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Abstract

Portfolio optimization involves the optimal assignment of limited cap-

ital to different available financial assets to achieve a reasonable trade-

off between profit and risk objectives. Markowitz’s mean variance

(MV) model is widely regarded as the foundation of modern port-

folio theory and provides a quantitative framework for portfolio op-

timization problems. In real market, investors commonly face real-

world trading restrictions and it requires that the constructed port-

folios have to meet trading constraints. When additional constraints

are added to the basic MV model, the problem thus becomes more

complex and the exact optimization approaches run into difficulties

to deliver solutions within reasonable time for large problem size. By

introducing the cardinality constraint alone already transformed the

classic quadratic optimization model into a mixed-integer quadratic

programming problem which is an NP-hard problem. Evolutionary al-

gorithms, a class of metaheuristics, are one of the known alternatives

for optimization problems that are too complex to be solved using

deterministic techniques.

This thesis focuses on single-period portfolio optimization problems

with practical trading constraints and two different risk measures.

Four hybrid evolutionary algorithms are presented to efficiently solve

these problems with gradually more complex real world constraints.

In the first part of the thesis, the mean variance portfolio model is

investigated by taking into account real-world constraints. A hybrid

evolutionary algorithm (PBILDE) for portfolio optimization with car-

dinality and quantity constraints is presented. The proposed PBILDE

is able to achieve a strong synergetic effect through hybridization



of PBIL and DE. A partially guided mutation and an elitist update

strategy are proposed in order to promote the efficient convergence

of PBILDE. Its effectiveness is evaluated and compared with other

existing algorithms over a number of datasets. A multi-objective

scatter search with archive (MOSSwA) algorithm for portfolio opti-

mization with cardinality, quantity and pre-assignment constraints is

then presented. New subset generations and solution combination

methods are proposed to generate efficient and diverse portfolios.

A learning-guided multi-objective evolutionary (MODEwAwL) algo-

rithm for the portfolio optimization problems with cardinality, quan-

tity, pre-assignment and round lot constraints is presented. A learning

mechanism is introduced in order to extract important features from

the set of elite solutions. Problem-specific selection heuristics are in-

troduced in order to identify high-quality solutions with a reduced

computational cost. An efficient and effective candidate generation

scheme utilizing a learning mechanism, problem specific heuristics

and effective direction-based search methods is proposed to guide

the search towards the promising regions of the search space.

In the second part of the thesis, an alternative risk measure, VaR,

is considered. A non-parametric mean-VaR model with six practical

trading constraints is investigated. A multi-objective evolutionary al-

gorithm with guided learning (MODE-GL) is presented for the mean-

VaR model. Two different variants of DE mutation schemes in the

solution generation scheme are proposed in order to promote the ex-

ploration of the search towards the least crowded region of the solu-

tion space. Experimental results using historical daily financial mar-

ket data from S &P 100 and S & P 500 indices are presented. When

the cardinality constraints are considered, incorporating a learning

mechanism significantly promotes the efficient convergence of the

search.
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Chapter 1

Introduction

“Great stocks are extremely hard

to find. If they weren’t, then

everyone would own them.”

Philip A. Fisher

1.1 Background and Motivation

From the financial point of view, a portfolio is a collection of investments held

by an individual or a financial institution. These investments can be financial

assets ranging from stocks, bonds, or options to real estate. In financial mar-

kets, there exists a huge variety of asset classes in which one may invest his/her

wealth. Different assets have different levels of risk. Different investors have

their own attitude towards the risk. Given an extensive range of financial assets

with different characteristics, the essence of the problem is to find a combination

of assets that serves the best for an investor’s needs.

In 1952, Markowitz addressed a fundamental question in financial decision mak-

ing: How should an investor allocate his/her wealth among the possible in-

vestment choices? Markowitz introduced a parametric optimization model by

proposing that investors should decide the allocation of their investments based

on a trade-off between risk and return. Markowitz’s mean variance (MV) model
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proposes that investment returns can be represented by a weighted average of

the returns of the underlying assets and risk is reflected as the variability of

payoffs. Markowitz’s mean variance (MV) principle (Markowitz, 1952, 1959)

is considered to play an important role in the development of modern portfolio

theory.

Many investment situations may make investment managers consider MV frame-

work for wealth allocation. Based on market index historic returns, an interna-

tional equity manager may need to find optimal asset allocations among interna-

tional equity markets. A plan sponsor may like to find an optimal long-term in-

vestment policy for allocating among different classes such as domestic, foreign

bonds and equities. A domestic equity manager may wish to find an optimal

equity portfolio based on forecasts of return and estimated risk (Michaud and

Michaud, 2008).

MV optimization model is useful as an asset management tool for many applica-

tions, such as (Michaud and Michaud, 2008):

• Implementing investment objectives and constraints

• Controlling the components of portfolio risk

• Implementing the asset manager’s investment strategies

• Using active return information efficiently

• Embedding new information into portfolios efficiently

Moreover, the MV optimization model is flexible enough to reflect various prac-

tical trading constraints and it can thus be served as the standard optimization

framework for modern asset management (Michaud and Michaud, 2008).

There are exact methods such as simplex methods (Dantzig, 1998), interior point

methods (Adler et al., 1989) and quadratic programming methods (Hirschberger

et al., 2010; Markowitz, 1987; Stein et al., 2008) which can be employed in order

2



1. Introduction

to find the optimal solution for the basic MV model with a reasonable compu-

tational effort. However, these methods can be applied to problems satisfying

certain conditions such as the objective function must be of a certain type, the

constraints must be expressible in certain formats, and so on (Boyd and Vanden-

berghe, 2004). Without modifying and/or simplifying the problems into solvable

forms, the applications of these methods are therefore limited to a certain set of

problems (Maringer, 2005).

The basic MV framework for portfolio optimization assumes markets to be fric-

tionless. In real market, investors commonly face real-world trading restrictions

and it requires that the constructed portfolios have to meet trading constraints.

Investors also have their own preferences and this may lead to impose further

constraints in allocating capital among the assets. It is therefore needed to ex-

tend the standard model in order to reflect practical trading restrictions and

investors’ valuable insights.

When additional constraints are added to the basic MV model, the problem

thus becomes more complex and the exact optimization approaches run into

difficulties to deliver solutions within reasonable time for large problem size.

By introducing the cardinality constraint alone already transformed the clas-

sic quadratic optimization model into a mixed-integer quadratic programming

problem which is an NP-hard problem (Bienstock, 1996; Moral-Escudero et al.,

2006; Shaw et al., 2008). As a result, this motivates the investigation of approx-

imate algorithms such as metaheuristics (Gendreau and Potvin, 2010; Glover

and Kochenberger, 2003) and hybrid meta-heuristics (Raidl, 2006; Talbi, 2002).

In general, metaheuristics cannot guarantee the optimality of the solution, but

they are efficient in finding the optimal or near optimal solutions in a reasonable

amount of time.

Markowitz (1959) also noted that risk quantification for portfolio optimization

is an open problem since it depends on the investor’s needs. No one risk mea-

sure, therefore, may satisfy different needs of different investors. Many stud-

ies have been conducted to quantify the portfolio risk with different measures.
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A particular class of measure which quantify possibilities of return below ex-

pected return are called downside risk measures (Harlow, 1991; Krokhmal et al.,

2011). Among those downside risk measures, Value-at-Risk (VaR) (Morgan,

1996) is a popular measurement of risk widely recognized by financial regu-

lators and investment practitioners. The portfolio optimization in the VaR con-

text involves additional complexities since VaR is non-linear, non-convex and

non-differentiable, and it exhibits multiple local extrema and discontinuities es-

pecially when real-world trading constraints are incorporated (Gaivoronski and

Pflug, 2005). In fact Benati and Rizzi (2007) show that optimization of the

mean-VaR portfolio problem leads to a non-convex NP-hard problem which is

computationally intractable.

In the past decade, there has been an increasing interest to explore the appli-

cation of evolutionary algorithms for portfolio optimization problems. Evolu-

tionary algorithms, a class of metaheuristics, are one of the known alternatives

for optimization problems that are too complex to be solved using deterministic

techniques. They are independent of the types of objective function and the con-

straints while also being attractive for their capability to solve computationally

demanding problems reliably and efficiently.

The motivation for this thesis is based on three main avenues in the literature on

portfolio optimization. The first area of interest is to design hybrid evolutionary

algorithms for portfolio optimization problems. In particular, we are interested

in integrating selective properties of different evolutionary approaches in order

to mitigate their individual weaknesses and achieve efficient convergence of the

search. The second area of interest is to extend the basic model with practi-

cal trading constraints in order to better reflect the practical trading limitations.

Recent review by Metaxiotis and Liagkouras (2012) shows that the cardinality

and quantity constraints are the most commonly considered constraints in the

literature. Therefore, we are interested in investigating the portfolio optimiza-

tion models as realistic as possible by considering increasing number of practical

trading constraints. The third area of interest is to adopt VaR as an alternative

risk measure in place of the variance. Recent surveys by Metaxiotis and Liagk-
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ouras (2012) and Ponsich et al. (2013) also show that the research in portfolio

optimization in the nonparametric mean-VaR framework is still in its infancy

compared to mean variance framework.

1.2 Aims and Objectives

The goal of this thesis is to provide a contribution to portfolio optimization re-

search through the development of efficient and effective algorithms and to in-

vestigate their applications to portfolio optimization problems with additional

practical trading constraints. In order to achieve this goal, the identified objec-

tives are as follows:

• To extend the basic portfolio model as realistic as possible by considering

increasing number of practical trading constraints.

• To design and investigate the ability of single objective evolutionary algo-

rithms to deliver high-quality solutions for the constrained portfolio opti-

mization problems.

• To design effective and efficient multi-objective evolutionary algorithms for

portfolio optimization problems reflecting practical trading constraints.

• To conduct a fair performance comparison between the proposed algo-

rithms and existing state-of-the-art evolutionary algorithms.

• To investigate an alternative industry standard risk measure for the port-

folio optimization problems in order to capture the asymmetric nature of

risk.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• A hybrid evolutionary algorithm (PBILDE) is developed to solve the port-

folio optimization problems with cardinality and quantity constraints (see
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Chapter 4). A partially guided mutation and an elitist update strategy are

proposed in order to promote the efficient convergence of PBILDE. PBILDE

is able to achieve a strong synergetic effect through hybridization of PBIL

and DE. In most problem instances, it also outperforms other existing ap-

proaches in the literature which adopted the same mean variance model.

• A multi-objective scatter search with external archive (MOSSwA) algorithm

is proposed for the first time for portfolio optimization problems with cardi-

nality, quantity and pre-assignment constraints (see Chapter 5). MOSSwA

adapts the basic scatter search template to multi-objective optimization by

incorporating the concepts of Pareto dominance, crowding distance and

elitism. New subset generations and solution combination methods are

proposed to generate efficient and diverse portfolios. MOSSwA outper-

forms NSGA-II, SPEA2 and PESA-II in all five problem instances both in

terms of solution quality and computational time.

• A learning-guided multi-objective evolutionary (MODEwAwL) algorithm is

developed to solve the portfolio optimization problems with cardinality,

quantity, pre-assignment and round lot constraints (see Chapter 6). A

learning mechanism is introduced in order to extract important features

from the set of elite solutions. Problem-specific selection heuristics are

introduced in order to identify high-quality solutions with a reduced com-

putational cost. An efficient and effective candidate generation scheme

utilizing a learning mechanism, problem specific heuristics and effective

direction-based search methods is proposed to guide the search towards

the promising regions of the search space. In small problem instances,

MODEwAwL is competitive to NSGA-II and SPEA2. In large problem in-

stances, MODEwAwL achieves better performance over four existing well-

known MOEAs, NSGA-II, SPEA2, PEAS-II and PAES. The computational re-

sults not only show that the quality of the generated solutions significantly

improved, but also that the overall computation time can be reduced.

• Value-at-risk (VaR), an industry standard risk measure, is studied in order

to reflect a realistic risk measure. The mean-VaR portfolio optimization
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problem with six practical constraints is for the first time considered (see

Chapter 7). A multi-objective evolutionary algorithm with guided learn-

ing (MODE-GL) is developed to solve the constrained mean-VaR portfolio

optimization problems. Two different variants of DE mutation schemes in

the solution generation scheme are proposed in order to promote the explo-

ration of the search towards the least crowded region of the solution space.

When the cardinality constraints are considered, incorporating a learning

mechanism significantly promotes the efficient convergence of the search.

1.4 Outline

The structure of this thesis can be summarized as follows. Chapter 2 provides an

introduction to the background of the thesis, through a brief overview of variants

of optimization approaches for the single-period portfolio optimization models.

A number of practical constraints commonly faced by investors and datasets uti-

lized for computational analysis in this thesis are also described. Chapter 3 pro-

vides an overview of the key concepts in multi-objective optimization problems.

Most well-known population-based evolutionary algorithms are reviewed and

their applications are summarized.

Chapter 4 presents a hybrid algorithm for portfolio optimization problem with

cardinality and quantity constraints and investigates the effectiveness of the com-

ponents of the algorithm. Chapter 5 describes a multi-objective scatter search

algorithm for portfolio optimization problems with three constraints. Chapter 6

presents a learning-guided multi-objective evolutionary algorithm for the mean

variance portfolio optimization problems. Chapter 7 studies the Value-at-Risk

(VaR) as an alternative risk measure and presents a multi-objective evolutionary

algorithm with guided learning for mean-VaR portfolio optimization problems.

Chapter 8 concludes with a summary and suggestions for future research direc-

tions.
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Chapter 2

Portfolio Optimization

“It’s not whether you’re right or

wrong that’s important, but how

much money you make when

you’re right and how much you

lose when you’re wrong.”

George Soros

2.1 Introduction

Portfolio optimization plays an important decision making role in investment

management. It is concerned with the optimal allocation of a limited capital

among a finite number of available assets, such as stocks, bonds and deriva-

tives, in order to gain the highest possible future return subject to a tolerance

level at the end of the investment period. Mean-variance portfolio formulation

(Markowitz, 1952, 1959) pioneered by Nobel Laureate Harry Markowitz has

provided an influential insight into decision making concerning the capital in-

vestment in modern computational finance. Since the return of the investment

is not guaranteed but approximated (i.e., expected), a variation of the return

should be considered as the risk of receiving the expected return. Markowitz

therefore reasoned that investors should not only be concerned with the realized

returns, but also the risk associated with the asset holdings and introduced the

8
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portfolio optimization as a mean variance optimization problem with regard to

two criteria: to maximize the reward of a portfolio (measured by the mean of

expected return), and to minimize the risk of the portfolio (measured by the

variance of the return). In the simplest sense, a desirable portfolio is defined to

be a trade-off between risk and expected return.

This chapter provides an introduction to the background of the thesis, through a

review of the relevant portfolio optimization problems with different approaches.

A portfolio optimization model with an alternative risk measure is also described.

In addition, a number of real-world trading constraints commonly faced by in-

vestors are discussed. The detailed descriptions of the datasets used in this thesis

for computational analysis are also presented.

2.2 Markowitz’s Mean-Variance Model

Markowitz (1952, 1959) introduced a parametric optimization model in a mean

variance framework which provides analytical solutions for an investor either

trying to maximize his/her expected return for a given level of risk or trying to

minimize the risk for a given level of expected return. The mean variance (MV)

model assumes that the future market of the assets can be correctly reflected

by the historical market of the assets. The reward (profit) of the portfolio is

measured by the average expected return of those individual assets in the port-

folio whereas the risk is measured by its combined total variance or standard

deviation. Markowitz’s mean variance model (MV model) is formulated as an

optimization problem over real-valued variables with a quadratic objective func-

tion and linear constraints as follows:

minimize
N∑
i=1

N∑
j=1

wiwjσij (2.1)

subject to

N∑
i=1

wiµi = R∗ (2.2)

9
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N∑
i=1

wi = 1 (2.3)

0 ≤ wi ≤ 1, i = 1, . . . ,N (2.4)

where N is the number of available assets, µi is the expected return of asset i

(i = 1, . . . ,N), σij is the covariance between assets i and j (i = 1, . . . ,N; j =

1, . . . ,N), R∗ is the desired expected return, and wi (0 ≤ wi ≤ 1) is the decision

variable which represents the proportion held of asset i. Eq. (2.1) minimizes

the total variance (risk) associated with the portfolio whilst Eq. (2.2), the return
constraint, ensures that the portfolio has a predetermined expected return of

R∗. Eq. (2.3) defines the budget constraint (all the money available should be

invested) for a feasible portfolio while Eq. (2.4) requires that all investment

should be positive, i.e., no short sales are allowed.

2.2.1 Single Objective Mean-Variance Model

An alternative form of the MV model can be formulated by introducing a risk

aversion parameter λ ∈ [0, 1] to form an aggregate objective function which is a

weighted combination of both return and risk as follows:

minimize λ

[
N∑
i=1

N∑
j=1

wiwjσij

]
+ (1− λ)

[
−

N∑
i=1

wiµi

]
(2.5)

subject to

N∑
i=1

wi = 1 (2.6)

0 ≤ wi ≤ 1, i = 1, . . . ,N (2.7)

In Eq. (2.5), when λ is zero, the model maximizes the mean expected return

of the portfolio regardless of the variance (risk). On the other hand, when λ

equals one, the model minimizes the risk of the portfolio regardless of the mean
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expected return. As the λ value increases, the relative importance of the return

decreases, and the emphasis of the risk to the investor increases, and vice versa.

2.2.2 Multi-objective Mean-Variance Model

Mean-Variance model is considered to be the first systematic treatment of in-

vestor’s conflicting objectives of higher return versus lower risk. Portfolio opti-

mization problem is intrinsically a multi-objective problem since the objective is

to find portfolios amongst the N assets that can simultaneously satisfy the above

two conflicting objectives, i.e., minimize the total variance (see Eq. (2.8)), de-

noting the risk associated with the portfolio, while maximizing its profits (see

Eq. (2.9)). The portfolio optimization problem can therefore be restated as:

min f1 =
N∑
i=1

N∑
j=1

wiwjσij (2.8)

max f2 =
N∑
i=1

wiµi (2.9)

subject to
N∑
i=1

wi = 1 (2.10)

0 ≤ wi ≤ 1, i = 1, ...,N (2.11)

The standard model, single objective model and multi-objective model are three

well-established approaches commonly adopted to solve the portfolio problem.

Chang et al. (2000) stated that the solutions for the basic portfolio optimization

problem can be achieved by either solving the classic MV model (see Eqs. (2.1)

to (2.4)) varying λ or solving the combined objective model (see Eqs. (2.5) to

(2.7)) varying R∗. Which of these models to be selected depends on the goal

of the optimization and on the capabilities of the available software packages.

Most researchers commonly adopt the last two models when they use a heuristic

approach (Metaxiotis and Liagkouras, 2012; Ponsich et al., 2013).
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2.2.3 Efficient Frontier

Finance theory argues that risk and expected returns are positively related, which

implies that higher returns are achievable only when investors are willing to take

higher risks and vice versa, i.e. the risk cannot be reduced without decreasing the

return (Weigand, 2014). In practice, different investors have different preferred

trade-offs between risk and expected return. An investor who is very risk-averse

will choose a safe portfolio with a low risk and a low expected return. Con-

versely, an investor who is less risk averse will choose a more risky portfolio with

a higher expected return. Thus, the portfolio optimization problem does not pre-

scribe a single optimal portfolio combination that both minimizes variance and

maximizes expected return. Instead, the result of the portfolio optimization is

generally a range of efficient portfolios.

A portfolio is said to be efficient (i.e., Pareto optimal) in the context of mean

variance portfolio optimization if and only if there is no other feasible portfolio

that improves at least one of the two optimization criteria without worsening

the other (see Section 3.2.1). In a two-dimensional space of risk and return, a

solution a is efficient if there does not exist any solution b such that b dominates

a (Fonseca and Fleming, 1995). Solution a is considered to dominate solution b

if and only if C1 or C2 holds:

C1: f1(a) ≤ f1(b) ∧ f2(a) > f2(b)

C2: f2(a) ≥ f2(b) ∧ f1(a) < f1(b)

The collection of these efficient portfolios forms the efficient frontier (i.e., Pareto
front) that represents the best trade-offs between the return and the risk1. We

could trace out the set of efficient portfolios by solving the model (Eqs 2.5 – 2.7)

repeatedly with a different value of λ at each time. Figure 2.1 shows the efficient

frontier (EF) plotted in the risk-return solution space for a 31-asset universe of

Hang Seng dataset from the OR-library (see Section 2.5).

1 For an analytic derivation of the efficient frontier, see (Merton, 1972).
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Figure 2.1: The unconstrained efficient frontier of 31-asset universe (Lwin and
Qu, 2013).

Obtaining the efficient frontier would simplify the choice of investment for in-

vestors and the individual portfolios will be selected based on the investor’s risk

tolerance and his/her expectation of profit in return. Well spread distribution of

portfolios along the efficient frontier provides more alternative suitable choices

for investors with different risk-return profiles.

2.2.4 Limitations of the Mean-Variance Model

As with any model, it is crucial to understand the limitations of mean variance

analysis in order to use it effectively. Firstly, the mean variance framework was

developed for portfolio construction in a single period. In the single period port-

folio optimization problem, the investor is assumed to make allocations once and

for all at the beginning of an investment period, based on the risk and return es-

timations and correlations of a universe of N investable assets. Once made, the

decisions are not expected to change until the end of the investment period and

the impact of decisions arising in subsequent periods is not considered in this

case. Hence, the mean variance model essentially represents a passive buy-and-

hold strategy (Fabozzi and Markowitz, 2011).
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Moreover, the mean variance analysis depends on the perfect knowledge of the

expected returns, standard deviation and pair-wise correlation coefficients of all

assets under consideration. Chopra and Ziemba (1993) shows that the compo-

sition of the optimal portfolio in the mean variance model can be very sensitive

to estimation errors in problem inputs. In real world, however, real markets

exhibit complexities with unknown and unobservable distributions of returns.

Perfect estimates of these inputs are extremely hard, if not impossible, to obtain.

Estimating these unknown parameters with free of estimation errors is a whole

subject in itself and the mean variance analysis does not address this issue explic-

itly. Instead, the mean variance model assumes that input parameters provide a

satisfactory description of the asset returns. In particular, the first two moments

of the distribution (i.e., mean and variance) are considered to be sufficient to

correctly represent the distribution of the asset returns and the characteristics of

the different portfolios (Crama and Schyns, 2003).

Although Markowitz’s mean variance model plays a prominent role in financial

theory, direct applications of this model are not of much practical uses for var-

ious reasons. It implicitly assumes that the return of assets follows a Gaussian

distribution (normal distribution) and investors act in a rational or risk-averse

manner. A risk-averse investor prefers the investment with a lower overall risk

over the one with a higher overall risk when given two different investments

with the same expected return (but different risks). Finally, the model is sim-

plified to be solvable under unrealistic assumptions. Thus, the basic Markowitz

model does not reflect the restrictions (constraints) faced by real-world investors

(Maringer, 2005). It assumes a perfect market2 without taxes or transaction costs

where short sales are not allowed, and securities are infinitely divisible, i.e. they

can be traded in any (non-negative) fraction. It is also assumed that investors do

not care about different asset types in their portfolios (Vince, 2007, Chapter 7).

These limitations have consequently motivated further developments to improve

its applicability in real-world (see Section 2.3.1).

2 A market is considered to be perfect if and only if every possible combination of allocation
of assets in a portfolio is attainable.
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2.3 An Alternative to Mean-Variance Model

The mean variance analysis reflects risk as the variance or standard deviation of

a portfolio. Variance is a statistical measure of the dispersion of returns around

the arithmetic mean or average return (the average of squared deviations from

the mean). Risk in this context can be described as an indicator of how fre-

quently and by how much the true portfolio return is likely to deviate from its

mean. This measure of risk is not practical because the risk of obtaining a result

that is above average is considered in the same way as the risk of obtaining a

result that is below average. In reality, rational investors’ perception against risk

is skewed (not symmetric around the mean) as they are more concerned with

under-performance rather than over-performance in a portfolio. Variance as a

risk measure has thus been widely criticized by practitioners due to its symmet-

rical measure by equally weighting desirable positive returns against undesirable

negative ones (Grootveld and Hallerbach, 1999). This gives rise to research di-

rections where realistic risk measures are used to separate undesirable downside

movements from desirable upside movements (Biglova et al., 2004). Among

those alternative risk measures which account for the asymmetric nature of risk,

Value-at-Risk (VaR) (Morgan, 1996) is a popular risk measure adopted by finan-

cial institutions.

2.3.1 Value-at-Risk

Value at Risk (VaR) measures the maximum likely loss of a portfolio from market

risk with a given confidence level (1 − α) over a certain time interval. For in-

stance, if a daily VaR is valued as 100,000 with 95% confidence level, this means

that during the next trading day there is only a 5% chance that the loss will be

greater than 100,000. The higher the confidence level, the better chances that

the actual loss will be within the VaR measure. Therefore, the confidence level

(1 − α) is usually high, typically 95% or 99%. Formally, the VaR at confidence

level (1 − α) 100 % is defined as the negative of the lower α-quantile of the

return distribution:

V aRα(R) = - inf {r̄ | Prob(R ≤ r̄) ≥ α}
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where α ∈ (0, 1), R is a random portfolio return (Kim et al., 2012; Stoyanov

et al., 2013).

2.3.2 Multi-objective Mean-VaR Model

Let us assume that each time t denotes a different scenario and let rit be the

observed return of asset i at time t using historical data over the time series

horizon T . Let wi be the proportion of the budget invested in asset i. Given a set

of N assets, the portfolio’s return under scenario t is estimated by:

κt(w) =
N∑
i=1

r̄itwi, t = 1, . . . , T. (2.12)

Let ρt be the probability of scenario occurrence and assume all scenarios are

considered to have equal probability (i.e., ρt = 1/T ). The expected return of the

portfolio is obtained by:

µ(w) =
T∑
t=1

κt(w)ρt (2.13)

The VaR at a given confidence level (1 − α) is the maximum expected loss that

the portfolio will not be exceeded with a probability α:

ψ(w) = V aRα(w) = −inf

{
κtα(w) |

tα∑
j=1

ρj ≥ α

}
(2.14)

where returns κt(w) are placed in an ascending order such that κ(1)(w) ≤ κ(2)(w) ≤
... ≤ κ(T )(w) (Anagnostopoulos and Mamanis, 2011a). The negative sign is used

in Eq. (2.14) to denote the expected loss since κt(w) represents the expected

return.
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The mean-VaR portfolio selection problem is summarized as follows:

min ψ(w)

max µ(w)

s.t

N∑
i=1

wi = 1, 0 ≤ wi ≤ 1 (2.15)

2.4 Real-world Constraints

The standard mean variance model is based on several simplifying assumptions.

The basic model assumes a perfect market where securities are traded in any

(non-negative) fractions, there is no limitation on the number of assets in the

portfolio, investors have no preference over assets and they do not care about

different asset types in their portfolios. In practical investment management,

however, a portfolio manager often faces a number of constraints on his/her in-

vestment portfolio for various reasons, such as legal restrictions, institutional fea-

tures, industrial regulations, client-initiated strategies and other practical mat-

ters (Skolpadungket et al., 2007). For example, a portfolio manager may face

restrictions on the maximum capital allocation to a particular industry or sec-

tor. As a result, the basic model can be extended with a number of real-world

constraints to better reflect practical applications. In this section, we describe

constraints that are often used in practical applications.

2.4.1 Cardinality Constraint

In the standard model, proportions of assets are not limited no matter how small

allocation of the investment is. Very often in practice, investors prefer to have

a limited number of assets included in their portfolio since the management of

many assets in the portfolio is tedious and hard to monitor. They also intend to

reduce transaction costs and/or to assure a certain degree of diversification by

limiting the number of assets (K) in their portfolios (Skolpadungket et al., 2007).
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Cardinality constraint limits the number of assets that compose the portfolio:

N∑
i=1

si = K, (2.16)

where binary decision variables si(i = 1, . . . ,N) are introduced to indicate if as-

set i is included in the portfolio. K is a positive integer less than the number of

assets in the investment universe (N).

In the literature, there are two variants of cardinality constraint. One variant

is the equality constraint as noted in Eq. (2.16) where cardinality constraint

imposes the number of securities in the portfolio to be exactly K (Armananzas

and Lozano, 2005; Chang et al., 2000, 2009; Cura, 2009; Deng et al., 2012;

Fernández and Gómez, 2007; Golmakani and Fazel, 2011; Jobst et al., 2001;

Skolpadungket et al., 2007; Soleimani et al., 2009; Woodside-Oriakhi et al.,

2011). Another variant is inequality constraint (i.e.,
N∑
i=1

si ≤ K or KL ≤
N∑
i=1

si ≤

KU) where cardinality constraint is relaxed with lower and/or upper bounds

[KL,KU] (Anagnostopoulos and Mamanis, 2011b; Cesarone et al., 2013; Chiam

et al., 2008; Crama and Schyns, 2003; Gaspero et al., 2011; John, 2014; Liagk-

ouras and Metaxiotis, 2014; Maringer and Kellerer, 2003; Schaerf, 2002). Al-

ternatively, cardinality constraint can be addressed as one of the minimization

objectives in the portfolio optimization problem. Anagnostopoulos and Mamanis

(2010) consider the portfolio optimization problem as a tri-objective optimiza-

tion problem in order to achieve the trade-offs between risk, return and the

number of securities in the portfolio.

2.4.2 Floor and Ceiling Constraints

The floor and ceiling constraints specify the minimum and maximum limits

on the proportion of each asset that can be held in a portfolio (Chang et al.,

2000). The former prevents excessive administrative costs for very small hold-

ings, which have negligible influence on the performance of the portfolio, while

the latter rules out excessive exposure to a specific asset and, in some cases, it
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is restricted by institutional policies. The floor and ceiling constraints are also

known as bounding or quantity constraints. Using finite lower and upper bounds,

εi and δi respectively, and the binary variable si, the floor and ceiling constraints

can be represented as follows:

si =

{
1 if the ith (i = 1, . . . ,N) asset is held

0 otherwise,
(2.17)

εisi ≤ wi ≤ δisi, i = 1, . . . ,N, (2.18)

Since budget constraint of the basic model requires all weights to sum up to one

(see Eq. (2.3)), the sum of lower bounds should not be above one,
N∑
i=1

εi ≥ 1,

and the sum of upper bound should not be below 1,
N∑
i=1

δi ≤ 1. Since short sales

are not allowed in the basic model, floor constraints override Eq. (2.4).

2.4.3 Round Lot Constraint

Many real-world applications require that securities are traded as multiples of

minimum lots or batches. Round lot constraint requires the number of any asset

in the portfolio to be in an exact multiple of the normal trading lots (Golmakani

and Fazel, 2011; Lin and Liu, 2008; Skolpadungket et al., 2007; Soleimani et al.,

2009; Streichert et al., 2004a,b). It overcomes the assumption of infinite divisi-

bility of assets the basic model (Jobst et al., 2001). If yi represents the positive

integer variables and ϑi is the minimum tradable lot that can be purchased for

each asset, the round lot constraint can be stated as follows:

wi = yi . ϑi, i = 1, . . . ,N, yi ∈ Z+ (2.19)

In the literature, round lot constraints are mainly modelled in two variants (see

Di Tollo and Roli (2008); Mansini et al. (2014) for detailed classification). In
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this work, round lot constraint is modelled as a fraction ϑi of the total invested

portfolio wealth. In other words, the round lot constraint defined in Eq. (2.19)

imposes that each weight must be the multiple of a given fraction ϑi where lot

size ϑi is uniform for all assets. This approach is also adopted by Jobst et al.

(2001) and Streichert et al. (2004a,b,c).

The inclusion of round-lot constraint may require relaxation of the budget con-

straint as the total capital might not be the exact multiples of the minimum

trading lot prices for various assets.

