noise happens to be very important in many data mining techniques and

tensor factorisation is not an exception. CP factorisation method which is one of the

most widely used factorisation algorithms, assumes a Gaussian type noise in the data.

It has been shown that CP is very sensitive to non-Gaussian noise types [205]. In

hyper-heuristics, change in the objective value after applying each heuristic follows a

distribution which is very much dependent on the problem domain and the type of the

heuristic, both of which are unknown to a hyper-heuristic and unlikely to follow a Gaus-

sian distribution. To the best of our knowledge, while there are not many factorisation

methods which deal with various types of noise in general, there is no method tailored

for heuristics. Thus, it is crucial to reduce the noise as much as possible prior to any

analysis of the data. This is precisely the aim of the first phase of our approach.

Excluding the crossover heuristics leaves us with three heuristic groups (MU, RR and

LS). A holistic strategy is used in the noise elimination phase for getting rid of poor

heuristics. An overall pre-processing time, denoted as tp is allocated for this phase.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 48

Except the LS group, applying heuristics belonging to all other groups may lead to

worsening solutions. Hence, the worst of the two remaining heuristic groups (MU and

RR) is excluded from the subsequent step of the experiment. In order to determine the

group of low level heuristics to eliminate, SR-NA is run using the MU and LS low level

heuristics for a duration of tp/2, which is followed by another run using RR and LS

low level heuristics for the same duration. Performing the pre-processing tests in this

manner also captures the interaction between perturbative and local search heuristics

under the proposed framework for improvement. During each run, the search process

is initiated using the same candidate solution for a fair comparison. The quality of

the solutions obtained during those two successive runs are then compared. Whichever

group of low level heuristics generates the worst solution under the described framework

gets eliminated. The remaining low level heuristics, denoted as h− is then fed into the

subsequent phase for tensor construction.

3.2.2 Tensor Construction and Factorisation

We represent the trail of SR-NA as a 3rd-order tensor T ∈ R
P × R

Q × R
R in this

phase, where P = Q = |h−| is the number of available low level heuristics and R = N

represents the number of tensor frames collected in a given amount of time. Such a tensor

is depicted in Figure 3.2. The tensor T is a collection of two dimensional matrices (M)

which are referred to as tensor frames. Therefore each tensor frame is a frontal slice

as in Figure 2.2(f). A tensor frame is a two dimensional matrix of heuristic indices.

Column indices in a tensor frame represent the index of the current heuristic whereas

row indices represent the index of the heuristic chosen and applied before the current

heuristic.

Figure 3.2: The tensor structure in TeBHA-HH. The black squares (also referred to
as active entries) within a tensor frame highlight heuristic pairs invoked subsequently

by the underlying hyper-heuristic.

The tensor frame is filled with binary data as demonstrated in Algorithm 6. The bulk

of the algorithm is the SR-NA hyper-heuristic (starting at the while loop in line 4).

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 49

Iteratively, a new heuristic is selected randomly (line 12) and applied to the problem

instance (line 14). This action returns a new objective value fnew which is used together

with the old objective value fold to calculate the immediate change in the objective value

(δf). The algorithm then checks if δf > 0 indicating improvement, in which case the

solution is accepted. Otherwise, it is accepted with probability 0.5 (line 21). While

accepting the solution, assuming that the indices of the current and previous heuristics

are hcurrent and hprevious respectively, the tensor frame M is updated symmetrically:

mhprevious,hcurrent
= 1 and mhcurrent,hprevious

= 1. The frame entries with the value 1 are

referred to as active entries. At the beginning of each iteration, the tensor frame M

is checked to see if the number of active entries in it has reached a given threshold of

⌊|h |/2⌋ (line 5). If so, the frame is appended to tensor and a new frame is initialized

(lines 6 to 9). This whole process is repeated until a time limit is reached which the

same amount of time allocated for the pre-processing phase; tp (line 4).

Algorithm 6: The tensor construction phase

1 In: h = h
−;

2 Initialize tensor frame M to 0;
3 counter = 0;
4 while t < tp do

5 if counter = ⌊|h |/2⌋ then
6 append M to T ;
7 set frame label to ∆f ;
8 Initialize tensor frame M to 0;
9 counter = 0;

10 end

11 hprevious = hcurrent;
12 hcurrent = selectHeuristic(h);
13 fcurrent = fnew;
14 fnew =applyHeuristic(hcurrent);
15 δf = fcurrent − fnew;
16 if δf > 0 then

17 mhprevious,hcurrent
= 1;

18 counter ++;

19 else

20 if probability > 0.5 then

21 mhprevious,hcurrent
= 1;

22 if δf = 0 then

23 mhcurrent,hprevious
= 1;

24 end

25 counter ++;

26 end

27 end

28 end

While appending a frame to the tensor, each tensor frame is labelled by the ∆f it yields,

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 50

where ∆f is the overall change in objective value caused during the construction of the

frame. ∆f is different from δf in the sense that the former measures the change in

objective value inflicted by the collective application of active heuristic indexes inside

a frame. The latter is the immediate change in objective value caused by applying a

single heuristic. In other words, in a frame with a total of ⌊|h |/2⌋ active entries (heuristic

calls), ∆f is calculated according to the following equation.

∆f =

⌊|h|/2⌋
∑

i=1

δf i (3.1)

The aforementioned process constructs an initial tensor which contains all the tensor

frames. However, we certainly do want to emphasize on intra-frame correlations as

well. That is why, after constructing the initial tensor, the tensor frames are scanned

for consecutive frames of positive labels(∆f > 0). In other words, a tensor frame is

chosen and put in the final tensor only if it has a positive label and has at least one

subsequent frame with a positive label. The final tensor is then factorized using the

CP decomposition to the basic frame (K = 1 in Equation 2.7). The following section

illustrates how the basic frame is used in our approach.

It is worth mentioning that the design of the tensor frames in this section is not the

only possible one. Indeed, numerous other designs, including non-binary values for

frame entries and different ways of associating search semantics with each mode of the

tensor are possible. The influence of these design issues can (and perhaps should) be

studied. However, since this work is the first to introduce tensor analysis to the field of

heuristic optimisation, rather than dealing with design issues, we are more interested in

investigating the effects that this learning technique has in improving the performance

of a (hyper-/meta) heuristic. As such, we leave investigation of different tensor designs

and their implications in heuristic optimisation to a different study in a future time.

3.2.3 Tensor Analysis: Interpreting The Basic Frame

Following the tensor factorisation process, the tensor is decomposed into basic factors.

K = 1 in our case, thus, the Equation 2.7 reduces to the following equation:

T̂ = λ a ◦ b ◦ c (3.2)

The outer product in the form a ◦ b produces a basic frame which is a matrix. Assume

that, in line with our approach, we have constructed a tensor from the data obtained

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 51

from the hyper-heuristic search for a given problem instance in a given domain which

comes with 8 low level heuristics, 6 of them being mutation and 2 of them being local

search heuristics. Moreover, the factorisation of the tensor produces a basic frame as

illustrated in Figure 3.3. The values inside the basic frame are the scores of each pair of

low level heuristics when applied together. Since we are interested in pairs of heuristics

which perform well together, we locate the pair which has the maximum value/score. In

this example, the pair (LS0, LS1) performs the best since the score for that pair is the

highest. We regard these two heuristics as operators which perform well with the NA

acceptance mechanism under the selection hyper-heuristic framework. The heuristics

in the column index of this maximum pair (denoted by y in Algorithm 7) are then

sorted (line 8 in Algorithm 7) to determine a ranking between the heuristics. Since

heuristics LS0 and LS1 are already the maximising pair, they are considered to be

the top two elements of this list. In the basic frame of Figure 3.3 the sorted list is

then (LS0,LS1,MU3,MU2,MU5,MU4,MU1,MU0). The top/first ⌊|h |/2⌋ elements of

this list is then selected as those heuristics which perform well under NA acceptance

mechanism (hNA). The remaining low level heuristics including the eliminated heuristics

(e.g., RR heuristics) are associated with IE (h IE). The pseudo-code for partitioning is

given in line 9 of Algorithm 7.

LLH

LL
H

MU0 MU1 MU2 MU3 MU4 MU5 LS0 LS1

MU0

MU1

MU2

MU3

MU4

MU5

LS0

LS10.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 3.3: A sample basic frame. Each axis of the frame represents heuristic indexes.
Higher scoring pairs of heuristics are darker in color.

3.2.4 Final Phase: Hybrid Acceptance

Selection hyper-heuristics have been designed mainly in two ways: ones which require

the nature of low level heuristics to be known, while the others discard that informa-

tion. For example, VNS-TW [122] and ML [123] assume that whether a given low level

heuristic is mutational (or ruin-recreate) or local search is known, since they use only

the relevant heuristics to be invoked at different parts of those algorithms. On the other

hand, AdapHH [121] operated without requiring that information. Our hyper-heuristic

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 52

approach is of former type. Additionally, we ignore the crossover heuristics as many of

the other previously proposed hyper-heuristics.

In our approach, we have considered a multi-stage selection hyper-heuristic which uses

simple random heuristic selection and hybridizes the move acceptance methods, namely

NA and IE (lines 10-27 of Algorithm 7). These selection hyper-heuristic components

with no learning are chosen simply to evaluate the strength of the tensor-based approach

as a machine learning technique under the proposed framework. This is the first time

the proposed approach has been used in heuristic search as a component of a selection

hyper-heuristic. In this phase, the best solution found so far is improved further using

the proposed hyper-heuristic which switches between SR-NA and SR-IE. Since the same

simple random heuristic selection method is used at all times, the proposed selection

hyper-heuristic, in a way, hybridizes the move acceptance methods under the multi-

stage framework. Each acceptance method is given the same amount of time; ts to run.

SR-NA operates using hNA, while SR-IE operates using hIE as the low level heuristics.

This search process continues until the time allocated to the overall hyper-heuristic

(Algorithm 7) expires.

There are many cases showing that explicitly enforcing diversification (exploration) and

intensification (exploitation) works in heuristic search. For example, there are many

applications indicating the success of iterated local search (ILS) [204] and memetic algo-

rithms (MAs) [78, 82]. Those metaheuristic approaches explicitly enforce the successive

use of mutational and local search heuristics/operators in an attempt to balance diversi-

fication and intensification processes. The choice of NA and IE is also motivated by the

reason that under the proposed framework, SR-NA can be considered as a component

allowing diversification, while SR-IE focuses on intensification. Similar to ILS and MAs,

the proposed approach also explicitly maintains the balance between diversification and

intensification with the differences that SR-NA and SR-IE is employed in stages (not at

each iteration) for a fixed period of time during the search process and the best subset

of heuristics/operators that interact well to be used in a stage is determined through

learning by the use of tensor analysis. Putting low level heuristics performing poorly

with SR-NA under SR-IE somewhat ensures that those low level heuristics cause no

harm misleading the overall search process.

3.3 Experimental Results

The experiments are performed on an Intel i7 Windows 7 machine (3.6 GHz) with 16

GB RAM. This computer was given 438 seconds (corresponding to 600 nominal seconds

on the competition machine) as the maximum time allowed (Tmax) per instance by the

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 53

Algorithm 7: Tensor-Based Hyper-heuristic with Hybrid Acceptance Strategy

1 let h be the set of all low level heuristics;
2 let t be the time elapsed so far;
3 h

−
x = exclude XO heuristics;

4 h
− = preProcessing(tp,h

−
x);

5 T = constructTensor(tp,h
−);

6 a,b, c = CP(T ,K = 1) , B = a ◦ b;
7 y = max(B);
8 hs = sort(Bi=1:|h−|,y);

9 hNA = (hs)i=1:⌊|hs|/2⌋
, hIE = h

−
x − hNA;

10 while t < Tmax do

11 if acceptance = NA then

12 h = selectRandomHeuristic(hNA);
13 else

14 h = selectRandomHeuristic(h IE);
15 end

16 snew, fnew = applyHeuristic(h, scurrent);
17 δ = fold − fnew;
18 updateBest(δ,fnew);
19 if acceptanceT imer ≥ ts then

20 toggle acceptance mechanism;
21 end

22 if switch = true then

23 snew, sold =NA(snew, fnew, scurrent, fcurrent) ;
24 else

25 snew, sold =IE(snew, fnew, scurrent, fcurrent);
26 end

27 end

benchmarking tool provided by the CHeSC 2011 organizers. This is to ensure a fair

comparison between various algorithms. We used the Matlab Tensor Toolbox [206] 1 for

tensor operations. The HyFlex, as well as the implementation of our framework is in

Java. Hence, subsequent to tensor construction phase, Matlab is called from within Java

to perform the factorisation task. Throughout the chapter, whenever a specific setting

of the TeBHA-HH framework is applied to a problem instance, the same experiment is

repeated for 31 times, unless mentioned otherwise.

3.3.1 Experimental Design

One of the advantages of the TeBHA-HH framework is that it has considerably few

parameters. To be more precise there are two parameters governing the performance

of our tensor-based hybrid acceptance approach. The first parameter is the time allo-

cated to pre-processing and tensor construction phases. This time boundary is equal

1http://www.sandia.gov/~tgkolda/TensorToolbox/

http://www.sandia.gov/~tgkolda/TensorToolbox/

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 54

for both phases and is denoted as tp. The second parameter is the time allowed to an

acceptance mechanism in the final phase. During the final phase, the proposed selection

hyper-heuristic switches between the two move acceptance methods (and their respective

heuristic groups). Each move acceptance method is allowed to be in charge of solution

acceptance for a specific time which is the second parameter and is denoted as ts.

Note that all our experiments are conducted on the set of instances provided by CHeSC

2011 organizers during the final round of the competition. HyFlex contains more than a

dozen of instances per problem domain. However, during the competitions 5 instances

per domain were utilized. These are the set of instances which were employed in this

chapter.

A preliminary set of experiments are performed in order to show the need for the noise

elimination phase and more importantly to evaluate the performance of Automatic Noise

Elimination (AUNE) in relation to the factorisation process fixing tp and ts values.

This preliminary experiment along with experiments involving evaluation of various

values of parameters tp and ts are only conducted on the first instance of each problem

domain. After this initial round of tests in which the best performing values for the

parameters of the framework are determined, a second experiment, including all the

competition instances is conducted and the results are compared to that of the CHeSC

2011 competitors. Regarding the parameter tp, values 15, 30 and 60 seconds are tested.

For ts, values nil (0), 500, 1000 and 1500 milliseconds are experimented.

3.3.2 Pre-processing Time

The experiments in this section concentrates on the impact of the time (tp) given to the

first two phases (noise elimination and tensor construction) on the performance of the

overall approach. During the first phase in all of the runs, the RR group of heuristics

have been identified as source of noise for Max-SAT and VRP instances. This is while,

MU has been identified as source of noise for BP, FS and TSP instances. As for the

PS domain, due to small number of frames collected (which is a result of slow speed of

heuristics in this domain), nearly half of the time RR has been identified as the source

of noise. In the remaining runs MU group of heuristics are excluded as noise. Our

experiments show that for a given instance, the outcome of the first phase is persistently

similar for different values of tp.

The tp value also determines the number of tensor frames recorded during the tensor

construction phase. Hence, we would like to investigate how many tensor frames are

adequate in the second phase. We expect that an adequate number of frames would

result in a stable partitioning of the heuristic space regardless of how many times the

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 55

algorithm is run on a given instance. As mentioned in Section 3.3.1, three values (15, 30

and 60 seconds) are considered. Rather than knowing how the framework performs in

the maximum allowed time, we are interested to know whether different values for tp

result in tremendously different heuristic subsets at the end of the first phase. Thus, in

this stage of experiments, for a given value of tp, we run the first two phases only. That

is, for a given value of tp we run the simple noise elimination algorithm. Subsequently,

we construct the tensor for a given instance. At the end of these first two phases, the

contents of hNA and hIE are recorded. We do this for 100 runs for each instance. At the

end of the runs for a given instance, a histogram of the selected heuristics is constructed.

The histograms belonging to a specific instance and achieved for various values of tp are

then compared to each other. Figures 3.4 compare the histograms of three different tp

values for the first instances of the 6 problem domains in HyFlex.

The histograms show the number of times a given heuristic is chosen as hNA or h IE

within the runs. For instance, looking at the histograms corresponding to the Max-SAT

problem (Figures 3.4(a), 3.4(b) and 3.4(c)), one could notice that the heuristic LS1 is

always selected as hNA in all the 100 runs. This is while RR0 is always assigned to hIE .

The remaining heuristics are assigned to both sets although there is a bias towards hNA

in case of heuristics MU2,MU3 and MU5. A similar bias towards hIE is observable

for heuristics MU0,MU1,MU4 and LS0. This shows that the tensor analysis together

with noise elimination adapts its decision based on the search history for some heuristics

while for some other heuristics definite decisions are made. This adaptation is indeed

based on several reasons. For one thing, some heuristics perform very similar to each

other leading to similar traces. This is while, their performance patterns, though similar

to each other, varies in each run. Moreover, there is an indication that there is no

unique optimal subgroups of low level heuristics under a given acceptance mechanism

and hyper-heuristic. There indeed might exists several such subgroups. For instance,

there are two (slightly) different NA subgroups (hNA = {MU2,MU5, LS0, LS1} and

hNA = {MU2,MU3, LS0, LS1}) for the Max-SAT problem domain which result in

the optimal solution (f = 0). This is strong evidence supporting our argument about

the existence of more than one useful subgroups of low level heuristics. Thus, it only

makes sense if the factorisation method, having several good options (heuristic subsets),

chooses various heuristic subsets in various runs.

Interestingly, RR0 and LS1 are diversifying and intensifying heuristics respectively.

Assigning RR0 to hIE means that the algorithm usually chooses diversifying operations

that actually improves the solution. A tendency to such assignments is observable for

other problem instances, though not as strict as it is for BP and Max-SAT problem

domains. While this seems to be a very conservative approach towards the diversifying

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 56

MU0 MU1 MU2 MU3 MU4 MU5 RR0 LS0 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(a) Max-SAT, tp = 15sec

MU0 MU1 MU2 MU3 MU4 MU5 RR0 LS0 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(b) Max-SAT, tp = 30sec

MU0 MU1 MU2 MU3 MU4 MU5 RR0 LS0 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(c) Max-SAT, tp = 60sec

MU0 RR0 RR1 MU1 LS0 MU2 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(d) BP, tp = 15sec

MU0 RR0 RR1 MU1 LS0 MU2 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(e) BP, tp = 30sec

MU0 RR0 RR1 MU1 LS0 MU2 LS1
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(f) BP, tp = 60sec

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 MU0
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(g) PS, tp = 15sec

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 MU0
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(h) PS, tp = 30sec

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 MU0
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(i) PS, tp = 60sec

MU0 MU1 MU2 MU3 MU4 RR0 RR1 LS0 LS1 LS2 LS3
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(j) FS, tp = 15sec

MU0 MU1 MU2 MU3 MU4 RR0 RR1 LS0 LS1 LS2 LS3
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(k) FS, tp = 30sec

MU0 MU1 MU2 MU3 MU4 RR0 RR1 LS0 LS1 LS2 LS3
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(l) FS, tp = 60sec

MU0 MU1 RR0 RR1 LS0 MU2 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(m) VRP, tp = 15sec

MU0 MU1 RR0 RR1 LS0 MU2 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(n) VRP, tp = 30sec

MU0 MU1 RR0 RR1 LS0 MU2 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(o) VRP, tp = 60sec

MU0 MU1 MU2 MU3 MU4 RR0 LS0 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(p) TSP, tp = 15sec

MU0 MU1 MU2 MU3 MU4 RR0 LS0 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(q) TSP, tp = 30sec

MU0 MU1 MU2 MU3 MU4 RR0 LS0 LS1 LS2
0

20

40

60

80

100

120

heuristic index

nu
m

be
r

of
 r

un
s

NA
IE

(r) TSP, tp = 60sec

Figure 3.4: Histograms of heuristics selected as hNA and hIE for various tp values
across all CHeSC 2011 problem domains.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 57

heuristics, as we will see later in this section, it often results in a good balance between

intensification and diversification during the search.

In summary, the histograms show that the partitioning of the heuristic space is more or

less the same regardless of the time allocated to tp for a given problem instance. This

pattern is observable across all CHeSC 2011 problem domains as illustrated in Figure 3.4.

Longer run experiments, in which all the phases of the algorithm are included and the

framework is allowed to run until the maximum allowed time is reached, confirms the

conclusion that TeBHA-HH is not too sensitive to the value chosen for tp. In Figure 3.5 a

comparison between the three values for tp is shown. The asterisk highlights the average

performance. A comparison based on the average values shows that tp = 30 is slightly

better than other values.

Additionally, to quantify and evaluate the effectiveness of the proposed noise elimination

strategy, we have performed further experiments and investigated into four possible

scenarios/strategies for noise elimination: i) Automatic Noise Elimination (AUNE) (as

described in Section 3.2) ii) No Noise Elimination (NONE) in which the first phase of

our algorithm is entirely ignored iii) RR-LS in which ruin and recreate and Local Search

heuristics only are participated in tensor construction and iv) MU-LS where mutation

and local search heuristics are considered in tensor construction. Each scenario is tested

on all CHeSC 2011 instances and during those experiments tp is fixed as 30 seconds.

After performing the factorisation, the φ value (Equation 2.13) is calculated for each

instance at each run. Figure 3.6 provides the performance comparison of different noise

elimination strategies based on the φ values averaged over 31 runs for each instance.

It is desirable that the φ value, which expresses the model fitness, to be maximized in

these experiments. Apart from the PS and FS domains, our automatic noise elimination

scheme (AUNE) delivers the best φ for all other instances from the rest of the four

domains. In three out of five FS instances, AUNE performs the best with respect to the

model fitness. However, AUNE seems to be under-performing in the PS domain. The

reason for this specific case is that the heuristics in this domain are extremely slow and

the designated value(s) for tp does not give the algorithm sufficient time to identify the

source of noise properly and consistently. This is also the reason for the almost random

partitioning of the heuristic space (figures 3.4(g), 3.4(h) and 3.4(i)). The low running

speed of low level heuristics leads to a low number of collected tensor frames at the end of

the second phase (tensor construction). Without enough information the factorisation

method is unable to deliver useful and consistent partitioning of the heuristic space

(like in other domains). That is why, the histograms belonging to the PS domain in

Figure 3.4 demonstrate a half-half distribution of heuristics to hNA and hIE heuristic

sets. Nevertheless, the overall results presented in this section supports the necessity of

the noise elimination step and illustrates the success of the proposed simple strategy.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 58

0

2

4

6

8

10

12

14

16

18

15 30 60

(a) SAT

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

15 30 60

(b) BP

16

18

20

22

24

26

28

15 30 60

(c) PS

6300

6310

6320

6330

6340

6350

6360

15 30 60

(d) FS

6

6.5

7

7.5

8

8.5

9

9.5

10

x 10
4

15 30 60

(e) VRP

4.84

4.86

4.88

4.9

4.92

4.94

4.96

4.98

5

5.02

5.04

x 10
4

15 30 60

(f) TSP

Figure 3.5: Comparing the performance of TeBHA-HH on the first instance of various
domains for different values of tp. The asterisk sign on each box plot is the mean of 31

runs.

3.3.3 Switch Time

The value assigned to ts determines the frequency based on which the framework switches

from one acceptance mechanism to another during the search process in the final phase.

Four values: nil, 500, 1000 and 1500 milliseconds have been considered in our experi-

ments. For ts = nil, randomly chosen low level heuristic determines the move accep-

tance method to be employed at each step. If the selected heuristic is a member of hNA

or h IE, NA or IE is used for move acceptance, respectively. The value for tp is fixed at

30 seconds and AUNE is used for noise elimination during all switch time experiments.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 59

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

instance

φ

AUNE
MU−LS
RR−LS
NONE

(a) SAT

1 2 3 4 5
0

0.05

0.1

0.15

0.2

instance

φ

AUNE
MU−LS
RR−LS
NONE

(b) BP

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

instance

φ

AUNE
MU−LS
RR−LS
NONE

(c) PS

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

instance

φ

AUNE
MU−LS
RR−LS
NONE

(d) FS

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

instance

φ

AUNE
MU−LS
RR−LS
NONE

(e) VRP

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

instance

φ

AUNE
MU−LS
RR−LS
NONE

(f) TSP

Figure 3.6: Comparing the model fitness in factorisation, φ (y axis of each plot), for
various noise elimination strategies. Higher φ values are desirable. The x-axis is the ID

of each instance from the given CHeSC 2011 domain.

A comparison between various values considered for ts is given in Figure 3.7. Judging

by the average performance (shown by an asterisk on each box), ts = 500 msec performs

slightly better than other values. Figure 3.8 shows the impact of the time allocated for

the final phase on two sample problem domains and the efficiency that early decision

making brings. ts = nil is also under performing. Similar phenomena are observed in

the other problem domains.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 60

0

1

2

3

4

5

6

nil 500 1000 1500

(a) SAT

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

nil 500 1000 1500

(b) BP

14

16

18

20

22

24

26

28

30

nil 500 1000 1500

(c) PS

6280

6290

6300

6310

6320

6330

6340

nil 500 1000 1500

(d) FS

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3
x 10

4

nil 500 1000 1500

(e) VRP

4.82

4.825

4.83

4.835

4.84

4.845

4.85

4.855

4.86

4.865

x 10
4

nil 500 1000 1500

(f) TSP

Figure 3.7: Comparing the performance (y axis) of TeBHA-HH on the first instance
of various domains for different values of ts (x axis). The asterisk sign on each box plot

is the mean of 31 runs.

3.3.4 Experiments on the CHeSC 2011 Domains

After fixing the values for parameters tp and ts to best achieved values (30 seconds and

500 milliseconds, respectively) and using AUNE for noise elimination, we run another

round of experiments testing the algorithm on all CHeSC 2011 instances. Table 3.1

summarises the results obtained using TeBHA-HH. The performance of the proposed

hyper-heuristic is then compared to that of the two building block algorithms, namely

SR-NA and SR-IE. Also, the current state-of-the-art algorithm, AdapHH [121] is in-

cluded in the comparisons. Table 3.2 provides the details of the average performance

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 61

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time (sec)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

t
s
=0 msec

t
s
=100 msec

t
s
=500 msec

2× t
p

t
p

(a) BP

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5
x 10

5

time (sec)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

t
s
=0 msec

t
s
=100 msec

t
s
=500 msec

t
p 2 × t

p

(b) VRP

Figure 3.8: Average objective function value progress plots on the (a) BP and (b)
VRP instances for three different values of ts where tp = 30 sec.

comparison of TeBHA-HH to AdapHH. Clearly, TeBHA-HH outperforms AdapHH on

PS and Max-SAT domains. A certain balance between the performance of the two

algorithm is observable in VRP domain. In case of other problem domains, AdapHH

manages to outperform our algorithm. The major drawback that TeBHA-HH suffers

from is its poor performance on the FS domain. We suspect that ignoring heuristic pa-

rameter values such as depth of search or the intensity of mutation is one of the reasons.

The interesting aspect of TeBHA-HH is that, generally speaking, it uses a hyper-heuristic

based on random heuristic selection, decomposes the low level heuristics into two subsets

and again applies the same hyper-heuristic using two simple move acceptance methods.

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 62

Table 3.1: The performance of the TeBHA-HH framework on each CHeSC 2011
instance over 31 runs, where µ and σ are the mean and standard deviation of objective
values. The bold entries show the best produced results compared to those announced

in the CHeSC 2011 competition.

Instances

Problem 1 2 3 4 5

SAT
µ : 1.9 4.0 1.3 3.8 7.4

min : 0 1 0 1 7
σ : 2.3 3.5 1.0 3.0 0.8

BP
µ : 0.0116 0.0086 0.0107 0.1087 0.0173

min : 0.0083 0.0035 0.0058 0.1083 0.0114
σ : 0.0013 0.0032 0.0027 0.0007 0.0069

PS
µ : 20.8 9618.1 3241.8 1611.2 349.1

min : 13 9355 3141 1458 310
σ : 4.3 129.5 59.7 101.2 23.9

FS
µ : 6310.9 26922.2 6372.5 11491.3 26716.2

min : 6289 26875 6364 11468 26606
σ : 11.3 27.1 5.8 16.1 37.5

VRP
µ : 59960.6 13367.9 148318.6 20862.3 147540.2

min : 57715.2 13297.9 143904.5 20656.2 145672.5
σ : 30.7 5.3 44.8 20.0 31.1

TSP
µ : 48274.2 20799913.7 6874.7 66812.4 53392.0

min : 48194.9 20657952.5 6851.1 66074.7 52661.2
σ : 6.9 442.1 3.2 17.5 25.7

Despite this, the TeBHA-HH manages to perform significantly better than its building

blocks of SR-IE and SR-NA as illustrated in Figure 3.9 on all almost all domains. The

same behaviour is observed across the rest of the CHeSC 2011 instances.

3.3.4.1 Performance comparison to the competing algorithms of CHeSC

2011

The results obtained from the experiments as described in the previous section, are then

compared to the results achieved by all CHeSC 2011 contestants. We used the Formula

1 scoring system provided by the organizers to determine the rank of our hyper-heuristic

among all other competitors. Table 3.3 provides the ranking of all CHeSC 2011 hyper-

heuristics including ours. Since Ant-Q received a score of 0, that hyper-heuristic is

ignored. The details of ranking per domain, and the succeeding/preceding algorithms

are shown in Figure 3.10. The TeBHA-HH ranks first in Max-SAT and VRP domains. It

ranks 2nd in BP and 3rd in PS domains while it’s ranking on the TSP domain is 4th. Our

algorithm gained no score on the FS domain (a score of 0 equal to 10 other algorithms).

