

Design and Analysis of a
Quasigroup-based DNA

Encryption Scheme

 Thesis submitted to the University of Nottingham for the degree of
Master of Philosophy

July 2025

Tiong Yih Lian

20619202

Supervisors

Dr. Chee Wing Loon

Dr. Liew Kian Wah

School of Mathematical Sciences

University of Nottingham Malaysia Campus

1

ACKNOWLEDGEMENT

 I would like to express my deepest gratitude to everyone who has
supported me throughout the journey of researching and writing this thesis.

First and foremost, to God, my anchor in every season. I give thanks to
God, by whose grace and through faith, I have been guided through every
challenge in my pursuit of knowledge. Thank you for lighting my path when
the words would not come and for turning doubt into faith

 To my parents – my forever safe place and loudest cheerleaders, I owe
and immeasurable debt of gratitude. You are always here every step of the way
on my path to education, and for that I am forever grateful. This achievement is
as much yours as it is mine. I love you both to the moon and back.

 I would also like to extend my profound thanks to my supervisors, Dr.
Chee and Dr. Liew, whose expertise and critical insight were indispensable to
this research. Your ability to navigate complex mathematical landscapes with
clarity, your willingness to engage in deep discussions, and your constructive
feedback has made this thesis possible.

 Last but certainly not least, I gratefully acknowledge the support of
University of Nottingham Malaysia’s School of Mathematical Sciences. The
university has given me access to invaluable resources and a comfortable
environment for me to focus on my research. I would also like to thank the
administrative and technical staff of the Graduate School for their assistance.

2

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... 1

LIST OF TABLES ... 5

LIST OF FIGURES ... 7

ABSTRACT ... 9

CHAPTER 1: INTRODUCTION .. 11

1.1 Organisation of Chapters ... 11

1.2 Introduction to Cryptography ... 12

1.3 Classical Cryptography .. 12

1.4 Modern Cryptography .. 13

1.5 Basic Concepts ... 14

1.6 Types of Attacks in Cryptanalysis .. 15

1.5.2 Adversarial Goals (Security Notions) .. 17

1.7 DNA Cryptography .. 18

1.8 Quasigroup-based Cryptography .. 20

1.9 Motivation of Using Quasigroup with DNA Cryptography 23

1.10 Aims and Objectives ... 25

CHAPTER 2: LITERATURE REVIEW ... 28

2.1 Development of Cryptography and Related Works 28

2.2 Development of DNA Cryptography and Related Works 30

2.3 Development of Quasigroup-based Cryptography and Related Works . 34

3

2.4 Research Gaps .. 37

CHAPTER 3: METHODOLOGY ... 40

3.1 Basics of DNA Cryptography .. 40

3.2 DNA Encoding and Decoding Rules .. 42

3.3 Basics of Quasigroups .. 43

3.3.1 Binary Operation, Groupoids and Quasigroups 43

3.3.2 Parastrophes of Quasigroups ... 46

3.4 Encryption and Decryption Function ... 48

3.4.1 Example of Application of Encryption and Decryption Functions . 49

3.5 Proposed Scheme ... 50

3.5.1 Encryption Scheme .. 52

3.5.2 Decryption Scheme .. 53

CHAPTER 4: IMPLEMENTATION ... 54

4.1 Encryption Process ... 54

4.1.1 Phase I: Quasigroup ... 54

4.1.2 Phase II: Parastrophe ... 56

4.2 Decryption Process ... 59

CHAPTER 5: RESULTS AND DISCUSSIONS ... 64

5.1 Security Analysis .. 64

5.1.1 Brute Force Attack ... 64

5.1.2 Known Plaintext Attack (KPA) ... 66

4

5.1.3 Complexity Analysis ... 70

5.1.4 Shannon’s Entropy ... 73

5.1.5 Provable Security in DNA and Quasigroup-based Cryptosystems:

Current State and Limitations ... 77

5.2 Efficiency Analysis .. 78

5.2.1 Encryption and Decryption time .. 78

5.3 Comparative Analysis .. 80

5.3.1 Efficiency ... 80

5.3.2 Security .. 85

5.4 Trade Off .. 87

CHAPTER 6: CONCLUSION .. 94

REFERENCES .. 96

APPENDICES ... 112

Proposed_Method.py .. 112

Markovski_Method.py ... 121

Padmapriya_Method.py ... 130

Quasigroup_Size_Phase_Number.py ... 135

Plot_Graph.py .. 147

Chi_Square_Test.py ... 150

Plaintexts for Encryption .. 156

5

LIST OF TABLES

Table 3.1 Twenty-four possible types of combinations of 4 DNA bases 41

Table 3.2 Eight types of combinations which fulfil Watson-Crick rules 41

Table 3.3 Eight rules for DNA encoding and decoding 42

Table 3.4 Multiplication table of a quasigroup ………………………………44

Table 3.5 Example of multiplication table of a quasigroup of order 4 44

Table 3.6 Number of quasigroups of order 𝑛 ≤ 11 ... 48

Table 3.7 Quasigroup table of order 5 with elements 0, 1, 2, 3, 4 49

Table 4.1 Quasigroup table for Phase I of encryption 55

Table 4.2 Conjugate of quasigroup table for Phase II of encryption 58

Table 4.3 Quasigroup table for Phase I of decryption 60

Table 4.4 Quasigroup table for Phase II of decryption 61

Table 5.1 Chi-Square statistic and 𝑝-value for plaintext length of 500, 2000,

3500 and 5000 .. 68

Table 5.2 Proposed Method’s Shannon Entropy for Plaintext 75

Table 5.3 Proposed Method’s Shannon Entropy for Ciphertext 75

Table 5.4 Encryption and decryption time for the proposed method 79

Table 5.5 Encryption time of three methods for different plaintext lengths 81

Table 5.6 Decryption time of three methods for different plaintext lengths 82

Table 5.7 Normalised Shannon’s entropy for ciphertext of all three methods . 85

Table 5.8 Encryption and decryption time of the proposed method with

different quasigroup sizes .. 87

Table 5.9 Encryption time and decryption time of the proposed method for

different numbers of phases ... 89

6

Table 5.10 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different quasigroup sizes …………………………….. 90

Table 5.11 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different numbers of phases …………………………... 91

7

LIST OF FIGURES

Figure 1.1 Flow Map of Encryption and Decryption Process 14

Figure 5.1 Histogram of Ciphertext Base Distribution for Plaintext of 500

Character Lengths .. 68

Figure 5.2 Histogram of Ciphertext Base Distribution for Plaintext of 2000

Character Lengths .. 69

Figure 5.3 Histogram of Ciphertext Base Distribution for Plaintext of 3500

Character Lengths .. 69

Figure 5.4 Histogram of Ciphertext Base Distribution for Plaintext of 5000

Character Lengths .. 70

Figure 5.5 Graph of Normalised Shannon’s Entropy of Plaintext and Ciphertext

of the Proposed Method against Plaintext Length ... 76

Figure 5.6 Graph of encryption time for the three methods against plaintext

length .. 82

Figure 5.7 Graph of decryption time for the three methods against plaintext

length .. 83

Figure 5.8 Graph of Normalised Shannon’s entropy of all three methods against

plaintext length ... 86

Figure 5.9 Graph of encryption and decryption time against different quasigroup

size ... 88

Figure 5.10 Graph of encryption and decryption time against number of phases

.. 89

Figure 5.11 Graph of normalised Shannon entropy of plaintext and ciphertext

against quasigroup sizes …………………………………………………….. 90

8

Figure 5.12 Graph of normalised Shannon entropy of plaintext and ciphertext

against number of phases ……………………………………………………. 91

9

ABSTRACT

DNA cryptography is an interdisciplinary field of cryptography inspired

from DNA computing which uses DNA molecules’ role as information carrier

for cryptographic purposes. In this thesis, we present an improvement on the

existing algorithm with the implementation of quasigroup in the process of

encryption and decryption of DNA cryptography. As opposed to traditional

cryptography, which is based on numerical values, the proposed scheme makes

use of DNA bases as elements of a quasigroup and unlike conventional

approaches that rely solely on standard DNA bases (A, T, C, G), the proposed

method introduces a DNA base U as an additional element, which appears only

in the process of encryption. The encryption process involves 2 phases, namely

Phase I, in which the DNA form of the plaintext undergoes transformation

through a randomly generated leader and a quasigroup of order 5, and Phase II,

in which the process repeats itself but the quasigroup is replaced by one of its

random parastrophes. The utilisation of quasigroup operations for the proposed

cryptographic scheme provides a mathematical foundation for data

transformation. Notably, since the total number of quasigroups of order 𝑛

increases exponentially with 𝑛, this makes them advantageous for constructing

cryptosystems with extensive key space, thus ensuring enhanced security

without increasing computational complexity. In summary, this thesis proposes

a novel, two-phase cryptographic scheme that successfully integrates

quasigroup operations with DNA encoding. The introduction of the Uracil base

and the use of parastrophes were shown to produce ciphertext with near-ideal

10

entropy, providing enhanced security against statistical attacks while

maintaining linear-time efficiency suitable for larger plaintexts.

11

CHAPTER 1: INTRODUCTION

1.1 Organisation of Chapters

This thesis is structured into six chapters. Chapter 1 introduces the

fundamental concepts of cryptography which includes classical and modern

cryptographic system and provides background information on DNA

cryptography and quasigroup-based cryptography. The motivation for

integrating quasigroup operations in DNA-based cryptographic system is also

outlined in this chapter. Chapter 2 presents a comprehensive literature review

on the history and related works in cryptography, DNA cryptography and

quasigroup-based cryptography. Chapter 3 outlines the methodology adopted in

this chapter. It covers the basics of DNA cryptography (such as DNA encoding

and decoding rules), quasigroup theory (including definitions, properties and

parastrophes), and the encryption and decryption functions. It also introduces

the proposed encryption scheme. Chapter 4 focuses on the implementation of

the proposed system, including the algorithm design and demonstrations.

Chapter 5 covers the results and discussion of the study. This includes the

security analysis of the proposed method, performance evaluation through

efficiency and complexity analysis as well as comparative analysis with selected

existing DNA and quasigroup-based cryptosystem along with trade-offs in

quasigroup size and encryption phases. Finally, Chapter 6 concludes the thesis

by summarising the contributions, highlighting limitations and suggesting

directions for future work, followed by references and appendices.

12

1.2 Introduction to Cryptography

Cryptography is the pillar of modern information security, which is

crucial for ensuring the confidentiality, integrity and authenticity of digital

communication. Confidentiality guarantees that only authorised individuals can

access the encrypted data. Integrity assures that no alterations are made to the

message during transmission, while authenticity ensures that the message

transmitted is genuine and originates from a trusted source.

Living in a digital era where data security has become an overwhelming

concern, there is a constant need for innovative cryptographic systems to

safeguard personal, corporate and government data. At present, modern

cryptosystems are expected to maintain strong security measures without

sacrificing efficiency. The growing interest in cryptosystems which are both

computationally simple and cryptographically strong continues to increase as

most security environments possess limited storage and processing power.

Generally, cryptography is broadly divided into two classifications,

classical cryptography, which predates the 1980s, and modern cryptography,

which has developed in the years since.

1.3 Classical Cryptography

Classical cryptography is more commonly known as “breakable”

ciphers as they are designed in a nonrigorous way which causes them to be

terribly vulnerable to various attacks [1]. The methods in this type of

cryptography primarily relied on manual techniques such as pen-and-paper

ciphers or early computers. There are two main types of classical cryptography:

13

substitution ciphers and transposition ciphers. In short, substitution ciphers are

ciphers where each letter of the plaintext is replaced by another, and

transposition ciphers are ciphers where the letters arranged in different orders

[2], [3]. The more commonly known examples of these ciphers are Caesar

cipher, Vigenère Cipher and Scytale cipher. While these classical ciphers have

provided a strong foundation for early cryptographic techniques, they have

become extremely susceptible to attacks with the introduction of modern

computers which has the ability to solve complex problems with great speed.

1.4 Modern Cryptography

 In modern cryptography, cryptosystems are developed based on

complexity theory. In simpler terms, complexity theory is the theory of

computational difficulty of a given problem, some prime examples of difficult

problem include integer factorisation problem and discrete logarithm problem

[4]. Two major types of cryptographic systems in modern cryptography are

symmetric key cryptography and asymmetric key cryptography. In symmetric

key cryptography, one single key is used for both encryption and decryption

processes [5]. Symmetric key cryptography is infamous for being efficient and

fast, however, it requires a secure channel for key transmission, which can be a

limitation in some scenarios. Examples of such systems include Data

Encryption Standard (DES) [6] and its more advanced successor, the Advanced

Encryption Standard (AES) [7], which has become the global standard for

secure data encryption. For asymmetric key cryptography, also known as public

key cryptography, the process requires a pair of keys, one public and the other

private [5]. Asymmetric key cryptography ensures that even if the public key is

widely shared, only the holder of the private key can decrypt the information.

14

RSA and Elliptic Curve Cryptography (ECC) are examples of such

cryptography. Modern cryptography has evolved from the principles of classical

cryptography and plays a crucial role in meeting the security needs of the current

advanced digital era.

1.5 Basic Concepts

 It has been a known fact that cryptography has been utilised throughout

decades for purposes of secure communication between two parties. In its

simplest form, two individuals who want to communicate with each other are

commonly referred to as Alice and Bob. When Alice, 𝐴 wishes to convey a

secret message to Bob, 𝐵, they will both agree on a cryptographic method and

a shared secret key. The key is used to convert the original message (plaintext)

into unintelligible text (ciphertext). This process is called encryption. Bob, who

has a key in possession as well, is able to decipher the text back to its original

form. This process is referred to as decryption. The scenario above is described

more clearly using the following flow map:

Figure 1.1 Flow Map of Encryption and Decryption Process

where 𝑝 is plaintext, 𝑐 is ciphertext, 𝑘 is key, 𝑒 is encryption function and 𝑑 is

decryption function. The message is transmitted through an insecure channel

whilst the key is distributed through a secure channel between Alice and Bob.

𝑝 𝑐 𝑐 𝑝
Alice

Encryption
𝑒(𝑝) = 𝑐

Insecure
channel

Decryption
𝑑(𝑐) = 𝑝 Bob

Secure channel
𝑘 𝑘

15

Cryptanalysis, on the other hand, is the practice of analysing and

breaking cryptosystems. While cryptography aims to protect information,

cryptanalysis seeks to exploit weaknesses. In cryptography, an adversary is a

malicious entity, which aims to uncover confidential information or data. It has

always been a cryptographer’s instinct to assume that adversaries are able to

intercept the insecure channel to retrieve any information [8], [9]. Hence, in

order to protect secret data, it is always crucial to not rely heavily on a simple

and straightforward algorithm to encipher and hide the data to be conveyed.

1.6 Types of Attacks in Cryptanalysis

Adversarial Models/ Capabilities

In cryptographic systems, it is necessary to formally define the

capabilities and goals of potential adversaries in order to establish rigorous

security notions which allows for provable guarantees about a scheme’s

resilience against various attacks [10]. This section therefore distinguishes

between two key aspects: (i) Adversarial Models, which describe the level of

access an adversary has to the cryptosystem; and (ii) Adversarial Goals, which

describe the specific security property the system must satisfy under such

attacks. Together, these formalise the security notions used to assess the

robustness of a cryptographic scheme.

1.6.1 Adversarial Models (Capabilities)

Adversarial models are often described to be the information and level of

interaction an attacker may have with the cryptographic system, ranging from

passive observation to active manipulation. These capabilities determine the

16

adversary’s strength and the cryptosystem’s threat landscape. The following

adversarial capabilities are considered:

Ciphertext-Only Attack (COA)

In a COA, the attacker only has access to a sequence of ciphertexts. The attacker

aims to break the system by only observing the ciphertexts. In [11], it is stated

that a cryptosystem is deemed completely insecure if it is not resistant against

this attack. In addition, any public-key encryption scheme must be secure

against chosen-plaintext attacks (CPA); otherwise, it cannot be considered a

practical cryptosystem.

Known-Plaintext Attack (KPA)

The attacker possesses both the plaintext and corresponding ciphertext in a KPA.

With access to this information, the attacker could attempt to reverse-engineer

the encryption process by using frequency analysis. Some examples of KPA

include linear and differential cryptanalysis [12].

Chosen-Plaintext Attack (CPA)

In a chosen-plaintext attack, the attacker is able to temporary infiltrate the

cryptosystem and choose arbitrary plaintexts and obtain their corresponding

ciphertexts from the encryption system. Generally, if a cryptosystem is

breakable under a weaker model (e.g., known-plaintext attack), then it is also

breakable under stronger models (e.g., chosen-plaintext attack) [13].

Chosen-Ciphertext Attack (CCA)

In this scenario, the attacker can choose arbitrary ciphertexts and obtain their

decrypted plaintexts. By iteratively modifying the ciphertext and observing the

17

changes in the decrypted output, the adversary can gradually recover the secret

message [11].

Brute-Force Attack

A brute-force attack involves systematically trying all possible keys until the

correct one is found. The feasibility of this method depends on the size of the

key space. This attack becomes infeasible for algorithms with large key spaces

as it can be time-consuming. Modern encryption schemes are designed to have

key lengths that make brute-force attacks computationally infeasible within a

reasonable time frame [9], [14].

These models form a hierarchy of adversarial strength, where CCA is strictly

more powerful than CPA, and so forth. Demonstrating security against a

stronger adversarial model inherently implies security against weaker ones.

1.5.2 Adversarial Goals (Security Notions)

Beyond defining what adversaries can do, it is also important to specify

what the attacker aims to achieve under these attack models. The security of a

cryptosystem is evaluated with respect to indistinguishability properties, which

formalise the confidentiality requirement: ciphertexts should not reveal any

meaningful information about the corresponding plaintexts. This is expressed

through standard game-based security notions.

Indistinguishability under Chosen-Plaintext Attack (IND-CPA)

The adversary gains access to an encryption oracle and attempts to distinguish

ciphertexts of chosen messages [15]. This is the minimal acceptable security for

encryption schemes, ensuring semantic security under passive attacks.

18

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA)

IND-CCA security extends IND-CPA security by granting the adversary access

to a decryption oracle, except for the challenge ciphertext [15]. A cryptosystem

satisfying IND-CCA security maintains confidentiality even in the presence of

adversarial tampering or partial compromise of the decryption process.

Both IND-CPA and IND-CCA are consistent with semantic security,

which asserts that ciphertexts reveal no partial information regarding plaintexts.

The standard security goal in modern cryptography is indistinguishability, the

inability of an adversary to distinguish between encryptions of two different

messages. These indistinguishability-based notions formalised confidentiality

in modern cryptography. A scheme that satisfies IND-CCA is also secure against

all weaker adversarial models, while IND-CPA security guarantees protection

in contexts where only encryption oracle access is available.

1.7 DNA Cryptography

DNA cryptography possesses many potentials from its high storage

capacity to massive parallelism. The idea of DNA cryptography stems from the

properties of DNA molecules to store, process and transmit information.

Basically, DNA cryptography functions on the concept of DNA computing

which utilises 4 DNA bases i.e. Adenine (A), Guanine (G), Cytosine (C) and

Thymine (T) to perform computations. The concept for DNA information

storage was first proposed by the American physicist, Richard P. Feynman in

1959 [16]. In the current system, the information is encoded in binary form

before being encoded into DNA form through DNA synthesis technology and

19

subsequently stored. As we approached the 21st century, with the development

of 5G, Internet of Things (IoT) and artificial intelligence (AI), high density and

long-term storage solutions have become a worrying necessity. The global data

volume is expected to reach 175ZB (zettabytes) by 2025 according to the

Internet Data Center (IDC) and will continue to grow with an annual rate of

31.8%, far exceeding the storage capacity of any currently available storage

solutions [17]. As we reach 2025, forecasts suggest that this trend will only

continue and by 2040, the global datasphere could reach as much as 5000ZB if

the current growth rate persists [18]. DNA storage, in theory, can encode two

bits per nucleotide (nt) or 455 exabytes (1 billion gigabytes) per gram of single-

stranded DNA maximum. To put this into perspective, one cubic decimetre of

DNA solution has the potential to store one trillion bits of binary data [19]. It is

far denser compared to any traditional storage media, which proves its great

potential in cryptographic applications.

Compared to traditional silicon-based computers, DNA computers

possess certain advantages, most notably its massive parallelism, high data

density and minimal energy requirement [20]. Unlike traditional computers

which process tasks sequentially, DNA computers have the ability to perform

many operations simultaneously. Millions of DNA sequences can be

synthesised and read at the same time, which enable simultaneous processing of

vast amounts of data. The computing speed of a DNA computer can reach up to

1 billion times per second and its power consumption is only equal to one-

billionth of a traditional computer [19], [21]. This property of DNA computing

allows it to solve many complex problems faster than any conventional method.

For instance, Adleman’s seminal 1994 experiment solved a seven-node

20

Hamiltonian path problem in a single biochemical reaction using DNA strands

to represent graph nodes and edges [22]. The molecular processing occurred in

parallel, with trillions of molecules exploring all possible paths simultaneously,

achieving in minutes what digital computers would take far longer to enumerate

[22].

As mentioned in [23], various research is currently at works over the

world to introduces novel DNA cryptographic approaches and improve current

methods in this field. It is also stated that in coming decades when DNA

computers are available, it would be able to replace the current silicon-based

technology. It should also be noted that Luca Cardelli from Microsoft has taken

the lead to explore the field of DNA computing [23]. However, it is a fact that

DNA cryptography is still at infancy stage and is faced with a myriad of

unresolved challenges. Even with a growing number of researchers contributing

to the field, it has yet to achieve maturity in either theory or practical. Current

DNA-based methods depend heavily on advanced laboratory procedures, and

there is yet a unified theoretical framework for employing DNA molecules in

cryptographic applications [24].

1.8 Quasigroup-based Cryptography

Quasigroup-based cryptography, a cryptographic technique built upon

nonassociative algebraic structures known as quasigroups, whose flexible

structure and large size had deemed it suitable for designing lightweight, high-

speed and efficient cryptosystems [25]. Although less commonly used than

groups or fields (some well-studied algebraic structures in mathematics),

21

quasigroups possess distinctive features that make them highly suitable for

modern cryptographic applications.

The main factor which allows quasigroup theory to be applied in the

field of cryptography is vast number of quasigroup operations over a given finite

set [26]. The third party would face difficulty in uncovering the encrypted

message if these operations are used to define the encryption and decryption

processes [26]. Unlike the usual group-based cryptosystems, where operations

tend to follow predictable patterns due to properties such as associativity and

the existence of identity elements. Quasigroup-based systems present no such

regularities as each element in a quasigroup table (Latin square) appears only

once per row and column, thus ensuring that the transformation of input symbols

yields unique and non-repeating results. This nonlinearity significantly

increases resistance to attacks such as linear and differential cryptanalysis which

exploit structural patterns in encryption schemes. For instance, the INRU cipher

utilises quasigroup-based string transformations to achieve high nonlinearity

which strengthens the system against linear and differential cryptanalysis [27].

There are also several other quasigroup-based methods which have been proven

to be resistant against differential cryptanalysis [27], [28], [29], [30].

Quasigroup-based cryptography is also a strong candidate for

lightweight cryptography, especially in resource-constrained environments such

as embedded systems, wireless sensor networks, and Internet of Things (IoT)

devices [31]. There is a study on an efficient quasigroup block cipher which

highlights its low memory and computational requirements, rendering them

suitable in resource-constrained settings [32]. Moreover, the construction of

22

cryptographically strong 4 × 4-bit S-boxes using quasigroups of order 4 has

been proposed as a method for lightweight cryptographic applications [33].

Traditional cryptographic algorithms often rely on group-based

structures or number-theoretic problems, which, while effective, may face

limitations in computational efficiency or vulnerability when it comes to future

quantum attacks. As an example, widely used cryptosystems such as RSA and

ECC are susceptible to quantum attacks whilst quasigroup-based cryptographic

schemes are able to present alternative approaches that may resist quantum

attacks more effectively. In the work by Nager D. in 2021 [34], the proposed

Xifrat cipher, which is based on multiple quasigroups with restricted

commutativity, is shown to have a quantum attack complexity of approximately

2!!". This is significantly higher than the 2#$ quantum attack complexity of

AES-128 under Grover’s algorithm, thereby suggesting stronger post-quantum

security. This result underscores the promising potential of quasigroup-based

cryptosystems not only in modern cryptography but also in post-quantum

cryptographic design, particularly in symmetric key environments where

lightweight and efficient structures are needed without compromising security

[34].

 In addition to their cryptographic strength, quasigroups have also

contributed to parallel processing and high-speed encryption, which are

increasingly important in today’s digital landscape. Due to their nonassociative

nature, quasigroup operations allow each symbol in a message to be encrypted

independently of others. In contrast to group-based operations which often

depend on the outcomes of previous computations, quasigroup-based

transformations can be applied across all data points simultaneously, enhancing

23

overall efficiency without compromising the security. A notable example is the

Multivariate Quadratic Quasigroup (MQQ) cryptosystem, which has

demonstrated exceptional performance in terms of encryption and decryption

speeds [35]. Implemented on four Xilinx Virtex-5 FPGA chips running at

276.7MHz, the MQQ achieves an encryption throughput of 44.27 Gbps, which

is 10,000 times faster than RSA implementations on similar FPGA platforms.

This remarkable speed is attributed to the efficient use of quasigroup-based

transformations, which facilitate parallel processing and high-speed encryption.

Other research has also shown that quasigroup-based S-boxes can be

implemented efficiently in hardware with reduced area and power consumption

[36]. For instance, a study demonstrated over a 40% area reduction compared

to lookup table-based implementations and more than a 16% area reduction in

a parallel implementation of the PRESENT cipher. These efficiencies are due to

the properties of quasigroups which allow for parallelisable operations and

compact hardware designs. The MQQ stream cipher, which combines a linear

feedback shift register (LFSR) with a quasigroup filter, is another example of a

high performance quasigroup-based encryption system [37]. The quasigroup

filter enhances the cipher's performance by enabling parallel processing and

efficient data handling, making it well-suited for high-speed encryption

applications.

1.9 Motivation of Using Quasigroup with DNA Cryptography

With the development of DNA computers, DNA cryptography does

provide massive parallelism by enabling simultaneous operations on multiple

DNA bases. However, for applications with groups, parallelism is partially

limited due to structural constraints caused by group properties. Groups have

24

certain algebraic properties that must always hold, such as associativity,

existence of identity element and inverses. To maintain these properties, group

operation often depends on prior results. Therefore, group-based cryptographic

systems often force sequential dependencies in their operations, thus making it

hard to process all elements simultaneously and independently, even if DNA

computing’s parallelism is available. With that being said, for groups, DNA

computing’s parallelism can still be applied across multiple DNA strands. For

example, if you have 1000 DNA sequences, you can process each sequence

simultaneously, but within each sequence, the group operation remains

constrained by sequential dependencies. Now compared to quasigroups, since

quasigroups do not require associativity, the transformation of each base is

independent of others. Hence, DNA’s parallelism can be fully exploited by

transforming all bases across all strands simultaneously.

In addition to parallelism, security through nonlinearity is another

reason for selecting quasigroups. As previously mentioned, a quasigroup

operation output does not follow predictable patterns based on the input and

such nonlinearity makes the relationship between plaintext and ciphertext

highly complex. Groups, however, are associative by definition. This causes

linear dependencies between operations. With the presence of an identity

element, the operation might produce ciphertext with predictable patterns.