2.4.4 Pre-assignment Constraint

The pre-assignment constraint is usually used to model the investor’s subjective

preferences. An investor may intuitively wish a specific set of assets (Z) to be in-

cluded in the portfolio, with its proportion to be determined (Chang et al., 2000;

Di Tollo and Roli, 2008). This constraint can be modelled with binary variables

zi such that assets that need to be pre-assigned in a portfolio are denoted with

one (Gaspero et al., 2011).

zi =

{
1 if i ∈ Z
0 otherwise,

(2.20)

si ≥ zi, i = 1, . . . ,N, (2.21)

2.4.5 Class Constraints

In practice, investors may ideally want to partition the available assets into mu-

tually exclusive sets (classes). Each set may be grouped with common features

or types such as health care assets, energy assets, etc. or grouped by investors’

own intuition. Investors may prefer to select at least one asset from each class

to construct a well-diversified and/or safe portfolio. Let Cm,m = 1, . . . ,M, be

M sets of asset classes that are mutually exclusive, i.e., Ci ∩ Cj = ∅,∀i 6= j.

Class constraint requires that at least one asset from each class are invested in a
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portfolio and can be defined as follows:

si ∈ Cm, m = 1, . . . ,M, (2.22)

2.4.6 Class Limit Constraints

Investors may also want to restrict on how concentrated the investment portfolio

can be in a particular class or sector. Similar to the floor and ceiling constraints,

class limit constraints require that the total proportion invested in each class lies

between lower and upper limits specified by the investors. Let Lm be the lower

bound and Um be the upper bound for class m then the class limit constraints are

formulated as follows:

Lm ≤
∑

si ∈ Cm

wi ≤ Um, m = 1, . . . ,M, (2.23)

Note that class constraints (see Section 2.4.5) can be implicitly defined by class

limit constraints when a lower bound of each class is defined to be positive.

In this case, at least one asset from each class is required to be included in a

portfolio. Class and class limit constraints are first introduced by Chang et al.

(2000) and Anagnostopoulos and Mamanis (2011a) and Vijayalakshmi Pai and

Michel (2009) consequently consider the class constraints in their work. In their

studies, class constraints are implied by assuming that Lm > 0 for every class

m(m = 1, . . . ,M), .

2.4.7 Transaction Costs

When an investor buys or sells securities, expenses are incurred due to brokerage

costs and taxes. In general, these costs could be variable and/or proportional

to the traded volume. In some cases, a variable fee proportional to the traded

amount (Akian et al., 1996; Davis and Norman, 1990; Dumas and Luciano, 1991;

Shreve and Soner, 1994) might be imposed and/or they may also come together

with a fixed cost (i.e. fixed fee per transaction) (Lobo et al., 2007; Oksendal

and Sulem, 2002). Maringer (2005) presents four variants of transaction costs:
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fixed only, proportional only, proportional with lower bound and proportional

plus fixed costs. Let yi ∈ N+
0 be the natural, non-negative number of asset i ∈

[1, . . . ,N] and ηi be its current price When an investor faces proportional costs of

ζp and/or fixed minimum costs of ζf , the transaction cost TCi of asset i can be

expressed as such:

TCi =



ζf , fixed cost only

ζp.yi.ηi , proportional cost only

max{ ζf , ζp.yi.ηi } , proportional cost with lower limit

ζf + ζp.yi.ηi , proportional plus fixed cost

(2.24)

2.4.8 Turnover and Trading Constraints

This thesis is mainly concerned with the single-period portfolio selection prob-

lems. For the sake of completeness, we present variants of constraints that oc-

cur in the multi-period formulation of portfolio selection problems. Crama and

Schyns (2003) introduces these constraints as a variant of the single-period for-

mulation. Turnover constraints define maximum trading limits pre-specified by

practitioners to safeguard against excessive transaction costs between trading

periods (Scherer and Martin, 2005)and can be described as follows (Crama and

Schyns, 2003):

max(wi − w(0)
i , 0) ≤ Bi, i = 1, . . . ,N (2.25)

max(w
(0)
i − wi, 0) ≤ Si, i = 1, . . . ,N (2.26)

where w(0)
i denotes existing proportion of asset i prior to the portfolio construc-

tion, Bi denotes the maximum purchase and Si denotes maximum sale of asset i.

Trading constraints impose minimum limits to prevent buying and selling tiny
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quantities of assets when there are high fixed transaction costs. Trading con-

straints can be expressed as follows (Crama and Schyns, 2003):

wi = w
(0)
i ∨ wi ≥ w

(0)
i +Bi, i = 1, . . . ,N (2.27)

wi = w
(0)
i ∨ wi ≤ w

(0)
i − Si, i = 1, . . . ,N (2.28)

where w(0)
i represents existing proportion of asset i in the initial portfolio, Bi and

Si denote the minimum purchase and sale of asset i respectively.

2.5 Datasets

Problem instances for Mean-Variance model

Test problems based on well-known major market indices for the portfolio op-

timization problems are publicly available from the OR-library (Beasley, 1990,

1999). Table 2.1 shows the details of these benchmark indices and their sizes.

It should be noted that, for commercial reasons, these datasets have been dis-

guised, such that the identities of the assets associated to the data are not unfold.

In the current literature of portfolio optimization problems, these market indices

provided by the OR-library have been widely used, and are recognized as the

benchmark to evaluate the performance of different computational algorithms.

Instance Origin Name Number of assets
D1 Hong Kong Hang Seng 31
D2 Germany DAX100 85
D3 UK FTSE 100 89
D4 US S&P 100 98
D5 Japan Nikkei 225
D6 US S&P 500 457
D7 US Russell 2000 1318

Table 2.1: The benchmark instances from OR-library.
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The first five datasets (D1 − D5) built from weekly price data from March

1992 to September 1997 and their best known optimal solutions are available

at: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. They

were first introduced by Chang et al. (2000). The remaining two datasets were

built based on the index tracking problem and they were first introduced by

Canakgoz and Beasley (2009). These two datasets (D6 and D7) are available at:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/indtrackinfo.html. An

example OR-library dataset is also provided in Appendix B.1.

The first five datasets (D1 − D5) have been used for the mean variance con-

strained portfolio optimization problems considered in chapter 4 and chapter 5.

All seven datasets (D1− D7) have been used for mean variance constrained port-

folio optimization problems considered in chapter 6.

It should also be noted that Cesarone et al. (2011, 2013) also provide five

additional market indices: EuroStoxx50 in Europe, FTSE 100 in UK, MIBTEL

in Italy, S & P 500 in USA and NASDAQ in USA. These instances built from

weekly price data from March 2003 to March 2008 are publicly accessible at:

http://w3.uniroma1.it/Tardella/datasets.html. However, these problem

instances are not very well-known and they have not been widely used by many

studies.

Problem instances for mean-VaR model

In this research, two new datasets (DS1 and DS2) were created for the mean-VaR

portfolio optimization problems studied in chapter 7. These two datasets based

on historical daily financial market data have been retrieved from the Yahoo!

Finance3. It was observed that historical time series downloaded from this site

had some missing data points and hence those assets with missing data points

were discarded. The first dataset (DS1) consists of 94 securities from the S & P

100 and covers daily financial time series data over a period of three years from

3 http://finance.yahoo.com
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01/03/2005 to 20/02/2008, totalling 750 trading days.

The second dataset (DS2) is composed of 475 securities from the S & P 500 and

covers daily financial time series data over a period of one year from 11/04/2013

to 04/04/2014, totalling 250 trading days. The datasets are available to ac-

cess online at: http://www.cs.nott.ac.uk/~ktl. An example of a small set

of dataset is also presented in Appendix B.2. Constituents of datasets DS1 and

DS2 are provided in Table B.4 and Table B.5 respectively. These datasets have

been used for mean-VaR portfolio optimization with cardinality, quantity, pre-

assignment, round lot, class and class limit constraints in order to study the

performance of the evolutionary algorithms considered in this work presented in

chapter 7.

2.6 Summary

In this chapter, we provide a detailed description of the various optimization

approaches for the mean variance portfolio optimization problems. In addition,

the basic concepts and limitations of the mean variance (MV) model are also

discussed. An alternative risk measure, value-at-risk (VaR), for the Mean-VaR

model is also described. Additionally, practical trading constraints commonly

faced by investors are described. The detailed descriptions of the market indices

used in this thesis for computational analysis are also presented. This chapter

provides an introduction to the background of the constrained portfolio opti-

mization problems considered in this thesis.
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Chapter 3

Evolutionary Algorithms: An
Overview

“... one general law, leading to the

advancement of all organic

beings, namely, multiply, vary, let

the strongest live and the weakest

die.”

Charles Darwin

3.1 Introduction

An optimization problem can be roughly defined as hard if it cannot be solved

to optimality, or to any guaranteed bound, by any exact (deterministic) method

within a “reasonable” computational time (Boussäıd et al., 2013). In the do-

mains of Artificial Intelligence and Operation Research, a metaheuristic, first

introduced by Glover (1986), refers to an algorithm designed to approximately

solve a wide range of hard optimization problems with little or no modifica-

tion (Blum et al., 2011; Blum and Roli, 2003; Boussäıd et al., 2013). The term

“meta” is prefixed to denote that these algorithms are higher-level heuristics,

in contrast to problem-specific heuristics (Boussäıd et al., 2013; Talbi, 2009). In

the domains of computer science and optimization, a heuristic refers to the art of
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discovering new techniques which, especially in practice, deliver good solutions

to a problem based on a “rule of thumb” or a set of rules derived from domain

knowledge (Blum et al., 2011).

Metaheuristics are one of the successful alternative approaches to solve hard

optimization problems for which no deterministic methods are known (Boussäıd

et al., 2013). However, they are not function optimizers. That is, their goal

is to find good solutions to the problem, rather than a guaranteed optimal so-

lution. Metaheuristic algorithms are mainly divided into trajectory-based and

population-based algorithms. The former relies on a single solution while the

latter manages a set of solutions (population) to perform the search.

Evolutionary Algorithms (EAs) are one of the most studied population-based

methods. They are inspired from the process of natural evolutionary principles

(Darwin, 1859) in order to develop search and optimization techniques for solv-

ing complex problems. Because of their abilities to tackle complex and real-world

optimization problems in many different application areas, EAs have gained sig-

nificant amount of research interest over the last few decades. Multi-objective

Evolutionary Algorithms (MOEAs) are one of the current trends in developing

EAs.

This chapter firstly introduces some main concepts and definitions related to

multi-objective optimization problems. The principles of a number of well-

known and commonly used evolutionary algorithms are then presented. It is

noted that the scope of this thesis is limited to population-based EAs.

3.2 Multi-objective Optimization Problems

Optimization refers to finding the best possible solution to a problem given a

set of limitations or constraints (Coello and Zacatenco, 2006). Multi-objective

optimization problems (MOPs) involve multiple performance criteria or objec-

tives which need to be optimized simultaneously (Fonseca and Fleming, 1995).

27



3. Evolutionary Algorithms: An Overview

A general multi-objective optimization problem (MOP) can be formally defined

as follows:

Maximize/Minimize F (X) = [f1(X), f2(X), . . . , fJ(X)]

subject to bı(X) ≥ 0, ı = 1, 2, . . . , I,

he(X) = 0, e = 1, 2, . . . , E,

X ∈ Ω, J ≥ 2,


(3.1)

where Ω is a decision space and X is a vector of D decision variables: X =

[x1, x2, . . . , xD] ; J is the number of objectives; I is the number of inequality

constraints; and E is the number of equality constraints. The vector of deci-

sion variables X can be either continuous or discrete. If X is a discrete (and

finite) set of solutions, then the problem defined in Eq. (3.1) is called a multi-

objective combinatorial optimization problem. F (X) consists of J objective func-

tions fj : Ω→ <, a mapping from decision variables [x1, x2, . . . , xD] to objective

vectors [y = a1, a2, . . . , aJ ], where <J is the objective space (Coello et al., 2007;

Deb, 2001; Zhou et al., 2011).

There are J objective functions considered in Eq. (3.1) and each objective func-

tion can be either minimized or maximized. In the context of optimization, the

duality principle (Deb, 2001, 2012) suggests that a maximization problem can be

converted into a minimization one by multiplying the objective function with -1.

This principle has made the optimization problems with mixed type of objectives

easy to handle by transforming the objective into one same type of optimization

problems.

3.2.1 Pareto optimality

In many real-world applications, the objectives of MOPs are usually conflicting

and optimizing one objective often results in degrading the others. The optimal

solution for MOPs, therefore, is not a single solution but a set of ‘compromise’
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solutions representing the trade-offs (i.e., Pareto set) between the conflicting ob-

jectives (Deb, 2001; Fonseca and Fleming, 1995). Before we discuss further, let

us present the following definitions (Deb, 2001; Zitzler et al., 2010) that are in-

tegral concept in solving MOPs.

Definition 3.1. A solution X that satisfies all of the (I + E) constraints and
variable bounds X ∈ Ω is called a feasible solution.

Definition 3.2. A feasible solution X1 is defined to dominate another feasible
solution X2 (denoted as X1 � X2 (Deb, 2001)), if both of the following conditions
hold:

1. The solution X1 is no worse than X2 in all objectives.

2. The solution X1 is strictly better than X2 in at least one objectives.

Alternatively, it can be stated that X1 is non-dominated by X2 or X2 is domi-
nated by X1.

Definition 3.3. Two solutions, X1 and X2, are called incomparable(denoted as
X1 ‖ X2) if neither X1 dominates X2 or X2 dominates X1 (i.e., if X1 � X2 ∨X2 �
X1).

Definition 3.4. A solution X ′ ∈ Ω is called (globally) Pareto optimal or efficient
if there is no solution X ∈ Ω such that F (X) dominates F (X

′
).

Definition 3.5. The set of all the Pareto optimal solutions is called the Pareto set
or efficient set, denoted as Ptrue :

Ptrue = {X ′ ∈ Ω | @X ∈ Ω, F (X) � F (X
′
)}.

The image of the Ptrue plotted in the objective space is called the Pareto front or
efficient frontier, denoted as EFtrue:

EFtrue = {F (X) | X ∈ Ptrue}.
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Figure 3.1 shows the Pareto optimality concept for a bi-objective minimization

problem. Figure 3.1(a) describes the Pareto optimal solutions with filled circles

whereas the solutions that are dominated are represented by the non-filled cir-

cles. Figure 3.1(b) shows that there exist solutions that are worse than X in

both objectives, better than X in both objectives, and incomparable (better in

one objective, worse in the other objective).

(a) Non-dominated solutions (b) Dominance relations in reference to X

Figure 3.1: Pareto optimality concept for bi-objective minimization problem
(Baños et al., 2009).

3.2.2 Multi-objective Optimization Approaches

There are two general approaches to solve the multi-objective optimization prob-

lems. One common approach is optimizing all objectives simultaneously based

on the dominance relationship to determine the Pareto optimal set (Ptrue) or

a representative subset of Pareto optimal set (see Section 3.2.1). An alternative

approach is to combine the individual objective functions into a single composite

function by adopting a weighted sum method as follow.
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Weighted Sum Method

Prior to optimization, the weighted sum method transforms the multiple objec-

tives into a single objective function by aggregating all objectives in a weighted

function:

Maximize/Minimize F (X) =
J∑
j=1

λjfj(X),

subject to λj ≥ 0,
J∑
j=1

λj = 1,


(3.2)

where the weights (λj) can reflect the relative importance of the objectives. This

approach produces a single solution with a given weight vector {λ1, λ2, . . . , λJ}.
Therefore, the problem must be solved repeatedly with different combination of

weights (i.e., pre-determined) in order to achieve multiple solutions to deter-

mine the Pareto optimal set (Ptrue) or a representative subset of Pareto optimal

set (Pknown). The main drawback of this approach is that it requires a priori

knowledge about the relative importance of the objectives (Konak et al., 2006).

3.2.3 Optimization Goals of MOPs

The ultimate goal of a MOP is to identify the set of Pareto solutions (Ptrue). The

Pareto front gives a set of reasonable choice and it is a choice of the decision

maker to pick a point along the Pareto front as his/her ultimate solution. How-

ever, identifying the entire Pareto set (Ptrue) is practically impossible for large-

scale multi-objective optimization problems. In fact, for many MOPs, especially

for combinatorial optimization problems, proof of optimal solutions is computa-

tionally infeasible. In such cases, a practical approach is to investigate a set of

solutions (the best-known Pareto set) that best approximate the true Pareto front

(Ptrue) (Konak et al., 2006).

31



3. Evolutionary Algorithms: An Overview

3.3 Evolutionary Algorithms

Evolutionary Algorithm (EA) is a collective term for all variants of optimization

algorithms that are inspired by biological evolution. An evolutionary algorithm

(EA) is an iterative and stochastic (involving random variables) process that op-

erates on a set of individuals (population) through operations of selection, recom-
bination and mutation, thereby producing better solutions. A generic structure

of an EA is described in Algorithm 3.1 (Bäck and Schwefel, 1993).

Algorithm 3.1: Generic Evolutionary Algorithm
1 g ← 0;
2 initialize a population P g with random individuals;
3 evaluate each individual in P g;
4 while not termination condition do
5 g ← g + 1;
6 P̄ g ← recombine(P g);
7 P̂ g ← mutate(P̄ g);
8 evaluate(P̂ g);
9 P g+1 ← select(P̂ g ∪ P g);

An individual represents a potential solution to the problem being solved. Ini-

tially, the population is generated randomly or with the help of problem-specific

heuristics. Each individual in the population is evaluated by a fitness function,

which is a measure of quality with respect to the problem under consideration.

At each iteration (generation), a population of candidate solutions is capable of

reproducing and is subject to genetic variations followed by the environmental

pressure that causes natural selection (survival of the fittest). New offspring so-

lutions are produced by recombination of parents and mutation of the resulting

individuals to promote diversity. A suitable selection strategy is then applied to

identify the solutions that survive to the next generation. This process repeats

until a predefined number of generations (or function evaluations) or some other

specific stopping criteria are met (Boussäıd et al., 2013).
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3.3.1 Single Objective Evolutionary Algorithms

This section reviews the principles and applications of a number of population-

based evolutionary algorithms for single objective optimization approaches. These

EAs may be adapted or hybridized to solve the portfolio optimization problems

concerned in this thesis.

3.3.1.1 Population-Based Incremental Learning

Population-based incremental learning (PBIL), a combination of evolutionary al-

gorithm and competitive learning, was first introduced by Baluja (1994). PBIL

abstracts away from the crossover and selection operators and achieves its search

through probability estimation and sampling techniques. The main feature of

PBIL is the introduction of a real-valued probability vector V which is explicitly

utilized to generate promising solutions. It maintains the probability vector V

characterizing the structures of high-quality solutions found throughout the evo-

lution. The procedure of the standard PBIL is shown in Algorithm 3.2 (Baluja,

1994).

Given a D-dimensional binary optimization problem, PBIL maintains a D-dimens-

ional probability vector V := {υg1 , . . . , υ
g
D}. The ith element of V represents the

probability that the ith element of a candidate solution will be equal to 1. Ini-

tially, the values of the probability vector are initialized to 0.5 to reflect the lack

of a priori information of each variable, and sampling from this vector will thus

create a uniform distribution of the initial population on the feasible parameter

space (Yang et al., 2007). In each generation g, the probability vector υg is uti-

lized to generate a set S of n candidate solutions. Each solution in set S is then

evaluated and assigned a fitness value using a problem-specific fitness function.

After the fitness evaluation, the probability vector is updated by shifting towards

the best so far solution Bg = {bg1, . . . , b
g
D} as follows:

υgi = (1− LR)× υgi + LR× bgi ; i = 1, . . . ,D, (3.3)
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Algorithm 3.2: The basic procedure of PBIL
Input: D: the number of dimension in probability vector,

LR: learning rate,
MP: mutation probability,
β: the amount of perturbation on probability vector,
n: the number of solutions in set S;

Output: Sg;
1 g := 0;
// initialize probability vector V := {υg1 , . . . , υ

g
D}.

2 for i := 1 to D do
3 υgi := 0.5;

4 repeat
5 g := g + 1;
6 Sg ← generate n samples by V ;
7 evaluate samples Sg;
8 Bg ← select the best solution from (Bg−1 ∪ Sg);

// update V towards best solution Bg

9 for i := 1 to D do
10 υgi := (1− LR)× υgi + LR× bgi ;

// mutate V
11 for i := 1 to D do
12 if rand(0, 1] <MP then
13 υgi := (1− β)υgi + β × randint(0, 1);

14 until V has converged or termination condition is met;

where LR is the learning rate specifying the distance the probability vector V

is shifted at each generation. At each iteration, a bit-wise mutation operation

may then be adopted to maintain diversity and avoid local optima. During this

phase, a small amount of probability perturbation β is performed on a subset of

the vector V if a certain mutation probability MP is met:

υgi = (1− β)× υgi + β × randint(0, 1), (3.4)

As the search progress, the probability vector V is expected to shift gradually to

solutions with the highest fitness values.
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In contrast to traditional evolutionary algorithms, PBIL stores a single proba-

bility vector instead of a large set of solutions (see Figure 3.2). Since it does

not need to maintain the population of the solution, PBIL has lowered memory

usage than traditional EAs. Moreover, it is computationally less expensive since

it does not require to perform crossover and selection operators (Baluja, 1994;

Baluja and Caruana, 1995; Southey and Karray, 1999; Ventresca and Tizhoosh,

2008).

Figure 3.2: Difference between GA and PBIL representation (Gosling et al., 2005;
Talbi, 2009).

Due to its straight-forward design philosophy and implementation simplicity,

PBILs has gained ample attractions and many studies have been contributed

to the literature. Some of these studies are concerned with the applications

of the algorithm (Folly, 2011; Galić and Höhfeld, 1996; Gosling et al., 2005;

Kern, 2006; Vega-Rodŕıguez et al., 2007; Xing and Qu, 2011a,b). Others are

concerned with the extensions of the method to continuous spaces (Sebag and

Ducoulombier, 1998; Yuan and Gallagher, 2003), for multi-objective optimiza-

tion problems (Bureerat and Sriworamas, 2007), with parallel versions (Baluja,

1997; Yang et al., 2007; Yang and Yao, 2005), and with combination of other

methods (Bureerat, 2011; Hong et al., 2008; Quek et al., 2009; Ventresca and

Tizhoosh, 2008).
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3.3.1.2 Differential Evolution

Differential evolution (DE) algorithm, first introduced by Storn and Price (1997),

is one of the most popular evolutionary algorithms for the continuous global op-

timization problems. DE is a stochastic direct search method that exploits direc-

tional information from a population of potential solutions to explore the search

space. The main idea of DE is that it uses a scheme (so-called self-referential

reproduction scheme) for generating trial population. Selection operation then

determines which individuals will survive into the next generation. The detailed

procedure of the DE is shown in Algorithm 3.3 (Mezura-Montes et al., 2006).

Algorithm 3.3: Basic DE Algorithm
Input: G: the number of generation,

D: the number of dimension,
F: a scaling factor,
CR: crossover probability,
NP: the number of population;

Output: Xg+1
j ;

1 g := 1;
2 Generate a random initial population Xg

j , ∀j, j = 1, . . . ,NP;
3 Evaluate f(Xg

j ), ∀j, j = 1, . . . ,NP;
4 for g := 1 to G do
5 for j := 1 to NP do
6 Select randomly r1, r2, r3 ∈ [1,NP] ∧ r1 6= r2 6= r3 6= j;
7 k := randint(1,D);
8 for i := 1 to D do
9 if ((randi[0, 1) < CR) or (i == k)) then

10 ug+1
j,i := xgr3,i + F × (xgr1,i − x

g
r2,i

);

11 else
12 ug+1

j,i := xgj,i;

13 if f(U g+1
j ) ≤ f(Xg

j ) then // consider minimization problems

14 Xg+1
j := U g+1

j ;

15 else
16 Xg+1

j := Xg
j ;

17 g := g + 1;
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Population Structure

DE is a population-based algorithm that is designed to optimize functions in

a D-dimensional continuous domain (Simon, 2013). An individual X with D

decision variables represents a potential solution for the optimization problem:

X ={x1, x2, . . . , xD},

ε∗i ≤ xi ≤ δ∗i , i = 1, . . . ,D.
(3.5)

where ε∗i and δ∗i are the lower and upper boundary constraints of the ith di-

mension respectively. At each generation g, DE maintains a population of NP

individuals, Xg
j , j ∈ [1,NP] and the structure of a population is described as

follows:

P g = {Xg
1 , X

g
2 , . . . , X

g
NP },

g = 1, . . . , G; NP ≥ 4.
(3.6)

Initialization

A population of candidate solutions for the optimization task to be solved is

randomly initialized within the given lower and upper bounds:

P 0 = x0j,i = ε∗i + randi[0, 1)× (δ∗i − ε∗i ),

j = 1, . . . ,NP; i = 1, . . . ,D.
(3.7)

where randi[0, 1) denotes a uniformly distributed random real value within the

range[0,1).

Reproduction

The self-referential population reproduction scheme of DE is different from the

other evolutionary algorithms. From the first generation onward, a candidate or

trial population for the subsequent generation, U g = ug+1
j,i , is generated through
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mutation and crossover operations by randomly sampling and combining the

current population, P g.

Mutation

DE mutation operation utilizes the differences of vector formed from chromo-

somes in the evolving population in order to determine both the degree and

direction of perturbation applied to the mutant individual. Figure 3.3 illustrates

how the mutant vector V is obtained in a two dimensional parametric space.

Figure 3.3: Illustration of a basic DE mutation: the weighted differential, F ×
(Xr2−Xr3) is added to the based vector, Xr1, to produce a trial vector V (Simon,
2013).

The basic DE mutation scheme adds a scaled vector difference to a third vector

as follows:

V g+1
j = Xg

r3
+ F × (Xg

r1
−Xg

r2
),

j = 1, . . . ,NP; g = 1, . . . , G;

r1, r2, r3 ∈ [1,NP],

(3.8)
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where three indexes, r1, r2 and r3, refer to the randomly chosen vectors of the

current population. They are mutually exclusive integers randomly chosen from

the range [1,NP], which are also different from the index j. A scaling factor,

F ∈ (0, 1+), is a positive real number that controls the rate at which the popu-

lation evolves (Price et al., 2006). In addition, scaling can shift the focus of the

search between points and can reduce the probability of being trapped in a local

minimum. Figure 3.4 shows the features of DE mutation scheme. Figure 3.4(a)

illustrates that trial vectors avoid producing duplicate existing points due to the

scaling of the vector difference. Figure 3.4(b) illustrates that the probability of

being trapped in a local minimum can be reduced due to the presence of sub-

stantial number of combination of difference vector.

(a) Effects of scaling (b) Effects of large differences

Figure 3.4: The effects of scaling, and large vector differences (Price et al.,
2006).
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Crossover/Recombination

DE crossover operation is introduced in order to promote the diversity of the

population. The trial vector U g
j is constructed from components of the parent Xg

j

and mutant vectors V g
j .

U g
j = ug+1

j,i =

v
g+1
j,i , if randi[0, 1) ≤ CR ∨ i == k

xgj,i, otherwise,

k ∈ {1, . . . ,D},

j = 1, . . . ,NP; i = 1, . . . ,D

(3.9)

where randi[0, 1) is a uniformly distributed random number generated at each

jth index. The index k denotes a randomly selected chromosome which is used in

order to ensure that each candidate individual, U g+1
j , differs from its counterpart

in the previous generation, Xg
j , by at least one parameter. Otherwise, no new

individual would be created and the population would not vary (Brest et al.,

2006; Lampinen, 2002). CR ∈ [0, 1] controls the influence of the parent in the

generation of the candidate population. Higher CR value means less influence

of the parent.

Selection

During the selection process, each individual from the candidate population is

compared with its counterpart in the current population. If the candidate indi-

vidual is better than or as good as its counterpart in the current population, it

wins a place in the population of the next generation, P g+1:

Xg+1
j =

U
g+1
j , if f(U g+1

j ) ≤ f(Xg
j )

Xg
i , otherwise,

(3.10)

The above greedy selection approach ensures that the population of next gen-

eration is at least as good as their counterparts in the current generation. Note
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that the candidate individual is compared to only one individual, not to all the

individuals in the current population.

Constraint Handling

It is important to note that the resultant trial individual may violate the bound

constraints as a result of the recombination scheme (Lampinen, 2002; Onwubolu

and Davendra, 2006). In such case, the simple way is to replace those indexes

that violated the boundary constraints with random values generated within the

feasible range as follows:

ug+1
j,i =

ε∗i + randi(0, 1]× (δ∗i − ε∗i ), if ug+1
j,i < ε∗i ∨ ug+1

j,i > δ∗i

ugj,i, otherwise,
(3.11)

Discrete Optimization

As mentioned in the introduction of this section, DE was originally designed

for optimization problems with continuous domain, but it can be modified for

discrete domains. Fundamentally there are two approaches to extend DE for

discrete problems. We can generate the mutant vector V with the standard DE

methods (see Eq. 3.8), and then modify it to lie in the problem domain. Alter-

natively, we can modify the mutation method in such a way that the generated

mutant vector V fall within the problem domain (Simon, 2013).

Variants of DE

There are several variants of DE and it is commonly classified using the DE/x/y/z
notation where x represents a string denoting the base vector to be perturbed, y

indicates the number of difference vectors considered for perturbation of x and

z denotes the type of crossover being used. The most popular scheme is called

“DE/rand/1/bin”, where “rand” refers that the individuals selected to compute
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the mutation are chosen at random, “1” represents the number of pairs of solu-

tions chosen and finally “bin” denotes a binomial crossover. Algorithm 3.3 shows

the basic “DE/rand/1/bin” scheme.

Applications and Improvements

Since its introduction in 1995, DE has gained significant interests from many re-

searchers and practitioners due to its simplicity and efficiency. This has resulted

in many variants of DE algorithm. Some of these variants are devised to tackle

specific problems (Cai et al., 2008; Das et al., 2008; Krink et al., 2009; Krink

and Paterlini, 2011; Onwubolu and Davendra, 2006; Vasile et al., 2011; Zhang

et al., 2013). Others are concerned with self-adapting DE control parameters

for numerical optimization (Brest et al., 2006; Ghosh et al., 2011; Qin et al.,

2009), with opposition-based DE (Rahnamayan et al., 2008) , with parallel DE

(Tasoulis et al., 2004), for constrained optimization (Becerra and Coello, 2006;

Mezura-Montes et al., 2010; Mohamed and Sabry, 2012; Zhang et al., 2008),

for multi-objective optimization problems (Lampinen, 2002; Robič and Filipič,

2005; Wang and Cai, 2012; Zhang and Sanderson, 2009), using combination of

other search algorithms (Fan and Lampinen, 2003; Jia et al., 2011; Liu et al.,

2010; Mininno et al., 2011; Noman and Iba, 2008; Yang et al., 2008). Detailed

survey of DE and its recent advances can be found in (Das and Suganthan, 2011;

Neri and Tirronen, 2010).

3.3.1.3 Scatter Search

Scatter search (SS), first proposed by Glover (1977, 1986), is an evolutionary

algorithm that has been successfully applied to a diverse array of hard optimiza-

tion problems (Glover et al., 2000a). Scatter search algorithm is mainly designed

to operate on a small set of solutions (reference set) and new solutions are con-

structed in a systematic way by combining subsets of solutions from the reference

set (RefSet). It uses strategies for search diversification and intensification that

have proved effective in a variety of optimization problems. Algorithm 3.4 shows

the basic procedure of scatter search (Mart́ı et al., 2006).
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Algorithm 3.4: Basic Scatter Search Procedure
Input: NP: the number of population,

b: the number of solutions in RefSet;

Output: Best found solution or set of solutions;

1 P = ∅;
2 Use diversification generation method to construct a solution x and

apply the improvement method. If the resulting solution x /∈ P then add x

to P . Otherwise, discard x. Repeat this step until |P | = NP;

3 Use the reference set update method to build the reference set RefSet

with b best solutions in P ;

4 NewSolutions = TRUE;

5 while ( NewSolutions ) do

6 Generate NewSubsets with subset generation method;

7 NewSolutions = FALSE;

8 while ( NewSubsets 6= ∅ ) do

9 Select the next subset s̄ in NewSubsets;

10 Apply the solution combination method to s̄ to obtain one or

more new trial solutions;

11 Apply the improvement method to the trial solutions;

12 Apply the reference set update method;

13 if ( RefSet has changed ) then

14 NewSolutions = TRUE;

15 Delete s̄ from NewSubsets;

Scatter search algorithm is based on a very flexible framework since each of its

components can be implemented in a variety of ways and degrees of sophistica-

tion (Mart́ı et al., 2006). The template of a scatter search algorithm generally has

five components (Glover, 1998). Figure 3.5 shows the schematic representation

of the interaction among these five components.
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Figure 3.5: Search components of the scatter search algorithm (Talbi, 2009).