Overall, TeBHA-HH ranks the second with a total score of 148 after AdapHH. As it is

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 63

Table 3.2: Average performance comparison of TeBHA-HH to AdapHH, the winning
hyper-heuristic of CHeSC 2011 for each instance. Wilcoxon signed rank test is per-
formed as a statistical test on the objective values obtained over 31 runs from TeBHA-
HH and AdapHH. ≤ (<) denotes that TeBHA-HH performs slightly (significantly)
better than AdapHH (within a confidence interval of 95%), while ≥ (>) indicates vice
versa. The last column shows the number of instances for which the algorithm on each

side of ”/” has performed better.

Instances

Problem 1 2 3 4 5 TeBHA-HH/AdapHH

Max-SAT < < < ≤ ≤ 5/0
BP < > > > > 1/4
PS < ≤ < ≤ > 4/1
FS > > > > > 0/5
VRP < ≤ > > ≥ 2/3
TSP > ≥ > > ≥ 0/5

evident in Table 3.1, we produce the best results (compared to the results announced

after the CHeSC 2011 competition) for the first instances of the BP and VRP domains

as well as the best result for the second instances of the TSP domain (the bold entries

in Table 3.1).

Table 3.3: Ranking of the TeBHA-HH among the selection hyper-heuristics that were
competed in CHeSC 2011 with respect to their Formula 1 scores.

Rank Name Score Rank Name Score

1 AdaptHH 162.83 11 HAEA 45
2 TeBHA-HH 148 12 ACO-HH 37
3 VNS-TW 118.83 13 Gen-Hive 32.5
4 ML 117.5 14 DynILS 22
5 P-Hunter 84.75 15 SA-ILS 18.75
6 EPH 83.25 16 AVEG-Nep 18.5
7 NAHH 68.5 17 XCJ 17.5
8 HAHA 65.58 18 GISS 13.25
9 ISEA 62.5 19 MCHH-S 3.25

10 KSATS-HH 52 20 Self Search 3

3.3.4.2 An Analysis of TeBHA-HH

In this section, an analysis of the TeBHA-HH algorithm is performed to gain some insight

into its behaviour during the search process. The objective value progress plots in almost

all cases look the same, hence we have chosen an instance of the BP problem from CHeSC

2011 for which the TeBHA-HH demonstrates a good performance, while it consistently

produces the same heuristic space partitioning in the tensor analysis stage. It is clear

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 64

0

5

10

15

20

25

30

35

40

45

50

AdapHH TeBHA−HH SR−IE SR−NA

(a) SAT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

AdapHH TeBHA−HH SR−IE SR−NA

(b) BP

15

20

25

30

35

40

AdapHH TeBHA−HH SR−IE SR−NA

(c) PS

6220

6240

6260

6280

6300

6320

6340

6360

AdapHH TeBHA−HH SR−IE SR−NA

(d) FS

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

x 10
4

AdapHH TeBHA−HH SR−IE SR−NA

(e) VRP

4.85

4.9

4.95

5

5.05

5.1

5.15

x 10
4

AdapHH TeBHA−HH SR−IE SR−NA

(f) TSP

Figure 3.9: Box plots of objective values (y axis) over 31 runs for the TeBHA-HH with
AdapHH, SR-NA and SR-IE hyper-heuristics on a sample instance from each CHeSC

2011 problem domain.

from Figure 3.4(e) that heuristicsMU1 and LS1 are always assigned to the set hNA while

the rest of the heuristics (excluding the crossover heuristics) are assigned to the set hIE .

In each previous experiment, we run our algorithm on the BP instance for 31 runs. The

plot in Figure 3.11(a) shows how the average objective value changes (decreases) in time

during the search process. We have divided the progress of the algorithm into 3 distinct

stages which represent the early, medium and late stages of the search, respectively (not

to be confused with algorithm phases/stages, this is simply dividing the run-time into

3 periods). Figure 3.11(b) shows a close-up of the same plot achieved for a single run

within the early stage. The dark rectangle shapes correspond to the times when naive

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 65

(a) Max-SAT (b) BP

(c) PS (d) FS

(e) VRP (f) TSP

Figure 3.10: Ranking of the TeBHA-HH and hyper-heuristics which competed at
CHeSC 2011 for each domain.

acceptance is in charge. It is obvious that an extensive diversification process takes

place in the vicinity of the current objective value when NA is at work. It also seems

that during the time when the IE acceptance mechanism is in charge, intensification is

in order. This leads to the conclusion that the hybrid acceptance scheme approximates

the actions of a higher level iterated local search while maintaining a balance between

intensification and diversification. This is in-line with extracting domain independent

domain knowledge as discussed in [207] where the knowledge encapsulates the heuristic

indexes assigned to each acceptance mechanism. We have seen in Section 3.3.3 that the

value ts = 500 msec, results in slightly better objective function values, especially when

compared to ts = nil. The analysis given here clarifies this issue. When ts = nil, less

time remains for both diversification and intensification processes, hence leading to a

poor interaction/balance between the two acceptance mechanisms.

Furthermore, regardless of the type of acceptance mechanism, the algorithm manages

to update the best values as is shown in Figure 3.11(c). The share of each heuristic in

updating the best-so-far solution is also demonstrated in Figure 3.11(c). Interestingly,

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 66

while the local search heuristic LS1 is responsible for most of improvements when NA

is at work, a mutation operator (MU1) increasingly produces most of the improvements

when IE is operational. In a way, hyper-heuristic using IE operates like a random

mutation local search.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

iteration

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(a)

4 6 8 10 12

x 10
4

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

iteration

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(b)

(c)

Figure 3.11: The interaction between NA and IE acceptance mechanisms: (a) The
search process is divided into three sections, (b) a close-up look on the behaviour of
the hybrid acceptance mechanism within the first section in (a), (c) the share of each

acceptance mechanism in the overall performance stage-by-stage.

3.4 Summary

Machine learning is an extremely important component of the adaptive search method-

ologies, such as hyper-heuristics. The use of a learning mechanism becomes even more

crucial considering that hyper-heuristics aim to “raise the level of generality” by their

design and implementation which is expected be applicable to different problem do-

mains, rather than a single domain. Reinforcement learning, learning automata, genetic

programming and classifier systems are some of the online and offline learning techniques

that have been used within or as hyper-heuristics [11]. In this chapter, we have intro-

duced a novel selection hyper-heuristic embedding a tensor-based approach as a machine

learning technique and combining random heuristic selection with the naive (NA), and

improving and equal (IE) move acceptance methods. The tensor-based approaches have

Chapter 3. A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic
Search 67

been successfully applied in other areas of research, such as computer vision [149], but

they have never been used in heuristic search, previously.

In the proposed approach, tensors represent the interaction between low level heuristics

in time under a certain selection hyper-heuristic framework. Then the gained knowledge

is used to improve the overall search process later by hybridising move acceptance meth-

ods in relation to the low level heuristics. In order to be able to evaluate the behaviour

of the proposed approach, we have ensured that the building blocks of the framework

are in their simplest forms. For example, the default settings for the HyFlex low level

heuristics are used and NA and IE are employed as move acceptance components. Never-

theless, the proposed tensor-based framework proved to be very powerful demonstrating

an outstanding performance. Using NA and IE move acceptance in a multi-stage man-

ner switching between them enforces diversification and intensification balance. Despite

all the simplicity of its components, our hyper-heuristic ranked the second among the

contestants of the CHeSC 2011 across six problem domains, even beating the average

and best performance of the winning approach in some problem instances, particularly

from bin packing, maximum satisfiability and the vehicle routing problem.

The approach which was presented in this chapter consists of a single episode of learning.

A learning episode is the process of collecting the data, analysing it and applying the

results of the analysis step to the search. Extending the proposed approach into a multi-

episode learning system will further clarify whether or not the learning mechanism is

capable of detecting useful patterns in the long term. Furthermore, there are several

acceptance criteria available in the literature (as discussed in Section 2.2.1.1). However,

the approach proposed here can only consider one acceptance criteria to construct a

tensor. Given the number of different acceptance methods available from the literature,

it seems necessary to extend the approach and enable it to consider more than one

method. Based on these reasons, in the next chapter, we present a modified variant of

the tensor-based approach which caters for multiple acceptance criteria and apply it to

instances of the Nurse Rostering problem instances in a multiple episode fashion.

Chapter 4

A Tensor-based Selection

Hyper-heuristic for Nurse

Rostering

The approach proposed in Chapter 3 used a single episode of learning to extract patterns

and achieved very good results. In this chapter we investigate whether the proposed

approach is capable of extracting good results continuously. That is, we conduct multiple

episode experiments during long runs to see if the proposed approach extracts useful

patterns throughout the time. The benefits of this property is discussed further in

this chapter. Apart from investigating the multi episode behaviour of the proposed

approach, extensions to the original approach have been proposed here which enable

the algorithm to embrace a virtually infinite number of acceptance criteria. Also, it has

been shown here that the tensor-based approach can also be used to tune the parameters

of heuristics. The abstraction level in data is precisely as it was in Chapter 3 and is

considered to be high.

4.1 Introduction

Nurse rostering is a highly constrained scheduling problem which was proven to be NP-

hard [208] in its simplified form. Solving a nurse rostering problem requires assignment

of shifts to a set of nurses so that 1) the minimum staff requirements are fulfilled and 2)

the nurses’ contracts are respected [209]. The problem can be represented as a constraint

optimisation problem using 5-tuples consisting of set of nurses, days (periods) including

the relevant information from the previous and upcoming schedule, shift types, skill

types and constraints.

68

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 69

In this chapter, a tensor-based selection hyper-heuristic approach is employed to tackle

the nurse rostering problem. The proposed framework (which is an extension to the

framework described in Chapter 3) is a single point-based search algorithm which fits

best in the online learning selection hyper-heuristic category, even if it is slightly different

to the other online learning selection hyper-heuristics.

Our proposed approach consists of running the simple random heuristic selection strategy

in four stages. In the first stage the acceptance mechanism is NA while in the second

stage we use IE as acceptance mechanism. The trace of the hyper-heuristic in each

stage is represented as a 3rd−order tensor. After each stage commences, the respective

tensor is factorized which results in a score value associated to each heuristic. The

space of heuristics is partitioned into two distinct sets, each representing a different

acceptance mechanism (NA and IE respectively) and lower level heuristics associated to

it. Subsequently, a hyper-heuristic is created which uses different acceptance methods

in an interleaving manner, switching between acceptance methods periodically. In the

third stage, the parameter values for heuristics is extracted by running the hybrid hyper-

heuristic and collecting tensorial data similar to the first two stages. Subsequently, the

hybrid hyper-heuristic equipped with heuristic parameter values is run for a specific

time. The above mentioned procedure continues until the maximum allowed time is

reached.

Compared to the method proposed in Chapter 3, the framework here has few modifica-

tions. First, the previous framework has been extended to accommodate for an arbitrary

number of acceptance criteria to be involved in the framework. That is, in contrast to

the work in Chapter 3 where tensor data was collected for one acceptance criteria and

the space of heuristics was partitioned into two disjoint sets, in this chapter, data col-

lection and tensor analysis is performed for each hyper-heuristic separately. Moreover,

low level heuristics are partitioned dynamically, rather than only once which was the

case in Chapter 3 where ten (nominal) minute runs were considered. Mining search data

periodically allows us to investigate whether the framework is capable of extracting new

knowledge as the search makes progress. This could be useful in a variety of applications

(i.e. life-long learning as in [210], [211] and [212] or apprenticeship learning as in [45]

and [42]). Finally, the framework here is different than the one proposed in Chapter 3

when parameter control for each low level heuristic is considered. While no parameter

control was done in Chapter 3, in this chapter, parameters of each heuristic is tuned us-

ing tensor analysis. The good results achieved in this chapter shows that tensor analysis

can also play a parameter control role.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 70

4.2 Nurse Rostering

In this section, we define the nurse rostering problem dealt with. Additionally, an

overview of related work is provided.

4.2.1 Problem Definition

The constraints in the nurse rostering problem can be grouped into two categories: (i)

those that link two or more nurses and (ii) those that only apply to a single nurse.

Constraints that fall into the first category include the cover (sometimes called demand)

constraints. These are the constraints that ensure a minimum or maximum number of

nurses are assigned to each shift on each day. They are also specified per skill/quali-

fication levels in some instances. Another example of a constraint that would fall into

this category would be constraints that ensure certain employees do or do not work

together. Although these constraints do not appear in most benchmark instances (in-

cluding those used here), they do occasionally appear in practise to model requirements

such as training/supervision, carpooling, spreading expertise etc. The second group of

constraints model the requirements on each nurse’s individual schedule. For example,

the minimum and maximum number of hours worked, permissible shifts, shift rotation,

vacation requests, permissible sequences of shifts, minimum rest time and so on.

In this chapter, our aim is to see whether any improvement is possible via the use of

machine learning, particularly tensor analysis. We preferred using the benchmark pro-

vided at [213] as discussed in the next section. These benchmark instances are collected

from a variety of workplaces across the world and as such have different requirements

and constraints, particularly the constraints on each nurse’s individual schedule. This

is because different organisations have different working regulations which have usually

been defined by a combination of national laws, organisational and union requirements

and worker preferences. To be able to model this variety, in [214] a regular expression

constraint was used. Using this domain specific regular expression constraint allowed all

the nurse specific constraints found in these benchmarks instances to be modelled. The

model is given below.

Sets

E = Employees to be scheduled, e ∈ E

T = Shift types to be assigned, t ∈ T

D = Days in the planning horizon, d ∈ {1, · · · |D|}

Re = Regular expressions for employee e, r ∈ Re

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 71

We = Workload limits for employee e, w ∈We

Parameters

rmax
er = Maximum number of matches of regular expression r in the work schedule of

employee e.

rmin
er = Minimum number of matches of regular expression r in the work schedule of

employee e.

aer = Weight associated with regular expression r for employee e.

vmax
ew = Maximum number of hours to be assigned to employee e within the time period

defined by workload limit w.

vmin
ew = Minimum number of hours to be assigned to employee e within the time period

defined by workload limit w.

bew = Weight associated with workload limit w for employee e.

smax
td = Maximum number of shifts of type t required on day d.

smin
td = Minimum number of shifts of type t required on day d.

ctd = Weight associated with the cover requirements of shift type t on day d.

Variables

xetd = 1 if employee e is assigned shift type t on day d, 0 otherwise.

ner = The number of matches of regular expression r in the work schedule of employee

e.

pew = The number of hours assigned to employee e within the time period defined by

workload limit w.

qtd = The number of shifts of type t assigned on day d.

Constraints

Employees can be assigned only one shift per day.

∑

t∈T

xetd ≤ 1, ∀e ∈ E, d ∈ D (4.1)

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 72

Objective Function

Minf(s) =
∑

e∈E

4
∑

i=1

fe,i(x) +
∑

t∈T

∑

d∈D

6
∑

i=5

ft,d,i(x) (4.2a)

where

fe,1(x) =
∑

e∈Re

max{0, (ner − rmax
er)aer} (4.2b)

fe,2(x) =
∑

e∈Re

max{0, (rmin
er − ner)aer} (4.2c)

fe,3(x) =
∑

w∈We

max{0, (pew − vmax
ew)bew} (4.2d)

fe,4(x) =
∑

w∈We

max{0, (vmin
ew − pew)bew} (4.2e)

fe,5(x) = max{0, (smin
td − qtd)ctd} (4.2f)

fe,6(x) = max{0, (qtd − smax
td)ctd} (4.2g)

To facilitate comparing results and to remove the difficulties in comparing infeasible

solutions, the benchmark instances were designed with only one hard constraint 4.1

which is always possible to satisfy. Every other constraint is modelled as a soft constraint,

meaning that it becomes part of the objective function. If in practice, in one of the

instances, a soft constraint should really be regarded as a hard constraint then it was

given a very high weight (the Big M method). The objective function is thus given in

equation 4.2a. It consists of minimising the sum of equations 4.2b to 4.2g. Equations

4.2b and 4.2c ensure that as many of the regular expression constraints are satisfied as

possible. These constraints model requirements on an individual nurse’s shift pattern.

For example, constraints on the length of a sequence of consecutive working days, or

constraints on the number of weekends worked, or the number of night shifts and so on.

Equations 4.2d and 4.2e ensure that each nurse’s workload constraints are satisfied. For

example, depending on the instance, there may be a minimum and maximum number

of hours worked per week, or per four weeks, or per month or however the staff for

that organisation are contracted. Finally, equations 4.2f and 4.2g represent the demand

(sometime called cover) constraints to ensure there are the required number of staff

present during each shift. Again, depending upon the instance, there may be multiple

demand curves for each shift to represent, for example, the minimum and maximum

requirements as well as a preferred staffing level. The weights for the constraints are all

instance specific because they represent the scheduling goals for different institutions.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 73

Instance B
e
st

K
n
o
w
n

N
o
.
o
f
S
ta

ff

S
h
if
t
T
y
p
e
s

N
o
.
o
f
S
h
if
ts

Ref.

BCV-A.12.2 1875 12 5 31 [127]
BCV-A.12.1 1294 12 5 31 [215]
CHILD-A2 1095 41 5 42 [127]
ERRVH-A 2135 51 8 48 [127]
ERRVH-B 3105 51 8 48 [127]
ERMGH-B 1355 41 4 48 [127]
MER-A 8814 54 12 48 [127]
Valouxis-1 20 16 3 28 [216]
Ikegami-3Shift-DATA1.2 3 25 3 30 *

Ikegami-3Shift-DATA1.1 3 25 3 30 *

Ikegami-3Shift-DATA1 2 2 3 30 *

ORTEC01 270 16 4 31 [214]
ORTEC02 270 16 4 31 [214]
BCV-3.46.1 3280 46 3 26 [215]

Table 4.1: Instances of nurse rostering problem and their specifications (best known
objective values corresponding to entries indicated by * are taken from private com-

munication from Nobuo Inui, Kenta Maeda and Atsuko Ikegami).

4.2.2 Related Work

There are various benchmarks for nurse rostering problems. In [213], a comprehensive

benchmark is available where the latest best known results together with approaches

yielding these results are available. The characteristics of the benchmark instances from

[213] used in the experiments are summarized in Table 4.1.

There is a growing interest in challenges and the instances used during those challenges

and resultant algorithms serve as a benchmark afterwards. The last nurse rostering

competition was organised in 2010 [217] which consisted of three tracks where each track

differed from others in maximum running time and size of instances. Many different

algorithms have been proposed since then ([218], [219], [220] and etc). Since it has been

observed that the previous challenge did not impose much difficulty for the competitors

[214], other than developing a solution method in limited amount of time, a second

challenge has been organised which is ongoing [221]. In the second nurse rostering

competition, the nurse rostering problem is reformulated as a multi-stage problem with

fewer constraints where a solver is expected to deal with consecutive series of time

periods (weeks) and consider longer planning horizon.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 74

In [214] a branch and price algorithm and an ejection chain method has been used for

nurse rostering problem instances collected (from thirteen different countries) by the

authors 1. Branch and price method is based on the branch and bound technique with

the difference that each node of the tree is a linear programming relaxation and is solved

through column generation. The column generation method consists of two parts: the

restricted master problem and the pricing problem. The former is solved using a linear

programming method while the latter is using a dynamic programming approach. Some

of the latest results and best-known solutions regarding the instances is provided by this

chapter. Also, a general problem modelling scheme has been proposed in [214] which is

also adopted here due to its generality over many problem instances.

In [216] a generic two-phase variable neighbourhood approach has been proposed for

nurse rostering problems. After determining the value of the parameters which gov-

ern the performance of the algorithm, a random population of candidate solutions is

generated. In the first phase of the algorithm, assigning nurses to working days is han-

dled. Subsequent to this phase, in the second phase, assigning nurses to shift types is

dealt with. Though, the proposed approach has been applied to few publicly available

instances, the chosen instances are significantly different from one another.

In [222] a method based on mixed integer linear programming is proposed to solve four

of the instances also in [214] and [213], namely, ORTEC01, ORTEC02, GPost and GPost-B.

The method is able to solve these instances to optimality very quickly. The idea of

implied penalties has been introduced in this study. Employing implied penalties avoids

accepting small improvements in the current rostering period at the expense of penalising

larger penalties on the next rostering period.

In [223] the nurse rostering problem has been identified as an over-constrained one and

it is modelled using soft global constraints. A variant of Variable Neighbourhood Search

(VNS), namely VNS/LDS+CP [224], is used as a metaheuristic to solve the problem

instances. The proposed approach has been tested on nine different instances (available

in [213]). The experimental results show that the method is relatively successful, though

the authors have suggested to use specific new heuristic for instances such as Ikegami

to improve the performance of the algorithm.

In [225] a hybrid multi-objective model has been proposed to solve nurse rostering prob-

lems. The method is based on Integer Programming (IP) and Variable Neighbourhood

Search (VNS). The IP method is used in the first phase of the algorithm to produce in-

termediary solutions considering all the hard constraints and a subset of soft constraints.

The solution is further polished using the VNS method. The proposed approach is then

applied to the ORTEC problem instances and compared to a commercial hybrid Genetic

1These instances as well as other nurse rostering instances can be found at [213]

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 75

Algorithm (GA) and a hybrid VNS [226]. The computational results show that the

proposed approach outperforms both methods in terms of solution quality.

In [127], a hyper-heuristic method inspired by pearl hunting is proposed and applied to

various nurse rostering instances. The proposed method is based on repeated intensi-

fication and diversification and can generally be described as a type of Iterated Local

Search (ILS). Their experiment consists of running the algorithm on various instances

for several times, where each run is 24 CPU hours long. The algorithm discovered 6 new

best-known results.

Numerous other approaches have been proposed to solve the nurse rostering problem.

In [227] a Scatter Search (SS) is proposed to tackle the nurse rostering problem. A shift

sequence-based approach was proposed in [228]. In [229] the nurse rostering problem is

modelled using 0-1 Goal Programming Model.

4.3 Proposed Approach

The proposed approach consists of the consecutive iteration of four stages as depicted in

Algorithm 8 and Figure 4.1. In all stages, simple hyper-heuristic algorithms operating on

top of a fixed set of low level heuristics (move operators) are used. Those low level heuris-

tics are exactly the same low level heuristics implemented for the personnel scheduling

problem domain [230] under the Hyper-heuristic Flexible Framework (HyFlex) v1.0 [36].

The low level heuristics in HyFlex are categorized into four groups: mutation (MU), ruin

and re-create (RR), crossover (XO) and local search (LS). Consequently, one mutation

operator is available for the nurse rostering problem domain which is denoted here by

MU0. This operator randomly un-assigns a number of shifts while keeping the resulting

solution feasible. Three ruin and re-create heuristics are available which are denoted by

RR0, RR1 and RR2. These operators are based on the heuristics proposed in [226] and

they operate by un-assigning all the shifts in one or more randomly chosen employees’

schedule followed by a rebuilding procedure. These operators differ in the size of the

perturbation they cause in the solution. Five local search heuristics, denoted by LS0,

LS1, LS2, LS3 and LS4 are also used where the first three heuristics are hill climbers

and the remaining two are based on variable depth search. Also, three different crossover

heuristics are used which are denoted by XO0, XO1 and XO2. The crossover operators

are binary operators and applied to the current solution in hand and the best solution

found so far (which is initially the first generated solution). More information on these

heuristics can be found in [230].

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 76

 Figure 4.1: Overall approach with various stages.

During the first two stages (line 2 and 3), two different tensors are constructed. The ten-

sor TNA is constructed by means of an SR-NA algorithm and tensor TIE is constructed

from the data collected from running an SR-IE algorithm. At the end of the second

stage (line 4 and 5), each tensor is subjected to factorisation to obtain basic frames

(BNA and BIE) and score values (SNA and SIE) corresponding to each tensor. Using

all the information we have on both tensors, the heuristic space is partitioned (line 6) to

two distinct sets: hNA and hIE. Subsequently, in the third stage, a hybrid algorithm is

executed for a limited time (tp) with random heuristic parameter values (depth of search

and intensity of mutation). The hybrid algorithm consists of periodically switching be-

tween the two acceptance mechanisms NA and IE. Depending on the chosen acceptance

method, the heuristics are chosen either from hNA or hIE . In fact the hybrid algorithm

is very similar to the algorithm in the final stage except that during the search process in

this stage, the heuristic parameters are chosen randomly and a tensor using the heuris-

tic parameter settings is constructed. Factorising this tensor and obtaining the basic

frame (similar to what is done in previous steps) results in good parameter value settings

for heuristics. Hence this stage can be considered as a parameter tuning phase for the

heuristics. The final (fourth) stage consists of running the previous stage for a longer

time (3× tp) and assigning values achieved in the previous stage to heuristic parameters.

After the time specified for the fourth stage is consumed, the algorithm starts over from

stage one. This whole process continues until the maximum time allowed (Tmax) for a

given instance is reached. Figure 4.1 illustrates this process.

Algorithm 8: Tensor-based hyper-heuristic

1 while t < Tmax do

2 (TNA) = ConstructTensor(h, NA, tp);
3 (TIE) = ConstructTensor(h, IE, tp);
4 (BNA,SNA) = Factorisation(TNA,h);
5 (BIE ,SIE) = Factorisation(TIE ,h);
6 (hNA,hIE) = Partitioning(BNA,BIE ,SNA,SIE);
7 (P) = ParameterTuning();
8 Improvement(hNA,hIE ,P,SNA,SIE);

9 end

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 77

4.3.1 Tensor Analysis for Dynamic Low Level Heuristic Partitioning

During first and second stages, given an acceptance criteria (such as NA or IE), a hyper-

heuristic with a simple random heuristic selection and the given acceptance methodology

is executed. During the run, data, in the form of a tensor is collected. Hence the collected

tensor data (TNA or TIE depending on the acceptance criteria) is a 3rd-order tensor of

size R
|h|×R

|h|×R
t, where |h| is the number of low level heuristics and t represents the

number of tensor frames collected in a given amount of time. Each tensor is a collection

of two dimensional matrices (M) which are referred to as tensor frames. A tensor frame

is a two dimensional matrix of heuristic indices. Column indices in a tensor frame

represent the index of the current heuristic whereas row indices represent the index of

the heuristic chosen and applied before the current heuristic. Algorithm 9 shows the

tensor construction procedure.

The core of the algorithm is the SR selection hyper-heuristic (starting at the while loop

in line 4) combined with the acceptance criteria which is given as input. Repeatedly,

a new heuristic is selected at random (line 12) and is applied to the problem instance

(line 14). The returned objective function value (fnew) is compared against the the

old objective function value and the immediate change in objective function value is

calculated as δf = fold− fnew. The method Accept (line 16) takes the δf value as input

and returns a decision as to whether accept the new solution or reject it. In case the new

solution is accepted , assuming that the indices of the current and previous heuristics

are hcurrent and hprevious respectively, the tensor frame M is updated symmetrically:

mhprevious,hcurrent
= 1 and mhcurrent,hprevious

= 1. The tensor frame M is only allowed to

have ⌊|h|/2⌋ elements with a value of 1 (line 5). Whenever this threshold is reached the

tensor frame is added to the tensor and a new frame is initialized (lines 6 to 9). Assuming

that the objective function value before updating the frame for the first time is fstart

and assuming that the objective function value after the last update in the tensor frame

is fend, then the frame is labelled as ∆f = fstart− fend (line 7). In other word, the label

of a frame (∆f) is the overall change in the objective function value caused during the

construction of the frame. ∆f (given in Eq. 3.1) is different from δf in the sense that the

former measures the change in objective value inflicted by the collective application of

active heuristic indexes inside a frame. The latter is the immediate change in objective

value caused by applying a single heuristic. This whole process is repeated until a time

limit (tp) is reached (line 4). This procedure, creates a tensor of binary data for a given

acceptance method. In order to prepare the tensor for factorisation and increase the

chances of gaining good patterns from the data, the frames of the constructed tensor

are scanned for consecutive frames of positive labels(∆f > 0). Only these frames are

kept in the tensor and all other frames are removed. This adds an extra emphasis on

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 78

intra-frame correlations which is important in discovering good patterns. The resulting

tensor for each acceptance criteria is then fed to the factorisation procedure.

Algorithm 9: The tensor construction phase

1 In: h, acceptance criteria, P, tp;
2 Initialize tensor frame M to 0;
3 counter = 0;
4 while t < tp do

5 if counter = ⌊|h|/2⌋ then
6 append M to T ;
7 set frame label to ∆f ;
8 Initialize tensor frame M to 0;
9 counter = 0;

10 end

11 hprevious = hcurrent;
12 hcurrent = selectHeuristic(h);
13 fcurrent = fnew;
14 fnew =applyHeuristic(hcurrent);
15 δf = fcurrent − fnew;
16 if Accept(δf , acceptance criteria) then

17 mhprevious,hcurrent
= 1;

18 mhcurrent,hprevious
= 1;

19 counter ++;

20 end

21 end

22 Construct final tensor T from collected data;

In the factorisation stage, a tensor T is fed to the factorisation procedure (Algorithm 10).

This could be TNA or TIE depending on who calls the factorisation procedure. Using

the CP factorisation, basic factors of the input tensor T are obtained (line 2). Using

these basic factors the basic frame B is computed (line 3). To obtain the basic frame,

Equation 2.7 is used where K = 1 and basic factors a and b represent previous and

current heuristic indexes respectively (Figure 4.2). The values in the basic frame quantify

the relationship between the elements along each dimension (basic factor). To make use

of the basic frame, the maximum entry is pinpointed and the column corresponding to

this entry is sorted. This results in a vector S which contains the score values achieved

for heuristics.

Figure 4.2: Extracting the basic frame for K = 1 in Eq.2.7.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 79

The factorisation stage is applied to both TNA and TIE tensors. That is, the procedures

tensor construction (Algorithm 9) and factorisation (Algorithm 10) are executed twice

independently. Starting from an initial solution, first we execute the two procedure

assuming NA as acceptance criteria. Consequently, we obtain a basic frame BNA and

a set of score values SNA. Following this, the two procedure (Algorithms 9 and 10) are

executed assuming IE as acceptance criteria. This results in a basic frame BIE and score

values SIE . Consequently, for a given heuristic, there are two score values, one obtained

from factorising TNA and the other obtained from factorising TIE. The obtained score

values are then fed into the partitioning procedure (Algorithm 11).