Although both groups and quasigroups are able to offer large key space,

groups, however, will become slower as the size increases due to the structural

constraints. In comparison, quasigroups can provide a larger and more flexible

key space. Additionally, parastrophes of quasigroups allow for multi-phase

encryption which further complicates the system for attackers. The concept of

25

parastrophes is specific to quasigroups. In groups, the binary operation is fixed

and cannot be rearranged while preserving group properties, hence, no

parastrophes.

1.10 Aims and Objectives

 This thesis aims to develop, implement and evaluate a novel hybrid

DNA cryptosystem which integrates quasigroup operations to enhance both

security and efficiency. The main objectives of this research are outlined as

follows:

1. To design a quasigroup-based DNA encryption scheme.

The main objective of the research is to develop a novel and

unconventional encryption scheme which involves the properties of both

quasigroups and DNA bases. Many researchers have been exploring new

methods for encoding and decoding hidden messages in DNA sequences. The

proposed method shares with prior DNA-based and quasigroup-based methods

the foundational principles. Like previous DNA cryptosystems, it uses DNA

encoding rules to convert plaintext into symbolic biological representations.

Similarly, it adopts the core concept from quasigroup cryptography which is the

quasigroup operations to generate nonlinear substitutions that are difficult to

invert without the correct quasigroup table. The proposed work further expands

these principles by combining the two previously separate domains into a

unified framework. Unlike traditional DNA-based schemes, which rely

primarily on biological encoding and complementary pairing but lack strong

mathematical mechanisms to enhance confusion. In contrast, quasigroup-based

cryptographic systems provide algebraic nonlinearity and have large key spaces,

26

yet they have not been integrated with DNA representations. This thesis bridges

these two domains by combining DNA encoding with quasigroup and

parastrophe transformations to achieve both biological-inspired parallelism and

mathematically grounded security, thereby extending the current scope of DNA

cryptography research.

This thesis seeks to contribute to ongoing research and development

which are essential and necessary for realising the full potential of

interdisciplinary encryption techniques.

2. To analyse the security of the proposed scheme against potential

vulnerabilities and attacks.

One of the aims of the research is also to conduct a thorough analysis of

the security of the proposed system which will include examining its resistance

to common attacks such as brute-force attack and known plaintext attack

through statistical analysis. Key parameters such as Shannon entropy and

normalised entropy are used to evaluate the robustness of the system. We will

hopefully be able to identify any inherent vulnerabilities in the system and

discuss how these vulnerabilities could be exploited by attackers.

3. To evaluate the computational efficiency and complexity of the scheme

An essential goal of the research is to demonstrate the computational

efficiency of the algorithm. The thesis measures the encryption and decryption

time across various plaintext lengths, as well as analysing the time and space

complexity of the system. It also explores the trade-offs between performance

and cryptographic strength, particularly when quasigroup order and encryption

phases increases.

27

4. To compare the proposed scheme with existing cryptographic schemes.

The proposed method is compared against established DNA and

quasigroup based methods such as those by Padmapriya [38] and Markovski

[39], to evaluate improvements in efficiency, entropy and overall effectiveness.

These comparisons aim to position the proposed algorithm as a viable

alternative for secure communication.

28

CHAPTER 2: LITERATURE REVIEW

2.1 Development of Cryptography and Related Works

‘Cryptography’, derived from the Greek words ‘Krypto’ and ‘graphene’,

translate to ‘secret’ and ‘writing’ respectively. The roots of cryptography can be

traced back to ancient Roman and Egyptian civilisations. The earliest known

use of cryptography dates back to 1900 BCE with the use of hieroglyphs among

Egyptians [1]. The hieroglyphic symbols were discovered to be carved in the

chamber of the tomb of Khnumhotep II, an ancient Egyptian Great Chief in

Egypt. These hieroglyphic symbols, carved on tomb walls, served not only as

artistic and ceremonial purposes but also as encoded secret messages. Fast

forward to 100 BCE, cryptography had evolved further in ancient Rome, when

Julius Caesar, a Roman general, developed a simple substitution cipher, known

as Caesar Cipher [40]. This simple substitution cipher involves shifting each

letter in a plaintext by a fixed number of positions in the alphabet. The cipher

was a way for Julius Caesar to send covert military orders to his generals in the

field so that even in the event of the messages being intercepted, it would still

remain unreadable and unintelligible to his foes without knowledge of the shift

value. Cryptography, although a beautiful art of secret messages, is more

commonly and actively used as a strategic tool in warfare between men in the

past. At the beginning of the 20th century, with the outbreak of World War I and

World War II, there was a surge in the demand for cryptography experts which

was well observed with the invention of Hebern Rotor Machine by Edward

Hebern in 1917 and shortly thereafter, the Enigma Machine by Arthur Scherbius

in 1918 [41]. The Enigma Machine was regularly used by the Germans for

military communication purposes. To secure victory during World War II,

29

codebreaking played a pivotal role. The British at Bletchley Park were

successful in cracking the Enigma Machine when they constructed the first

electronic computers, named Colossus.

In the 1970s, researchers at International Business Machines

Corporation (IBM) created a block cipher called Lucifer which went on to

become what is now known as the Data Encryption Standard (DES) [42]. DES

was a significant milestone as it combined transposition and substitution

techniques into a systematic algorithm and became the first cryptosystem to be

certified by the National Bureau of Standards (now known as the National

Institute of Standards and Technology (NIST)). However, in years to come, with

advancements in computational power and cryptanalysis techniques, the system

became vulnerable and was broken by exhaustive search attack due to its short

key length.

A year after the inception of DES, the first public key cryptography,

Diffie-Hellman key exchange method was introduced by Whitfield Diffie and

Martin Hellman [40]. Not long after, inspired by Diffie and Hellman’s concept

of public key cryptography, the RSA algorithm, conveniently named by the

researchers of Massachusetts Institute of Technology who invented it: Ron

Rivest, Adi Shamir and Leonard Adleman, was created. The algorithm involves

two keys, one private and one public. Unlike Diffie-Hellman, the basis of its

security lies in the mathematical difficulty of factoring two large prime numbers

instead of discrete logarithm problem.

Following the downfall of DES, cryptographic research shifted towards

developing more robust systems. AES superseded its predecessor in 2001 when

30

it was selected by the NIST to replace DES. This symmetric-key algorithm,

which is also a block cipher, operates with larger key lengths of 128, 192 and

256 bits whilst maintaining a fixed block size of 128 bits [43]. Its design offers

enhanced security and efficiency, making it suitable for wide range of

applications in today’s digital world.

2.2 Development of DNA Cryptography and Related Works

DNA cryptography is an interdisciplinary field that merges the

knowledge of molecular biology and cryptographic techniques. Unlike

conventional cryptography which generally relies on numerical algorithms,

DNA cryptography utilises DNA to encode and secure information.

The concept of DNA-based computation was pioneered by Leonard

Adleman in the year of 1994, when he demonstrated that DNA molecules could

be used to solve a searching problem, a directed Hamiltonian path problem

known as the “Travelling Salesman Problem” with seven vertices which he

assumed the molecules to be. In his study in 1998, he discovered that DNA

possesses high storage and computational capability [44]. This has led the study

to subsequently demonstrate the feasibility of using biological molecules for

complex computational tasks, setting the stage for further exploration into

DNA-based cryptographic systems. Following Adleman’s pioneering work,

early foundational exploration between the 1990s and the early 2000s focused

on the use of DNA in codebreaking and solving complex problems. The first

known application of DNA cryptology in codebreaking was performed by

Boneh et al. in 1996 on DES, which was broken in just 4 months [45] and a NP-

complete problem, the maximal clique problem was solved using the

31

approaches of DNA molecular theory by Ouyang et al. in 1997 [46]. These early

studies have also provided insight into how knowledge of DNA could be used

not only for computation but also for securing information.

During the early 2000s, researchers began exploring how DNA

computing principles can be applied to encryption. In 2003, Chen pioneered

DNA-based image encryption using one time pad (OTP) framework [47] and in

2004, Gehani et al. proposed a DNA-based one-time pad encryption technique

which is based upon DNA substitution method and bitwise XOR operations,

where the digital messages were translated into synthetic DNA sequences [48].

As one-time pads assure perfect secrecy, it is almost impossible for the

adversaries to break the encrypted message. This proposal has shown the

potential of DNA as a medium for secure communication.

As interest in DNA cryptography grew, researchers have expanded their

focus into symmetric key systems. In 2006, Amin et al’s symmetric key-based

DNA cryptography derived a single key for both sender and receiver is obtained

from a genetic database, which integrated publicly available biological data into

cryptographic process [49]. Shortly thereafter, in 2007, Lu et al. proposed the

DNA Symmetric Key Cryptosystem (DNASC), which has proven its resistant

to highly efficient quantum computers due to the massive parallelism and

information storage of DNA molecules [50]. Apart from symmetric key

systems, DNA cryptography has also been integrated into asymmetric key

cryptosystem and signature schemes such as Cui et al in 2008 who developed a

public key encryption method which involved processes like DNA synthesis,

DNA encoding and PCR amplification [51]; and Lai et al. in 2010 with their

32

DNA-PKC system, which combined DNA-based techniques with traditional

asymmetric cryptographic algorithms [52].

The subsequent decade had also witnessed advancements in this field as

more and more DNA-based methods are designed as well as refinement for

existing techniques. Research in this period also explored adaptations of

classical ciphers into DNA cryptography, for instance, Sabry et al. proposed a

playfair cipher using DNA and amino acids in 2010 [53]. Data hiding techniques

have also been enhanced by DNA properties when in 2010, Shiu et al. proposed

three separate methods which are: the Insertion Method, the Complementary

Pair Method and the Substitution Method [54]. In this paper, all three methods

utilise a reference DNA which only the sender and receiver know from public

DNA databases such as EBI database. The authors have also provided security

analysis on the methods which indicated better performance compared with

other competing methods. In 2012, a DNA fragment assembly-based

cryptography was introduced by Zhang et al. which involves breaking a long

chain of DNA encoded message into small DNA fragments and forwarding

them to the receiver to be reassembled to uncover the original message [55].

Other research such as the DNA cipher based on DNA indexing by Tornea et al.

in 2013 [56] and a DNA scheme with dynamic sequence table by Hossain et al.

in 2016 [57] are notable.

Recent innovations include Karimi et al’s DNA based algorithm which

involves random number of rounds with varying key size depending on user’s

password lengths [58] and Kolte et al’s index-based symmetric DNA encryption

schemes that employed DNA sequence from NCBI database which is used as

One Time Pad (OTP) symmetric key in 2017 [59]. In July 2018, Zhang et al.

33

introduced an image encryption scheme which is a combination of a Feistel

network and dynamic DNA encoding, using GenBank sequences as keys [60].

A cryptographic scheme involving DNA and RNA processes is proposed by

Nafea et al. in November 2018 [61]. Their OTP keys are generated by

transcribing ssDNA pads into RNA and translating them into amino acid

sequences, which were then converted into binary form for XOR encryption. In

the same year, Kumar et al. has refined the DNA-based playfair cipher which

was proposed in 2010 by Sabry et al [53].

In 2019, a level-based DNA security scheme which relies on DNA triplet

codons for substitution was proposed by Patnala et al. [62]. This method uses a

randomly arranged lookup table of codon-to-value mappings across 3 rounds

where the plaintext is translated and grouped into codon triplets, substituted via

a lookup table and re-encoded as DNA bases to produce the ciphertext. There

are also other notable genetic algorithms proposed with implementations of

DNA, RNA and amino acids like the RNA implementations on text encryption

by Rashid in 2021 [63].

After more than two decades of research, the body of work in DNA

cryptography from early demonstrations of molecular parallelism to modern

hybrid symmetric and asymmetric encryption schemes has established the

feasibility of using biological principles for cryptographic applications.

Researchers have shown that DNA’s massive storage density and parallel

processing can achieve efficient key expansion and resistance to quantum

attacks.

34

2.3 Development of Quasigroup-based Cryptography and

Related Works

In the late eighteenth century, a new theory was proposed by Euler [64]

in order to explore the idea of Latin squares. Cayley, famous for his work in the

domain of group multiplication tables, proved that quasigroup tables could be

represented as bordered Latin square. It was in the year 1935 that the term

‘quasigroup’ was first proposed by Moufang [65]. The general nature of

quasigroup allows for their application in fields like coding theory,

cryptography and telecommunications [66].

The widespread of cryptographic interest in quasigroups began much

further before the 1990s. In fact, as Keedwell [67] recount, the very first

recorded application was in Schauffler’s 1948 doctoral thesis [68], where he

showed that finding a suitable Latin square, which is essentially a quasigroup,

is the key to breaking the Vigenère cipher. The essential idea behind quasigroup-

based cryptography is that the nonassociative nature of quasigroup provides a

foundation for designing cryptographic algorithms that are hard to break. The

conceptual roots of quasigroup-based cryptography can be traced back to the

study of Latin squares. Keedwell [67] briefly discussed the potential

applications of Latin squares (which are basically quasigroups) in cryptography,

more specifically in error detecting and correcting codes. From 1995 to 1996,

Koscielny’s work marked the initial exploration of quasigroup properties for

stream and block ciphers [69]. These schemes have demonstrated that

quasigroup tables could be used to construct secure and efficient encryption

schemes In 1997, the work of researchers Gligoroski et al. further the

momentum by focusing their research on quasigroup transformations and

35

demonstrating that such methods could effectively thwart brute force and

statistical attacks, even when both plaintext and ciphertext were available to an

adversary [70]. Ritter also contributed to the field by examining the practical

uses of quasigroups in encryption in 1998 [71]. He emphasised that quasigroups

possess potential in environments where lightweight computations were

essential. Following the works of C. Koscielny in 1996, Ochodkova et al.

introduced yet another stream cipher based upon the properties of quasigroup to

encode file system [72]. In their findings, they believe that due to the simplicity

of the quasigroup operations, it can be easily implemented as well as providing

efficiency during the encryption and decryption procedure.

From 1999 onward, Markovski and his colleague introduced quasigroup

string transformation in a series of four-part research papers from 1999 to 2007

[26], [73], [74], [75]. Their research highlighted the use of quasigroups for

generating pseudorandom sequences and secure message encryption, even

under known-plaintext scenarios. The resistance to such attacks was attributed

to the unpredictable nature of quasigroup operations and the flexibility to vary

transformation rules between sessions. Furthermore, in 2003, an All-Or-

Nothing transformation (originally developed by Rivest), was combined with

random quasigroups for better processing speed and security by Marnas et al.

[76]. Their research has demonstrated the viability of hybrid systems which

combine traditional and quasigroup-based techniques. Inspired by their

research, researchers started to explore variations of quasigroup

transformations. For instance, Gligoroski et al. [28] presented a novel

asymmetric block cipher based on Multivariate Quadratic Quasigroups

(MQQs), where its security lies primarily on the computational difficulty of

36

solving systems of multivariate quadratic equations defined over quasigroup

operations. Based upon the concept of this system, they later proposed another

digital signature scheme known as MQQ-SIG [29], which demonstrated high

performance and resistance against chosen message attacks (CMA) based on

their experimental evaluations. In 2010, Xu designed a stream cipher based on

the concepts of quasigroup conjugates and has performed various cryptanalytic

attacks to validate its security [77]. Additionally, Bakeva et al. came up with a

parastrophic variation of the quasigroup string transformation in 2011 [78].

Parastrophes are alternate versions of the same quasigroup table, created by

permuting the inputs and outputs. This approach has further enhanced and

refined the security and flexibility of these systems.

Throughout the years, quasigroup concepts were applied to design more

complex cryptographic primitives, for instance, the 𝑛 -quasigroup stream

ciphers by Petrescu in 2010 [79], which was then improved in 2012 by

Chakrabarti et al. [80] to enhance both security and performance. Markovski’s

work in 2015 provided an in-depth exploration of cryptographic primitives

based on quasigroups, which covered a range of applications, specifically in

block ciphers, stream ciphers, digital signatures, encryption schemes and hash

functions [81]. It should also be mentioned that there is an existing quasigroup

based encryption scheme with implementation of biological process and protein

codon codes known as sEncrypt algorithm which was proposed in 2013 [82]. In

2021, Tiwari et al. have proposed the block cipher INRU which features 64-bit

block length and 128-bit key length and had shown strong resistance against a

range of cryptanalytic attacks, including differential, linear and algebraic attacks

37

[27]. The lightweight block cipher was further improved in 2023 by Chauhan et

al. which has shown less memory consumption [83].

2.4 Research Gaps

The field of cryptography is in a constant state of evolution. The

emergence of DNA cryptography pioneered by Adleman’s work on DNA

computing has shown immense potential for information storage and

parallelism. Prior works have all been involved in OTPs, symmetric and

asymmetric systems, data hiding techniques and adaptation of classical domains

into the DNA domains. The potential of DNA bases as the elements of the

quasigroup itself to create a seamless encryption process in the biological

domain remains unexplored. On the other hand, research work on quasigroup-

based cryptography has shown inherent resistance to linear and differential

cryptanalysis as well as exceptional speed and suitability for lightweight,

resource-constrained environment. Existing quasigroup-based cryptographic

algorithm typically relies on numerical operations defined over algebraic

structures such as groups, rings, or finite fields. While these structures offer

well-established mathematical properties, they also impose algebraic

regularities such as associativity and predictable inverses which can be

exploited by modern cryptanalysis. The literature reveals the central research

gap between both fields, which is a lack of an integrated cryptosystem that fully

harnesses the mathematical strength and efficiency of quasigroups directly

within the DNA domain.

This research directly addresses the gap by proposing a novel symmetric

quasigroup-based DNA cryptographic scheme, where both encryption and

38

decryption are performed using the same shared secret key, which is comprised

of a randomly generated quasigroup table, a random parastrohe table, two

leaders and a randomly chosen DNA encoding rule. We introduce a two-phase

encryption process using a quasigroup and one of its parastrophes, with the

DNA bases (A, C, G, T, U) as the fundamental element set of the quasigroup

operations. The novelty of the proposed scheme becomes clear when contrasted

with the established norms DNA-based and quasigroup-based cryptographic

schemes. Existing quasigroup cryptosystems operate directly on binary bits,

integers modulo 𝑛 or bytes (e.g., INRU cipher, MQQ cryptosystem), the

proposed method transposed this concept into a novel domain, applying

quasigroup operations on DNA bases. This makes the scheme’s design uniquely

suited for scenarios where data is stored or transmitted as DNA sequences.

Current DNA cryptographic schemes use the DNA bases A, T, C, G whilst the

proposed scheme expands the element set to five by introducing Uracil (U) as a

cryptographic element, thereby increasing complexity and blindsiding the

attackers from the existence of U. The only other literature which has applied

such 5 elements in its system [94] however, it is applied to the mathematical

concept of dihedral group.

The elements of this quasigroup could, in principle, be any set of five

distinct symbols. However, the choice to use DNA bases (including U) is not

arbitrary and is fundamental to the thesis's contribution. The primary motivation

for using DNA bases is to design a cryptosystem that is inherently compatible

with DNA computing and data storage. While the current implementation is in

silico (on traditional computers), its operation is defined natively in the

“language” of these biological molecules. If the future of computing involves

39

massive parallelism using DNA strands, a cipher that operates on bits or

numbers would require a translation layer. Our cipher, however, operates

directly on the fundamental units (bases) if that future platform. The quasigroup

transformations could, in theory, be executed as parallel, localised biochemical

reactions on a DNA strand, fully exploiting the parallelism that DNA computing

promises. A quasigroup using digits would lack the ability to directly be

interpreted into biological molecules. It is also important to note that there is

limited published work that measures how increasing quasigroup order or

adding parastrophic phases affects efficiency (encryption and decryption time)

and security (entropy) in quasigroup-based and DNA-based cryptographic

schemes. This research fills the gap by providing a quantitative trade-off

analysis connecting the quasigroup order and number of phases to performance

and security metrics.

40

CHAPTER 3: METHODOLOGY

3.1 Basics of DNA Cryptography

DNA, more commonly known as Deoxyribose Nucleic Acid, is a

complex molecule which serves as the fundamental storage space for genetic

information found within all living organisms. Every living organism carries its

own unique set of DNA which determines an organism’s traits, from physical

characteristics to cellular processes. DNA is composed of two long

polynucleotide chains that coil around each other to form a double helix

structure, which was first discovered in 1953 by scientists James Watson and

Francis Crick [84]. Each chain contains a sequence of four different monomers

of DNA, known as nucleotide. Each nucleotide comprises of three parts: a sugar

molecule, a phosphate group and a nitrogenous base. In DNA, the nitrogenous

base can be any one of four types: Adenine (A), Cytosine (C), Guanine (G) or

Thymine (T). The structure of DNA is held together by hydrogen bonds between

complementary pairs of nitrogenous bases which are always as follows where:

A with T, C with G. This is commonly known as the “Watson-Crick

complementary rules.

Through various combinations of the four bases, DNA is able to store

vast and complex genetic data of any living organisms [85]. For the four DNA

bases, there would be a total of 24 possible types of combination which are as

follows [84]:

41

Table 3.1 Twenty-four possible types of combinations of 4 DNA bases

CTAG CTGA CATG CAGT CGTA CGAT

TCAG TCGA TACG TAGC TGAC TGCA

ATCG ATGC ACTG ACGT AGCT AGTC

GTAC GTCA GATC GACT GCTA GCAT

For combinations which fulfil the Watson-Crick complementary rules,

it is mentioned in [84] that there are 8 types which are:

Table 3.2 Eight types of combinations which fulfil Watson-Crick rules

CTAG CATG GTAC GATC

TCGA TGCA ACGT AGCT

DNA’s primary role is to store and transmit genetic information. Specific

segments of DNA, called genes, encode instructions for synthesizing proteins

which function in structuring tissues, regulating bodily functions and catalysing

biochemical reactions. The sequence of bases (A, C, T, G) acts as a code, with

triplet of bases (codons) specifying individual amino acids, the building blocks

of proteins.

Other than DNA, there exist another acid, ribonucleic acid known as

RNA, whereby they are structurally similar except T is substituted with a base

known as Uracil (U). RNA acts as an intermediary between DNA and protein,

for instance, the genetic data of DNA is moved and translated to protein through

messenger RNA (mRNA) [85].

42

3.2 DNA Encoding and Decoding Rules

In DNA cryptography, DNA bases are used as a medium for information

exchange. Data can be encoded by mapping binary digits to corresponding

nucleotides and to retrieve the original information, nucleotides are mapped to

corresponding binary digits. These processes are known as DNA encoding and

decoding rules. There are 8 possible DNA encoding and decoding rules which

are shown in the table below [84].

Table 3.3 Eight rules for DNA encoding and decoding

 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

00 C C G G T T A A

01 T A T A C G C G

10 A T A T G C G C

11 G G C C A A T T

 The encoding process typically follows these steps. Binary data (0s and

1s) is converted into DNA sequences using predefined mapping scheme as

shown above. For example, based on Rule 7, 00 is mapped to A, 01 is mapped

to C, 10 is mapped to G and 11 is mapped to T. This mapping ensures that every

pair of binary digits corresponds to a specific nucleotide base, thus allowing

digital data to be represented in the form of DNA sequence. Textual data can

also be encoded into DNA by first converting characters into their binary

representation and then applying the binary-to-DNA mapping. For example, the

letter “A” in ASCII is 01000001 in binary form and by using Rule 7, “A” can

be encoded as “CAAC”.

43

 Decoding in DNA cryptography involves reversing the encoding process

to retrieve the original message from the DNA sequence. The process can be

done by converting DNA sequence back into binary data using the same

mapping scheme used during the encoding process. For example, A à 00, C à

01, G à 10 and T à 11. The binary data is then converted back into textual

form using ASCII.

3.3 Basics of Quasigroups

3.3.1 Binary Operation, Groupoids and Quasigroups

Definition 3.1. A binary operation on a nonempty set 𝐺 is a function

𝛼: 𝐺 × 𝐺 → 𝐺.

That is, given any two elements 𝑎 and 𝑏 in 𝐺 , the operation 𝛼 assigns an

element 𝛼(𝑎, 𝑏) in 𝐺. When discussing general algebraic structures, it is often

convenient to use a product notation ∗ such as writing 𝑎 ∗ 𝑏 in place of 𝛼(𝑎, 𝑏).

Definition 3.2. A groupoid is a nonempty set 𝐺 with binary operation ∗, which

is denoted as (𝐺,∗). The order of (𝐺,∗) is the cardinality |𝐺| which means the

number of elements in 𝐺. A groupoid is also said to be finite if |𝐺| is finite.

Definition 3.3. A quasigroup (𝑄,∗) is a groupoid which satisfies the following

law:

For every 𝑎, 𝑏 ∈ 𝑄, there exist unique 𝑥, 𝑦 ∈ 𝑄 such that

𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏.

For a finite set 𝑄, the structure of a quasigroup (𝑄,∗) can be represented

using a multiplication table. From Definition 3.3, due to the unique solvability

44

property, each element will appear exactly once in each row and each column

of the multiplication table of (𝑄,∗) . To construct a multiplication table of

quasigroup, let 𝑄 be a finite set with 𝑛 elements {𝑎!, 𝑎%, … , 𝑎&}. An 𝑛 × 𝑛 table

is formed where the entry 𝑎'(located in the 𝑖-th row and 𝑗-th column is the

product of the element 𝑎' and 𝑎(. Each cell in the table is filled with the

elements of the quasigroup without repetition in each row and column. Note

that a given quasigroup can produce more than one multiplication table

depending on the order of the elements formed at the border of the table.

Table 3.4 Multiplication table of a quasigroup

∗ 𝑎! 𝑎% ⋯ 𝑎&

𝑎! 𝑎!! 𝑎!% ⋯ 𝑎!&

𝑎% 𝑎%! 𝑎%% ⋯ 𝑎%&

⋮ ⋮ ⋮ ⋱ ⋮

𝑎& 𝑎&! 𝑎&% ⋯ 𝑎&&

The following is an example of a multiplication table of a quasigroup

(𝑄,∗) of order 4:

Table 3.5 Example of multiplication table of a quasigroup of order 4

 1 2 3 4

1 2 3 1 4

2 4 1 3 2

3 3 4 2 1

4 1 2 4 3

Quasigroups are defined by a binary operation that ensures the Latin

square property which states that, for each 𝑎 and 𝑏 in 𝑄 , there exist unique

∗

45

elements 𝑥 and 𝑦 in 𝑄 such that 𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏 hold. This property is

equivalent to the operation table of ∗ forming a Latin Square, where each

element of 𝑄 appears exactly once in every row and column. The absence of

repeated elements in rows or columns guarantees that solutions to the equations

𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏 are always unambiguous. Thus, (𝑄,∗) has the property

of unique divisibility.

Definition 3.4. We define the left division operation, denoted 𝑎\𝑏 as:

𝑎\𝑏 = 𝑥 if and only if 𝑎 ∗ 𝑥 = 𝑏

Similarly, we define the right division operation, denoted by 𝑏/𝑎, as:

𝑏/𝑎 = 𝑦 if and only if 𝑦 ∗ 𝑎 = 𝑏

Due to the divisibility laws, quasigroup ensures that both the left and

right cancellation laws hold. The cancellations laws are as follows:

(i) For 𝑎, 𝑥, 𝑦 ∈ 𝑄, 𝑎 ∗ 𝑥 = 𝑎 ∗ 𝑦 implies that 𝑥 = 𝑦 (left cancellation)

(ii) For 𝑎 , 𝑥 , 𝑦 ∈ 𝑄 , 𝑥 ∗ 𝑎 = 𝑦 ∗ 𝑎 implies that 𝑥 = 𝑦 (right

cancellation)

In algebra, a group is a mathematical structure which consists of a set

paired with a binary operation that follows specific constraints: the operation

must be associative, there must be an identity element, and every element has

an inverse.