Diversification Generation Method:

This method generates a large set P of diverse trial solutions, using an

arbitrary trial solution (or seed solution) as an input.

Improvement Method:

This method transforms a trial solution into one or more improved trial

solutions. The generated solutions may or may not be better (in terms

of quality and feasibility) than the input solution. The diversity of solu-

tions provided by the combination method is exploited by the improvement

method in order to achieve enhanced solutions. The possible improvement

method ranges from simple variants of local search to a very specialized

search (Herrera et al., 2006).

Reference Set Update Method:

This method builds and maintains a reference set with b solutions where

the value of b is typically small. The objective is to ensure diversity while

keeping high-quality solutions. Several other alternative criteria may be
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used to add solutions to the reference set and delete solutions from the

reference set (Resende et al., 2010).

Subset Generation Method:

This method operates on the reference set to produce subsets of reference

solutions (Mart́ı et al., 2006).

Solution Combination Method:

This method uses subsets of solutions generated from the subset generation

method to construct one or more combined solutions. The resulting new

solutions are combined from usually two (or more) reference solutions.

The combination of reference solutions is specifically designed to exploit

context information, not contained separately in the reference solutions.

This method also has a strong influence on the exploration since generated

new solutions contribute to population diversity (Herrera et al., 2006).

In contrast to other evolutionary algorithms, such as genetic algorithms (GA),

which typically have some stochastic element to their solution generation opera-

tions, scatter search is designed to minimize (if not eliminate) decisions made by

random (or more usually pseudo-random) chance (Burke et al., 2010). Instead,

scatter search is based on “systematic and strategically designed rules” (Burke

et al., 2010; Glover et al., 2000a,b). That is, the solution generation in scatter

search replaces randomized implementation with a deterministic method called

Subset Generation Method in order to construct better solutions (Herrera et al.,

2006). This method is usually designed based on the structure and properties of

the problem being solved, as well as on the search history (Resende et al., 2010).

Another difference from traditional EAs is that new solutions encountered dur-

ing the evolving process are added to the population or to the reference set. In

many GAs, new solutions are allowed to enter the current population based on

the solution quality. In scatter search, however, an arbitrary method for com-

paring the two solutions is used to reflect the reference set’s overall diversity.

Therefore, the decision that a new solution becomes a member of reference set

is not purely based on its quality (objective function values), but also based on
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its diversity relative to members of the reference set (Burke et al., 2010; Resende

et al., 2010).

Out of the five components, the improvement method is not strictly required.

It can be incorporated if high-quality solutions are necessary. When the optional

improvement methods are incorporated into the scatter search procedure, it can

be classified as a family of memetic algorithms (MAs) (Moscato et al., 2004).

Since its introduction, scatter search has been successfully applied to a wide

range of applications (Burke et al., 2010; Pinol and Beasley, 2006; Russell and

Chiang, 2006). It has also been extended for multi-objective optimization (Beau-

soleil, 2006; Nebro et al., 2008), with parallel version (Garcıa López et al., 2006)

and with other methods (Maenhout and Vanhoucke, 2010).

3.3.2 Pareto-based MOEAs

The idea of measuring an individual’s fitness on the basis of Pareto dominance

was first proposed by Goldberg (1989). Many approaches to exploiting partial

orderings of the population have subsequently been proposed in the literature.

This section reviews a number of MOEAs that explicitly use a measure based

on Pareto domination to rank individuals. A number of MOEAs discussed in

this section are adapted or hybridized for the constrained portfolio optimization

problems considered in this thesis.

3.3.2.1 Elitist Non-dominated Sorting Genetic Algorithm

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), an improved ver-

sion of NSGA (Srinivas and Deb, 1994), was presented by Deb et al. (2002).

Compared to its predecessor, NSGA-II is enhanced with three significant fea-

tures:

• A fast non-dominated sorting approach that reduces the computational

complexity from O(JI3) to O(JI2), where J is the number of objective

and I is the population size.
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• An elitism approach that prevents the loss of promising solutions already

found is introduced.

• A parameterless diversity preservation scheme is introduced by adopting

a crowded-comparison approach that eliminates the difficulty of setting an

appropriate parameter value for the fitness sharing function to ensure the

diversity in the population.

Non-dominated Sorting

NSGA-II is built on the basic framework that utilizes a layered classification

technique. The basic idea is to classify individuals in the population into non-

dominated fronts Łi. First, all non-dominated individuals in population P are

identified. The set of these identified individuals are classified into one category

with the first front or level Ł1 and they are then eliminated from further consid-

eration. The process is then repeated with the remaining individuals until the

entire population is ranked (see Figure 3.6(a)).

(a) ranking (b) distance

Figure 3.6: Non-dominated sorting and crowding distance methods used in
NSGA-II for two objectives (Deb et al., 2002).
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The procedure of a faster non-dominated sorting is outlined in Algorithm 3.5.

Each individual p has two entities: (1) a domination count np, the number of so-

lutions which dominate p, and (2) a set Sp of individuals which dominate p. The

individuals in the first front will have their domination count as zero. For each

individual p with np = 0, reduce the domination count of each solution p′ ∈ Sp
by one. When the domination count of a member p′ in set Sp becomes zero,

it is put in a set P ′ which keeps the second non-dominated front. This process

repeats until all fronts are classified.

Algorithm 3.5: Non-dominated Sorting Procedure (Deb et al., 2002).
Input: A set of solutions (population P );
Output: Sorted population P ranked by non-dominating criteria;

1 forall the p ∈ P do
2 Sp = ∅;
3 np = 0;
4 forall the p′ ∈ P do
5 if (p � p′) then
6 Sp = Sp ∪ p′;
7 else if (p′ � p ) then
8 np = np + 1;
9

10 if (np = 0) then
11 prank = 1;
12 Ł1 = Ł1 ∪ p;

13 i = 1;
14 while ( Łi 6= ∅) do
15 P ′ = ∅;
16 forall the p ∈ Łi do
17 forall the p′ ∈ Sp do
18 np′ = np′ − 1;
19 if (np′ = 0 ) then
20 p′rank = i+ 1;
21 P ′ = P ′ ∪ p′;

22 i = i+ 1;
23 Łi = P ′;
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Crowding Distance Computation

The crowding distance of a particular solution i is the average distance of its two

neighbouring solutions. Figure 3.6(b) shows the crowding distance of individual

x which is calculated as an average distance of the largest cuboid enclosing x

without including any other point. The crowding distance is computed by first

sorting the population in an ascending order of objective function values. The

boundary solutions of each objective function are set with infinite values in or-

der to ensure that they are always selected. All other intermediate solutions are

computed by the absolute normalized difference of two adjacent solutions. The

overall crowding distance is obtained by adding the individual distance values

of each objective (Deb et al., 2002). The procedure is shown in Algorithm 3.6

where fj(x) denotes the jth objective function value of the individual x in the set

X, cdj(x) denotes the crowding distance of jth objective function of individual x

and fmaxj and fminj are the maximum and minimum values of the jth objective

function.

Algorithm 3.6: Crowding distance assignment (Deb et al., 2002).
Input: A set of n solutions X = {x1, . . . , xn};
Output: A set of solutions with crowding distance values ;

// for each objective j

1 for j := 1 to J do

2 sort(X, j);

3 cdj(x1) = cdj(xn) =∞; // boundary points

4 for i := 2 to n− 1 do

5 cdj(xi) = cdj(xi) +
fj(xi+1)− fj(xi−1)

fmaxj − fminj

;

The distance value provides an estimation of the density of solutions surround-

ing to a particular solution (Deb et al., 2002). During the selection process, in

a case that two solutions, x1 and x2, are on the same non-dominated front, the

crowding distance measure is used as a tie-breaker to choose the winner be-
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tween the two. The one with the higher crowding distance is preferred (Konak

et al., 2006). This is also termed as crowded tournament selection operator as

described below (Deb, 2001).

Definition 3.6. Crowded Tournament Selection Operator: A solution X1 wins
a tournament with another solution X2 if any of the following conditions hold:

1. if solution X1 has better rank than X2.

2. if both have the same rank but solution X1 has a better crowding distance
than solution X2.

Algorithm 3.7: Outline of the NSGA-II Procedure (Deb, 2001).

Input: An initial population P g;

Output: P g+1 ;

Step 1: combine current and candidate populations and create

Cg = P g ∪ P̄ g perform a non-dominated sorting to Cg and identify

different fronts Łi, i = 1, . . . , n ( see Algorithm 3.5).

Step 2: Set new population P g+1 = ∅. Set a counter i = 1. Until

(| P g+1 | + | Łi | < NP), perform P g+1 = P g+1 ∪ Łi and i = i+ 1.

Step 3: perform the crowding distance sorting procedure and add the

most widely spread (NP − | P g+1 |) solutions by using the crowding

distance values in the sorted Łi to P g+1.

Step 4: create candidate population P̄ g+1 from P g+1 using the crowded

tournament selection, crossover and mutation operations.

The procedure of the NSGA-II is described in Algorithm 3.7. At each generation

g, a current population P g and a candidate population P̄ g are merged into one as

Cg. The combined population Cg is then sorted and ranked by non-domination

level. Elitism is therefore ensured by preventing the loss of good solutions al-

ready found in the previous population. The new population P is first filled with

solutions in the best front Ł1 . If the number of solutions in set Ł1 is less than the

population size NP, the remaining members of the next population are selected
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from subsequent fronts Ł2, Ł3 and so on. To be able to select an exact number of

NP individuals, crowding distance measure is used to decide the winner among

the individuals which resides at the same front (see Algorithm 3.7, line-10). The

new population P̄ g+1 is then generated by the mutation, crossover and selection

operations.

3.3.2.2 Improving the Strength Pareto Evolutionary Algorithm

Improving the Strength Pareto Evolutionary Algorithm (SPEA2), an improved

version of SPEA (Zitzler and Thiele, 1999), was presented by Zitzler et al. (2001).

The procedure of the SPEA2 is outlined in Algorithm 3.8.

Algorithm 3.8: SPEA2 Procedure (Zitzler et al., 2001).
Input: G: the number of generation,

Asize: the size of archive A;

Output: A′

1 generate a population P ;

2 initialize an archive A = ∅;
3 for (g = 1 to G) do

4 evaluate fitness of each individual in P g and A;

5 copy all non-dominated individuals in P g and A to A′;

6 if (| A′ | > Asize) then

7 apply truncation operator to reduce the size of archive A′ to Asize

8 else if (| A′ | < Asize) then

9 fill archive A′ with dominated individuals from population P g

10 apply binary tournament selection with replacement on A′ to fill the

mating pool;

11 apply crossover and mutation operations to the mating pool and set

P g+1 to the resulting population;

12 g = g + 1;
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The main improved features of SPEA2 are:

• A fine-grained fitness assignment scheme which records for each individual

the number of individuals that it dominates and it is dominated by.

• A nearest neighbour density estimation technique, which promotes a more

precise guidance of the search space.

• A new archive truncation method that ensures the preservation of bound-

ary solutions.

Fine-grained Fitness Assignment Strategy

SPEA2 is among the first evolutionary algorithms that introduces elitism by ex-

plicitly maintaining an external population. It incorporates a fine-grained fit-

ness assignment strategy. At each generation, all non-dominated individuals are

copied to an archive A. For each individual x in the archive A and the population

P , the strength value S(x) representing the number of solutions it dominates is

evaluated as:

S(x) = | {y|y ∈ P ∪ A ∧ x � y} | (3.12)

where | . | denotes the cardinality of a set. The raw fitness of an individual x is

then evaluated based on the strength values S(x) as:

Ψ(x) =
∑

y∈P∪A, y�x

S(x) (3.13)

The fitness value of non-dominated individuals will be zero whereas a high Ψ(x)

value denotes that x is dominated by many individuals.

Density Estimation Technique

In addition, the density estimation technique was introduced in order to identify

the preference between two individuals with the same fitness values. This tech-
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nique is an adaptation of the k-th nearest neighbour method (Silverman, 1986),

where the density at a given point is a decreasing function of the distance to

the k-th nearest point. For each individual x, the distance to all individuals y in

archive A and the population P are computed and sorted in a list. After sorting

the list in an increasing order, the distance at the k-th element, ξkx, is obtained

and the density of individual x is defined by (Zitzler et al., 2001):

D(x) =
1

ξkx + 2
(3.14)

The value two is added in the denominator of the density function in order

to ensure that its value is within the range (0,1). Finally, the fitness value of

individual x is obtained by adding the density D(x) and the raw fitness value

Ψ(x) as:

F (x) = Ψ(x) +D(x) (3.15)

Archive Truncation Method

During the selection process, all the non-dominated individuals (i.e., individuals

which have fitness values less than one) from the archive and the population are

maintained in the archive of the next generation as follows:

A′ = {x|x ∈ P ∪ A ∧ F (x) < 1} (3.16)

If the archive A′ is not full, the best NP − | A′ | dominated individuals in the

previous population and archive are copied to the new archive. On the other

hand, when the number of non-dominated individuals is more than NP, the

archive truncation process is employed based on the distance measure ξkx. The

individual which has the minimum distance to another individual is selected to

be removed.

53



3. Evolutionary Algorithms: An Overview

3.3.2.3 Pareto Envelope-based Selection Algorithm

The Pareto Envelope-based Selection Algorithm (PESA) was introduced by Corne

et al. (2000). Similar to SPEA2, it uses an external population to maintain the

non-dominated solutions found. In this approach, the objective space is divided

into k-dimensional cells. The density of each cell is evaluated by the number of

individuals resides in the cell (Konak et al., 2006). This density measure is used

to achieve diversity of the individuals in the archive.

Figure 3.7: Cell-based selection method in PESA-II (Corne et al., 2001).

An improved version of the PESA is called PESA-II (Corne et al., 2001). PESA-II

was proposed in order to reduce the computational cost associated with Pareto

ranking (Coello et al., 2007; Corne and Knowles, 2003). In this technique, in-

stead of assigning a selective fitness to an individual, it is assigned to the cells

in the objective space which are occupied by at least one element. During the

selection process, the cell with the best fitness is selected. A cell which is sparsely

occupied has a higher chance to be selected than a crowded cell. For example,

in Figure 3.7, hyperbox C has a better selective fitness than hyperbox B (Corne

et al., 2001). Once the cell is selected, individuals within the cell are randomly

chosen to employ crossover and mutation operations to the mating pool (Konak

et al., 2006).
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3.3.2.4 Pareto Archived Evolution Strategy

The Pareto Archived Evolution Strategy (PAES), designed by Knowles and Corne

(2000), is a variant of (1+1) evolution strategy. PAES represents the simplest

EA which only employs local search operations. Nonetheless, it is capable to

achieve efficient solutions by maintaining an archive with previously found non-

dominated solutions. The archive is exploited as a reference set in evaluating the

quality of new candidate solutions. PAES also uses a novel approach to maintain

diverse solutions by using a grid in the objective function space to compute the

crowding distance.

Algorithm 3.9: Pseudocode for test(p, p′, A,Asize) (Tan et al., 2006).
Input: p: a solution,

p′: a candidate solution,

A: an archive,

Asize: the size of the archive A;

Output: p, p′, A

1 if ( | A | < Asize) then

2 add p′ to the archive A;

3 if (p′ is in a less crowded region of A than p) then

4 p ← p′;

5 else

6 if p′ is in a less crowded region of A than some members in A then

7 remove a member of A from the most crowded region;

8 add p′ to the archive A;

9 if (p′ is in a less crowded region of A than p) then

10 p ← p′;

11 else

12 if (p′ is in a less crowded region of A than p) then

13 p ← p′;
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Algorithm 3.10: PAES Procedure.
Input: Asize: the size of an archive A;

Output: A;

1 A := ∅;
2 generate a random current solution p;

3 evaluate p and add to archive A;

4 repeat

5 mutate p to produce a candidate p′;

6 evaluate p′;

7 if ( p � p′ ) then

8 discard p′;

9 else if (p′ � p ) then

10 replace p with p′;

11 add p′ to A;

12 else if ( ∃ p′′ ∈ A ∧ p′′ � p′ ) then

13 discard p′;

14 else

15 apply test(p, p′, A,Asize) to determine which individual becomes the

new current solution and whether to add p′ to the archive A (see

Algorithm 3.9)

16 until termination criteria met;

Algorithm 3.10 describes the procedure of PAES (Tan et al., 2006). At each

generation, a candidate solution p′ is generated from a single parent solution p

by employing a mutation operation. Acceptance to the archive A is based on

dominance criteria. Each time a candidate solution p′ is generated, it is added

to the archive A if it is not dominated by any members in the archive. If the

archive size Asize exceeds a threshold, then it is pruned by removing the individ-

uals that resides in the most crowded region. The crowding procedure is based

on recursively dividing up the D-dimensional objective space in 2d equal-sized

cells, where d is a predefined depth parameter. The procedure repeats until the

termination criteria is met.
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3.3.3 Decomposition-based MOEA

A MOEA based on decomposition (MOEA/D), proposed by Zhang and Li (2007),

decomposes the multi-objective optimization problems under consideration into

a number of scalar objective optimization problems (SOPs). The objective of

each SOP, called a sub-problem, is a weighted aggregation of the individual ob-

jectives.

In the course of evolution, it solves all sub-problems simultaneously and each

of them is optimized by making use of the information obtained from its neigh-

bouring sub-problems. The neighbourhood relations among these sub-problems

are defined based on the distances between their aggregation weight vectors.

Each individual in the population is associated with a sub-problem and it is usu-

ally the best solution found so far. At each generation, a new solution for each

sub-problem is generated by the recombination of a number of solutions from its

neighbouring sub-problems. The current solution of the sub-problem is replaced

with the new one if the latter is better. Moreover, a sub-problem also shares its

newly generated solution with some (or all) of its neighbouring sub-problems

which will update their current solutions if the shared solution is better. An ad-

vantage of MOEA/D is that a scaler objective local search can easily be applied

in each sub-problem (Mishra et al., 2014; Zhang and Li, 2007; Zhou et al., 2011).

Since its introduction, MOEAs with decomposition have gained increasing re-

search interests and have been applied to a wide range of applications (Chang

et al., 2008; Konstantinidis and Yang, 2011; Peng et al., 2009; Zhang et al.,

2010). Li and Zhang (2009) proposed a new version of MOEA/D for continuous

multi-objective optimization, where DE and polynomial mutation are incorpo-

rated in order to achieve global exploration and local exploitation. Several stud-

ies had been performed by hybridizing MOEA/D with other search algorithms

(Al Moubayed et al., 2010; Li and Landa-Silva, 2008, 2011). Some studies had

been performed by adopting a parallel version (Durillo et al., 2011; Ishibuchi

et al., 2010). More information on MOEA/D can be found at the webpage

http://dces.essex.ac.uk/staff/zhang/webofmoead.htm maintained by Prof.
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Qingfu Zhang from University of Essex.

3.3.4 Preference-based MOEAs

Depending on the preference of a decision maker, the multi-objective optimiza-

tion methods can be classified into three categories: priori methods, progressive

methods and posteriori methods(Miettinen, 1999). In a priori method, the de-

cision maker express his/her preference before the search and such preference

information is used to focus the search on the interested regions in the objective

space. In the progressive methods, the decision maker is involved in the search

process and interactively expresses his/her preference to guide the search. In a

posteriori method, the well distributed efficient solutions are generated first and

the decision maker then select his/her most preferred one.

Many studies have been conducted by employing the preferences in solving

multi-objective optimization problems. Fonseca and Fleming (1993) introduced

a prefer-ence-based MOEA where the rank of the individuals in the population

is evaluated by the Pareto dominance and the decision maker’s preferences. Deb

et al. (2006) considered the use of reference points to include preference infor-

mation. The solutions in a population are ranked by the Euclidean distance from

the reference point.

Friedrich et al. (2011) proposed different models and incorporated the decision

maker’s preferences by weighting information on the objective space. This pref-

erence model had been successfully integrated with NSGA-II and SPEA2. Thiele

et al. (2009) presented an interactive approach where the decision maker pro-

vide his/her preference as reference points. The provided reference point is used

to generate a new population by combining the fitness function and an achieve-

ment scalarizing function. More information on preference-based MOEAs can be

found in (Rachmawati and Srinivasan, 2006; Zhou et al., 2011).
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3.3.5 Indicator-based MOEAs

The performance metrics (see Section 3.4) are primarily used to measure the

quality of Pknown in multi-objective optimization problems. The indicator-based

MOEAs utilize these performance metrics in evolutionary selection process to

guide the search. Zitzler and Künzli (2004) introduced a general indicator-based

evolutionary algorithm (IBEA). IBEA compares a pair of solutions by an arbitrary

metric to guide the search and does not require any additional diversity preser-

vation mechanism. IBEA was reported to achieve better overall performance

compared with NSGA-II and SPEA2.

Bader and Zitzler (2011) studied the high computational complexity of the hy-

pervolume calculation in many objective optimization problems and proposed a

fast hypervolume-based MOEA based on Monte Carlo simulations. Boonma and

Suzuki (2011) presented a prospect indicator based MOEA, called PIBEA, where

the proposed prospect indicator assesses the potential of each solution and helps

to produce better offsprings. PIBEA is designed to solve multi-objective optimiza-

tion problem efficiently by maintaining sufficient selection pressure and high

level of diversity. PIBEA was reported to outperform NSGA-II, SPEA2 in terms

of convergence and diversity measures. More information on preference-based

MOEAs can be found in (Zhou et al., 2011).

3.4 Performance Measures for MOEAs

To evaluate the performance of the multi-objective evolutionary algorithms from

various aspects, several performance metrics have been proposed in the litera-

ture (Knowles and Corne, 2002; Van Veldhuizen and Lamont, 2000; Zitzler et al.,

2003). These metrics are mainly defined based on how close the obtained so-

lutions are to the true Pareto front and how evenly the solutions are distributed

along the obtained efficient frontier (Zhou et al., 2011; Zitzler et al., 2000).

In this section, we describe four metrics which are widely used by many stud-

ies to evaluate the performance of the MOEAs. Some of these metrics are used
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to measure only the convergence or diversity, and others consider both criteria.

Figure 3.8 shows the classification of quality indicators.

Figure 3.8: A classification of performance metrics (adapted from Durillo et al.
(2011)).

3.4.1 Generational distance (GD)

The generational distance (Van Veldhuizen and Lamont, 1998) is a widely used

metric to measure the convergence of an algorithm. It measures how far the

solutions of the computed Pareto front obtained by an algorithm are from those

in the true Pareto front.

GD =

√
Q̂∑
i=1

d̂2i

Q̂

where Q̂ is the number of solutions in the obtained front (Pknown) and d̂i is

the Euclidean distance (measured in objective space) between each solution

in the obtained front and the nearest solution in the true Pareto front. The

value of GD = 0 indicates that all the generated solutions are on the true
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Pareto front (i.e., Q̂ ⊆ Q∗). Figure 3.9, for example, shows that Q̂ = 3, d̂1 =√
(2.5− 2)2 + (9− 8)2, d̂2 =

√
(3− 3)2 + (6− 6)2, d̂3 =

√
(5− 4)2 + (4− 4)2 and

GD = 0.5.

Figure 3.9: Example illustration of the generational distance (GD) metric
(adapted from Coello et al. (2007)).

3.4.2 Inverted generational distance (IGD)

The inverted generational distance (Sierra and Coello Coello, 2005) uses the true

Pareto front as a reference and measures the distance of each of its elements from

the true Pareto front to the non-dominated front obtained by an algorithm. It is

mathematically defined as:

IGD =

√
Q∗∑
i=1

d2i

Q∗
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where Q∗ is the number of solutions in the true Pareto front (Ptrue) and di is the

Euclidean distance (measured in objective space) between each solution from

Ptrue and the nearest member from the set of non-dominated solutions found by

the algorithm (Pknown). This metric measures both the diversity and the con-

vergence of an obtained non-dominated solution set. A smaller value of this

metric implies a better quality of the approximation. A value of IGD equals to

zero indicates that all obtained solutions lie on the true Pareto front and have

the best possible spread. Figure 3.10, for example, shows that Q∗ = 5, d1 =√
(1.5− 2.5)2 + (10− 9)2, d2 =

√
(2− 2.5)2 + (8− 9)2, d3 =

√
(3− 3)2 + (6− 6)2,

d4 =
√

(4− 5)2 + (4− 4)2, d5 =
√

(6− 5)2 + (2− 4)2 and IGD = 0.6.

Figure 3.10: Example illustration of the inverted generational distance (IGD)
metric.
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3.4.3 Hypervolume (HV)

Hypervolume metric (Zitzler and Thiele, 1999), also known as S-metric or Lebes-

gue measure, is widely recognized as a unary value which is able to measure

both closeness of the solutions to the optimal set and diversity of the obtained

solutions. The hypervolume metric calculates the volume of the objective space

covered by members of an obtained Pareto set Pknown bounded by a reference

point r. The reference point r is found by constructing a vector of worst objec-

tive function values.

Let Q̂ be the set of non-dominated solutions obtained by an algorithm. For each

solution p ∈ Q̂, a hypercube vp from solution p and the reference point r is mea-

sured. The hypervolume (HV) value is calculated by summing all hypercubes vi.

The hypervolume (HV) is mathematically described as follows:

HV = volume(

|Q̂|⋃
p=1

vp)

When comparing two sets of non-dominated solutions, the set which conveys a

larger HV value is considered to be better both in terms of proximity and diver-

sity. The main advantage of the hypervolume metric is that it does not depend

on the prior knowledge of the true Pareto front.

Figure 3.11 shows the graphical representation of the hypervolume metric for

the minimization of two objectives: f1 and f2. In this example, the hypervol-

ume is represented by the grey area delimited by the non-dominated solutions

(Q̂ = {p1, p2, p3, p4, p5}) and the reference point r.
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Figure 3.11: Graphical illustration of the hypervolume (HV) metric for a bi-
objective minimization problem.

An accurate calculation of the hypervolume (HV) metric requires a normal-

ized objective space and we use the linear normalization technique proposed

by Knowles et al. (2006) as follows:

fi =
fi − fmini

fmaxi − fmini

where fmini and fmaxi are the minimum and maximum value of the ith objective.

The value of fmini and fmaxi are set as the minimum and maximum value obtained

from running all considered algorithms.

3.4.4 Diversity metric (∆)

The diversity metric (∆) (Deb et al., 2002) measures the performance indices of

distribution and spread simultaneously for two-objective optimization problems.
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In the literature, this metric is also known as spread. The diversity metric (∆) is

defined as follows:

∆ =

df + dl +
Q̂−1∑
i=1

| di − d |

df + dl + (Q̂− 1)d

where Q̂ is the number of solutions in the obtained non-dominated front (Pknown),

di is the Euclidean distance (measured in objective space) between consecutive

solutions in Pknown, and d̄ is the average of these distances. The parameters df
and dl are the Euclidean distance between the extreme solutions of the Pareto

optimal front and the boundary solutions of the obtained non-dominated front

Pknown. Figure 3.12 depicts the calculation of the diversity metric. A smaller

value of the spread (∆) indicates that the obtained non-dominated front has

wider spread and more uniformly distributed along the true Pareto front.

Figure 3.12: Diversity metric (∆) (Durillo et al., 2011).
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3.5 Summary

In this chapter, we review a number of well-known and widely used EAs. In

the first part of the chapter, a formal definition of a multi-objective optimization

problem and concept of Pareto optimality are described. In the second part of the

chapter, we review several population-based evolutionary algorithms based on

single objective (weighted sum) methods, Pareto-based methods, decomposition-

based methods, preference-based methods and indicator-based methods for multi-

objective optimization problems. Finally, the performance measures of the multi-

objective evolutionary algorithms are also described.

In this thesis, we consider four variants of portfolio optimization problems with

different combination of practical trading constraints and different risk mea-

sures. As noted in Section 1.1, when the basic model is extended with the

cardinality constraint, the problem becomes NP-hard (Bienstock, 1996; Moral-

Escudero et al., 2006; Shaw et al., 2008). Under time and resource limitations,

EAs are the ideal choices for solving the portfolio optimization problems consid-

ered in this thesis. This chapter provides an overview of the different variants

of evolutionary optimization techniques which may be adapted or hybridized in

later chapters of this thesis.
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Chapter 4

A Hybrid Algorithm for Constrained
Portfolio Optimization

“Simplicity is the ultimate

sophistication.”

Lenonardo Da Vinci

4.1 Introduction

The basic MV model has several limitations which prohibit its use in practice

(see Section 2.4). As a result, several extensions and modifications have been

developed in the literature to address real-world constraints. From a practi-

cal point of view, real-world investors commonly face restrictions such as car-

dinality and bounding constraints. These constraints are generally imposed in

order to prevent the portfolio from being composed of too many assets with

small holdings. Extending the basic model with a cardinality constraint already

transforms the model from a quadratic optimization model to a quadratic mixed-

integer problem (QMIP), which has been proved to be NP-hard (Bienstock, 1996;

Moral-Escudero et al., 2006; Shaw et al., 2008). Since QMIPs are hard to solve

optimally, many researchers and practitioners have applied metaheuristic ap-

proaches to solve the cardinality constrained portfolio optimization problem.
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4. A Hybrid Algorithm for Constrained Portfolio Optimization

In this chapter, we present a new hybrid evolutionary algorithm (PBILDE) for

portfolio optimization problems. We consider the extended mean variance port-

folio optimization problem with cardinality and quantity constraints (CCMV)

and adopt a single objective optimization approach by aggregating the objective

functions. These two constraints are the most commonly adopted ones in the

literature (Metaxiotis and Liagkouras, 2012). The detailed description of the

components of the hybrid algorithm is then presented. The performance of the

algorithm is compared with other existing studies.

This work is motivated by the efficient exploration of DE mutation schemes and

its ability to reduce the chances of being stuck in local optimum (Price et al.,

2006). A review of previous works clearly indicates the trend of hybridizing

DE with several evolutionary operators (Brest et al., 2006; Das and Suganthan,

2011; Pholdee and Bureerat, 2013; Sun et al., 2005; Wang et al., 2010). PBIL

extracts global statistical information about the search space and exploits this

information to create promising solutions. In this approach, we adopt the PBIL

scheme to identify the promising assets and DE mutation scheme for efficient

exploration of the proportion of assets. The main motivation behind the hy-

bridization of PBIL and DE is to exploit the good features of different strategies

in hope of achieving better performance than the individual’s performance. To

the best of our knowledge4, there is no comparative study of the hybridization

of DE and PBIL to portfolio optimization problems. This study is intended to fill

in this gap.