Algorithm 10: Factorisation

1 In: T ,h;
2 a,b, c = CP(T ,K = 1);
3 B = a ◦ b;
4 x, y = max(B);
5 S = sort(Bi=1:|h|,y) //Scores;

Algorithm 11 is used to partition the space of heuristics. In lines 2 and 3 of the algorithm,

the two score values for a given heuristic are compared to one another. The heuristic

is assigned to the set hNA if its score is higher (or equal) in the basic frame achieved

from TNA (that is, if SNA(h) ≥ SIE(h)). Otherwise it is assigned to hIE. Note that,

equal scores (say, SNA(h) = SIE(h)) rarely happens. At the end of this procedure, two

distinct sets of heuristics, hNA and hIE, are achieved where each group is associated to

NA and IE acceptance methods respectively.

Algorithm 11: Partitioning

1 In: BNA,BIE ,SNA,SIE ;
2 hNA = {h ∈ h | SNA(h) ≥ SIE(h)};
3 hIE = {h ∈ h | SIE(h) > SNA(h)};

4.3.2 Parameter Control via Tensor Analysis

The next two stages of the framework (Algorithm 12 and 13 respectively) are very similar.

The only detail which distinguishes the two is that, the first stage (Algorithm 12) is run

for a shorter time with randomly chosen heuristic parameter values. These values are

chosen from the range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} denoted by p ∈ P. Depending

on the nature of a given heuristic (e.g. mutational/ruin-recreate or local search) the value

of this parameter determines the degree to which the heuristic affects the candidate

solution. For example, given a mutational heuristic, this parameter defines the intensity

of mutation (e.g. the number of bits flipped), while in a local search heuristic, this

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 80

parameter determines the depth of search (e.g. the number of iterations the heuristic

will run over a candidate solution). The goal in this section is to construct a tensor

which contains selected heuristic parameter values per heuristic index. Factorising this

tensor would then help in associating each heuristic with a parameter value. This is

while the final stage of the algorithm (Algorithm 13) runs for a longer time and uses

these parameter values for each heuristic instead of choosing them randomly. Despite

their similarity, each stage is described in detail here to provide the readers with a clearer

picture of the logic

In Algorithm 12, the two sets of heuristics achieved in the previous stage together with

their respective score values per heuristic are employed to run a hybrid acceptance hyper-

heuristic. For the selected heuristic, a random parameter value is chosen and set (lines

11-12), the heuristic is applied and the relevant acceptance criteria is checked (lines 14-

15). The heuristic selection is based on tournament selection. Depending on the tour

size, few heuristics are chosen from the heuristic set corresponding to the acceptance

mechanism and a heuristic with highest score (probability) is chosen and applied. In

case of acceptance, the relevant frame entry is updated (line 16). Since this is a hybrid

acceptance algorithm, each acceptance criteria has a budget which is expressed as the

number of heuristic calls allocated to the acceptance method. If the acceptance criteria

has used its budget, then a new random acceptance criteria is selected (lines 18-20).

After continuing this process for a time tp, the final tensor (TParam) is constructed from

collected frames and factorized (exactly in the same manner as in Algorithm 9), the

basic frame is computed and the parameter values are extracted as suggested in line 25.

4.3.3 Improvement Stage

In the next phase of the algorithm, the two sets of heuristics achieved in previous stages,

together with their score and parameter values are employed to run a hybrid accep-

tance hyper-heuristic (Algorithm 13). Each acceptance method is given a budget in

terms of the maximum number of heuristic calls it is allowed to perform (callCounter).

Whenever, the acceptance method uses its budget, the algorithm switches to a randomly

chosen acceptance method, resetting the budget (line 10-12). Depending on the accep-

tance criteria in charge, a heuristic is selected (using the tournament selection method

discussed above) from the corresponding set (lines 2-5). For instance, if NA is in charge

a heuristic is selected from hNA. Later, depending on the nature of the heuristic (muta-

tion, hill climbing or none) the parameter value of the heuristic is assigned (line 6) and

the heuristic is applied (line 7). The achieved objective function value is then controlled

for acceptance (line 9). This process continues until a time limit (3× tp) is reached.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 81

Algorithm 12: Parameter Control

1 In: h,hNA,hIE , tp;
2 Initialize tensor frame M to 0;
3 counter = 0;
4 while t < tp do

5 if counter = ⌊|h|/2⌋ then
6 append frame and initialize;
7 if acceptance criteria = NA then

8 h = SelectHeuristic(hNA);
9 else

10 h = SelectHeuristic(hIE);
11 pcurrent = rand({0.1, 0.2, · · · , 0.8});
12 setHeuristicParameter(pcurrent);
13 fcurrent = fnew;
14 fnew =applyHeuristic(hcurrent) , δf = fcurrent − fnew;
15 if Acceptance(δf , acceptance criteria) then

16 mh,p = 1 , counter ++;
17 end

18 if callCounter > c then

19 callCounter = 0;
20 acceptance criteria = selectRandomAcceptance();

21 end

22 Construct final tensor TParam from collected data;
23 a,b, c = CP(TParam,K = 1);
24 B = a ◦ b;
25 x, y = max(B);
26 P = sort(Bi=1:|h|,y);

Algorithm 13: Improvement

1 while t < (3× tp) do
2 if acceptance criteria = NA then

3 h = SelectHeuristic(hNA);
4 else

5 h = SelectHeuristic(hIE);
6 setHeuristicParameter(P(h));
7 fnew = ApplyHeuristic(h);
8 δf = fcurrent − fnew;
9 Acceptance(δf , acceptance criteria);

10 if callCounter > c then

11 callCounter = 0;
12 acceptance criteria = selectRandomAcceptance();

13 end

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 82

4.4 Experimental Results

4.4.1 Experimental Design

The algorithm proposed here is a multi-stage algorithm where in each stage data sam-

ples are collected from the search process in form of tensors. Various approaches can be

considered for data collection. While each stage can collect the data and ignore those

collected in previous corresponding stages the data collected from various (correspond-

ing) stages can be appended to one another. The former data collection approach has

the advantage that collected data reflect the current search status independent from

previous search stages allowing the algorithm to focus on the current state. However,

ignoring previous data means discarding the knowledge that could have been extracted

from experience. In order to assess the two data collection approaches, we employ both

data collection approaches. That is, two methods are investigated here, both using the

same algorithm (as in Algorithm 7). The only difference between them is that one algo-

rithm (TeBHH 1) the data collection phase of the algorithm ignores previously collected

data and over-writes the dataset. In the second algorithm (TeBHH 2) the data collected

at each stage is appended to those collected in the same previous stage. Please note

that, this does not mean that the data collected in the third stage is appended to those

collected in the second stage. Each stage maintains its own dataset and e.g. stage 2

appends its data to the dataset designated for the same stage index.

Regardless of the data collection strategy they employ, both TeBHH 1 and TeBHH 2

have three configurable parameters, namely, the time allocated for data collection phase

(tp), the budget allocated to each acceptance criterion (callCounter in Algorithm 13)

and the tournament size (employed in Algorithms 12 and 13). For each variant, a range

of values are considered. Values considered for the variable tp are {75, 125, 175} seconds.

For the call budget, values in {|h|, 2× |h|, 3× |h|} are considered. Also, three different

tour sizes have been investigated: {2, |h|
2 , |h|}. Each experiment performed with the

proposed approach with each combination of those parameter values as the initial setting

are indexed successively using the ordering as provided, starting from 1 denoting (75,

|h|, 2) to 27 denoting (175,3 × |h|, |h|).

4.4.2 Selecting The Best Performing Parameter Setting

In order to determine the best performing parameter setting, each variant of the algo-

rithm with a parameter value combination was run 10 times where each run terminates

after two hours. Apart from detecting the best performing parameter configuration, we

would like to know how sensitive the framework is with respect to the parameter settings.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 83

Seven instances were chosen for these experiments which would hopefully cover and rep-

resent a whole range of available instances. The chosen instances are: BCV-A.12.1,

BCV-A.12.2, CHILD-A2, ERRVH-A, ERRVH-B, Ikegami-3Shift-DATA1.2 and MER-A.

Figure 4.3 shows the results from these experiments for the TeBHH 1 variant. Although

most of the configurations seem to achieve similar performances, there is no other pa-

rameter configuration which performs significantly better than the configuration with

index 9 (for which tp = 175 seconds, acceptance budget of 3 × |h| and tournament size

of 2) on any of the cases, which is confirmed via a Wilcoxon signed rank test. Rank-

ing all configurations based on the average results across the instances shows that this

configuration performs slightly better than the others in the overall. Therefore, these

values are chosen for the TeBHH 1 variant. A similar analysis shows that the parameter

configuration with index 4 (for which tp = 75 seconds, acceptance budget of 2× |h| and

tournament size of 2) is more suitable for the TeBHH 2 variant. It has been observed

that tournament size of 2 is constantly a winner over the other values for tour size. The

apparent conclusion is that both algorithms are very much sensitive to the value chosen

for this parameter. Also, a shorter time for data collection in the TeBHH 2 variant

makes sense, since it preserves the data collected in previous data collection sessions.

The same is not true for TeBHH 1 which overwrites the old data in each stage. Thus,

a longer data collection time in case of TeBHH 1 also makes sense. However, when

the performance of variants with different data collection time values are compared, the

emerging conclusion is that both algorithms are not very sensitive to the chosen value.

A similar conclusion can be reached for the value of the acceptance budget.

4.4.3 Comparative Study

In the first round of experiments, an analysis is made as to compare the performance of

the two proposed algorithms, namely, TeBHH 1 and TeBHH 2. The second column in

Table 4.2 shows the result of this comparison. The statistical test, based on Wilcoxon

signed rank test, reveals that, the performance disparity between the two algorithms

can vary from one instance to another. For instance, TeBHH 1 outperforms TeBHH

2 on 3 instances significantly. This is while on 2 other instances the situation is the

opposite. Also, on 9 instances there is no statistically significance difference between the

performance of the two algorithms. This makes sense since the only difference between

the two algorithms is the way the dataset is treated throughout the time. While TeBHH

1 overwrites the data with newly collected dataset, TeBHH 2 appends the new data to

the old dataset. Thus, it is natural that TeBHH 2 performs similarly to TeBHH 1 since

much of their collected data can be similar. Also, the heuristics on all nurse rostering

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 84

1350

1400

1450

1500

1550

1600

1650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(a) BCV-A.12.1

1900

1950

2000

2050

2100

2150

2200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b) BCV-A.12.2

1090

1095

1100

1105

1110

1115

1120

1125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(c) CHILD-A2

2140

2160

2180

2200

2220

2240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(d) ERRVH-A

3120

3140

3160

3180

3200

3220

3240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(e) ERRVH-B

8

10

12

14

16

18

20

22

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(f) Ikegami-3Shift-DATA1.2

8900

9000

9100

9200

9300

9400

9500

9600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(g) MER-A

Figure 4.3: Parameter configuration experiments using TeBHH 1. Each value on the
X axis represent the index of the parameter setting of the approach as described at the

end of Section 4.4.1. The Y axis represents the objective function values.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 85

Instance T
e
B
H
H

1
v
s
T
e
B
H
H

2

T
e
B
H
H

1
v
s
S
R
N
A

T
e
B
H
H

1
v
s
S
R
IE

BCV-A.12.2 < >= >
BCV-A.12.1 > > >
CHILD-A2 > > >=
ERRVH-A > > >
ERRVH-B >= > >
ERMGH-B >= > >
MER-A >= > >
Valouxis-1 >= > >
Ikegami-3Shift-DATA1.2 >= > >
Ikegami-3Shift-DATA1.1 <= > >
Ikegami-3Shift-DATA1 <= > >
ORTEC01 < < >
ORTEC02 >= <= >
BCV-3.46.1 <= >= >

Table 4.2: Statistical Comparison between TeBHH 1, TeBHH 2 and their building
block components (SRIE and SRNA). Wilcoxon signed rank test is performed as a
statistical test on the objective function values obtained over 20 runs from both algo-
rithms. Comparing algorithm x versus y (x vs. y) ≥ (>) denotes that x (y) performs
slightly (significantly) better than the compared algorithm (within a confidence interval

of 95%), while ≤ (<) indicates vice versa.

instances are quite slow and therefore there is a lack of data which is more the reason

that the two algorithms perform similarly.

Overall, combining the entries in Table 4.2 and the minimum objective function value

achieved by each algorithm (Table 4.3), it would be fair to say that TeBHH 1 performs

slightly better than TeBHH 2. It is to say that it would be safer to refresh the dataset

once in a while and handle the current search landscape independent from the experience

achieved from other regions of the search landscape.

Subsequent to this conclusion another statistical experiment is conducted to compare the

performance of the TeBHH 1 to its building block components, namely, SR-NA and SR-

IE. The third and fourth columns in Table 4.2 shows that, given equal values as run time,

TeBHH1 performs always better than the SR-IE hyper-heuristic. On only one instance,

TeBHH 1 performs slightly (and not significantly) better. As for the comparison between

TeBHH 1 and SR-NA, although TeBHH 1 still performs significantly better than SR-NA

on the majority of instances, on ORTEC instances it performs very poorly.

The results of applying the two proposed algorithms on various nurse rostering instances

is shown in Table 4.3. The two algorithms are also compared to various well-known

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 86

Instance T
e
B
H
H

1

T
e
B
H
H

2

T
im

e

B
e
st

K
n
o
w
n

T
im

e
B
es
tK

n
o
w
n

BCV-A.12.2 1858 1844 9080 1875 86400
BCV-A.12.1 1270 1280 41443 1294 13914
CHILD-A2 1087 1089 8229 1095 86400
ERRVH-A 2118 2127 9175 2135 86400
ERRVH-B 3090 3095 10629 3105 86400
ERMGH-B 1217 1214 5 1355 86400
MER-A 8810 8779 22008 8814 86400
Valouxis-1 20 20 3184 20 17
Ikegami-3Shift-DATA1.2 8 9 - 3 2820
Ikegami-3Shift-DATA1.1 6 8 - 3 2820
Ikegami-3Shift-DATA1 6 3 - 2 21600
ORTEC01 285 280 - 270 69
ORTEC02 290 290 - 270 105
BCV-3.46.1 3282 3283 - 3280 20764

Table 4.3: Comparison between the two proposed algorithms and various well-known
(hyper-/meta)heuristics. The second and third columns contain the best objective
function values achieved by TeBHH 1 and TeBHH 2 respectively. Fourth column gives
the earliest time (seconds) among all the runs (20) in which the reported result has
been achieved. Same quantities (minimum objective function values and earliest time
it has been achieved) are also reported for compared algorithms in columns five and

six.

algorithms. While some of these algorithms (like the one in [127]) are general-purpose

search algorithms, some others are specifically designed to solve the given instance.

On the first seven instances in Table 4.3, both TeBHH 1 and TeBHH 2 outperform

compared algorithms in terms of minimum objective function value. On the instance

Valouxis-1, both algorithm can achieve the best known result (20), although much

later than the state-of-the-art [216]. Similarly, on Ikegami and ORTEC instances as

well as BCV-3.46.1, the state-of-the-art performs better. The algorithms which solve

aforementioned instances are instance-specific and designed to solve a group of highly

related instances, such as those in the Ikegami family. Overall, the two algorithms

perform well on provided instances and produce new best known results for some of

them (the first seven instances).

Figure 4.4 shows the distribution of heuristics to disjoint sets hNA and hIE throughout

the 20 runs for some of the problem instances. Each run consists of up to 27 stages and in

each stage, the set of heuristics is partitioned using tensor factorisation. The histograms

in Figure 4.4 is built by counting the number of times a heuristic is associated with

the NA and IE move acceptance methods throughout all the runs for a given instance.

The histograms vary from one instance to another. The difference between histograms

are sometimes minor (as it is between histograms of BCV-A.12.1 and BCV-A.12.2) and

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 87

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(a) BCV-A.12.1

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(b) BCV-A.12.2

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(c) ERRVH-A

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(d) ERRVH-B

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(e) MER-A

LS0 LS1 LS2 LS3 LS4 RR0 RR1 RR2 XO0 XO1 XO2 MU0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NA
IE

(f) ERMGH-B

Figure 4.4: Distribution of heuristics in hNA and hIE partitions.

sometimes major (as is the case for the instance MER-A compared to the rest). However,

the common pattern among most of these partitions is that the heuristic MU0 has been

equally associated to both sets. Although the framework clearly shows the tendency to

assign heuristics more to the hIE set rather than hNA, Ruin Recreate and Crossover

heuristics are likelier to be assigned to hNA compared to local search heuristics. Since

the heuristics in nurse rostering domain all deliver feasible solutions, it makes sense that

the framework tries to increase the possibility of diversification by assigning diversifying

heuristics to NA acceptance method.

During the improvement stage (Algorithm 13), the algorithm allocates a time budget to

each acceptance method. Whenever this budget is consumed, the algorithm switches to

a randomly chosen acceptance criteria. Since the tensor analysis is likelier to assign di-

versifying heuristics to hNA (keeping the intensifying heuristics in hIE), it thus performs

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 88

0 100 200 300 400 500
1350

1400

1450

1500

1550

1600

1650

1700

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(a) BCV-A.12.1

0 100 200 300 400 500
1900

1950

2000

2050

2100

2150

2200

2250

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(b) BCV-A.12.2

0 100 200 300 400 500
2140

2150

2160

2170

2180

2190

2200

2210

2220

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(c) ERRVH-A

0 100 200 300 400 500
3120

3130

3140

3150

3160

3170

3180

3190

3200

3210

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(d) ERRVH-B

0 100 200 300 400 500
9000

9100

9200

9300

9400

9500

9600

9700

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(e) MER-A

0 100 200 300 400 500
1280

1290

1300

1310

1320

1330

1340

1350

1360

time (minutes)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

TeBHH 1
TeBHH 2

(f) ERMGH-B

Figure 4.5: The progress of the objective function value on average, obtained from
20 runs of TeBHH 1 and TeBHH 2.

similar to a higher level Iterated Local Search (ILS) algorithm where each intensification

step is followed by a diversification one. That in turn results in continuous improvement

of the solution as is confirmed in Figure 4.5 for TeBHH 1 and TeBHH 2 respectively.

The progress plots corresponding to TeBHH 1 and TeBHH 2 (Figure 4.5) show that on

many instances (particularly on BCV-A.12.1, BCV-A.12.2 and ERMGH-B) both algorithm

are rarely stuck in local optima. This is a good behaviour showing that given longer run

times (similar to the experiments in [127]) there is a high likelihood that the algorithms

proposed here provide better results with even lower objective function values.

Chapter 4. A Tensor-based Selection Hyper-heuristic for Nurse Rostering 89

4.5 Summary

Nurse rostering is a real-world NP-hard combinatorial optimisation problem. A hyper-

heuristic approach which benefits from an advanced data science technique, namely,

tensor analysis is proposed in this chapter to tackle a nurse rostering problem. The

proposed approach embedding a tensor-based machine learning algorithm is tested on

well-known benchmark problem instances collected from hospitals across the world. Two

different remembering mechanisms, memory lengths are used within the learning algo-

rithm. One of them remembers all relevant changes from the start of the search process,

while the other one refreshes its memory every stage. The results indicate that ‘forget-

ting’ is slightly more useful than remembering all. Hence, a strategy that decides on the

memory length adaptively would be of interest as a future work. In this chapter, the

tensor-based hyper-heuristic with memory refresh generated new best solutions for four

benchmark instances and a tie on one of the benchmark instance.

The proposed approach cycles through four stages continuously and periodically, em-

ploying machine learning in the first three stages to configure the algorithm to be used

in the final stage. The final stage approach itself is an iterated bi-stage algorithm cycling

through two successively invoked hyper-heuristics, namely SR-NA and SR-IE. Depend-

ing on the problem instance and even a trial, the nature of the low level heuristics

allocated to each stage (hence the move acceptance) could change. However, experi-

ments indicate that mutational heuristics often can get allocated to either of the hyper-

heuristics. SR-NA allows worsening moves while SR-IE does not. Hence, the final stage

component of the tensor-based hyper-heuristic acts as a high level Iterated Local Search

algorithm [38], providing a neat balance between intensification and diversification us-

ing the appropriate low level heuristics which are determined automatically during the

search process, resulting in continuous improvement in time. The overall approach is

enabled to extract fresh knowledge periodically throughout the run time, which is an

extremely desired behavior in life-long learning. Thus, the tensor-based hyper-heuristic

proposed here can be considered in life-long learning applications.

So far, we have coupled the tensor learning approach to hyper-heuristics. Hyper-

heuristics operate as high level decision making strategies and leave traces which are

highly abstract. The experimental results in both this chapter and the previous chapter

(Chapter 4) indicate that the proposed approach performs very well on highly abstract

data. To continue with our assessment of this learning approach and decide whether

or not tensor analysis can be applied to trace data with lower levels of abstraction, in

the next chapter, it has been used to analyse the trace of a hyper-heuristic which is

somewhat more detailed (and hence less abstract) compared to those extracted from the

hyper-heuristics in this chapter as well as the previous chapter.

Chapter 5

A Tensor Analysis Improved

Genetic Algorithm for Online Bin

Packing

In this chapter, we move lower in data abstraction level. We use tensor analysis to mine

the data collected from the trace of a standard genetic algorithm hyper-heuristic when

applied to the one dimensional bin packing problem. Compared to the hyper-heuristics

in previous chapters, the hyper-heuristic considered here has full access to the heuris-

tic design. Indeed, the genetic algorithm hyper-heuristic evolves/generates heuristics

rather than selecting available low level heuristics. The tensor analysis approach in this

chapter is employed to extract useful patterns from heuristics generated by the hyper-

heuristic. Thus, the amount of information available to the factorisation procedure is

more compared to previous chapters and the tensorial data is lower in abstraction level.

The patterns extracted by the hyper-heuristic are used to adjust mutation probabilities

in the genetic algorithm.

5.1 Introduction

In many situations, decisions must be made despite lack of knowledge of the future

allowing the computation of the full effects of the decisions. In such cases, it is usual to

have some kind of heuristic ‘dispatch policy’ to make decisions. Usually, such heuristics

are produced by an expert in a domain carefully designing some decision procedure.

Often, even an expert requires a great deal of trial and error - though the errors are

rarely reported, and so a misleading impression is given suggesting that creation of

heuristics is not a time-consuming process. Of course, such difficulties are well-known,

90

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 91

and so there have been various attempts to automate the production of heuristics (e.g.

for some recent work see [14, 15, 83]).

In [29], an approach for the automatic creation of heuristics is given that might be

viewed as a form of parameter tuning [231], but applied with a much larger number

of parameters than usually considered. The large number of parameters arise from a

‘brute force’ representation of the heuristic as a matrix covering the various potential

decisions. That is, it defines a policy in terms of the ‘features’ available at each decision

point. This is done in the style of an ‘index policy’ (e.g., [232]) in that each potential

outcome is given a score separately of other outcomes and the largest score is selected.

In this chapter, we particularly study the well-known online bin-packing problem [233,

234], creating a policy that is based on using a (large) matrix1 of ‘heuristic scores’.

The policy matrix can be viewed as a heuristic with many parameters. Alluding to

this, the framework in [29] allows the use of an optimiser for ‘Creating Heuristics viA

Many Parameters’ (CHAMP) and online bin packing simulator that can be used as an

evaluation function for a given policy on a given problem instance. Packing problem

instances are specified in terms of a specified bin capacity and a stochastically generated

sequence of item sizes taken from a specified range. For specific instance generators,

good policies are found using a Genetic Algorithm (GA) as the optimiser under the

CHAMP framework to search the space of matrices, with the matrix-based policies

being evaluated directly by packing a (large) number of items.

In this chapter, we take the GA optimiser of the CHAMP framework as the basis to

investigate the role of tensor analysis in heuristic optimisation. We propose the integra-

tion of the tensor analysis approach into the CHAMP framework to generate mutation

probabilities for each locus of a chromosome, also referred to as individual, represent-

ing a candidate solution. In our approach, within the GA algorithm in CHAMP, the

trail of high quality solutions, where each solution has a matrix form, is represented

as a 3rd order tensor. Factorising such a tensor reveals the latent relationship between

various chromosome locations through identifying common subspaces of the solutions

where mutation is more likely to succeed in producing better offspring. In addition to

subspace learning, one would expect a powerful data mining approach to discover the

related genes. Possession of such information should naturally result in having similar

probability values for closely related genes. The experiments in this chapter show that

tensor factorisation achieves this objective and identifies genes which should have similar

mutation likelihoods due to their close relationship.

1Here, the term ‘matrix’ is used as a convenience for a 2-d array; there is no implication of it being
used for matrix/linear algebra

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 92

The tensor analysis approach is applied to a range of bin packing problems and the

results are compared to those achieved by the original CHAMP framework [29] and

subsequent studies. In this chapter, first the one dimensional online bin packing problem

and its instances are described in Section 5.2. Since the policy matrix representation

of candidate solutions is used in the proposed approach, this representation is discussed

in Section 5.3 followed by a description of the CHAMP framework in full detail in

Section 5.4. Subsequent to these preliminaries, the tensor-based approach and the way it

has been integrated to the CHAMP framework is described in Section 5.6. Experimental

results and discussion are also provided in Sections 5.7 and 5.8.

5.2 Online Bin Packing Problem

In online one dimensional bin packing, each bin has a capacity C > 1 and each item size

is a scalar in the range [1, C]. More specifically, each item can be chosen from the range

[smin, smax] where smin > 0 and smax ≤ C. The items arrive sequentially, meaning that

the current item has to be assigned to a bin before the size of the next item is revealed.

A new empty bin is always available. That is, if an item is placed in the empty bin, it is

referred to as an open bin and a new empty bin is created. Moreover, if the remaining

space of an open bin is too small to take in any new item, then the bin is said to be

closed.

The uniform bin packing instances produced by a parametrised stochastic generator are

represented by the formalism: UBP(C, smin, smax, N) (adopted from [29]) where C is

the bin capacity, smin and smax are minimum and maximum item sizes and N is the

total number of items. For example, UBP(15, 5, 10, 105) is a random instance generator

and represents a class of problem instances. Each problem instance is a sequence of

105 integer values, each representing an item size drawn independently and uniformly

at random from {5, 6, 7, 8, 9, 10}. The probability of drawing exactly the same instance

using a predefined generator of UBP(C, smin, smax, N) is 1/(smax−smin+1)N , producing

an extremely low value of 6−100000 for the example. Note that there are various available

instances in the literature [235, 236], however, these instances are devised for offline bin

packing algorithms and usually consist of a small number of items.

There are two primary ways of utilising random instance generators. A common usage is

to create a generator and then generate around a few dozen instances which then become

individual public benchmarks. Consequently, methods are tested by giving results on

those individual benchmark instance. In our case, the aim is to create heuristics that

perform well on average across all instances (where an instance is a long sequence of item

sizes) from a given generator. (Hence, for example, we believe it would not serve any

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 93

useful purpose to place our specific training instance sequences on a website.) A related

note is that it is important to distinguish two quite different meanings of ‘instance’:

either a specific generator, or a specific sequence of items. An instance in the sense

of a generator generally contains a Psuedo-Random Number Generator (PRNG) which

needs be supplied with a seed in order to create an instance in the sense of a specific

sequence of item sizes.

There are well established heuristics for this problem among which First Fit (FF), Best

Fit (BF) and Worst Fit (WF) [237–239]. The FF heuristic tends to assign items to the

first open bin which can afford to take the item. The BF heuristic looks for the bin

with the least remaining space to which the current item can be assigned. Finally, WF

assigns the item to the bin with the largest remaining space. Harmonic-based online

bin packing algorithms [240, 241] provide a worst-case performance ratio better than

the other heuristics. Assuming that the size of an item is a value in (0,1], the Harmonic

algorithm partitions the interval (0,1] into non-uniform subintervals and each incoming

item is packed into its category depending on its size. Integer valued item sizes can be

normalised and converted into a value in (0,1] for the Harmonic algorithm.

Although we often refer to the choices for UBP as instances it should be remembered

that they are instances of distributions and not instances of a specific sequence of items;

the actual sequence is variable and depends on the seed given to the random number

generator used within the item generator. That is, within the instance generator one

can use different seed values to generate a different sequence of items each time the same

UBP is generated. Indeed, this is the case when we test our approach as it will be seen

in the coming sections.

There are various criteria with which the performance of a bin packing solution can be

evaluated. Some of these are enlisted below.

Bins-Used, B: The number of bins that are used. B is an integer value which

tends to increase as larger number of items (N) are considered.

Average-Fullness, Faf : Considering that bin t has a fullness equal to ft, t ∈

{1, . . . , B} then Faf is the value of the occupied space, averaged over the number

of used bins.Faf = 1/B
∑

t ft

Average-Generic-Fullness, Fgf : This value gives some insight into the variation

of resulting fullness between bins. Fgf = 1/B
∑

t f
2
t

Average-Perfection, Fap: This measure is an indication of how successful the

heuristic is in packing the bins perfectly. Fap = 1/B
∑

t,ft=1 ft

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 94

In our study, average bin fullness (Faf) is considered as the fitness (evaluation/objective)

function.

5.3 Policy Matrix Representation

A packing policy can be defined by a matrix of heuristic values (called policy matrix).

That is, we have a matrix structure in which for each pair (r,s) a score Wr,s is provided

which gives the priority of assigning the current item size s to a remaining bin capacity

r. Given such a matrix, our approach is to simply scan the remaining capacity of the

existing feasible open bins and select the first one to which the highest score is assigned

in the matrix (Algorithm.14). A feasible open bin is an open bin with enough space for

the current item size, say r ≥ s and includes the always-available new empty bin. The

integer scores are chosen from a specific range Wr,s ∈[wmin,wmax].