Definition 3.5. A group is an algebraic structure consisting of a set 𝐺 together

with a binary operation ∗ that satisfies the following four axioms:

(i) For all 𝑎, 𝑏 ∈ 𝐺, the result of the operation 𝑎 ∗ 𝑏 is also in 𝐺.

46

(ii) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐).

(iii) There exists an element 𝑒 ∈ 𝐺 (identity) such that for every element

𝑎 ∈ 𝐺, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎.

(iv) For every element 𝑎 ∈ 𝐺, there exists an inverse element 𝑎)! ∈ 𝐺

such that 𝑎 ∗ 𝑎)! = 𝑎)! ∗ 𝑎 = 𝑒.

From Definition 3.5, it follows that every group is a quasigroup. A

quasigroup is a mathematical structure similar to a group but with less restrictive

properties as they are not required to satisfy properties such as associativity or

commutativity or having an identity element and this also means that its

elements need not have inverses.

3.3.2 Parastrophes of Quasigroups

Definition 3.6. For each quasigroup operation ‘∗’, we can associate a new

operation ‘∘’ on 𝑄 defined by:

𝑥 ∘ 𝑦 = 𝑧 if and only if 𝑥 ∗ 𝑧 = 𝑦.

Definition 3.7. Each quasigroup 𝑄 = (𝑄,∗) forms five new quasigroup 𝑄' =

(𝑄,∗') with operations ∗' 	 defined as follows:

𝑥 ∗! 𝑦 = 𝑧 ↔ 𝑥	 ∗ 𝑧 = 𝑦 (right division)

𝑥 ∗% 𝑦 = 𝑧 ↔ 𝑧	 ∗ 𝑦 = 𝑥 (left division)

𝑥 ∗* 𝑦 = 𝑧 ↔ 𝑧	 ∗ 𝑥 = 𝑦 (opposite multiplication)

𝑥 ∗$ 𝑦 = 𝑧 ↔ 𝑦	 ∗ 𝑧 = 𝑥 (opposite right division)

𝑥 ∗+ 𝑦 = 𝑧 ↔ 𝑦	 ∗ 𝑥 = 𝑧 (opposite left division)

47

Quasigroups which are defined as such are known as parastrophes or

conjugates of 𝑄 . It is worth noting that the operation ∘ in Definition 3.6 is

actually the same operation ∗! in Definition 3.7. We single out this operation as

it will be very useful in the decryption process in the next section.

The significance of parastrophes lies in their ability to provide

alternative perspectives on the structure of quasigroup. In the study of

quasigroups, one encounters not just the original binary operation but also a

family of related operations known as parastrophes. Parastrophes (or conjugates)

of a quasigroup are essentially just variations of the original quasigroup

obtained by permuting the order of operations. Recall that a quasigroup is

defined by the property that for any elements 𝑎 and 𝑏 in set 𝑄, the equation 𝑎	 ∗

𝑏 = 𝑐 has a unique solution for the unknown when any two of the three elements

are fixed. The unique solvability property implies that one can “rearrange” the

equation to define other operations. It is a well-established fact in quasigroup

theory [86] that from any given quasigroup, one can define 6 conjugate

quasigroups which are not necessarily distinct (including the original

quasigroup).

It is also proven in [86] that the number of distinct parastrophes is always

a divisor of 6, which are 1, 2, 3 or 6 and that for any 𝑛 ≥ 4, there exists a

quasigroup of order 𝑛 with	𝑚 = {1, 2, 3, 6}	distinct conjugates. The number of

distinct parastrophes does not depend on the cardinality of the quasigroup 𝑄

(the number of elements in 𝑄) but rather on the structural properties.

In quasigroup theory, the parastrophes can either be pairwise distinct or

pairwise equal. When the parastrophes are pairwise distinct, it means that each

48

of the five parastrophes exhibits different quasigroup structure. In other words,

no two parastrophes are the same. However, when the parastrophes are

described as pairwise equal, it means that some or all of the parastrophes

coincide, resulting in quasigroup with identical structures. This occurs when the

original quasigroup exhibits certain symmetries or special properties. Pairwise

equality often occurs in specific types of quasigroups, such as commutative

quasigroups or idempotent quasigroups. For instance, in a commutative

quasigroup, the order of the elements does not affect the outcome, so the

operations derived from switching the positions of the operands may end up

being identical.

Table 3.6 Number of quasigroups of order 𝑛 ≤ 11

𝑛 𝑄&

1 1

2 2

3 12

4 576

5 161280

6 812851200

7 61479419904000

8 108776032459082956800

9 5524751496156892842531225600

10 9982437658213039871725064756920320000

11 776966836171770144107444346734230682311065600000

3.4 Encryption and Decryption Function

Let 𝐴 be a finite set with elements {𝑎!, 𝑎%, … , 𝑎&} and we construct

nonempty finite strings 𝑥!𝑥%⋯𝑥, of length 𝑚, from elements in 𝐴 (i.e. 𝑥' ∈ 𝐴

for all 𝑖 = 1, 2, … ,𝑚). Let 𝐿 be a leader chosen from the set 𝐴 . Define a

49

quasigroup operation ∗ on the set 𝐴 and the corresponding ∘ operation as

mentioned in Definition 3.6. For the chosen 𝐿 ∈ 𝐴, we define two functions as

follows:

(i) Encryption function, 𝐸(𝑥!𝑥%⋯𝑥,) = (𝑦!𝑦%⋯𝑦,) , where 𝑦! =

𝐿 ∗ 𝑥! and 𝑦' = 𝑦')! ∗ 𝑥' for 𝑖 = 2, 3, … ,𝑚.

(ii) Decryption function, 𝐷(𝑦!𝑦%⋯𝑦,) = (𝑥!𝑥%⋯𝑥,) , where 𝑥! =

𝐿	 ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'.for 𝑖 = 2, 3, … ,𝑚.

3.4.1 Example of Application of Encryption and Decryption

Functions

The applied encryption and decryption functions are demonstrated as

follows:

We let 𝑄 be a quasigroup with operation ∗ and set of elements

{0, 1, 2, 3, 4}. A quasigroup table is formed and shown as follows:

Table 3.7 Quasigroup table of order 5 with elements {0, 1, 2, 3, 4}

 0 1 2 3 4

0 4 1 0 3 2

1 2 3 1 4 0

2 1 2 0 3 4

3 3 4 2 0 1

4 4 2 0 1 3

The quasigroup table acts as the key for encryption and decryption. At

the start of encryption, a Leader, which can be any element of the quasigroup

table is chosen. To start the encryption process, the plaintext message is chosen

to be 𝑀 = (𝑥!𝑥%⋯𝑥,) = (30412431). Then the encryption method is carried

!

!

50

out using: 𝐸(𝑥!𝑥%⋯𝑥,) = 	 (𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿 ∗ 𝑥! and 𝑦' = 𝑦')! ∗

𝑥'. According to the plaintext message 𝑀, 𝑥! = 3, 𝑥% = 0, 𝑥* = 4 and so on.

For this example, the Leader, 𝐿 = 0 is chosen and based on the encryption

formula and quasigroup table given above, the following result is obtained:

𝑦! = 𝐿 ∗ 𝑥!

 = 0 ∗ 3

 = 3

𝑦% = 𝑦! ∗ 𝑥%

 = 3 ∗ 0

 = 3

𝑦* = 𝑦% ∗ 𝑥*

 = 3 ∗ 4

 = 1

𝑦$ = 𝑦* ∗ 𝑥$

 = 1 ∗ 1

 = 3

𝑦+ = 𝑦$ ∗ 𝑥+

 = 3 ∗ 2

 = 2

𝑦# = 𝑦+ ∗ 𝑥#

 = 2 ∗ 4

 = 4

𝑦- = 𝑦# ∗ 𝑥-

 = 4 ∗ 3

 = 1

𝑦" = 𝑦- ∗ 𝑥"

 = 1 ∗ 1

 = 3

Thus, the encrypted message, 𝐸(M) = (33132413) is obtained.

Since there are various choices for choosing a leader, the encryption is

made strong by choosing different leaders for each encryption. The quasigroup

table can also be changed by permuting its rows and columns to produce

different versions of quasigroup and this in turn increases the complexity of

encryption scheme.

3.5 Proposed Scheme

The process of designing the system is mainly focused on combining the

properties of DNA sequences with quasigroup operations. The algorithm has

two phases of encryption as well as two phases of decryption, with the 1st phase

involving quasigroup and the second phase involving its parastrophes. The first

step of the process is to decide the order and elements of the quasigroup to be

used. For the proposed model, a quasigroup, 𝑄 of order 5 which comprises of

DNA bases {𝑈, 𝐴, 𝐶, 𝐺, 𝑇} as elements is selected. The number of Latin squares

51

of order 𝑛 is known for small 𝑛. According to Table 3.7, for 𝑛 = 5, the number

of distinct Latin squares is 161280.

In this algorithm, base Uracil (U) which appears in Ribonucleic Acid

(RNA) is used and will be considered as one of the elements to be used in the

quasigroup table. Element 'U' enhances security by being absent in the plaintext

DNA sequence but present in the ciphertext through quasigroup operations.

Since 'U' does not appear in the original DNA bases (A, T, C, G), attackers may

overlook its existence in the quasigroup and parastrophe table. By adding ‘U’ to

the set of DNA bases used in the encryption process, the number of possible

outputs for each operation can be exponentially increased, thus effectively

increasing the complexity of the algorithm and resistance against statistical

attacks. A larger key space also enhances security against brute force attacks by

making them less computationally feasible. While 'U' naturally appears in RNA

instead of DNA, its role in this cryptographic scheme is to increase security and

differentiate the method from traditional DNA cryptography, which only uses

four bases.

Our scheme which comprises of quasigroups and parastrophe

transformation as well as DNA encoding with the introduction of element ‘U’

offers a novel approach not commonly explored in traditional cryptographic

algorithms. Encryption begins by converting plaintext into DNA using a random

encoding rule. In Phase I, a random leader is chosen from the set of elements

{𝑈, 𝐴, 𝐶, 𝐺, 𝑇} and a random quasigroup table is generated. The plaintext was

then encrypted using quasigroup operation 𝑥 ∗ 𝑦 = 𝑧 to produce the first

ciphertext. In Phase II, a new random leader and a random parastrophe table of

the quasigroup used in Phase I are used to further encrypt to form the final

52

ciphertext. The two leaders, DNA encoding rule, quasigroup table and

parastrophe table will act as the key and are transmitted through a secure

channel to the receiver. The decryption process involves reversing the

encryption steps using the inverse operation. The receiver retrieves the original

plaintext by applying the decryption operation to the ciphertext with the key

received.

3.5.1 Encryption Scheme

The encryption scheme is shown as follows:

1. A plaintext message 𝑀 is chosen and is converted into hexadecimal

form and subsequently binary form by referring to the ASCII table.

2. The message is then encoded into DNA bases to form a string of DNA

sequence (𝑥!𝑥%⋯𝑥,) of length 𝑚 using a randomly chosen encoding

rule.

3. Once the DNA form of the message is obtained, the system enters into

Phase I of encryption, where a Leader, 𝐿! is chosen randomly from a set

of elements {𝐴, 𝐶, 𝐺, 𝑇, 𝑈} . The quasigroup table for encryption is

generated randomly using quasigroup operation 𝑥 ∗ 𝑦 = 𝑧.

4. The function used for encryption Phase I is defined as 𝐸!(𝑥!𝑥%⋯𝑥,) =

(𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿! ∗ 𝑥! and 𝑦' = 𝑦')! ∗ 𝑥'.

5. The message is encrypted using the function 𝐸! and first ciphertext,

𝐶! = (𝑦!𝑦%⋯𝑦,), which is in DNA form is obtained.

6. In Phase II of encryption, a leader 𝐿% and a parastrophe operation ∗. are

randomly chosen, and the corresponding parastrophe table is generated.

53

7. Encryption function for Phase II is defined as 𝐸%(𝐶!) =

𝐸%(𝑦!𝑦%⋯𝑦,) = (𝑧!𝑧%⋯𝑧,) , where 𝑧! = 𝐿% ∗. 𝑦! and 𝑧' =

𝑧')! ∗. 𝑦'.

8. The final ciphertext, 𝐶% = (𝑧!𝑧%…𝑧,) is obtained and sent to the

receiver.

3.5.2 Decryption Scheme

The decryption scheme is shown as follows:

1. The ciphertext 𝐶% is received in DNA form.

2. In Phase I of decryption, a parastrophe table for ∘. is generated using

the parastrophe table of ∗. such that 𝑥 ∘. 𝑦 = 𝑧 if and only if 𝑥 ∗. 𝑧 =

𝑦.

3. The function for decryption process is defined as 𝐷!(𝑧!𝑧%⋯𝑧,) =

(𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿% ∘. 𝑧! and 𝑦' = 𝑧')! ∘. 𝑧'.

4. The ciphertext, 𝐶! = (𝑦!𝑦%⋯𝑦,) is obtained by decrypting with the

leader 𝐿% received and the quasigroup generated using decryption

operation ∘..

5. For Phase II of decryption, the quasigroup table for ∘ is generated using

the quasigroup table of ∗ in Phase I of encryption.

6. The decryption function is defined as 𝐷%(𝑦!𝑦%⋯𝑦	,) = (𝑥!𝑥%⋯𝑥,),

where 𝑥! = 𝐿! ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'.

7. The plaintext (𝑥!𝑥%⋯𝑥,) is obtained by decrypting the leader 𝐿!

received and the quasigroup table for ∘ . The decrypted message is

converted into hexadecimal form and finally into the original message

𝑀 by using corresponding DNA decoding rule and ASCII table.

54

CHAPTER 4: IMPLEMENTATION

4.1 Encryption Process

The implementation of the algorithm is demonstrated below:

Let the plaintext message, 𝑀 = NOTTINGHAM.

Convert 𝑀 = NOTTINGHAM to Hexadecimal:

4𝐸	4𝐹	54	54	49	4𝐸	47	48	41	4𝐷

Convert 𝑀 = NOTTINGHAM to Binary:

0100	1110	0100	1111	0101	0100	0101	0100	0100	1001	

0100	1110	01000111	0100	1000	0100	0001	0100	1101

We will be using DNA encoding Rule 7 in this demonstration.

N(4𝐸) → 0100	1101 → 𝑇𝐶𝐺𝐴 O(4𝐹) → 0100	1111 → 𝑇𝐶𝐺𝐺

T(54) → 0101	0100 → 𝑇𝑇𝑇𝐶 T(54) → 0101	0100 → 𝑇𝑇𝑇𝐶

I(49) → 0100	1001 → 𝑇𝐶𝐴𝑇 N(4𝐸) → 0100	1110 → 𝑇𝐶𝐺𝐴

G(47) → 0100	0111 → 𝑇𝐶𝑇𝐺 H(48) → 0100	1000 → 𝑇𝐶𝐴𝐶

A(41) → 0100	0001 → 𝑇𝐶𝐶𝑇 M(4𝐷) → 0100	1101 → 𝑇𝐶𝐺𝑇

The encoded plaintext 𝑀 in DNA form is a string of length 𝑚 = 40,

(TCGA TCGG TTTC TTTC TCAT TCGA TCTG TCAC TCCT TCGT) (1)

4.1.1 Phase I: Quasigroup

We choose a Leader, 𝐿! = 𝐺

Our quasigroup table is formed and shown as follows:

55

Table 4.1 Quasigroup table for Phase I of encryption

∗ U A C G T

U A T C G U

A G A U T C

C C G T U A

G U C G A T

T T U A C G

The function used for encryption is defined as:

𝐸!(𝑥!𝑥%⋯𝑥,) = (𝑦!𝑦%⋯𝑦,),

where 𝑛 is the length of the plaintext 𝑀 in DNA form, 𝑦! = 𝐿! ∗ 𝑥! and

𝑦' = 𝑦')! ∗ 𝑥'.

The encryption process for Phase I is carried out with leader 𝐿! = 𝐺 and

𝑥! = 𝑇, 𝑥% = 𝐶, 𝑥* = 𝐺, … from (1).

𝑦! = 𝐿! ∗ 𝑥!
= 𝐺 ∗ 𝑇

= 𝑇

𝑦% = 𝑦! ∗ 𝑥%

= 𝑇 ∗ 𝐶

= 𝐴

𝑦* = 𝑦% ∗ 𝑥*

= 𝐴 ∗ 𝐺

= 𝑇

𝑦$ = 𝑦* ∗ 𝑥$

= 𝑇 ∗ 𝐴

= 𝑈

𝑦+ = 𝑦$ ∗ 𝑥+
= 𝑈 ∗ 𝑇

= 𝑈

𝑦# = 𝑦+ ∗ 𝑥#
= 𝑈 ∗ 𝐶

= 𝐶

𝑦- = 𝑦# ∗ 𝑥-
= 𝐶 ∗ 𝐺

= 𝑈

𝑦" = 𝑦- ∗ 𝑥"
= 𝑈 ∗ 𝐺

= 𝐺

𝑦0 = 𝑦" ∗ 𝑥0
= 𝐺 ∗ 𝑇

= 𝑇

𝑦!1 = 𝑦0 ∗ 𝑥!1
= 𝑇 ∗ 𝑇

= 𝐺

𝑦!! = 𝑦!1 ∗ 𝑥!!
= 𝐺 ∗ 𝑇

= 𝑇

𝑦!% = 𝑦!! ∗ 𝑥!%
= 𝑇 ∗ 𝐶

= 𝐴

𝑦!* = 𝑦!% ∗ 𝑥!*
= 𝐴 ∗ 𝑇

= 𝐶

𝑦!$ = 𝑦!* ∗ 𝑥!$
= 𝐶 ∗ 𝑇

= 𝐴

𝑦!+ = 𝑦!$ ∗ 𝑥!+
= 𝐴 ∗ 𝑇

= 𝐶

𝑦!# = 𝑦!+ ∗ 𝑥!#
= 𝐶 ∗ 𝐶

= 𝑇

56

𝑦!- = 𝑦!# ∗ 𝑥!-
= 𝑇 ∗ 𝑇

= 𝐺

𝑦!" = 𝑦!- ∗ 𝑥!"
= 𝐺 ∗ 𝐶

= 𝐺

𝑦!0 = 𝑦!" ∗ 𝑥!0
= 𝐺 ∗ 𝐴

= 𝐶

𝑦%1 = 𝑦!0 ∗ 𝑥%1
= 𝐶 ∗ 𝑇

= 𝐴

𝑦%! = 𝑦%1 ∗ 𝑥%!
= 𝐴 ∗ 𝑇

= 𝐶

𝑦%% = 𝑦%! ∗ 𝑥%%
= 𝐶 ∗ 𝐶

= 𝑇

𝑦%* = 𝑦%% ∗ 𝑥%*
= 𝑇 ∗ 𝐺

= 𝐶

𝑦%$ = 𝑦%* ∗ 𝑥%$
= 𝐶 ∗ 𝐴

= 𝐺

𝑦%+ = 𝑦%$ ∗ 𝑥%+
= 𝐺 ∗ 𝑇

= 𝑇

𝑦%# = 𝑦%+ ∗ 𝑥%#
= 𝑇 ∗ 𝐶

= 𝐴

𝑦%- = 𝑦%# ∗ 𝑥%-
= 𝐴 ∗ 𝑇

= 𝐶

𝑦%" = 𝑦%- ∗ 𝑥%"
= 𝐶 ∗ 𝐺

= 𝑈

𝑦%0 = 𝑦%" ∗ 𝑥%0
= 𝑈 ∗ 𝑇

= 𝑈

𝑦*1 = 𝑦%0 ∗ 𝑥*1
= 𝑈 ∗ 𝐶

= 𝐶

𝑦*! = 𝑦*1 ∗ 𝑥*!
= 𝐶 ∗ 𝐴

= 𝐺

𝑦*% = 𝑦*! ∗ 𝑥*%
= 𝐺 ∗ 𝐶

= 𝐺

𝑦** = 𝑦*% ∗ 𝑥**
= 𝐺 ∗ 𝑇

= 𝑇

𝑦*$ = 𝑦** ∗ 𝑥*$
= 𝑇 ∗ 𝐶

= 𝐴

𝑦*+ = 𝑦*$ ∗ 𝑥*+
= 𝐴 ∗ 𝐶

= 𝑈

𝑦*# = 𝑦*+ ∗ 𝑥*#
= 𝑈 ∗ 𝑇

= 𝑈

𝑦*- = 𝑦*# ∗ 𝑥*-
= 𝑈 ∗ 𝑇

= 𝑈

𝑦*" = 𝑦*- ∗ 𝑥*"
= 𝑈 ∗ 𝐶

= 𝐶

𝑦*0 = 𝑦*" ∗ 𝑥*0
= 𝐶 ∗ 𝐺

= 𝑈

𝑦$1 = 𝑦*0 ∗ 𝑥$1
= 𝑈 ∗ 𝑇

= 𝑈

The encrypted message 𝐶! = 𝐸!(𝑀) for the Phase I is

	(TATU UCUG TGTA CACT GGCA CTCG TACU UCGG TAUU UCUU) (2)

4.1.2 Phase II: Parastrophe

There exist 5 distinct parastrophes (conjugates) for each quasigroup. The

conjugates can form a quasigroup table by using their corresponding operations:

The conjugates of quasigroup table are shown as follows:

57

𝑥 ∗! 𝑦 = 𝑧⇔ 𝑥	 ∗ 𝑧 = 𝑦 𝑥 ∗% 𝑦 = 𝑧⇔ 𝑧	 ∗ 𝑦 = 𝑥

∗! U A C G T

 U T U C G A

A C A T U G

C G T U A C

G U G A C T

T A C G T U

∗% U A C G T

 U G T A C U

A U A T G C

C C G U T A

G A C G U T

T T U C A G

𝑥 ∗* 𝑦 = 𝑧⇔ 𝑧	 ∗ 𝑥 = 𝑦 𝑥 ∗$ 𝑦 = 𝑧⇔ 𝑦	 ∗ 𝑧 = 𝑥

∗* U A C G T

 U T C G U A

A U A T G C

C C T U A G

G G U A C T

T A G C T U

∗$ U A C G T

 U G U C A T

A T A G C U

C A T U G C

G C G T U A

T U C A T G

𝑥 ∗+ 𝑦 = 𝑧⇔ 𝑦	 ∗ 𝑥 = 𝑧

∗+ U A C G T

 U A G C U T

A T A G C U

C C U T G A

G G T U A C

T U C A T G

For the second phase of the encryption process, the algorithm is similar

to the first phase. The only distinct part of the process would be the use of

quasigroup table which is replaced with a random conjugate of quasigroup table.

To start the second phase, we choose a Leader, 𝐿! = 𝐴.

The random conjugate of quasigroup table for this phase is chosen to be:

58

Table 4.2 Conjugate of quasigroup table for Phase II of encryption

∗$ U A C G T

 U G U C A T

A T A G C U

C A T U G C

G C G T U A

T U C A T G

The function used for encryption is defined as:

𝐸%(𝑦!𝑦%⋯𝑦,) = (𝑧!𝑧%⋯𝑧,),

where 𝑧! = 𝐿% ∗$ 𝑦! and 𝑧' = 𝑧')! ∗$ 𝑦'.

The encryption process for Phase II is carried out with leader 𝐿% = 𝐴

and 𝑦! = 𝑇, 𝑦% = 𝐴, 𝑦* = 𝑇, … from (2).

𝑧! = 𝐿% ∗$ 𝑦!
= 𝐴 ∗$ 𝑇

= 𝑈

𝑧% = 𝑧! ∗$ 𝑦%
= 𝑈 ∗$ 𝐴

= 𝑈

𝑧* = 𝑧% ∗$ 𝑦*
= 𝑈 ∗$ 𝑇

= 𝑇

𝑧$ = 𝑧* ∗$ 𝑦$
= 𝑇 ∗$ 𝑈

= 𝑈

𝑧+ = 𝑧$ ∗$ 𝑦+
= 𝑈 ∗$ 𝑈

= 𝐺

𝑧# = 𝑧+ ∗$ 𝑦#
= 𝐺 ∗$ 𝐶

= 𝑇

𝑧- = 𝑧# ∗$ 𝑦-
= 𝑇 ∗$ 𝑈

= 𝑈

𝑧" = 𝑧- ∗$ 𝑦"
= 𝑈 ∗$ 𝐺

= 𝐴

𝑧0 = 𝑧" ∗$ 𝑦0
= 𝐴 ∗$ 𝑇

= 𝑈

𝑧!1 = 𝑧0 ∗$ 𝑦!1
= 𝑈 ∗$ 𝐺

= 𝐴

𝑧!! = 𝑧!1 ∗$ 𝑦!!
= 𝐴 ∗$ 𝑇

= 𝑈

𝑧!% = 𝑧!! ∗$ 𝑦!%
= 𝑈 ∗$ 𝐴

= 𝑈

𝑧!* = 𝑧!% ∗$ 𝑦!*
= 𝑈 ∗$ 𝐶

= 𝐶

𝑧!$ = 𝑧!* ∗$ 𝑦!$
= 𝐶 ∗$ 𝐴

= 𝑇

𝑧!+ = 𝑧!$ ∗$ 𝑦!+
= 𝑇 ∗$ 𝐶

= 𝐴

𝑧!# = 𝑧!+ ∗$ 𝑦!#
= 𝐴 ∗$ 𝑇

= 𝑈

𝑧!- = 𝑧!# ∗$ 𝑦!-
= 𝑈 ∗$ 𝐺

= 𝐴

𝑧!" = 𝑧!- ∗$ 𝑦!"
= 𝐴 ∗$ 𝐺

= 𝐶

𝑧!0 = 𝑧!" ∗$ 𝑦!0
= 𝐶 ∗$ 𝐶

= 𝑈

𝑧%1 = 𝑧!0 ∗$ 𝑦%1
= 𝑈 ∗$ 𝐴

= 𝑈

59

𝑧%! = 𝑧%1 ∗$ 𝑦%!
= 𝑈 ∗$ 𝐶

= 𝐶

𝑧%% = 𝑧%! ∗$ 𝑦%%
= 𝐶 ∗$ 𝑇

= 𝐶

𝑧%* = 𝑧%% ∗$ 𝑦%*
= 𝐶 ∗$ 𝐶

= 𝑈

𝑧%$ = 𝑧%* ∗$ 𝑦%$
= 𝑈 ∗$ 𝐺

= 𝐴

𝑧%+ = 𝑧%$ ∗$ 𝑦%+
= 𝐴 ∗$ 𝑇

= 𝑈

𝑧%# = 𝑧%+ ∗$ 𝑦%#
= 𝑈 ∗$ 𝐴

= 𝑈

𝑧%- = 𝑧%# ∗$ 𝑦%-
= 𝑈 ∗$ 𝐶

= 𝐶

𝑧%" = 𝑧%- ∗$ 𝑦%"
= 𝐶 ∗$ 𝑈

= 𝐴

𝑧%0 = 𝑧%" ∗$ 𝑦%0
= 𝐴 ∗$ 𝑈

= 𝑇

𝑧*1 = 𝑧%0 ∗$ 𝑦*1
= 𝑇 ∗$ 𝐶

= 𝐴

𝑧*! = 𝑧*1 ∗$ 𝑦*!
= 𝐴 ∗$ 𝐺

= 𝐶

𝑧*% = 𝑧*! ∗$ 𝑦*%
= 𝐶 ∗$ 𝐺

= 𝐺

𝑧** = 𝑧*% ∗$ 𝑦**
= 𝐺 ∗$ 𝑇

= 𝐴

𝑧*$ = 𝑧** ∗$ 𝑦*$
= 𝐴 ∗$ 𝐴

= 𝐴

𝑧*+ = 𝑧*$ ∗$ 𝑦*+
= 𝐴 ∗$ 𝑈

= 𝑇

𝑧*# = 𝑧*+ ∗$ 𝑦*#
= 𝑇 ∗$ 𝑈

= 𝑈

𝑧*- = 𝑧*# ∗$ 𝑦*-
= 𝑈 ∗$ 𝑈

= 𝐺

𝑧*" = 𝑧*- ∗$ 𝑦*"
= 𝐺 ∗$ 𝐶

= 𝑇

𝑧*0 = 𝑧*" ∗$ 𝑦*0
= 𝑇 ∗$ 𝑈

= 𝑈

𝑧$1 = 𝑧*0 ∗$ 𝑦$1
= 𝑈 ∗$ 𝑈

= 𝐺

	

Finally,	we	obtained	our	ciphertext	to	be:		

𝐸%(𝐶!) = 𝐶% =	

(UUTU	GTUA	UAUU	CTAU	ACUU	CCUA	UUCA	TACG	AATU	GTUG).	