4 Pholdee and Bureerat (2013) recently presented a hybrid multi-objective evolutionary algo-
rithm (RPBIL-DE) using continuous population based incremental learning and differential
evolution for multi-objective design of trusses. Their work was published around the same
time as our work (Lwin and Qu, 2013). The main difference of PBILDE from the work
proposed by Pholdee and Bureerat (2013) is that we adopted a binary PBIL whereas they
adopted a real-code PBIL.
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4.2 The mean variance portfolio with cardinality

and bounding constraints (CCMV)

In this work, Markowitz’s MV model is extended with cardinality and quan-

tity constraints and the weighted sum method (see Section 3.2.2) is adopted

to model the CCMV as follows:

minimize f(p) = λ

[
N∑
i=1

N∑
j=1

wiwjσij

]
+ (1− λ)

[
−

N∑
i=1

wiµi

]
(4.1)

subject to

N∑
i=1

wi = 1, (4.2)

N∑
i=1

si = K, (4.3)

εisi ≤ wi ≤ δisi, i = 1, ...,N, (4.4)

si ∈ {0, 1} , i = 1, ...,N (4.5)

where f(p) defines the fitness of individual p and λ is a weighting parameter be-

tween the two objectives (see Section 2.2.1), K is the desired number of invested

assets in the portfolio, si denotes whether asset i is invested or not. If si equals

to one, asset i is chosen to be invested and the proportion of capital wi lies in

[εi, δi], where 0 ≤ εi ≤ δi ≤ 1. Otherwise, asset i is not invested and wi equals

to zero. As noted before in Section 2.4.1, cardinality constraint can be relaxed

as an inequality constraints in the literature. Our focus in this work, however, is

equality constraint where we seek exactly K assets in a portfolio.
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4.3 Related Work

Since Markowitz’s seminal work, many studies have been conducted on the com-

putational techniques and recently metaheuristics for the portfolio optimization

problems. In the literature, many studies have been performed by solving vari-

ants of the CCMV model (see Section 2.4.1) or portfolio optimization problems

with different combinations of constraints. In this section, we only summarize

the studies that include a cardinality (with equality) and quantity constraints.

Chang et al. (2000) employed three heuristic algorithms; genetic algorithm

(GA), tabu search (TS) and simulated annealing (SA) to find the constrained

efficient frontier. Their work also showed that the efficient frontier becomes dis-

continuous in the presence of cardinality restrictions. Computational results are

presented for five datasets involving up to 225 assets. These datasets are made

publicly available from OR-Library (Beasley, 1990). For the unconstrained prob-

lem, GA performs the best with mean percentage error close to zero. SA ranks

the second and followed by TS. For the constrained problem, no single algorithm

performs consistently better than the others for all five datasets. They suggest an

approach that uses a pool of results from all three heuristics. Since the work of

Chang et al. (2000), many studies have been performed using the same datasets

which are publicly accessible.

Cura (2009) applied a particle swarm optimization (PSO) for the considered

problem and compared with GA, TS and SA. This work also concluded based

on computational results that none of the four heuristic algorithms has outper-

formed the others in all five OR-Library datasets. Deng et al. (2012) also pre-

sented an improved PSO and compared with different variants of PSO as well

as three methods from Chang et al. (2000). Experimental results showed that

the proposed PSO outperformed the others in most instances. Fernández and

Gómez (2007) applied a heuristic method based on a Hopfield neural network

to the constrained problem. Comparisons of their proposed method are per-

formed against Chang et al. (2000) and computational results showed that no

single method outperforms the others.
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Moral-Escudero et al. (2006) proposed a hybrid strategy that combines a GA

with quadratic programming. The proposed hybrid method uses GA to select the

optimal subset of the available assets and quadratic programming to determine

the proportion of capital to be invested in each asset. Two different encoding

schemes and crossover operators for the GA were investigated. Computational

results on five OR-Library datasets showed that subset encoding with random

assorting recombination performed better than TS.

Xu et al. (2010) presented a hybrid algorithm that combine a PBIL and a contin-

uous population based incremental learning (PBILc) to select the optimal subset

of the available assets and to determine the proportion of capital to be invested

in each asset respectively. The experimental results showed that the proposed al-

gorithm was competitive to GA and PSO and achieved good results in searching

efficient portfolios with high expected returns.

Mishra et al. (2014) presented a non-dominated sorting multi-objective parti-

cle swarm optimization algorithm (NS-MOPSO) and compared with four single

objective evolutionary algorithms, namely GA, TS, SA and PSO, and a set of

multi-objective evolutionary algorithms based on non-dominated sorting and de-

composing frameworks. Experiments are performed by using six different mar-

ket indices, five OR-library datasets and BSE-500 (Bombay Stock Exchange) of

India. Computational results showed that the proposed approach is capable to

identify good Pareto solutions, maintaining adequate diversity.

Ehrgott et al. (2004) presented a multi-criteria decision making approach. They

considered five different objectives and these objectives are combined via weighted

utility functions. Their work studied and compared four approaches: a two-

phase local search algorithm, SA, TS and GA. Computational results showed that

the GA performed well in some test problems and the two-phase local search al-

gorithm performed well on other test problems.
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4.4 A Hybrid Algorithm for CCMV

In this section, we present a new hybrid algorithm, PBILDE, to efficiently address

the CCMV model described in Section 4.2. This work had been published at Ap-

plied Intelligence (Lwin and Qu, 2013).

PBILDE maintains a population of chromosomes, each representing a potential

solution to the portfolio selection problem with cardinality and bounding con-

straints. It also maintains a real-valued probability vector to denote the prob-

ability of each asset being selected in high quality portfolios. The above stated

CCMV model (see Section 4.2) can be seen as two sub-problems, the determi-

nation of the selection of assets and the allocation of capital to each asset. In

each iteration of PBILDE, the probability vector is used to generate a population

of solutions determining which assets are included in each solution. The DE off-

spring generation scheme (see Section 4.4.6) is used to allocate the proportions

of assets.

PBILDE adopts elitism by maintaining an archive of the best solutions found

during the evolution (see Section 4.4.3). A partially guided mutation (see Sec-

tion 4.4.5) is also adopted to guide further search towards selecting favourable

set of assets. The evolution process continues until a stopping criterion is met

(i.e, the current best objective function value is better than a given value or it

reaches to a certain number of generations). The procedure of the PBILDE is

described in Algorithm 4.1.
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Algorithm 4.1: PBILDE Procedure.
Input: MP, MR: mutation probability and mutation rate,

LR, N LR: learning rate and negative learning rate,

F: an amplification factor,

NP: the number of population,

N: the number of available assets,

λ: the weighting parameter in evaluating the objective function;

Output: best;

1 A := ∅; P := ∅; best := ∅; cbest := ∅, cworst := ∅;
2 for i := 1 to N do /* Initialization */

3 υi := 0.5;

4 for j := 1 to NP do

5 pj ← randomly generate an individual;

6 if constraints are violated then

7 pj ← apply repair mechanism (see Section 4.4.7);

8 repeat

9 for j := 1 to NP do

10 evaluate f(pj); // see Eq.(4.1)

11 A ← maintain the Asize best portfolio(s) found so far (see Section

4.4.3);

12 best ← best portfolio in the archive A;

13 cbest ← best portfolio of the current population p;

14 if (f(cbest) > f(best)) then

15 replace Asize worst individuals of the current population with Asize

best individuals from the archive A;

16 cworst← worst portfolio of the current population;

17 υ ← update υ by learning from cbest and cworst individuals of

18 the current population p (see Section 4.4.4);

19 perform Partially Guided Mutation (see Section 4.4.5);

// Generate offspring (see Section 4.4.6)

20 generate a trial population by DE offspring generation scheme;

21 select individuals of the next population using greedy selection;

22 until (pre-defined number of generations or vector υ has converged);
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4.4.1 Solution representation and encoding

In our solution representation, two vectors of size N are used to define a portfo-

lio p: a binary vector si, i = 1, ...,N denoting whether asset i is included in the

portfolio, and a real-value vector wi, i = 1, ...,N representing the proportions of

the capital invested in the assets.

In the literature, different encodings have been proposed. The most commonly

adopted encoding is to use a single real-value vector that denotes the weight

allocations of the assets in a portfolio. In fact, better algorithmic performance

can be achieved if a problem specific representation is utilized. Streichert et al.

(2004a,b,c) investigated and compared performances of different encodings and

crossover operators. They concluded that hybrid (binary+real) encoding is the

best suited for the mean variance cardinality constrained portfolio selection prob-

lem. This hybrid scheme also facilitates the removal and adding of assets to

portfolios. Therefore, in this work we have adopted this encoding approach.

4.4.2 Initialization

In PBILDE, the evolution is carried out on a population of a predefined number of

individuals pwhich are represented by si and wi. The probability vector υi is used

to determine if asset i is selected in a portfolio, i.e. si = 1 or si = 0. An initial

population of the predetermined number of portfolios from the N available assets

is randomly generated. Initially, the probability vector υi is set to 0.5 to give

equal chances to each asset being selected. The proportions of the selected assets

in each solution are then randomly generated from the given lower and upper

bounds by adopting Gaussian distribution. The randomly constructed portfolio

could violate the constraints in the model and the constraint handling scheme

described in Section 4.4.7 is applied to adjust and normalize the weights (See

Fig. 4.1).
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Figure 4.1: Example of an initial population and probability vector.

4.4.3 Maintaining the Archive

During the evolution, an archive A reserves Asize best portfolios. At each itera-

tion during the evolution, the archive is updated to maintain the best individuals

found so far. If the best individual (cbest) in the new sampled population at the

current generation is worse than the global best individual (best) found so far,

then the Asize worst individual(s) of the current population are replaced by the

Asize global best individual(s) from the archive. This strategy is incorporated to

promote the convergence of the algorithm. The motive to maintain the archive

A is to prevent the loss of the global best solutions found during the search as

well as to exploit those best solution(s) to help generate better solutions.

4.4.4 Updating the probability vector

In PBILDE, the probability vector υ is used to store statistic information collected

during the evolution to guide the generation of the following populations. At
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each generation, the learning rate (LR) and negative learning rate (N LR) are

used to update the probability vector (υ). They control not only the speed at

which the probability vector is shifted to resemble the best solution vector but

also the portion of the search space that will be explored (Folly and Venayag-

amoorthy, 2009; Shapiro, 2003). The probability vector is updated by learning

from the best solution of the current population scbesti at a learning rate LR as

follows:

υi = υi × (1− LR) + scbesti × LR (4.6)

In addition, after the probability vector is updated at the learning rate LR, if the

ith asset is selected in the best solution but it is not selected in the worst solution

or vice versa (i.e, scbesti 6= scworsti ) then the ith asset has a higher probability of

being selected than not selected. Hence, the probability vector is updated by

a negative learning rate N–LR in order to move away from bad solutions, i.e.

learn from the bad individuals. When scbesti 6= scworsti , it is updated in the same

way as PBIL in (Xu et al., 2010) as follows:

υi = υi × (1−N LR) + scbesti ×N LR (4.7)

4.4.5 Mutation of the probability vector

One of the factors to consider in designing the model in the population-based

approach is to find an effective way to generate offsprings. The approximate op-

timality principle (Glover and Laguna, 1998) assumes that good solutions tend

to have similar structure. This assumption is reasonable for many real-world

problems. Based on this assumption, an ideal offspring generator aims to pro-

duce a solution which is close to the best solutions found so far in the hope that

the resultant solution will not be far from the best solution and fall into a promis-

ing area of the search space (Zhang et al., 2005).
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At each iteration of the evolution, each dimension of the probability vector (υ)

is updated according to a certain mutation probability (MP). By taking into ac-

count the balance between the exploitation and exploration of the search space,

we adopt a new partially guided mutation. It gives an equal chance to mutate

the probability vector (υ) either randomly at a mutation rate MR (i.e., guided

mutation) or based on the global best solution. The aim is to strike a balance

between exploiting good structures in the best solution and exploring other area

of the search space. The pseudocode of the guided mutation is described in Al-

gorithm 4.2.

Algorithm 4.2: Partially Guided Mutation.
Input: cbest: best solution in current generation,

MR: mutation rate,

MP: mutation probability,

υ: probability vector,

N: the number of available assets;

Output: υ;

1 for i := 1 to N do

2 if rand(0, 1] < MP then

3 if rand(0, 1] < 0.5 then

4 r := randint[0, 1];

5 υi := υi × (1−MR) + r ×MR;

6 else

7 υi := scbesti ;

In PBILDE, the probability vector (υ) in the main evaluation is maintained by the

update and mutation based on the best and worst individuals in the population.

It is then utilized to influence the selection of assets in the next generation of

portfolios. The proportion of the asset is generated by DE offspring generation

scheme, as explained in the following section.
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4.4.6 DE Offspring Generation

The offspring generation scheme in PBILDE works with a population of solu-

tions evolved during evolutions. The population of the next generation, P g+1, is

created based on the current population of the generation P g with NP individ-

uals (portfolios). It first generates a trial population P
g+1

. Each individual trial

portfolio pg+1
j contains two vectors:

wg+1
j,i , j ∈ {1, ...,NP}; i ∈ {1, ...,N}

sg+1
j,i , j ∈ {1, ...,NP}; i ∈ {1, ...,N}

(4.8)

where wj,i denotes the proportion of the ith asset in the jth portfolio and sj,i de-

notes whether the ith asset in the jth portfolio is selected or not.

A trial population is generated as described in Algorithm 4.3. For each trial

portfolio, if the ith asset is selected then the weights of ith asset is generated by

the mutation and crossover operations. Firstly, three mutually different indexes,

r1, r2 and r3, which are also different from the index j of the current trial port-

folio pg+1
j , are randomly selected from the parent population. The indexes r1, r2

and r3 are randomly selected for each trial vector in the trial population.

In the mutation operation, the difference between two of the randomly selected

vectors (r1 and r2) from the current population is multiplied by an amplification

factor, F, and it is added to the third randomly selected vector (r3) from the

current population.

The binary crossover is performed to yield the trial vector. The crossover prob-

ability CR represents the probability of mutating the value of the trial vector.

The condition i == r′ is to ensure that at least one element of the trial vector is

different compared to the elements of the parent vector from the current gener-

ation. Similar to the initialization process, if the trial solution generated violate

the constraints in the model, the constraint handling scheme (see Section 4.4.7)

is applied.
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Algorithm 4.3: Procedure of Generating Trial Population
Input: NP: the number of population,

CR: crossover rate,

F: an amplification factor,

N: the number of available assets,

P g: current population;

Output: P
g+1

: trial population;

1 for j := 1 to NP do

2 r′ := randint[1,N];

3 for i := 1 to N do

4 randomly select r1, r2, r3 ∈ {1, ...,NP}, r1 6= r2 6= r3 6= j;

5 if rand(0, 1] < vi then

6 sg+1
j,i := 1;

7 if rand(0, 1] < CR ∨ i == r′ then

8 wg+1
j,i := wgr3,i + F × (wgr1,i − w

g
r2,i

);

9 else

10 wg+1
j,i := wgj,i;

The population of the next generation P g+1 is selected from the current popula-

tion P g and the trial population P
g+1

. Each individual of the trial population is

compared with the corresponding individual of the current population. PBILDE

adopts the greedy selection in DE (Storn and Price, 1997). Under the greedy

criterion, the better individual with the better fitness value becomes a member

individual of the next generation’s population:

pg+1
j =

p
g+1
j if f(pg+1

j ) < f(pgj )

pgj otherwise
(4.9)
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4.4.7 Constraint Handling

During the population sampling, each constructed individual must be repaired if

the representative portfolio does not satisfy the constraints of the problem. If the

number of the selected assets is smaller or larger than K, then a repair operator

selects or deletes an asset by using a heuristic which prioritizes the assets (Cura,

2009). The priority value ai of each asset is defined as follows:

Υi = 1 + (1− λ)× µi, i = 1, . . . ,N,

Λi = 1 + λ× (
N∑
j=1

σij/N) i = 1, . . . ,N,

Θ = −1×min(0, Υ1, . . . , ΥN),

f = −1×min(0, Λ1, . . . , ΛN,

ai =
Υi + Θ

Λi + f
, i = 1, . . . ,N.

(4.10)

For a given asset, the priority value ai denotes the proportion between the mean

return and mean risk with respect to aversion parameter λ. The priority value

ai is used to determine which asset may be added or removed. In the case that

the number of selected assets is larger, the excess assets which need to be re-

moved are identified either randomly or by selecting those assets which have the

minimum ai values. Similarly, in the case that the number of selected assets is

smaller, the new assets which need to be added are identified either randomly

or by selecting those assets which have the maximum ai values.

The budget constraint in Eq. (4.2) is satisfied by firstly normalizing the weights:

wi = wi/
N∑
j=1

wj over those assets selected based on the probability vector υ.

Moreover, the bounding constraint in Eq. (4.4) requires the proportion of asset

i to be in the range [εi, δi]. If the proportion of asset after the normalization

violates the upper or lower bound constraints, then it is adjusted as follows:
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wi =



wi + ψ × (θi/δ
∗) if δi > wi

δi if δi < wi

wi − φ× (ϕi/ε
∗) if wi > εi

εi if wi < εi,

θi = δi − wi,

ϕi = wi − εi,

δ∗ =
N∑
i=1

θi where θi > 0,

ψ =
N∑
i=1

| θi | where θi < 0,

ε∗ =
N∑
i=1

ϕi where ϕi > 0,

φ =
N∑
i=1

| ϕi | where ϕi < 0.

(4.11)

The same repair strategies have been used in the literature (Chang et al., 2000;

Cura, 2009; Xu et al., 2010) to adjust the number of assets and the weight of

assets in the portfolio. We adopt these strategies to conduct a fair comparison

for the computational results in the next section.

4.5 Computational Results

In this section, we describe the experiments performed and present compu-

tational results on both unconstrained and constrained portfolio optimization

problem. The proposed PBILDE hybrid algorithm described in Section 4.4 has

been firstly compared to two other approaches, DE and PBIL.

The DE approach differs from PBILDE in such a way that it performs selection

of assets randomly before determining the proportions of assets in the weight
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vector. In other words, instead of using the probability vector, it makes no effort

to learn from the population in order to decide which assets are favourable to be

included.

The PBIL approach adopted in our experiment was originally proposed by Xu

et al. (2010). They proposed a hybrid algorithm called PBIL CCPS by integrat-

ing a PBIL and a continuous PBIL for the CCMV. It first builds a probabilistic

model about the distribution of good individuals in the search space and then

samples a new generation of population using the probabilistic model. It main-

tains three vectors, a probability vector, a mean vector and a standard deviation

vector, to learn from the previous generation. Like PBIL in (Xu et al., 2010),

our adapted PBIL uses the same three vectors, probability vector, the mean and

standard deviation vectors, and allocates a random proportion for the selected

asset by Gaussian distribution. Unlike Xu et al. (2010), our PBIL approach with

the archive of the best individuals (the elite) replaces the Asize worst solutions

of the current population with the Asize global best solutions. Moreover, we in-

troduce a partially guided mutation to exploit the information obtained during

the evolution about the search space.

All three algorithms (PBILDE, PBIL and DE) in our study are applied with the

elitism and partially guided mutation to demonstrate the effectiveness and effi-

ciency of the hybrid PBILDE against the PBIL and DE with the same settings.

The proposed PBILDE has also been compared to a number of state-of-the-art

approaches in the literature using the same evaluation methods to demonstrate

the effectiveness of the hybrid algorithm for both the constrained and uncon-

strained portfolio problems. All of our experiments are coded in C# and run on

a core2duo with a 2.79GHz processor and 2GB RAM. The experimental results

obtained for each algorithm are the average of 20 runs. We aim to compare our

work with a number of existing studies. In order to conduct a fair comparison,

we perform the same number of runs.
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4.5.1 Datasets

Five problem instances (D1 − D5) from OR-library (Beasley, 1990, 1999) are

used to compare the performance of the tested algorithms (see Section 2.5).

These datasets contain the estimated returns and the covariance matrix of five

different stock market indices: Hand Seng in Hong Kong, DAX 100 in Germany,

FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan (see Table B.2 for a

small example dataset). For each set of the test data, the number of assets N is

31, 85, 89, 98 and 225, respectively (see Table 2.1). In the current literature

of portfolio optimization problem, this set of dataset has been widely adopted

and tested, and is recognized as the benchmark to evaluate computational algo-

rithms.

4.5.2 Parameter Settings

In the parameter settings, the value of λ in the objective function Eq. (4.1) is

set as λi = (i − 1)/49 where i = 1, 2, ..., 50. For each value of λ, each algorithm

carried out in total 1000N fitness evaluations excluding the initializations.

Unconstrained Problem (UP): K = N, εi = 0 , δi = 1 (i = i, ...,N)

Constrained Problem (CP): K = 10, εi = 0.01 , δi = 1 (i = i, ...,N)

We aim to compare our work with a number of existing studies. Therefore, the

above settings are used in order to conduct a fair comparison with other existing

works (see Section 4.5.3).

Initially, most parameter values of algorithms considered in this work are set

by the values recommended by Xu et al. (2010) and Winker et al. (2011). Pre-

liminary tests are then conducted to tune the parameter values of the algorithms.

Table 4.1 shows the parameter values of the algorithms considered in this work.
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PBILDE DE PBIL

Asize NP/4 NP/4 NP/4

CR 0.8 0.8 -

F 0.9 0.9 -

LR 0.1 - 0.1

MP 1/N - 0.05

MR 0.05 - 0.05

N LR 0.075 - 0.075

NP for UP 20 20 20

NP for CP N/4 20 20

PLR - - [0.05,0.4]

Table 4.1: Parameter settings of PBILDE, DE and PBIL.

4.5.3 Performance Evaluation

To evaluate the performance of the algorithms, we compare the efficient frontier

obtained by each algorithm with the optimal solutions provided by OR-library

(Beasley, 1990, 1999). We adopt the same approach as previously used by

Chang et al. (2000) to calculate the percentage deviation of each portfolio. It is

evaluated by measuring the distance of the obtained efficient portfolio from the

optimal efficient frontier.

As mentioned in Section 4.5.2, 50 weighting parameter (λ) values are used to

calculate the efficient frontier of the portfolio selection problem (see Eq. (4.1)).

We maintain a set V which consists of the best solution found for each λ. Each

portfolio in set V is used to evaluate the percentage deviation from the optimal

efficient frontier for the unconstrained problem.

For the constrained problems, Chang et al. (2000) considered that it is insuf-

ficient to use only set V to evaluate the performance of the algorithms. Another
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set H is thus defined to store all efficient portfolios during the evolution. For

each value of λ, let p(λ) be the current best portfolio found by the algorithm.

During the course of iteration, a newly found portfolio is added to H if it is bet-

ter than p(λ). Those portfolios which are dominated by other portfolio in the

set are then removed from the set H. The resulting set H and set V are used to

calculate percentage deviation errors for the constrained problem.

Each obtained portfolio in the set H and set V is evaluated by measuring its

distance (i.e., horizontally and vertically) from the optimal unconstrained effi-

cient frontier (UCEF). The horizontal distance (x) from the efficient frontier is

measured by considering the portfolio with fixed expected return. Similarly, the

vertical distance (y) from the efficient frontier is measured by considering the

portfolio with fixed risk. The final percentage deviation error is then measured

by taking the minimum of these two values.

4.5.4 Experimental Results

4.5.4.1 Results of Unconstrained Problems

The basic MV model can be solved efficiently by the critical line algorithm (CLA)

(Markowitz, 1956; Niedermayer and Niedermayer, 2010) as well as simplex al-

gorithm (Wolfe, 1959). The optimal solutions for the constrained problem, how-

ever, are not known. By testing on the unconstrained problems, results can be

compared with the benchmark optimal solutions as a preliminary experiment.

Chang et al. (2000) reasoned that an algorithm is unlikely to be capable to

perform well on constrained problem unless it performs well on unconstrained

problem. Therefore, the effectiveness of the algorithms are initially tested on the

unconstrained problems.

Table 4.2 provides the comparison on the results of set V of three algorithms,

namely PBILDE, DE and PBIL. PBILDE performed the best and obtained better

results on 4 out of 5 datasets. We can conclude from the results that PBILDE is

an efficient algorithm. DE is the second best in three algorithms.

85



4. A Hybrid Algorithm for Constrained Portfolio Optimization

PBILDE DE PBIL

Index N V V V

Hang Seng 31

MPE( %) 0.0002 0.0280 0.2385

MedPE( %) 2.63E-06 2.81E-06 0.0257

Time(s) 109 105 134

DAX 100 85

MPE( %) 0.0052 0.0089 1.1849

MedPE( %) 2.11E-05 2.15E-05 0.4292

Time(s) 1445 1522 2103

FTSE 100 89

MPE( %) 0.0059 0.0049 0.9813

MedPE( %) 2.11E-06 1.98E-06 0.0799

Time(s) 1643 1898 2145

S&P 100 98

MPE( %) 0.0078 0.0094 1.2361

MedPE( %) 3.54E-06 3.72E-06 0.1443

Time(s) 2094 2479 2700

Nikkei 225

MPE( %) 0.2733 0.2503 3.7411

MedPE( %) 2.25E-05 2.61E-05 2.0514

Time(s) 24823 28795 31903

Table 4.2: Comparison results of PBILDE with DE and PBIL for the unconstrained
problem.

We also compare PBILDE with the results from Chang et al. (2000) and Xu et al.

(2010) in Table 4.3, where MedPE and MPE denote the average values of the

obtained median percentage error (MedPE) and mean percentage error (MPE)

of set V in 20 runs. By allocating the same number of evaluations and runs, the

performance of PBILDE is compared against the existing work. The comparison

results show that PBILDE can achieve better solution in most instances.
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PBILDE Chang-GA Chang-TS Chang-SA Xu-GA Xu-PSO Xu-PBIL

Index N V V V V V V V

Hang Seng 31
MPE( %) 0.0002 0.0202 0.8973 0.1129 0.0191 0.1422 0.0003

MedPE( %) 2.63E-06 0.0165 1.0718 0.016 0.0166 1.07E-05 1.24E-05

DAX 100 85
MPE( %) 0.0052 0.0136 3.5645 0.0394 0.035 1.1044 0.0023

MedPE( %) 2.11E-05 0.0123 2.7816 0.0033 0.0124 4.77E-5 3.51E-05

FTSE 100 89
MPE( %) 0.0059 0.0063 3.2731 0.2012 0.0109 1.143 0.0186

MedPE( %) 2.11E-06 0.0029 3.0238 0.0426 0.002 0.0084 2.45E-05

S&P 100 98
MPE( %) 0.0078 0.0084 4.428 0.2158 0.043 2.0249 0.0137

MedPE( %) 3.54E-06 0.0085 4.278 0.0142 0.0085 0.5133 2.85E-05

Nikkei 225
MPE( %) 0.2733 0.0085 15.9163 1.7681 0.3715 8.1781 0.0606

MedPE( %) 2.25E-05 0.0084 14.2668 0.8107 0.0068 4.7023 2.69E-05

Table 4.3: Comparison results of PBILDE with Chang et al. (2000) and Xu et al.
(2010) for the unconstrained problem.

4.5.4.2 Results of Constrained Problems

In this section, we outline a number of tests performed in order to decide the

value of population size assignment and to evaluate the effectiveness of the new

partially guided mutation and elitist scheme in PBILDE. Firstly, different popu-

lation sizes are tested for the constrained problem and the results are shown in

Table 4.4. Unlike for the unconstrained problem where the setting of population

size does not lead to different performance, results show that for constrained

problem, setting population size (NP) as N/4 is better than both 20 and 2N. It

obtains more efficient points in set H at a much higher computation time.
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NP = 20 NP = 2N NP = N/4

Index N V H V H V H

Hang Seng 31

avg MPE( %) 1.1235 0.8865 1.1101 0.8925 1.1431 0.6196

avg MedPE( %) 1.2283 1.1050 1.2230 1.1060 1.2390 0.4712

Number of EF points 2923 2165 6367

Time(s) 60 99 113

DAX 100 85

avg MPE( %) 2.4481 1.7449 2.4101 1.6597 2.4251 1.5433

avg MedPE( %) 2.5922 1.4291 2.5866 1.3945 2.5866 1.0986

Number of EF points 3347 2021 3378

Time(s) 526 818 1358

FTSE 100 89

avg MPE( %) 1.0322 1.0177 0.9460 0.7204 0.9706 0.8234

avg MedPE( %) 1.0841 0.5443 1.0840 0.5203 1.0840 0.5134

Number of EF points 2919 1574 2957

Time(s) 590 962 1496

S&P 100 98

avg MPE( %) 1.9144 1.7338 1.5688 1.2380 1.6386 1.3902

avg MedPE( %) 1.1617 0.8556 1.1594 0.9085 1.1692 0.7303

Number of EF points 4546 2608 4570

Time(s) 762 1014 1901

Nikkei 225

avg MPE( %) 0.6314 0.5198 0.5995 0.4604 0.5972 0.3996

avg MedPE( %) 0.6017 0.5233 0.5903 0.5262 0.5896 0.4619

Number of EF points 3967 2560 4000

Time(s) 4955 8070 14918

Average
avg MPE( %) 1.4299 1.1805 1.3269 0.9942 1.3549 0.9552

avg MedPE( %) 1.3336 0.8914 1.3287 0.8911 1.3337 0.6551

Table 4.4: Comparison results of PBILDE with different population size (NP) for
the constrained problem.
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PBILDE-with PGM PBILDE-without PGM

Index N V H V H

Hang Seng 31

MPE( %) 1.1431 0.6196 1.1444 0.7609

MedPE( %) 1.2390 0.4712 1.2402 0.7284

Number of EF points 6367 6215

Time(s) 113 111

DAX 100 85

MPE( %) 2.4251 1.5433 2.4701 1.7668

MedPE( %) 2.5866 1.0986 2.6003 1.4315

Number of EF points 3378 3321

Time(s) 1358 1332

FTSE 100 89

MPE( %) 0.9706 0.8234 1.0431 1.0258

MedPE( %) 1.0840 0.5134 1.0841 0.5213

Number of EF points 2957 2937

Time(s) 1496 1453

S&P 100 98

MPE( %) 1.6386 1.3902 1.8451 1.7740

MedPE( %) 1.1692 0.7303 1.1595 0.8161

Number of EF points 4570 4240

Time(s) 1901 1822

Nikkei 225

MPE( %) 0.5972 0.3996 0.6142 0.4476

MedPE( %) 0.5896 0.4619 0.5965 0.4959

Number of EF points 4000 3832

Time(s) 14918 14327

Table 4.5: Comparison results of PBILDE with and without partially guided mu-
tation.

The effectiveness of the partially guided mutation (PGM) in PBILDE is also tested

and the results are shown in Table 4.5. It is clear from Table 4.5 that adopting

the partially guided mutation in PBILDE contributes to better solution quality.

We also tested the contribution of elitist strategy in PBILDE. The proposed elitist

strategy makes use of a set of global best solutions to inject into the current pop-

89



4. A Hybrid Algorithm for Constrained Portfolio Optimization

ulation as a replacement with its worst members when the current best solution

is worse than the global best solution. This strategy is introduced in order to

reduce the chances of being stuck in the local optima. Given the results shown

in Table 4.6, we would conclude that it is an advantage to maintain the archive

scheme in PBILDE.

PBILDE-with elitism PBILDE-without elitism

Index N V H V H

Hang Seng 31

MPE( %) 1.1431 0.6196 1.1241 0.7521

MedPE( %) 1.2390 0.4712 1.2410 0.7612

Number of EF points 6367 6215

Time(s) 113 102

DAX 100 85

MPE( %) 2.4251 1.5433 2.4989 1.7300

MedPE( %) 2.5866 1.0986 2.6026 1.2384

Number of EF points 3378 2817

Time(s) 1358 1232

FTSE 100 89

MPE( %) 0.9706 0.8234 1.0515 1.1300

MedPE( %) 1.0840 0.5134 1.0841 0.5500

Number of EF points 2957 2790

Time(s) 1496 1333

S&P 100 98

MPE( %) 1.6386 1.3902 1.7889 1.7387

MedPE( %) 1.1692 0.7303 1.1609 0.8343

Number of EF points 4570 4177

Time(s) 1901 1702

Nikkei 225

MPE( %) 0.5972 0.3996 0.6125 0.4480

MedPE( %) 0.5896 0.4619 0.5961 0.4930

Number of EF points 4000 3927

Time(s) 14918 11735

Table 4.6: Comparison results of PBILDE with and without elitism.
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PBILDE DE PBIL

Index N V H V H V H

Hang Seng 31

MPE( %) 1.1431 0.6196 1.2150 1.1932 1.3894 1.3737

MedPE( %) 1.2390 0.4712 1.2331 1.2807 1.5780 1.5267

Time(s) 113 79 95

DAX 100 85

MPE( %) 2.4251 1.5433 3.3077 2.9670 2.5129 2.9245

MedPE( %) 2.5866 1.0986 2.7410 2.5293 2.5850 2.6648

Time(s) 1358 1274 1478

FTSE 100 89

MPE( %) 0.9706 0.8234 1.3651 1.6203 1.3190 2.0282

MedPE( %) 1.0840 0.5134 1.0975 0.9832 1.1204 1.2599

Time(s) 1496 1542 1589

S&P 100 98

MPE( %) 1.6386 1.3902 3.2008 3.2170 2.4722 3.1763

MedPE( %) 1.1692 0.7303 1.5970 1.4973 1.2096 1.3810

Time(s) 1901 1943 1992

Nikkei 225

MPE( %) 0.5972 0.3996 1.8934 2.2053 0.7554 0.8086

MedPE( %) 0.5896 0.4619 1.6428 1.7624 0.6592 0.6864

Time(s) 14918 18327 24806

Average
avg MPE( %) 1.3549 0.9552 2.1964 2.2406 1.6898 2.0623

avg MedPE( %) 1.3337 0.6551 1.6623 1.6106 1.4304 1.5038

Table 4.7: Comparison results of PBILDE with population size (NP) = N/4
against DE and PBIL for the constrained problem.