Algorithm 14: Applying a policy matrix on a bin packing instance

1 In : W : score matrix;
2 for each arriving item size s do

3 maximumScore = 0;
4 for each open bin i in the list with remaining size k do

5 if k > s then

6 if Wk,s > maximumScore then

7 maximumScore = Wk,s;
8 maximumIndex = i;

9 end

10 end

11 end

12 assign the item to the bin maximumIndex;
13 if maximumIndex is the empty bin then

14 open a new empty bin and add to the list;
15 end

16 update the remaining capacity of maximumIndex by subtracting s from it;
17 if remaining capacity of maximumIndex is none then

18 close the bin maximumIndex;
19 end

20 end

It is clear that the policy matrix is a lower triangular matrix as elements corresponding

to s > r do not require a policy (such an assignment is simply not possible). Therefore,

only some elements of the policy matrix which correspond to relevant cases for which a

handling policy is required are considered. We refer to these elements as active entries

while the rest are inactive elements. Inactive entries represent a pair of item size and

remaining capacity which either can never occur or are irrelevant.

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 95

The active entries along each column of the policy matrix represent a policy with respect

to a specific item size and the scores in each column is independent from that of other

columns as the policy for a certain item size can be quite different than that of other

item sizes.

In order to further clarify how a policy matrix functions, an example is given here.

The policy matrix in Figure 5.1 is evolved to solve packing instances generated by

UBP (15,5,10). Assume that, during the packing process, an item of size 5 arrives. This

item size corresponds to the fifth column in the given policy matrix. The entries of this

column represent the set of scores which are associated to each possible remaining bin

capacity for the current item size. Assume that, currently, only bins with remaining

capacities of 9 and 10 are open. As always, the empty bin is also available for item

placement. The scores associated with remaining bin capacities 9 and 10 are 4 and 1

respectively. The empty bin has a score of 2. Since the bin with the remaining capacity

9 has the highest score, the item is placed in this bin.

In all policy matrices, the last row represents the scores assigned to the empty bin for

different item sizes. Suppose that, in the previous example, the score associated to the

empty bin is 7 (instead of 2 in Figure 5.1). In this case, the item would be no longer

put in bin with remaining capacity 9. Instead it would be placed in the empty bin (bin

with remaining capacity 15) and a new empty bin would be opened immediately.

Ties can occur and the tie breaking strategy employed here is first fit. As an example,

assume that the arriving item has a size 8. Therefore, in order to determine which bin

to choose for item placement, the scores in column 8 will be investigated. Assume that

currently there are open bins with all possible remaining bin capacities as well as the

always available empty bin. Scanning the scores, bins with remaining capacities 8 and

10 emerge as top scoring ones because they both have the highest score which is 7.

However, due to the first fit tie breaking strategy, the first bin from the top is chosen

and the item is put in the bin with remaining capacity 8.

5.4 A Framework for Creating Heuristics via Many Pa-

rameters (CHAMP)

A policy matrix represents a heuristic (scoring function). Changing even a single entry

in a policy matrix creates a new heuristic potentially with a different performance.

Assuming that each active entry of a policy matrix is a parameter of the heuristic, then

a search is required to obtain the best setting for many parameters (in the order of

O(C2)).

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 96

r\s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1:

2:

3:

4:

5: 6

6: 3 7

7: 7 4 2

8: 1 2 2 7

9: 4 3 6 4 5

10: 1 7 3 7 2 4

11:

12:

13:

14:

15: 2 5 6 5 3 4

Figure 5.1: An example of a policy matrix for UBP (15, 5, 10)

In this chapter, we use the framework for creating heuristics via many parameters

(CHAMP) consisting of two main components operating hand in hand: an optimiser

and a simulator as illustrated in Figure 5.2. CHAMP separates the optimiser that will

be creating the heuristics and searching for the best one from the simulator for general-

ity, flexibility and extendibility purposes. The online bin packing simulator acts as an

evaluation function and measures how good a given policy is on a given problem.

Figure 5.2: CHAMP framework for the online bin packing problem.

As is evident from Figure 5.2, policy matrices are evolved using a Genetic Algorithm

(GA) as the optimiser component of the CHAMP framework. Each individual in the

GA framework represents the active entries of the score matrix and therefore each gene

carries an allele value in [wmin, wmax]. The population of these individuals undergoes the

usual cyclic evolutionary process of selection, recombination, mutation and evaluation.

Each individual is evaluated by applying it to the bin packing problem instance as

was shown in Algorithm 14 and the fitness value is one (or more) of the measures in

Section 5.2. The settings for the GA optimiser is given in Table.5.1.

The GA and the fitness evaluator communicate through the matrices; the GA saves

an individual into a matrix and invokes the online bin packing program. The packing

algorithm uses the matrix as a policy and evaluates its quality using an instance produced

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 97

Table 5.1: Standard GA parameter settings used during training

Parameter Value

No. of iterations 200
Pop. size ⌈C/2⌉
Selection Tournament
Tour size 2
Crossover Uniform

Crossover Probability 1.0
Mutation Traditional

Mutation Rate 1/ChromosomeLength
No. of trials 1

by the instance generator UBP(C,smin,smax,10
5). The total number of bins used while

solving each training case is accumulated and then saved as the fitness of the individual

into another file for GA to read from. The initial population is randomly generated

unless it is mentioned otherwise and the training process continues until a maximum

number of iterations is exceeded.

A hyper-heuristic operates at a domain-independent level and does not access problem

specific information (e.g. see [15]), thus, the framework we use, as shown in Figure

5.2, follows the same structure. However, in contrast to the hyflex implementation of

hyper-heuristics, here, the hyper-heuristic has access to the heuristic design. Therefore,

the domain barrier is considered to be breached and the amount of information available

to the higher level strategy is less abstract compared to the same in HyFlex. In this

chapter, in contrast to the previous work [29], several instance generators for the one

dimensional online bin packing problem have been considered for experiments and N

is kept the same during training and testing phases. Moreover, several variants of the

policy matrix evolution scheme has been considered each differing with others in the

initialisation scheme, and the upper bound for score range (wmax).

5.5 Related Work on Policy Matrices

There is a growing interest on automating the design of heuristics (e.g. for some recent

work see [14, 15]). In [29], a GA framework was proposed in which policy matrices as

described above were evolved, resulting in automatic generation of heuristics in form of

index policies. In addition to this original study, there has been a number of studies

related to this topic. For example, in [242], an approach based on policy matrices was

proposed for analysing the effect of the mutation operator in Genetic Programming (GP)

in a regular run using online bin packing.

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 98

In [243] dimensionality reduction was considered for policy matrices in that they were

derived from one dimensional vectors (say, policy vectors). Evolving policy vectors in

a fashion similar to the evolution of policy matrices was shown to produce high quality

solutions. In [244], policy matrices are seen as heuristics with many parameters and

are approached from a parameter tuning perspective. The Irace package was used to

tune policies during training. Trained policies were then tested on unseen instances with

performances close to that of the GA framework and significantly better than the man-

made heuristics. In this chapter, we use the same GA with the same settings as described

in [29], however, we present a tensor-based approach for improving its performance via

an adaptive locus-based mutation operator, instead of using a generic one.

5.5.1 Apprenticeship Learning for Generalising Heuristics Generated

by CHAMP

In [45], Apprenticeship Learning (AL) method (as in Chapter 2.3.2) was proposed to

increase the generality level of the CHAMP framework. Although the policy matrix ap-

proach in the CHAMP framework [29] was effective at generating heuristics with better

performance than the standard ones, it had the drawback of directly only applying to

a specific set of values for the bin capacity and range of item sizes. The AL method in

[45] collects the data from applying a high quality heuristic generated by the CHAMP

framework on small instances. The apprenticeship learning method (described in Sec-

tion 2.3.2) is then used to build a generalisable model of the data. The model is then

used as a packing policy (heuristic) on different, larger instances. The tensor-based ap-

proach proposed here is compared to the AL-based method. Also, the AL-based method

is interesting considering that it generalises a hyper-heuristic using machine learning,

similar to the tensor-based approach of this study. Therefore, it seems suitable to give

a brief introduction to the AL-based approach in this section.

In the AL-based method, each search state can be seen and described as a feature set

(as in Eq. 2.1 or 2.2) with which a generalized model can be constructed. In order to

achieve a desirable performance, the extracted features should be instance independent.

That is, they should not be dependent on the absolute values of the item size (s), bin

capacity (C) and minimum or maximum item size (smin or smax), but rather to depend

on relative sizes. Table 5.2 shows the list of considered features along with their formal

and verbal descriptions. The features in Table 5.2 are extracted for each open bin on

the arrival of each new item. In the dataset, each record is labelled as either 1 (if the

bin is selected) or 0 (if the bin is rejected).

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing 99

Table 5.2: Features of the search state. Note that the UBP instance defines the
constants C, smin, and smax whereas the variables are s the current item size, and r

the remaining capacity in the bin considered, and r′ is simply r − s.

feature description

(s− smin)/(smax − smin) normalized current item size

r/C normalized remaining capacity of the current bin

s/C ratio of item size to bin capacity

s/r ratio of item size to the current bin’s remaining capacity

r′/C normalized remaining capacity of the current bin after a feasible
assignment

r′/(smax − smin) ratio of remaining capacity of the current bin after a feasible as-
signment to the range of item size

Having formulated the feature representation, it is now possible to use expert policies to

extract features and their corresponding labels for each search state. That is, we assume

that we are in possession of a set of n expert policies {π1
e , ..., π

n
e } in one dimensional

on-line bin packing problem domain. These expert policies are obtained by the policy

generation method discussed in Section.5.4. Each expert policy corresponds to a certain

UBP . We run each expert policy once, on it’s corresponding UBP for a certain and

fixed number of items N = 105. While running, expert features, φt
e given in Table 5.2,

are extracted for each state of the search (t). Here, φt
e is a r dimensional vector of

features where r is the number of features representing a search state. At the end of

each run for a policy πi
e we will have a set of demonstrations like:

Dπi
e
= {(φt

e, at)|π
i
e} (5.1)

where at is the action at step t. The demonstration sets for all training policies are then

merged together to form a dataset.

D =

n
⋃

i=1

Dπi
e

(5.2)

Having the feature vectors and their associated labels, we employ a k-means clustering

algorithm (Section 2.3.1) to cluster the feature vectors of each class. The generated

clusters constitute a generalised model of the actions of various expert heuristics.

For an unseen problem instance (a new, unseen UBP with different range of item sizes

and bin capacity), at each state of the search, say, on the arrival of each new item, for

each open bin, the state features are extracted (φt′) and the closest matching centroid

to the current feature vector in terms of cosine similarity is found. In case the centroid

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing100

has a label 1 the bin is selected for the item assignment according to a probability. The

probability is chosen to be 0.99 and is considered to introduce randomness to the decision

making process. Eq.5.3 illustrates the decision making mechanism of the generalized

policy, given a feature vector for a bin and a set of centroids.

πg = {axj
∈ {0, 1} | argmin

j
d(φxj

, φt′) , φxj
∈ D} (5.3)

Here, πg is the generalized policy, the subscript xj indicates the jth centroid obtained

by the k-means clustering algorithm, axj
is the action (label) which is associated to the

centroid j and d is the distance metric which is given in Eq.5.4.

d(φxj
, φt′) = 1−

∑

r φxj
· φt′

√

∑

r φxj

2 ·

√

∑

r φ
t′2

(5.4)

5.6 Proposed Approach

There is a wide variety of population-based approaches, solving computationally hard

problems, which are referred to as ‘knowledge-based’ evolutionary computation methods.

Knowledge can be extracted and used in many ways in various stages of the evolutionary

process. For instance, Knowledge-Based Genetic Algorithm (KBGA) [245] used problem

domain knowledge to produce an initial population and guide the operators of a Genetic

Algorithm (GA) using that knowledge at all the stages of the evolution. In [246] problem

specific ‘knowledge’ was represented in form of ground facts and training examples of

Horn clauses. This knowledge is exploited in a GA for inductive concept learning and

is used in mutation and crossover operators to evolve populations of if-then rules. [247]

employed prior problem specific ‘knowledge’ to generate locus level bias probabilities

when selecting allele for crossover, resulting in a Knowledge-Based Nonuniform Crossover

(KNUX). In [248], a mutation operator was designed based on knowledge capturing the

distribution of candidate solutions in Extremal Optimisation context. This method

was successfully applied to PID tuning. The approach proposed in [249] utilized rough

set theory to explore hidden knowledge during the evolutionary process of a GA. The

extracted knowledge is then used to partition the solution space into subspaces. Each

subspace is searched using a separate GA. In this section, we use tensor analysis to

extract prolem specific knowledge using which mutation probabilities in the genetic

algorithm of the CHAMP framework are enhanced/improved.

Evolutionary algorithms are among many approaches which produce high dimensional

data. The search history formed by GA can be turned into multi-dimensional data in

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing101

a similar fashion to the search history of a hyper-heuristic as described in Chapters 3

and 4. For example, collecting high quality individuals (candidate solutions) from the

populations in several successive generations while GA operates, naturally, yields a 3rd-

order tensor, representing the changing individuals in time. Moreover, the candidate

solution in the CHAMP framework are two dimensional matrices. Put together, these

matrices naturally form a 3rd-order tensor. This is precisely what has been done here

as is described below.

In the original framework [29], policy matrices are produced using GA in a train and

test fashion. The evolutionary cycle is performed for a given stochastic sequence gen-

erator (UBP) resulting in a policy matrix for that UBP. At the beginning, a random

population of policy matrices is generated. At each generation, mutation and crossover

are applied to the individuals (policy matrices). Each individual representing a packing

policy/heuristic is then handed over to a separate evaluator (bin packer) which applies

the policy to a stream of items, returning the fitness (Faf) as feedback. The cycle of

evolution continues until the stopping criterion is met. Our method modifies the train-

ing procedure as illustrated in Figure 5.3. During every 5 generations, a tensor (T)

containing the top 20% individuals (policy matrices) is constructed and factorized into

its basic factor, producing a basic frame. The elements of the basic frame are used as

mutation probabilities for the next 5 generations from which a new tensor is constructed.

Subsequent to training, the best individual is then tested on several unseen instances for

evaluation. Throughout this chapter, the original CHAMP framework in [29] will simply

be denoted by GA whereas the tensor-based variant proposed here will be denoted by

GA+TA.

Figure 5.3: The GA+TA framework

The tensor T has the size C ×C ×R where R is the number of the top 20% individuals

and C is the bin capacity as described in Section 5.2. The order according to which the

policy matrices are put into the tensor is precisely the order in which they are generated

by the GA framework. This tensor is then factorized where K in Eq.2.7 is set to 1

resulting in a simplified expression of the factorisation (Equation 5.5). That is, the

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing102

original tensor T is approximated by T̂ as the following

T̂ = λ a ◦ b ◦ c (5.5)

where the length of the vectors a, b and c are C, C and R respectively. As depicted

in Figure 5.4, the outer product of vectors a and b results in a basic frame B which is

exactly the shape of a policy matrix with the size C × C is used with k = 1 to produce

B). The difference between B and a policy matrix is that instead of containing integer

score values in the range of [wmin, wmax], it contains real values between 0 and 1. These

values point towards regions in policy matrices where change of score values has been a

common pattern among good quality matrices.

Figure 5.4: Extracting the basic frame for K = 1 in Eq.2.7.

Thus, the values in B are perceived as mutation probability of each locus for the next 5

generations. That is, during the next 5 generations, a gene indexed (i, j) is mutated with

a probability B(i, j). The initial mutation probabilities are fixed as 1
chromosomeLength for

the first 5 generations. Data collection for tensor construction occurs at the same time

when the generated basic frame B has been applied.

5.7 Experimental Results

5.7.1 Experimental Design

The setting used for the GA framework is illustrated in Table 5.1. As discussed in

Section 5.3, the scores in policy matrices are chosen from the range [wmin, wmax]. In our

experiments wmin = 1 and wmax is equal to the maximum number of active entries along

the columns of the policy matrix (i.e. for the policy matrix in Figure 5.1, wmax = 7).

For tensor operations, Matlab Tensor Toolbox [206] has been used. The GA framework

is implemented in the C language. In order to use the toolbox, the Matlab DeployTool

has been used to generate an executable of the Matlab code. This executable is then

called when necessary from the C code without a need to load the Matlab environment.

The approach proposed in this chapter is compared to the original CHAMP framework

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing103

5 10 15 20 25 30

5

10

15

20

25

30

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) gen. 5

5 10 15 20 25 30

5

10

15

20

25

30

0.02

0.04

0.06

0.08

0.1

(b) gen. 50

5 10 15 20 25 30

5

10

15

20

25

30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(c) gen. 100

5 10 15 20 25 30

5

10

15

20

25

30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(d) gen. 120

5 10 15 20 25 30

5

10

15

20

25

30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(e) gen. 150

5 10 15 20 25 30

5

10

15

20

25

30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(f) gen. 200

Figure 5.5: Various basic frames achieved in different stages of the search for an
instance generated by UBP (30, 4, 25). The basic frame in 5.5(d) is the probability

matrix using which the best policy is achieved (gen 121)

and some of its recent extensions (discussed in Section 5.5). The experiments regarding

the original GA framework have been repeated here (instead of using the results reported

elsewhere) and the train-test conditions (seeding etc.) for both GA and GA+TA are the

same.

5.7.2 Basic Frames: An Analysis

As discussed in Section 5.6, the GA+TA algorithm frequently constructs and factorizes

a tensor of high quality candidate solutions. The factorisation process results in the

basic frame which is used as a mutation probability. This section is dedicated to the

analysis of these basic frames and the manner with which they evolve along side the

main cycle of evolution.

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing104

Figure 5.5 illustrates the gradual change in probabilities produced by tensor analysis

throughout the generations. The instance generator on which the policies were trained

in Figure 5.5 is UBP (30, 4, 25). The basic frame generated after the first factorisation

(Figure 5.5(a)) is notably less detailed compared to the ones generated in later gener-

ations. However, during the time, a common pattern seems to emerge. This pattern

reveals that, for this UBP, good quality matrices tend to frequently change the score

values corresponding to small item sizes and large remaining bin capacities. Thus, sub-

jecting these locus to mutation more frequently would probably result in better packing

performance.

Different UBP’s indicate different patterns though. For instance, Figure 5.6 shows one of

the basic frames produced for the instance generator UBP (40, 10, 20). Using this basic

frame, the best policy matrix was found during training. The pattern here is certainly

different from those in Figure 5.5 indicating a whole different group of items sizes and

remaining bin capacities as the most frequently changing genes. It also is less focused

and more disconnected compared to the basic frames in Figure 5.5(d).

A closer look at Figure 5.5 shows another interesting aspect of the generated basic frame.

It seems that in addition to finding common changing locus in the chromosome, the basic

frame also identifies groups of different genes with similar (if not equal) probabilities.

In other words, basic frames seems to partition genes into groups (with no clear bor-

der) where genes within each group are related. This is no surprise and it is one of

the achievements of the ALS algorithm. In Eq.5.5, the factor a captures the gene pat-

terns corresponding to bin remaining capacity while b does the same for gene patterns

concerning the item size. The factor c captures the temporal profile of the patterns

in the first two factors. Hence, our approach is able to detect recurring gene patterns

along each dimension (remaining capacity and item size). Moreover, when constructing

the tensor, only good quality solutions were allowed in the tensor. Thus, any pattern

detected along each dimension is equally promising. The basic frame is calculated from

the outer product of a and b, combining the gene patterns related to each dimension of

the tensor. It has been observed in many studies (such as [250] and [153]) that the basic

frame quantifies the relationship between the elements of the two factors. Hence, the re-

lationship between any gene pattern detected along the first and the second dimensions

is scored in the basic frame. Thus, if there are regions with similar score values 2 in the

basic frame (as it is visible in both figures 5.5 and 5.6), the genes are considered to be

related.

2Not to be confused with the scores in the policy matrix. The score here refers to the quantity
achieved from the factorisation procedure.

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing105

10 12 14 16 18 20

5

10

15

20

25

30

35

40

0.02

0.04

0.06

0.08

0.1

Figure 5.6: The basic frame for UBP (40, 10, 20) using which the best policy matrix
was found.

5 10 15 20 25 30

5

10

15

20

25

30 0

5

10

15

20

25

Figure 5.7: The best policy matrix obtained by GA+TA for UBP (30, 4, 25) using the
basic frame entries (see Figure 5.5(d)) as mutation probabilities.

It is important to stress the fact that the produced basic frames are in no way repre-

senting the index scores generated by the GA framework. That is, we are not trying to

infer score values in the policy matrix from the corresponding elements of a basic frame.

The policy matrix in Figure 5.7 is generated using the probabilities in Figure 5.5(d) and

solves instances generated by UBP (30, 4, 25) instance generator. It is evident from the

figures that although the two matrices are similar in dimensions, they are not similar at

all when it comes to the contents. The rough structure of the policy matrix itself com-

pared to the smooth structure of the basic frame confirms that there is little correlation

between scores and mutation probabilities.

5.7.3 Comparative Study

The experimental results show that our algorithm (GA+TA) outperforms the original

GA framework on almost all instances significantly. A Wilcoxon sign rank test is per-

formed to confirm this. Table 5.3 summarizes the results. The only instance generator on

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing106

Table 5.3: Performance comparison of the GA+TA, GA, the generalized policy
achieved by the AL method, BF and harmonic algorithms for each UBP over 100
trials. The ‘vs’ column in middle highlights the results of the Wilcoxon sign rank test
where > (<) means that GA+TA is significantly better (worse) than the compared
method to the method in the left and right column within a confidence interval of 95%.
Similarly, ≥ shows that GA+TA performs slightly better than the compared method

(with no statistical significance). The sign = refers to equal performance.

Instance GA [29] vs GA+TA vs AL [45] BF Harmonic

UBP(6, 2, 3) 99.99 = 99.99 - - 92.29 -
UBP(15, 5, 10) 99.58 ≤ 99.62 - - 99.62 74.24
UBP(20, 5, 10) 97.89 < 98.28 > 94.32 91.55 90.04
UBP(30, 4, 20) 99.09 < 99.53 - - 96.84 73.82
UBP(30, 4, 25) 98.39 < 99.53 > 97.69 98.38 74.21
UBP(40, 10, 20) 96.08 < 96.27 - - 90.23 89.10
UBP(60, 15, 25) 99.68 > 99.47 > 93.83 92.55 85.18
UBP(75, 10, 50) 98.27 < 98.53 ≥ 98.50 96.08 71.59
UBP(80, 10, 50) 98.07 < 98.66 > 98.17 96.39 72.96
UBP(150, 20, 100) 97.78 < 98.22 ≤ 98.32 95.82 71.97

which GA+TA seems to be under-performing is UBP(60, 15, 25). On all other instances,

GA+TA outperforms the GA framework.

Our studies show that it is very hard to increase the performance of the GA algorithm

even slightly. Nevertheless, the GA+TA algorithm has improved the performance sub-

stantially. One major reason that contributes to the success of the GA+TA algorithm

is the representation. Tensor factorisation algorithms are designed for high dimensional

data where it is expected that various dimensions of data are correlated. Perhaps the

study in [153] is a very good example confirming this argument. Thus, matrix repre-

sentation of packing policies prepares a suitable ground for analytic algorithms with

an expectation of existing relations between various dimensions of data. The fact that

the first dimension of a policy matrix is dedicated to remaining bin capacities and the

second to item sizes fits very well to the factorisation algorithm. This is something

which couldn’t be achieved if the policies were vectorized (as in [45]). Therefore, the

representation matters and it has a great contribution to the performance of GA+TA.

However, apart from representation, the strength of tensor analytic approaches has also

a great impact on the performance. In previous study [37] introduced the use of these

approaches in heuristic research for the first time. The impressive results achieved in this

chapter confirms this and is encouragement for further research in transferring tensor

analytic approaches to the field of (meta)heuristic optimisation.

Chapter 5. A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing107

5.8 Summary

An advanced machine learning technique (tensor analysis) is integrated into a GA frame-

work [29] for solving an online bin packing problem. Online bin packing policies with

matrix representation enables construction of a 3rd-order tensor as the high quality can-

didate solutions vary from one generation to another under the genetic operators in GA.

This construction process is repeated periodically throughout the evolutionary process.

At the end of each period, the obtained tensor is factorized into its basic factors. Then

those basic factors are used to identify recurring gene patterns identifying the frequency

with which genes are modified in high quality solutions. This information is directly

used to set the mutation probability for each gene, accordingly. Our empirical experi-

mental results show that the proposed tensor analysis approach is capable of adaptation

at the gene level during the evolutionary process yielding a successful locus-based mu-

tation operator. Furthermore, the results indicate that tensor analysis embedded into

GA significantly improves the performance of the generic GA with standard mutation

on almost all online bin packing instance classes used during the experiments. Since the

data provided to the factorisation procedure is less abstract here (compared to those in

Sections 3 and 4), we conclude that the tensor analysis approach is capable of handling

data with lower abstraction levels. Finally, due to the multi-episode nature of the tensor

learning in this chapter (as well as in the previous chapter), we can confirm that tensor

analysis is capable of continuous pattern recognition in heuristic search algorithms.

Solution representation can perhaps be considered as data with lowest level of abstrac-

tion. So far in this study, the tensor frames consist of highly abstract data. In the

next chapter, we will push the proposed approach to the limits by embedding it in an

agent-based metaheuristic approach. The tensor frames will be the candidate solutions

for the Flowshop Scheduling problem instances. Therefore, we subject our algorithm

to data with the lowest possible level of abstraction. By performing the experiments

in the next chapter we will have our algorithm tested on every possible range of data

abstraction and heuristic design philosophy.

Chapter 6

A Tensor Approach for Agent

Based Flow Shop Scheduling

In this chapter, the proposed approach is applied to the permutation flow shop scheduling

problem under an agent-based framework. Multiple agents run in parallel each applying

it’s own (meta)heuristic to a given problem instance. Time to time, one of the agents

initiates a line of communication to the other agents asking for their best solutions. These

solutions are appended to each other to form a third order tensor. The constructed tensor

thus contains candidate solutions retrieved from the problem domain implementation

and is considered to have a very low level of abstraction. The tensor is factorized and

the emerging pattern is sent back to all the agents where each agent uses the pattern to

construct a better solution.

6.1 Introduction

In this chapter, we use tensors for online learning in a multi-agent system to solve

the permutation flow shop scheduling problem (PFSP). A multi-agent system provides

means for cooperative search, in which (meta)heuristics are executed in parallel as agents

with ability to share information at various points throughout the search process. The

interest into cooperative search has been rising, considering that, nowadays, even home

desktop computers have multiple processors enabling relevant technologies. For example

agent-based approaches have been proposed to enable computer dead time be utilised

to solve complex problems or used in grid computing environments [251, 252].

Cooperating metaheuristic systems have been proposed in various forms by[253–256].

Several frameworks have been proposed recently, incorporating meta-heuristics, as in

108

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 109

[255, 257, 258], or hyper-heuristics, as in Ouelhadj and Petrovic [259]. Also, Hachemi

et al. [260] explore a general agent-based framework for solution integration where

distributed systems use different heuristics to decompose and then solve a problem.

Other studies have focussed on swarm intelligence, such as, Aydin [261] and Khouadjia

et al. [262].

In our multi-agent system based on the framework provided by Martin et al. [263, 264]

for PFSP, each agent instantiates the well known NEH algorithm [4] and performs a

search starting from a different point in the search space. During this process, each

agent builds its own tensor from the incumbent solutions, which is then shared with

the other agents. One agent then concatenates all the tensors received from the other

agents and factorises it. A solution to a permutation flow shop scheduling problem is a

tour formed of edges on a graph where each node is visited once. The resultant factor

matrix is used to form a list of edges identified as likely to be members of an overall

good solution to the problem in hand. Each agent then uses these edges to build new

improved incumbent solutions. The process repeats until a stopping criteria is met and

an overall best solution is found.

We tested this approach on the benchmarks of Taillard [265] and Vallada et al. [3],

performing better than standard heuristics and delivering a competitive performance to

the state-of-the-art. To the best of authors’ knowledge, this is the first time a tensor

approach is used employing domain knowledge in heuristic optimisation as well as this

being its first application in the context of agent-based distributed search.

This chapter is organised as follows. Section 6.2 overviews the permutation flow shop

scheduling problem. Section 6.3 describes the proposed multi-agent system which em-

beds tensor analysis for solving the permutation flow shop scheduling problem. Section

6.4 discusses the details of the experiments and results. Finally, Section 6.5 provides our

conclusions.

6.2 Permutation flow shop scheduling problem (PFSP)

In this section, we provide a formal description of the permutation flow shop scheduling

problem (PFSP) and an overview of some recent studies on PFSP. Given a set of n jobs,

J = {1, ..., n}, available at a given time 0, and each to be processed on each of a set of m

machines in the same order, M = {1, ...,m}. A job j ∈ J requires a fixed but job-specific

non-negative processing time pj,i on each machine i ∈ M . The objective of the PFSP

is to minimise the makespan. That is, to minimise the completion time of the last job

on the last machine Cmax [266]. A feasible schedule is hence uniquely represented by a

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 110

permutation of the jobs. There are n! possible permutations to search from for a given

instance and PFSP is NP-hard [267].

