Evolutionary approaches for portfolio optimizationTools Lwin, Khin Thein (2015) Evolutionary approaches for portfolio optimization. PhD thesis, University of Nottingham.
AbstractPortfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk objectives. Markowitz’s mean variance (MV) model is widely regarded as the foundation of modern portfolio theory and provides a quantitative framework for portfolio optimization problems. In real market, investors commonly face real-world trading restrictions and it requires that the constructed portfolios have to meet trading constraints. When additional constraints are added to the basic MV model, the problem thus becomes more complex and the exact optimization approaches run into difficulties to deliver solutions within reasonable time for large problem size. By introducing the cardinality constraint alone already transformed the classic quadratic optimization model into a mixed-integer quadratic programming problem which is an NP-hard problem. Evolutionary algorithms, a class of metaheuristics, are one of the known alternatives for optimization problems that are too complex to be solved using deterministic techniques.
Actions (Archive Staff Only)
|