Table 4.7 provides the comparison results of PBILDE, PBIL and DE with popu-

lation size NP = N/4. PBILDE outperforms the others in all instances. Results

show that PBILDE uses up less CPU time on larger problems compared to PBIL

and DE. Furthermore, the lack of consideration on an efficient selection of assets

in DE penalizes the algorithm performance. Both PBIL and PBILDE use a prob-

ability vector in determining the selection of assets in a portfolio. Experimental

results of PBIL compared with PBILDE show that the use of the probabilistic

model with the mean and standard deviation vectors in determining the pro-

portions of the assets is not as effective as employing the DE within PBILDE.

Figure-4.2 shows the comparison of the efficient frontiers of PBILDE, PBIL and

DE for the constrained problem.
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Figure 4.2: Comparison of heuristic efficient frontiers for constrained problem.
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Figure 4.2: Comparison of heuristic efficient frontiers for constrained problem.
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Figure 4.2: Comparison of heuristic efficient frontiers for constrained problem.

We also evaluated the performance of the algorithms by the average fitness of

the efficient portfolios obtained throughout the evolution. The fitness of the al-

gorithm in a certain generation is measured by the average mean percentage

error deviation of the obtained efficient portfolios from the unconstrained effi-

cient frontier (UCEF). The performance of the algorithms is provided in Figure

4.3. In all figures, the graphs represent the average of the mean percentage error

in 20 runs. The results clearly demonstrate that our proposed algorithm PBILDE

significantly outperforms DE and PBIL on all problems tested. Therefore, we

could conclude that PBILDE is able to achieve a synergetic effect through hy-

bridization of PBIL and DE.
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Figure 4.3: Mean performance of the algorithms for constrained problem.
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Chang et al. (2000) presented three heuristic algorithms based on GA, SA and

TS for the constrained problem and reported that GA performs better than SA

and TS. Xu et al. (2010) also presented a hybrid algorithm (PBIL CCPS) and re-

ported that PBIL CCPS performs better than GA and PSO. We therefore compare

PBILDE with the GA proposed by Chang et al. (2000) and PBIL CCPS presented

by Xu et al. (2010) for the constrained problem. Both Chang et al. (2000) and

Xu et al. (2010) adopted the same CCMV model described in Section 4.2. The

results reported by their studies were obtained by using the same number of fit-

ness evaluations and same set of λ values. The comparison results in Table 4.8

show that PBILDE outperforms GA and PBIL CCPS in most instances.

PBILDE Chang-GA Xu-PBIL CCPS

Index N V H V H V H

Hang Seng 31

MPE( %) 1.1431 0.6196 1.0974 0.9457 1.1026 0.8472

MedPE( %) 1.2390 0.4712 1.2181 1.1819 1.2190 1.1013

Number of EF points 6367 1317 1540

DAX 100 85

MPE( %) 2.4251 1.5433 2.5424 1.9515 2.5163 2.0781

MedPE( %) 2.5866 1.0986 2.5466 2.1262 2.5739 2.2783

Number of EF points 3378 1270 1933

FTSE 100 89

MPE( %) 0.9706 0.8234 1.1076 0.8784 0.9960 0.7658

MedPE( %) 1.0840 0.5134 1.0841 0.5938 1.0841 0.4132

Number of EF points 2957 1482 1638

S&P 100 98

MPE( %) 1.6386 1.3902 1.9328 1.7157 2.2320 1.6340

MedPE( %) 1.1692 0.7303 1.2244 1.1447 1.1536 0.8453

Number of EF points 4570 1560 2177

Nikkei 225

MPE( %) 0.5972 0.3996 0.7961 0.6431 1.0017 0.6451

MedPE( %) 0.5896 0.4619 0.6133 0.6062 0.5854 0.5596

Number of EF points 4000 1823 1468

Average
avg MPE( %) 1.3549 0.9552 1.4953 1.2269 1.5697 1.1940

avg MedPE( %) 1.3337 0.6551 1.3373 1.1306 1.3232 1.0395

Table 4.8: Comparison results of PBILDE against other existing algorithms
(Chang et al., 2000; Xu et al., 2010) for the constrained problem.
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Various models have been proposed in the literature to solve the constrained

portfolio optimization problems, where different variable definitions, objective

functions, heuristic techniques, benchmarks and evaluation criteria have been

employed. Therefore, it is very difficult, if not impossible, to conduct a fair com-

parison on different modelling approaches. For completeness, we next provide

the comparisons of our PBILDE against those of different approaches in Gaspero

et al. (2011) and Woodside-Oriakhi et al. (2011) who use the OR-library in-

stances with the same set of constraints.

Gaspero et al. (2011) presented a hybrid technique (SD+QP) which combines

local search metaheuristics and the quadratic programming (QP) procedure. In

their work, they also reimplemented the hybrid method based on a Hopfield

neural network, originally proposed by Fernández and Gómez (2007), and cal-

culated the mean percentage deviation in set H.

We compare PBILDE with this SD+QP approach by Gaspero et al. (2011) and

the results are shown in Table 4.9. The comparison results show that PBILDE

outperforms the SD+QP approach by Gaspero et al. (2011). As reported in Ta-

ble 4.9, the neural network approach by Fernández and Gómez (2007) performs

better than PBILDE in 3 out of 5 instances. However, PBILDE is better with re-

gard to the overall average percentage error of all instances. It should be noted

that Gaspero et al. (2011) adopted QP approach and results were obtained by

100 different return R values (see QP model in Section 2.2) while results in this

work were obtained from 50 λ values.
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PBILDE Gaspero-SD+QP Fernandez-NN

Index N H H H

Hang Seng 31 MPE( %) 0.6196 0.7000 0.3800

DAX 100 85 MPE( %) 1.5433 2.9300 1.1300

FTSE 100 89 MPE( %) 0.8234 1.9700 1.2500

S&P 100 98 MPE( %) 1.3902 4.1000 2.8000

Nikkei 225 MPE( %) 0.3996 0.3000 0.3600

Average MPE( %) 0.9552 2.000 1.1840

Table 4.9: Comparison results of PBILDE against Gaspero et al. (2011) and
Fernández and Gómez (2007) for the constrained problem.

Recently, Woodside-Oriakhi et al. (2011) proposed a GA with subset optimization

for the constrained problem. They adopted the QP approach and the constrained

portfolio selection problem was reformulated by relaxing constraint (see Section

2.2, Eq. (2.2)), where the expected return may vary within 10% of the desired

return range. The search of the algorithm is thus more flexible to explore a wider

area of the search space of the relaxed problem. The same mechanism has been

applied to develop a SA and TS. The weighted sum approach in this work ap-

proximates the constrained efficient frontier (CCEF) by accumulating the set of

points which are unlikely to be evenly distributed along the return axis whereas

Woodside-Oriakhi et al. (2011) approximates the CCEF by accumulating the set

of efficient points which are evenly distributed among 50 return R values with

each return in the pre-specified range.

The comparison results are shown in Table 4.10. The GA by Woodside-Oriakhi

et al. (2011) outperforms in all instances except the Hang Seng dataset. PBILDE

outperforms the SA in most instances and competitive to the TS by Woodside-

Oriakhi et al. (2011). However, the maximum and minimum percentage error
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results show that PBILDE results are stable compared to those of the three algo-

rithms presented by Woodside-Oriakhi et al. (2011).

PBILDE Woodside-Oriakhi-GA Woodside-Oriakhi-TS Woodside-Oriakhi-SA

Index N H H H H

Hang Seng 31
MPE( %) 0.6196 0.8501 0.8234 1.0589

MedPE( %) 0.4712 0.5873 0.3949 0.5355

Minimum 0.2816 0.0036 0.0068 0.0349

Maximum 0.6768 2.9034 4.6096 4.6397

DAX 100 85
MPE( %) 1.5433 0.7740 0.7190 1.0267

MedPE( %) 1.0986 0.2400 0.4298 0.8682

Minimum 0.7537 0.0000 0.0149 0.0278

Maximum 1.6804 4.6811 2.7770 4.4123

FTSE 100 89
MPE( %) 0.8234 0.1620 0.3930 0.8952

MedPE( %) 0.5134 0.0820 0.2061 0.3944

Minimum 0.4359 0.0000 0.0019 0.0230

Maximum 0.8695 0.7210 3.4570 10.2029

S&P 100 98
MPE( %) 1.3902 0.2922 1.0358 3.0952

MedPE( %) 0.7303 0.1809 1.0248 2.1064

Minimum 0.4816 0.0007 0.0407 0.8658

Maximum 1.5726 1.6295 3.0061 8.6652

Nikkei 225
MPE( %) 0.3996 0.3353 0.7838 1.1193

MedPE( %) 0.4619 0.3040 0.6526 0.6877

Minimum 0.3739 0.0180 0.0085 0.0113

Maximum 0.4965 1.0557 2.6082 3.9678

Average
MPE( %) 0.9552 0.4827 0.7510 1.4391

MedPE( %) 0.6550 0.2788 0.5416 0.9184

Minimum 0.4653 0.0045 0.0146 0.1926

Maximum 1.0591 2.1981 3.2916 6.3776

Table 4.10: Comparison results of our Hybrid Algorithm(PBILDE) against
Woodside-Oriakhi et al (Woodside-Oriakhi et al., 2011) for the constrained prob-
lem.
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4.6 Summary and Discussion

This chapter presents a new efficient and effective hybrid algorithm (PBILDE) to

solve the mean variance portfolio selection problem with cardinality and quan-

tity constraints. The proposed algorithm hybridizes DE and PBIL to explore and

exploit the complex and constrained search space of the problem concerned. It

also adopts a partially guided mutation and an elitist strategy to promote the effi-

cient convergence of the search. The partially guided mutation is introduced not

only to exploit the global information about the search space from the probabil-

ity vector but also to exploit the information from the best solution to guide the

search. The proposed elitist strategy makes use of a set of global best solutions to

inject into the current population as a replacement with its worst members when

the current best solution is worse than the global best solution. This strategy is

introduced in order to reduce the chances of being stuck in the local optima.

Computational results justify the effectiveness of the elitism and partially guided

mutation in PBILDE. For the unconstrained problems, PBILDE outperforms in

almost all instances compared against DE and PBIL with similar or higher com-

putational expenses. In most problem instances, it also outperforms other exist-

ing approaches in the literature for the unconstrained problem. The comparison

results against the PBIL, DE, as well as Chang-GA (Chang et al., 2000) and Xu-

PBIL CCPS (Xu et al., 2010) in the literature also show that the proposed hybrid

algorithm is highly competitive in most cases. Results also show that PBILDE is

able to achieve a synergetic effect through hybridization of PBIL and DE.

In this work, weighted sum approach is utilized to transform the bi-objective

portfolio optimization problem into a scalar optimization problem. Despite its

simplicity, there are a few drawbacks with this approach:

• Despite its insight of the relative importance of objective, it is difficult

to identify the appropriate weights needed for each objective in order to

generate solutions uniformly spread on the efficient frontier. Applying a

uniform set of weighting parameters does not produce solutions (in the

objective space) evenly spread on the Pareto front. Moreover, small pertur-
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bations of weights can occasionally lead to quite different solutions (Konak

et al., 2006). Therefore, it is hard to compare with other studies unless the

same set of weights are set for the computational analysis.

• It cannot find solutions which reside in non-convex regions of the Pareto

front (Das and Dennis, 1997; Kim and de Weck, 2005). Chang et al. (2000)

and Jobst et al. (2001) showed that the efficient frontier become discon-

tinuous in the presence of cardinality constraints.

• It requires repeated runs of the algorithm in order to find the efficient fron-

tier and hence it is time consuming (see Section 3.2.2) (Anagnostopoulos

and Mamanis, 2011b; Marler and Arora, 2010).

On the other hand, studies on the multi-objective evolutionary algorithms (MOEAs)

have shown that MOEAs can yield multiple Pareto optimal solutions in a single

run. In addition, they require very little knowledge of the problem being solved.

Therefore, multi-objective approaches for the constrained portfolio optimization

problems will be studied in the subsequent chapters in order to alleviate the

difficulties faced by the parameter-oriented scaling dependent weighted sum ap-

proach.
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Chapter 5

Multi-objective Scatter Search for
Portfolio Optimization

“Risk comes from not knowing

what you’re doing. ”

Warren Buffett

5.1 Introduction

As noted in the previous chapter, single objective optimization approaches can

provide a single efficient solution in each run. As a result, they are compu-

tationally expensive to investigate the solution search space and require many

repeated runs to compute the efficient frontier. Moreover, they do not consider

a good distribution of the obtained solutions nor find Pareto optimal solutions in

non-convex regions. In contrast, multi-objective optimization approaches oper-

ate on a number of solutions (population) and are capable to find several effi-

cient solutions in a single run. In addition, they are less susceptible to the shape

or continuity of the Pareto front (Das and Dennis, 1997). Anagnostopoulos and

Mamanis (2011b) also showed that all five MOEAs tested in their work outper-

formed a single objective evolutionary algorithm (SOEA) in all tested problem

instances. Moreover, the results of MOEAs need fewer number of solution gener-

ations and less computational time than SOEA. These studies have helped us to
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understand the limitations of the SOEA and paved ways to develop new and im-

proved multi-objective evolutionary algorithms for portfolio optimization prob-

lems.

In this chapter, we present a hybrid multi-objective population-based evolution-

ary algorithm based on Scatter Search template to solve the portfolio optimiza-

tion problem with three practical trading constraints, namely cardinality, quan-

tity and pre-assignment. In the literature, not many studies have been conducted

by taking into account of pre-assignment constraint for portfolio optimization

problem. Although Gaspero et al. (2011) considered cardinality, quantity and

pre-assignment constraints in their hybrid model, the experiments were not per-

formed by considering all three constraints together. To the best of our knowl-

edge, there is no comparative study of multi-objective evolutionary algorithm

based on scatter search template for the portfolio optimization problem with

cardinality, quantity and pre-assignment constraints. This study is intended to

fill in this gap.

5.2 Problem Model

The basic MV model is extended with three practical constraints, cardinality,

quantity and pre-assignment as follows:

min f1 =
N∑
i=1

N∑
j=1

wiwjσij (5.1)

max f2 =
N∑
i=1

wiµi (5.2)

subject to
N∑
i=1

wi = 1 (5.3)

N∑
i=1

si ≤ K, (5.4)
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εisi ≤ wi ≤ δisi, i = 1, ...,N, (5.5)

si ≥ zi, i = 1, ...,N, (5.6)

si ∈ {0, 1} , i = 1, ...,N, (5.7)

zi ∈ {0, 1} , i = 1, ...,N, (5.8)

where f1 and f2 are risk and return objectives respectively (see Section 2.2.2), K

is the maximum number of assets which can be invested in a portfolio, si denotes

whether asset i is invested or not, zi denotes a binary value such that zi is set to

one if asset i is included in the pre-assigned set in the portfolio. If si equals one,

asset i is chosen to be invested and the proportion of capital wi lies in [εi, δi],

where 0 ≤ εi ≤ δi ≤ 1. Otherwise, asset i is not invested and wi equals zero. The

objective is to find the efficient portfolios among N assets that can simultaneously
satisfy the two conflicting objectives, i.e., minimize risk f1 while maximizing the

profit f2.

5.3 Related Work

In the literature, not many studies have been performed by taking into account

of pre-assignment constraints. Chang et al. (2000) and Di Tollo and Roli (2008)

described the pre-assignment constraints but they are not considered in the com-

putational experiments of their work.

Gaspero et al. (2011) considered the pre-assignment, cardinality and quantity

constraints. Their work considered the cardinality constraint with minimum and

maximum limits on the number of assets in a portfolio. The authors presented

a hybrid technique that combines a local search with quadratic programming

procedure. Two groups of experiments for the portfolio selection problem (PSP)
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were performed in their work: PSP with cardinality and quantity constraints and

PSP with pre-assignment and quantity constraints. The experiments were not

performed with all three constraints. The experimental results showed that the

hybrid technique achieved comparable or superior results compared with com-

mercial software tools (CPLEX and MOSEK).

In the literature, many researchers have investigated a variety of techniques

to solve the portfolio optimization problem with cardinality (with inequality)

and quantity constraints. There are several studies employing exact approaches

(Bertsimas and Shioda, 2009; Li et al., 2006; Shaw et al., 2008; Vielma et al.,

2008). In the remaining part of this section, we review the studies which adopted

heuristic approaches and considered the cardinality constraint (with inequality)

and/or quantity constraints.

Single objective approaches

Crama and Schyns (2003) presented a simulated annealing (SA) approach for

the complex portfolio optimization problem with cardinality, quantity, turnover

and trading constraints. Their work considered inequality cardinality constraints

by limiting the maximum number of assets allowed in a portfolio. Their work

adopted different constraint handling approaches (both repair and penalty func-

tion) based on the types of constraints. Computational experiments were per-

formed on a realistic problem instance involving 151 assets on each class of

considered constraints separately. Experimental results compared against sim-

plex methods showed promising. Maringer and Kellerer (2003) also presented a

hybrid approach incorporating SA with evolutionary strategies. They considered

the cardinality constraints and computational analyses were presented for two

test instances involving 30 and 96 assets.

Ruiz-Torrubiano and Suarez (2010) presented hybrid algorithms that combine

EAs and QP with specially devised pruning heuristics. In their approach, SA, GA

and EDAs were employed to find the promising subset of assets to be included in

a portfolio and QP was utilized to find the optimal weights. Their work consid-
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ered (inequality) cardinality and quantity constraints and OR-library instances

are used for experimental analysis. Results showed that without using pruning

heuristics, EDAs (Larrañaga and Lozano, 2002) do not perform well on large

problem instances and pruning heuristics generally improved all considered al-

gorithms both in terms of the computation time and solution quality.

Schaerf (2002) compared hill climbing (HC), tabu search (TS) and simulated

annealing (SA) algorithms for the portfolio optimization problem with cardinal-

ity and quantity constraints. A variety of moves for the invested proportion of

assets are presented. These moves ensure that the budget constraint is satisfied.

Performances of the algorithms are tested by employing the OR-library datasets

(Beasley, 1999) and results showed that TS outperformed HC and SA. Busetti

Busetti (2005) also investigated GA and a hybrid technique that combines SS

and TS to solve the portfolio optimization problem with cardinality, bounding

and transaction cost constraints. The results showed that GA outperformed the

hybrid approach.

Multi-objective approaches

Fieldsend et al. (2004) and Anagnostopoulos and Mamanis (2010) presented a

tri-objective view of the portfolio optimization problem: reward, risk and the

number of assets in a portfolio. Fieldsend et al. (2004) considered the basic

model and applied a MOEA to find a discrete approximation of the efficient sur-

face in a single run. Anagnostopoulos and Mamanis (2010) considered quantity

and class constraints and applied three MOEAs, namely NSGA-II, SPEA2 and

PESA to find a good approximation of the efficient surface.

Anagnostopoulos and Mamanis (2011b) presented a computational comparison

of the five MOEAs for the portfolio optimization problems with cardinality and

quantity constraints. The results showed a clear superiority of SPEA2 in most

problem instances. They also performed a comparison of MOEAs with a variant

of SOEA and results showed that all five MOEAs are superior than SOEA both in

terms of solution quality and computational time.
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Branke et al. (2009) presented a hybrid envelope-based approach by incorporat-

ing Markowitz’s critical line algorithm (CLA) with NSGA-II. NSGA-II was utilized

to define suitable convex subsets of the search space and CLA was then applied

to each subset thereby generating an envelope. All generated envelopes by CLA

are then combined to compute the constrained efficient frontier. Their work con-

sidered cardinality constraints based on German investment law. They showed

that the proposed envelope-based NSGA-II finds better frontiers in a shorter time

than point-based NSGA-II.

Chiam et al. (2008) presented a MOEA with an order-based representation.

Their work considered cardinality and quantity constraints. The cardinality con-

straint is not only relaxed with the minimum and maximum number of assets

that a portfolio can hold but also considered as a soft constraint (i.e., popula-

tion may be composed of infeasible solutions). Experiments are performed on

the OR-library dataset instances (Beasley, 1999) and the results showed that

MOEA with an order-based representation could find solutions close to the un-

constrained efficient frontier.

Deb et al. (2011) suggested a customized hybrid NSGA-II integrated with a clus-

tering and local search procedure. They considered cardinality and quantity

constraints. A repair mechanism was adopted to ensure that all solutions in the

evolving process are feasible. The results showed that it is competitive to QP

solutions.

Liagkouras and Metaxiotis (2014) presented a new probe guided mutation op-

erator for efficient exploration of the search space. Their work considered the

cardinality constraints limiting the minimum and maximum number of assets in

a portfolio and the quantity constraints. Their proposed probe guided mutation

operator was incorporated into NSGA-II and SPEA2 and experimental results

using the OR-library datasets confirmed the efficient contribution of the probe

guided mutation operator.

Skolpadungket et al. (2007) applied various techniques of MOEAs to solve port-
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folio optimization with cardinality, floor and round lot constraints. They inte-

grated the Vector Evaluated Genetic Algorithm (VEGA) with fuzzy logic to inves-

tigate the performances of the solutions. Results indicated that solution quality

improved in terms of closeness to the true Pareto front but not in terms of distri-

bution. Experiments were performed on the smallest OR-library dataset D1 and

performance metrics showed that SPEA2 outperformed the others.

Decomposition approach

Zhang et al. (2010) presented a multi-objective evolutionary algorithm based

on decomposition (MOEA/D) with NBI-style Tchebycheff approach. Their work

considered inequality cardinality constraints which limit the maximum number

of assets in a portfolio and three variants of transaction cost constraints. Ex-

periments are performed on the eight instances involving up to 150 assets and

results showed that MOEA/D outperformed NSGA-II in unconstrained cases and

showed promising in constrained cases.

5.4 Multi-objective Scatter Search with External

Archive

In this work, we present a hybrid multi-objective scatter search with an external

archive, MOSSwA, to solve the portfolio optimization model described in Section

5.2. This work has been published at ECTA2013 (Lwin et al., 2013).

MOSSwA adapts the basic scatter search template to multi-objective optimiza-

tion by incorporating the concepts of Pareto dominance, crowding distance and

elitism. It follows the basic structure of the scatter search (see Section 3.3.1.3)

and defines the reference set solutions based on Pareto dominance and crowd-

ing distance measures. New Subset generation and combination methods are

proposed to generate efficient and diverse portfolios. Hill climbing operation is

integrated to search for improved portfolios. The detailed procedure of the pro-

posed algorithm is described in Algorithm 5.1.
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Algorithm 5.1: Procedure of MOSSwA.
Input: Asize: the size of the archive A,

NP : the number of individuals in the population P ,

B : the number of solutions in reference sets (ref1 and ref2);

Output: A : archived non-dominated set of solutions;

1 P = ∅; A = ∅; ref1 = ∅; ref2 = ∅;
2 for j = 1 to NP do // Initialization (see Section 5.4.2)

3 pj ← generate a random individual including pre-assigned asset(s);

4 if constraints are violated then

5 pj ← repair by constraint handling method (see Section 5.4.8);

6 P ← P ∪ pj;

7 repeat

8 A ← update with Asize non-dominated portfolios from (A ∪ P );

// Update reference sets (see Section 5.4.7)

9 ref1← select B non-dominated portfolios from (A ∪ ref1);

10 ref2← select B non-redundant and least crowded portfolios

11 from (A \ ref1) ∪ P ;

12 P = ∅;
13 for j = 1 to NP do

// Generate subset (see Section 5.4.3).

14 sub← randomly select S portfolios from (ref1 ∪ ref2);

// Combine solution (see Section 5.4.4)

15 pj ← generate a new portfolio by solution combination method;

16 if constraints are violated then

17 pj ← repair by constraint handling method;

18 p
′
j ← apply local search to pj (see Section 5.4.5);

19 if pj � p
′
j then

20 P ← P ∪ pj;
21 else if p

′
j � pj then

22 P ← P ∪ p′j;
23 else

24 P ← P ∪ p′j ∪ pj;

25 until (certain number of generations);
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5.4.1 Solution Representation

Two vectors of size N are used to define a portfolio p: a binary vector si, i =

1, . . . ,N denoting whether asset i is included in the portfolio, and a real-value

vector wi, i = 1, . . . ,N representing the proportions of the capital invested in the

assets.

5.4.2 Initialization

Each portfolio p of an initial population P = {p1, p2, . . . , pNP} is generated by

randomly selecting the maximum K different assets (including the pre-assign

assets) and allocating the weights for those selected assets. In this work, we con-

sider all three constraints as hard ones which need to be satisfied at all times. If

the generated portfolio violates the budget and/or quantity constraints (see Eqs.

5.3 and 5.5), such solution is corrected by the constraint handling techniques as

previously described in Section 4.4.7. As a result, all of the generated solutions

in the trial population are feasible.

5.4.3 Subset Generation Method

This method selects a subset of solutions from the reference sets to create a

subset sub = {p1, . . . , pS} which is later used by the combination method (see

Section 5.4.4). Our approach generates the subset sub of size S by randomly

employing one of the three different variants as follows:

• randomly select S solutions from the reference set ref1 = {p1, . . . , pB}:

sub = {pi ∈ ref1 | i = randint[1,B]},

• randomly select S solutions from the reference set ref2 = {p1, . . . , pB}:

sub = {pi ∈ ref2 | i = randint[1,B]},

• randomly select arbitrary r′ solutions from the reference set ref1 and S−r′

solutions from the reference set ref2 where r′ ≤ S and S ≥ 3.
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5.4.4 Solution Combination

The combination method generates individuals by sampling the candidate solu-

tions towards the areas of the search space which are likely to be of high fitness

by exploiting the information present in the population and the archive A. This

method uses the generated subset sub (see Section 5.4.3) and combines solu-

tions from sub to generate one or more trial solutions.

Three portfolios p1, p2 and p3 from the sub are randomly selected to use in the

combination process. The assets selected in these three portfolios are observed

and analysed. A set q is constructed by composing with all securities which are

selected by at least two out of three portfolios. A new portfolio with n assets is

constructed by selecting pre-assigned assets first. The remaining assets n− | z |
are then randomly selected from the set q where n ≤ K. The proportions of

those selected assets are assigned as follows:

wi = w3i + rand(0, 1]× (w1− w2)

If there are less assets in set q than n− | z |, the remaining ā assets of the new

portfolio are selected by one of the following methods:

• select ā assets with the highest expected return values

• select ā assets with the least standard deviation values

• select ā assets with the lowest correlation values to those in the selected

set

The weights of those ā assets are randomly assigned (wi := rand(εi, δi)). It

is noted that the combination mechanisms construct solutions that may violate

the budget and/or quantity constraints. Thus, the repair mechanism (see Sec-

tion 5.4.8) is applied if the newly generated solution violates the budget and/or

quantity constraints.
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5.4.5 Improvement Method

This method adopts the ‘local exploitation’ by extracting the most important in-

formation possible at a local level and aims to move towards the local optimum.

The solutions generated by the combination method (see Section 5.4.4) are im-

proved by a local search technique. A simple hill climbing (HC) operation is

employed by randomly altering a proportion of an asset or a selection of the as-

set in the portfolio until no improved solutions can be found or for a pre-specified

number of moves.

5.4.6 Maintaining the Archive

The external archive A is used to reserve the well-spread non-dominated solu-

tions encountered during the search. In each generation, the archive A is up-

dated with the non-dominated solutions from the trial population. When it has

reached its maximum capacity Asize, the most crowded non-dominated members

are identified and discarded.

5.4.7 Updating Reference Set

Once the archive A has been updated with non-dominated solutions from the

trial population, the reference sets (ref1 and ref2) are updated by the improved

and diverse solutions. The reference set ref1 is updated by the B best non-

dominated solutions obtained from the archive A. The reference set ref2 is up-

dated by the B non-redundant and least crowded portfolios from the remaining

set of individuals in the archive A and from the current population P .

5.4.8 Constraint Handling

During the population sampling, each constructed individual must be repaired if

the representative portfolio does not satisfy the constraints of the portfolio selec-

tion problem. As described in Section 5.4.4, the solution combination operation

ensures that the pre-assignment and cardinality constraints are satisfied. How-

ever, the generated solution may violate the budget and/or quantity constraints.
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The same constraint handling mechanism described in Section 4.4.7 has been

applied to repair those solutions which violate the budget and/or quantity con-

straints.

5.5 Experimental Results

In this work, we compare the performance of the proposed MOSSwA with three

well-known MOEAs, namely NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al.,

2001) and PESA-II (Corne et al., 2001). The detailed descriptions of the three

algorithms are provided in Section 6.5.2. All algorithms considered in this study

are coded in C# and run on a core2duo with a 2.79GHz processor and 2GB

RAM. Twenty independent runs are performed for all experiments and the same

random seed is assigned to each set of the instance so that all algorithms start

with the same initial population. In order to ensure a fair comparison, we use

the same population size NP and archive size Asize (if applicable) for all the al-

gorithms tested in this work. In addition, all the algorithms are run for the same

stopping criteria (i.e. the same number of evaluations) to generate the efficient

frontiers.

Five datasets (D1 − D5) from OR-library (Beasley, 1990, 1999) (see Section

2.5) are used to evaluate the performance of the algorithms. Before the ex-

periments were performed, parameters were tuned for all algorithms using the

smallest problem instance, i.e. Hang Seng (D1). The parameter values of the

tested algorithms are provided in Table 5.1. For constraint parameter values, we

use K = 10, εi = 0.01, δi = 1 (i = i, ...,N) and z = {30}.
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Parameters MOSSwA NSGA-II SPEA2 PESA-II

Number of Population (NP) 100 100 100 100

Number of Generation 4,000 4,000 4,000 4,000

Crossover Probability (CR) - 0.9 0.9 0.9

Crossover Distribution Index - 20 20 20

Mutation Probability - 1/N 1/N 1/N

Mutation Distribution Index - 20 20 20

Tournament Round - - 1 -

Number of Bisection - - - 5

Reference set size (B) 15 - - -

Subset sub size (S) 3 - - -

Number of termination stage in HC 1 - - -

Archive Size (Asize) 100 - 100 100

Table 5.1: Parameter setting of considered algorithms.

Three performance metrics, GD, IGD and HV, are used to evaluate the quality

of the solutions achieved by considered algorithms (see Section 3.4). The ex-

perimental results of GD, IGD and ∆ of the four MOEAs performed on the five

datasets (D1 − D5) are shown in Figures [5.1 - 5.5]. The results show that

MOSSwA outperforms SPEA2, NSGA-II and PESA-II in all five problem instances

in terms of GD, IGD and ∆ metrics. SPEA2 is the second best algorithm out of

the four algorithm tested. For the small problem instances (D1 − D4), SPEA2

performs better than NSGA-II and PESA-II with higher computational cost. For

Nikkei instance (D5), NSGA-II performs better than SPEA2 and PESA-II. In term

of diversity measure (∆), PESA-II is not able to achieve a good spread of efficient

solutions for all five problem instances.
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Figure 5.1: Performance comparisons of the algorithms in terms of GD, IGD and
Spread (∆) metrics for Hang Seng.