A solution can hence be represented, uniquely, by a permutation S = (σ1, ..., σj , ...σn),

where σj ∈ J indicates the job in the jth position. The completion time Cσj ,i of job σj

on machine i can be calculated using the following formulae:

Cσ1,1 = pσ1,1 (6.1)

Cσ1,i = Cσ1,i−1 + pσ1,i, where i = 2, ...,m (6.2)

Cσj ,i = max(Cσj ,i−1, Cσj−1,i) + pσj ,i,

where i = 2, ...,m, and j = 2, ..., n (6.3)

Cmax = Cσn,m (6.4)

PFSP has received considerable attention by researchers with numerous papers being

published since the introduction of the problem in mid fifties [268]. As such, in this brief

review, we will concentrate on recent work. The readers can refer to the survey papers

of [269–271] for an overview of the developments in the area and more.

One of the well known algorithm in the field of PFSP is the deterministic constructive

heuristic of Nawaz et al. [4] often known simply as “NEH”. The algorithm comprises

of two basic stages. In stage one an initial order of jobs is created with respect to an

indicator value. While in stage two, a new solution is constructed iteratively by inserting

jobs into a partial sequence according to the ordering of jobs in stage one until a new

unique sequence of jobs is created. In more detail there are 3 steps to the algorithm:

1. Make a list of jobs in decreasing order based on the sums of their processing times

on all the machines.

2. Take the first two jobs in the list and schedule in order to minimise the makespan

of these two jobs as though this was the complete list.

3. For k jobs from k = 3 to n insert the kth job at the place in the schedule that

minimises the partial makespan among the k possible ones.

Taillard [272] introduced a significant improvements to the basic NEH algorithm making

it faster and more efficient. It is often referred to as “NEHT” and is the version most

commonly used in subsequent studies since it was first proposed. NEHT improves the

complexity of all insertions in NEH by using a series of matrix calculations. NEHT seems

to be the best-known polynomial time heuristic for flow shop scheduling problems. This

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 111

is a simple but powerful deterministic heuristic that was until recently one of the best-

performing algorithms for PFSP [269]. Indeed, interestingly, those algorithms that now

outperform NEHT still make use of many important features of this heuristic. Most of

these new improving algorithms either try to change the way the initial jobs list of stage

one is calculated and ordered, and/or, in stage two, change the criterion for choose jobs

from the list.

One of the most important studies of the past few years was proposed by Ruiz and

Stützle [7].They proposed an iterated greedy (IG) search algorithm that generates a

sequence of solutions by iterating over greedy constructive heuristics. They developed

a two phased algorithm that iteratively removes jobs from an incumbent solution in

the first destruction phase and in the second construction phase reinserts them into the

solution using the famous NEH construction heuristic [272].

In the destruction phase d < n jobs are removed at random from an incumbent solution.

This creates two partial lists one with the jobs removed and the list of removed jobs. Both

lists retain their order with respect to the way the jobs were removed. In the construction

phase the NEHT construction heuristic is used to re-insert the removed jobs into the

remaining jobs list to create a new potential solution. Once the new solution has been

constructed a local search heuristic based on the insertion neighbourhood heuristic of

Osman and Potts [273] is used to further improve the solution. The acceptance criterion

uses a Simulated Annealing like diversification strategy to make sure the algorithm does

not get stuck in a local minimum. When a new potential solution is found that improves

on the previous incumbent the new solution replaces the old one and the search repeats

until the stopping criterion is reached.

Dong et al. [5] introduced improvement to both the initial and the construction stages of

the NEHT heuristic and their heuristic is referred to as NEHD. In the first stage, rather

than building the tardy job list as described for NEH, NEHD finds the average and

standard deviation of processing times of jobs on each machine. The list is constructed

in decreasing order based on these measures. NEHD also modifies the second stage of

NEHT by developing a strategy for when there is more than one improving solution

obtained by the construction technique of NEHT. Such ties are resolved by finding the

solution that is most likely to increase the utilisation of each machine.

Zobolas et. al [2] introduced a hybrid approach. A constructive initialisation method

based on a greedy randomised NEH is used to produce the initial population. This is

then improved using a Genetic (memetic) Algorithm (GA) employing a variable neigh-

bourhood search algorithm for intensification. The proposed approach also uses a restart

technique where old solutions in the population are replaced with the solutions produced

by the greedy randomised NEH algorithm.

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 112

Fernandez and Framinan [274] described a method for resolving the high number of

ties between jobs when iteratively constructing a new schedule. This approach greatly

improves the overall performance of the proposed algorithm. Juan at al. [275, 276] also

made use of NEHT, creating a randomised variant of NEHT which chooses jobs for the

ordered job list according to a biased random function.

A number of different types of metaheuristics have been proposed to tackle PFSP. Single

point based search methods include Simulated Annealing(SA) [277], Tabu Search(TS)[278]

and various hybrid meta-heuristics (e.g., [279]). A number of population based meta-

heuristics have also been investigated recently, including Particle Swarm Optimisation

(PSO) [280], evolutionary algorithms [281, 282], and Ant Colony Optimisation (ACO)

[283]. Chen et al. [284] recently proposed a new search technique which uses NEHT to

provide a good first best solution. They then analyse the search trajectory contained in

that first solution to identify potential good and bad areas for further search. A con-

struction heuristic is deployed to generate a population based on these trajectories which

is further improved by filtering. If an improving solution is found the local best solution

is updated. If there is no improvement a jump diversification strategy is applied.

In this chapter, we will show that collections of cooperating agents each executing a

modified version of NEHT coupled with an online tensor-based learning mechanism can

produce solutions that are, at least good, and in some cases better, than the current

state-of-the-art.

6.3 Proposed Approach

Martin et al. [263, 264] proposed a multi-agent system where each agent is autonomous

and communicates asynchronously and directly with each other. The system also fea-

tures a learning mechanism where the agents share improving partial solutions. Each

agent then uses a construction heuristic to generate new incumbent solutions from these

partial solutions. The authors claim that their system is generic in that it can solve prob-

lems from different domains such as nurse rostering, permutation flow shop scheduling

and vehicle routing. They claim further that cooperating agents perform better on the

same problem than non-cooperating agents and that search results will improve if more

agents are used. In this chapter, we propose a tensor learning system that identifies

good partial solutions instead of the previous frequency based method [263] and focus

on a single domain namely permutation flow shop scheduling problem (PFSP).

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 113

6.3.1 Cooperative search

The multi-agent system used in this study was described in great detail in Martin et al.

[263]. Consequently, we will provide a general description of how the system works and

will only go into greater detail where the two systems diverge.

The platform itself is built using the FIPA compliant [285] Java Agent Development

Environment(JADE) [286]. JADE is both a set of libraries for developing agents as well

as providing an agent execution environment.

The platform contains two types of agents, a launcher agent and a metaheuristic agent.

In any search, there is one launcher agent while there will be many metaheuristic agents

operating cooperatively. The launcher’s job is to read in a problem, parse it and send

it to the metaheuristic agents for solving. When the metaheuristic agents have found

a solution to a problem they will communicate the answer back to the launcher which

then parses the result into a human readable format. The launcher also controls the

number of times a problem instance will be solved.

The metaheuristic agents solve a given problem by cooperating with each other. This is

achieved by using a selection of FIPA complaint interaction protocols [287]. These pro-

tocols represent many types of human communication behaviour such as asking someone

for something or, telling someone about something. The agent-based system uses these

communication protocols to allow the agents to cooperate with each other in order to

solve complex optimisation problems.

Martin et al. [263] developed what amounts to a distributed metaheuristic with a pattern

matching learning mechanism that all the metaheuristic agents participate in to solve

a problem. One iteration of this distributed metaheuristic is called a “conversation”.

During a conversation each of the agents can take on one of two roles where one agent

takes on the role of initiator while the others take on the role of responders. These roles

will change with each new conversation. In their chapter, Martin et al. [263] describe how

they used a pattern matching system based on frequency of recurring pairs of elements in

good solutions as their learning mechanism. These pairs are used by the metaheuristics

instantiated by each agent to construct new incumbent solutions. However, here we

use tensor online learning to identify good patterns rather than frequency of pairs of

elements. Each conversation executes the following steps:

1. Each agent executes a modified version of NEHT (see Section 6.3.2);

2. Each agent saves up to the 20 best potential solutions and their make-span values

from the NEHT execution phase;

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 114

3. Each agent converts these potential solutions in upto 20 lists of edges (pairs of

solution elements) based on the order of each solution;

4. The responders each send their 20 best solutions to the initiator;

5. The initiator creates a tensor of size P ×Q× R. The first two dimensions of the

tensor are of size n, the number of jobs. The length of the tensor R is then 20×a,

where a is the number of agents;

6. The initiator factorises the tensor with a call to Matlab;

7. The initiator takes the basic frame, the result of the factorisation, and converts

into a list of good edges.

8. The initiator shares these good edges with the responders;

9. The initiator and responders use these edges to modify the job list used by NEHT;

10. The conversation repeats a given number of times (10 times in this study).

6.3.2 Metaheuristic agents

The (meta)heuristic executed by each agent is a modified version of randomised version

of NEHT as proposed by Juan et al. [275]. Essentially they introduced a biased random

function for choosing jobs from the tardy jobs list described in step one of the NEH

algorithm.

In our version, we do not use the biased random function and as such we use the standard

deterministic NEHT. However, we modify the tardy jobs list itself by taking good edges

that have been identified by the agents in step 7 of a conversation. We take the list of

good edges convert it into unique a ordered list of jobs maintaining the inherent order

of the edges list. This list is compared with the tardy job list. The tardy list is then

reordered so that the jobs in the good edge list are moved to the head of the tardy jobs

list. This then influences the way NEHT constructs a new incumbent solution favouring

our identified jobs. The reason for doing this is that good jobs as identified by the tensor

learning will tend to be jobs that feature in good solutions. By putting them at the head

of the list we favour them when a new incumbent solution is constructed.

6.3.3 Construction of tensors and tensor learning on PFSP

The tensor learning method is an reinforcement scheme. It is implemented in Matlab.

Once the initiator has created the tensor for that conversation, it is written to file. The

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 115

Matlab executable is then called from the JAVA code and it reads in the tensor from

file and executes the tensor factorisation algorithm. The resultant matrix called a basic

frame is written to file, whereupon the JAVA code reads it in and executes the rest

of the search algorithm. In the first conversation, the initiator receives all the best 20

solutions as lists of edges from each agent in the order they are received. It then creates

a tensor of size P ×Q× R, where P,Q = n (number of jobs) and R = 20 × a (number

of agents). This is achieved by creating an n × n adjacency matrix where 1 to n rows

and columns represent the ID number of each job. The value 1 is then entered if for

a given edge (x, y) x represents the row number while y is the column number. Zero

is entered otherwise. In this way, a sparse tensor is created where each slice, called a

frame, represents a single solution generated by the agents. Also each frame has a label

associated with it which is the makespan of that solution. Some filtering takes place

at this stage, the values of frame labels are averaged, those frames with labels higher

than average are discarded. This is because in PFSP we are minimising the makespan.

This procedure results in a tensor T . A copy of this tensor is stored after the first

conversation which we will denote as R.

In each subsequent conversation, once a tensor has been generated by the initiator, the

tensor R is appended to the fully generated tensor. The worst half of this final tensor is

then discarded, resulting a new tensor T . Once again, the better half of the tensor T is

stored as R. This cycle repeats until the maximum number of conversations is reached.

By this procedure, the current tensor T is reinforced by the contents of the tensor R

and represents the best improvement so far. In this way, good solutions are rewarded

and preserved for later conversations.

Finally, the tensor is factorised by the Matlab code executing CP decomposition and

the results are written into a matrix called the basic frame. This matrix is then read

and treated as an adjacency matrix by the Java code. It is converted to a list of pairs or

edges of a graph. This is achieved by taking the row and columns numbers and making

a list of pairs according to the score values in the basic frame. These edges are put

into order according to their basic frame score which represents their likelihood to be

an element of a good solution. The initiator shares the best 10% of good edges with the

other agents. Furthermore, it is this list that agents use to modify the NEHT tardy jobs

list.

6.4 Computational Results

We will refer to the proposed multi-agent system embedding the tensor based online

learning technique as TB-MACS, and MACS [263] for the previous version of the system

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 116

using a pattern matching mechanism instead. In this section, we provide the experimen-

tal results of applying our approach to the permutation flow shop scheduling problem

instances from the benchmarks of Taillard [265] and Vallada et al. [3]. Throughout this

section, we will follow the convention in permutation flow shop scheduling of describing

benchmark instances by the number of jobs n followed by the number of machines m.

For example 500 × 20 describes a dataset where each instance in the set is made up of

500 manufacturing jobs and to be executed on 20 flow shop machines.

In the first part of this section, we discuss the parameter tuning experiments for tensor

learning and then provide a performance comparison of TB-MACS to MACS on the

Taillard instances under different number agent settings. Next we compare the perfor-

mance of TB-MACS to MACS based on 16 agents using the benchmark instances of

Vallada et al. [3]. Finally, the results from the proposed approach is compared to the

previously proposed approaches. The experiments are all run on identical computers

(Intel i7 Windows 7 machine -3.6 GHz- with 16 GB RAM). We have used the same

settings for the multi-agent system as in Martin et al. [263]. Each agent executes for

twelve CPU seconds in parallel before each conversation which occurs ten times.

We have used the relative percentage deviation (RPD), also referred to as %-gap as a

performance indicator in our comparisons:

RPD =
makespan(Methodsol)−BKS

BKS
· 100,

where makespan(Methodsol) refers to the makespan of the solution produced by our

multi-agent system or by the state-of-the-art metaheuristics used in comparison with

our system. BKS refers to the makespan of the best known solution or upper bound

published by Taillard [265] and Vallada et al. [3]. We have performed the Wilcoxon

signed rank test to evaluate the average performance of pair of given algorithms based

on the RPD values obtained from multiple runs.

6.4.1 Parameter configuration of tensor learning

The value for the variable K in Eq. 2.7 (number of desired components) should be

provided to the factorisation procedure. In some studies, when tensor dimensions follow

a specific structure, the value for K can be estimated [171]. Some other studies use

informed guesses to decide on the number of desired components [153]. This is possible

when the data under consideration provides means to infer the number of components.

For instance, consider a video dataset containing recorded human actions. Assume that

we are interested in recognising actions related to the head and the torso of the person

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 117

in the video. Furthermore, given that there are only 3 possible positions for the head

and 2 for the torso, one can easily infer that K = 5 [171]. Some other applications [168],

use arbitrarily large number of components and use a proportion of basic factors. That

is, they discard all the basic frames with a weight (λ in Eq. 2.7) lower than a selected

threshold and reconstruct the tensor to produce noise free data.

The data we are dealing with, in this chapter, matches none of the applications above.

Therefore, we need to determine this value experimentally. Furthermore, in cases where

K > 1, a strategy should be devised to decide which component to use and send to other

agents. In our approach, after the tensor factorisation, the basic frames are generated

in the descending order of their weights (λ in Eq. 2.7). That is, it is guaranteed that

the first component has the maximum weight among all other components. The second

component has the second largest weight and so on. Thus, a simple strategy would be

to rely on the weight values and select the first component (which has the maximum

weight). Another strategy would be to consider the trend of a basic frame. The trend

of a given basic frame k is the vector ck in Eq.2.7. Assuming that basic frames contain

good patterns and we only have to choose the best one, it makes sense to choose the

basic frame with a dominant trend. To clarify this further, assume that K = 2 in

Eq. 2.7 leaving us with two components. Hence we will have two basic frames after

factorisation where each one has a trend vector denoted by c1 and c2 respectively. The

length of both vectors c1 and c2 are equal. If, for the majority of points i, c1i > c2i,

then we will consider c1 to be the dominant trend. Please note that, a dominant trend

does not mean better makespan values in candidate solutions represented in the tensor.

Rather, it simply tells us how much the basic frame has been present in the original

tensor. Naturally, given our assumption that basic frames contain good patterns, the

basic frame with dominant trend could be a good choice since it dominates the original

tensor more than other frames and is thus a more reliable choice. The assumption

that basic frames contain good patterns is also a reasonable assumption given that the

original tensor contains the better half of the combination of the solutions obtained from

all the agents and the reinforcement frames (described in Section 6.3.3).

In addition to the value for K and the selection strategy for basic frames, there is one

more decision to be made (experimentally). We should decide how much of the basic

frame should be used. The basic frame represents the outline of a good solution. Every

edge in this solution outline is associated with a real valued score and we use these

scores to generate a ranked list of all the edges. For small instance, ranking can be

performed using all these scores because there are not many of them. In large instances

however, given the small fraction of time provided to the agents to evaluate these scores,

using all the scores may not be a wise decision. Top scores could be selected, based

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 118

on a threshold, and these scores could be utilised more effectively. We determine this

threshold (denoted by r) experimentally.

We have set up an experiment to decide about the above mentioned strategies and

parameter values. For the variable K three values have been considered: {1, 3, 5}. To

decide on which component to choose (in case K > 1) two strategies are tested. The

first one, referred to as the fixed strategy always chooses the first component. In other

words, the fixed strategy always chooses the basic frame with maximum weight (λ). The

second strategy referred to as the dynamic strategy, chooses the basic frame with the

maximum increasing trend. As for the threshold r discussed in the previous paragraph

we use three values: {0.1, 0.5, 1.0}. As an example, when r = 0.1, only the top 10% of

the scores and their corresponding edges are passed to agents for usage. Four instances

from the Talliard benchmark have been chosen for these initial experiments: tai051-

50-20, tai081-100-20, tai085-100-20 and tai101-200-20. These instances are specifically

chosen so as to ensure that every problem size in the spectrum of all the instances in this

benchmark are presented. Furthermore, for each instance, 20 runs of experiments have

been conducted for each of the 18 possible configurations. Also, four agents have been

used to run these initial experiments as the parameters considered here are independent

from the number of agents involved.

The results are illustrated in Figure 6.1. It is hard to draw a conclusion by judging

the performance plots due to the slight variation in the average performance of different

configurations. The average performance achieved by each configuration varies slightly

in most of the cases. There is no single configuration which is better than the others with

a statistically significant performance difference. The performance of each configuration

across the four instances are ranked based on the tied rank method. The configuration

which is the best among others on all the instances considering both mean and minimum

makespan is the combination of K = 1 and r = 0.1. Since K = 1 we no longer concern

ourselves with determining a strategy to select among basic frames (since there will only

be one such frame after factorisation). Interestingly, this is in line with the experiments

in Asta and Özcan[37]. The final tensor which is fed into the factorisation procedure

consists of the frames (solutions) which have achieved better than mean makespan values,

and so outcome of the configuration experiment makes sense. Unlike applications where

data has desired and undesired content (which normally yields to K > 1), our data

consists only of desired solutions. This means the choice of K = 1 is sensible.

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 119

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

r=0.1 r=0.5 r=1.0

Fixed Dynamic Fixed Dynamic Fixed Dynamic

(a) tai051-50-20

6250

6260

6270

6280

6290

6300

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

r=0.1 r=0.5 r=1.0

Fixed Dynamic Fixed Dynamic Fixed Dynamic

(b) tai081-100-20

6350

6360

6370

6380

6390

6400

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

r=0.1 r=0.5 r=1.0

Fixed Dynamic Fixed Dynamic Fixed Dynamic

(c) tai085-100-20

1.129

1.13

1.131

1.132

1.133

1.134

1.135

1.136
x 10

4

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

r=0.1 r=0.5 r=1.0

Fixed Dynamic Fixed Dynamic Fixed Dynamic

(d) tai101-200-20

Figure 6.1: The box plot of makespan values for each parameter configuration com-
bining different values of r, K and strategy for choosing a component from K. The
median and mean values are indicated by a horizontal line and *, respectively, within

each box.

6.4.2 Performance comparison of TB-MACS to MACS on the Talliard

instances

After achieving the best configuration for the TB-MACS algorithm, we tested it on 12

arbitrarily chosen instances of the Talliard benchmark and compared its performance

to MACS, which does not use tensor analysis. The results are summarised in Table 6.1

and 6.2. The proposed tensor based approach outperforms MACS on almost all instances

(in terms of average and minimum performance). Moreover, it finds the optimum for

the tai-055-50-20 in a run.

In Martin et al [263], the setting with 16 agents is always the winner compared to

settings with fewer agents in terms of mean performance based on the RPD values aver-

aged over 20 runs. Unlike [263], here, although the 16 agent framework still wins in the

majority of instances, on some instances fewer number of agents perform better. The

Wilcoxon signed rank test is conducted to assess whether or not the average results are

significantly different from those of the original framework ([263]). The results of this

C
h
ap

ter
6.

A
T
en

so
r
A
p
p
roa

ch
fo
r
A
gen

t
B
a
sed

F
lo
w

S
h
o
p
S
ch
ed
u
lin

g
120

Table 6.1: Mean RPD values achieved by different number of agents (4,8 and 16) by the TB-MACS and MACS approaches on the Taillard
benchmark instances over 20 runs and their performance comparison to NEH and NEGAVNS (Zobolas et. al[2]). The best result is marked in bold
style. The ‘vs’ columns highlights the results of the Wilcoxon signed rank test where > (<) means that TB-MACS is significantly better (worse)
than MACS within a confidence interval of 95% for any given number of agents. Similarly, ≥ (≤) shows that TB-MACS performs slightly better

(worse) than MACS (with no statistical significance) for any given number of agents.

Number of Agents: 4 8 16

Instance BKS NEH NEGAVNS TB-MACS vs MACS TB-MACS vs MACS TB-MACS vs MACS

tai051-50-20 3850 6.03% 0.77% 0.53% > 0.84% 0.44% > 0.76% 0.44% > 0.63%
tai055-50-20 3610 6.23% 1.03% 0.45% > 0.67% 0.37% > 0.62% 0.30% > 0.50%
tai081-100-20 6202 5.47% 1.63% 1.17% > 1.52% 1.17% > 1.41% 1.14% > 1.30%
tai085-100-20 6314 6.03% 1.57% 1.08% > 1.34% 0.94% > 1.22% 0.95% > 1.11%
tai091-200-10 10862 0.74% 0.24% 0.09% ≥ 0.09% 0.09% ≥ 0.09% 0.09% ≥ 0.09%
tai095-200-10 10524 1.15% 0.03% 0.04% > 0.09% 0.03% ≥ 0.05% 0.0% ≥ 0.03%
tai101-200-20 11195 3.56% 1.34% 1.16% > 1.38% 1.13% > 1.25% 1.11% > 1.19%
tai105-200-20 11259 3.78% 1.04% 0.86% > 1.02% 0.86% > 0.94% 0.83% ≥ 0.88%
tai106-200-20 11176 4.05% 1.11% 1.41% > 1.55% 1.37% > 1.44% 1.31% > 1.42%
tai111-500-20 26059 2.34% 0.73% 1.13% < 1.01% 1.09% < 0.95% 1.05% < 0.88%
tai115-500-20 26334 1.49% 0.82% 0.77% ≥ 1.01% 0.72% ≥ 0.95% 0.70% ≥ 0.88%
tai116-500-20 26477 1.95% 0.49% 0.85% < 0.69% 0.79% < 0.67% 0.75% < 0.61%

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 121

Table 6.2: Best of run RPD values achieved for different number of agents on the
Taillard benchmark instances over 20 runs. The lowest value for each instance is marked

in bold.

No. of Agents: 4 8 16

Instance TB-MACS MACS TB-MACS MACS TB-MACS MACS

tai051-50-20 0.23% 0.55% 0.18% 0.47% 0.31% 0.44%
tai055-50-20 0.25% 0.50% 0.19% 0.28% 0.00% 0.30%
tai081-100-20 0.87% 1.26% 0.94% 1.06% 1.02% 1.02%
tai085-100-20 0.89% 1.11% 0.76% 0.97% 0.68% 0.89%
tai091-200-10 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%
tai095-200-10 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%
tai101-200-20 0.96% 1.09% 0.84% 1.01% 0.98% 0.93%
tai105-200-20 0.69% 0.89% 0.69% 0.78% 0.73% 0.71%
tai106-200-20 1.26% 1.35% 1.22% 1.27% 1.16% 1.33%
tai111-500-20 0.98% 0.88% 0.96% 0.86% 0.92% 0.69%
tai115-500-20 0.60% 0.88% 0.62% 0.86% 0.64% 0.69%
tai116-500-20 0.65% 0.56% 0.66% 0.60% 0.66% 0.54%

test as provided in Table 6.1 show that TB-MACS performs significantly better than the

original framework on at least six (out of twelve) Talliard instances, regardless of the

number of agents. The performance of TB-MACS is also compared to NEH and the hy-

brid approach of Zobolas et. al [2], denoted as NEGAVNS. TB-MACS outperforms NEH

on all instances, while it delivers a better performance than at least on seven instances

using any chosen number of agents in the overall. show that TB-MACS outperforms

NEH on all instances.

Considering the instance tai095-200-10, the tensor based approach outperforms MACS,

significantly when 4 agents are involved and slightly when 8 or 16 agents are involved. On

the instance tai105-200-20, the tensor based approach outperforms the original frame-

work significantly when 4 or 8 agents are used and slightly when 16 agents are used.

Apart from these instances, on 3 (out of 12) instances the tensor based approach per-

forms slightly better than the original framework for any given number of agents. In

total, the TB-MACS approach outperforms the original framework (either significantly

or slightly) on 10 out of 12 instances regardless of the number of agents.

In Figure 6.2, the temporal behaviour of the two algorithms have been compared against

each other on the tai-051-50-20 instance. The TB-MACS algorithm using 16 agents

improves the solution quality right until the end of the search. While for the same

search the MACS algorithm gets stuck early on. A similar behaviour is observed on

majority of the problem instances for which TB-MACS performs better.

TB-MACS is outperformed by MACS on two of the larger instances (tai-111-500-20

and tai-116-500-20). This is potentially because the proposed approach, gathers tensor

frames consisting of good local optima achieved between the two conversations and looks

for useful patterns in these local optima. Similar to the other data mining methods, the

performance of the tensor analysis approach depends on the quality and the quantity of

the data. In larger instances, achieving high quality data at the beginning of the search

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 122

0 20 40 60 80 100 120

3860

3865

3870

3875

3880

3885

3890

TA−MACS
MACS

Figure 6.2: The progress plot for TB-MACS and MACS using 16 agents while solving
tai-051-50-20 from 20 runs. The horizontal axis corresponds to the time (in seconds)

spent by an algorithm and the vertical axis shows the makespan.

may not be possible. Therefore, the factorisation method may experience difficulty in

producing a good ranking. Moreover, as the size of the instances increases, so should

the number of frames in the tensor. However, here, we have fixed the number of frames

in the tensor. In other words, the size of the problem increases but the amount of data

available to the factorisation method does not change. Thus, in larger instances (tai-

111-500-20 and tai-116-500-20), the tensor analysis approach suffers from lack of data

in terms of quantity and quality.

Figure 6.3 provides an illustration indicating how the aforementioned reasons affect the

pattern extraction procedure. The images in the first column, correspond to basic frames

constructed for the instance tai-051-50-20 after conversations 3, 5, 7 and 9 respectively

(from left to right) using four agents. The images on the second column are basic frames

achieved for the same conversations for the instance tai-116-500-20, again, using four

agents. The two instances are respectively the smallest and the largest Talliard instances

used in this chapter. They have been chosen deliberately to show the reasons behind the

difference in the performance of the TB-MACS on small and large instances. Figure 6.3

shows that basic frames achieved for the small instance tai-051-50-20 throughout the

conversations vary quite a lot. This means that for this instance, TB-MACS extracts

new and different patterns at each conversation. This is indeed the way it should be,

because as the search proceeds, one would expect that new local optima are found and

they are likely to have a different solution structure. The existence and discovery of

new optima makes each basic frame (pattern) different from the others. However, this

is not the case for basic frames constructed for the larger instance (tai-116-500-20). The

basic frames remain almost the same throughout the conversations, indicating that little

or no new local optima has been detected. More data or a better underlying heuristic

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 123

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.9

0.95

1

1.05

1.1

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500 0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.5

0.6

0.7

0.8

0.9

1

1.1

(d) tai-051-50-20

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500
0.98

0.985

0.99

0.995

1

1.005

1.01

(e) tai-116-500-20

Figure 6.3: The illustration of the gradual change in the basic frame (patterns)
collected from the agent conversations 3, 5, 7 and 9 on (a) tai-051-50-20 (smallest

instance), and (b) tai116-500-20 (largest instance) of the Taillard benchmark.

would change the basic frames leading to gradually changing patterns similar to those

achieved for the smaller instances.

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 124

6.4.3 Performance comparison of TB-MACS to MACS on the VRF

Instances

Following the promising results achieved by the TB-MACS algorithm on Talliard in-

stances, TB-MACS is also tested on the new hard large VRF benchmark instances from

Vallada et al. [3]. We have performed the experiments using 16 agents in this part. The

experiments are performed using each algorithm for once (one replicate) on each instance

and RPD is computed for each dataset containing ten instance and then averaged. The

results from the experiments are provided in Table 6.3. The performance comparison

between TB-MACS and MACS shows that the the TB-MACS method performs better

than the MACS algorithm on the majority of instances with an overall mean RPD of

0.78% when compared to 0.95% across all instances. However, similar to the experi-

ments in the previous section, as the size of the instances increases, the performance of

the TB-MACS method deteriorates slightly. It appears that it is absolutely crucial to

increase the size of the tensor data when the size of the instances increases. Nevertheless,

the performance of the TB-MACS algorithm is impressive as it performs better than the

MACS algorithm for 16 out of 24 datasets based on the mean RPD values.

They produce a similar result on 600 × 20 and 800 × 60. We can conclude from the

overall results that the proposed tensor online learning approach is promising and it

is indeed capable of improving the overall performance of the multi-agent optimisation

system in the overall.