4.2 Decryption Process

An encrypted message 𝐶% is received as shown below:

(𝑈𝑈𝑇𝑈	𝐺𝑇𝑈𝐴	𝑈𝐴𝑈𝑈	𝐶𝑇𝐴𝑈	𝐴𝐶𝑈𝑈	𝐶𝐶𝑈𝐴	𝑈𝑈𝐶𝐴	𝑇𝐴𝐶𝐺	𝐴𝐴𝑇𝑈	𝐺𝑇𝑈𝐺) (3)

The quasigroup table for decryption Phase I is shown as follows:

60

Table 4.3 Quasigroup table for Phase I of decryption

∘$ U A C G T

U A G C U T

A T A G C U

C C U T G A

G G T U A C

T U C A T G

Phase I of the decryption is carried out as follows:

𝐷!(𝑧!𝑧%⋯𝑧,) = (𝑦!𝑦%⋯𝑦,),

where 𝑦! = 𝐿% ∘$ 𝑧! and 𝑦' = 𝑧')! ∘$ 𝑧'.

The decryption process for Phase I is carried out with leader 𝐿% = 𝐴 and

𝑧! = 𝑈, 𝑧% = 𝑈, 𝑧* = 𝑇, … from (3).

𝑦! = 𝐿% ∘$ 𝑧!
= 𝐴 ∘$ 𝑈

= 𝑇

𝑦% = 𝑧! ∘$ 𝑧%
= 𝑈 ∘$ 𝑈

= 𝐴

𝑦* = 𝑧% ∘$ 𝑧*
= 𝑈 ∘$ 𝑇

= 𝑇

𝑦$ = 𝑧* ∘$ 𝑧$
= 𝑇 ∘$ 𝑈

= 𝑈

𝑦+ = 𝑧$ ∘$ 𝑧+
= 𝑈 ∘$ 𝐺

= 𝑈

𝑦# = 𝑧+ ∘$ 𝑧#
= 𝐺 ∘$ 𝑇

= 𝐶

𝑦- = 𝑧# ∘$ 𝑧-
= 𝑇 ∘$ 𝑈

= 𝑈

𝑦" = 𝑧- ∘$ 𝑧"
= 𝑈 ∘$ 𝐴

= 𝐺

𝑦0 = 𝑧" ∘$ 𝑧0
= 𝐴 ∘$ 𝑈

= 𝑇

𝑦!1 = 𝑧0 ∘$ 𝑧!1
= 𝑈 ∘$ 𝐴

= 𝐺

𝑦!! = 𝑧!1 ∘$ 𝑧!!
= 𝐴 ∘$ 𝑈

= 𝑇

𝑦!% = 𝑧!! ∘$ 𝑧!%
= 𝑈 ∘$ 𝑈

= 𝐴

𝑦!* = 𝑧!% ∘$ 𝑧!*
= 𝑈 ∘$ 𝐶

= 𝐶

𝑦!$ = 𝑧!* ∘$ 𝑧!$
= 𝐶 ∘$ 𝑇

= 𝐴

𝑦!+ = 𝑧!$ ∘$ 𝑧!+
= 𝑇 ∘$ 𝐴

= 𝐶

𝑦!# = 𝑧!+ ∘$ 𝑧!#
= 𝐴 ∘$ 𝑈

= 𝑇

𝑦!- = 𝑧!# ∘$ 𝑧!-
= 𝑈 ∘$ 𝐴

= 𝐺

𝑦!" = 𝑧!- ∘$ 𝑧!"
= 𝐴 ∘$ 𝐶

= 𝐺

𝑦!0 = 𝑧!" ∘$ 𝑧!0
= 𝐶 ∘$ 𝑈

= 𝐶

𝑦%1 = 𝑧!0 ∘$ 𝑧%1
= 𝑈 ∘$ 𝑈

= 𝐴

61

𝑦%! = 𝑧%1 ∘$ 𝑧%!
= 𝑈 ∘$ 𝐶

= 𝐶

𝑦%% = 𝑧%! ∘$ 𝑧%%
= 𝐶 ∘$ 𝐶

= 𝑇

𝑦%* = 𝑧%% ∘$ 𝑧%*
= 𝐶 ∘$ 𝑈

= 𝐶

𝑦%$ = 𝑧%* ∘$ 𝑧%$
= 𝑈 ∘$ 𝐴

= 𝐺

𝑦%+ = 𝑧%$ ∘$ 𝑧%+
= 𝐴 ∘$ 𝑈

= 𝑇

𝑦%# = 𝑧%+ ∘$ 𝑧%#
= 𝑈 ∘$ 𝑈

= 𝐴

𝑦%- = 𝑧%# ∘$ 𝑧%-
= 𝑈 ∘$ 𝐶

= 𝐶

𝑦%" = 𝑧%- ∘$ 𝑧%"
= 𝐶 ∘$ 𝐴

= 𝑈

𝑦%0 = 𝑧%" ∘$ 𝑧%0
= 𝐴 ∘$ 𝑇

= 𝑈

𝑦*1 = 𝑧%0 ∘$ 𝑧*1
= 𝑇 ∘$ 𝐴

= 𝐶

𝑦*! = 𝑧*1 ∘$ 𝑧*!
= 𝐴 ∘$ 𝐶

= 𝐺

𝑦*% = 𝑧*! ∘$ 𝑧*%
= 𝐶 ∘$ 𝐺

= 𝐺

𝑦** = 𝑧*% ∘$ 𝑧**
= 𝐺 ∘$ 𝐴

= 𝑇

𝑦*$ = 𝑧** ∘$ 𝑧*$
= 𝐴 ∘$ 𝐴

= 𝐴

𝑦*+ = 𝑧*$ ∘$ 𝑧*+
= 𝐴 ∘$ 𝑇

= 𝑈

𝑦*# = 𝑧*+ ∘$ 𝑧*#
= 𝑇 ∘$ 𝑈

= 𝑈

𝑦*- = 𝑧*# ∘$ 𝑧*-
= 𝑈 ∘$ 𝐺

= 𝑈

𝑦*" = 𝑧*- ∘$ 𝑧*"
= 𝐺 ∘$ 𝑇

= 𝐶

𝑦*0 = 𝑧*" ∘$ 𝑧*0
= 𝑇 ∘$ 𝑈

= 𝑈

𝑦$1 = 𝑧*0 ∘$ 𝑧$1
= 𝑈 ∘$ 𝐺

= 𝑈

The decrypted message 𝐷!(𝐶%)for Phase I is

𝐷!(𝐶%) = 𝐶! =

(𝑇𝐴𝑇𝑈	𝑈𝐶𝑈𝐺	𝑇𝐺𝑇𝐴	𝐶𝐴𝐶𝑇	𝐺𝐺𝐶𝐴	𝐶𝑇𝐶𝐺	𝑇𝐴𝐶𝑈	𝑈𝐶𝐺𝐺	𝑇𝐴𝑈𝑈	𝑈𝐶𝑈𝑈).

The quasigroup table used for Phase II of decryption is as follows:

Table 4.4 Quasigroup table for Phase II of decryption

∘ U A C G T

 U T U C G A

A C A T U G

C G T U A C

G U G A C T

T A C G T U

The Phase II of the decryption process is carried out with

𝐷%(𝑦!𝑦%⋯𝑦,) = (𝑥!𝑥%⋯𝑥,),

62

where 𝑥! = 𝐿! ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'.

Recall the leader 𝐿! = 𝐺 and 𝑦! = 𝑇, 𝑦% = 𝐴, 𝑦* = 𝑇, … from (4).

Second phase of the decryption process is carried out as shown below:

𝑥! = 𝐿 ∘ 𝑦!

= 𝐺 ∘ 𝑇

= 𝑇

𝑥% = 𝑦! ∘ 𝑦%
= 𝑇 ∘ 𝐴

= 𝐶

𝑥* = 𝑦% ∘ 𝑦*
= 𝐴 ∘ 𝑇

= 𝐺

𝑥$ = 𝑦* ∘ 𝑦$
= 𝑇 ∘ 𝑈

= 𝐴

𝑥+ = 𝑦$ ∘ 𝑦+
= 𝑈 ∘ 𝑈

= 𝑇

𝑥# = 𝑦+ ∘ 𝑦#
= 𝑈 ∘ 𝐶	

= 𝐶

𝑥- = 𝑦# ∘ 𝑦-
= 𝐶 ∘ 𝑈

= 𝐺

𝑥" = 𝑦- ∘ 𝑦"
= 𝑈 ∘ 𝐺

= 𝐺

𝑥0 = 𝑦" ∘ 𝑦0
= 𝐺 ∘ 𝑇

= 𝑇

𝑥!1 = 𝑦0 ∘ 𝑦!1
= 𝑇 ∘ 𝐺

= 𝑇

𝑥!! = 𝑦!1 ∘ 𝑦!!
= 𝐺 ∘ 𝑇

= 𝑇

𝑥!% = 𝑦!! ∘ 𝑦!%
= 𝑇 ∘ 𝐴

= 𝐶

𝑥!* = 𝑦!% ∘ 𝑦!*
= 𝐴 ∘ 𝐶

= 𝑇

𝑥!$ = 𝑦!* ∘ 𝑦!$
= 𝐶 ∘ 𝐴

= 𝑇

𝑥!+ = 𝑦!$ ∘ 𝑦!+
= 𝐴 ∘ 𝐶

= 𝑇

𝑥!# = 𝑦!+ ∘ 𝑦!#
= 𝐶 ∘ 𝑇

= 𝐶

𝑥!- = 𝑦!# ∘ 𝑦!-
= 𝑇 ∘ 𝐺

= 𝑇

𝑥!" = 𝑦!- ∘ 𝑦!"
= 𝐺 ∘ 𝐺

= 𝐶

𝑥!0 = 𝑦!" ∘ 𝑦!0
= 𝐺 ∘ 𝐶

= 𝐴

𝑥%1 = 𝑦!0 ∘ 𝑦%1
= 𝐶 ∘ 𝐴

= 𝑇

𝑥%! = 𝑦%1 ∘ 𝑦%!
= 𝐴 ∘ 𝐶

= 𝑇

𝑥%% = 𝑦%! ∘ 𝑦%%
= 𝐶 ∘ 𝑇

= 𝐶

𝑥%* = 𝑦%% ∘ 𝑦%*
= 𝑇 ∘ 𝐶

= 𝐺

𝑥%$ = 𝑦%* ∘ 𝑦%$
= 𝐺 ∘ 𝐺

= 𝐴

𝑥%+ = 𝑦%$ ∘ 𝑦%+
= 𝐺 ∘ 𝑇

= 𝑇

𝑥%# = 𝑦%+ ∘ 𝑦%#
= 𝑇 ∘ 𝐴

= 𝐶

𝑥%- = 𝑦%# ∘ 𝑦%-
= 𝐴 ∘ 𝐶

= 𝑇

𝑥%" = 𝑦%- ∘ 𝑦%"
= 𝐶 ∘ 𝑈

= 𝐺

𝑥*1 = 𝑦%0 ∘ 𝑦*1
= 𝑈 ∘ 𝑈

= 𝑇

𝑥*! = 𝑦*1 ∘ 𝑦*!
= 𝑈 ∘ 𝐶

= 𝐶

𝑥*% = 𝑦*! ∘ 𝑦*%
= 𝐶 ∘ 𝐺

= 𝐴

𝑥** = 𝑦*% ∘ 𝑦**
= 𝐺 ∘ 𝐺

= 𝐶

𝑥*$ = 𝑦** ∘ 𝑦*$
= 𝐺 ∘ 𝑇

= 𝑇

𝑥*+ = 𝑦*$ ∘ 𝑦*+
= 𝑇 ∘ 𝐴

= 𝐶

𝑥*# = 𝑦*+ ∘ 𝑦*#
= 𝐴 ∘ 𝑈

= 𝐶

𝑥*- = 𝑦*# ∘ 𝑦*-
= 𝑈 ∘ 𝑈

= 𝑇

63

𝑥*- = 𝑦*# ∘ 𝑦*-
= 𝑈 ∘ 𝑈

= 𝑇

𝑥*" = 𝑦*- ∘ 𝑦*"
= 𝑈 ∘ 𝐶

= 𝐶

𝑥*0 = 𝑦*" ∘ 𝑦*0
= 𝐶 ∘ 𝑈

= 𝐺

𝑥$1 = 𝑦*0 ∘ 𝑦$1
= 𝑈 ∘ 𝑈

= 𝑇

After decryption, the original message is recovered as shown:

𝐷%(𝐶!) = 𝑀 =

(TCGA TCGG TTTC TTTC TCAT TCGA TCTG TCAC TCCT TCGT)

From the obtained DNA sequence, the message is converted back into

textual form based on DNA encoding rule and ASCII table.

The final form of the plaintext recovered is shown as follows:

𝑇𝐶𝐺𝐴 → 0100	1101 → 𝑁(4𝐸) 𝑇𝐶𝐺𝐺 → 0100	1111 → 𝑂(4𝐹)

𝑇𝑇𝑇𝐶 → 0101	0100 → 𝑇(54) 𝑇𝑇𝑇𝐶 → 0101	0100 → 𝑇(54)

𝑇𝐶𝐴𝑇 → 0100	1001 → 𝐼(49) 𝑇𝐶𝐺𝐴 → 0100	1110 → 𝑁(4𝐸)

𝑇𝐶𝑇𝐺 → 0100	0111 → 𝐺(47) 𝑇𝐶𝐴𝐶 → 0100	1000 → 𝐻(48)

𝑇𝐶𝐶𝑇 → 0100	0001 → 𝐴(41) 𝑇𝐶𝐺𝑇 → 0100	1101 → 𝑀(4𝐷)

64

CHAPTER 5: RESULTS AND DISCUSSIONS

 This chapter comprises of 2 main sections: security and efficiency

analysis of the proposed method and a comparative study with two established

methods: Padmapriya’s method [76] and Markovski’s method [57].

5.1 Security Analysis

 The proposed scheme was simulated using Python 3.11 on a system

with 2.38 GHz processor and 16GB RAM.

5.1.1 Brute Force Attack

The strength of any encryption system lies in its key space, which is the

total number of unique keys that an attacker requires for a brute force attack.

For the proposed system, the key space, 𝐾 is determined by secret random

parameters involved in the encryption process, which are the leaders, DNA

encoding rule, quasigroup table and parastrophe table. The proposed encryption

system applies a quasigroup operation at every step of the DNA-encoded

message. As stated in Theorem 2 by [26], this means that an attacker trying to

reverse the transformation must search through all possible sequences of

quasigroup operations, even when the input and output are known. In this thesis,

although the cryptographic system uses only one quasigroup table and one

parastrophe table for the entire message, each symbol in the message is

encrypted using a different pair of inputs (previous ciphertext and current

plaintext). As a result, from the attacker’s perspective, the actual operation

applied at each step appears to be different and unknown. This justifies

modelling the encryption system as a sequence 𝑓!, 𝑓%, ⋯ , 𝑓2 of unknown two-

input functions, where 𝐿 is the number of quasigroup operations performed,

65

each selected from a total of 𝐶 = 161,280 × 6 = 967,680 possible quasigroup

and parastrophe combinations. The value of C represents the total number of

distinct quasigroup operations that can be applied at each step of the encryption

process. Based on Table 3.6, there are precisely 161,280 quasigroups for 𝑛 =

5. In the context of our algorithm, this corresponds to the number of possible

quasigroup tables that can be randomly generated for Phase I of the encryption.

As defined in Section 3.3.2, every quasigroup has 5 parastrophe, leading to a

total of 6 related quasigroup (the original plus its five conjugates). While not all

re always distinct, the maximum number of distinct parastrophes is 6. By

applying the rule of product, the total number of unique combinations of a

quasigroup and one of its parastrophes is:

C = number of quasigroups x number of parastrophes per quasigroup

 = 161,280 x 6 = 967,680

Thus, applying the rule of product, the key space becomes

𝐾 = 𝑅 × 𝐿 × 𝐶,

𝐾 = 8	 ×	5% 	× (967,680),

where:

• 𝑅: Number of DNA encoding rules

• 𝐿: Number of leader combinations

• 𝐶: Number of possible quasigroup and parastrophe combinations

• 𝑚: Length of the encoded message in DNA form

66

As a simple example, we use 𝑚 = 10, in an exhaustive attack, the key

space is:

𝐾 = 200 × (967,680)!1

𝐾 = 1.44	 × 10#%

As can be observed, the key space is exponentially large even with just

the length of encoded message being 10, this implies that it would be difficult

for an attacker to break the system using brute force attack. Compared with two

other cryptosystems’ key space, specifically Umesh Kumar’s quasigroup-based

block cipher method which is 2!%" ≈ 3.4 × 10*" [87] and Al-Ahmadi’s DNA-

based method which is 2"1 ≈ 1.21 × 10%$ [88], the key space of the proposed

method is significantly bigger. The algorithm enhances security through the

random parameters. Even with the knowledge of the plaintext and ciphertext,

attackers would struggle to reconstruct the encryption process without the

specific information of the key.

5.1.2 Known Plaintext Attack (KPA)

In the Known Plaintext Attack (KPA), the adversaries have access to

both plaintext and its corresponding ciphertext. In this type of scenario, they

aim to reverse engineer the encryption process by deducing and analysing any

possible patterns or relations between the ciphertext and its corresponding

plaintext. Randomness and unpredictability are the keys to protecting the

system against this attack, they make it difficult for the attackers to infer and

correlate any useful patterns that may expose the system.

67

 In this section, we analyse how the proposed method is resistant against

KPA. We use chi-square test to evaluate the uniformity of the DNA bases

(𝐴, 𝐶, 𝑇, 𝐺, 𝑈) distribution in the ciphertext. As mentioned in [95], chi-square

test is used to check randomness of a string of numbers or symbols. The use of

the Chi-square test to evaluate the uniformity of DNA base distribution in the

ciphertext is a direct application of a fundamental principle in cryptography: a

secure cipher must produce output that is statistically indistinguishable from

random data [89]. If certain DNA bases appear more frequently than the others

in the ciphertext, the adversary might be able to use these patterns to restructure

the contents of the original plaintext. The application of the Chi-square test for

cryptographic purpose is well-documented in both general cryptographic

literature and in the specific field of DNA cryptography [11], [90], [91],. By

applying the Chi-square test and obtaining high p-values for our ciphertext

across different plaintext lengths, we are able to provide quantifiable, standards-

based evidence that our proposed algorithm successfully eliminates

statistical biases.

 The chi-square statistics is numerically represented as:

𝜒! =$
(𝑂" − 𝐸")!

𝐸"

#

"$%

Where:

• 𝑛 is the number of distinct DNA bases (𝐴, 𝐶, 𝑇, 𝐺, 𝑈)

• 𝑂' is the observed frequency of the 𝑖34 base

• 𝐸' =
5
&

 is the expected frequency where 𝑁 is the total number of

characters in the ciphertext.

68

The resulting chi-square statistic is then used to calculate the 𝑝-value. The closer

the chi-square statistic is to 0 and the higher the 𝑝-value (usually more than

0.05), the more uniform the distribution.

Table 5.1 Chi-Square statistic and 𝑝-value for plaintext length of 500,

2000, 3500 and 5000

Plaintext Length Chi-Square Statistic 𝑝-value

500 0.5600 0.9674

2000 0.3944 0.9829

3500 2.1219 0.7133

5000 4.2240 0.3765

Figure 5.1 Histogram of Ciphertext Base Distribution for Plaintext of 500

Character Lengths

69

Figure 5.2 Histogram of Ciphertext Base Distribution for Plaintext of 2000

Character Lengths

Figure 5.3 Histogram of Ciphertext Base Distribution for Plaintext of 3500

Character Lengths

70

Figure 5.4 Histogram of Ciphertext Base Distribution for Plaintext of 5000

Character Lengths

All 𝑝 -values are above the 0.05 threshold and all histograms of

ciphertext base distribution for plaintext of 500, 2000, 3500 and 5000 are

uniformly distributed and shows no sign of bias. The consistency in the

distribution of each figure proves to be hard for the adversary to find any type

of pattern or relation in the proposed system. Thus, the system is resistant

against KPA.

5.1.3 Complexity Analysis

Complexity analysis determines the efficiency of an algorithm.

According to the approximations from complexity theory, the smallest possible

class of functions is used to express the growing rate of algorithm’s runtime.

For instance, if the number of operations is 1 + 2𝑛, then the complexity would

be 𝑂(𝑛) and if the number of operations is 4 + 𝑛 + 𝑛*, then the complexity

would be 𝑂(𝑛*).

Time complexity is defined as the time required to execute an algorithm.

The runtime of an algorithm is defined as the sum of all operations. The time

71

required to convert plaintext to ciphertext is referred to as encryption time. The

time complexity of an encryption scheme is the sum of the time required at

phase 1 and phase 2.

For the proposed algorithm, the time complexity of the operations will

be measured based on the order of the quasigroup. For the proposed method,

the quasigroup has 5 elements {𝐴, 𝐶, 𝐺, 𝑇, 𝑈}. The lookup and operation on the

quasigroup table are constant time operations 𝑂(1). The larger the quasigroup,

the more elements will need to be processed in terms of memory 𝑂(𝑛%), where

𝑛 is the order of quasigroups, due to the need to store the quasigroup

multiplication table. Since we are using two layers of encryption, where the first

layer uses the original quasigroup and the second layer uses its conjugate, The

time complexity for a single layer of encryption is 𝑂(𝑚), where 𝑚 is the length

of the message being encrypted, since each element of the message goes through

the quasigroup multiplication operation once. With two layers, this results in

𝑂(2𝑚) time complexity for encryption and decryption, which simplifies to

𝑂(𝑚), as the constant factor can be disregarded in Big-O notation. An 𝑂(𝑚)

algorithm performs a number of operations proportional to the size of the input

𝑛. For example, if 𝑛 doubles, the time taken also doubles. Searching through an

unsorted list of 𝑛 elements for a specific item typically takes 𝑂(𝑚) time, as it

requires examining each element once. This is generally faster and more

efficient for large datasets than 𝑂(𝑛%) . Thus, since the encryption and

decryption process operate with a linear time complexity of 𝑂(𝑚) , the

algorithm’s performance remains efficient even as the input size increases.

72

Space complexity is defined as the amount of memory the algorithm

uses as the input size grows. The quasigroup table has 𝑛% elements, where 𝑛 is

the number of elements in quasigroup, resulting in 𝑂(𝑛%) space complexity for

the table itself. This means that as the number of elements in the quasigroup

increases, the space required to store the table increases significantly.

When encrypting a message, the ciphertext must be stored. The size of

the ciphertext is directly proportional to the length of the input message, 𝑚. The

DNA sequence requires space proportional to the length of input message 𝑚,

meaning the total space complexity is 𝑂(𝑚) for the storage of the ciphertext.

This means that the length of the message is directly proportional to the storage

requirement for the ciphertext. When considering both the storage required for

the quasigroup multiplication table and the storage for the ciphertext, the overall

space complexity can be expressed as the sum of the two individual

complexities. Thus, overall space complexity would be 𝑂(𝑚 + 𝑛%) due to the

message size and quasigroup storage, which indicates that the storage

requirements grow with both the message length and the size of the quasigroup.

The linear growth in time complexity with message length 𝑂(𝑚)

ensures the system is suitable for long plaintexts, as the computational cost is

proportional to input size. However, the quadratic growth in space complexity

due to the quasigroup table 𝑂(𝑛%) highlights a trade-off: increasing the

quasigroup size enhances security but demands significantly more memory.

The cryptosystem achieves a balance between computational efficiency

and storage demands, with its linear time complexity being a standout feature

for practical applications. However, as the quasigroup size increases to enhance

73

security, the associated storage requirements must be carefully managed to

avoid excessive resource consumption. This balance makes the cryptosystem

particularly suitable for environments with moderate storage constraints and a

need for fast encryption and decryption processes. In future work, we may

consider looking into the possibility of developing algorithm which can reduce

the space complexity while only marginally increase the time complexity.

5.1.4 Shannon’s Entropy

In the field of cryptography, Shannon entropy is used to assess the

strength of encryption systems. Shannon’s entropy, developed by Claude

Shannon, is a measure of uncertainty or randomness in a set of data, such as a

sequence of text or encoded information. Higher entropy values indicate more

randomness and unpredictability, while lower values imply more regularity or

predictability. For instance, a repetitive sequence, such as “AAAA”, has low

entropy because there is little surprise in each new character, the next character

is likely “a” again whilst a sequence like “AGCTGTCA”, where each character

is less predictable, has high entropy because each new character introduces

more “surprise”. An encryption system with high entropy means it is harder for

attackers to reverse engineer the system, making the encryption system more

secure.

Definition 5.1. For a random variable 𝛼 with 𝑛 possible values 𝛼!, … , 𝛼&	such

that 𝑃[𝛼 = 𝛼'] = 𝑝', we define its Shannon’s entropy as

𝐻(𝛼) ≔�𝑝'log2
1
𝑝'

&

'6!

It is measured in bits.

74

Where:

• 𝑝' represents the probability of each unique event 𝑖

• The log% calculates the “information” of each event in bits.

If an event occurs with probability 1, it has 0 entropy (it’s entirely

predictable). The maximum entropy occurs when all events are equally probably,

maximising uncertainty.

Suppose you have a simple text string like “AABBCCDD”:

The probabilities for each character are [0.25, 0.25, 0.25,0.25] for “A”, “B”,

“C” and “D”.

Shannon’s entropy calculation:

𝐻 =�0.25 ⋅ log%(4)
$

!

= 2

Normalised Shannon entropy is a scaled version of Shannon entropy that

adjusts for the size of the alphabet used in the data. It provides a value between

0 and 1, making it easier to compare entropy across datasets with different

character sets or symbol sizes. Raw Shannon entropy values can vary

significantly depending on the alphabet size. Normalised entropy scales these

values to a consistent range (0 to 1).