Figure 5.2: Performance comparisons of the algorithms in terms of GD, IGD and
Spread (∆) metrics for DAX 100.
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Figure 5.3: Performance comparisons of the algorithms in terms of GD, IGD and
Spread (∆) metrics for FTSE 100.

Figure 5.4: Performance comparisons of the algorithms in terms of GD, IGD and
Spread (∆) metrics for S&P 100.
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Figure 5.5: Performance comparisons of the algorithms in terms of GD, IGD and
Spread (∆) metrics for Nikkei.

Figure 5.6: Running time of the algorithms for the constrained portfolio opti-
mization problem.
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The running times of the tested algorithms are shown in Figure 5.6. The results

show that our proposed algorithm MOSSwA is not only superior in performance

measures but also is efficient in computational time compared with NSGA-II,

SPEA2 and PESA2 in all five datasets.

For illustrative purpose, the obtained efficient frontiers of the tested algorithms

along with the unconstrained efficient frontier (UCEF) for five problem instances

are provided in Figure 5.7. The results provided in Figure 5.7 are the obtained

efficient frontiers from a single run.

Figure 5.7: Comparison of obtained Efficient Frontier of all the algorithms for
constrained portfolio optimization problem.
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Figure 5.7: Comparison of obtained Efficient Frontier of all the algorithms for
constrained portfolio optimization problem.
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Figure 5.7: Comparison of obtained Efficient Frontier of all the algorithms for
constrained portfolio optimization problem.
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As stated in Section 3.4.2, IGD can provide an assessment of the overall perfor-

mance of an algorithm, measuring its convergence and diversity simultaneously.

We therefore compare the IGD values of the four algorithms by using Student’s

t-test Walpole et al. (1998). The statistical results obtained by a two-tailed t-

test with 38 degrees of freedom at a 0.05 level of significance are given in Table

5.2. The result of Algorithm1 ↔ Algorithm2 is shown as “+”,“−”, or “∼” when

Algorithm1 is significantly better than, significantly worse than, or statistically

equivalent to Algorithm2, respectively.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei

MOSSwA↔ NSGA-II + + + + +

MOSSwA↔ SPEA2 + + + + +

MOSSwA↔ PESA-II + + + + +

NSGA-II↔ SPEA2 ∼ ∼ ∼ ∼ +

NSGA-II↔ PESA-II + + + + +

SPEA2↔ PESA-II + + + + +

Table 5.2: Student t-Test Results of Different Algorithms on five problem in-
stances from OR-Library.

Results show that MOSSwA outperforms all considered algorithms in all prob-

lem instances both in terms of solution quality and computational time. For small

problem instances (D1 − D4), NSGA-II and SPEA2 perform similarly but SPEA2

achieves the results with higher computational cost. When the problem size be-

comes larger, PESA-II and SPEA2 are found to be slow in convergence and not

efficient both in terms of solution quality and computation time. We could there-

fore conclude that the proposed MOSSwA has the best optimization performance

for the portfolio optimization problem with the considered constraints.
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5.6 Summary and Discussion

This chapter presents a multi-objective scatter search algorithm (MOSSwA) to

solve the mean variance portfolio optimization problem with cardinality, quan-

tity and pre-assignment constraints. The proposed MOSSwA follows the basic

structure of the scatter search and defines the reference set solutions based on

Pareto dominance and crowding distance measures. New subset generation and

combination methods are proposed to generate efficient and diverse portfolios.

Three problem-specific selection methods are introduced in order to promote the

efficient convergence of the search. Hill climbing (HC) operation is adopted to

search for improved portfolios. In this work, elitism is adopted by maintaining

a secondary population (i.e. archive A). By exploiting the useful information

in the current population and archive A, MOSSwA is able to guide the search

toward the Pareto optimal set. MOSSwA significantly outperforms three existing

MOEAs both in terms of distance and diversity performance measures.

Intuitively, imposing pre-assignment constraints could deteriorate the solution

quality unless the pre-assigned assets belong to optimal solutions of the efficient

frontier. More precisely, when a low-return security is pre-assigned the deteriora-

tion could be large whereas when a high-return asset is pre-assigned the deteri-

oration could be less. Gaspero et al. (2011) showed that the pre-assigned assets

have impact on the quality of the obtained solution. An investor is thus expected

to have a good insight on setting his/her preference assets in the portfolio. In

this work, the pre-assignment asset (z30 = 1) is set by using the preliminary test

results of D1 and the same pre-assignment asset is used for all five datasets (D1

− D5) for consistency. We do not claim here that the pre-assignment asset used

in the computational analysis belongs to optimal solutions of efficient frontier of

all five datasets.

In this work we consider the cardinality constraint which limits the maximum

number of assets in a portfolio. The obtained efficient frontier would be a com-

bination of portfolios with various numbers of assets. Therefore, a portfolio

manager has an extra trade-off criterion (the cardinality of the obtained solu-
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tions) to take into account when making decisions to select a suitable portfolio

weighting between the risk, return and the cardinality of the portfolio.

Chang et al. (2000) reasoned that the cardinality constraint with inequality case

can be solved by repeatedly running the equality case incrementing the K values

up to the maximum limit (i.e. K = 1, . . . ,KU). The decision maker will then be

better informed with several constrained efficient frontiers for different K values.

From a computational perspective, the cardinality with equality case is far more

challenging than the one with inequality case. In fact, Woodside-Oriakhi et al.

(2011) investigated the cardinality constrained portfolio optimization problem

with two cases using CPLEX (version 11.0) on OR-library dataset D2. The author

showed that the portfolio selection problem with inequality case is computation-

ally far easier than the equality case. Existing research also shows that major-

ity of the studies have adopted the cardinality constraints with inequality case.

Based on these observations, we are motivated to consider the strict cardinality

(i.e. with equality) constraints in our next studies in the following chapters.
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Chapter 6

A Learning-guided MOEA for
Portfolio Optimization

“The purpose of computation is

insight, not numbers.”

Richard Hamming

6.1 Introduction

In this chapter, we propose a new learning-guided multi-objective evolutionary

algorithm for the mean-variance portfolio optimization problem. The basic MV

model is extended to consider the strict cardinality, quantity, pre-assignment and

round lot constraints. We investigate the performance of the learning-guided

multi-objective evolutionary algorithm with external archive (MODEwAwL) on

the extended MV model with four constraints considered. Randomly generating

a new candidate solution is very unlikely to achieve a good-quality practical solu-

tion for the constrained portfolio optimization problem nor to promote efficient

and effective convergence. Instead, an efficient learning-guided solution gener-

ation scheme incorporating additional problem-specific heuristics is proposed to

generate a good-quality solution. The proposed solution generation scheme is

designed to enhance an efficient convergence of the search algorithm by concen-
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trating on the promising areas of the search space.

In the development of new MOEAs, two common goals, namely fast convergence

to the Pareto optimal front and good distribution of solutions along the front, are

mainly considered. In order to achieve the efficient and effective convergence,

a MOEA needs to be designed to exploit information accumulated about an ini-

tially unknown search space, especially in a large and complex search space. One

way is to observe the interactions between the individuals and extract important

features from the good solutions. A learning mechanism is introduced in an ef-

fort to identify the promising subset of assets. A subset optimization heuristic

employed by Woodside-Oriakhi et al. (2011) is a key motivation for the devel-

opment of a learning mechanism. This work is also motivated by the successful

results of a Differential Evolution for Multi-objective Optimization (DEMO) pro-

posed by Robič and Filipič (2005) in a wide range of applications.

6.2 Problem Model

In this work, four real-world constraints, cardinality, quantity, pre-assignment

and round lot, are considered (see Section 2.4). Mathematically, the problem

with considered constraints can be formulated as follows:

min f1 =
N∑
i=1

N∑
j=1

wiwjσij (6.1)

max f2 =
N∑
i=1

wiµi (6.2)

subject to
N∑
i=1

wi ≤ 1 (6.3)

N∑
i=1

si = K, (6.4)

wi = yi.ϑi, i = 1, ...,N, yi ∈ Z+ (6.5)
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εisi ≤ wi ≤ δisi, i = 1, ...,N, (6.6)

si ≥ zi, i = 1, ...,N (6.7)

si, zi ∈ {0, 1} , i = 1, ...,N (6.8)

where f1 and f2 are risk and return objectives respectively (see Section 2.2.2),

K is the number of assets in a portfolio, binary variable si denotes whether asset

i is invested or not. If si equals one, asset i is chosen to be invested and the

proportion of capital wi lies in [εi, δi], where 0 ≤ εi ≤ δi ≤ 1. Otherwise,

asset i is not invested and wi equals zero. Eq. (6.7) defines the pre-assignment

constraint to fulfil the investors’ subjective requirements where the binary vector

zi denotes if asset i is in the pre-assigned set that has to be included in the

portfolio or not. Eq. (6.5) defines the round lot constraint where yi is a positive

integer variable and ϑi is the minimum lot that can be purchased for each asset

(see Section 2.4.3). As denoted in Section 2.4.3, the inclusion of the round lot

constraint may make it impossible to exactly satisfy the budget constraint (see

Eq. (6.3)) as the total capital might not be the exact multiples of the required

trading lot for various assets.

6.3 Related Work

In this section, we review the studies which considered round lot constraints.

For a comprehensive overview of the portfolio problems with different combina-

tion of constraints, we direct the interested reader to (Di Tollo and Roli, 2008;

Metaxiotis and Liagkouras, 2012; Ponsich et al., 2013; Tapia and Coello, 2007).

Arriaga and Valenzuela-Rendón (2012) presented a Steepest Ascent Hill Climb-

ing algorithm (SAHC) for portfolio selection problem with cardinality, quantity

and round lots constraints. The performance of SAHC was compared with GA
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and QP for three instances, NASDAQ-100, FTSE-100 and DAX-30 indices. The

results showed that SAHC is competitive to GA.

Mansini and Speranza (1999) proposed three heuristic algorithms for portfo-

lio selection problem with minimum transaction lots and tested the performance

of them using real market data from the Milan Stock Exchange. The experiments

showed that the proposed heuristics achieved very good solutions in a reasonable

computational time. Their work also showed that the portfolio selection prob-

lem with transaction lots is an NP-complete problem (Garey and Johnson, 1990).

Soleimani et al. (2009) presented a GA with complete deterministic selection

technique (i.e. the fittest half of the population survives). They considered three

constraints: cardinality, minimum transaction lots and market (sector) capital-

ization5. Their work presented computational results for a number of test prob-

lems involving up to 2000 assets.

Streichert et al. (2004a,b,c) investigated the impact of binary encoding (natural

binary and gray codes), a real-value encoding and hybrid encoding (i.e. binary

+ real). Their work considered cardinality, buy-in thresholds (i.e. floor) and

transaction lots constraints. They showed that a hybrid encoding outperformed

the other representations when no Lamarckism (heritability of acquired charac-

teristics) is adopted and cardinality constraints are considered.

Lin and Liu (2008) studied the extensions of the MV model with round lots

constraints and devised a GA to solve the models. In their GA, the offspring does

not directly replace the parent. Instead, it replaces a randomly selected chromo-

some except the best one, only when it is better than the worst chromosome of

the population. Computational results using 3-year Taiwanese mutual fund data

showed the efficiency of GA in terms of computational time and solution quality.

5 The sector capitalization constraints impose that some assets belong to sectors (sets of as-
sets) and the capital invested in sector 1 is greater than the one invested in sector 2 and so
on.
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6.4 Learning-guided MOEA (MODEwAwL)

The multi-objective portfolio optimization problem becomes too complex to solve

by numerical methods when the practical constraints reflecting investors’ prefer-

ences and/or institutional trading rules are considered. Over the last few years,

MOEAs have received a significant amount of attention and demonstrated their

effectiveness and efficiency in solving the portfolio optimization problems with

real-world constraints.

DEMO (Robič and Filipič, 2005) is one of the recent algorithms which combines

the advantages of DE (Storn and Price, 1997) with the mechanisms of Pareto-

based sorting and crowding distance sorting (Deb et al., 2002). It had been

successfully tested on the carefully designed test functions (ZDT) introduced in

(Zitzler et al., 2000). The procedure of the DEMO is described in Algorithm 6.1.

Algorithm 6.1: Procedure of DEMO (Robič and Filipič, 2005).
Input: Psize: the number of individuals in population P ;
Output: P;

1 P := ∅;
2 evaluate the initial population P of random individuals;
3 while stopping criterion not met do
4 for each individual pi ∈ P do
5 create a candidate p′ from parent pi;
6 evaluate p′;
7 if p′ dominates pi then
8 p′ replaces pi;
9 else if pi dominates p′ then

10 discard p′;
11 else
12 add p′ to P ;

13 if | P |≥ Psize then
14 truncate P ;

15 randomly enumerate the individuals in P ;
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DEMO maintains a population of individuals, where each represents a potential

solution to the optimization problem. During the evolution, it allows its popula-

tion capacity expand in order to add newly found non-dominated solutions (see

Algorithm 6.1, line 3-13). Hence, it enables the newly found non-dominated

solutions to immediately take part in the generation of the subsequent candidate

solutions. This feature of DEMO promotes fast convergence towards the true

Pareto front. In each generation, if the population exceeds the size limit, it is

sorted based on the non-domination and crowding distance metrics (Deb et al.,

2002) in order to identify those individuals to be truncated. It thus aims to main-

tain a good distribution of non-dominated solutions.

In this work, we propose a learning-guided multi-objective evolutionary algo-

rithm (MODEwAwL) for the constrained portfolio optimization. This work has

been published in Applied Soft Computing (Lwin et al., 2014). The proposed

algorithm adopts a new approach to extend the generic DEMO scheme to solve

the constrained portfolio optimization problem. The main differences of our ap-

proach with respect to the DEMO scheme in the literature can be outlined as

follows:

1. A secondary population (i.e. an external archive) is introduced to store the

well spread non-dominated solutions found throughout the evolution (see

Section 6.4.8).

2. A learning mechanism is proposed to extract the important features from

the efficient solutions found throughout the evolution (see Section 6.4.3).

3. An efficient solution generation scheme utilizing the learning mechanism,

problem specific heuristics and effective direction-based search methods is

proposed to guide the search towards the promising region of the search

space (see Section 6.4.4).

The proposed MODEwAwL uses archive A to extract the important features of

non-dominated solutions. Incorporating learning mechanism and prior problem-

specific knowledge exploitation in the evolution process allows MODEwAwL to

generate promising offspring solutions. The proposed MODEwAwL thus aims to
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promote convergence by concentrating on the promising regions of the search

space. The pseudocode of the proposed algorithm is described in Algorithm 6.2.

Algorithm 6.2: Procedure of MODEwAwL.
Input: NP: the number of individuals in population P ,

Asize: the capacity of the archive A,
CR: the crossover probability,
F: a scaling factor;

Output: A;
// Initialization (see Section 6.4.2)

1 P := ∅; A := ∅ ;
2 P ← randomly create an initial population;
3 while stopping criteria not met do

// Update the archive A (see Section 6.4.8)

4 A← update the archive A with non-dominated solutions from P ;
5 if | A | ≥ Asize then
6 A← maintain A with Asize least crowded non-dominated solutions;

// Learning mechanism (see Section 6.4.3)

7 learn from the archive A to identify the promising asset(s);
8 for each individual pi(i = 1, . . . ,NP) in P do

// Candidate generation (see Section 6.4.4)

9 p′ ← create new candidate p′ from P and learning mechanism;
10 if candidate p′ does not satisfy constraints then
11 repair p′ (see Section 6.4.5);

12 evaluate p′ by f1 and f2 (see Eqs. 6.1 - 6.2);
13 if p′ dominates pi then
14 p′ replaces pi;
15 else if pi dominates p′ then
16 discard p′;
17 else
18 add p′ to the current population P ;

19 if | P | ≥ NP then
// Truncate P (see Section 6.4.7)

20 P ← maintain P with best NP solutions, ranked by non-domination
21 and crowding distance metrics;

22 randomly enumerate the individuals in P ;
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6.4.1 Solution representation and encoding

In our solution representation, we adopt the same hybrid encoding used in

Section 4.4.1. Some existing research studies (Anagnostopoulos and Mama-

nis, 2011b; Mishra et al., 2014; Skolpadungket et al., 2007; Streichert et al.,

2004a,b,c) adopt similar encoding to define a portfolio. When the cardinality

and pre-assignment constraints are considered, the introduction of binary vari-

ables si in the multi-objective portfolio model enhances the evaluation of the

algorithm.

6.4.2 Initial population generation

To generate an initial population, K different assets (including all assets in the

pre-assignment subset) are randomly selected and proportions are assigned to

those selected assets randomly. If the generated portfolio violates the budget

and/or quantity constraints, such solution is corrected by the constraint handling

techniques provided in Section 6.4.5. Hence, all generated solutions in the trial

population are feasible.

6.4.3 Learning mechanism

At each generation, the distribution of assets from non-dominated solutions in

the external archive is observed to identify the promising assets. The concentra-

tion score of each asset ci is calculated by counting its occurrences in the archive

divided by the archive size.

ci =

|A|∑
j=1

si,j

| A |
.

The new solutions to be generated are encouraged to be composed of those

assets by exploiting the knowledge obtained throughout the evolution to direct

the search towards the promising search space (see Section 6.4.4). The proposed

learning mechanism is computationally cheap as it only uses a single update at
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each generation. A similar form of scoring function has been used as one of the

components in the trade-off studies by Smith et al. (2007).

6.4.4 Candidate generation

One of the factors to consider in designing the portfolio model in the proposed

MODEwAwL is to find an effective way to generate offsprings. The no free lunch

theorem by Wolpert and Macready (1997) states that “the average performance
of any pair of algorithms across all possible problems is identical.” Ho and Pepyne

(2002) restates that “a general-purpose universal optimization strategy is theoret-
ically impossible, and the only way one strategy can outperform another is if it is
specialized to the specific problem under consideration.”

The insights from the no free lunch theorem for optimization (Wolpert and

Macready, 1997) have highlighted the need to embed domain knowledge into

an EA to achieve good performance (Bonissone et al., 2006). The introduction

of problem-specific knowledge in the design of the algorithm is crucial in order

to perform better than random search. We aim to find effective and efficient

scheme with a good balance between the exploitation and exploration. The new

solution is generated by two phases: the selection of assets from a universe of N

available assets and the allocation of capital to those selected assets. The idea

presented here is to use DE for exploring the real decision variables and exploit

learning mechanism and problem specific heuristics described below to select

the promising assets in the new solution.

The information about the concentration of the assets in the non-dominated

portfolios in the archive is exploited in selecting the promising assets for the

new candidate portfolio. Hence the assets are ranked according to their concen-

tration scores in the archive non-dominated solutions (see Section 6.4.3). The

assets which score greater than zero are considered to be promising ones. The

higher the score of the asset, the higher its chances to be included in the new

candidate portfolio.
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In the standard portfolio theory, when the prices of two assets move towards

the same direction, they are said to be positively correlated. If they move in

opposite directions, they are said to be negatively correlated. If the assets are

independent, the covariance value will be zero or near zero. It should be ob-

served that positively correlated assets tend to increase the resulting variance

and hence the risk. Negatively correlated assets, on the other hand, tend to

reduce the overall variance and thus the risk. Therefore, we can promote the

chances of reducing the overall portfolio’s risk if we can identify the negatively

correlated assets to some extent. Table 6.1 summarizes how correlation effects

co-movement of assets and risk (Israelsen, 2007; McDonnell, 2008).

Correlation Co-movement Effect on Risk

Positive Together Minimal decrease

Negative Opposite Large decrease

Zero Independent Moderate decrease

Table 6.1: How correlation effects co-movement of assets and risk.

In order to generate a new candidate solution, the | Z | assets are firstly se-

lected if the pre-assignment constraint is considered. By taking into account of

the above stated intuitive learning, in this work, the proposed MODEwAwL then

alternatively uses the following selection schemes to fill the remaining assets:

S1: K− | Z | assets are selected by roulette wheel selection based on the

concentration score ci.

S2: K− | Z | assets which have the highest concentration score ci are

selected.

S3: K− | Z | assets which have the highest expected return values are

selected.
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S4: A random n number of assets (where n = randint[ 0,K− | Z | ])

which have the highest concentration score ci are selected. The re-

maining (K− n− | Z |) assets are filled by randomly selecting one of

the following methods:

• Select those assets which have the lowest risk values.

• Select those assets which have the highest return values (i.e. S3).

• Select those assets which have the least correlation from those n

assets already chosen.

By adopting the above stated selection scheme, the new candidate solution sat-

isfies the pre-assignment and cardinality constraints. The proportions of those

selected assets for the new candidate solution are assigned by using a direction-

based offspring generation scheme where p1, p2 and p3 (with w1i, w2i and w3i

allocations respectively) are randomly selected portfolios from the current pop-

ulation P as follows:

W1: w′i := w3i + rand[0, 1]× (w1i − w2i)

W2: w′i := w3i + F × (w1i − w2i)

W3: rank p1, p2 and p3 by dominance and crowding distance measure

(i.e., p1 is the best portfolio and p3 is the worst portfolio among three

portfolios) and generate weight allocations of candidate portfolio by

directing away from p3 and towards the middle between p1 and p2 as

follows:

w′i := (w1i + w2i)/2

The detailed procedure of the candidate generation is provided in Algorithm 6.3.

The proposed candidate generation mechanism intends to guide the search to-

ward promising direction by learning from the reference assets from the archive

and reference proportions from the current population. In this way, the pro-

posed algorithm converges efficiently. The new candidate portfolio is repaired if
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the quantity and round lot constraints are violated (see the repair mechanism in

Section 6.4.5).

Algorithm 6.3: Candidate Generation of MODEwAwL.

Input: concentration scores of assets ci, i = 1, . . . ,N and a parent p̄ ∈ P ;

Output: candidate solution p′;

1 randomly select K assets by S1, S2, S3 or S4;

2 randomly select an index i from those selected K and assign i to j and χ;

3 randomly select three different portfolios: p1, p2, p3 ∈ {P \ p̄};
4 for each selected asset do

5 if rand(0, 1) < CR or j == χ then

6 allocate weight w′ by W2, W1 or W3;

7 else

8 assign weight w′ with w̄i of parent portfolio p̄;

9 if w′ < εi then

10 w′ ← rand(εi, δi);

11 randomly select an index i from the K selected and assign i to j;

6.4.5 Constraint handling

When using an evolutionary algorithm to solve constrained optimization prob-

lems, there are various methods proposed in the literature for handling con-

straints in evolutionary optimization, such as penalty function method, spe-

cial representations and operators, repair methods and multi-objective methods

(Coello, 2002). Among those methods, repair method is one of the effective

approaches to locate feasible solutions (Mezura-Montes, 2009). During the pop-

ulation sampling, each constructed individual portfolio is repaired if it does not

satisfy all considered constraints. As described in Section 6.4.4, the new solu-

tion generated by our proposed MODEwAwL already satisfies the cardinality and

pre-assignment constraints.
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Hence, the following repair mechanism is applied (Skolpadungket et al., 2007;

Streichert et al., 2004c) :

1. All weights of selected assets in the candidate solution are adjusted by

setting w′i = εi +
w′i−εi∑
(w′i−εi)

.

2. The weights are then adjusted to the nearest round lot level by setting

w′i = w′i − (w′i mod ϑi). The remaining amount of capital is redistributed

in such a way that the largest amount of (w′i mod ϑi) is added in lot of ϑi
until all the capital is spent.

6.4.6 Selection scheme

The proposed MODEwAwL applies the elitist selection scheme based on Pareto

optimality (see Algorithm 6.2). During the evolution, the population is extended

by adding the newly found non-dominated solutions. Hence, at each generation,

the number of portfolios in the current population will be between NP and 2NP.

6.4.7 Truncate population

In each generation, if the number of portfolios in the current population exceeds

its limit NP, it needs to identify those which need to be removed. The individuals

in the population are sorted based on the non-dominance and crowding distance

measures (Deb et al., 2002). Then the current population is truncated by keeping

the best NP individuals for the next generation.

6.4.8 Maintaining the external archive

The main objective of the external archive A is to keep all the non-dominated

solutions encountered along the search process. This approach is adopted in

order to save and update all well spread non-dominated solutions generated by

the algorithm during the search. In each generation, the archive A is updated

with the non-dominated solutions from the trial population.
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6.5 Performance Evaluation

6.5.1 Effectiveness of candidate generation and archive

In this section, our experiments focus on the impact of the learning-guided

solution generation mechanism. In order to evaluate the performance of the

MODEwAwL, we compare it with two variants of the algorithm: the multi-

objective differential evolution (MODE) and the multi-objective differential evo-

lution with archive (MODEwA). Figure 6.1 shows the comparisons of the three

algorithms in terms of IGD, GD and ∆. The experimental results distinctly show

that the proposed algorithm with the learning-guided solution generation mech-

anism outperforms MODE and MODEwA in most instances.

Figure 6.1: Effectiveness of the learning-guided solution generation scheme and
archive.
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6.5.2 Comparisons of the algorithms

In order to evaluate the overall performance of the proposed MODEwAwL, we

compare it with four state-of-the-art multi-objective evolutionary algorithms in

the literature.

• NSGA-II: the Non-dominated Sorting Genetic Algorithm II proposed by Deb

et al. (2002). The algorithm uses binary tournament selection based on the

crowding distance. It performs crossover and mutation by simulated binary

crossover and polynomial mutation operators (see Section 3.3.2.1).

• SPEA2: the Strength Pareto Evolutionary Algorithm proposed by Zitzler

et al. (2001). The algorithm employs fine-grained fitness assignment, den-

sity estimation techniques and archive truncation methods. Like NSGA-II,

it uses binary tournament selection, simulated binary crossover and poly-

nomial mutation evolutionary operators (see Section 3.3.2.2).

• PESA2: the Pareto Envelope-based Evolutionary Algorithm proposed by

Corne et al. (2001). The algorithm uses hyper-boxes to assign fitness and

employs the simulated binary crossover and polynomial mutation opera-

tions (see Section 3.3.2.3).

• PAES: the Pareto Archived Evolution Strategy proposed by Knowles and

Corne (2000). The algorithm uses a simple (1+1) local search evolution

strategy. It maintains an archive of non-dominated solutions and it exploits

those Pareto solutions to estimate the quality of new solutions (see Section

3.3.2.4).

In order to ensure a fair comparison, we have used the same population size

and archive size (if applicable) for all the algorithms tested in this work. We

have chosen to run all the algorithms run for the same stopping criteria (i.e. the

same number of evaluations) to generate the Pareto front. All algorithms con-

sidered in this study were coded in C# using the information from the relevant

papers and run on a personal computer Intel(R) Core(TM)2 Duo CPU E8400

3.16 GHz. Each algorithm also uses the same encodings (see Section 6.4.1)
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and repair mechanism (see Section 6.4.5) when a newly constructed portfolio

violates the considered constraints. Before the experiments were performed, pa-

rameters were tuned for all algorithms using the smallest problem instance, i.e.

Hang Seng. Table 6.2 shows the best parameter values of the algorithms.

Parameters MODEwAwL NSGA-II SPEA2 PESA-II PAES

Number of population (NP) 100 100 100 100 100

Number of generation 1,000N 1,000N 1,000N 1,000N 1,000N

Scaling factor (F) 0.3 – – – –

Crossover probability (CR) 0.9 0.9 0.9 0.9 –

Crossover distribution index – 20 20 20 –

Mutation probability – 1/N 1/N 1/N 1/N

Mutation distribution index – 20 20 20 20

Tournament round – – 1 – –

Number of bisection – – – 5 5

Archive size (Asize) 100 – 100 100 100

Table 6.2: Parameter setting of five algorithms.

Four performance metrics, IGD, GD, Diversity (∆) and HV, are used to evaluate

the quality of the solutions achieved by the tested algorithms (see Section 3.4).

The true Pareto front for highly constrained multi-objective portfolio optimiza-

tion problem considered in this work is unknown. We use the best known un-

constrained efficient frontier (UCEF) provided by the OR-library (Beasley, 1990,

1999) as the true Pareto front reference set. This has been widely adopted in the

literature.

In this section, a number of experiments are performed. The results of GD,

IGD, Diversity (∆) and running time of the five algorithms performed on seven
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datasets (D1 − D7) from OR-library are shown in Figures [6.2 − 6.8]. These

results are obtained for the constrained portfolio optimization problem with car-

dinality K = 10, floor εi = 0.01, ceiling δi = 1.0, pre-assignment z = {30} and

round lot ϑi = 0.008.

Figure 6.2: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Hang Seng dataset.
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In the literature, many studies have used the cardinality value K = 10 in their

experiments. Therefore, additional experiments are also performed for different

cardinality values with K = 15 and K = 5 but used the same parameter values

for other constraints. These additional results are provided in Appendix A.

Figure 6.3: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for DAX 100 dataset.
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Computational results show that for most of the problem instances (D2 − D7),

the MODEwAwL obtains the smallest mean values for IGD metrics. SPEA2 and

NSGA-II are comparable in most problem instances while SPEA2 achieves the

results with expensive computing time. The results also confirm that PAES ranks

the worst among the test algorithms for the problem considered. However, PAES

is the second fastest algorithm after MODEwAwL.

Figure 6.4: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for FTSE 100 dataset.
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In terms of GD and ∆ metrics, MODEwAwL performs better when the problem

size becomes larger and the cardinality constraint is set 10 and 15. For computa-

tional results with K = 5, MODEwAwL outperforms all other MOEAs in all seven

problem instances.

Figure 6.5: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for S & P 100 dataset.
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Overall, we could conclude that MODEwAwL is significantly better than the other

compared MOEAs for the majority of datasets. The experimental results provided

in Appendix A have further demonstrated that the proposed algorithm is efficient

for various search spaces with different values of K. The proposed MODEwAwL

is thus more robust than the compared MOEAs.

Figure 6.6: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Nikkei dataset.
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Figure 6.7: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for S & P 500 dataset.
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Figure 6.8: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Russell 2000 dataset.
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Figure 6.9: Performance comparisons of five algorithms in terms of HV metric.
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Figure 6.9 shows the hypervolume (HV) calculation performed on seven datasets

and for each problem instance, the results reconfirm the superiority of MODE-

wAwL since it outperforms in six out of seven datasets. For illustrative purpose,

the obtained efficient frontiers of the algorithms for seven instances along with

the true unconstrained efficient frontier (UCEF) are provided in Figure 6.10.

When the problem sizes are small, the Pareto sets obtained by the considered

algorithms are very competitive to each other such that it would be hard to

differentiate visually. As the problem sizes increase, the proposed algorithm ob-

tained significantly better efficient frontier than those obtained by other MOEAs

considered in this work. Based on the analysis, we conclude that the proposed

MODEwAwL is able to solve large-scale real-world portfolio optimization effi-

ciently. The results also demonstrate that NSGAII and SPEA2 loose their effec-

tiveness when the problem dimension increases.

Figure 6.10: Comparison of efficient frontiers for seven datasets.
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Figure 6.10: Comparison of efficient frontiers for seven datasets.
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Figure 6.10: Comparison of efficient frontiers for seven datasets.
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Figure 6.10: Comparison of efficient frontiers for seven datasets.
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Figure 6.11: Comparisons of convergence of five algorithms.
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Figure 6.11: Comparisons of convergence of five algorithms.
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To gain an intuitive view of the five algorithms over generations, we plot the GD,

IGD and Spread (∆) metrics over generations on six selected instances in Figure

6.11 where the results are averaged over 20 runs. The results confirm that all

algorithms considered are able to converge and MODEwAwL is able to converge

the fastest in most problem instances.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000

MODEwAwL↔ NSGA-II ∼ + + + + + +

MODEwAwL↔ SPEA2 − + + + + + +

MODEwAwL↔ PESA-II ∼ + + + + + +

MODEwAwL↔ PAES + + + + + + +

NSGA-II↔ SPEA2 − + ∼ ∼ + + ∼

NSGA-II↔ PESA-II + + + ∼ + + ∼

NSGA-II↔ PAES + + + + ∼ + −

SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼

SPEA2↔ PAES + + + + − ∼ −

PESA-II↔ PAES + + + + − ∼ −

Table 6.3: Student’s t-test results of different algorithms on seven problem in-
stances with K = 10, εi = 0.01, δi = 1.0, z30 = 1 and ϑi = 0.008.