6.4.4 Performance comparison of TB-MACS and MACS to previously

proposed methods

The focus of this chapter is to test the viability of using tensors as a machine learning

technique directly classifying problem data. However, it is natural to want to know

how the PFSP test results compare with the state-of-art algorithms in the field. In this

section, we provide an indirect performance comparison between TB-MACS, MACS and

other algorithms tested by [3] using the hard VRF benchmarks. In Tables 2 and 7 of

Vallada et al. [3], they tested their hard VRF benchmarks with the best deterministic

and stochastic algorithms in the literature. The deterministic algorithms were: NEH

[4] and an improved NEH algorithm by Dong et al. [5], referred to as NEHD. The

stochastic algorithms were a hybrid genetic algorithm (HGA) [6] and the iterated greedy

algorithm (IG) [7]. The experiments are performed using each algorithm run once on

each replicate of each instance (there are 10 replicates per instance, hence 10 runs per

instance is performed) and RPD is computed for each dataset and then averaged. We

did the same using MACS and TB-MACS and compare the mean RPD values from

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 125

Table 6.3: Mean RPD achieved for 16 agents on large instances provided in Vallada et
al. [3] where only one replicate for each algorithm is run (VRF Hard Large benchmarks).
The best average result in each row can be distinguished by the bold font. The ‘vs’
columns highlight the results of the Wilcoxon signed rank test where > (<) means
that TB-MACS is significantly better (worse) than MACS within a confidence interval
of 95%. Similarly, ≥ (≤) shows that TB-MACS performs slightly better (worse) than
MACS (with no statistical significance). The performance of TB-MACS and MACS is

also compared to the NEH [4], NEHD [5], HGA [6] and IG [7] algorithms.

Dataset TB-MACS vs MACS NEH NEHD HGA IG

100x20 0.24% > 0.51% 5.63% 5.25% 1.09% 0.94%
100x40 0.33% > 0.69% 5.44% 5.00% 1.14% 0.85%
100x60 0.33% > 0.67% 4.80% 4.51% 0.98% 0.89%
200x20 0.66% ≥ 0.75% 4.24% 3.66% 1.07% 0.78%
200x40 0.70% > 1.07% 4.54% 4.34% 1.03% 1.06%
200x60 0.74% > 1.17% 4.61% 4.17% 1.07% 0.91%
300x20 0.46% > 0.66% 2.91% 2.38% 0.67% 0.49%
300x40 1.00% > 1.59% 4.06% 3.60% 1.05% 0.86%
300x60 1.15% > 1.75% 3.92% 3.84% 1.13% 0.82%
400x20 0.43% > 0.84% 2.42% 1.87% 0.54% 0.39%
400x40 1.17% > 1.39% 3.55% 3.08% 1.10% 0.87%
400x60 1.51% ≤ 1.42% 3.70% 3.16% 1.13% 0.81%
500x20 0.47% > 0.69% 1.98% 1.62% 0.51% 0.36%
500x40 1.05% > 1.17% 3.24% 2.56% 1.05% 0.77%
500x60 1.35% ≤ 1.32% 3.47% 3.01% 1.12% 0.95%
600x20 0.50% ≤ 0.50% 1.78% 1.27% 0.40% 0.28%
600x40 1.08% ≤ 1.07% 3.17% 2.48% 1.11% 0.85%
600x60 1.17% ≤ 1.09% 2.99% 2.53% 1.09% 0.77%
700x20 0.43% ≥ 0.49% 1.40% 0.94% 0.40% 0.30%
700x40 0.86% ≥ 0.91% 2.85% 2.25% 1.02% 0.77%
700x60 0.98% < 0.93% 2.89% 2.35% 1.08% 0.87%
800x20 0.39% ≥ 0.41% 1.32% 0.89% 0.33% 0.25%
800x40 0.83% ≤ 0.79% 2.61% 2.02% 1.05% 0.78%
800x60 0.98% ≥ 0.98% 2.74% 2.36% 1.24% 0.88%
Average 0.78% 0.95% 3.34% 2.88% 0.93% 0.73%

all the algorithms in Table 6.3. We emphasise this is an indirect comparison between

deterministic and stochastic algorithms, where the stopping conditions for TB-MACS

and the other stochastic algorithms differ. There is currently no public Java based

software library for tensor factorisation which can be included by TB-MACS. Hence,

Matlab is used for tensor factorisation involving file reads and writes during the search

process, immensely slowing down the execution of TB-MACS.

Given these caveats, TB-MACS performs well on the smaller instances 100×20 to 300×20

when compared to IG whereupon for the rest of the instances the IG algorithm performs

better based on mean RPD as shown in Table 6.3. We explained the potential reason

for this in Section 6.4.3 namely, that as the problem size increases so should the size of

the tensor. TB-MACS outperforms the NEH and NEHD algorithms producing better

results for all VRF instances. TB-MACS also performs better than HGA on sixteen

(out of twenty four) datasets. They have a similar performance for 500 × 40. In the

overall, TB-MACS achieves an average RPD value of 0.78% and delivers a competitive

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 126

performance when compared to IG which yields an average RPD value of 0.73% over

240 VRF instances.

6.5 Summary

In this chapter, we introduced a multi-agent system which embeds an online learning

technique based on tensor analysis, applied to permutation flow shop scheduling. Each

agent in the distributed system uses the NEHT heuristic to perform the search. The

search trace of each agent is presented as a 3rd−order tensor. Periodically, the tensors

constructed by each agent are appended to each other and factorised. Useful patterns

are extracted in form of graphs which outline the approximated structure of a good

solution. This pattern is then shared between agents where it is used by each agent to

guide the search towards better local optima.

The use of tensor analysis in heuristic optimisation was first discussed in Chapter 3

where it was applied to data collected from the trace of a hyper-heuristic. In subsequent

chapters, the proposed tensor-based learning was embedded in various hyper-heuristics.

These hyper-heuristics did not have access to solution representation and their trace data

is considered as highly abstract. This chapter however, focuses on the opposite end of the

spectrum of data abstraction levels. Unlike hyper-heuristics where search is performed

in the space of heuristics, the heuristics in this chapter search in the space of candidate

solutions and thus leave a trace which is richer in details and hence is less abstract. In

this chapter, we have shown that the tensor analysis approach can use such data (with

low abstraction level) to improve the underlying heuristic significantly on a variety of

benchmark problem instances. Together with the results achieved in Chapters 3, 4

and 5, a clear conclusion is that, the tensor analysis approach can handle data with

various levels of abstraction and is thus applicable to a wide range of search algorithms

like metaheuristics and hyper-heuristics. Furthermore, the results in this chapter are

testimony that tensor analysis approach can be embedded in distributed, multi-agent

search algorithm and extract useful patterns. Finally, we have observed that curse of

dimensionality is an issues as, having a fixed length for the tensor, the performance of

the tensor-based learning mechanism deteriorates as the size of the problem instances

increases.

Combining the impressive results achieved in this chapter as well as in previous chapters,

it is now possible to confirm that the tensor analysis approach is capable of analysing

trace data with various levels of abstraction. It is also possible to confirm that the

Chapter 6. A Tensor Approach for Agent Based Flow Shop Scheduling 127

tensor analysis can be embedded in search algorithms with very different heuristic de-

sign philosophies. In the next chapter, more detail is given regarding these concluding

remarks. Also, an outline of the future work will be provided.

Chapter 7

Conclusion

7.1 Summary of Work

Search methodologies (i.e., heuristics) are at the core of almost all decision support

systems, particularly while dealing with combinatorial optimisation problems. The state-

of-the-art systems are often tailored for a particular problem by the experts in the area.

Such systems are generally very costly to build and maintain. Since they are custom-

made, it is almost impossible to apply/reuse them to/in another problem domain. Even a

slight change in the problem definition could require an expert intervention. Whenever

exact methods fail, researchers and practitioners resort to heuristics which are ‘rule

of thumb’ methods for solving a given problem. Designing intelligent heuristics with

higher levels of generality has been the most important goal in heuristic optimisation

community. Several design philosophies (such as hyper-heuristics and automated tuning

of meta-heuristics) has been pursued over the years to achieve this goal.

In recent years, there has been a growing interest in employing machine learning meth-

ods to improve the performance of heuristic optimisation algorithms. Machine learning

can be used to mine the data provided by a given heuristic to discover patterns. These

patterns can be used as additional knowledge during the decision process/search. The

data provided by heuristics differs when the underlying algorithm changes. That is, de-

pending on the design philosophy, each heuristic leaves a trace which consists of different

descriptive features and can have different levels of abstraction. A hyper-heuristic which

operates using the domain barrier often produces data with high levels of abstraction.

The features produced in such data are often simple and patterns easy to extract. How-

ever, the predictive power of such patterns can sometimes be low. On the other hand, a

(meta)heuristic which directly searches in the space of candidate solutions leaves a trace

128

Chapter 7. Conclusion 129

which is rich in details and patterns are very hard to extract. However, such patterns

are usually very descriptive and can have great predictive powers.

Tensor analysis is a very powerful data mining technique which has been widely employed

in challenging problems such as natural language processing and face recognition. In-

stead of collapsing data to two dimensional datasets (as is usually the case in machine

learning), in tensor analysis, the natural dimensionality of the data is preserved and

represented as a tensor. Doing this protects the correlations between data variables

which would otherwise be lost if the data were to be collapsed. Tensor factorisation is

used to decompose these tensors to their basic factors. The pattern which describes the

correlation between various modes of data can then be extracted from these factors.

In this study, the trace of a given (hyper-/meta) heuristic is represented as a 3rd−order

tensor. After applying tensor factorisation to the collected data, basic frames are ex-

tracted. The basic frames are then used to guide the underlying heuristic optimisation

approach throughout the search process with the goal of improving its overall perfor-

mance.

The proposed approach has been applied on a wide range of problems using a variety

of underlying (hyper-/meta) heuristics. Since learning can be done in single or multiple

episodes, both learning approaches have been considered in this study. Furthermore, we

have tested the flexibility of our method on data with various levels of abstraction.

7.2 Discussion and Remarks

Our experimental results show that, regardless of the design philosophy used for a given

heuristic, the proposed approach can improve its performance significantly. We have

tested our approach to mine the tensorial trace of a very simple hyper-heuristic in a

single episode fashion (Chapter 3). We have used the extracted patterns and created

a multi-stage hyper-heuristic which also uses very primitive components. Our experi-

mental results show that the tensor-based hyper-heuristic improves the performance of

the underlying algorithm significantly and achieves extraordinary cross-domain perfor-

mance on the HyFlex benchmark. Furthermore, to analyse the multi-episode behaviour

of the learning phase and to assess whether or not the proposed approach is capable

of extracting useful patterns in longer run times, we have applied an extended version

of the tensor-based approach to real-world instances of the Nurse Rostering Problem

(Chapter 4). Our experiments show that the proposed approach performs very well and

is capable of producing new best known solutions for several instances of the benchmark.

Chapter 7. Conclusion 130

In other words, the tensor-based approach performs well in multi-episode training and

is capable of extracting useful patterns continuously.

We also have applied the tensor approach to a GA-based hyper-heuristic (referred to as

the CHAMP framework) which generated policies to solve one dimensional online bin

packing problems (Chapter 5). Periodically, the trace of the GA algorithm is represented

as a 3rd−order tensor and factorized to a basic factor. The contents of the basic factor

is then used as an adaptation strategy which operates at the gene level during the

evolutionary process and yields locus-based mutation probabilities. These probabilities

are used as mutation probabilities for different loci of each individual. The tensor-

based approach has been employed as a multiple episode approach where the learning

of mutation probabilities occurs periodically. The experiments show that the tensor-

based approach improves the performance of the GA framework significantly on almost

all of the instances. The tensorial data provided by the GA is less abstract compared

to the data provided by hyper-heuristics. In the latter case, the hyper-heuristic does

not have access to the design of low level heuristics. As opposed to hyper-heuristics in

Chapters 3 and 4, the CHAMP framework evolves and generates heuristics. Thus, the

tensor analysis component has direct access to heuristic designs which are somewhat

less abstract (compared to tensorial data in Chapters 3 and 4). The success of this

algorithm shows that the tensor analysis approach can handle data with lower levels of

abstraction. However, the data abstraction level can even be lower than the case with

the CHAMP framework when moving from hyper-heuristics to metaheuristics where the

search heuristics directly deal with candidate solutions.

To evaluate the tensor-based approach on the lowest possible level of data abstraction, it

is integrated into a multi-agent system to solve Flow Shop Scheduling Problem. Several

agents run in parallel each applying it’s own metaheuristic to a given problem instance.

Search traces of all the agents are again represented as a 3rd−order tensor. Unlike

hyper-heuristics, the contents of the tensor here are the candidate solutions. That

is, the data is rich in details and low in abstraction levels. After factorisation, the

emerging pattern is shared with all the agents which use the pattern to construct better

solutions. Again the experimental results show that the proposed approach improves the

underlying heuristic(s) significantly. Also, in contrast to hyper-heuristics in Chapters 3

and 4 where the tensor design was hard coded, in the case of metaheuristics, there is no

need to design the structure of the tensor. A metaheuristic deals directly with candidate

solution and each such solution is regarded as a tensor frame. In addition to simplifying

the implementation, employing tensor analysis in metaheuristics has thus the advantage

of high automation levels.

Chapter 7. Conclusion 131

Of course, there are different machine learning techniques which can be (potentially) used

instead of tensor analysis. Nevertheless, compared to those methods, tensor analysis has

the advantage of being capable of operating at several levels of data abstraction with

minor modifications to the algorithm design. Since many optimisation algorithms leave

a high dimensional trace (third order or higher), it further makes sense to use tensor

analysis to mine the trace data rather than representing this trace in two dimensions,

as required by other existing machine learning techniques. However, tensor analysis is

not the holy grail of machine learning techniques and it has its own disadvantages. As

observed in Chapter 6, when the number of tensor frames is considerably small (relative

to the problem size), the performance of the tensor learning approach could decrease.

This is not specific to the problem and generally, tensor analytic approaches are very

sensitive to the amount and the sparsity of the data provided to them. Moreover, tensor

analysis in heuristic optimisation applications could introduce certain parameters which

require tuning. For a good pattern recognition performance (e.g., discovery of latent

structures in the data), the number of components (K in Eq.2.7) should be specified

manually. Regardless of the tensor structure (e.g. number of dimensions, contents and

labels), the best number of components has to be determined prior to the application

of tensor analysis to the problem (as in experiments of Chapter 6), which is a time-

consuming process. Also, in cases where multiple learning episodes are necessary (as

simulated in Chapter 4) the frequency and duration of each episode need to be specified.

The experiments in this study, show that the performance of the tensor-based approach

proposed here is not very sensitive to the values of these parameters. This is partly due

to the smart design of the tensors. That is, throughout this study, we have assigned

labels to data frames and have only added a frame to the tensor if the frame label

satisfies some quality-related criteria. For example, in Chapter 3, each data frame has a

real-valued label. A frame is added to the tensor if its label and that of the frame next to

it are both positive. This, somehow increases the likelihood that the content of the frame

yields good changes during the search and renders the frame a promising one. That is

why the value of K is consistently 1 (determined either experimentally or manually)

in all our work. However, developing a proper labelling strategy may not always be

possible. In the absence of a proper labelling strategy or a criteria which determines the

quality of the frames, one should experimentally determine the best value for K. There

is no specific rule or guideline for the range of potential values for the parameter K and

it differs from a dataset to another. The same argument is valid for the frequency and

duration of each learning episode in multiple episode version of the proposed approach.

That is, there is no general rule using which the size of the data (e.g. number of tensor

frames) can be determined. Therefore, the value for these parameters should be decided

experimentally (for example, similar to experiments in Sections 3.3.1 and 4.4.1).

Chapter 7. Conclusion 132

7.3 Summary of Contribution

As a conclusion, we have shown that tensor analysis can be coupled to a wide range

of heuristic optimisation algorithms and contribute to their performance significantly.

Furthermore, the experiments in this study shows that the tensor-based approach can

handle data with various levels of abstraction and can thus be a reliable and flexible

component of (hyper-/meta) heuristics. At this point, perhaps it would be best to have

another look at quality measures mentioned in Section 2.4 (Chapter 2) to assess how

much the approach proposed here satisfies these measures.

� Generality: As we have seen in Chapter 3, tensor analysis improves the gen-

erality level of the (very simple and primitive) underlying hyper-heuristic. The

SR-NA hyper-heuristic performs worse than many CHeSC 2011 participants and

is considered to be one of the simplest hyper-heuristics. Nevertheless, after embed-

ding the tensor learning into the SR-NA hyper-heuristic, the resulting algorithm

performed way better than the SR-NA and delivered high quality solutions across

various domains. This indicates that the tensor-based hyper-heuristic has a good

(or rather impressive) level of generality.

� Domain Independent Data: The proposed approach was tested on several do-

mains, using both short and long run times as well as single and multiple episodes of

data collection and analysis. Despite this rigorous testing, the algorithm exhibited

a good performance compared to other methods (including the state-of-the-art)

and improved the performance of the underlying (hyper-/meta) heuristic signifi-

cantly in almost all the test scenarios. This is strong evidence that the proposed

approach has a good capability in handling domain independent data.

� Performance: As mentioned before, many well-known machine learning algo-

rithms have been applied to heuristic optimisation and performed poorly. Exam-

ples are Markov decision processes [136] and Reinforcement Learning [130]. Unlike

these methods, the tensor analysis approach was applied, not only on the CHeSC

2011 instances but to a wider range of problems, and performed very well. There-

fore, we can confirm that the proposed approach satisfies the performance criteria.

� Agility: The tensor analysis approach has two major bottlenecks: data collection

and factorisation. The CP factorisation method (used throughout this study) is

very quick. In the experiments conducted in this study, the time spent for factorisa-

tion is negligible (less than a couple of seconds) in all test scenarios. Furthermore,

during our experiments we have not felt the need for long training/data collection

times. Regardless of the problem domain under investigation, the duration of the

Chapter 7. Conclusion 133

data collection for each learning episode throughout this study ranges between

30 seconds to four or five minutes at most. Moreover, the data collection occurs

during the search and is hence online. Thus, the training time is fairly short and

the proposed approach can be said to be an agile one. Of course more training

(more data) may improve the performance. However, it is important to note that

even with such short training times as in our study, the tensor analysis approach

performs well.

� Originality: In our study, regarding the tensor analysis mechanism and tensorial

representation, we did not make any over-simplifying assumptions. We did not

alter the original method of factorisation and followed the same train/test stan-

dard as in computer vision, web mining, signal processing and etc. Following the

standard formulation makes it easier to re-implement the proposed approach.

� Data Abstraction Levels: We started this study by applying the proposed

approach on highly abstract data and we ended the study by applying it on the data

with lowest possible level of abstraction. Along the way, the proposed approach was

applied on data produced by various underlying (hyper-/meta) heuristics with very

different design philosophies. The nature of the data to which the tensor analysis

was exposed varied quite a lot throughout this study. In chapters 3 and 4, the

data consisted of tensor frames where each frame contained the binary information

regarding pairs of low level heuristics which have been applied consecutively. This

data contains little information regarding the problem instances and is highly

abstract. In Chapter 5, each tensor frame was a heuristic represented as a policy

matrix and contained integer score values. Compared to the first two chapters,

the tensorial data here was less abstract as it contained more detail about the

heuristic design. This is while, the tensor frames in Chapter 6 were adjacency

matrices which represented candidate solutions in form of graphs. That is, the

tensorial data in this chapter had minimum level of abstraction as the underlying

metaheuristic operated directly on the solution space. However, regardless of the

level of abstraction in data, the tensor analysis managed to find useful patterns

and improve the performance of the underlying (hyper-/meta) heuristic. This

is strong evidence that the proposed approach is capable of handling data with

various levels of abstraction.

� Novelty: This is the first time that tensor analysis has been considered for heuris-

tic optimisation. However, there are a lot of various novel (machine learning)

techniques in the literature which could be used in the field of heuristic optimisa-

tion. Part of the plan for our future work will focus on these methods to investigate

Chapter 7. Conclusion 134

how much the field of heuristic optimisation can benefit from these highly advanced

learning techniques.

All in all, our experiments show that heuristic optimisation algorithms can greatly ben-

efit from tensor analysis.

7.4 Future Research Directions

This study has introduced the tensor learning approach in the field of heuristic optimi-

sation. We have shown that tensor analysis can be very powerful in detecting useful pat-

terns and be flexible at the same time. The promising results achieved here as well as in

previous chapters shows that the tensor analysis approach is indeed an effective learning

technique and that it warrants further research. In line with the work of Samorani and

Laguna [30], there is mounting evidence that machine learning techniques can greatly

contribute to heuristic optimisation and increase the generality level of metaheuristics,

potentially making them applicable to multiple problem domains. Thus, there is a wide

range of possible directions that should be explored to further benefit from the strengths

of this data mining technique.

The field of tensor learning can be considered as a relatively new field of study. The liter-

ature related to tensor analysis approaches is growing every day and new methodologies

are emerging frequently. Heuristic optimisation can benefit from these new techniques

to achieve higher levels of performance and generality. That is, although factorisation

does a good job in detecting hidden patterns in the data of this study, better techniques

can be applied to tensorial data to detect these patterns. One such example is tensor

clustering [288]. Moreover, there are numerous topics related to heuristic optimisation

which are left untouched in this study. Machine learning in general and tensor anal-

ysis in particular can be considered to address a plethora of challenges in the field of

heuristic optimisation. For instance, the role of this learning technique in improving

the performance of various components in population-based approaches can be investi-

gated. It is particularly interesting to conduct a study similar to what has been done

in Chapter 5, to identify promising alleles for crossover. As discussed in Chapter 4, one

of the goals of investigating the longer runs with multiple episodes of learning was to

see whether the proposed approach is suitable for the life-long learning context. The

good results achieved in the experimental study in that chapter shows that indeed this

could be a possible research area. Another interesting application would be to hybridise

tensor analysis with the apprenticeship learning approach (please refer to Section 2.3.2)

to increase the generality level of a given (hyper-/meta) heuristic. Also, throughout this

Chapter 7. Conclusion 135

study, decisions have been made regarding the design of the tensor such as number of

dimensions and the content of the tensor. Although these decisions ultimately lead to

good outcomes, other interesting tensor structures should be explored. For example,

instead of the adjacency matrices considered for tensor frames in Chapter 6 other inter-

esting graph representations could be tested. Moreover, some methods such as memetic

algorithms may leave a trace which has both a tensorial trace (genetic material) and

a non-tensorial trace (memetic material). This framework could be extended to ac-

commodate such trace data by using the Coupled Tensor Matrix Factorization [289]

approach.

Bibliography

[1] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling

a sales summit. In E. Burke and W. Erben, editors, Practice and Theory of

Automated Timetabling III, volume 2079 of Lecture Notes in Computer Science,

pages 176–190. Springer Berlin Heidelberg, 2001.

[2] G.I. Zobolas, C.D. Tarantilis, and G. Ioannou. Minimizing makespan in per-

mutation flow shop scheduling problems using a hybrid metaheuristic algorithm.

Computers & Operations Research, 36(4):1249 – 1267, 2009. ISSN 0305-0548.

[3] E. Vallada, R. Ruiz, and J.M. Framinan. New hard benchmark for flowshop

scheduling problems minimising makespan. European Journal of Operational Re-

search, 240(3):666–677, 2015.

[4] M. Nawaz, E. E. Enscore, and I. Ham. A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

[5] X. Dong, H. Huang, and P. Chen. An improved neh-based heuristic for the per-

mutation flowshop problem. Computers & Operations Research, 35(12):3962–3968,

2008.

[6] R. Ruiz, C. Maroto, and J. Alcaraz. Two new robust genetic algorithms for the

flowshop scheduling problem. Omega, 34(5):461–476, 2006.

[7] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem. European Journal of Operational

Research, 177(3):2033–2049, 2007.

[8] K. Sörensen and F. W. Glover. Metaheuristics. In S. I. Gass and M. C. Fu, editors,

Encyclopedia of Operations Research and Management Science, pages 960–970.

Springer US, 2013.

[9] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local job-

shop scheduling rules. In J. F. Muth and G. L. Thompson, editors, Industrial

Scheduling, pages 225–251, New Jersey, 1963. Prentice-Hall, Inc.

136

Bibliography 137

[10] W. B. Crowston, F. Glover, G. L. Thompson, and J. D. Trawick. Probabilistic and

parametric learning combinations of local job shop scheduling rules. ONR Research

memorandum, GSIA, Carnegie Mellon University, Pittsburgh, (117), 1963.

[11] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu.

Hyper-heuristics: A survey of the state of the art. Journal of the Operational

Research Society, 64(12):1695–1724, 2013.

[12] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-

heuristics: an emerging direction in modern search technology. In F. Glover and

G. Kochenberger, editors, Handbook of Metaheuristics, pages 457–474. Kluwer,

2003.

[13] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.R. Woodward. A clas-

sification of hyper-heuristics approaches. In M. Gendreau and J. Potvin, editors,

Handbook of Metaheuristics, volume 57 of International Series in Operations Re-

search & Management Science, chapter 15, pages 449–468. Springer, 2nd edition,

2010.

[14] E. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Woodward. Ex-

ploring hyper-heuristic methodologies with genetic programming. In J. Kacprzyk,

L. C. Jain, C. L. Mumford, and L. C. Jain, editors, Computational Intelligence,

volume 1 of Intelligent Systems Reference Library, pages 177–201. Springer Berlin

Heidelberg, 2009. ISBN 978-3-642-01799-5.

[15] P. Ross. Hyper-heuristics. In E. Burke and G. Kendall, editors, Search Method-

ologies: Introductory Tutorials in Optimization and Decision Support Techniques,

chapter 17, pages 529–556. Springer, 2005.

[16] E. Burke, G. Kendall, M. Mısır, and E. Özcan. Monte carlo hyper-heuristics for

examination timetabling. Annals of Operations Research, 196(1):73–90, 2012.

[17] E. Özcan, B. Bilgin, and E.E. Korkmaz. A comprehensive analysis of hyper-

heuristics. Intelligent Data Analysis, 12(1):3–23, 2008.

[18] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,

2010. ISBN 026201243X, 9780262012430.

[19] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN

0387310738.

[20] L. Sirovich and M. Kirby. Low-Dimensional Procedure for the Characterization of

Human Faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.

Bibliography 138

[21] R. Socher. Recursive Deep Learning for Natural Language Processing and Com-

puter Vision. PhD thesis, Stanford University, 2014.

[22] M.S. van der Knaap, J. Valk, N. de Neeling, and J.J.P. Nauta. Pattern recognition

in magnetic resonance imaging of white matter disorders inchildren and young

adults. Neuroradiology, 33(6):478–493, 1991. ISSN 0028-3940.

[23] F. Neri and C. Cotta. Memetic algorithms and memeting computing optimization:

A literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.

[24] F. Neri, G. Iacca, and E. Mininno. Disturbed exploitation compact differential

evolution for limited memory optimization problems. Information Sciences, 181

(12):2469 – 2487, 2011. ISSN 0020-0255.

[25] P. Moscato. On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. Caltech concurrent computation program, C3P

Report, 826:1989, 1989.

[26] G. Iacca, F. Neri, E. Mininno, Y.S. Ong, and M.H. Lim. Ockhams razor in memetic

computing: Three stage optimal memetic exploration. Information Sciences, 188

(0):17 – 43, 2012. ISSN 0020-0255.

[27] F. Caraffini, F. Neri, M. Gongora, and B.N. Passow. Re-sampling search: A seri-

ously simple memetic approach with a high performance. In 2013 IEEE Workshop

on Memetic Computing (MC), pages 52–59, April 2013.

[28] M. Narita, M. Haraguchi, and Y. Okubo. Data abstractions for numerical at-

tributes in data mining. In H. Yin, N. Allinson, R. Freeman, J. Keane, and S. Hub-

bard, editors, Intelligent Data Engineering and Automated Learning IDEAL 2002,

volume 2412 of Lecture Notes in Computer Science, pages 35–42. Springer Berlin

Heidelberg, 2002. ISBN 978-3-540-44025-3.

[29] E. Özcan and A. J. Parkes. Policy matrix evolution for generation of heuristics.

In Proceedings of the 13th annual conference on Genetic and evolutionary compu-

tation, GECCO ’11, pages 2011–2018, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0557-0.

[30] M. Samorani and M. Laguna. Data-mining-driven neighborhood search. IN-

FORMS J. on Computing, 24(2):210–227, April 2012. ISSN 1526-5528.

[31] F. Thabtah and P. Cowling. Mining the data from a hyperheuristic approach

using associative classification. Expert Systems with Applications, 34(2):1093 –

1101, 2008. ISSN 0957-4174.

Bibliography 139

[32] T.P. Runarsson. Learning heuristic policies a reinforcement learning problem.

In C. Coello, editor, Learning and Intelligent Optimization, volume 6683 of Lec-

ture Notes in Computer Science, pages 423–432. Springer Berlin Heidelberg, 2011.

ISBN 978-3-642-25565-6.

[33] K. Krawiec and U. OReilly. Behavioral search drivers for genetic programing.

In M. Nicolau, K. Krawiec, M.I. Heywood, M. Castelli, P. Garćıa-Sánchez, J.J.

Merelo, V.M. Rivas Santos, and K. Sim, editors, Genetic Programming, volume

8599 of Lecture Notes in Computer Science, pages 210–221. Springer Berlin Hei-

delberg, 2014. ISBN 978-3-662-44302-6.

[34] J.C. Ortiz-Bayliss, H. Terashima-Maŕın, and S.E. Conant-Pablos. A supervised

learning approach to construct hyper-heuristics for constraint satisfaction. In J.A.

Carrasco-Ochoa, J.F. Mart́ınez-Trinidad, J.S. Rodŕıguez, and G.S. di Baja, editors,

Pattern Recognition, volume 7914 of Lecture Notes in Computer Science, pages

284–293. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38988-7.

[35] J.C. Ortiz-Bayliss, H. Terashima-Marin, and S.E. Conant-Pablos. Using learning

classifier systems to design selective hyper-heuristics for constraint satisfaction

problems. In 2013 IEEE Congress on Evolutionary Computation (CEC), pages

2618–2625, June 2013.