Normalised entropy would compare this to the maximum entropy

possible for a system with four unique characters:

Max entropy = log%(4) = 2

75

Giving a normalised entropy of 1, indicating maximal randomness for a

sequence with four equally probable outcomes.

The maximum possible entropy 𝐻,78 = log%(𝑛)

Normalised entropy = 9
9!"#

 In this thesis, we obtained the data through python coding for maximum

possible entropy, Shannon Entropy and Normalised Shannon Entropy for

plaintext and ciphertext of the proposed method. The obtained data are listed in

the table shown below:

Table 5.2 Proposed Method’s Shannon Entropy for Plaintext

Plaintext

Length

Maximum

Possible Entropy

Shannon

Entropy

Normalised Shannon

Entropy

500 5.209453 4.406603 0.845886

1000 5.285402 4.351083 0.823226

1500 5.523562 4.381499 0.793238

2000 5.523562 4.346915 0.786977

2500 5.554589 4.364680 0.785779

3000 5.672425 4.373745 0.771054

Table 5.3 Proposed Method’s Shannon Entropy for Ciphertext

Ciphertext

Length

Maximum

Possible Entropy

Shannon Entropy Normalised

Shannon Entropy

500 2.321928 2.320869 0.999544

1000 2.321928 2.320915 0.999564

1500 2.321928 2.321286 0.999723

2000 2.321928 2.321455 0.999796

2500 2.321928 2.321513 0.999821

3000 2.321928 2.321871 0.999975

76

As can be observed, the normalised Shannon’s entropy for ciphertext of

length 500 to 3000 are all relatively close to one, showing high unpredictability

of the system.

Figure 5.5 Graph of Normalised Shannon’s Entropy of Plaintext and

Ciphertext of the Proposed Method against Plaintext Length

Figure 5.5 shows the graphs of Shannon’s Entropy and Normalised

Shannon’s Entropy of the Proposed Method against Plaintext Length and

Ciphertext Length respectively. The blue line represents the normalised

Shannon’s Entropy of plaintext while the orange line represents normalised

Shannon’s entropy of ciphertext. For Shannon’s entropy analysis, the plaintext

starts with a low Shannon entropy (approximately 4.3 to 4.4), indicating a high

degree of predictability and redundancy in the data. After encryption, the

ciphertext entropy rises to approximately 2.32, which is close to the maximum

possible entropy for the given plaintext size. This increase also suggests that the

encryption process has effectively removed patterns and made the data more

random.

77

For the analysis of Normalised Shannon’s Entropy, the normalised

entropy for plaintext begins near 0.77. After encryption, the normalised entropy

is approximately 0.999, approaching to 1, which is the theoretical maximum for

randomness. This indicates that the ciphertext has high unpredictability and

randomness, which is pivotal property for a cryptosystem. The result of the

normalised Shannon entropy of the ciphertext would not be affected and

different even if the plaintext came from different domains as the transformation

operations of the plaintext depends not on the context of the plaintext but the

length of said plaintext.

The increase in both Shannon entropy and normalised Shannon entropy

demonstrates the cryptosystem’s ability to obscure patterns in the plaintext,

making it resistant to statistical and frequency-based attacks. The graph has also

demonstrated the effectiveness of the cryptosystem in transforming plaintext

into ciphertext with significantly increased randomness, as indicated by both the

result of Shannon’s entropy and normalised Shannon’s entropy. Overall, these

results confirm that the cryptosystem is both effective and secure, as it achieves

high levels of randomness and entropy in the ciphertext regardless of the

plaintext length.

5.1.5 Provable Security in DNA and Quasigroup-based

Cryptosystems: Current State and Limitations

There is limited literature discussing theoretical and provable security analysis

for DNA-based and quasigroup-based cryptosystem and existing work remains

primarily empirical or descriptive. For DNA cryptosystems, most studies focus

on improving randomness and efficiency using DNA coding combined with

78

other mathematical models, with analysis including randomness test like NIST

suite and resistance to common attacks like brute force attacks. For quasigroup-

based cryptography, some work adopts provable security frameworks for

quasigroup-based cryptosystems, for instance, symmetric encryption scheme

based on quasigroups (SEBQ) has been proven to achieve IND-CPA security

[92]. Nevertheless, while provable security frameworks are emerging for

specific quasigroup-based encryption, overall coverage in literature remains

less extensive compared to classical cryptosystems. Overall, while empirical

and descriptive security analysis dominate in these areas, there are ongoing

efforts toward integrating provable security frameworks particularly for

quasigroup-based cryptosystems. DNA cryptosystems are generally at an earlier

stage where provable security remains a research challenge due to novelty and

complexity of biological encoding models. While a full provable security

analysis is beyond the scope of this thesis, it represents a vital and recommended

direction for future work.

5.2 Efficiency Analysis

5.2.1 Encryption and Decryption time

 The results for encryption time of the proposed method for plaintext of

different lengths, from 10 characters up to 500 characters are obtained and

shown in the tables below:

79

Table 5.4 Encryption and decryption time for the proposed method

Plaintext Length Encryption time (ms) Decryption time (ms)

10 0.4479 0.1200

20 0.5256 0.2619

40 0.5820 0.4291

80 0.6747 0.8275

100 0.7610 1.0465

500 2.5488 5.3951

 As shown in the table, the encryption and decryption time grows

gradually as the plaintext length increases. For very short plaintexts (10 – 100

characters), the encryption and decryption time remains below 1ms, indicating

that the overhead of the encryption and decryption procedure is minimal for

small data. Even for 500 characters, the encryption and decryption time are only

about 2.5488 ms and 5.3951 ms respectively.

 These results indicate the efficiency of the encryption and decryption

process of the proposed method. For typical applications, an encryption time of

less than a millisecond (for up to 100 characters) is practically negligible. The

linear increase in encryption time and decryption time with respect to the

plaintext length also confirms that the proposed method has a time complexity

of 𝑂(𝑚), as predicted in Section 5.1.3. Different character sets of the same

length would produce very similar timing results because the algorithm’s

performance is fundamentally determined by the quantity of data (number of

DNA bases to process) rather than the specific content of that data.

80

5.3 Comparative Analysis

5.3.1 Efficiency

 In this section, the proposed method will be compared to two

cryptographic methods which are Padmapriya’s method [38] that involves DNA

cryptography and Markovski’s method [39] that involves quasigroup-based

cryptography. These three methods are compared in terms of security

(Shannon’s entropy) and efficiency (encryption and decryption time). I

implemented Padmapriya’s and Markovski’s method from scratch based on the

description in [78] and [79] respectively. The results were not taken directly

from the published papers but came from my own implementations of all three

methods and exactly the same plaintext sets for all three methods to ensure

fair comparison.

 Padmapriya’s scheme [38] is a two-phase symmetric key stream cipher

which combines a DNA-derived One-Time Pad (OTP) with a frequency-based

(Huffman style) prefix code to produce storage optimised ciphertext whilst

Markovski’s method [39] introduces BCMPQ, a symmetric block cipher that

employs quasigroups of order 4 in a compact matrix form.

 The proposed scheme is a hybrid that integrates two distinct concepts:

DNA cryptography and quasigroup-based transformations. To properly assess

the contribution of the proposed scheme in terms of security and efficiency, it is

necessary to compare against a benchmark that represents each domain of the

hybrid which are DNA and quasigroups. Thus, the comparative study focuses

on two representative schemes, that is, Padmapriya’s DNA-based method and

Markovski’s quasigroup-based method as they are directly comparable to the

81

proposed hybrid scheme. By comparing a pure DNA method and a pure

quasigroup method, we can effectively demonstrate the synergistic advantages

of the proposed hybrid approach. If the proposed scheme outperforms or

matches both in key metrics, it strongly validates the hybrid design principle.

Padmapriya’s and Markovski’s methods were chosen specifically because they

are well-documented, implementable, and directly relevant to the core

innovations of this thesis, thereby enabling a clear and interpretable

comparative analysis.

 The encryption time and decryption time for Padmapriya, Markovski

and proposed method for different plaintext lengths are shown below:

Table 5.5 Encryption time of three methods for different plaintext lengths

Plaintext

Length

Encryption time (ms)

Padmapriya Markovski Proposed

10 2 0.2402 0.4479

20 4 0.2899 0.5256

40 3 0.5242 0.5820

80 5 0.8386 0.6747

100 5 1.4333 0.7610

500 8 4.4841 2.5488

82

Figure 5.6 Graph of encryption time for the three methods against plaintext

length

Table 5.6 Decryption time of three methods for different plaintext lengths

Plaintext

Length

Decryption time (ms)

Padmapriya Markovski Proposed

10 2 0.1739 0.1200

20 2 0.2510 0.2619

40 3 0.4756 0.4291

80 3 0.8060 0.8275

100 3 1.3891 1.0465

500 7 7.6478 5.3951

83

Figure 5.7 Graph of decryption time for the three methods against plaintext

length

It can be observed that Padmapriya’s method exhibits moderate but the

slowest encryption times among the three methods, ranging from 2 ms (10

characters) to 8 ms (500 characters), thus not the most efficient compared to the

other two methods. Markovski’s method achieves the fastest encryption time

for small plaintexts (10 – 20 characters), with time as low as 0.2402 ms for 10

characters. However, its encryption time surpasses the proposed method’s time

at larger input sizes like 500 characters with 4.4841 ms. Overall, Markovski’s

method leads for small plaintext lengths, while the proposed method shows

superior performance at larger plaintext sizes.

The same cannot be said for the decryption times as well. Padmapriya’s

method shows much higher decryption time than the other two methods for

plaintext lengths between 10 (2 ms) to 100 (3 ms). The decryption time for

Markovski’s method is longest among three methods when it comes to large

plaintext like 500 characters. The proposed method, however, delivers the

84

fastest decryption times at all measure plaintext lengths, from 0.1200 ms (10

characters) to 5.3951 ms (500 characters), which indicates minimal overhead

for both small and large messages.

Overall, for small plaintext sizes, Markovski’s method encrypts the

fastest while the proposed method decrypts the fastest and Padmapriya’s method

is generally in the slowest range. For larger plaintext sizes, the proposed method

outperforms all the other methods for both encryption and decryption.

The rationale as to why Markovski’s method leads in performance for

small plaintext lengths while the proposed method shows superior performance

at larger plaintext sizes stems from their respective algorithmic characteristics

and scalability. Markovski’s method uses quasigroups of order 4 and operates

on fixed 64-bit blocks with compact matrix operations, which incurs minimal

overhead on small data sizes. This design leads to very low overhead per block,

and thus results in faster encryption time, making it highly efficient for small

plaintext lengths because lightweight operations and small block handling

dominate efficiency at this scale. However, as plaintext size grows, the overhead

accumulates as more blocks are processed, and the time complexity is less

favourable on large inputs, leading to slower performance as size increases.

Conversely, the proposed method processes plaintext linearly as the operation

on the quasigroup table is constant-time, and the encryption has a linear time

complexity 𝑂(𝑚) with respect to plaintext length 𝑚. Although there is some

overhead from the more complex transformations and two-phase structure, this

overhead becomes negligible as plaintext length grows. This linear scaling

ensures that the performance of the proposed method becomes increasingly

85

efficient for larger plaintext sizes and eventually outperforms Markovski’s

method as input size becomes substantial.

Thus, the comparative analysis for efficiency has shown that the

proposed method is the most balanced choice, delivery high encryption speed

and the lowest decryption time.

5.3.2 Security

 The securities of the three methods are compared using normalised

Shannon’s entropy for ciphertext. All the data of the three methods for

normalised Shannon’s entropy are listed in the table as shown below:

Table 5.7 Normalised Shannon’s entropy for ciphertext of all three methods

Plaintext Length Normalised Shannon Entropy

Padmapriya Markovski Proposed

500 0.860536 0.972287 0.999544

1000 0.864609 0.979534 0.999564

1500 0.861672 0.982073 0.999723

2000 0.858049 0.987947 0.999796

2500 0.858435 0.988624 0.999821

3000 0.863743 0.991953 0.999975

86

Figure 5.8 Graph of Normalised Shannon’s entropy of all three methods

against plaintext length

 Padmapriya’s method exhibits low normalised Shannon’s entropy,

ranging from 0.858049 to 0.864609. Markovski’s method’s value ranges from

0.972287 to 0.991953. The proposed method has highest value with 0.999544

at 500 characters and up to 0.999975 at 3000 characters. The proposed method

achieves marginally highest values indicating that ciphertext distribution are

highly uniform. This suggests strong randomness and minimal exploitable

patterns in the ciphertext. High normalised Shannon’s entropy is generally

desirable as it reduces the likelihood of successful statistical attacks. The

proposed method’s value suggests it is more resistant to such attacks.

Padmapriya’s scheme may offer storage efficiency, but it falls short in

operational flexibility and speed. Each encryption run of Padmapriya’s method

must retrieve a random DNA sequence from public database GenBank and this

introduces operational dependencies on Padmapriya’s end. The proposed

method does not rely on fetching large DNA sequences for each message,

87

thereby eliminating external key-retrieval overhead and still attaining high

randomness which is comparable to Padmapriya’s. Markovski’s quasigroup

matrix block cipher may be a lightweight block cipher whose entire public

parameter set fits in 160 bytes and whose operations reduce to fixed-size

Boolean matrix transforms which is ideal for resource-constrained hardware,

yet it operates on fixed 64-bit blocks with quasigroups of order 4, which limits

its security under modern block cipher standards and it yields only moderate

randomness. In comparison, the proposed method uses higher order quasigroup

and yields higher entropy.

5.4 Trade Off

Additional experiments were conducted to examine how encryption

time and decryption time scale with larger quasigroup sizes and more phases.

Table 5.8 Encryption and decryption time of the proposed method with

different quasigroup sizes

Quasigroup Size Encryption Time (ms) Decryption Time (ms)

4 0.202320 0.049240

5 0.301180 0.049940

6 0.474340 0.050080

7 0.736340 0.051020

8 1.330600 0.068320

9 1.815320 0.056280

10 2.320840 0.058460

11 3.430860 0.056280

12 4.767060 0.060100

13 7.151600 0.064280

14 9.155140 0.064840

15 10.776880 0.064580

88

Figure 5.9 Graph of encryption and decryption time against different

quasigroup size

 According to Table 5.8 and Figure 5.9, the encryption time increases

quite drastically from about 0.189980 ms for quasigroup of size 5 to 15.168740

ms for quasigroup of size 15. This rapid rise indicates that larger quasigroups

demand significantly more computation in the encryption phase, making the

method less practical for real-time or resource constrained environments. The

decryption time, however, does not increase as drastically as the encryption time.

This is due to the fact that decryption requires no random generation or table

construction as it merely applies the already established inverse operations with

known keys and tables.

 It is true that a larger quasigroup size theoretically expands the key space

and can enhance security. However, once a certain point is reached, the

slowdown in performance outweighs the security boost gained, making it less

practical for applications. Quasigroup of size 5 strikes a practical balance as it

89

still manages to offer large numbers of possible quasigroups while keeping the

encryption time under 1ms for small and moderate input sizes.

 Table 5.9 shows the encryption and decryption time of the proposed

method with different number of phases ranging from 2 to 10. Each additional

phase adds another transformation step, although it aims to improve complexity

in the ciphertext, it also increases computational overhead.

Table 5.9 Encryption time and decryption time of the proposed method for

different numbers of phases

Number of Phases Encryption Time (ms) Decryption Time (ms)

2 0.401020 0.053100

4 0.577720 0.087640

6 0.878320 0.126000

8 1.186460 0.165060

10 1.596760 0.202080

Figure 5.10 Graph of encryption and decryption time against number of phases

90

Table 5.10 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different quasigroup

Quasigroup Size Normalised Shannon
Entropy of Plaintext

Normalised Shannon
Entropy of Ciphertext

4 0.4855 0.9995

5 0.6284 0.9996

6 0.5645 0.9995

7 0.6736 0.9992

8 0.6304 0.9991

9 0.5966 0.9990

10 0.5693 0.9993

11 0.5466 0.9986

12 0.5275 0.9990

13 0.5867 0.9986

14 0.5702 0.9988

15 0.5557 0.9987

Figure 5.11 Graph of normalised Shannon entropy of plaintext and ciphertext

against quasigroup sizes

91

Table 5.11 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different numbers of phases

Number of Phases Encryption Time (ms) Decryption Time (ms)

2 0.4182 0.9992

4 0.4182 0.9993

6 0.4182 0.9994

8 0.4182 0.9992

10 0.4182 0.9995

Figure 5.12 Graph of normalised Shannon entropy of plaintext and ciphertext

against number of phases

The proposed encryption method operates entirely on DNA symbols, where the

input plaintexts are transformed into DNA bases before applying quasigroup

and parastrophic transformations that produce essentially random-like

ciphertexts. The randomness and uniformity analysis in Chapter 5 has shown

that the ciphertext distributions remain consistent across varying plaintext

92

lengths, indicating robust statistical obfuscation that should generalise across

different plaintext domain types. However, while the method generally achieves

excellent diffusion and near uniform distribution with normalised entropy >

0.99 in most cases, extremely low entropy domains, for instance, highly

repetitive plaintext such as long strings of identical characters can result in

slightly reduced ciphertext entropy. The proposed method has been tested with

low entropy plaintext AAAAAAAAAA of length 10 which yields normalised

Shannon entropy of ciphertext of 0.816376, comparatively lower than the

random plaintext of length 10 which yields normalised Shannon entropy of

ciphertext of 0.963329. The combination of a large key space, random initial

parameters and multiple quasigroup phases ensure that any domain specific

characteristics are effectively masked. For typical plaintext domains, the

ciphertext is expected to maintain high entropy and exhibit uniform symbol

distribution.

 From Table 5.9 and Figure 5.10, it can be seen that the encryption time

grows from about 0.286640 ms at 2 phases to 1.203000 ms at 10 phases. The

decryption time increases proportionally from 0.062660 ms to 0.283780 ms. As

mentioned before, each phase adds an additional transformation layer,

theoretically enhancing security. However, beyond 2 phases, each additional

layer adds only a small boost in security compared to the extra work it requires.

For practicality, 2 phases of quasigroup-based DNA encryption already provide

robust complexity, making additional phases unnecessary and redundant. While

more phases could be beneficial for extremely sensitive data, real-world

systems typically require a balance between encryption strength and latency.

Doubling or tripling the encryption time to add extra layers may not be

93

worthwhile if 2 phases are already sufficient to strike a balance between security

and efficiency.

Based on Table 5.10 and Figure 5.11, all ciphertexts achieve entropy

near 1, which is the theoretical maximum for a uniformly random sequence. It

is observed that larger quasigroups do not produce more random ciphertexts.

Increasing quasigroup size greatly increases computational cost but does not

effectively increase the normalised Shannon entropy of ciphertext. Therefore,

the overhead is not justified from the perspective of Shannon entropy-based

security.

According to Table 5.11 and Figure 5.12, there is no noticeable gain in

normalised Shannon entropy when it comes to the number of phases. Increasing

the number of phases to 4, 6, 8 or 10 does not produce any significant increase

in the normalised Shannon entropy. Thus, adding more than 2 phases

significantly increases the computational overhead without any measurable

improvement in the normalised Shannon entropy of ciphertext. Minimal

configurations already achieve the theoretical randomness bound, making

further expansion is deemed unnecessary.

 In short, while it is technically feasible to increase the quasigroup size

or the number of phases, these results show that doing so significantly impacts

performance without providing a reasonable improvement in security for real-

world applications.

94

CHAPTER 6: CONCLUSION

The research sets out to explore and develop a novel cryptographic

algorithm by integrating the unique properties of DNA with nonassociative

transformations provided by quasigroups. The proposed method distinguishes

itself from traditional cryptosystems by directly mapping plaintext into DNA

form using a randomly chosen DNA encoding rule and then applying a two-

phase encryption process that leverages both a random quasigroup table and one

of its random parastrophes. One of the key innovations in the proposed method

is the introduction of element Uracil (U). The design choice not only increases

the key space but also obfuscates statistical patterns, thereby enhancing the

system’s resistance against known plaintext and statistical attacks. The two-

phase encryption scheme significantly increases the complexity and

randomness of the ciphertext, as evidenced by the high normalised Shannon

entropy value which approaches 1. The extensive key space demonstrates that

even for a small encoded message length of 10, the key space reaches an

exponential size (approximately 1.44 × 10#%). The enormous key space

ensures that an exhaustive search attack would be computationally infeasible,

thereby reinforcing the cryptosystem’s security.

In addition to its strong security, the proposed method also demonstrates

high efficiency. Experimental results show that both the encryption and

decryption times scale linearly with the plaintext length. Comparative analysis

with existing DNA cryptographic schemes such as Padmapriya’s and

Markovski’s methods indicate that while all methods achieve high levels of

randomness, the proposed method offers a balanced approach with faster

encryption and decryption time, especially for larger plaintexts.

95

Furthermore, additional experiments were conducted to assess the trade-

offs associated with using larger quasigroup sizes and increasing the number of

encryption phases. These investigations revealed that although increasing these

parameters could theoretically enhance security by expanding the key space and

adding more layers of transformation, the practical impact on performance is

significant. In particular, encryption times grow rapidly with larger quasigroup

sizes and additional phases, while security gains remain marginal beyond the

chosen configuration. This finding validates the design choices made in this

thesis, ensuring that the system achieves robust security without compromising

efficiency.

Despite the promising results, the current implementation is limited to

text file encryption. Future work could focus on extending the method to handle

multimedia data such as images and audio, as well as exploring further

optimisations in key management and transformation efficiency. On the whole,

the proposed method represents a significant step forward in the application of

quasigroup in DNA cryptography.

96

REFERENCES

[1] J. F. Dooley, A brief history of cryptology and cryptographic algorithms,

vol. 21. New York: Springer, 2013. doi: 10.5860/choice.51-4489.

[2] Dave, “Understanding Classical cryptography,” Coded Insights.

[3] D. Davies, “A brief history of cryptography,” Information Security

Technical Report, vol. 2, no. 2, pp. 14–17, 1997.

[4] W. Trappe and L. C. Washington, Introduction to cryptography with

Coding Theory 3rd. 2007.

[5] B. Preneel, C. Paar, and J. Pelzl, Understanding Cryptography: A

Textbook for Students and Practitioners, vol. 2009, no. April. 2009.

[6] D. E. Standard, “Data encryption standard,” Federal Information

Processing Standards Publication, vol. 112, no. 3, 1999.

[7] NIST, “FIPS 197 Advanced encryption standard,” 2001.

[8] D. R. Stinson and M. B. Paterson, Cryptography Theory and Practice 4th

Edition, vol. 1, no. 1. 2018.

[9] “What Are Cryptographic Attacks?: The Complete Guide.” Accessed:

Sep. 20, 2024. [Online]. Available:

https://www.goallsecure.com/blog/cryptographic-attacks-complete-

guide/

[10] T. Hanoymak, “On provable security of cryptographic schemes,”

International Journal of Information Security Science, vol. 2, no. 2, pp.

44–56, 2013.

97

[11] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of

applied cryptography. 1996. doi: 10.2307/2589608.

[12] S. Ramakrishnan, Cryptographic and Information Security Approaches

for Images and Videos. CRC Press, 2018.

[13] A. Biryukov, “Chosen plaintext attack,” in Encyclopedia of

Cryptography, Security and Privacy, Boston, MA: Springer US, 2011, pp.

205–206.

[14] Simon Burge, “8 Types of Attack in Cryptography,” ISJ

INTERNATIONAL SECURITY JOURNAL. Accessed: Sep. 20, 2024.

[Online]. Available: https://internationalsecurityjournal.com/types-of-

attack-in-

cryptography/#:~:text=Cryptography%20attacks%20are%20malicious

%20attempts,and%20availability%20of%20encrypted%20data.

[15] “Cryptography: Theory and practice,” Computers & Mathematics with

Applications, vol. 30, no. 9, 1995, doi: 10.1016/0898-1221(95)90225-2.

[16] L. Chu, Y. Su, X. Yao, P. Xu, and W. Liu, “A review of DNA

cryptography,” Intelligent Computing, vol. 4, p. 0106, 2025.

[17] Z. Zhang and Z. Zhang, “DNA Information Storage and Cryptography

System,” Academic Journal of Science and Technology, vol. 10, no. 1,

pp. 243–249, 2024.

[18] Sénat & Assemblée nationale, “Science and Technology Briefings:

Briefing 29 – DNA data storage,” 2021. Accessed: Jul. 15, 2025. [Online].

98

Available: https://www.assemblee-nationale.fr/commissions/opecst-

index.asp

[19] Y. Zhang and L. H. Bochen Fu, “Research on DNA Cryptography,” in

Applied Cryptography and Network Security, vol. 357, Springer, 2012,

pp. 357–376. doi: 10.5772/34510.

[20] L. N. de Castro, Fundamentals of natural computing: Basic concepts,

algorithms, and applications. 2006.

[21] O. Tornea, “Contributions to DNA Cryptography: Applications to Text

and Image Secure Transmission,” University of Nice Sophia Antipolis,

2013.

[22] L. M. Adleman, “Molecular computation of solutions to combinatorial

problems,” Science (1979), vol. 266, no. 5187, 1994, doi:

10.1126/science.7973651.

[23] M. Mondal and K. S. Ray, “Review on DNA cryptography,” arXiv

preprint, 2019.

[24] S. KK*, “DNA Cryptography an Area of DNA Computing,”

Bioinformatics & Proteomics Open Access Journal, vol. 1, no. 1, 2017,

doi: 10.23880/bpoj-16000103.

[25] A. Mileva, “New developments in quasigroup-based cryptography,” in

Multidisciplinary Perspectives in Cryptology and Information Security,

2014. doi: 10.4018/978-1-4666-5808-0.ch012.

[26] S. Markovski, D. Gligoroski, and V. Bakeva, “Quasigroup string

processing. Part, 1,” pp. 1–2, 1999.

99

[27] S. K. Tiwari, A. Awasthi, S. Chkrabarti, and S. Yadav, “INRU: A

Quasigroup Based Lightweight Block Cipher,” arXiv preprint

arXiv:2112.07411, 2021.

[28] D. Gligoroski, S. Markovski, and S. J. Knapskog, “A public key block

cipher based on multivariate quadratic quasigroups,” arXiv preprint,

2008.

[29] D. Gligoroski et al., “MQQ-SIG: An ultra-fast and provably CMA

resistant digital signature scheme,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2012. doi: 10.1007/978-3-642-32298-3_13.

[30] G. Teşeleanu, “The Security of Quasigroups Based Substitution

Permutation Networks,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2023. doi: 10.1007/978-3-031-32636-3_18.

[31] M. Battey and A. Parakh, “Efficient quasigroup block cipher for sensor

networks,” in 2012 21st International Conference on Computer

Communications and Networks, ICCCN 2012 - Proceedings, 2012. doi:

10.1109/ICCCN.2012.6289294.

[32] M. Battey and A. Parakh, “An efficient quasigroup block cipher,” Wirel

Pers Commun, vol. 73, pp. 63–76, 2013.

[33] D. Chauhan, I. Gupta, P. R. Mishra, and R. Verma, “Construction of

cryptographically strong S-boxes from ternary quasigroups of order 4,”

Cryptologia, vol. 46, no. 6, 2022, doi: 10.1080/01611194.2021.1934915.