As stated in Section 3.4.2, IGD can provide the overall performance of an al-

gorithm, measuring its convergence and diversity simultaneously. We compare

the IGD values of the five algorithms by using Student’s t-test (Walpole et al.,

1998). The statistical results obtained by a two-tailed t-test with 38 degrees of

freedom at a 0.05 level of significance are given in Table [6.3 − 6.5]. The result

of Algorithm1 ↔ Algorithm2 is shown as “+”, “−”, or “∼” when Algorithm1 is

significantly better than, significantly worse than, or statistically equivalent to

Algorithm2, respectively. Results show that MODEwAwL outperforms other al-

gorithms in most of the problem instances except Hang Seng dataset. For Hang

Seng test problem, the performance of SPEA2 outperforms MODEwAwL when

K = 10. We therefore can conclude that the proposed MODEwAwL has the
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best optimization performance for the portfolio optimization problem with the

considered constraints.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000

MODEwAwL↔ NSGA-II ∼ + + + + + +

MODEwAwL↔ SPEA2 ∼ + + + + + +

MODEwAwL↔ PESA-II + + + + + + +

MODEwAwL↔ PAES + + + + + + +

NSGA-II↔ SPEA2 + ∼ + + + ∼ ∼

NSGA-II↔ PESA-II + + + + + ∼ ∼

NSGA-II↔ PAES + + + + + + ∼

SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼

SPEA2↔ PAES + + + + − ∼ ∼

PESA-II↔ PAES + + + + − ∼ ∼

Table 6.4: Student’s t-test results of different algorithms on 5 problem instances
with K = 15, εi = 0.01, δi = 1.0, z30 = 1 and ϑi = 0.008.

Algorithm1↔ Algorithm2 Hang Seng DAX 100 FTSE 100 S & P 100 Nikkei S & P 500 Russell 2000

MODEwAwL↔ NSGA-II + + + + + + +

MODEwAwL↔ SPEA2 + + + + + + +

MODEwAwL↔ PESA-II + + + + + + +

MODEwAwL↔ PAES + + + + + + +

NSGA-II↔ SPEA2 − + ∼ + + ∼ ∼

NSGA-II↔ PESA-II + + ∼ + + ∼ ∼

NSGA-II↔ PAES + + + + − − −

SPEA2↔ PESA-II + ∼ ∼ ∼ + ∼ ∼

SPEA2↔ PAES + + ∼ ∼ − − −

PESA-II↔ PAES ∼ + ∼ + − − −

Table 6.5: Student’s t-test results of different algorithms on five problem in-
stances with K = 5, εi = 0.01, δi = 1.0, z30 = 1 and ϑi = 0.008.
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6.6 Summary

This chapter presents a new learning-guided multi-objective evolutionary algo-

rithm (MODEwAwL) for mean variance portfolio optimization problems. Four

real-world constraints, cardinality, quantity, pre-assignment and round lot, are

considered. MODEwAwL adopts a new approach to extend the generic DEMO

scheme proposed by Robič and Filipič (2005). The proposed algorithm adopts

elitism by maintaining an archive during the evolution process. A learning mech-

anism is introduced in order to extract important features from the set of elite

solutions. An efficient and effective candidate generation scheme utilizing a

learning mechanism, problem specific heuristics and effective direction-based

search methods is proposed to guide the search towards the promising regions

of the search space.

A large set of simulation experiments have been conducted over a number of

problem instances. Results demonstrate that the proposed algorithm is highly

efficient in terms of both finding solutions close to the true Pareto-front and

good distribution along the Pareto-front. Computational results demonstrate

that maintaining a secondary population of solutions in combination with a

learning-guided candidate solution generation scheme contributes to better per-

formance over four existing well-known MOEAs, NSGA-II, SPEA2, PEAS-II and

PAES. The experimental results not only show that the quality of the generated

Pareto set approximations significantly improved, but also that the overall com-

putation time can be reduced.

As to the Pareto set approximation, the proposed solution generation scheme

embedding learning mechanism, problem specific heuristics and direction-based

search methods play a major role, while the efficiency is mainly because the pro-

posed algorithm is computationally cheap as it only uses a single update at each

generation. Unlike other MOEAs, MODEwAwL has very few parameters required

to set. Performance wise, the proposed MODEwAwL algorithm is not only capa-

ble to deliver high-quality portfolios enriched with additional constraints but also

able to efficiently solve a reasonable number of assets up to 1318.
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Chapter 7

Mean-VaR Portfolio Optimization: A
Non-parametric Approach

“Risk, like beauty, is in the eye of

beholder.”

Leslie A. Balzer

7.1 Introduction

In the MV model, risk is defined by means of dispersion and it is assumed that

returns are normally or elliptically distributed (see Section 2.2.4). However,

the distributions of returns are asymmetric and usually have excess kurtosis in

practice (Cont, 2001; Fama, 1965; Prakash et al., 2003). Variance as a risk mea-

sure has thus been widely criticized by practitioners due to its symmetrical mea-

sure by equally weighting desirable positive returns against undesirable negative

ones. In fact, Markowitz recognized the inefficiencies embedded in the mean-

variance approach and suggested the semi-variance risk measure (Markowitz,

1959) in order to measure the variability of returns below the mean. In practice,

many rational investors are more concerned with under-performance rather than

over-performance in a portfolio. These limitations have led to research directions

where realistic risk measures are used to separate undesirable downside move-

ments from desirable upside movements (Biglova et al., 2004). Among those
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various risk measures, Value-at-Risk (VaR) (Morgan, 1996) is a popular mea-

surement of risk. Moreover, regardless of the quantification of the risk function,

there are usually several practical trading constraints imposed on the solutions

of the portfolio optimization problem.

This chapter presents a multi-objective evolutionary algorithm with guided learn-

ing for the mean-VaR portfolio optimization problem with practical investment

constraints. Six practical trading constraints, namely, cardinality, quantity, pre-

assignment, round lot, class and class limit constraints, are considered. Value-at-

Risk (VaR) is used as a risk measure and a nonparametric historical simulation

approach is adopted to calculate VaR.

7.2 Value-at-Risk: An Overview

In the literature, researchers and practitioners replace variance by introducing

various downside risk measures (Harlow, 1991; Krokhmal et al., 2011) in or-

der to capture realistic market risk exposure by focusing on return dispersions

below a specified target. The Safety-First principle introduced by Roy (Roy,

1952) is considered to be fundamental in the development of downside risk

measures in the finance literature. Roy’s Safety-First criterion suggests selecting

a portfolio which minimizes probability of returns falling below some prede-

fined disaster level. Consequently, a growing number of downside risk measures

based on lower partial moments have been proposed by academics and practi-

tioners (Bawa, 1975; Bawa and Lindenberg, 1977; Fishburn, 1977; Grootveld

and Hallerbach, 1999).

The most popularly embraced technique for measuring downside risk among

financial institutions is Value-at-Risk (VaR) (Duffie and Pan, 1997; Jorion, 2006;

Linsmeier and Pearson, 2000). VaR measures the maximum likely loss of a port-

folio from market risk with a given confidence level (1 - α) over a certain time

interval. For instance, if a daily VaR is valued as 100,000 with 95% confidence

level, this means that during the next trading day there is only a 5% chance that

158



7. Mean-VaR Portfolio Optimization: A Non-parametric Approach

the loss will be greater than 100,000. The higher the confidence level, the better

the chances that the actual loss will be within the VaR measure. Therefore, the

confidence level (1 - α) is usually high, typically 95% or 99%.

There are three main techniques commonly employed to measure VaR: the para-

metric approach (variance-covariance), nonparametric approach (historical sim-

ulation) and Monte Carlo simulation methods (Jorion, 2006; Linsmeier and Pear-

son, 2000). The choice of the VaR method is critical since the results yielded

from each method can be very different from each other (Manganelli and En-

gle, 2001). Each method has its own strengths and weaknesses. The parametric

method assumes financial returns follow a normal or known distribution func-

tion whereas the nonparametric (historical simulation) method makes no as-

sumption regarding the distribution. The third method simulates a large num-

ber of random scenarios which can be computationally challenging. The analysis

conducted by Pérignon and Smith (2010) shows that the most commonly used

approach for computing VaR among investment firms that disclose their method-

ology is historical simulation.

Due to its conceptual simplicity, VaR has been widely recognized by financial

regulators and investment practitioners. The Basel Committee for Banking Su-

pervision of the Bank of International Settlements allows financial institutions

to use VaR models to set aside regulatory capital amounts that would cover po-

tential operational loss 6 (Jackson et al., 1997). In addition, the Securities and

Exchange Commission (SEC) requires financial service firms to provide quan-

titative information about market risk using the VaR measure (Alexander and

Baptista, 2002).

Despite its wide use, VaR has limitations. VaR is widely criticized for not being

a coherent risk measure since it does not fulfil a subadditive property. Artzner

et al. (1999) show that VaR fails to satisfy the subadditivity property for some

distributions of asset returns. In other words, the VaR of a portfolio with two

6 see Regulation S–K, Item 305, available online at www.sec.gov/divisions/corpfin/

forms/regsk.htm
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securities may be greater than the combination of VaRs of each security in the

portfolio (Acerbi et al., 2001). When VaR is used as the objective function it leads

to a non-convex and non-differential risk-return portfolio optimization problem

with the number of local optima increasing exponentially with the number of

assets (Dańıelsson et al., 2008; Gaivoronski and Pflug, 2005; Kolm et al., 2014).

In fact, Benati and Rizzi (2007) show that optimization of the mean-VaR port-

folio problem leads to a non-convex NP-hard problem which is computationally

intractable. Moreover, the non-convexity of VaR discourages diversification.

Practitioners are greatly attracted to the expected shortfall (ES) as an alternative

risk measure which considers losses beyond the VaR level (Acerbi et al., 2001;

Acerbi and Tasche, 2002). Rockafellar and Uryasev (2002) introduce the ex-

pected shortfall under the notion of Conditional Value at Risk (CVaR). Acerbi

and Tasche (2002) and Rockafellar and Uryasev (2002) discuss the detailed

properties of the expected shortfall (ES). Many studies have applied alternative

subadditive risk measures such as Conditional Value at Risk (CVaR) (Rockafellar

and Uryasev, 2000) and Partitioned Value-at-Risk (PVaR) (Goh et al., 2012) with

corresponding operational consequences.

7.3 Related Work

Given that VaR is the predominantly used quantile-based, industry-standard risk

measure, there is a need for efficient algorithms that minimize VaR while obtain-

ing maximum return. In the literature, there are different approaches to measure

VaR to investigate portfolio optimization (Charpentier and Oulidi, 2009; Ghaoui

et al., 2003; Goh et al., 2012; Natarajan et al., 2008). Although there has been

considerable work related to portfolio optimization with various risk measures

(Chang et al., 2009; Kolm et al., 2014; Krokhmal et al., 2011), it is noticeable

that the number of studies of non-parametric historical VaR in the context of

mean-VaR remains relatively small.

Krink and Paterlini (2011) presented a new multi-objective evolutionary algo-
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rithm for portfolio optimization, called DEMPO, by hybridizing DE and NSGA-II.

The main feature of the DEMPO is the crossover operation of the NSGA-II is

replaced by DE operators. Their work considered three different models with

variants of risk measures: variance, expected return and value-at-risk. The per-

formance of DEMPO was compared against QP and NSGA-II. The results showed

that DEMPO performed better than NSGA-II and comparable to QP. However,

their work did not cosider any practical constraints. Gilli and Këllezi (2002) and

Gilli et al. (2006) proposed a threshold accepting method to maximize a portfo-

lio’s return under VaR and expected shortfall constraints. Dallagnol et al. (2009)

employed a genetic algorithm (GA) and particle swarm optimization (PSO) for

a mean-VaR portfolio selection problem using historical simulation calculation.

Alfaro-Cid et al. (2011) conducted a comparison between mean-variance and

mean-VaR approach using multi-objective genetic algorithm. However all these

studies have often simplified the problem where practical constraints are not

taken into account.

Baixauli-Soler et al. (2011) presented a multi-objective GA for the mean-VaR

portfolio optimization problem with minimum transaction units and transaction

costs. Computational analysis was performed using fifty assets in Eurostoxx 50

index for 1302 daily historical observations per asset. Results showed the ad-

equacy of the multi-objective GA for solving mean-VaR problem. Jevne et al.

(2012) also studied the mean-VaR portfolio optimization problem with minimum

transaction units and transaction costs and investigate the effect of the initializa-

tion scheme on the results with multi-objective differential evolution and NSGA-

II. Experimental results showed that the refined initialization scheme improves

the convergence of both algorithms. Computational analysis was performed us-

ing 100 assets in the S&P 100 index for 250 daily historical observations.

Anagnostopoulos and Mamanis (2011a) replaced the variance risk measure with

VaR and expected shortfall (ES). Three multi-objective evolutionary algorithms,

SPEA2, NSGA-II and PESA, were compared against exact methods to evaluate

the portfolio selection problem with cardinality, quantity and class constraints.

Computational results were conducted using 96 assets in S&P 100 index for daily
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return from 3 March 2004 to 20 February 2008. Results showed that NSGA-II

and SPEA2 are competitive to each other and they outperformed PESA in terms

of hypervolume measure.

7.4 Problem Model

In this work, six practical trading constraints, cardinality, quantity, pre-assignment,

round lot, class and class limit, are considered (see Section 2.4). The mean-VaR

model (see Section 2.3.2) can be extended with these constraints as follows:

min ψ(w) (7.1)

max µ(w) (7.2)

subject to
N∑
i=1

wi ≤ 1, 0 ≤ wi ≤ 1 (7.3)

N∑
i=1

si = K, (7.4)

wi = yi.ϑi, i = 1, ...,N, yi ∈ Z+ (7.5)

εisi ≤ wi ≤ δisi, 0 ≤ εi ≤ δi ≤ 1, i = 1, ...,N (7.6)

Lm ≤
∑

si ∈ Cm

wi ≤ Um, m = 1, ....M, (7.7)

si ≥ zi, i = 1, ...,N (7.8)

si, zi ∈ {0, 1} , {zi ∈ Z | zi == 1}, i = 1, ...,N (7.9)
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where Eq. (7.1) and Eq. (7.2) are risk and return objectives respectively (see

Section 2.3.2). Eq. (7.4) defines the cardinality constraint where K is the num-

ber of invested assets in the portfolio and the binary variable si denotes whether

asset i is invested or not. Eq. (7.6) defines the quantity constraint. If asset i

is invested, the proportion of capital wi lies in [εi, δi]. Eq. (7.8) defines the

pre-assignment constraint where the binary vector zi denotes if asset i is in the

pre-assigned set Z that has to be included in the portfolio or not. Eq. (7.5)

defines the round lot constraint where yi is a positive integer variable and ϑi

is the minimum lot that can be purchased for each asset (see Section 2.4.3).

Eq. (7.7) defines class and class limit constraints. Every asset is classified in a

certain class (i.e., i ∈ Cm) and class Cm,m = 1, . . . ,M, represents M mutually

exclusive sets of assets and Lm and Um denote the lower and upper proportion

limit for class m. In this work, it is assumed that Lm > 0 for every class Cm
and K ≥ M+ | Z | − | Zcl | where Zcl is the set of classes represented by the

preassigned set Z (i.e., Zcl = {m : zi ∈ Cm}, zi ∈ Z). For instance, if K < M,

there exists no feasible solutions satisfying the class constraint.

7.5 MOEA with Guided Learning

Minimizing VaR as a risk measure is a challenging task due to the non-smooth

objective function landscape with many local minima. Figure 7.1 shows the sur-

face and contour plots of the Value-at-Risk (VaR) of portfolios in a three assets

universe (Coca-Cola Co., 3M Co. and Halliburton Co.) displaying the existence

of non-smooth and non-convex surface with several local minima. The results

are calculated for basic mean-VaR portfolio optimization by using historical sim-

ulation with 3 years of data and 99% confidence interval. The triangular shaped

area delimits the feasible solution area. Figure 7.1(a) illustrates the non-convex

objective function of VaR for the portfolio optimization problem in a three as-

set universe. Figure 7.1(b) depicts the existence of several local minima such

as those located at w1 = 583159, w2 = 0.172896 with VaR99 = 0.020634 and

w1 = 0.789138, w2 = 0.10543 with VaR99 = 0.019671.
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(a) Surface plot

(b) Contour plot

Figure 7.1: The historical VaR of feasible portfolios comprising of three stocks
(Coca-Cola Co., 3M Co. and Halliburton Co.) with 3 years of data and 99%
confidence interval. w1 is the proportion of investment in Coca-Cola, w2 is the
proportion of investment in Halliburton. The amount investment in 3M is equal
to 1− w1 − w2. Short selling is not allowed.
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In practice, portfolios are composed of markets with potentially hundreds to

thousands of available assets, and the calculation of risk measures grows quickly

in relation to the number of assets. When more dimensions and trading con-

straints are added to the problem, the complexity of the problem increases.

Optimal exponential algorithms for reasonable problem dimensions are still not

available. Approximation approaches such as smoothing (Gaivoronski and Pflug,

2005) and meta-heuristics are the known alternatives to find optimal or near-

optimal portfolios in a reasonable amount of time.

This section presents a MOEA with guided learning (MODE-GL) for the con-

strained mean-VaR portfolio optimization problem. MODE-GL is mainly adapted

from MODEwAwL presented in the previous Chapter (see Section 6.4). The main

difference of MODE-GL from MODEwAwL is outlined as follows:

• An additional small archiveD is introduced to maintain Dsize least crowded

solutions (see Section 7.5.5).

• Two different variants of the DE mutation schemes in the solution genera-

tion scheme are proposed (see Section 7.5.3).

These two amendments are proposed to promote exploration and to surmount

valleys in the objective landscape. Like MODEwAwL, MODE-GL maintains an

archive A with non-dominated solutions throughout the evolution. A learning

mechanism is used to extract important features of non-dominated solutions in

the archive A. These features are exploited in generating promising offspring

solutions. MODE-GL thus aims to promote convergence by concentrating on the

promising regions of the search space. Two proposed variants of differential evo-

lution mutation schemes are utilized in order to promote the exploration of the

search towards the least crowded region of the solution space. The pseudocode

of the proposed algorithm is described in Algorithm 7.1.
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Algorithm 7.1: Procedure of MODE-GL.
Input: NP: the number of individuals in the population P ,

Asize: the size of the archive A,

Dsize: the size of the archive D,

CR: the crossover probability,

F : a scaling factor ;

Output: A;

1 P := ∅; A := ∅; D := ∅;
2 P ← randomly create initial population P ;

3 while stopping criterion not met do

// Update the archive A and archive D (see Section 7.5.5)

4 A← update archive A with non-dominated solutions from P ;

5 if | A | ≥ Asize then

6 A← maintain archive A with Asize least crowded solutions;

7 D ← update archive D with Dsize least crowded solutions from P ;

// Learning mechanism (see Section 6.4.3)

8 learn from the archive A to identify the promising asset(s);

9 for each individual pi (i = 1, . . . ,NP) do

// Candidate generation (see Section 7.5.3)

10 p′ ← create new candidate p′ from P and learning mechanism;

11 if candidate p′ does not satisfy constraints then

12 repair p′ (see Section 7.5.4);

13 evaluate the candidate p′ by f1 and f2 (see Eq. 7.1, 7.2);

14 if p′ dominates pi then

15 p′ replaces pi;

16 else if pi dominates p′ then

17 discard p′;

18 else

19 add p′ to the current population P ;

20 if | P | ≥ NP then

// Truncate P (see Section 6.4.7)

21 P ← maintain P with the best NP solutions, ranked by

22 non-domination and crowding distance metrics;

23 randomly enumerate the individuals in P ;
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7.5.1 Solution Representation and Encoding

Assume an array Γ consists of M real values each one representing the total

proportion invested in each class; an array S contains K integer numbers, each

representing a selected asset in the portfolio; and an array W includes K real

values, representing the allocation of each selected asset in the portfolio. We

present the following representation scheme to handle several considered con-

straints:

Γ ={θ1, . . . , θM}, 0 ≤ θm ≤ 1, m = 1, . . . ,M,

S ={s1, . . . , sM, . . . , sQ, sQ+1, . . . , sK},

Q = M+ | Z | − | Zcl |,

sb ∈ C + Z, sj ∈ {1, . . . ,N} − {s1, . . . , sQ},

b = 1, . . . , Q, j = Q+ 1, . . . ,K,

W ={wi, . . . , wK}, 0 ≤ wi ≤ 1, i = 1, . . . ,K.

With this solution representation, the cardinality constraint is satisfied by the

array S which has specified size K. The preassignment constraint is satisfied

by including all preassigned assets in S. The set of classes represented by the

preassigned assets in Z are identified and denoted by Zcl. We then ensure that

M− | Zcl | assets are selected from each remaining class. As stated in Section-

7.4, in this work, it is assumed that K ≥ M+ | Z | − | Zcl |. If K > Q, then

the remaining K−Q assets are randomly selected from the available unselected

assets. In the literature, Anagnostopoulos and Mamanis (Anagnostopoulos and

Mamanis, 2011a) use a similar encoding scheme but their model does not con-

sider either pre-assignment or round lot constraints.

Given that N = 94 and M = 6 where C1 ∈ {1, . . . , 15}, C2 ∈ {16, . . . , 30},
C3 ∈ {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75} and C6 ∈ {76, . . . , 94}, an
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example portfolio with K = 10 would be represented as described below:

Z = {30}, Zcl = {C2}, | Zcl |= 1,

Γ = {0.05, 0.05, 0.05, 0.05, 0.05, 0.05},

S = {8, 17, 30, 47, 62, 85, 31, 92, 37, 69},

W = {w8 = 0.112, w17 = 0.048, w30 = 0.024, w47 = 0.376, w62 = 0.024,

w85 = 0.136, w31 = 0.12, w92 = 0.064, w37 = 0.064, w69 = 0.032}.

7.5.2 Initial Population Generation

To generate an initial population, all assets in the pre-assignment set Z are in-

cluded first and the remaining K− | Z | are randomly selected by making sure

at least one asset from each class of M is included. The proportions (with exact

lots) are assigned to those K selected assets randomly. If the generated portfolio

violates the budget, quantity and/or class limit constraints, such a solution is

corrected by the constraint handling techniques detailed in Section 7.5.4. This

ensures that all generated solutions in the population are feasible.

7.5.3 Candidate Generation

One of the factors to consider in designing the portfolio model in MODE-GL is

to find an effective way to generate offspring. In this section, an effective and

efficient candidate generation scheme with a good balance between exploitation

and exploration is proposed. A new solution is generated in two phases: the

selection of assets from a universe of N available assets and the allocation of

capital to those selected assets. In the first phase, the learning mechanism (see

Section 6.4.3) together with problem specific heuristics (S1 - S4) described be-

low are exploited to identify promising assets while directing the search towards

the most promising regions of the search space.

In order to generate a new candidate solution, the | Z | pre-assigned assets are

first selected. By taking into account the above stated intuitive learning, in this
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work, MODE-GL then randomly uses the following selection schemes until the

remaining assets (K− | Z |) have been selected, while making sure at least one

asset from each class of M is included. By adopting the selection schemes stated

below, it is ensured that the new candidate solution satisfies the pre-assignment,

class and cardinality constraints.

S1: Roulette wheel selection based on the concentration score ci.

S2: Select asset with the highest concentration score ci.

S3: Select asset with the highest mean return values.

S4: Select asset with the least standard deviation of return values.

In the second phase, the proportions of those selected assets for the new can-

didate solution are assigned by using two extended variants of DE mutation

schemes as follows:

W1: w′i := besti + r[0, 1]× (w1i − w2i)

W2: w′i := wi + F × (besti − wi) + F × (w1i − w2i)

where F is the scaling factor for differential evolution. The two portfolios (p1 ∈
D and p2 ∈ D with w1i and w2i allocations respectively) are randomly selected

from the least crowded portfolio archive D and best is the best solution randomly

selected from the best 10% of archive A.

These two DE mutation schemes are extended from similar variants of DE/best/1
(Das and Suganthan, 2011) and DE/current-to-pbest/1 (Zhang and Sanderson,

2009). In our extended version the difference is that w1i and w2i are randomly

selected portfolios from archive D to direct the search towards promising un-

explored directions. The detailed procedure of the candidate generation is pro-

vided in Algorithm 7.2. The proposed candidate generation mechanism intends

to guide the search towards promising directions by learning from the best found

solutions from the archive A. In this way, the proposed algorithm converges ef-
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ficiently. The new candidate portfolio is repaired if the quantity and round lot

constraints are violated (see the repair mechanism in Section 7.5.4).

Algorithm 7.2: Procedure of generating a candidate solution.

Input: concentration score of assets ci(i = 1, ...,N) and p̄ ∈ P ;

Output: candidate solution p′;

1 select | Z | from preassigned set Z and randomly select K− | Z | assets by

S1, S2, S3 and/or S4 while ensuring class constraint;

2 randomly select three different portfolios: p1, p2, p3 ∈ {P \ p̄};
3 randomly select an index i from those K assets and assign i to j and γ;

4 for each selected asset do

5 if r(0, 1) < CR || j == γ then

6 allocate weight w′ by W1 or W2;

7 else

8 assign weight w′ with corresponding w̄ of parent portfolio p̄;

9 randomly select an index i from those K selected and assign i to j;

7.5.4 Constraint Handling

When using an evolutionary algorithm to solve constrained optimization prob-

lems, various methods have been proposed in the literature for handling con-

straints, such as penalty function methods, special representation and operator

methods, repair methods, separation of objective and constraint methods, and

hybrid methods (Coello, 2002). Among those methods, the repair method is one

of the commonly adopted approaches to locate feasible solutions for combinato-

rial optimization problems (Coello, 2002; Salcedo-Sanz, 2009).

During the population sampling, each constructed individual portfolio is repaired

if it does not satisfy all considered constraints. As described in Section 7.5.3, the

new solution generated by MODE-GL already satisfies the cardinality, class and
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pre-assignment constraints. Hence, the following repair mechanism is applied:

1. All weights of the selected asset in the candidate solution are adjusted by

setting:

w′i = ψi +
w′i−ψi∑
(w′i−ψi)

where the smallest divisible lot ψi = inf {xi : xi % ϑi == 0 and xi ≥ εi}.

2. The weights are then adjusted to the nearest round lot level by setting

w′i = w′i − (w′i mod ϑi). The remaining amount of capital is redistributed

in such a way that the largest amount of (w′i mod ϑi) is added in multiples

of ϑi until all the capital is spent.

3. The weights are then adjusted (if the class limit constraints are violated).

If θm < Lm, insert y := Lm − θm to the underflow class and subtract ϑi
from those classes where Lm′ + ϑi ≤ θm′ ≤ Um′ until

∑
ϑi ≥ y. Similarly,

the same for the overflow class. This process is repeated until all limits are

satisfied.

7.5.5 Maintaining Archives

The main objective of the external archive A is to maintain the well-spread

non-dominated solutions encountered during the search. In each generation,

archive A is updated with the non-dominated solutions from the trial popula-

tion. The computational time to maintain the archive increases with the archive

size (Coello et al., 2004; Knowles and Corne, 2000; Zitzler et al., 2001). The

size of the archive is therefore restricted to a pre-specified value. When the ex-

ternal archive has reached its maximum capacity Asize, the most crowded non-

dominated members are identified and discarded.

In addition, in each generation, a small number of the least crowded solutions

are maintained in archive D and they are not required to be efficient. As noted,

mean-VaR objective function landscapes are inclined to have many local min-

ima (see Figure 7.1) and therefore the search needs to cover sufficient solution

space to maximize the probability of discovering the global optimum. The least
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crowded solutions from archive D are exploited to promote the exploration of

the search towards the least explored region of the solution space in order to

achieve well-spread efficient solutions.

7.6 Performance Evaluation

In order to evaluate the overall performance of MODE-GL, we compare it with

two well-known multi-objective evolutionary algorithms in the literature, namely

NSGA-II and SPEA2. Moreover, learning mechanism has been incorporated into

NSGA-II and SPEA2 in order to investigate the impact of the mechanism. The

four algorithms compared with MODE-GL are as follows:

• NSGA-II: the Non-dominated Sorting Genetic Algorithm II proposed by Deb

et al. (2002). The algorithm uses binary tournament selection based on the

crowding distance. It performs crossover and mutation by simulated binary

crossover and polynomial mutation operators (see Section 3.3.2.1).

• SPEA2: the Strength Pareto Evolutionary Algorithm proposed by Zitzler

et al. (2001). The algorithm employs fine-grained fitness assignment, den-

sity estimation techniques and archive truncation methods. Like NSGA-II,

it uses binary tournament selection, simulated binary crossover and poly-

nomial mutation evolutionary operators (see Section 3.3.2.2).

• NSGA-II-GL: Learning mechanism is incorporated into the binary crossover

scheme of NSGA-II.

• SPEA2-GL: Learning mechanism is incorporated into the binary crossover

scheme of SPEA2.

To conduct a fair comparison, we use the same population size and archive size

(if applicable) for all the algorithms tested in this work. We have chosen to run

all the algorithms with the same stopping criteria (i.e. the same number of eval-

uations) to generate the Pareto front. All algorithms considered in this study

were coded in C# using the information from the relevant papers and run on
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an Intel Corei7 with 3.20GHz and 2.79GHz processors and 6GB RAM. Each al-

gorithm also uses the same encodings (see Section 7.5.1) and repair mechanism

(see Section 7.5.4) when a newly constructed portfolio violates the considered

constraints. Before the experiments were performed, parameters were tuned for

all algorithms using DS1. Table 7.1 shows the best parameter settings used for

each of the algorithms.

Parameters MODE-GL NSGA-II SPEA2 NSGA-II-GL SPEA2-GL

Number of Population (NP) 100 100 100 100 100

Number of Generation 5, 000N 5, 000N 5, 000N 5, 000N 5, 000N

Scaling Factor (F) 0.3 - - - -

Crossover Probability (CR) 0.9 0.9 0.9 0.9 0.9

Crossover Distribution Index - 20 20 20 20

Mutation Probability - 1/N 1/N 1/N 1/N

Mutation Distribution Index - 20 20 20 20

Tournament Round - - 1 - 1

Asize 100 - 100 - 100

Dsize 10 - - - -

Table 7.1: Parameter Setting of the Algorithms.

In this section, we perform a set of experiments using two datasets DS1 and DS2

(see Section 2.5) to investigate the potential of MODE-GL for multi-objective

constrained portfolio optimization problems and compare it with four other al-

gorithms, NSGA-II, SPEA2, NSGA-II-GL and SPEA2-GL. Two performance mea-

sures, IGD and HV, are used to evaluate the performance of the tested algorithms.

Experimental results obtained for each algorithm are the average of 30 runs.

The results of IGD, HV and running time of the five algorithms performed on

first dataset (DS1) are shown in Figure 7.2. These results are obtained for

the constrained portfolio optimization problem with cardinality K = 10, floor

εi = 0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot ϑi = 0.008,
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Figure 7.2: Performance of algorithms in terms of IGD, HV and computational
time for S & P 100.

class M = 6 with 15, 15, 15, 15, 15, 19 assets in each class (i.e., C1 ∈ {1, . . . , 15},
C2 ∈ {16, . . . , 30}, C3 ∈ {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75}, C6 ∈
{76, . . . , 94} and Lm = 0.05 for each m = 1, . . . , 6. Given that the lower bound

of 5% as the class limit specifies an upper bound of 75% of investment in each
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class/category, no upper limits have been specified.