[36] G. Ochoa, M. Hyde, T. Curtois, J.A. Vazquez-Rodriguez, J. Walker, M. Gendreau,

G. Kendall, B. McCollum, A.J. Parkes, S. Petrovic, and E.K. Burke. Hyflex: A

benchmark framework for cross-domain heuristic search. In J.K. Hao and M. Mid-

dendorf, editors, European Conference on Evolutionary Computation in Combina-

torial Optimisation, EvoCOP ’12., volume 7245 of LNCS, pages 136–147, Heidel-

berg, 2012. Springer.

[37] S. Asta and E. Özcan. A tensor-based selection hyper-heuristic for cross-domain

heuristic search. Information Sciences, 299(0):412 – 432, 2015. ISSN 0020-0255.

[38] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework

and applications. In M. Gendreau and J. Potvin, editors, Handbook of Metaheuris-

tics, volume 146 of International Series in Operations Research & Management

Science, pages 363–397. Springer US, 2010.

[39] J. Baxter. Local optima avoidance in depot location. Journal of the Operation

Research Society, 32:815–819, 1981.

[40] O. Martin, S.W. Otto, and E.W. Felten. Large-step markov chains for the {TSP}

incorporating local search heuristics. Operations Research Letters, 11(4):219 – 224,

1992. ISSN 0167-6377.

Bibliography 140

[41] S. Asta and E. Özcan. A tensor analysis improved genetic algorithm for online bin

packing. In Proceedings of the Annual Conference on Genetic and Evolutionary

Computation, GECCO ’15, New York, NY, USA, 2015. ACM.

[42] S. Asta and E. Özcan. An apprenticeship learning hyper-heuristic for vehicle rout-

ing in hyflex. In Proceedings of the 2014 IEEE Symposium Series on Computational

Intelligence, SSCI 2014, 2014.

[43] S. Asta and E. Ozcan. A tensor-based approach to nurse rostering. 10th Interna-

tional Conference of the Practice and Theory of Automated Timetabling (PATAT

2014), 10:442–445, 2014.

[44] S. Asta, E. Özcan, and A.J. Parkes. Batched mode hyper-heuristics. In LION,

pages 404–409, 2013.

[45] S. Asta, E. Özcan, A. J. Parkes, and A. Etaner-Uyar. Generalizing hyper-heuristics

via apprenticeship learning. In Proceedings of the 13th European Conference

on Evolutionary Computation in Combinatorial Optimization, EvoCOP’13, pages

169–178, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-37197-4.

[46] J. Pearl. Heuristics: intelligent search strategies for computer problem solving.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[47] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research, 13(5):533–549, 1986.

[48] K. Sastry, D. E. Goldberg, and G. Kendall. Genetic algorithms. In E. Burke and

G. Kendall, editors, Search Methodologies, pages 93–117. Springer US, 2014.

[49] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm

for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ’02, pages 11–18, San Francisco, CA, USA,

2002. Morgan Kaufmann Publishers Inc.

[50] V. Nannen and A. E. Eiben. Relevance estimation and value calibration of evo-

lutionary algorithm parameters. In Proceedings of the 20th International Joint

Conference on Artifical Intelligence, IJCAI’07, pages 975–980, San Francisco, CA,

USA, 2007. Morgan Kaufmann Publishers Inc.

[51] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic

algorithm configuration framework. Journal of Artificial Intelligence Research, 36

(1):267–306, 2009.

Bibliography 141

[52] I. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura. An iterated

local search algorithm for the vehicle routing problem with convex time penalty

functions. Discrete Applied Mathematics, 156(11):2050 – 2069, 2008. ISSN 0166-

218X. In Memory of Leonid Khachiyan (1952 - 2005).

[53] A. Subramanian, M. Battarra, and C.N. Potts. An iterated local search heuristic

for the single machine total weighted tardiness scheduling problem with sequence-

dependent setup times. International Journal of Production Research, 52(9):2729–

2742, 2014.

[54] N.R. Sabar and G. Kendall. An iterated local search with multiple perturbation

operators and time varying perturbation strength for the aircraft landing problem.

Omega, 56(0):88 – 98, 2015. ISSN 0305-0483.

[55] T. Stützle. Iterated local search for the quadratic assignment problem. European

Journal of Operational Research, 174(3):1519 – 1539, 2006. ISSN 0377-2217.

[56] P. Vansteenwegen, W. Souffriau, G. Berghe, and D. Van Oudheusden. Iterated

local search for the team orienteering problem with time windows. Computers &

Operations Research, 36(12):3281 – 3290, 2009. ISSN 0305-0548. New develop-

ments on hub location.

[57] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J.A. Vázquez-

Rodŕıguez, and M. Gendreau. Iterated local search vs. hyper-heuristics: Towards

general-purpose search algorithms. In 2010 IEEE Congress on Evolutionary Com-

putation (CEC), pages 1–8, July 2010.

[58] J.D. Walker, G. Ochoa, M. Gendreau, and E. Burke. Vehicle routing and adaptive

iterated local search within the hyflex hyper-heuristic framework. In Learning and

Intelligent Optimization - 6th International Conference, LION 6, Paris, France,

January 16-20, 2012, Revised Selected Papers, pages 265–276, 2012.

[59] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Extreme value based

adaptive operator selection. In G. Rudolph, T. Jansen, N. Beume, S. Lucas, and

C. Poloni, editors, Parallel Problem Solving from Nature PPSN X, volume 5199

of Lecture Notes in Computer Science, pages 175–184. Springer Berlin Heidelberg,

2008. ISBN 978-3-540-87699-1.

[60] J. Michallet, C. Prins, L. Amodeo, F. Yalaoui, and G. Vitry. Multi-start iterated

local search for the periodic vehicle routing problem with time windows and time

spread constraints on services. Computers & Operations Research, 41(0):196 – 207,

2014. ISSN 0305-0548.

Bibliography 142

[61] R. M’Hallah. An iterated local search variable neighborhood descent hybrid heuris-

tic for the total earliness tardiness permutation flow shop. International Journal

of Production Research, 52(13):3802–3819, 2014.

[62] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Boston, MA, USA, 1989. ISBN 0201157675.

[63] A. Alkan and E. Özcan. Memetic algorithms for timetabling. In Congress on

Evolutionary Computation, CEC ’03., volume 3, pages 1796–1802, 2003.

[64] E. Özcan, A.J. Parkes, and A. Alkan. The interleaved constructive memetic algo-

rithm and its application to timetabling. Computers & Operations Research, 39

(10):2310–2322, 2012. ISSN 0305-0548.

[65] E. Özcan and A. Alkan. A memetic algorithm for solving a timetabling problem:

An incremental strategy. In Proceedings of the third Multidisciplinary International

Conference On Scheduling: Theory and Applications, pages 394–401, 2007.

[66] E. Burke and J.D. Landa Silva. The design of memetic algorithms for scheduling

and timetabling problems. In W. E. Hart, J.E. Smith, and N. Krasnogor, editors,

Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzziness and

Soft Computing, pages 289–311. Springer Berlin Heidelberg, 2005. ISBN 978-3-

540-22904-9.

[67] D. Qaurooni. A memetic algorithm for course timetabling. In Proceedings of the

13th annual conference on Genetic and evolutionary computation, GECCO ’11,

pages 435–442, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0557-0.

[68] J. Knowles and D. Corne. Memetic algorithms for multiobjective optimization:

Issues, methods and prospects. In W. E. Hart, J.E. Smith, and N. Krasnogor,

editors, Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzzi-

ness and Soft Computing, pages 313–352. Springer Berlin Heidelberg, 2005. ISBN

978-3-540-22904-9.

[69] C.K. Goh, Y.S. Ong, and K.C. Tan. Multi-Objective Memetic Algorithms. Springer

Berlin Heidelberg, 2009.

[70] H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search and local

search in memetic algorithms for multiobjective permutation flowshop scheduling.

IEEE Transactions on Evolutionary Computation, 7(2):204–223, 2003. ISSN 1089-

778X.

[71] N. Krasnogor, B.P. Blackburne, E.K. Burke, and J.D. Hirst. Multimeme algo-

rithms for protein structure prediction. In J.J.M. Guervós, P. Adamidis, H.G.

Bibliography 143

Beyer, H.P.l Schwefel, and J.L. Fernández-Villacañas, editors, Parallel Problem

Solving from Nature - PPSN VII, volume 2439 of Lecture Notes in Computer Sci-

ence, pages 769–778. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-44139-7.

[72] P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms for

the quadratic assignment problem. IEEE Transactions on Evolutionary Compu-

tation, 4(4):337–352, 2000. ISSN 1089-778X.

[73] F. Neri, V. Tirronen, T. Karkkainen, and T. Rossi. Fitness diversity based adap-

tation in multimeme algorithms:a comparative study. In IEEE Congress on Evo-

lutionary Computation, 2007. CEC 2007., pages 2374–2381, Sept 2007.

[74] P. Moscato and M. G. Norman. A memetic approach for the traveling salesman

problem implementation of a computational ecology for combinatorial optimiza-

tion on message-passing systems. Parallel Computing and Transputer Applications,

1:177–186, 1992.

[75] L. Buriol, P. M. França, and P. Moscato. A new memetic algorithm for the

asymmetric traveling salesman problem. Journal of Heuristics, 10(5):483–506,

September 2004. ISSN 1381-1231.

[76] N. Krasnogor and S. Gustafson. A study on the use of ”self-generation” in memetic

algorithms. Natural Computing, 3(1):53–76, 2004.

[77] E. Özcan and C. Başaran. A case study of memetic algorithms for constraint

optimization. Soft Computing, 13(8-9):871–882, 2009. ISSN 1432-7643.

[78] Y.S. Ong, M.H. Lim, N. Zhu, and K.W. Wong. Classification of adaptive memetic

algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cy-

bernetics, Part B: Cybernetics, 36(1):141–152, 2006. ISSN 1083-4419.

[79] N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.

PhD thesis, University of the West of England, Bristol, UK, 2002.

[80] E. Özcan, S. Asta, and C. Altıntaş. Memetic algorithms for cross-domain heuristic

search. In Y. Jin and S. Thomas, editors, Proceedings of the 13th Annual Workshop

on Computational Intelligence (UKCI 2013), pages 175–182, Surrey, UK, 2013.

IEEE Press.

[81] Y.S. Ong, M.H. Lim, and X. Chen. Memetic computation - past, present & future

[research frontier]. IEEE Computational Intelligence Magazine, 5(2):24–31, May

2010. ISSN 1556-603X.

Bibliography 144

[82] X. Chen, Y. S. Ong, M. Lim, and K. C. Tan. A multi-facet survey on memetic

computation. IEEE Transactions on Evolutionary Computation, 15(5):591–607,

2011. ISSN 1089-778X.

[83] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: Recent develop-

ments. In C. Cotta, M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel

Metaheuristics, volume 136 of Studies in Computational Intelligence, pages 3–29.

Springer Berlin Heidelberg, 2008.

[84] G. Kendall and M. Mohamad. Channel assignment optimisation using a hyper-

heuristic. In Proceedings of the 2004 IEEE Conference on Cybernetic and Intelli-

gent Systems (CIS2004), pages 790–795, Singapore, 2004.

[85] M. Ayob and G. Kendall. A monte carlo hyper-heuristic to optimise component

placement sequencing for multi head placement machine. In PLACEMENT MA-

CHINE, INTECH03 THAILAND, pages 132–141, 2003.

[86] E. Özcan, Y. Bykov, M. Birben, and E. K. Burke. Examination timetabling using

late acceptance hyper-heuristics. In IEEE Congress on Evolutionary Computation

(CEC ’09), pages 997–1004, 2009.

[87] E. K. Burke, J. D. Landa-Silva, and E. Soubeiga. Multi-objective hyper-heuristic

approaches for space allocation and timetabling. In Toshihide Ibaraki, Koji

Nonobe, and Mutsunori Yagiura, editors, Metaheuristics: Progress as Real Prob-

lem Solvers, volume 32 of Operations Research/Computer Science Interfaces Se-

ries, pages 129–158. Springer US, 2005.

[88] E. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyperheuristic for

timetabling and rostering. Journal of Heuristics, 9(6):451–470, 2003.

[89] A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning.

pages 523–544. Kluwer Academic Publishers, Norwell, MA, USA, 2004. ISBN

1-4020-7653-3.

[90] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-

puters and Operations Research, 34:2403–2435, 2007.

[91] K.A. Dowsland, E. Soubeiga, and E. Burke. A simulated annealing based hyper-

heuristic for determining shipper sizes for storage and transportation. European

Journal of Operational Research, 179(3):759 – 774, 2007. ISSN 0377-2217.

[92] D. Ouelhadj and S. Petrovic. A cooperative distributed hyper-heuristic framework

for scheduling. In Proceedings of the IEEE International Conference on Man,

Cybernetics, and Systems, pages 1232–1238, 2008.

Bibliography 145

[93] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for

scheduling a sales summit. In Proceedings of the 4th Metaheuristic International

Conference, MIC 2001, pages 127–131, 2001.

[94] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for rapid pro-

totyping in scheduling and optimisation. In S. Cagnoni, J. Gottlieb, E. Hart,

M. Middendorf, and G.R. Raidl, editors, Applications of Evolutionary Computing,

volume 2279 of Lecture Notes in Computer Science, pages 1–10. Springer Berlin

Heidelberg, 2002. ISBN 978-3-540-43432-0.

[95] B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, and F. Paredes. Pa-

rameter tuning of a choice-function based hyperheuristic using particle swarm

optimization. Expert Systems with Applications, 40(5):1690 – 1695, 2013. ISSN

0957-4174.

[96] R. Soto, B. Crawford, S. Misra, W. Palma, E. Monfroy, C. Castro, and F. Paredes.

Choice functions for Autonomous Search in Constraint Programming: GA vs PSO.

Technical Gazette, 20(4):621–629, 2013.

[97] R. Aron, I. Chana, and A. Abraham. A hyper-heuristic approach for resource

provisioning-based scheduling in grid environment. The Journal of Supercomput-

ing, 71(4):1427–1450, 2015. ISSN 0920-8542.

[98] D. Li, M. Li, X. Meng, and Y. Tian. A hyperheuristic approach for intercell

scheduling with single processing machines and batch processing machines. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 45(2):315–325, Feb

2015. ISSN 2168-2216.

[99] B. Bilgin, E. Özcan, and E.E. Korkmaz. An experimental study on hyper-heuristics

and exam timetabling. In E. Burke and H. Rudová, editors, Practice and Theory

of Automated Timetabling VI, volume 3867 of Lecture Notes in Computer Science,

pages 394–412. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-77344-3.

[100] R. Bai and G. Kendall. An investigation of automated planograms using a simu-

lated annealing based hyper-heuristic. In T. Ibaraki, K. Nonobe, and M. Yagiura,

editors, Metaheuristics: Progress as Real Problem Solvers, volume 32 of Opera-

tions Research/Computer Science Interfaces Series, pages 87–108. Springer US,

2005. ISBN 978-0-387-25382-4.

[101] E. Burke and Y. Bykov. A Late Acceptance Strategy in Hill-Climbing for Exam

Timetabling Problems. In PATAT ’08 Proceedings of the 7th International Con-

ference on the Practice and Theory of Automated Timetabling, 2008.

Bibliography 146

[102] E. Özcan, B. Bilgin, and E. E. Korkmaz. Hill climbers and mutational heuristics in

hyperheuristics. In T. P. Runarsson, H. G. Beyer, E. Burke, J. J. Merelo-Guerv´s,

L. D. Whitley, and X. Yao, editors, Parallel Problem Solving from Nature - PPSN

IX, volume 4193 of Lecture Notes in Computer Science, pages 202–211. Springer

Berlin Heidelberg, 2006.

[103] A. Kheiri, E. Özcan, and A. J. Parkes. A stochastic local search algorithm with

adaptive acceptance for high-school timetabling. Annals of Operations Research,

2014. doi: 10.1007/s10479-014-1660-0.

[104] A. Kheiri and E. Özcan. A hyper-heuristic with a round robin neighbourhood

selection. In M. Middendorf and C. Blum, editors, Evolutionary Computation in

Combinatorial Optimization, volume 7832 of Lecture Notes in Computer Science,

pages 1–12. Springer Berlin Heidelberg, 2013.

[105] E. Özcan, M. Mısır, and A. Kheiri. Group decision making hyper-heuristics for

function optimisation. In Proceedings of the 13th UK Workshop on Computational

Intelligence, UKCI 2013, Guildford, United Kingdom, September 9-11, 2013, pages

327–333. IEEE, 2013.

[106] P. K. Lehre and E. Özcan. A runtime analysis of simple hyper-heuristics: To mix

or not to mix operators. In Proceedings of the Twelfth Workshop on Foundations

of Genetic Algorithms XII, FOGA XII ’13, pages 97–104, New York, NY, USA,

2013. ACM.

[107] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. Woodward. Explor-

ing hyper-heuristic methodologies with genetic programming. In C. L. Mumford

and L. C. Jain, editors, Computational Intelligence, volume 1 of Intelligent Systems

Reference Library, pages 177–201. Springer Berlin Heidelberg, 2009.

[108] N.R. Sabar, M. Ayob, G. Kendall, and R. Qu. A dynamic multiarmed bandit-gene

expression programming hyper-heuristic for combinatorial optimization problems.

IEEE T. Cybernetics, 45(2):217–228, 2015.

[109] N.R. Sabar and G. Kendall. Population based monte carlo tree search hyper-

heuristic for combinatorial optimization problems. Inf. Sci., 314:225–239, 2015.

[110] C.W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter. Evolu-

tionary generation of dispatching rule sets for complex dynamic scheduling prob-

lems. International Journal of Production Economics, 145(1):67 – 77, 2013. ISSN

0925-5273.

Bibliography 147

[111] C. D. Geiger, R. Uzsoy, and H. Aytug. Rapid modeling and discovery of priority

dispatching rules: An autonomous learning approach. J. of Scheduling, 9(1):7–34,

February 2006.

[112] R. Kumar, A. H. Joshi, K. K. Banka, and P. I. Rockett. Evolution of hyperheuris-

tics for the biobjective 0/1 knapsack problem by multiobjective genetic program-

ming. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary

Computation, GECCO ’08, pages 1227–1234, New York, NY, USA, 2008. ACM.

[113] N. Pillay and W. Banzhaf. A genetic programming approach to the generation

of hyper-heuristics for the uncapacitated examination timetabling problem. In

J. Neves, M.F. Santos, and J.M. Machado, editors, Progress in Artificial Intelli-

gence, volume 4874 of Lecture Notes in Computer Science, pages 223–234. Springer

Berlin Heidelberg, 2007. ISBN 978-3-540-77000-8.

[114] M. Bader-El-Den and R. Poli. Generating sat local-search heuristics using a gp

hyper-heuristic framework. In N. Monmarché, E. Talbi, P. Collet, M. Schoe-

nauer, and E. Lutton, editors, Artificial Evolution, volume 4926 of Lecture Notes

in Computer Science, pages 37–49. Springer Berlin Heidelberg, 2008. ISBN 978-

3-540-79304-5.

[115] E. Burke, M. Hyde, G. Kendall, and J. Woodward. A genetic programming hyper-

heuristic approach for evolving 2-d strip packing heuristics. Trans. Evol. Comp,

14(6):942–958, December 2010.

[116] J. H. Drake, N. Kililis, and E. Özcan. Generation of vns components with gram-

matical evolution for vehicle routing. In Proceedings of the 16th European Confer-

ence on Genetic Programming, EuroGP’13, pages 25–36, Berlin, Heidelberg, 2013.

Springer-Verlag.

[117] N. Sabar, M. Ayob, G. Kendall, and R. Qu. The automatic design of hyper-

heuristic framework with gene expression programming for combinatorial opti-

mization problems. IEEE Transactions on Evolutionary Computation, PP(99),

2014. ISSN 1089-778X.

[118] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learn-

ing. In Proceedings of the twenty-first international conference on Machine learn-

ing, ICML ’04, pages 1–8, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5.

[119] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic

algorithms. Artif. Intell., 40(1-3):235–282, September 1989. ISSN 0004-3702.

Bibliography 148

[120] J.C. Ortiz-Bayliss, H. Terashima-Marin, P. Ross, and S.E. Conant-Pablos. Evo-

lution of neural networks topologies and learning parameters to produce hyper-

heuristics for constraint satisfaction problems. In 13th Annual Genetic and Evo-

lutionary Computation Conference, GECCO 2011, Companion Material Proceed-

ings, Dublin, Ireland, July 12-16, 2011, pages 261–262, 2011.

[121] M. Mısır, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. An intelligent

hyper-heuristic framework for chesc 2011. In Learning and Intelligent Optimiza-

tion, pages 461–466. Springer, 2012.

[122] P.C. Hsiao, T.C. Chiang, and L.C. Fu. A vns-based hyper-heuristic with adaptive

computational budget of local search. In 2012 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8, 2012.

[123] M. Larose. A hyper-heuristic for the chesc 2011. In LION6, 2011.

[124] C. Núñez, J and A. Ceballos. A general purpose hy-

per heuristic based on ant colony optimization. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/nunez-chesc.pdf.

[125] T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwiński, and

J. Wasilewski. Five phase and genetic hive hyper-heuristics for the cross-domain

search. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Op-

timization, Lecture Notes in Computer Science, pages 354–359. Springer Berlin

Heidelberg, 2012. ISBN 978-3-642-34412-1.

[126] M. Johnston, T. Liddle, J. Miller, and M. Zhang. A hy-

perheuristic based on dynamic iterated local search. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/johnston-chesc.pdf.

[127] C.Y. Chan, F. Xue, W.H. Ip, and C.F. Cheung. A hyper-heuristic inspired by

pearl hunting. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent

Optimization, Lecture Notes in Computer Science, pages 349–353. Springer Berlin

Heidelberg, 2012. ISBN 978-3-642-34412-1.

[128] D. Meignan. An evolutionary programming hyper-

heuristic with co-evolution for chesc’11. 2012. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/meignan-chesc.pdf.

[129] A. Lehrbaum and N. Musliu. A new hyperheuristic algorithm for cross-domain

search problems. In Y. Hamadi and M. Schoenauer, editors, Learning and Intel-

ligent Optimization, Lecture Notes in Computer Science, pages 437–442. Springer

Berlin Heidelberg, 2012. ISBN 978-3-642-34412-1.

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/nunez-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/johnston-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/meignan-chesc.pdf

Bibliography 149

[130] L. Di Gaspero and T. Urli. A reinforcement learning approach for the cross-domain

heuristic search challenge. In The IX Metaheuristics International Conference,

2011.

[131] F. Mascia and T. Stützle. A non-adaptive stochastic local search algorithm for

the chesc 2011 competition. In Y. Hamadi and M. Schoenauer, editors, Learning

and Intelligent Optimization, Lecture Notes in Computer Science, pages 101–114.

Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34412-1.

[132] A. Acuña, V. Parada, and G. Gatica. Cross-domain heuris-

tic search challenge: Giss algorithm presentation. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/acuna-chesc.pdf.

[133] J. Kubalk. Hyper-heuristic based on iterated local search driven by evolutionary

algorithm. In J.K. Hao and M. Middendorf, editors, Evolutionary Computation in

Combinatorial Optimization, volume 7245 of Lecture Notes in Computer Science,

pages 148–159. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-29123-4.

[134] J. Elomari. Self-search (extended abstract). URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/elomari-chesc.pdf.

[135] K. Sim. Ksats-hh: A simulated annealing hyper-

heuristic with reinforcement learning and tabu-search. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/sim-chesc.pdf.

[136] K. McClymont and E. C. Keedwell. Markov chain hyper-heuristic (mchh): An

online selective hyper-heuristic for multi-objective continuous problems. In Pro-

ceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-

tion, GECCO ’11, pages 2003–2010, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0557-0.

[137] J. Gómez. hybrid adaptive evolutionary algorithm hyper heuristic. URL

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/gomez-chesc.pdf.

[138] I. Khamassi, M. Hammami, and K. Ghedira. Ant-q hyper-heuristic approach for

solving 2-dimensional cutting stock problem. In 2011 IEEE Symposium on Swarm

Intelligence (SIS),, pages 1–7, April 2011.

[139] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

[140] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,

Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/acuna-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/elomari-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/sim-chesc.pdf
http://www.asap.cs.nott.ac.uk/external/chesc2011/entries/gomez-chesc.pdf

Bibliography 150

[141] J.H. Drake, E. Özcan, and E. Burke. An improved choice function heuristic selec-

tion for cross domain heuristic search. In C. Coello, V. Cutello, K. Deb, S. Forrest,

G. Nicosia, and M. Pavone, editors, Parallel Problem Solving From Nature (PPSN

XII), volume 7492 of Lecture Notes in Computer Science, pages 307–316. Springer

Berlin Heidelberg, 2012.

[142] E. K. Burke, M. Gendreau, G. Ochoa, and J. D. Walker. Adaptive iterated local

search for cross-domain optimisation. In Proceedings of the 13th Annual Confer-

ence on Genetic and Evolutionary Computation (GECCO ’11), pages 1987–1994,

New York, NY, USA, 2011. ACM.

[143] G. Ochoa, J. Walker, M. Hyde, and T. Curtois. Adaptive evolutionary algorithms

and extensions to the HyFlex hyper-heuristic framework. In C. Coello, V. Cutello,

K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors, Parallel Problem Solving

from Nature (PPSN XII), volume 7492 of Lecture Notes in Computer Science,

pages 418–427. Springer Berlin Heidelberg, 2012.

[144] S. Adriaensen, T. Brys, and A. Nowé. Fair-share ILS: a simple state-of-the-art

iterated local search hyperheuristic. In Dirk V. Arnold, editor, Proceedings of the

2014 Conference on Genetic and Evolutionary Computation (GECCO ’14), pages

1303–1310, New York, NY, USA, 2014. ACM.

[145] W. G. Jackson, E. Özcan, and J. H. Drake. Late acceptance-based selection hyper-

heuristics for cross-domain heuristic search. In 13th UK Workshop on Computa-

tional Intelligence (UKCI2013), pages 228–235. IEEE, 2013.

[146] S. Chernova and M. Veloso. Confidence-based policy learning from demonstra-

tion using gaussian mixture models. In Proceedings of the 6th international joint

conference on Autonomous agents and multiagent systems, AAMAS ’07, pages

233:1–233:8, New York, NY, USA, 2007. ACM. ISBN 978-81-904262-7-5.

[147] S. Chernova and M. Veloso. Multi thresholded approach to demonstration selection

for interactive robot learning. In Proceedings of the 3rd ACM/IEEE international

conference on Human robot interaction, HRI ’08, pages 225–232, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-017-3.

[148] D.H. Grollman and O.C. Jenkins. Dogged learning for robots. In in 2007 IEEE

International Conference on Robotics and Automation (ICRA, 2007.

[149] M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear analysis of image

ensembles: Tensorfaces. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen,

editors, ECCV (1), volume 2350 of Lecture Notes in Computer Science, pages

447–460. Springer, 2002. ISBN 3-540-43745-2.

Bibliography 151

[150] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Mpca: Multilinear principal

component analysis of tensor objects. IEEE Transactions on Neural Networks, 19

(1):18–39, 2008.

[151] E. Acar, T. G. Kolda, and D. M. Dunlavy. All-at-once optimization for coupled

matrix and tensor factorizations. CoRR, abs/1105.3422, 2011.

[152] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decom-

positions for learning latent variable models. CoRR, abs/1210.7559, 2012.

[153] B. Krausz and C. Bauckhage. Action recognition in videos using nonnegative

tensor factorization. In ICPR, pages 1763–1766. IEEE, 2010.

[154] D. Xu, S. Yan, Z. Lei, S. Lin, H.J. Zhang, and T. S. Huang. Reconstruction

and recognition of tensor-based objects with concurrent subspaces analysis. IEEE

Trans. Circuits Syst. Video Techn., 18(1):36–47, 2008.

[155] J. Ye, R. Janardan, and Q. Li. Gpca: an efficient dimension reduction scheme for

image compression and retrieval. In Won Kim, Ron Kohavi, Johannes Gehrke, and

William DuMouchel, editors, KDD, pages 354–363. ACM, 2004. ISBN 1-58113-

888-1.

[156] Y. Wang and S. Gong. Tensor discriminant analysis for view-based object recog-

nition. In ICPR (3), pages 33–36. IEEE Computer Society, 2006. ISBN 0-7695-

2521-0.

[157] D. Tao, X. Li, X. Wu, and S. J. Maybank. General tensor discriminant analysis

and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

29(10):1700–1715, 2007.

[158] J. Li, L. Zhang, D. Tao, H. Sun, and Q. Zhao. A prior neurophysiologic knowledge

free tensor-based scheme for single trial eeg classification. IEEE Transactions on

Neural Systems and Rehabilitation Engineering, 17(2):107–115, 2009. ISSN 1534-

4320.

[159] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Incremental tensor

analysis: Theory and applications. ACM Trans. Knowl. Discov. Data, 2(3):11:1–

11:37, October 2008. ISSN 1556-4681.

[160] S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-Thieme. Learning

optimal ranking with tensor factorization for tag recommendation. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’09, pages 727–736, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-495-9.

Bibliography 152

[161] E. Acar, D.M. Dunlavy, and T.G. Kolda. Link prediction on evolving data us-

ing matrix and tensor factorizations. In IEEE International Conference on Data

Mining Workshops, 2009. ICDMW ’09., pages 262–269, Dec 2009.

[162] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value

decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, March 2000. ISSN

0895-4798.

[163] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychome-

trika, 31:279–311, 1966c.

[164] R. A. Harshman. PARAFAC: Methods of three-way factor analysis and multidi-

mensional scaling according to the principle of proportional profiles. PhD thesis,

University of California, Los Angeles, CA, 1976.