100

[34] D. Nager, “Xifrat-Compact Public-Key Cryptosystems based on

Quasigroups,” Cryptology, 2021.

[35] M. El-Hadedy, D. Gligoroski, and S. J. Knapskog, “High performance

implementation of a public key block cipher - MQQ, for FPGA

platforms,” in Proceedings - 2008 International Conference on

Reconfigurable Computing and FPGAs, ReConFig 2008, 2008. doi:

10.1109/ReConFig.2008.11.

[36] H. Mihajloska, T. Yalcin, and D. Gligoroski, “How lightweight is the

hardware implementation of quasigroup S-boxes,” in Advances in

Intelligent Systems and Computing, 2013. doi: 10.1007/978-3-642-

37169-1_12.

[37] M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita, “A fast stream

cipher with huge state space and quasigroup filter for software,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2007. doi:

10.1007/978-3-540-77360-3_16.

[38] M. K. Padmapriya and P. V. Eric, “A Technique of Data Security using

DNA Cryptography with Optimized Data Storage,” Journal of System

and Management Sciences, vol. 12, no. 4, 2022, doi:

10.33168/JSMS.2022.0425.

[39] S. Markovski, V. Dimitrova, Z. Trajcheska, M. Petkovska, M.

Kostadinoski, and D. Buhov, “Block cipher defined by matrix

presentation of quasigroups,” Cryptology, 2021.

101

[40] Sidhpurwala H., “A Brief History of Cryptography,” Red Hat Customer

Portal. Accessed: Sep. 20, 2024. [Online]. Available:

https://www.redhat.com/en/blog/brief-history-cryptography

[41] P. Bajpai, “Contribution of Ciphering machines in world wars-a review,”

Anusandhaan-Vigyaan Shodh Patrika, vol. 7, no. 01, pp. 87–91, 2019.

[42] D. E. Standard, “Data encryption standard,” Federal Information

Processing Standards Publication, vol. 112, no. 3, 1999.

[43] J. S. Revathy, M. S. Prakash, K. Lingeshwaran, J. D. Dhinakaran, and V.

Harish, “A Comprehensive Study of the Advanced Encryption Standard

(AES) for Secure Communications,” in 2025 3rd IEEE International

Conference on Industrial Electronics: Developments & Applications

(ICIDeA), IEEE, 2025, pp. 1–6.

[44] Leonard M. Adleman, “Computing with DNA,” Sci Am, vol. 279, no. 2,

pp. 54–61, Aug. 1998.

[45] D. Boneh, C. Dunworth, and R. Lipton, “Breaking DES using a

molecular computer,” 1996. doi: 10.1090/dimacs/027/04.

[46] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA solution of the

maximal clique problem,” Science (1979), vol. 278, no. 5337, 1997, doi:

10.1126/science.278.5337.446.

[47] J. Chen, “A DNA-based, biomolecular cryptography design,” in

Proceedings - IEEE International Symposium on Circuits and Systems,

2003. doi: 10.1109/iscas.2003.1205146.

102

[48] Ashish Gehani, LaBean Thomas, and John Reif, “DNA-based

cryptography,” Springer Berlin Heidelberg, pp. 167–188, 2004.

[49] S. T. Amin, M. Saeb, and S. El-Gindi, “A DNA-based implementation of

yaea encryption algorithm,” in Proceedings of the 2nd IASTED

International Conference on Computational Intelligence, CI 2006, 2006.

[50] M. X. Lu, X. J. Lai, G. Z. Xiao, and L. Qin, “Symmetric-key

cryptosystem with DNA technology,” Science in China, Series F:

Information Sciences, vol. 50, no. 3, 2007, doi: 10.1007/s11432-007-

0025-6.

[51] G. Cui, L. Qin, Y. Wang, and X. Zhang, “An encryption scheme using

DNA technology,” in 2008 3rd International Conference on Bio-Inspired

Computing: Theories and Applications, IEEE, 2008, pp. 37–42.

[52] X. J. Lai, M. X. Lu, L. Qin, J. S. Han, and X. W. Fang, “Asymmetric

encryption and signature method with DNA technology,” Science in

China, Series F: Information Sciences, vol. 53, no. 3, 2010, doi:

10.1007/s11432-010-0063-3.

[53] M. Sabry, M. Hashem, T. Nazmy, and M. E. Khalifa, “A DNA and Amino

Acids-Based Implementation of Playfair Cipher,” 2010. [Online].

Available: https://www.researchgate.net/publication/45198045

[54] H. J. Shiu, K. L. Ng, J. F. Fang, R. C. T. Lee, and C. H. Huang, “Data

hiding methods based upon DNA sequences,” Inf Sci (N Y), vol. 180, no.

11, 2010, doi: 10.1016/j.ins.2010.01.030.

103

[55] Y. Zhang, B. Fu, and X. Zhang, “DNA cryptography based on DNA

fragment assembly,” in Proceedings - ICIDT 2012, 8th International

Conference on Information Science and Digital Content Technology,

IEEE, 2012, pp. 179–182.

[56] O. Tornea and M. E. Borda, “Security and complexity of a DNA-based

cipher,” in Proceedings - RoEduNet IEEE International Conference,

2013. doi: 10.1109/RoEduNet.2013.6511755.

[57] E. M. S. Hossain, K. M. R. Alam, M. R. Biswas, and Y. Morimoto, “A

DNA cryptographic technique based on dynamic DNA sequence table,”

in 2016 19th International Conference on Computer and Information

Technology (ICCIT), IEEE, 2016, pp. 270–275. doi:

10.1109/ICCITECHN.2016.7860208.

[58] M. Karimi, M. A. Jinnah, U. Karachi, and P. W. Haider, “Cryptography

using DNA Nucleotides,” 2017. [Online]. Available: www.ijcaonline.org

[59] N. S. Kolte, K. V Kulhalli, and S. C. Shinde, “DNA Cryptography using

Index-Based Symmetric DNA Encryption Algorithm.” [Online].

Available: http://www.irphouse.com

[60] X. Zhang, Z. Zhou, and Y. Niu, “An Image Encryption Method Based on

the Feistel Network and Dynamic DNA Encoding,” IEEE Photonics J,

vol. 10, no. 4, 2018, doi: 10.1109/JPHOT.2018.2859257.

[61] S. S. Nafea and M. K. Ibrahem, “Cryptographic Algorithm based on DNA

and RNA Properties,” International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET), vol. 7, no. 11, pp. 804–

811, 2018.

104

[62] B. D. Patnala and R. Kiran Kumar, “A Novel Level-Based DNA Security

Algorithm Using DNA Codons,” in SpringerBriefs in Applied Sciences

and Technology, Springer Verlag, 2019, pp. 1–13. doi: 10.1007/978-981-

13-0544-3_1.

[63] O. F. Rashid, “Text Encryption Based on DNA Cryptography , RNA , and

Amino Acid,” E- Proceedings of The 5th International Multi-Conference

on Artificial Intelligence Technology (MCAIT 2021) Artificial

Intelligence in the 4th Industrial Revolution, no. 2017, 2021.

[64] L. Euler, “Recherches sur une espece de carrés magiques,”

Commentationes Arithmeticae Collectae, vol. 2, pp. 302–361, 1849.

[65] R. Moufang, “Zur Struktur von Alternativkörpern,” Math Ann, vol. 110,

no. 1, 1935, doi: 10.1007/BF01448037.

[66] V. Shcherbacov, Elements of quasigroup theory and applications. 2017.

doi: 10.1201/9781315120058.

[67] A. D. Keedwell and J. Dénes, Latin Squares and their Applications:

Second Edition. 2015. doi: 10.1016/C2014-0-03412-0.

[68] R. Schauffler, “Eine Anwendung zykligcher Permutationen und ihre

theorie,” Philipps-Universitat zu Marburg, 1948.

[69] C. Kościelny, “A method of constructing quasigroup-based stream-

ciphers,” 1996.

[70] S. Markovski, D. Gligoroski, and S. Andova, “Using quasigroups for

one-one secure encoding,” Proc. VIII Conf. Logic and Computer

Science ’LIRA, vol. 97, pp. 157–162, 1997.

105

[71] Ritter T., “Latin squares: a literature survey,” Research comments from

Ciphers By Ritter. Accessed: Jul. 15, 2025. [Online]. Available:

http://www.ciphersbyritter.com/RES/LATSQ.HTM#Bose84

[72] E. Ochodková and V. Snášel, “Using quasigroups for secure encoding of

file system,” In Proceedings of the International Scientific NATO

PfP/PWP Conference Security and Information Protection, pp. 175–181,

2001.

[73] S. Markovski and V. Kusakatov, “Quasigroup String Processing: Part 2,”

Contributions, Section of Natural, Mathematical and Biotechnical

Sciences, vol. 21, no. 1–2, pp. 15–32, 2000.

[74] S. Markovski and V. Kusakatov, “Quasigroup String Processing: Part 3,”

Contributions, Section of Natural, Mathematical and Biotechnical

Sciences, vol. 24, no. 1–2, pp. 7–27, 2003.

[75] S. Markovski and V. Bakeva, “Quasigroup String Processing: Part 4,”

Contributions, Section of Natural, Mathematical and Biotechnical

Sciences, vol. 27, no. 1–2, 2007, doi: 10.20903/csnmbs.masa.2006.27.1-

2.5.

[76] S. I. Marnas, L. Angelis, and G. L. Bleris, “All-Or-Nothing Transforms

Using Quasigroups ,” In Proc. 1st Balkan Conference in Informatics, pp.

183–191, 2003.

[77] Y. Xu, “A cryptography application of conjugate quasigroups,” in

Proceedings - 2010 International Conference on Web Information

Systems and Mining, WISM 2010, 2010, pp. 63–65. doi:

10.1109/WISM.2010.15.

106

[78] Bakeva, Verica, Vesna Dimitrova, and Aleksandra Popovska-Mitrovikj,

“Parastrophic quasigroup string processing,” 2011.

[79] A. Petrescu, “n-QUASIGROUP CRYPTOGRAPHIC PRIMITIVES:

STREAM CIPHERS,” Studia Universitatis Babes-Bolyai, Informatica,

55(2), vol. 55, 2010.

[80] S. Chakrabarti, S. K. Pal, and S. Gangopadhyay, “An improved 3-

quasigroup based encryption scheme,” ICT Innovations, vol. 173, 2012.

[81] S. Markovski, “Design of crypto primitives based on quasigroups,”

Quasigroups and Related Systems, vol. 23, no. 1, 2015.

[82] O. Bonham-Carter, A. Parakh, and D. Bastola, “SEncrypt: An encryption

algorithm inspired from biological processes,” in Proceedings - 12th

IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, TrustCom 2013, 2013. doi:

10.1109/TrustCom.2013.43.

[83] D. Chauhan, I. Gupta, P. R. Mishra, and R. Verma, “An ultra-lightweight

block cipher with string transformations,” Cryptologia, 2023, doi:

10.1080/01611194.2023.2224107.

[84] N. A. N. Abdullah et al., “A THEORETICAL COMPARATIVE

ANALYSIS OF DNA TECHNIQUES USED IN DNA BASED

CRYPTOGRAPHY,” J Sustain Sci Manag, vol. 17, no. 5, pp. 165–178,

May 2022, doi: 10.46754/jssm.2022.05.014.

107

[85] A. P. Thiruthuvadoss, “Comparison and Performance Evaluation of

Modern Cryptography and DNA Cryptography,” Royal Institute of

Technology, 2012.

[86] C. C. Lindner and D. Steedley, “On the number of conjugates of a

quasigroup,” Algebra Universalis, vol. 5, no. 1, 1975, doi:

10.1007/BF02485252.

[87] U. Kumar and V. C. Venkaiah, “A Family of Block Ciphers Based on

Multiple Quasigroups,” Cryptology, 2022.

[88] W. A. E. Al-Ahmadi, A. O. Aljahdali, F. Thabit, and A. Munshi, “A secure

fingerprint hiding technique based on DNA sequence and mathematical

function,” PeerJ Comput Sci, vol. 10, p. e1847, 2024.

[89] J. Katz and Y. Lindell, Introduction to modern cryptography: principles

and protocols. Chapman and hall/CRC, 2007.

[90] D. Sharma, “Implementing Chi-Square method and even mirroring for

cryptography of speech signal using Matlab,” in Proceedings on 2015 1st

International Conference on Next Generation Computing Technologies,

NGCT 2015, 2016. doi: 10.1109/NGCT.2015.7375148.

[91] N. H. Munshi, P. Das, and S. Maitra, “Chi-Squared Test Analysis on

Hybrid Cryptosystem,” Micro and Nanosystems, vol. 14, no. 1, 2021, doi:

10.2174/1876402913666210508235706.

[92] S. Kumar, H. Singh, I. Gupta, and A. J. Gupta, “Symmetric Encryption

Scheme Based on Quasigroup Using Chained Mode of Operation,” 2024.

108

[93] M. A. Abdelaal, A. I. Moustafa, H. Kasban, H. Saleh, H. A. Abdallah, and

M. Y. I. Afifi, “DNA-Inspired Lightweight Cryptographic Algorithm for

Secure and Efficient Image Encryption,” Sensors, vol. 25, no. 7, p. 2322,

2025.

[94] I. Aisah, E. Djauhari, and A. Singgih, “Dihedral Group in The Ancient

Genetic,” Jurnal Matematika Integratif, vol. 16, no. 1, 2020, doi:

10.24198/jmi.v16i1.26646.

[95] K. A. Ameen, W. khalid Abdulwahab, and Y. N. A. Taher, “Encryption

Technique Using a Mixture of Hill Cipher and Modified DNA for Secure

Data Transmission,” International Journal of Computing, vol. 17, no. 1,

pp. 1–9, 2025.

[96] Anne-Sophie Boutaud, “Data storage: the DNA revolution,” CNRS News.

[97] G. Bhoi, R. Bhavsar, P. Prajapati, and P. Shah, “A review of recent trends

on DNA based cryptography,” in Proceedings of the 3rd International

Conference on Intelligent Sustainable Systems, ICISS 2020, 2020. doi:

10.1109/ICISS49785.2020.9316013.

[98] Boaz Barak, An Intensive Introduction to Cryptography. 2021.

[99] M. U. Bokhari, S. Afzal, I. Khan, and M. Z. Khan, “Securing IoT

Communications: A Novel Lightweight Stream Cipher Using DNA

Cryptography and Grain-80 Cipher,” SN Comput Sci, vol. 6, no. 2, p. 88,

2025.

[100] A. Bopalkar, “Sustainable Computation: Harnessing DNA for Solving

NP Problems, Secure Cryptography, and High-Density Data Storage,”

109

Vidhyayana-An International Multidisciplinary Peer-Reviewed E-

Journal-ISSN 2454-8596, vol. 10, no. si4, 2025.

[101] K. J. Brakas and M. Alanezi, “A Dynamic DNA Cryptosystem for Secure

File Sharing,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 2, pp.

424–435, 2025.

[102] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital

information storage in DNA,” 2012. doi: 10.1126/science.1226355.

[103] L. D. Dang, D. V. Lu, and N. T. Bac, “Quantum-Enhanced DNA

Cryptography: A Revolutionary Intersection of Quantum Computing and

Biological Security,” in International conference on WorldS4, Singapore:

Springer Singapore, 2024, pp. 441–456.

[104] A. Das, S. K. Sarma, and S. Deka, “Data security with DNA

cryptography,” in Transactions on Engineering Technologies: World

Congress on Engineering 2019, Springer Singapore, 2020, pp. 159–173.

[105] W. A. Dudek, “Parastrophes of quasigroups,” Quasigroups and Related

Systems, vol. 23, no. 2, 2015.

[106] A. Kairi, T. Bhadra, S. K. Pandey, A. Sinha, and A. Nag, “Adaptive DNA

Cryptography With Intelligent Machine Learning for Cloud Data

Defense,” Engineering Reports, vol. 7, no. 6, p. e70223, 2025.

[107] S. Kumar, I. Gupta, and A. J. Gupta, “Quantum secure digital signature

scheme based on multivariate quadratic quasigroups (MQQ),” Advances

in Mathematics of Communications, 2024.

110

[108] C. Lound and R. M. Sirkin, “Statistics for the Social Sciences.,” J R Stat

Soc Ser A Stat Soc, vol. 159, no. 3, 1996, doi: 10.2307/2983353.

[109] D. Mechkaroska, A. Popovska-Mitrovikj, and V. Bakeva, Cryptocoding

Based on Quasigroups. Springer, 2024.

[110] P. Mukherjee, C. Pradhan, R. K. Barik, and H. Dubey, “Emerging DNA

cryptography-based encryption schemes: a review,” International

Journal of Information and Computer Security, vol. 20, no. 1–2, 2023,

doi: 10.1504/ijics.2023.128000.

[111] A. Parakh, W. Mahoney, L. Gerlock, and M. Battey, “Quasigroup-Based

encryption for low-powered devices,” in Security, Privacy and Reliability

in Computer Communications and Networks, 2017. doi:

10.1201/9781003339410-9.

[112] S. Rawther and S. Sivaji, “Protecting Cloud Computing Environments

from Malicious Attacks using Multi-factor Authentication and Modified

DNA Cryptography,” Recent Patents on Engineering, vol. 19, no. 1, 2025,

doi: 10.2174/1872212118666230905141926.

[113] M. V. K. Reddy, R. R. Reddy, E. P. Latha, S. Alamanda, and P. V. S.

Srinivas, “Introduction of DNA Computing in Cryptography,” Artificial

Intelligence‐Enabled Blockchain Technology and Digital Twin for Smart

Hospitals, pp. 39–60, 2024.

[114] Renda Zhang, “Information Theory Series: 1 — Entropy and Shannon

Entropy,” Medium. Accessed: Jul. 15, 2025. [Online]. Available:

https://rendazhang.medium.com/information-theory-series-1-entropy-

and-shannon-entropy-a20a2101108e

111

[115] T. A. Taj and M. I. Hossain, “A multi-level random key cryptosystem

based on DNA encoding and state-changing mealy machine,” Journal of

Information Security and Applications, vol. 83, p. 103760, 2024.

[116] X. , W. Xie et al., “DNA computers: advances in storage, cryptography

and logic circuits,” ChemBioChem, vol. 26, no. 1, p. e202400670, 2025.

[117] M. Ţălu, “DNA-based Cryptography for Internet of Things Security:

Concepts, Methods, Applications, and Emerging Trends,” Buletin Ilmiah

Sarjana Teknik Elektro, vol. 7, no. 2, pp. 68–94, 2025.

112

APPENDICES

Proposed_Method.py

import random

import time

from math import log2

----- DNA Bases -----

DNA_BASES = ['A', 'T', 'C', 'G', 'U']

----- DNA Encoding/Decoding Rules -----

ENCODING_RULES = {

 "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'},

 "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'},

 "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'},

 "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'},

 "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'},

 "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'},

 "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'},

 "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'}

}

Compute the inverse for each rule

DECODING_RULES = {

 rule: {v: k for k, v in mapping.items()}

 for rule, mapping in ENCODING_RULES.items()

}

----- Conversion Functions -----

def text_to_binary(text):

 #Convert ASCII text to binary string.

 return ''.join(format(ord(ch), '08b') for ch in text)

113

def binary_to_text(binary_str):

 #Convert binary string back to ASCII text.

 return ''.join(

 chr(int(binary_str[i:i+8], 2))

 for i in range(0, len(binary_str), 8)

)

def binary_to_DNA(binary_str, mapping):

 # Map each pair of bits to a DNA base using 'mapping'.

 # Pads with '0' if necessary to complete the last pair.

 if len(binary_str) % 2 != 0:

 binary_str += '0'

 dna = ''

 for i in range(0, len(binary_str), 2):

 dna += mapping[binary_str[i:i+2]]

 return dna

def DNA_to_binary(dna, mapping):

 # Map each DNA base back to its binary string using 'mapping'.

 return ''.join(mapping[base] for base in dna)

def text_to_DNA(text, encoding_mapping):

 # Convert text to binary to DNA (using chosen encoding)

 return binary_to_DNA(text_to_binary(text), encoding_mapping)

def DNA_to_text(dna, decoding_mapping):

 # Convert DNA to binary to text (using chosen decoding)

 return binary_to_text(DNA_to_binary(dna, decoding_mapping))

----- Quasigroup Table Generation -----

def generate_latin_square(bases):

114

 # Construct a random Quasigroup table of size n×n over 'bases' by
backtracking.

 # Ensures each row and column is a permutation of 'bases'.

 n = len(bases)

 square = [[None]*n for _ in range(n)]

 def valid(r, c, v):

 # Check that 'v' does not appear in row r or column c yet

 return (v not in square[r]

 and all(square[i][c] != v for i in range(n)))

 def backtrack(idx=0):

 # Fill cells one by one; if we reach n*n, we're done

 if idx == n*n:

 return True

 r, c = divmod(idx, n)

 # Try each base in random order

 for v in random.sample(bases, n):

 if valid(r, c, v):

 square[r][c] = v

 if backtrack(idx+1):

 return True

 # Backtrack

 square[r][c] = None

 return False

 if backtrack():

 return square

 else:

 raise ValueError("Failed to generate Latin square")

def convert_square_to_table(square, bases):

115

 # Convert a 2D list 'square' into a dict-of-dicts table: table[a][b] = result of
a * b

 return {

 bases[i]: {

 bases[j]: square[i][j]

 for j in range(len(bases))

 }

 for i in range(len(bases))

 }

def generate_random_quasigroup_table(bases):

 # Generate and convert one random quasigroup table.

 square = generate_latin_square(bases)

 return convert_square_to_table(square, bases)

----- Parastrophe Table Generation -----

def compute_parastrophes(Q):

 # Given a quasigroup table Q, compute its 5 parastrophe tables.

 bases = list(Q.keys())

 P = [{b: {} for b in bases} for _ in range(5)]

 for x in bases:

 for y in bases:

 # 1) x *_1 y = z <=> x * z = y

 z1 = next(z for z in bases if Q[x][z] == y)

 # 2) x *_2 y = z <=> z * y = x

 z2 = next(z for z in bases if Q[z][y] == x)

 # 3) x *_3 y = z <=> z * x = y

 z3 = next(z for z in bases if Q[z][x] == y)

 # 4) x *_4 y = z <=> y * z = x

 z4 = next(z for z in bases if Q[y][z] == x)

 # 5) x *_5 y = z <=> y * x = z

116

 z5 = Q[y][x]

 # Store in the corresponding table

 P[0][x][y] = z1

 P[1][x][y] = z2

 P[2][x][y] = z3

 P[3][x][y] = z4

 P[4][x][y] = z5

 return P

def generate_random_parastrophe_table(quasigroup_table):

 # Choose one of the five parastrophes at random for Phase II.

 parastrophes = compute_parastrophes(quasigroup_table)

 return random.choice(parastrophes)

def print_table(table, title="Table"):

 print(f"\n--- {title} ---")

 headers = list(table.keys())

 print(" " + " ".join(f"{h:>3}" for h in headers))

 for a in headers:

 row = "".join(f"{table[a][b]:>4}" for b in headers)

 print(f"{a:>3}:{row}")

----- Quasigroup Encryption/Decryption -----

def encrypt_phase(dna_input, leader, table):

 prev = leader

 out = ''

 for sym in dna_input:

 c = table[prev][sym]

 out += c

 prev = c

117

 return out

def left_divide(a, c, table):

 return next(m for m in table[a] if table[a][m] == c)

def decrypt_phase(dna_cipher, leader, table):

 prev = leader

 out = ''

 for c in dna_cipher:

 m = left_divide(prev, c, table)

 out += m

 prev = c

 return out

----- Full Encryption/Decryption Process -----

def encrypt_method(plaintext):

 # 1) Choose a random DNA-encoding rule

 rule = random.choice(list(ENCODING_RULES.keys()))

 enc_map = ENCODING_RULES[rule]

 dec_map = DECODING_RULES[rule]

 # 2) Convert plaintext to DNA string

 dna_plain = text_to_DNA(plaintext, enc_map)

 # 3) Phase I: quasigroup encryption

 leader1 = random.choice(DNA_BASES)

 Q = generate_random_quasigroup_table(DNA_BASES)

 phase1 = encrypt_phase(dna_plain, leader1, Q)

 # 4) Phase II: parastrophe encryption

 leader2 = random.choice(DNA_BASES)

 P = generate_random_parastrophe_table(Q)

118

 final = encrypt_phase(phase1, leader2, P)

 # Store all keys needed for decryption

 keys = {

 "leader1": leader1, "Q": Q,

 "leader2": leader2, "P": P,

 "rule": rule, "enc_map": enc_map, "dec_map": dec_map

 }

 return final, keys

def decrypt_method(final_cipher, keys):

 # Reverse Phase II (parastrophe)

 phase1 = decrypt_phase(final_cipher, keys["leader2"], keys["P"])

 # Reverse Phase I (original Q)

 dna_plain = decrypt_phase(phase1, keys["leader1"], keys["Q"])

 # Convert DNA to text

 return DNA_to_text(dna_plain, keys["dec_map"])

--- Entropy Calculation ---

def shannon_entropy(s):

 from collections import Counter

 total = len(s)

 if total == 0:

 return 0.0

 freqs = Counter(s)

 return -sum((count/total) * log2(count/total) for count in freqs.values())

def compute_entropy_metrics(s, allowed_alphabet=None):

 H = shannon_entropy(s)

 if allowed_alphabet is None:

 allowed_alphabet = set(s)

 max_H = log2(len(allowed_alphabet)) if allowed_alphabet else 0

119

 norm_H = H / max_H if max_H > 0 else 0

 return H, max_H, norm_H

----- Main Routine -----

if __name__ == "__main__":

 plaintext = input("Enter plaintext: ")

 # Encrypt and measure time

 start = time.perf_counter()

 cipher, keys = encrypt_method(plaintext)

 enc_time = (time.perf_counter() - start)*1000

 print("\nEncryption Complete")

 print("Cipher DNA:", cipher)

 print("Leader1:", keys["leader1"],

 "Leader2:", keys["leader2"],

 "Encoding Rule:", keys["rule"])

 print_table(keys["Q"], "Quasigroup Table")

 print_table(keys["P"], "Parastrophe Table")

 print(f"Encryption time: {enc_time:.4f}ms")

 # Decrypt and measure time

 start = time.perf_counter()

 decrypted = decrypt_method(cipher, keys)

 dec_time = (time.perf_counter() - start)*1000

 print("\nDecryption Complete")

 print("Decrypted Text:", decrypted)

 print(f"Decryption time: {dec_time:.4f}ms")

 # Entropy metrics

 pt_H, pt_maxH, pt_norm = compute_entropy_metrics(plaintext)

120

 ct_H, ct_maxH, ct_norm = compute_entropy_metrics(cipher,
allowed_alphabet=DNA_BASES)

 print("\n--- Entropy Metrics ---")

 print("Plaintext Shannon Entropy: {:.6f}".format(pt_H))

 print("Plaintext Max Entropy: {:.6f}".format(pt_maxH))

 print("Plaintext Normalized Entropy: {:.6f}".format(pt_norm))

 print("Ciphertext Shannon Entropy: {:.6f}".format(ct_H))

 print("Ciphertext Max Entropy: {:.6f}".format(ct_maxH))

 print("Ciphertext Normalized Entropy: {:.6f}".format(ct_norm))

121

Markovski_Method.py

import random

import time

from math import log2

---- GF(2) & Matrix Utilities ----

def bits_to_vec(x):

 return [(x >> 1) & 1, x & 1]

def vec_to_bits(v):

 return (v[0] << 1) | v[1]

def random_inv_2x2():

 while True:

 M = [[random.randint(0,1) for _ in range(2)] for __ in range(2)]

 if (M[0][0]*M[1][1] ^ M[0][1]*M[1][0]) == 1:

 return M

---- Matrix-Based Quasigroup Class (Used only for table generation) ----

class MGQuasigroup:

 def __init__(self, m, A, B, C=None):

 self.m = m # 2-bit constant

 self.A = A # 2x2 GF(2) matrix

 self.B = B # 2x2 GF(2) matrix

 self.C = C or [[1,1],[1,1]]

 def mul(self, x, y):

 xv, yv = bits_to_vec(x), bits_to_vec(y)

 Ax = [self.A[i][0]*xv[0] ^ self.A[i][1]*xv[1] for i in (0,1)]

 By = [self.B[i][0]*yv[0] ^ self.B[i][1]*yv[1] for i in (0,1)]

122

 CAx = [self.C[i][0]*Ax[0] ^ self.C[i][1]*Ax[1] for i in (0,1)]

 CBy = [self.C[i][0]*By[0] ^ self.C[i][1]*By[1] for i in (0,1)]

 dot = (CAx[0] & CBy[0]) ^ (CAx[1] & CBy[1])

 res = [self.m[i] ^ Ax[i] ^ By[i] for i in (0,1)]

 res[1] ^= dot

 return vec_to_bits(res)

---- Table Generation (Forward & Inverse) ----

def make_forward_table(Q: MGQuasigroup):

 table = [[0]*4 for _ in range(4)]

 for x in range(4):

 for y in range(4):

 table[x][y] = Q.mul(x, y)

 return table

def make_inv_table(Q: MGQuasigroup):

 inv = [[None]*4 for _ in range(4)]

 for x in range(4):

 for y in range(4):

 z = Q.mul(x, y)

 inv[x][z] = y

 return inv

---- Public Quasigroup Tables Generator ----

def generate_public_quasigroups(n=128):

 QT_forward, QT_inverse = [], []

 for _ in range(n):

 m = [random.randint(0,1) for _ in range(2)]

 A, B = random_inv_2x2(), random_inv_2x2()

 Q = MGQuasigroup(m, A, B)

123

 QT_forward.append(make_forward_table(Q))

 QT_inverse.append(make_inv_table(Q))

 return QT_forward, QT_inverse

---- Transformations (e/d) with Table Lookups ----

def e_transform(seq, leader, QT):

 b = [QT[leader][seq[0]]]

 for i in range(1, len(seq)):

 b.append(QT[b[i-1]][seq[i]])

 return b

def d_transform(seq, leader, QT_inv):

 a = [QT_inv[leader][seq[0]]]

 for i in range(1, len(seq)):

 a.append(QT_inv[seq[i-1]][seq[i]])

 return a

----- Utility Functions for Bit/Element Conversions -----

def bytes_to_elements(block_bytes):

 bit_str = ''.join(format(b, '08b') for b in block_bytes)

 if len(bit_str) % 2 != 0:

 bit_str += '0'

 return [int(bit_str[i:i+2], 2) for i in range(0, len(bit_str), 2)]

def elements_to_bytes(elements):

 bit_str = ''.join(format(e, '02b') for e in elements)

 b = bytearray()

 for i in range(0, len(bit_str), 8):

 b.append(int(bit_str[i:i+8], 2))

 return bytes(b)

124

----- Key Schedule Extraction -----

def extract_key_parts(key_bytes):

 if len(key_bytes) != 16:

 raise ValueError("Key must be 16 bytes (128 bits).")

 key_bits = ''.join(format(b, '08b') for b in key_bytes)

 leaders = [int(key_bits[i*2:i*2+2], 2) for i in range(8)]

 start = 16

 Q_indices = [int(key_bits[start + i*7 : start + i*7 + 7], 2) for i in range(8)]

 start += 56

 T_indices = [int(key_bits[start + i*7 : start + i*7 + 7], 2) for i in range(8)]

 return leaders, Q_indices, T_indices

----- Padding Functions -----

BLOCK_BYTE_SIZE = 8 # 64 bits = 8 bytes

def pad(plaintext):

 pad_len = BLOCK_BYTE_SIZE - (len(plaintext) %
BLOCK_BYTE_SIZE)

 return plaintext + bytes([pad_len] * pad_len)

def unpad(padded):

 pad_len = padded[-1]

 return padded[:-pad_len]

----- Encryption/Decryption per Block (Optimized with Tables) -----

def encrypt_block(block_bytes, leaders, Q_indices, T_indices,
public_QT_forward, public_QT_inverse):

 elems = bytes_to_elements(block_bytes)

 # Step 1: Process mini-blocks

 mini_blocks = [elems[i*4:(i+1)*4] for i in range(8)]

 for i in range(8):

 Q_index = Q_indices[i] % len(public_QT_forward)

125

 QT = public_QT_forward[Q_index]

 l = leaders[i]

 mini_blocks[i] = e_transform(mini_blocks[i], l, QT)

 X = []

 for mini in mini_blocks:

 X.extend(mini)

 # Step 2: Full block transformation

 for i in range(8):

 T_index = T_indices[i] % len(public_QT_forward)

 QT = public_QT_forward[T_index]

 l = leaders[i]

 if i % 2 == 0:

 X = e_transform(X, l, QT)

 else:

 X_rev = list(reversed(X))

 X_rev = e_transform(X_rev, l, QT)

 X = list(reversed(X_rev))

 return elements_to_bytes(X)

def decrypt_block(block_bytes, leaders, Q_indices, T_indices,
public_QT_forward, public_QT_inverse):

 X = bytes_to_elements(block_bytes)

 # Reverse Step 2

 for i in reversed(range(8)):

 T_index = T_indices[i] % len(public_QT_inverse)

 T_inv = public_QT_inverse[T_index]

 l = leaders[i]

 if i % 2 == 0:

 X = d_transform(X, l, T_inv)

 else:

126

 X_rev = list(reversed(X))

 X_rev = d_transform(X_rev, l, T_inv)

 X = list(reversed(X_rev))

 # Reverse Step 1

 mini_blocks = [X[i*4:(i+1)*4] for i in range(8)]

 for i in range(8):

 Q_index = Q_indices[i] % len(public_QT_inverse)

 Q_inv = public_QT_inverse[Q_index]

 l = leaders[i]

 mini_blocks[i] = d_transform(mini_blocks[i], l, Q_inv)

 elems = []

 for mini in mini_blocks:

 elems.extend(mini)

 return elements_to_bytes(elems)

----- Full Message Encryption/Decryption -----

def encrypt_message(plaintext, key_bytes, public_QT_forward,
public_QT_inverse):

 padded = pad(plaintext)

 ciphertext = bytearray()

 leaders, Q_indices, T_indices = extract_key_parts(key_bytes)

 for i in range(0, len(padded), BLOCK_BYTE_SIZE):

 block = padded[i:i+BLOCK_BYTE_SIZE]

 cipher_block = encrypt_block(block, leaders, Q_indices, T_indices,
public_QT_forward, public_QT_inverse)

 ciphertext.extend(cipher_block)

 return bytes(ciphertext)

def decrypt_message(ciphertext, key_bytes, public_QT_forward,
public_QT_inverse):

 plaintext = bytearray()

 leaders, Q_indices, T_indices = extract_key_parts(key_bytes)

127

 for i in range(0, len(ciphertext), BLOCK_BYTE_SIZE):

 block = ciphertext[i:i+BLOCK_BYTE_SIZE]

 plain_block = decrypt_block(block, leaders, Q_indices, T_indices,
public_QT_forward, public_QT_inverse)

 plaintext.extend(plain_block)

 return unpad(plaintext)

--- Entropy Functions ---

def shannon_entropy(data):

 # Compute Shannon entropy (in bits per symbol) for data.

 freqs = {}

 for symbol in data:

 freqs[symbol] = freqs.get(symbol, 0) + 1

 total = len(data)

 H = 0.0

 for count in freqs.values():

 p = count / total

 H -= p * log2(p)

 return H

def compute_entropy_metrics(data, allowed_alphabet=None):

 H = shannon_entropy(data)

 if allowed_alphabet is None:

 allowed_alphabet = set(data)

 max_H = log2(len(allowed_alphabet)) if allowed_alphabet else 0

 norm_H = H / max_H if max_H > 0 else 0

 return H, max_H, norm_H

----- Main Routine -----

def main():

 user_text = input("Enter plaintext: ")

 plaintext = user_text.encode('utf-8')

128

 key_bytes = bytes(random.getrandbits(8) for _ in range(16))

 public_QT_forward, public_QT_inverse =
generate_public_quasigroups(128)

 start_enc = time.perf_counter()

 ciphertext = encrypt_message(plaintext, key_bytes, public_QT_forward,
public_QT_inverse)

 end_enc = time.perf_counter()

 enc_time = (end_enc - start_enc) * 1000

 start_dec = time.perf_counter()

 decrypted = decrypt_message(ciphertext, key_bytes, public_QT_forward,
public_QT_inverse)

 end_dec = time.perf_counter()

 dec_time = (end_dec - start_dec) * 1000

 # Compute entropy metrics for plaintext

 pt_H, pt_max_H, pt_norm_H = compute_entropy_metrics(plaintext,
allowed_alphabet=set(plaintext))

 # Compute entropy metrics for ciphertext

 ct_H, ct_max_H, ct_norm_H = compute_entropy_metrics(ciphertext,
allowed_alphabet=set(ciphertext))

 print("\nCiphertext (hex):")

 print(ciphertext.hex())

 try:

 decrypted_text = decrypted.decode('utf-8')

 except UnicodeDecodeError:

 decrypted_text = str(decrypted)

 print("\nDecrypted Plaintext:")

 print(decrypted_text)

129

 print("\nEncryption Time: {:.6f} ms".format(enc_time))

 print("Decryption Time: {:.6f} ms".format(dec_time))

 if decrypted == plaintext:

 print("\nSuccess: Decrypted text matches original plaintext.")

 else:

 print("\nError: Decrypted text does not match original plaintext.")

 print("\n--- Entropy Metrics ---")

 print("Plaintext Shannon Entropy: {:.6f}".format(pt_H))

 print("Plaintext Max Entropy: {:.6f}".format(pt_max_H))

 print("Plaintext Normalized Entropy: {:.6f}".format(pt_norm_H))

 print("Ciphertext Shannon Entropy: {:.6f}".format(ct_H))

 print("Ciphertext Max Entropy: {:.6f}".format(ct_max_H))

 print("Ciphertext Normalized Entropy: {:.6f}".format(ct_norm_H))

if __name__ == '__main__':

main()

130

Padmapriya_Method.py

import heapq

import collections

import time

import random

from datetime import datetime

DNA <-> Binary mapping

BASES = ['A', 'C', 'G', 'T']

BASE_TO_BIN = {'A': [0, 0], 'C': [0, 1], 'G': [1, 0], 'T': [1, 1]}

BIN_TO_BASE = {'00': 'A', '01': 'C', '10': 'G', '11': 'T'}

Huffman Tree

class Node:

 def __init__(self, freq, symbol, left=None, right=None):

 self.freq = freq

 self.symbol = symbol

 self.left = left

 self.right = right

 def __lt__(self, other): return self.freq < other.freq

def build_huffman_tree(freq):

 heap = [Node(freq[s], s) for s in freq if freq[s] > 0]

 heapq.heapify(heap)

 while len(heap) > 1:

 left = heapq.heappop(heap)

 right = heapq.heappop(heap)

 merged = Node(left.freq + right.freq, None, left, right)

 heapq.heappush(heap, merged)

 return heap[0]

def get_huffman_codes(root):

 codes = {}

131

 def traverse(node, cur=''):

 if node.symbol is not None:

 codes[node.symbol] = cur or '0'

 return

 if node.left: traverse(node.left, cur + '0')

 if node.right: traverse(node.right, cur + '1')

 traverse(root)

 return codes

Key generation

def generate_dna_key(bit_length):

 bases_needed = (bit_length + 1) // 2

 return ''.join(random.choice(BASES) for _ in range(bases_needed))

File I/O helpers

def write_key_to_file(dna_key, filename="dna_key.txt"):

 with open(filename, "w", encoding="utf-8") as f:

 f.write(dna_key)

def read_key_from_file(filename="dna_key.txt"):

 with open(filename, "r", encoding="utf-8") as f:

 return f.read().strip()

def log(message, log_file="encryption_log.txt"):

 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]

 line = f"[{timestamp}] {message}"

 print(line)

 with open(log_file, "a", encoding="utf-8") as f:

 f.write(line + "\n")

ENCRYPTION

def encrypt(plaintext):

 start_total = time.perf_counter()

 # 1. plaintext → binary

132

 bin_plain = [int(b) for c in plaintext for b in f'{ord(c):08b}']

 bit_len = len(bin_plain)

 # 2. DNA key

 dna_key = generate_dna_key(bit_len)

 bin_key = [bit for b in dna_key for bit in BASE_TO_BIN[b]]

 if len(bin_key) < bit_len:

 bin_key += [0] * (bit_len - len(bin_key))

 # 3. XOR (DNA OTP)

 bin_cipher = [a ^ b for a, b in zip(bin_plain, bin_key)]

 # 4. binary → DNA

 dna_cipher = ''.join(BIN_TO_BASE[''.join(map(str, bin_cipher[i:i+2]))]

 for i in range(0, len(bin_cipher), 2))

 # 5. Huffman compression

 freq = collections.Counter(dna_cipher)

 root = build_huffman_tree(freq)

 codes = get_huffman_codes(root)

 encoded = ''.join(codes[b] for b in dna_cipher)

 # ---- file writes ----

 write_key_to_file(dna_key)

 with open("ciphertext.bin", "w", encoding="utf-8") as f:

 f.write(encoded)

 total_ms = (time.perf_counter() - start_total) * 1000

 return encoded, root, dna_key, total_ms

DECRYPTION

def decrypt(encoded, root, dna_key, expected_bit_len):

 start_total = time.perf_counter()

 # 1. Huffman → DNA (Z)

 Z = []

 x = root

 for bit in encoded:

133

 if bit == '0':

 if x.left:

 x = x.left

 else:

 raise ValueError("Invalid bit '0' - no left child")

 else:

 if x.right:

 x = x.right

 else:

 raise ValueError("Invalid bit '1' - no right child")

 if x.left is None and x.right is None:

 Z.append(x.symbol)

 x = root

 # 2. DNA → binary (C as list of 0/1)

 C = []

 for Zi in Z:

 if Zi == 'A':

 C.append(0)

 C.append(0)

 elif Zi == 'C': # Fixed paper typo: use elif to avoid extra appends

 C.append(0)

 C.append(1)

 elif Zi == 'G':

 C.append(1)

 C.append(0)

 else: # 'T'

 C.append(1)

 C.append(1)

 # 3. key → binary

 bin_key = [bit for b in dna_key for bit in BASE_TO_BIN[b]]

 bin_key = bin_key + [0] * (expected_bit_len - len(bin_key)) if len(bin_key)
< expected_bit_len else bin_key[:expected_bit_len]

134

 # 4. XOR back (M)

 M = [Ci ^ Keyi for Ci, Keyi in zip(C, bin_key)]

 # 5. binary → text (Convert M to ASCII)

 plaintext = ''

 for i in range(0, len(M), 8):

 chunk = M[i:i+8]

 byte_val = sum(bit * (1 << (7 - j)) for j, bit in enumerate(chunk))

 plaintext += chr(byte_val)

 # ---- log ----

 log(f"DECRYPT: Success -> '{plaintext}'")

 total_ms = (time.perf_counter() - start_total) * 1000

 return plaintext, total_ms

--

MAIN

def main():

 print("\n" + "-"*60)

 plaintext = input("Enter plaintext: ").strip()

 print(f"Encrypting: \"{plaintext}\" ({len(plaintext)} chars)")

 # ---- ENCRYPT ----

 encoded, root, key, enc_ms = encrypt(plaintext)

 # ---- DECRYPT ----

 decrypted, dec_ms = decrypt(encoded, root, key, len(plaintext)*8)

 # ---- RESULTS ----

 print("\n" + "="*62)

 print(" RESULT")

 print("="*62)

 print(f"Encryption Time : {enc_ms:8.3f} ms")

 print(f"Decryption Time : {dec_ms:8.3f} ms")

 print("="*62)

 print("\nFiles created: dna_key.txt, ciphertext.bin, encryption_log.txt")

if __name__ == "__main__":

 main()

135

Quasigroup_Size_Phase_Number.py

import random

import time

import matplotlib.pyplot as plt

import string

import math

from collections import Counter

----- DNA Encoding/Decoding Rules -----

ENCODING_RULES = {

 "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'},

 "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'},

 "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'},

 "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'},

 "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'},

 "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'},

 "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'},

 "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'}

}

DECODING_RULES = { rule: {v: k for k, v in mapping.items()}

 for rule, mapping in ENCODING_RULES.items() }

----- Conversion Functions -----

def text_to_binary(text):

 return ''.join(format(ord(ch), '08b') for ch in text)

def binary_to_text(binary_str):

 return ''.join(chr(int(binary_str[i:i+8], 2)) for i in range(0, len(binary_str),
8))

def binary_to_DNA(binary_str, mapping):

 if len(binary_str) % 2 != 0:

136

 binary_str += '0'

 dna = ''

 for i in range(0, len(binary_str), 2):

 dna += mapping[binary_str[i:i+2]]

 return dna

def DNA_to_binary(dna, mapping):

 return ''.join(mapping[base] for base in dna)

def text_to_DNA(text, encoding_mapping):

 return binary_to_DNA(text_to_binary(text), encoding_mapping)

def DNA_to_text(dna, decoding_mapping):

 return binary_to_text(DNA_to_binary(dna, decoding_mapping))

----- Latin Square Generation -----

def generate_latin_square(bases):

 n = len(bases)

 square = [[None] * n for _ in range(n)]

 def is_valid(row, col, value):

 for j in range(n):

 if square[row][j] == value:

 return False

 for i in range(n):

 if square[i][col] == value:

 return False

 return True

 def backtrack(cell=0):

 if cell == n * n:

 return True

137

 row, col = divmod(cell, n)

 for value in random.sample(bases, len(bases)):

 if is_valid(row, col, value):

 square[row][col] = value

 if backtrack(cell + 1):

 return True

 square[row][col] = None

 return False

 if backtrack():

 return square

 else:

 raise ValueError("Failed to generate Latin square.")

def convert_square_to_table(square, bases):

 table = {}

 for i, row_label in enumerate(bases):

 table[row_label] = {}

 for j, col_label in enumerate(bases):

 table[row_label][col_label] = square[i][j]

 return table

def generate_random_quasigroup_table(bases):

 return convert_square_to_table(generate_latin_square(bases), bases)

----- Parastrophe Table Generation -----

def compute_parastrophes(Q):

 bases = list(Q.keys())

 P = [{x: {} for x in bases} for _ in range(5)]

 for x in bases:

 for y in bases:

138

 # 1) x *_1 y = z <=> x * z = y

 z1 = next(z for z in bases if Q[x][z] == y)

 # 2) x *_2 y = z <=> z * y = x

 z2 = next(z for z in bases if Q[z][y] == x)

 # 3) x *_3 y = z <=> z * x = y

 z3 = next(z for z in bases if Q[z][x] == y)

 # 4) x *_4 y = z <=> y * z = x

 z4 = next(z for z in bases if Q[y][z] == x)

 # 5) x *_5 y = z <=> y * x = z

 z5 = Q[y][x]

 P[0][x][y] = z1

 P[1][x][y] = z2

 P[2][x][y] = z3

 P[3][x][y] = z4

 P[4][x][y] = z5

 return P

def generate_random_parastrophe_table(Q):

 # Pick one of the parastrophes at random.

 parastrophes = compute_parastrophes(Q)

 return random.choice(parastrophes)

----- Encryption/Decryption Functions -----

def encrypt_phase(dna_input, leader, table):

 result = ""

 prev = leader

 for symbol in dna_input:

 c = table[prev][symbol]

 result += c

 prev = c

139

 return result

def left_divide(a, c, table):

 for m in table[a]:

 if table[a][m] == c:

 return m

 raise ValueError("No valid division found.")

def decrypt_phase(dna_cipher, leader, table):

 result = ""

 prev = leader

 for c in dna_cipher:

 m = left_divide(prev, c, table)

 result += m

 prev = c

 return result

----- Normalized Shannon Entropy -----

def normalized_shannon_entropy(sequence, alphabet):

 """

 Returns normalized Shannon entropy in [0,1] for `sequence` over
`alphabet`.

 Normalization is by log2(|alphabet|).

 """

 if len(sequence) == 0:

 return 0.0

 counts = Counter(sequence)

 total = sum(counts[a] for a in alphabet if a in counts)

 # If total==0 (none of alphabet chars present), return 0

 if total == 0:

 return 0.0

 H = 0.0

140

 for a in alphabet:

 p = counts.get(a, 0) / total

 if p > 0:

 H -= p * math.log2(p)

 max_H = math.log2(len(alphabet)) if len(alphabet) > 1 else 1.0

 return H / max_H

----- Encrypt/Decrypt Methods with Even Phases -----

def encrypt_method(plaintext, dna_bases, num_phases=2):

 # Encrypts the plaintext using an even number of phases.

 # Each pair of phases starts with encryption using a random quasigroup
table, and ends with encryption using the corresponding parastrophe table.

 if num_phases % 2 != 0:

 raise ValueError("Number of phases must be an even number.")

 chosen_rule = random.choice(list(ENCODING_RULES.keys()))

 encoding_mapping = ENCODING_RULES[chosen_rule]

 dna_plaintext = text_to_DNA(plaintext, encoding_mapping)

 phase_leaders = []

 phase_tables = []

 current_cipher = dna_plaintext

 for _ in range(num_phases // 2):

 # Phase 1: encryption using a random quasigroup table.

 leader1 = random.choice(dna_bases)

 table = generate_random_quasigroup_table(dna_bases)

 current_cipher = encrypt_phase(current_cipher, leader1, table)

 phase_leaders.append(leader1)

 phase_tables.append(table)

 # Phase 2: encryption using the parastrophe of the quasigroup table.

141

 leader2 = random.choice(dna_bases)

 parastrophe_table = generate_random_parastrophe_table(table)

 current_cipher = encrypt_phase(current_cipher, leader2,
parastrophe_table)

 phase_leaders.append(leader2)

 phase_tables.append(parastrophe_table)

 keys = {

 "dna_bases": dna_bases,

 "phase_leaders": phase_leaders,

 "phase_tables": phase_tables,

 "encoding_rule": chosen_rule,

 "decoding_mapping": DECODING_RULES[chosen_rule]

 }

 return current_cipher, keys

def decrypt_method(final_cipher, keys):

 current_dna = final_cipher

 for leader, table in zip(reversed(keys["phase_leaders"]),
reversed(keys["phase_tables"])):

 current_dna = decrypt_phase(current_dna, leader, table)

 return DNA_to_text(current_dna, keys["decoding_mapping"])

----- Main Routine -----

if __name__ == "__main__":

 user_plaintext = input("Enter your plaintext: ")

 def measure_quasigroup_performance_custom(plaintext):

 sizes = list(range(4, 16)) # Quasigroup sizes from 4 to 15

 num_runs = 5

 results = {}

 for size in sizes:

142

 if size == 4:

 dna_bases = ['A', 'T', 'C', 'G']

 else:

 extras = [ch for ch in string.ascii_uppercase if ch not in ['A', 'T',
'C', 'G']]

 dna_bases = ['A', 'T', 'C', 'G'] + extras[:size-4]

 enc_times = []

 dec_times = []

 entropies_cipher = []

 entropies_plain = []

 for _ in range(num_runs):

 start = time.perf_counter()

 cipher, keys = encrypt_method(plaintext, dna_bases, 2)

 enc_time = (time.perf_counter() - start) * 1000 # milliseconds

 # compute entropies (normalized)

 h_plain = normalized_shannon_entropy(plaintext, dna_bases)

 h_cipher = normalized_shannon_entropy(cipher, dna_bases)

 start = time.perf_counter()

 decrypt_method(cipher, keys)

 dec_time = (time.perf_counter() - start) * 1000 # milliseconds

 enc_times.append(enc_time)

 dec_times.append(dec_time)

 entropies_plain.append(h_plain)

 entropies_cipher.append(h_cipher)

 results[size] = {

 'enc_avg': sum(enc_times) / num_runs,

143

 'dec_avg': sum(dec_times) / num_runs,

 'plain_entropy_avg': sum(entropies_plain) / num_runs,

 'cipher_entropy_avg': sum(entropies_cipher) / num_runs

 }

 # Display average times only

 print(f"Quasigroup Size {size}: Encryption Avg =
{results[size]['enc_avg']:.6f} ms, "

 f"Decryption Avg = {results[size]['dec_avg']:.6f} ms"

 f"Normalised Shannon Entropy Plaintext =
{results[size]['plain_entropy_avg']:.4f}, "

 f"Normalised Shannon Entropy Ciphertext =
{results[size]['cipher_entropy_avg']:.4f}")

 # Plotting

 sizes_list = list(results.keys())

 enc_avgs = [results[s]['enc_avg'] for s in sizes_list]

 dec_avgs = [results[s]['dec_avg'] for s in sizes_list]

 cipher_ent_avgs = [results[s]['cipher_entropy_avg'] for s in sizes_list]

 plain_ent_avgs = [results[s]['plain_entropy_avg'] for s in sizes_list]

 plt.figure(figsize=(10, 6))

 plt.plot(sizes_list, enc_avgs, marker='o', label='Encryption Time')

 plt.plot(sizes_list, dec_avgs, marker='s', label='Decryption Time')

 plt.xlabel('Quasigroup Size')

 plt.ylabel('Average Time (milliseconds)')

 plt.title(f'Performance vs Quasigroup Size')

 plt.legend()

 plt.grid(True)

 plt.show()

 plt.figure(figsize=(10, 6))

 plt.plot(sizes_list, cipher_ent_avgs, marker='o', label='Normalised
Shannon Entropy Ciphertext')

144

 plt.plot(sizes_list, plain_ent_avgs, marker='s', label='Normalised
Shannon Entropy Plaintext')

 plt.xlabel('Quasigroup Size')

 plt.ylabel('Normalized Shannon Entropy')

 plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs
Quasigroup Size')

 plt.legend()

 plt.grid(True)

 plt.show()

 return results

 def measure_phases_performance_custom(plaintext):

 # Use even number of phases only: 2, 4, 6, 8, 10

 phases = list(range(2, 11, 2))

 num_runs = 5

 results = {}

 dna_bases = ['A', 'T', 'C', 'G', 'U']

 for num_phase in phases:

 enc_times = []

 dec_times = []

 entropies_cipher = []

 entropies_plain = []

 for _ in range(num_runs):

 start = time.perf_counter()

 cipher, keys = encrypt_method(plaintext, dna_bases, num_phase)

 enc_time = (time.perf_counter() - start) * 1000 # milliseconds

 start = time.perf_counter()

 decrypt_method(cipher, keys)

 dec_time = (time.perf_counter() - start) * 1000 # milliseconds

145

 # entropy calculation (normalized)

 h_plain = normalized_shannon_entropy(plaintext, dna_bases)

 h_cipher = normalized_shannon_entropy(cipher, dna_bases)

 enc_times.append(enc_time)

 dec_times.append(dec_time)

 entropies_plain.append(h_plain)

 entropies_cipher.append(h_cipher)

 results[num_phase] = {

 'enc_avg': sum(enc_times) / num_runs,

 'dec_avg': sum(dec_times) / num_runs,

 'plain_entropy_avg': sum(entropies_plain) / num_runs,

 'cipher_entropy_avg': sum(entropies_cipher) / num_runs

 }

 # Display average times only

 print(f"Phases {num_phase}: Encryption Avg =
{results[num_phase]['enc_avg']:.6f} ms, "

 f"Decryption Avg = {results[num_phase]['dec_avg']:.6f} ms"

 f"Normalised Shannon Entropy of Plaintext =
{results[num_phase]['plain_entropy_avg']:.4f}, "

 f"Normalised Shannon Entropy of Ciphertext =
{results[num_phase]['cipher_entropy_avg']:.4f}")