The results show that the proposed MODE-GL obtains the smallest mean value

for inverted generational distance (IGD) and the largest mean value for hyper-

volume (HV), compared with the other four algorithms, demonstrating the best

performance among the five algorithms. NSGA-II and SPEA2 have similar per-

formance and both have slow convergence compared to MODE-GL. SPEA2 and

SPEA2-GL are the most computationally expensive algorithms in terms of CPU

time. When the learning-guided solution generation mechanism is incorporated

into NSGA-II and SPEA2, the performance of the algorithms improves signifi-

cantly. Therefore, we would conclude that the learning-guided solution genera-

tion mechanism promotes the effective convergence of the search.

Figure 7.3: S & P 100: Comparison of obtained efficient frontiers of each al-
gorithm together with the best known optimal front obtained from all tested
algorithms.
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Figure 7.3: S & P 100: Comparison of obtained efficient frontiers of each al-
gorithm together with the best known optimal front obtained from all tested
algorithms.
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Figure 7.3: S & P 100: Comparison of obtained efficient frontiers of each al-
gorithm together with the best known optimal front obtained from all tested
algorithms.
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As noted in Section 3.2.3, the optimal efficient frontier of the constrained port-

folio optimization is not known for the tested datasets. The best known efficient

frontier is thus obtained by collecting all the non-dominated portfolios produced

from all the tested algorithms. For illustrative purposes, the obtained efficient

frontiers of the tested algorithms for DS1, compared with the best known esti-

mated efficient frontier, are provided in Figure 7.3. The horizontal axis describes

the loss that might be incurred with a probability α = 0.01. Figure 7.3 shows that

MODE-GL, NSGA-II-GL and SPEA2-GL provide a very good approximation of the

efficient frontier. The performance of both NSGA-II and SPEA2 improves signifi-

cantly when the learning-guided solution generation scheme is incorporated.

Figure 7.4 shows how the composition of the securities varies over the range

of portfolio risk for the dataset DS1. The results are generated from efficient so-

lutions obtained from a single run of each algorithm and it shows that allocation

to all asset classes is present and the preassigned constraint is also satisfied.

Figure 7.4: S & P 100: Transaction map for portfolio risk.
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Figure 7.4: S & P 100: Transaction map for portfolio risk.

In each case, the figure depicts how the obtained portfolio is allocated for an

obtained level of risk. Each color represents one of the asset selected in the ob-

tained pareto set. A vertical strip through the bands (without white space) indi-

cates the obtained portfolio allocations at that risk level. A vertical strip through

the bands (with white space) indicates that no feasible solution can be found for

a specific risk level. This discontinuity can also be seen in the obtained efficient

frontier as depicted in Figure 7.3. When the learning mechanism is adopted, the
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obtained results indicate that the composition of the assets transitions smoothly

from one risk level to another.

Figure 7.5: Performance of algorithms in terms of IGD, HV and computational
time for S & P 500.
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The results for IGD, HV and running time of the five algorithms performed on

the second dataset (DS2) are shown in Figure 7.5. These results are obtained

for the constrained portfolio optimization problem with cardinality K = 20, floor

εi = 0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot ϑi = 0.008,

class M = 19 with 25 assets in each class (i.e., C1 ∈ {1, . . . , 25}, . . . , C19 ∈
{451, . . . , 475}) and Lm = 0.05 for each m = 1, . . . , 19. Given that the lower

bound of 5% as class limit specifies an upper bound of 10% of investment in

each class/category, no upper limits have been specified.

The results show that MODE-GL obtains the largest mean value for hypervol-

ume measure and it is very competitive to NSGA-II-GL and SPEA2-GL in terms

of IGD measure. The results also show that SPEA2 ranks as the most inefficient

both in terms of solution quality and computing time. The obtained results for

DS2 reaffirm the effectiveness of the incorporation of the learning mechanism

in promoting solution quality. In terms of computational time, SPEA2-GL is the

most computationally expensive algorithm in terms of CPU time whereas MODE-

GL is the fastest.

Figure 7.6: S & P 500: Comparison of obtained efficient frontiers of each algo-
rithm together with the best known optimal front from all tested algorithms.

181



7. Mean-VaR Portfolio Optimization: A Non-parametric Approach

Figure 7.6: S & P 500: Comparison of obtained efficient frontiers of each algo-
rithm together with the best known optimal front from all tested algorithms.
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Figure 7.6: S & P 500: Comparison of obtained efficient frontiers of each algo-
rithm together with the best known optimal front from all tested algorithms.
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Figure 7.6 provides the obtained efficient frontiers of the tested algorithms for

DS2 compared with the best known estimated efficient frontier extracted from

all considered algorithms. The horizontal axis describes the loss that might be

incurred with a probability α = 0.05. Figure 7.6 shows that both NSGA-II and

SPEA2 have slow convergence compared to other algorithms.

Algorithm1↔ Algorithm2 IGD HV

MODE-GL↔ NSGA-II + +

MODE-GL↔ NSGA-II-GL + +

MODE-GL↔ SPEA2 + +

MODE-GL↔ SPEA2-GL + +

NSGA-II↔ NSGA-II-GL − −
NSGA-II↔ SPEA2 ∼ ∼
NSGA-II↔ SPEA2-GL − −
NSGA-II-GL↔ SPEA2 + +

NSGA-II-GL↔ SPEA2-GL ∼ ∼
SPEA2↔ SPEA2-GL − −

Table 7.2: Student’s t-Test Results of Different Algorithms on S & P100 dataset.

We compare the IGD and HV values of the tested algorithms by using Student’s

t-test (Walpole et al., 1998). The statistical results obtained by a two-tailed t-test

with 58 degrees of freedom at a 0.05 level of significance are given in Table 7.2

and Table 7.3.

The results for Algorithm-1↔ Algorithm-2 are shown as “+”, “−”, or “∼” when

Algorithm-1 is significantly better than, significantly worse than, or statistically

equivalent to Algorithm-2, respectively. The statistical results reconfirm the ef-

fectiveness of the proposed algorithm MODE-GL both in terms of solution quality

and computational time. Moreover, the results also show that the performance

of the NSGA-II and SPEA2 improves significantly when the learning-guided so-
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lution generation scheme is incorporated. Figure 7.7 plots the IGD metric over

generation on S & P 100. The results confirm that all the algorithms considered

are able to converge.

Algorithm1↔ Algorithm2 IGD HV

MODE-GL↔ NSGA-II + +

MODE-GL↔ NSGA-II-GL ∼ ∼
MODE-GL↔ SPEA2 + +

MODE-GL↔ SPEA2-GL ∼ ∼
NSGA-II↔ NSGA-II-GL − −
NSGA-II↔ SPEA2 ∼ ∼
NSGA-II↔ SPEA2-GL − −
NSGA-II-GL↔ SPEA2 + +

NSGA-II-GL↔ SPEA2-GL ∼ ∼
SPEA2↔ SPEA2-GL − −

Table 7.3: Student’s t-Test Results of Different Algorithms on S & P 500 dataset.

Figure 7.7: Comparison of convergence of algorithms for S & P 100.
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7.7 Summary

This chapter presents a multi-objective evolutionary algorithm with guided learn-

ing (MODE-GL) for portfolio optimization problems with six widely used prac-

tical constraints in real life trading scenarios. This work focuses on downside

risk as an alternative risk measure in financial markets and adopts a realistic

framework for portfolio optimization that moves away from most widely adopted

mean-variance approach. Value-at-Risk (VaR) is used as a risk measure and a his-

torical simulation approach is adopted to calculate VaR. This technique is non-

parametric and does not require any distributional assumptions.

The portfolio optimization in the VaR context involves additional complexities

since VaR is non-linear, non-convex and non-differentiable, and typically exhibits

multiple local extrema and discontinuities especially when real-world trading

constraints are incorporated (Gaivoronski and Pflug, 2005). MODE-GL main-

tains two archives, A and D, and the former is updated with non-dominated

solutions and the latter is updated with the least crowded solutions throughout

the evolution. A learning mechanism is employed to extract important features

from the archive A. These features are exploited in generating promising off-

spring solutions. MODE-GL thus aims to promote convergence by concentrating

on the promising regions of the search space. Two extended variants of differen-

tial evolution mutation schemes are utilized in order to promote the exploration

of the search towards the least crowded region of the solution space by exploit-

ing the information from the archive D.

The experimental results using real datasets show that MODE-GL outperforms

NSGA-II and SPEA2 both in terms of solution quality and computational time.

Moreover, the results also show that the performance of the NSGA-II and SPEA2

improves significantly when the learning scheme is incorporated. The MODE-

GL approach shows great promise in tackling an important class of portfolio

investment problems using realistic constraints in an efficient way and thus has

significant potential for adoption in practice.
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Chapter 8

Conclusions and Future Work

“Science is facts; just as houses

are made of stone, so is science

made of facts; but a pile of stones

is not a house, and a collection of

facts is not necessarily science.”

Jules Henri Poincaré(1854-1912).

This thesis investigates the population-based evolutionary algorithms for single

period portfolio optimization problems. The overall objective is to develop effi-

cient and effective evolutionary algorithms and investigate their applications to

portfolio optimization problems with additional real-world trading constraints.

This thesis can be summarized in two parts. In the first part, the mean-variance

portfolio model is investigated by taking into account real-world constraints. In

the second part of the thesis, an alternative risk measure, VaR, is considered. A

non-parametric mean-VaR model with six practical trading constraints is investi-

gated. Practical trading constraints considered in this thesis are hard constraints.

Four population-based evolutionary algorithms are presented to efficiently solve

these problems (see Table 8.1). We will conclude these in the following sections,

which are followed by future work on portfolio optimization problems.
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Algorithm Objective Constraint Performance Measure

PBILDE
Single objective optimization

by weighted sum method

Cardinality,

Quantity

MPE,

MedPE

MOSSwA Multiobjective optimization

Cardinality,

Quantity,

Pre-assignment

GD,

IGD,

Spread (∆)

MODEwAwL Multiobjective optimization

Cardinality,

Quantity,

Pre-assignment,

Round lot

GD,

IGD,

Spread (∆),

HV

MODE-GL Multiobjective optimization

Cardinality,

Quantity,

Pre-assignment,

Round lot,

Class,

Class Limit

IGD,

HV

Table 8.1: Summary of the algorithms with considered constraints.

8.1 Mean Variance Portfolio Optimization

8.1.1 Single Objective Approach

This thesis started with a study of the mean-variance portfolio optimization prob-

lem with cardinality and quantity constraints (CCMV). When the cardinality con-

straint is considered, the model can be viewed as two sub-problems, the deter-

mination of the selection of assets and the allocation of capital to each selected

asset. Based on PBIL and DE which address the two sub-problems, respectively,

a new hybrid evolutionary algorithm (PBILDE) is presented in chapter 4 to ef-

ficiently address the CCMV model. A partially guided mutation and an elitist

strategy are proposed to enhance the efficient convergence of the search.
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The results have shown that PBILDE achieves synergetic effects through hy-

bridization and is competitive with the existing approaches in most problem

instances. When cardinality constraints are considered, the lack of efficient se-

lection operations penalizes the performance of the DE. Both PBIL and PBILDE

use the probability vector in determining the selection of assets in a portfolio.

The results show that DE mutation operator is simpler and more efficient than

random allocation following the Gaussian distribution.

PBILDE adopts a single objective optimization approach by aggregating two ob-

jectives. As a result, PBILDE suffers from high computational cost since it re-

quires repeated runs of the algorithm in order to obtain the efficient frontier. In

addition, it does not consider a good distribution of the obtained solutions nor

find Pareto optimal solutions in non-convex regions.

8.1.2 Multi-objective Approach

MOSSwA With Three Trading Constraints

The mean-variance portfolio optimization problem extended with three practi-

cal constraints, cardinality, quantity and pre-assignment is studied in chapter 5.

A hybrid multi-objective scatter search with an external archive (MOSSwA) al-

gorithm is developed to solve the constrained portfolio problem. Based on the

basic template of the scatter search, MOSSwA defines the reference sets based

on Pareto dominance and crowding distance measures. It is designed to guide

the search toward the Pareto optimal set by exploiting the useful information

from the solutions found during the evolution. A new solution combination

mechanism is proposed in order to generate the efficient and diverse portfo-

lios. Three problem specific selection heuristics embedded in the solution com-

bination mechanism significantly contribute to the efficient convergence of the

MOSSwA.
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MOSSwA considers a cardinality constraint which limits the maximum number

of assets in a portfolio. From the decision making perspective, a portfolio man-

ager has an extra trade-off criteria (the cardinality of the obtained portfolios) to

take into consideration in selecting the suitable portfolio for investment. From a

computational perspective, the portfolio problem with the inequality cardinality

constraint is less challenging than the equality cardinality constraint. This is due

to the fact that feasible space becomes much smaller compared to the search

space when strict cardinality constraint is considered.

MODEwAwL With Four Trading Constraints

A new learning-guided multi-objective evolutionary algorithm (MODEwAwL) for

the mean-variance portfolio optimization problems is presented in chapter 6.

Four real-world constraints, cardinality, quantity, pre-assignment and round lot,

are considered. MODEwAwL adopts elitism by maintaining an archive during the

evolution process. A learning mechanism is introduced in order to extract impor-

tant features from the set of elite solutions. An efficient and effective candidate

generation scheme utilizing a learning mechanism, problem specific heuristics

and effective direction-based search methods is proposed to guide the search to-

wards the promising regions of the search space.

Unlike other MOEAs, MODEwAwL is simple and easy to implement and has very

few parameters required to set. Results show that the performance of the evo-

lutionary algorithm can be improved by exploiting problem specific knowledge

and learning from the elite solutions encountered during the evolution. When

the problem size becomes larger, MODEwAwL converges efficiently while the ex-

isting MOEAs suffer from extremely slow convergence due to lack of efficient

exploitation of the important features extractable from the solutions throughout

the evolution. In addition, extensive experimental results show that MODEwAwL

outperforms other existing MOEAs in the literature and can be considered as a

promising approach for the problem.
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8.2 Mean-VaR Portfolio Optimization

In chapter 7, we study an alternative risk measure, value-at-risk, to replace the

variance risk measure in order to better reflect investors’ intuition towards the

asymmetric return distribution. A historical simulation approach is adopted to

calculate VaR. This technique is non-parametric and does not require any dis-

tributional assumptions. The portfolio optimization in a mean-VaR framework

is a challenging problem since optimizing VaR leads to a non-smooth and non-

convex objective function landscape with many local minima. We show that

the basic mean-VaR optimization problem becomes a multi-modal problem with

many local optima in the feasible space in Figure 7.1. The problem becomes

much more challenging when constraints are considered in this framework. In

addition, the feasible space becomes much smaller compared to the search space

when equality constraints are considered.

A multi-objective evolutionary algorithm with guided learning (MODE-GL) is

developed to solve the mean-VaR portfolio optimization problems with six real-

world constraints, namely cardinality, quantity, pre-assignment, round lot, class

and class limit. The proposed MODE-GL approach extracts the important fea-

tures of non-dominated solutions throughout the evolution. These features are

exploited in generating promising offspring solutions. We find that the basic

“DE/rand/1/bin” scheme is inefficient for the considered problem. Two ex-

tended variants of differential evolution mutation schemes are therefore pro-

posed in order to promote exploration of the search space to maximize the prob-

ability of obtaining the global optimum.

The experimental results using real datasets show that MODE-GL outperforms

NSGA-II and SPEA2 both in terms of solution quality and computational time.

Moreover, the results also show that the performance of the NSGA-II and SPEA2

improve significantly when the learning scheme is incorporated. The MODE-GL

approach shows great promise in tackling an important class of portfolio in-

vestment problems using realistic constraints in an efficient way and thus has

significant potential for adoption in practice.
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8.3 Future Work

For any research project with finite time available to it, there are areas that have

not managed to fall into the scope of this thesis but are interesting nevertheless.

The following is a non-exhaustive list of future work which would possibly be

quite worthy of investigating.

Better Knowledge Exploitation Mechanism

In this thesis, when the cardinality constraints are considered, the learning mech-

anism is proposed to extract promising assets throughout the evolution. Simi-

larly, a novel learning mechanism may be beneficial by extracting the distribu-

tional information of the obtained solution. It would also be interesting to de-

velop a learning scheme which maintains the intervals for the decision variables

where good solutions have been found in order to move new solutions towards

those intervals (Becerra and Coello, 2006).

Better Constraint handling approaches

In this thesis, all trading constraints are considered as hard constraints. There-

fore, repair heuristics are adopted in order to generate feasible solutions. It is

likely that a repair mechanism may misguide the search process and may result in

obtaining poor candidates. In addition, the computational time for repairing the

infeasible solutions can be reduced with efficiently designed repair operations

(Salcedo-Sanz, 2009). Therefore, it would be beneficial to investigate further

for different repair heuristics in order to compare the current repair strategy.

Transaction Cost

In this thesis, we consider up to six practical trading constraints. However, it

is still far from reflecting the real market trading scenarios. In financial mar-

kets, buying and selling assets entail brokerage fees and taxes imposed on the

investors. Transaction cost is one of the main factors concerned by portfolio
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managers. Ignoring the transaction cost in the portfolio optimization model may

lead to an inefficient portfolio in practice. Therefore, it would be more practical

to extend the portfolio optimization model with transaction cost constraint.

Risk Measures

In this thesis, we consider two risk measures: variance and value-at-risk. As

noted in Section 7.2, one of the undesirable characteristics of VaR is that it is

not a coherent risk measure. Risk quantification for portfolio selection has been

actively studied in the literature and many risk measures have been proposed. It

would be interesting to consider new coherent risk measures such as expected

shortfall and conditional value at risk.

Multi-period Portfolio Optimization

One major criticism of the mean-variance model is the implicit buy-and-hold

strategy assumed in the single-period optimization problem. In the ever-changing

market conditions, the single-period framework suffers from a short-sighted in-

vestment strategy when it is applied repeatedly over many subsequent periods.

It is assumed that the return of an asset in each investment period is indepen-

dently considered. It will be interesting to consider the multi-period portfolio

optimization model via dynamic correlation models and/or to enhance the accu-

racy of the model by replacing historical expected returns with forecasted returns

(Chiam et al., 2007; Du et al., 2014).
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Dańıelsson, J., Jorgensen, B. N., de Vries, C. G., and Yang, X. (2008). Optimal

Portfolio Allocation Under the Probabilistic VaR Constraint and Incentives for

Financial Innovation. Annals of Finance, 4(3):345–367.

Dantzig, G. (1998). Linear Programming and Extensions. Landmarks in Physics

and Mathematics. Princeton University Press.

Darwin, C. (1859). The Origins of Species. Wordsworth Editions Ltd, published

in (1998) edition.

Das, I. and Dennis, J. (1997). A Closer Look at Drawbacks of Minimizing

Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Op-

timization Problems. Structural Optimization, 14(1):63–69.

Das, S., Abraham, A., and Konar, A. (2008). Automatic Clustering Using an

Improved Differential Evolution Algorithm. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, 38(1):218–237.

Das, S. and Suganthan, P. (2011). Differential Evolution: A Survey of the State-

of-the-Art. IEEE Transactions on Evolutionary Computation, 15(1):4–31.

Davis, M. H. A. and Norman, A. R. (1990). Portfolio Selection with Transaction

Costs. Mathematics of Operations Research, 15(4):676–713.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. Wi-

ley Interscience Series in Systems and Optimization. Wiley.

Deb, K. (2012). Optimization for Engineering Design: Algorithms and Examples.
PHI Learning.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197.

201



REFERENCES

Deb, K., Steuer, R., Tewari, R., and Tewari, R. (2011). Bi-objective Portfolio

Optimization Using a Customized Hybrid NSGA-II Procedure. In Takahashi,

R., Deb, K., Wanner, E., and Greco, S., editors, Evolutionary Multi-Criterion
Optimization, volume 6576 of Lecture Notes in Computer Science, pages 358–

373. Springer Berlin Heidelberg.

Deb, K., Sundar, J., Udaya Bhaskara Rao, N., and Chaudhuri, S. (2006). Refer-

ence Point Based Multi-objective Optimization Using Evolutionary Algorithms.

International Journal of Computational Intelligence Research, 2(3):273–286.

Deng, G.-F., Lin, W.-T., and Lo, C.-C. (2012). Markowitz-based Portfolio Selec-

tion with Cardinality Constraints using Improved Particle Swarm Optimization

. Expert Systems with Applications, 39(4):4558 – 4566.

Di Tollo, G. and Roli, A. (2008). Metaheuristics for the portfolio selection prob-

lem. International Journal of Operations Research, 5(1):13–35.

Du, W., Leung, S. Y. S., and Kwong, C. K. (2014). Time Series Forecasting by

Neural Networks: A Knee Point-based Multiobjective Evolutionary Algorithm

Approach . Expert Systems with Applications, 41(18):8049 – 8061.

Duffie, D. and Pan, J. (1997). An Overview of Value at Risk. The Journal of
Derivatives, 4(3):7–49.

Dumas, B. and Luciano, E. (1991). An Exact Solution to a Dynamic Portfolio

Choice Problem Under Transactions Costs. The Journal of Finance, 46(2):577–

595.

Durillo, J., Zhang, Q., Nebro, A., and Alba, E. (2011). Distribution of Computa-

tional Effort in ParallelMOEA/D. In Coello, C., editor, Learning and Intelligent
Optimization, volume 6683 of Lecture Notes in Computer Science, pages 488–

502. Springer Berlin Heidelberg.

Ehrgott, M., Klamroth, K., and Schwehm, C. (2004). An MCDM Approach to

Portfolio Optimization. European Journal of Operational Research, 155(3):752

– 770. Traffic and Transportation Systems Analysis.

202



REFERENCES

Fabozzi, F. and Markowitz, H. (2011). The Theory and Practice of Investment
Management: Asset Allocation, Valuation, Portfolio Construction, and Strategies.
Frank J. Fabozzi series. Wiley.

Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of Business,
38(1):pp. 34–105.

Fan, H.-Y. and Lampinen, J. (2003). A Trigonometric Mutation Operation to

Differential Evolution. Journal of Global Optimization, 27(1):105–129.
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and Moreno-Vega, J. M. (2006). Solving feature subset selection problem by a

parallel scatter search. European Journal of Operational Research, 169(2):477–

489.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Gaspero, L. D., Tollo, G. D., Roli, A., and Schaerf, A. (2011). Hybrid Meta-

heuristics for Constrained Portfolio Selection Problems. Quantitative Finance,

11(10):1473–1487.

Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Metaheuristics, volume 2.

Springer.

Ghaoui, L. E., Oks, M., and Oustry, F. (2003). Worst-Case Value-At-Risk and

Robust Portfolio Optimization: A Conic Programming Approach. Operations
Research, 51(4):543–556.

Ghosh, A., Das, S., Chowdhury, A., and Giri, R. (2011). An Improved Differential

Evolution Algorithm with Fitness-based Adaptation of the Control Parameters

. Information Sciences, 181(18):3749 – 3765.
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Appendix A

A.1 Additional Experimental Test1

This section provides the additional computational results of five MOEAs consid-

ered in chapter 6 by the following parameter values.

Constraint values: K = 5, εi = 0.01, δi = 1.0, z = {30}, ϑi = 0.008.

Figure A.1: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Hang Seng dataset with K = 5.
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Figure A.2: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for DAX 100 dataset K = 5.

Figure A.3: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for FTSE 100 dataset K = 5.
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Figure A.4: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for S & P 100 dataset K = 5.

Figure A.5: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) Metrics for Nikkei dataset K = 5.
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Figure A.6: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for S & P 500 dataset K = 5.

Figure A.7: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Russell 2000 dataset K = 5.
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A.2 Additional Experimental Test2

This section provides the additional computational results of five MOEAs consid-

ered in chapter 6 by the following parameter values.

Constraint values: K = 15, εi = 0.01, δi = 1.0, z = {30}, ϑi = 0.008

Figure A.8: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for Hang Seng dataset K = 15.
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Figure A.9: Performance comparisons of five algorithms in terms of GD, IGD and
Diversity (∆) metrics for DAX 100 dataset K = 15.

Figure A.10: Performance comparisons of five algorithms in terms of GD, IGD
and Diversity (∆) metrics for FTSE 100 dataset K = 15.
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Figure A.11: Performance comparisons of five algorithms in terms of GD, IGD
and Diversity (∆) metrics for S & P 100 dataset K = 15.

Figure A.12: Performance comparisons of five algorithms in terms of GD, IGD
and Diversity (∆) metrics for Nikkei dataset K = 15.
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Figure A.13: Performance comparisons of five algorithms in terms of GD, IGD
and Diversity (∆) metrics for S & P 500 dataset K = 15.

Figure A.14: Performance comparisons of five algorithms in terms of GD, IGD
and Diversity (∆) metrics for Russell 2000 dataset K = 15.
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B.1 OR-Library Dataset Example

In each dataset, the mean return of individual assets, standard deviation and

the correlation between assets are given as shown in Table B.2. The covariance

between two assets is evaluated from the correlation matrix as follows:

σij := ρij × sdi × sdj

where ρij is the correlation value between the ith and jth assets, sdi is the stan-

dard deviation of ith asset and sdj is the standard deviation of the jth asset.

Asset Mean Return Standard Deviation
Correlation Matrix

1 2 3 4 5

1 .001309 .043208 1 .562289 .746125 .707857 .336386

2 .004177 .040258 1 .625215 .570407 .465845

3 .001487 .041342 1 .757165 .338075

4 .004515 .044896 1 .379100

5 .010865 .069105 1

Table B.2: Example data for first five assets of Hang Seng dataset (D1).
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B.2 Example Dataset for mean-VaR Model

In non-parametric method, historical returns are used for the estimation of fu-

ture returns. For the empirical part of this research, the daily adjusted close

prices of all considered assets were gathered from the Yahoo! Finance web site7.

These adjusted price series were used to calculate the log returns of the stocks

as follows:

rit = log
pi,t

pi,t−1

where rit denotes the return of the ith asset at time t and pi,t denotes the price

of the ith asset at time t. An example dataset with three assets is shown in Table

B.3.

Date
Asset Prices Asset Returns

CoCa-Cola 3M Halliburton CoCa-Cola 3M Halliburton
20/02/2008 58.23 79.94 36.72 0.002235 0.001126 0.01068
19/02/2008 58.10 79.85 36.33 -0.011296 -0.001252 0.013579
15/02/2008 58.76 79.95 35.84 0.003580 -0.004244 0
14/02/2008 58.55 80.29 35.84 -0.014245 -0.013484 0.004755
13/02/2008 59.39 81.38 35.67 -0.008884 0.028417 0.031324

...
...

...
...

...
...

...
07/03/2005 43.72 86.71 43.77 0.001832 0.002887 -0.023259
04/03/2005 43.64 86.46 44.80 0.010597 0.018208 0.016202
03/03/2005 43.18 84.9 44.08 0.003248 0.004013 0.007743
02/03/2005 43.04 84.56 43.74 -0.005330 0.001065 0.020557
01/03/2005 43.27 84.47 42.85 0.010921 0.006294 -0.025802

Table B.3: Example of daily financial time series data for three assets over a
period of 750 trading days.

7 http://finance.yahoo.com
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B.3 Constituents of DS1 and DS2 datasets

Each stock has a unique ticker symbol representing a particular security traded

on a particular stock market. For example, AAPL is a unique ticker symbol for

stock Apple Inc. The unique ticker symbols of the constituents of datasets DS1

and DS2 are provided in Table B.4 and Table B.5 respectively.

APPL BA COP EMR HD MCD NOV SO VZ

ABT BAC COST EXC HON MDLZ NSC SPG WAG

ACN BAX CSCO F HPQ MDT ORCL T WFC

AEP BK CVS FCX IBM MET OXY TGT WMB

AIG BMY CVX FDX INTC MMM PEP TWX WMT

ALL BRK.B DD FOXA JNJ MO PFE TXN XOM

AMGN C DIS GD JPM MON PG UNH

AMZN CAT DOW GE KO MRK QCOM UNP

APA CL DVN GILD LLY MS RTN UPS

APC CMCSA EBAY GS LMT MSFT SBUX USB

AXP COF EMC HAL LOW NKE SLB UTX

Table B.4: List of 94 Securities of S & P 100

233



Appendix B

A BDX CSCO EXPD HP LRCX NUE RL TWC
AA BEN CSX EXPE HPQ LSI NVDA ROK TWX
AAPL BHI CTAS F HRB LUK NWL ROP TXN
ABC BIIB CTL FAST HRL LUV OI ROST TXT
ABT BK CTSH FCX HRS M OKE RRC TYC
ACE BLK CTXS FDO HSP MA OMC RSG UA
ACN BLL CVC FDX HST MAC ORCL RTN UNH
ACT BMS CVS FE HSY MAR ORLY SBUX UNM
ADBE BMY CVX FFIV HUM MAS OXY SCG UNP
ADI BRCM D FIS IBM MAT PAYX SCHW UPS
ADM BSX DAL FISV ICE MCD PBCT SE URBN
ADP BTU DD FITB IFF MCHP PBI SEE USB
ADS BWA DE FLIR IGT MCK PCAR SHW UTX
ADSK BXP DFS FLR INTC MCO PCG SIAL V
AEE C DGX FLS INTU MDLZ PCL SJM VAR
AEP CA DHI FMC IP MDT PCLN SLB VFC
AES CAG DHR FOSL IPG MET PCP SNA VIAB
AET CAH DIS FOXA IR MHFI PDCO SNDK VLO
AFL CAM DISCA FRX IRM MHK PEG SNI VMC
AGN CAT DLTR FSLR ISRG MKC PEP SO VNO
AIG CB DNB FTI ITW MMC PETM SPG VRSN
AIV CBG DNR FTR IVZ MMM PFE SPLS VRTX
AIZ CBS DO GAS JBL MNST PFG SRCL VTR
AKAM CCE DOV GCI JCI MO PG SRE VZ
ALL CCI DOW GD JEC MON PGR STI WAG
ALTR CCL DPS GE JNJ MOS PH STJ WAT
ALXN CELG DRI GGP JNPR MRK PHM STT WDC
AMAT CERN DTE GHC JOY MRO PKI STX WEC
AME CF DTV GILD JPM MS PLD STZ WFC
AMGN CHK DUK GIS JWN MSFT PLL SWK WFM
AMP CHRW DVA GLW K MSI PM SWN WHR
AMT CI DVN GMCR KEY MTB PNC SWY WIN
AMZN CINF EA GME KIM MU PNR SYK WLP
AN CL EBAY GNW KLAC MUR PNW SYMC WM
AON CLX ECL GOOGL KMB MWV POM SYY WMB
APA CMA ED GPC KMX MYL PPG T WMT
APC CMCSA EFX GPS KO NBL PPL TAP WU
APD CME EIX GRMN KR NBR PRGO TDC WY
APH CMG EL GT KSS NDAQ PRU TE WYN
ARG CMI EMC GWW KSU NE PSA TEG WYNN
ATI CMS EMN HAL L NEE PVH TEL X
AVB CNP EMR HAR LB NEM PWR TGT XEL
AVP CNX EOG HAS LEG NFLX PX THC XL
AVY COF EQR HBAN LEN NFX PXD TIF XLNX
AXP COG EQT HCBK LH NI QCOM TJX XOM
AZO COH ESRX HCN LLL NKE R TMK XRAY
BA COL ESS HCP LLTC NOC RAI TMO XRX
BAC COP ESV HD LLY NOV RDC TROW YHOO
BAX COST ETFC HES LM NRG REGN TRV YUM
BBBY COV ETN HIG LMT NSC RF TSCO ZION
BBT CPB ETR HOG LNC NTAP RHI TSN ZMH
BBY CRM EW HON LO NTRS RHT TSO
BCR CSC EXC HOT LOW NU RIG TSS

Table B.5: List of 475 Securities of S & P 500
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