Adsorption and charge transfer dynamics of photovoltaic and photocatalytic dye-sensitizersTools Weston, Matthew (2014) Adsorption and charge transfer dynamics of photovoltaic and photocatalytic dye-sensitizers. PhD thesis, University of Nottingham.
AbstractIn this thesis photovoltaic and photocatalytic water-splitting dye complexes have been studied adsorbed onto the rutile TiO2(110) surface. The photovoltaic dye-sensitizer N3 (cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)-ruthenium(II)) was studied along with Ru 455 (cis-bis(2,2’-bipyridyl)-(2,2’-bipyridyl-4,4’-dicarboxylic acid) ruthenium(II)) and Ru 470 (tris(2,2’-bipyridyl-4,4’-dicarboxylic acid) ruthenium(II)) which have very similar chemical structures. Dipyrrin-based dye complexes PY1 bis(5-(4-carboxyphenyl)-4,6-dipyrrin)bis(dimethylsulfoxide)Ruthenium(II)) and PY2 (bis(5-(4-carboxyphenyl)-4,6-dipyrrin)(2,2’-bipyridine) Ruthenium(II)) were also studied which should have different bonding geometries on the TiO2 surface. A single centre water-splitting dye complex (aqua(2,2’-bipyridyl-4,4’-dicarboxylic acid)-(2,2’:6’,6”-terpyridine) Ruthenium(II)) was studied along with a chloride containing analog ((2,2’-bipyridyl-4,4’-dicarboxylic acid)-(2,2’:6’,6”-terpyridine)chloride Ruthenium(II)). The molecules studied here would have been damaged using traditional UHV deposition techniques so electrospray deposition was used to deposit intact molecules in situ for experiments in UHV.
Actions (Archive Staff Only)
|