[165] A. Shashua and H. Tamir. Non-negative tensor factorization with applications to

statistics and computer vision. In ICML, pages 792–799, 2005.

[166] W. Wang, J. Zhou, K. He, C. Liu, and J. Xia. Using tucker decomposition to com-

press color images. In 2nd International Congress on Image and Signal Processing,

2009. CISP ’09., pages 1–5, Oct 2009.

[167] D. Muti and S. Bourennane. Multidimensional filtering based on a tensor approach.

Signal Processing, 85(12):2338 – 2353, 2005. ISSN 0165-1684.

[168] X. Guo, X. Huang, L. Zhang, and L. Zhang. Hyperspectral image noise reduction

based on rank-1 tensor decomposition. ISPRS Journal of Photogrammetry and

Remote Sensing, 83(0):50 – 63, 2013. ISSN 0924-2716.

[169] B.W. Bader, M.W. Berry, and M. Browne. Discussion tracking in enron email

using parafac. In M.W. Berry and M. Castellanos, editors, Survey of Text Mining

II, pages 147–163. Springer London, 2008. ISBN 978-1-84800-045-2.

[170] L. De Lathauwer and J. Castaing. Tensor-based techniques for the blind separation

of dscdma signals. Signal Processing, 87(2):322 – 336, 2007. ISSN 0165-1684.

Tensor Signal Processing.

[171] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM

Rev., 51(3):455–500, August 2009. ISSN 0036-1445.

[172] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener. Modeling and mul-

tiway analysis of chatroom tensors. In Proceedings of the 2005 IEEE International

Conference on Intelligence and Security Informatics, ISI’05, pages 256–268, Berlin,

Heidelberg, 2005. Springer-Verlag. ISBN 3-540-25999-6, 978-3-540-25999-2.

Bibliography 153

[173] E. Acar, S.A. Çamtepe, and B. Yener. Collective sampling and analysis of high

order tensors for chatroom communications. In S. Mehrotra, D.D. Zeng, H. Chen,

B. Thuraisingham, and F.Y. Wang, editors, Intelligence and Security Informatics,

volume 3975 of Lecture Notes in Computer Science, pages 213–224. Springer Berlin

Heidelberg, 2006. ISBN 978-3-540-34478-0.

[174] A. K. Smilde, R. Bro, and P. Geladi. Multi-way Analysis with Applications in the

Chemical Sciences. John Wiley & Sons, Ltd., 2004.

[175] B. W. Bader and T. G. Kolda. Algorithm 862: Matlab tensor classes for fast

algorithm prototyping. ACM Trans. Math. Softw., 32(4):635–653, December 2006.

ISSN 0098-3500.

[176] J.D. Carroll and J.J. Chang. Analysis of individual differences in multidimensional

scaling via an n-way generalization of eckart-young decomposition. Psychometrika,

35(3):283–319, 1970. ISSN 0033-3123.

[177] R. A. Harshman. Foundations of the PARAFAC procedure: Models and condi-

tions for an” explanatory” multi-modal factor analysis. UCLA Working Papers in

Phonetics, 16(1):84, 1970.

[178] T.K. Kim and R. Cipolla. Canonical correlation analysis of video volume tensors

for action categorization and detection. IEEE Trans. Pattern Anal. Mach. Intell.,

31(8):1415–1428, August 2009. ISSN 0162-8828.

[179] L. R. Tucker. Implications of factor analysis of three-way matrices for measurement

of change. In C. W. Harris, editor, Problems in measuring change., pages 122–137.

University of Wisconsin Press, Madison WI, 1963.

[180] L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In

H. Gulliksen and N. Frederiksen, editors, Contributions to mathematical psychol-

ogy., pages 110–127. Holt, Rinehart and Winston, New York, 1964.

[181] Y.-W. Leung and Y. Wang. An orthogonal genetic algorithm with quantization for

global numerical optimization. IEEE Transactions on Evolutionary Computation,

5(1):41–53, Feb 2001. ISSN 1089-778X.

[182] S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama. Opposition-based differen-

tial evolution. IEEE Transactions on Evolutionary Computation, 12(1):64–79, Feb

2008. ISSN 1089-778X.

[183] J. Hunger and G. Huttner. Optimization and analysis of force field parameters by

combination of genetic algorithms and neural networks. Journal of Computational

Chemistry, 20(4):455–471, 1999. ISSN 1096-987X.

Bibliography 154

[184] A. Zhou and Q. Zhang. A surrogate-assisted evolutionary algorithm for minimax

optimization. In 2010 IEEE Congress on Evolutionary Computation (CEC), pages

1–7, July 2010.

[185] A. Auger and N. Hansen. Performance evaluation of an advanced local search evo-

lutionary algorithm. In The 2005 IEEE Congress on Evolutionary Computation,

2005., volume 2, pages 1777–1784 Vol. 2, Sept 2005.

[186] J. M. Peña, J. A. Lozano, and P. Larrañaga. Globally multimodal problem opti-

mization via an estimation of distribution algorithm based on unsupervised learn-

ing of bayesian networks. Evol. Comput., 13(1):43–66, January 2005. ISSN 1063-

6560.

[187] J. Zhang, H. Chung, and W.L. Lo. Clustering-based adaptive crossover and mu-

tation probabilities for genetic algorithms. IEEE Transactions on Evolutionary

Computation, 11(3):326–335, 2007.

[188] H. Zhang and J. Lu. Adaptive evolutionary programming based on reinforcement

learning. Information Sciences, 178(4):971 – 984, 2008. ISSN 0020-0255.

[189] J. Zhang, Z.H. Zhan, Y. Lin, N. Chen, Y.J. Gong, J.H. Zhong, H.S.H. Chung, Y. Li,

and Y.H. Shi. Evolutionary computation meets machine learning: A survey. IEEE

Computational Intelligence Magazine, 6(4):68–75, Nov 2011. ISSN 1556-603X.

[190] L. Jourdan, C. Dhaenens, and E. Talbi. Using datamining techniques to help

metaheuristics: A short survey. In F. Almeida, M.J. Blesa Aguilera, C. Blum,

J.M. Moreno Vega, M. Pérez PÉrez, A. Roli, and M. Sampels, editors, Hybrid

Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 57–69.

Springer Berlin Heidelberg, 2006. ISBN 978-3-540-46384-9.

[191] E. Talbi. A unified taxonomy of hybrid metaheuristics with mathematical pro-

gramming, constraint programming and machine learning. In E. Talbi, editor,

Hybrid Metaheuristics, volume 434 of Studies in Computational Intelligence, pages

3–76. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-30670-9.

[192] R. Hamilton-Bryce, P. McMullan, and B. McCollum. Directed selection using

reinforcement learning for the examination timetabling problem. In PATAT ’14

Proceedings of the 10th International Conference on the Practice and Theory of

Automated Timetabling, 2014.

[193] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings of

the Eighteenth International Conference on Machine Learning, ICML ’01, pages

Bibliography 155

282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN

1-55860-778-1.

[194] G. E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief

nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-7667.

[195] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M.A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013.

[196] P. Cowling and K. Chakhlevitch. Hyperheuristics for managing a large collection

of low level heuristics to schedule personnel. In The 2003 Congress on Evolutionary

Computation, 2003. CEC ’03., volume 2, pages 1214–1221 Vol.2, Dec 2003.

[197] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Comput. Surv., 35(3):268–308, September 2003.

ISSN 0360-0300.

[198] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic genetic

algorithm applied to a trainer scheduling problem. In Proceedings of the Evolution-

ary Computation on 2002. CEC ’02. Proceedings of the 2002 Congress - Volume

02, CEC ’02, pages 1185–1190, Washington, DC, USA, 2002. IEEE Computer

Society. ISBN 0-7803-7282-4.

[199] E. Frank and I. H. Witten. Generating accurate rule sets without global optimiza-

tion. In Proceedings of the Fifteenth International Conference on Machine Learn-

ing, ICML ’98, pages 144–151, San Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc. ISBN 1-55860-556-8.

[200] William W. C. Fast effective rule induction. In In Proceedings of the Twelfth In-

ternational Conference on Machine Learning, pages 115–123. Morgan Kaufmann,

1995.

[201] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.

In Fourth International Conference on Knowledge Discovery and Data Mining,

KDD ’98., pages 80–86, 1998.

[202] F. Thabtah, P. Cowling, and Y. Peng. Mcar: multi-class classification based on

association rule. In The 3rd ACS/IEEE International Conference on Computer

Systems and Applications, Cayro, Egypt., pages 1–7. IEEE, 2005.

[203] F.A. Thabtah, P. Cowling, and Yonghong P. Mmac: a new multi-class, multi-label

associative classification approach. In Fourth IEEE International Conference on

Data Mining, 2004. ICDM ’04., pages 217–224, Nov 2004.

Bibliography 156

[204] H.R. Lourenço, O.C. Martin, and T. Stützle. In M. Gendreau and J. Potvin,

editors, Handbook of Metaheuristics, volume 146 of International Series in Opera-

tions Research & Management Science, pages 363–397. Springer US, 2010. ISBN

978-1-4419-1663-1.

[205] E.C. Chi and T.G. Kolda. Making tensor factorizations robust to non-Gaussian

noise. Technical Report SAND2011-1877, Sandia National Laboratories, Albu-

querque, NM and Livermore, CA, March 2011.

[206] B.W. Bader, T.G. Kolda, et al. Matlab tensor toolbox version 2.5. Available online,

January 2012. URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

[207] J. Swan, J. Woodward, E. Özcan, G. Kendall, and E. Burke. Searching the hyper-

heuristic design space. Cognitive Computation, pages 1–8, 2013. ISSN 1866-9956.

[208] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller, J.W.

Thatcher, and J.D. Bohlinger, editors, Complexity of Computer Computations,

The IBM Research Symposia Series, pages 85–103. Springer US, 1972. ISBN 978-

1-4684-2003-6.

[209] E. Burke, P. De Causmaecker, G. Berghe, and H. Van Landeghem. The state of

the art of nurse rostering. J. of Scheduling, 7(6):441–499, November 2004. ISSN

1094-6136.

[210] D. Silver, Q. Yang, and L. Li. Lifelong machine learn-

ing systems: Beyond learning algorithms. 2013. URL

https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802/5977.

[211] E. Hart and K. Sim. On the life-long learning capabilities of a nelli*: A hyper-

heuristic optimisation system. In T. Bartz-Beielstein, J. Branke, B. FilipiC, and

J. Smith, editors, Parallel Problem Solving from Nature PPSN XIII, volume 8672

of Lecture Notes in Computer Science, pages 282–291. Springer International Pub-

lishing, 2014. ISBN 978-3-319-10761-5.

[212] K. Sim and E. Hart. An improved immune inspired hyper-heuristic for combina-

torial optimisation problems. In Proceedings of the 2014 Conference on Genetic

and Evolutionary Computation, GECCO ’14, pages 121–128, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2662-9.

[213] T. Curtois. Published results on employee scheduling instances.

http://www.cs.nott.ac.uk/~tec/NRP/.

[214] E. Burke and T. Curtois. New approaches to nurse rostering benchmark instances.

European Journal of Operational Research, 237(1):71–81, 2014. ISSN 0377-2217.

http://www.sandia.gov/~tgkolda/TensorToolbox/
https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802/5977
http://www.cs.nott.ac.uk/~tec/NRP/

Bibliography 157

[215] F. Xue, CY. Chan, WH. Ip, and CF. Cheung. Towards a learning-based heuristic

searching reform scheme. In 24th European Conference on Operational Research

(EURO XXIV)., pages 262–269, July 2010.

[216] I. P. Solos, I. X. Tassopoulos, and G. N. Beligiannis. A generic two-phase stochastic

variable neighborhood approach for effectively solving the nurse rostering problem.

Algorithms, 6(2):278–308, 2013.

[217] S. Haspeslagh, P. De Causmaecker, A. Schaerf, and M. Stolevik. The first interna-

tional nurse rostering competition 2010. Annals of Operations Research, 218(1):

221–236, 2014. ISSN 0254-5330.

[218] C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos. A systematic two

phase approach for the nurse rostering problem. European Journal of Operational

Research, 219(2):425 – 433, 2012. ISSN 0377-2217.

[219] J. Lü and J.K. Hao. Adaptive neighborhood search for nurse rostering. European

Journal of Operational Research, 218(3):865 – 876, 2012. ISSN 0377-2217.

[220] B. Bilgin, P. Demeester, M. Mısır, W. Vancroonenburg, G. Berghe,

and T. Wauters. A hyper-heuristic combined with a greedy shuf-

fle approach to the nurse rostering competition. 2010. URL

Online.https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/abstracts/l3.pdf.

[221] S. Ceschia, N. Thi Thanh, S. Haspeslagh, and A. Schaerf. The second international

nurse rostering competition. In 10th International Conference of the Practice and

Theory of Automated Timetabling, 2014.

[222] C.A. Glass and R.A. Knight. The nurse rostering problem: A critical appraisal

of the problem structure. European Journal of Operational Research, 202(2):379 –

389, 2010. ISSN 0377-2217.

[223] J.P. Métivier, P. Boizumault, and S. Loudni. Solving nurse rostering problems

using soft global constraints. In IanP. Gent, editor, Principles and Practice of

Constraint Programming - CP 2009, volume 5732 of Lecture Notes in Computer

Science, pages 73–87. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-04243-0.

[224] S. Loudni and P. Boizumault. Combining vns with constraint programming for

solving anytime optimization problems. European Journal of Operational Research,

191(3):705 – 735, 2008. ISSN 0377-2217.

[225] E. Burke, J. Li, and R. Qu. A hybrid model of integer programming and variable

neighbourhood search for highly-constrained nurse rostering problems. European

Journal of Operational Research, 203(2):484 – 493, 2010. ISSN 0377-2217.

Online. https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/abstracts/l3.pdf

Bibliography 158

[226] E. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid heuristic ordering

and variable neighbourhood search for the nurse rostering problem. European

Journal of Operational Research, 188(2):330–341, 2008. ISSN 0377-2217.

[227] E. Burke, T. Curtois, R. Qu, and G. Berghe. A scatter search approach to the

nurse rostering problem, 2010.

[228] P. Brucker, E. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A shift sequence

based approach for nurse scheduling and a new benchmark dataset. Journal of

Heuristics, 16(4):559–573, 2010. ISSN 1381-1231.

[229] M. N. Azaiez and S. S. Al Sharif. A 0-1 goal programming model for nurse schedul-

ing. Comput. Oper. Res., 32(3):491–507, March 2005. ISSN 0305-0548.

[230] T. Curtois, G. Ochoa, M. Hyde, and J.A. Vázquez-Rodŕıguez. A hyflex module

for the personnel scheduling problem. 2009.

[231] S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evolutionary

algorithms. In Proceedings of the Eleventh conference on Congress on Evolutionary

Computation, CEC’09, pages 399–406, Piscataway, NJ, USA, 2009. IEEE Press.

ISBN 978-1-4244-2958-5.

[232] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society. Series B (Methodological), 41(2):pp. 148–177, 1979. ISSN

00359246.

[233] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms

for bin packing: a survey, pages 46–93. PWS Publishing Co., Boston, MA, USA,

1997. ISBN 0-534-94968-1.

[234] J. Csirik and G. Woeginger. On-line packing and covering problems. In A. Fiat

and G. Woeginger, editors, Online Algorithms, volume 1442 of Lecture Notes in

Computer Science, pages 147–177. Springer Berlin / Heidelberg, 1998.

[235] A. Scholl, R. Klein, and C. Jürgens. Bison: A fast hybrid procedure for exactly

solving the one-dimensional bin packing problem. Computers & Operations Re-

search, 24(7):627 – 645, 1997. ISSN 0305-0548.

[236] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2:5–30, 1996. ISSN 1381-1231.

[237] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R.L. Graham. Worst-

case performance bounds for simple one-dimensional packing algorithms. SIAM

Journal on Computing, 3(4):299–325, 1974.

Bibliography 159

[238] W. T. Rhee and M. Talagrand. On line bin packing with items of random size.

Mathematics of Operations Research, 18(2):pp. 438–445, 1993. ISSN 0364765X.

[239] E. G. Coffman Jr, G. Galambos, S. Martello, and D. Vigo. Bin packing ap-

proximation algorithms: Combinatorial analysis. In D.-Z. Du and P.M. Pardalos,

editors, Handbook of Combinatorial Optimization, volume 1 of Intelligent Systems

Reference Library, pages 151–207. Kluwer Academic Publishers, 1999.

[240] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. Journal of the

ACM, 32(3):562–572, 1985.

[241] M.B. Richey. Improved bounds for harmonic-based bin packing algorithms. Dis-

crete Applied Mathematics, 34(1-3):203 – 227, 1991.

[242] A. J. Parkes, E. Özcan, and M. R. Hyde. Matrix analysis of genetic programming

mutation. In Proceedings of the 15th European Conference on Genetic Program-

ming, EuroGP’12, pages 158–169, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN

978-3-642-29138-8.

[243] S. Asta, E. Özcan, and A. J. Parkes. Dimension reduction in the search for online

bin packing policies. In Proceedings of the 15th Annual Conference Companion

on Genetic and Evolutionary Computation, GECCO ’13 Companion, pages 65–66,

New York, NY, USA, 2013. ACM.

[244] A. Yarimcam, S. Asta, E. Özcan, and A. J. Parkes. Heuristic generation via

parameter tuning for online bin packing. In 2014 IEEE Symposium on Evolving

and Autonomous Learning Systems (EALS), pages 102–108, Dec 2014.

[245] A. Prakash, F.T.S. Chan, and S.G. Deshmukh. Fms scheduling with knowledge

based genetic algorithm approach. Expert Systems with Applications, 38(4):3161

– 3171, 2011. ISSN 0957-4174.

[246] F. Divina and E. Marchiori. Knowledge-based evolutionary search for inductive

concept learning. In Y. Jin, editor, Knowledge Incorporation in Evolutionary Com-

putation, volume 167 of Studies in Fuzziness and Soft Computing, pages 237–253.

Springer Berlin Heidelberg, 2005. ISBN 978-3-642-06174-5.

[247] H. Maini, K. Mehrotra, C. K. Mohan, and S. Ranka. Knowledge-based nonuniform

crossover. In IEEE World Congress on Computational Intelligence, volume 8-4,

pages 22–27, Jun 1994.

[248] J. Chen, Y. Xie, and H. Chen. A population-based extremal optimization algo-

rithm with knowledge-based mutation. In Y. Tan, Y. Shi, and C. Coello, edi-

tors, Advances in Swarm Intelligence, volume 8794 of Lecture Notes in Computer

Bibliography 160

Science, pages 95–102. Springer International Publishing, 2014. ISBN 978-3-319-

11856-7.

[249] G. Yan, G. Xie, Z. Chen, and K. Xie. Knowledge-based genetic algorithms. In

G. Wang, T. Li, J.W. Grzymala-Busse, D. Miao, A. Skowron, and Y. Yao, editors,

Rough Sets and Knowledge Technology, volume 5009 of Lecture Notes in Computer

Science, pages 148–155. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-79720-

3.

[250] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction using matrix

and tensor factorizations. ACM Trans. Knowl. Discov. Data, 5(2):10:1–10:27,

February 2011. ISSN 1556-4681.

[251] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@

home: an experiment in public-resource computing. Communications of the ACM,

45(11):56–61, 2002.

[252] D. P. Anderson. Boinc: A system for public-resource computing and storage. In

Fifth IEEE/ACM International Workshop on Grid Computing, 2004. Proceedings.,

pages 4–10. IEEE, 2004.

[253] S. H. Clearwater, T. Hogg, and B. A. Huberman. Cooperative problem solving.

Computation: The Micro and the Macro View, pages 33–70, 1992.

[254] T. Hogg and C. P. Williams. Solving the really hard problems with cooperative

search. In Proceedings of the National Conference on Artificial Intelligence, pages

231–231, 1993.

[255] E. G. Talbi and V. Bachelet. Cosearch: A parallel cooperative metaheuristic.

Journal of Mathematical Modelling and Algorithms, 5(1):5–22, 2006. ISSN 1570-

1166.

[256] T. G. Crainic and M. Toulouse. Explicit and emergent cooperation schemes for

search algorithms. Springer, 2008.

[257] M. Milano and A. Roli. Magma: a multiagent architecture for metaheuristics.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34

(2):925–941, 2004.

[258] D. Meignan, A. Koukam, and J.C. Créput. Coalition-based metaheuristic: a self-

adaptive metaheuristic using reinforcement learning and mimetism. Journal of

Heuristics, 16(6):859–879, 2010.

[259] D. Ouelhadj and S. Petrovic. A cooperative hyper-heuristic search framework.

Journal of Heuristics, 16(6):835–857, 2010.

Bibliography 161

[260] N. El Hachemi, T. G. Crainic, N. Lahrichi, W. Rei, and T. Vidal. Solution inte-

gration in combinatorial optimization with applications to cooperative search and

rich vehicle routing. 2014.

[261] M.E. Aydin. Coordinating metaheuristic agents with swarm intelligence. Journal

of Intelligent Manufacturing, 23(4):991–999, 2012.

[262] M. R. Khouadjia, E.G. Talbi, L. Jourdan, B. Sarasola, and E. Alba. Multi-

environmental cooperative parallel metaheuristics for solving dynamic optimiza-

tion problems. The Journal of Supercomputing, 63(3):836–853, 2013.

[263] S. Martin, D. Ouelhadj, P. Beullens, E. Ozcan, A. A. Juan, and E. Burke. A

multi-agent based cooperative approach to scheduling and routing. Submitted to

Euroean JOurnal of Operations Research, 2015.

[264] S. Martin, D. Ouelhadj, P. Smet, G. Berghe, and E. Özcan. Cooperative search

for fair nurse rosters. Expert Systems with Applications, 40(16):6674–6683, 2013.

[265] E. Taillard. Benchmarks for basic scheduling problems. european journal of oper-

ational research, 64(2):278–285, 1993.

[266] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall, New

Jersey, 2002.

[267] C. L. Chen and R. L. Bulfin. Complexity of single machine, multi-criteria schedul-

ing problems. European Journal of Operational Research, 70(1):115–125, 1993.

[268] S.M. Johnson. Optimal two-and three-stage production schedules with setup times

included. Naval research logistics quarterly, 1(1):61–68, 1954.

[269] R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research, 165(2):479–494,

2005.

[270] B. Naderi and R. Ruiz. The distributed permutation flowshop scheduling problem.

Computers & Operations Research, 37(4):754–768, 2010.

[271] J.N.D. Gupta and E. F. Stafford. Flowshop scheduling research after five decades.

European Journal of Operational Research, 169(3):699–711, 2006.

[272] E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem.

European journal of Operational research, 47(1):65–74, 1990.

[273] I.H. Osman and C.N. Potts. Simulated annealing for permutation flow-shop

scheduling. Omega, 17(6):551–557, 1989.

Bibliography 162

[274] V. Fernandez-Viagas and J. M. Framinan. On insertion tie-breaking rules in heuris-

tics for the permutation flowshop scheduling problem. Computers & Operations

Research, 45:60–67, 2014.

[275] A. A. Juan, J. Faulin, R. Ruiz, B. Barrios, and S. Caballé. The sr-gcws hybrid

algorithm for solving the capacitated vehicle routing problem. Applied Soft Com-

puting, 10(1):215–224, 2010.

[276] A. A. Juan, H. R. Lourenço, M. Mateo, R. Luo, and Q. Castella. Using iterated

local search for solving the flow-shop problem: Parallelization, parametrization,

and randomization issues. International Transactions in Operational Research, 21

(1):103–126, 2014.

[277] S.W. Lin and K.C. Ying. Minimizing makespan and total flowtime in permutation

flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers

& Operations Research, 40(6):1625–1647, 2013.

[278] J. Grabowski and M. Wodecki. A very fast tabu search algorithm for the per-

mutation flow shop problem with makespan criterion. Computers & Operations

Research, 31(11):1891–1909, 2004.

[279] Y.R. Tzeng, C.L. Chen, and C.L. Chen. A hybrid eda with acs for solving permu-

tation flow shop scheduling. The International Journal of Advanced Manufacturing

Technology, 60(9-12):1139–1147, 2012.

[280] C.L. Chen, S.Y. Huang, Y.R. Tzeng, and C.L. Chen. A revised discrete particle

swarm optimization algorithm for permutation flow-shop scheduling problem. Soft

Computing, 18(11):2271–2282, 2014.

[281] C.Y. Hsu, P.C. Chang, and M.H. Chen. A linkage mining in block-based evo-

lutionary algorithm for permutation flowshop scheduling problem. Computers &

Industrial Engineering, 83:159–171, 2015.

[282] S.H. Chen, P.C. Chang, T.C.E. Cheng, and Q. Zhang. A self-guided genetic

algorithm for permutation flowshop scheduling problems. Computers & Operations

Research, 39(7):1450–1457, 2012.

[283] F. Ahmadizar. A new ant colony algorithm for makespan minimization in permu-

tation flow shops. Computers & industrial engineering, 63(2):355–361, 2012.

[284] C.L. Chen, Y.R. Tzeng, and C.L. Chen. A new heuristic based on local best

solution for permutation flow shop scheduling. Applied Soft Computing, 29:75–81,

2015.

Bibliography 163

[285] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri. The ieee fipa approach to in-

tegrating software agents and web services. In Proceedings of the 6th international

joint conference on Autonomous agents and multiagent systems, page 276. ACM,

2007.

[286] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems

with JADE, volume 7. John Wiley & Sons, 2007.

[287] Foundation for Intelligent Physical Agents. Fipa com-

municative act library specification, 2008. URL

URLhttp://www.fipa.org/specs/fipa00037/SC00037J/index.html.

[288] A.R. Benson, D.F. Gleich, and J. Leskovec. Tensor spectral clustering for parti-

tioning higher-order network structures. CoRR, abs/1502.05058, 2015.

[289] Evrim Acar, Tamara G. Kolda, and Daniel M. Dunlavy. All-at-once optimization

for coupled matrix and tensor factorizations. In MLG’11: Proceedings of Mining

and Learning with Graphs, August 2011.

URL http://www.fipa.org/specs/fipa00037/SC00037J/index.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Motivation and Contributions
	1.2 Structure of Thesis
	1.3 Academic Publications Produced

	2 Background
	2.1 Metaheuristics
	2.1.1 Iterated Local Search
	2.1.2 Evolutionary Algorithm

	2.2 Hyper-heuristics
	2.2.1 Selection Hyper-heuristics
	2.2.1.1 Heuristic Selection and Move Acceptance Methodologies

	2.2.2 Generation Hyper-heuristics
	2.2.3 Hyper-heuristics Flexible Framework (HyFlex)

	2.3 Machine Learning
	2.3.1 k-means clustering
	2.3.2 Learning from demonstration
	2.3.3 Tensor Analysis
	2.3.3.1 Notation and Preliminaries
	2.3.3.2 CP Factorisation
	2.3.3.3 Tucker Factorisation
	2.3.3.4 Tucker vs. CP Decomposition

	2.4 Machine Learning Improved Heuristic Optimisation
	2.5 Summary

	3 A Tensor-based Selection Hyper-heuristic for Cross-domain Heuristic Search
	3.1 Introduction
	3.2 Proposed Approach
	3.2.1 Noise Elimination
	3.2.2 Tensor Construction and Factorisation
	3.2.3 Tensor Analysis: Interpreting The Basic Frame
	3.2.4 Final Phase: Hybrid Acceptance

	3.3 Experimental Results
	3.3.1 Experimental Design
	3.3.2 Pre-processing Time
	3.3.3 Switch Time
	3.3.4 Experiments on the CHeSC 2011 Domains
	3.3.4.1 Performance comparison to the competing algorithms of CHeSC 2011
	3.3.4.2 An Analysis of TeBHA-HH

	3.4 Summary

	4 A Tensor-based Selection Hyper-heuristic for Nurse Rostering
	4.1 Introduction
	4.2 Nurse Rostering
	4.2.1 Problem Definition
	4.2.2 Related Work

	4.3 Proposed Approach
	4.3.1 Tensor Analysis for Dynamic Low Level Heuristic Partitioning
	4.3.2 Parameter Control via Tensor Analysis
	4.3.3 Improvement Stage

	4.4 Experimental Results
	4.4.1 Experimental Design
	4.4.2 Selecting The Best Performing Parameter Setting
	4.4.3 Comparative Study

	4.5 Summary

	5 A Tensor Analysis Improved Genetic Algorithm for Online Bin Packing
	5.1 Introduction
	5.2 Online Bin Packing Problem
	5.3 Policy Matrix Representation
	5.4 A Framework for Creating Heuristics via Many Parameters (CHAMP)
	5.5 Related Work on Policy Matrices
	5.5.1 Apprenticeship Learning for Generalising Heuristics Generated by CHAMP

	5.6 Proposed Approach
	5.7 Experimental Results
	5.7.1 Experimental Design
	5.7.2 Basic Frames: An Analysis
	5.7.3 Comparative Study

	5.8 Summary

	6 A Tensor Approach for Agent Based Flow Shop Scheduling
	6.1 Introduction
	6.2 Permutation flow shop scheduling problem (PFSP)
	6.3 Proposed Approach
	6.3.1 Cooperative search
	6.3.2 Metaheuristic agents
	6.3.3 Construction of tensors and tensor learning on PFSP

	6.4 Computational Results
	6.4.1 Parameter configuration of tensor learning
	6.4.2 Performance comparison of TB-MACS to MACS on the Talliard instances
	6.4.3 Performance comparison of TB-MACS to MACS on the VRF Instances
	6.4.4 Performance comparison of TB-MACS and MACS to previously proposed methods

	6.5 Summary

	7 Conclusion
	7.1 Summary of Work
	7.2 Discussion and Remarks
	7.3 Summary of Contribution
	7.4 Future Research Directions

	Bibliography