 # Plotting

 phase_list = list(results.keys())

 enc_avgs = [results[p]['enc_avg'] for p in phase_list]

 dec_avgs = [results[p]['dec_avg'] for p in phase_list]

 cipher_ent_avgs = [results[p]['cipher_entropy_avg'] for p in phase_list]

 plain_ent_avgs = [results[p]['plain_entropy_avg'] for p in phase_list]

 plt.figure(figsize=(10, 6))

146

 plt.plot(phase_list, enc_avgs, marker='o', label='Encryption Time')

 plt.plot(phase_list, dec_avgs, marker='s', label='Decryption Time')

 plt.xlabel('Number of Phases (Even numbers only)')

 plt.ylabel('Average Time (milliseconds)')

 plt.title(f'Performance vs Number of Phases')

 plt.legend()

 plt.grid(True)

 plt.show()

 plt.figure(figsize=(10, 6))

 plt.plot(phase_list, cipher_ent_avgs, marker='o', label='Normalised
Shannon Entropy of Ciphertext')

 plt.plot(phase_list, plain_ent_avgs, marker='s', label='Normalised
Shannon Entropy of Plaintext')

 plt.xlabel('Number of Phases')

 plt.ylabel('Normalized Shannon Entropy')

 plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs
Number of Phases')

 plt.legend()

 plt.grid(True)

 plt.show()

 return results

 print("\n=== Measuring Performance vs Quasigroup Size ===")

 qs_results = measure_quasigroup_performance_custom(user_plaintext)

 print("\n=== Measuring Performance vs Number of Phases ===")

 phase_results = measure_phases_performance_custom(user_plaintext)

147

Plot_Graph.py

import matplotlib.pyplot as plt

Graph of Normalised Shannon’s Entropy of Plaintext and Ciphertext of the
Proposed Method against Plaintext Length

Data from Tables 5.2 and Table 5.3

plaintext_lengths = [500, 1000, 1500, 2000, 2500, 3000]

normalised_entropy_plaintext = [0.845886, 0.823226, 0.793238, 0.786977,
0.785779, 0.771054]

normalised_entropy_ciphertext = [0.999544, 0.999564, 0.999723, 0.999796,
0.999821, 0.999975]

plt.figure(figsize=(10, 5))

plt.plot(plaintext_lengths, normalised_entropy_plaintext, marker='o',
label="Normalized Shannon's Entropy (Plaintext)")

plt.plot(plaintext_lengths, normalised_entropy_ciphertext, marker='x',
label="Normalized Shannon's Entropy (Ciphertext)")

plt.title("Plaintext and Ciphertext Normalised Shannon's Entropy vs Plaintext
Length")

plt.xlabel("Plaintext Length and Ciphertext Length")

plt.ylabel("Normalised Shannon's Entropy of Plaintext and Ciphertext")

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

Graph of encryption time for the three methods against plaintext length

Data from Table 5.5

plaintext_lengths = [10, 20, 40, 80, 100, 500]

padmapriya_times = [2, 4, 3, 5, 5, 8]

markovski_times = [0.2402, 0.2899, 0.5242, 0.8386, 1.4333, 4.4841]

proposed_times = [0.4479, 0.5256, 0.5820, 0.6747, 0.7610, 2.5488]

148

plt.figure(figsize=(8, 5))

plt.plot(plaintext_lengths, padmapriya_times, marker='o', label='Padmapriya')

plt.plot(plaintext_lengths, markovski_times, marker='s', label='Markovski')

plt.plot(plaintext_lengths, proposed_times, marker='^', label='Proposed')

plt.title('Encryption Time vs. Plaintext Length')

plt.xlabel('Plaintext Length')

plt.ylabel('Encryption Time (ms)')

plt.grid(True)

plt.legend()

plt.tight_layout()

plt.show()

Graph of decryption time for the three methods against plaintext length

Data from Table 5.6

plaintext_lengths = [10, 20, 40, 80, 100, 500]

padmapriya_times = [2, 2, 3, 3, 3, 7]

markovski_times = [0.1739, 0.2510, 0.4756, 0.8060, 1.3891, 7.6478]

proposed_times = [0.1200, 0.2619, 0.4291, 0.8275, 1.0465, 5.3951]

plt.figure(figsize=(8, 5))

plt.plot(plaintext_lengths, padmapriya_times, marker='o', label='Padmapriya')

plt.plot(plaintext_lengths, markovski_times, marker='s', label='Markovski')

plt.plot(plaintext_lengths, proposed_times, marker='^', label='Proposed')

plt.title('Decryption Time vs. Plaintext Length')

plt.xlabel('Plaintext Length')

plt.ylabel('Decryption Time (ms)')

plt.grid(True)

plt.legend()

plt.tight_layout()

149

plt.show()

Graph of Normalised Shannon’s entropy of all three methods against
plaintext length

Data from Table 5.7

plaintext_lengths = [500, 1000, 1500, 2000, 2500, 3000]

padmapriya = [0.860536, 0.864609, 0.861672, 0.858049, 0.858435, 0.863743]

markovski = [0.972287, 0.979534, 0.982073, 0.987947, 0.988624, 0.991953]

proposed = [0.999544, 0.999564, 0.999723, 0.999796, 0.999821, 0.999975]

plt.figure(figsize=(10, 6))

plt.plot(plaintext_lengths, padmapriya, marker='o', label='Padmapriya',
linestyle='-')

plt.plot(plaintext_lengths, markovski, marker='s', label='Markovski',
linestyle='-')

plt.plot(plaintext_lengths, proposed, marker='^', label='Proposed', linestyle='-')

plt.title("Normalised Shannon Entropy vs. Plaintext Length", fontsize=14)

plt.xlabel("Plaintext Length", fontsize=12)

plt.ylabel("Normalised Shannon Entropy", fontsize=12)

plt.xticks(plaintext_lengths)

plt.ylim(0.80, 1.005)

plt.grid(True, linestyle='--', alpha=0.6)

plt.legend(loc='lower left', fontsize=10)

plt.tight_layout()

plt.show()

150

Chi_Square_Test.py

import random

import matplotlib.pyplot as plt

DNA Bases and Encoding Rules

DNA_BASES = ['A', 'T', 'C', 'G', 'U']

ENCODING_RULES = {

 "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'},

 "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'},

 "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'},

 "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'},

 "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'},

 "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'},

 "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'},

 "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'}

}

DECODING_RULES = {

 rule: {v: k for k, v in mapping.items()}

 for rule, mapping in ENCODING_RULES.items()

}

--- Conversion Functions ---

def text_to_binary(text):

 return ''.join(format(ord(ch), '08b') for ch in text)

def binary_to_text(binary_str):

 return ''.join(chr(int(binary_str[i:i+8], 2)) for i in range(0, len(binary_str),
8))

def binary_to_DNA(binary_str, mapping):

 if len(binary_str) % 2 != 0:

151

 binary_str += '0'

 return ''.join(mapping[binary_str[i:i+2]] for i in range(0, len(binary_str), 2))

def DNA_to_binary(dna, mapping):

 return ''.join(mapping[base] for base in dna)

def text_to_DNA(text, mapping):

 return binary_to_DNA(text_to_binary(text), mapping)

def DNA_to_text(dna, mapping):

 return binary_to_text(DNA_to_binary(dna, mapping))

--- Quasigroup and Parastrophe Generation ---

def generate_latin_square(bases):

 n = len(bases)

 square = [[None]*n for _ in range(n)]

 def valid(r, c, v):

 return v not in square[r] and all(square[i][c] != v for i in range(n))

 def backtrack(idx=0):

 if idx == n*n:

 return True

 r, c = divmod(idx, n)

 for v in random.sample(bases, n):

 if valid(r, c, v):

 square[r][c] = v

 if backtrack(idx+1):

 return True

 square[r][c] = None

 return False

152

 if not backtrack():

 raise ValueError("Failed to generate Latin square")

 return square

def convert_square_to_table(square, bases):

 return {bases[i]: {bases[j]: square[i][j] for j in range(len(bases))} for i in
range(len(bases))}

def generate_random_quasigroup_table(bases):

 return convert_square_to_table(generate_latin_square(bases), bases)

def compute_parastrophes(Q):

 bases = list(Q.keys())

 P = [{b: {} for b in bases} for _ in range(5)]

 for x in bases:

 for y in bases:

 z1 = next(z for z in bases if Q[x][z] == y)

 z2 = next(z for z in bases if Q[z][y] == x)

 z3 = next(z for z in bases if Q[z][x] == y)

 z4 = next(z for z in bases if Q[y][z] == x)

 z5 = Q[y][x]

 P[0][x][y] = z1

 P[1][x][y] = z2

 P[2][x][y] = z3

 P[3][x][y] = z4

 P[4][x][y] = z5

 return P

def generate_random_parastrophe_table(Q):

 return random.choice(compute_parastrophes(Q))

--- Quasigroup Encryption/Decryption ---

153

def encrypt_phase(dna_input, leader, table):

 prev, out = leader, ''

 for sym in dna_input:

 c = table[prev][sym]

 out += c

 prev = c

 return out

def left_divide(a, c, table):

 return next(m for m in table[a] if table[a][m] == c)

def decrypt_phase(dna_cipher, leader, table):

 prev, out = leader, ''

 for c in dna_cipher:

 m = left_divide(prev, c, table)

 out += m

 prev = c

 return out

from collections import Counter

from scipy.stats import chisquare

def chi_square_uniform_test(ciphertext, bases):

 observed = [ciphertext.count(b) for b in bases]

 expected = [len(ciphertext) / len(bases)] * len(bases)

 chi_stat, p_value = chisquare(f_obs=observed, f_exp=expected)

 return chi_stat, p_value

def plot_ciphertext_histogram(ciphertext, bases):

 freq = Counter(ciphertext)

 counts = [freq[b] for b in bases]

154

 plt.figure(figsize=(6, 4))

 plt.bar(bases, counts, color='skyblue', edgecolor='black')

 plt.xlabel('DNA Bases')

 plt.ylabel('Frequency')

 plt.title('Histogram of Ciphertext Base Distribution')

 plt.ylim(0, max(counts) * 1.2) # Add some padding

 for i, count in enumerate(counts):

 plt.text(i, count + 1, str(count), ha='center', va='bottom')

 plt.tight_layout()

 plt.grid(axis='y', linestyle='--', alpha=0.7)

 plt.show()

--- Main with Metrics ---

if __name__ == "__main__":

 plaintext = input("Enter plaintext: ")

 rule = random.choice(list(ENCODING_RULES.keys()))

 enc_map = ENCODING_RULES[rule]

 dec_map = DECODING_RULES[rule]

 # Encode to DNA

 dna_plain = text_to_DNA(plaintext, enc_map)

 # Phase I encryption

 leader1 = random.choice(DNA_BASES)

 Q = generate_random_quasigroup_table(DNA_BASES)

 phase1 = encrypt_phase(dna_plain, leader1, Q)

 # Phase II encryption (parastrophe)

 leader2 = random.choice(DNA_BASES)

 P = generate_random_parastrophe_table(Q)

 final_cipher = encrypt_phase(phase1, leader2, P)

 # Simulate encryption

155

 _ = encrypt_phase(phase1, leader2, P)

 # Decryption

 phase1_dec = decrypt_phase(final_cipher, leader2, P)

 dna_dec = decrypt_phase(phase1_dec, leader1, Q)

 decrypted_text = DNA_to_text(dna_dec, dec_map)

 # Output encryption/decryption results

 print("\n--- Encryption ---")

 print("Cipher DNA:", final_cipher)

 print("Leader1:", leader1, " Leader2:", leader2, " Rule:", rule)

 print("\n--- Decryption ---")

 print("Decrypted Text:", decrypted_text)

 chi_stat, p_value = chi_square_uniform_test(final_cipher, DNA_BASES)

 print("\n--- Chi-Square Uniformity Test ---")

 print(f"Chi-Square Statistic: {chi_stat:.4f}")

 print(f"P-Value: {p_value:.4f}")

 if p_value > 0.05:

 print("Result: Pass (Ciphertext appears uniformly distributed)")

 else:

 print("Result: Fail (Ciphertext may not be uniformly distributed)")

plot_ciphertext_histogram(final_cipher, DNA_BASES)

156

Plaintexts for Encryption

Plaintext for encryption of different lengths was generated by ChatGPT.

Plaintext Length Plaintext
10 Hello, Bob
20 Hello there, matey!!
40 In art and truth, beauty endures

always.
80 Knowledge grows when curiosity

meets dedication; each lesson shapes
true wisdom.

100 In the silent hours of dawn, gentle
light awakens dreams and kindles
hope in every heart, so healing

500 In the quiet embrace of nature, the
gentle murmur of a distant brook
creates a symphony that soothes the
soul. Each ray of sunlight filters
through the leaves, casting a mosaic
of shadows on the forest floor. The
whispering wind carries tales of
ancient times, while vibrant blossoms
add splashes of color to the
landscape. In this serene moment,
every heartbeat echoes the promise of
renewal and timeless beauty.Soft
echoes of nature remind us that every
ending births a new beginning. And
hold on!!

1000 Success is not final, failure is not
fatal. It is the courage to continue that
counts. Life is a journey filled with
ups and downs. What matters most is
how we respond to challenges. Stay
focused on your goals, work hard,
and never give up. Every obstacle is
an opportunity to learn. Surround
yourself with positive people who
inspire you. Time is precious, use it
wisely. Develop good habits and

157

maintain discipline. Reading expands
knowledge, while action brings
results. Small consistent efforts lead
to big changes. Be kind, stay humble,
and help others when possible. True
happiness comes from within, not
from material possessions.
Appreciate the little things in life.
Laughter is the best medicine, enjoy
moments of joy. Travel, explore, and
experience new cultures. Keep an
open mind and embrace diversity.
Mistakes are lessons in disguise,
learn from them. Stay patient, as
great things take time. Believe in
your potential and keep pushing
forward. The future belongs to those
who are prepared.

1500 Communication is the foundation of
strong relationships. Whether in
personal or professional life, clear
and respectful dialogue builds trust.
Listening is just as important as
speaking, understand before being
understood. Technology has
transformed how we connect, but
face-to-face interactions remain
invaluable. Empathy allows us to see
things from others' perspectives.
Honesty fosters deeper connections,
even when the truth is difficult.
Conflict is natural, but resolution
requires patience and compromise.
Words have power, use them wisely
to inspire, not hurt. A simple thank
you or I appreciate you can brighten
someone's day. Teamwork achieves
more than individual effort alone.
Collaboration brings diverse ideas
together for innovation. Leadership is
about guiding, not controlling,
empower others to grow. Time
management increases productivity

158

and reduces stress. Prioritize tasks
based on importance and urgency.
Breaks are essential for maintaining
focus and creativity. Health is wealth,
exercise regularly, eat well, and sleep
sufficiently. Mental well-being is
equally crucial, practice mindfulness
and self-care. Financial discipline
ensures long-term security, save and
invest wisely. Lifelong learning
keeps the mind sharp, read books,
take courses, and seek new skills.
Adaptability is key in a fast-changing
world. Stay curious and open to new
experiences. Gratitude turns what we
have into enough. Positivity attracts
opportunities, maintain an optimistic
outlook. Keep at it.

2000 Education is the most powerful
weapon which you can use to change
the world. Knowledge empowers
individuals and transforms societies.
A well rounded education includes
not only academics but also
emotional and social learning.
Critical thinking enables us to
analyze information objectively.
Creativity fuels innovation and
problem solving. Curiosity drives
discovery, never stop asking
questions. Reading broadens
perspectives and enhances
imagination. Writing clarifies
thoughts and improves
communication. Mathematics
teaches logic and precision. Science
explains the wonders of the universe.
History provides lessons from the
past to shape a better future. Art and
music express emotions beyond
words. Physical education promotes
health and teamwork. Technology is

159

a tool, use it responsibly and
ethically. Digital literacy is essential
in the modern world. Respect for
diversity fosters inclusive
communities. Kindness costs nothing
but means everything. Volunteering
strengthens empathy and social
bonds. Environmental awareness
ensures a sustainable planet, reduce
waste, recycle, and conserve
resources. Small eco friendly habits
make a big difference. Financial
literacy helps manage money wisely,
budgeting, saving, and avoiding debt.
Entrepreneurship encourages
innovation and self reliance. Hard
work beats talent when talent does
not work hard. Discipline turns goals
into achievements. Time is non
renewable, spend it on what truly
matters. Failure is feedback, not
defeat, learn and improve. Resilience
helps bounce back from setbacks.
Patience yields long term rewards.
Self confidence comes from
preparation and practice. Humility
keeps us grounded despite success.
Integrity means doing the right thing
even when no one is watching.
Honesty builds trust in relationships.
Courage is taking action despite fear.
Persistence turns dreams into reality.
Gratitude brings contentment and joy.
Positivity attracts opportunities and
happiness. Laughter is universal
medicine for the soul. Smiles.

2500 The journey of a thousand miles
begins with a single step. Setting
clear goals provides direction and
motivation. Break big ambitions into
smaller manageable tasks.
Consistency is more effective than

160

occasional intensity. Progress may be
slow but perseverance ensures
success. Self discipline is choosing
what you want most over what you
want now. Time management
maximizes productivity, focus on
priorities first. Distractions are
everywhere, stay committed to your
objectives. Learning from mistakes
turns failures into stepping stones.
Feedback helps refine skills and
strategies. Adaptability is crucial in
an ever changing world. Embrace
challenges as opportunities to grow.
Resilience means bouncing back
stronger after setbacks. A positive
mindset attracts solutions not
problems. Gratitude shifts focus from
what is lacking to what is abundant.
Happiness comes from within not
external validation. Kindness creates
ripples of positivity, small acts
matter. Respect differences, diversity
enriches perspectives. Effective
communication prevents
misunderstandings, listen actively.
Body language conveys unspoken
messages, be mindful of it. Emotional
intelligence fosters better
relationships. Patience avoids rushed
decisions with long term
consequences. Integrity builds trust
and credibility. Honesty even when
difficult strengthens character.
Accountability means owning
actions and their outcomes.
Teamwork achieves collective
success, value each member and their
contribution. Leadership inspires
others through vision and example.
Mentorship shares knowledge and
accelerates growth. Financial literacy
ensures wise money management,

161

save invest avoid debt. Health is true
wealth, exercise eat well sleep
sufficiently. Mental well being
requires self care and stress
management. Lifelong learning
keeps the mind sharp, read explore
stay curious. Creativity solves
problems in innovative ways. Critical
thinking evaluates information
objectively. Technology should
enhance life not control it. Digital
detoxes maintain balance in a
connected world. Nature rejuvenates
the spirit, spend time outdoors.
Sustainability protects the planet for
future generations. Reduce waste
recycle and support eco friendly
practices. Volunteering gives back to
the community. Family bonds
provide unconditional love and
support. Friendships enrich life with
shared experiences. Travel broadens
horizons and fosters cultural
appreciation. Laughter relieves stress
and strengthens connections. The
world awaits.

3000 Growth is a continuous process that
requires patience, discipline, and
consistent effort. No achievement is
born overnight. Progress may be slow
at times, but it is steady dedication
that brings lasting success. Small
steps taken daily lead to major
milestones. Believe in your journey,
even when the path seems unclear.
Stay committed to your goals, and
trust that your hard work will pay off.
Challenges are opportunities in
disguise. They teach us to be strong,
to adapt, and to evolve. Difficult
moments are often the ones that
shape our character. Stay focused on

162

what matters, and let go of what you
cannot control. The most powerful
thing you can do is take responsibility
for your actions. Accountability
brings growth. Learn from each
mistake, reflect on each failure, and
use them as stepping stones. Every
setback carries a lesson. Your
response determines your future.
Attitude shapes experience.
Approach life with optimism and
gratitude. Appreciate the little things,
and celebrate progress. Kindness and
humility open doors. Treat others
with respect, even when you
disagree. Empathy builds
understanding and reduces conflict.
Communication is the bridge
between confusion and clarity. Listen
actively and speak with intention.
Words carry weight, so use them to
uplift. Honesty nurtures trust, and
trust strengthens relationships. In any
team, collaboration leads to
innovation. Diverse ideas lead to
better solutions. Everyone has a role
to play. Great leaders inspire,
support, and serve. Leadership is not
about power, but about guidance.
Encourage others to grow, and you
will grow too. Time is a limited
resource. Use it wisely. Organize
your day, prioritize your tasks, and
rest when needed. Productivity is not
about doing more, but about doing
what matters. Avoid distractions that
steal your focus. Discipline is the key
to freedom. Healthy routines build
resilience. A balanced life includes
physical, mental, and emotional well-
being. Take care of your body
through exercise and rest. Eat
nourishing food. Sleep deeply.

163

Maintain mental health through
mindfulness and reflection. Make
space for silence, nature, and
stillness. These moments refresh your
soul. Let go of comparison. Your
journey is unique. Measure your
progress by your own growth. Stay
true to your values. Integrity is a
compass that guides you in difficult
times. Even when no one is watching,
do what is right. Be brave enough to
start. Be patient enough to keep
going. Believe in your ability to
change and adapt. Stay curious, and
continue learning. Knowledge
expands our understanding and
unlocks potential. Read, ask
questions, and welcome feedback.
Feedback is a gift that helps us
improve. Do not fear failure, for it is
part of learning. What matters is that
you rise each time you fall. Keep
your vision clear and your heart
strong. Support those around you.
Build communities of
encouragement and respect. Share
your lights, and it will multiply.
Practice gratitude every day. It
challenges you.

3500 Success is not final, and failure is not
fatal. What truly matters is the
courage to continue when the path
gets hard. Life is a journey filled with
ups and downs, and every experience
shapes who we become. Challenges
are not meant to break us, but to help
us discover our strengths. With
perseverance, obstacles become
opportunities. Stay focused on your
goals, work hard, and never give up.
Every small step forward matters.
Consistency beats intensity. The

164

people we surround ourselves with
influence our mindset. Choose
positivity and kindness. Encourage
others, and they will uplift you in
return. Listening is a powerful skill,
often more impactful than speaking.
Understand before trying to be
understood. In communication,
clarity and respect build lasting trust.
Honesty creates deep connections,
even when the truth is difficult. Be
truthful, but always gentle. Empathy
allows us to see the world through
another person's eyes. It softens
conflict and builds bridges. Mistakes
are part of growth. Learn from them,
reflect, and improve. Progress is not
always visible, but each effort builds
momentum. Time is our most
precious resource. Use it with
intention. Prioritize tasks that align
with your values and goals. Breaks
are necessary for sustained creativity
and energy. Rest is not a reward, but
a requirement. Good habits are the
foundation of long term success.
Discipline brings freedom. Self
control lets you make better choices.
Confidence comes from preparation
and action. Face your fears, and they
lose their power. Resilience is built in
adversity. We grow when we adapt
and endure. Adaptability allows us to
thrive in a changing world. Keep an
open mind, be willing to learn, and
welcome new ideas. Curiosity leads
to discovery. Reading expands our
knowledge and imagination. Writing
helps us organize thoughts and
communicate clearly. Math teaches
logic and precision. Science reveals
the wonders of the universe. History
offers lessons to guide our future. Art

165

and music express what words
cannot. Physical activity strengthens
body and mind. Nutrition fuels
performance. Sleep restores us.
Mental health is equally important.
Practice mindfulness and self
compassion. Reach out when you
need support. Financial literacy
builds stability. Save regularly, spend
wisely, and invest in what matters.
Simplicity often leads to clarity. Let
go of what no longer serves you.
Gratitude turns what we have into
enough. Celebrate progress, no
matter how small. Positivity attracts
new opportunities. A smile can
change someone's day. Laughter
lightens heavy moments. Acts of
kindness create ripples of joy. Be
generous not only with resources, but
with your time and attention.
Leadership is not about control, but
about inspiration and service. Great
leaders empower others.
Collaboration brings diverse
strengths together. Teamwork
achieves more than individual effort.
Conflict is natural, but resolution
requires empathy and patience. Seek
solutions, not blame. Everyone
makes mistakes. Forgiveness sets us
free. The past cannot be changed, but
the future is unwritten. Dream big,
but act with purpose. Set intentions
and take consistent steps. Stay true to
your values. Integrity is doing the
right thing when no one is watching.
Your actions define your character.
Never underestimate the impact of
your presence. The world needs your
unique voice and talents. Let go of
perfection and embrace progress.
Life is not a race. It is a dance of

166

moments, a song of connection, a
canvas for your story. You are
enough. Keep going.

5000 In the heart of a distant land, where
golden hills roll into the horizon and
the skies remain painted in eternal
hues of lavender and gold, there lies
a village untouched by time. It is said
that the people of this village live in
harmony, their lives intertwined not
by force or necessity, but by a deep
unspoken understanding passed
down through generations. Every
morning, as the sun rises behind the
snow dusted peaks of Mount Aeloria,
the villagers awaken to the sound of
chimes hanging in doorways, each
one uniquely tuned to the family that
lives within. The soft music floats
through the air like a hymn of unity, a
reminder of the rhythm that binds all
who dwell there. Among the villagers
is a young woman named Elira, a
weaver of exceptional talent. Her
tapestries tell stories more vividly
than words, depicting events not yet
occurred and memories long
forgotten. Some say she was born
with the gift of foresight, though she
claims her visions come only through
listening deeply to the wind and
watching how the leaves fall on her
loom. Eliras days are spent in her
sunlit studio at the edge of the forest,
where birds gather on the windowsill
and sing as she works. Her most
prized creation, a tapestry titled The
Thread of Truth, is kept hidden
beneath layers of linen, shown only to
those who truly seek it. It tells the
story of a child born under a crimson
moon, destined to unite the broken
realms. One evening, as twilight

167

began to settle over the village, a
stranger arrived on horseback. Clad
in a cloak woven from the night itself,
the stranger spoke in riddles and
carried a map inked in silver. He
asked for Elira, for he had heard of
her gift, and he believed she alone
could interpret the hidden path that
the stars had laid before him. Elira
welcomed him into her studio,
offering tea brewed with petals of the
dreaming rose, a flower known to
calm the mind and open the heart. As
the fire crackled in the hearth, the
stranger unrolled his map, revealing
constellations unfamiliar to any
known chart. Elira studied them in
silence, her fingers tracing the lines
with reverence. Then she spoke. This
path, she whispered, is not one of
direction but of transformation. You
will not find your way by walking,
you must become the road itself.
Puzzled but compelled, the stranger
stayed in the village for many moons,
learning its rhythms, helping in the
fields, listening to the stories told by
the elders beside the sacred flame.
Slowly, he changed. The weight he
carried in his shoulders eased, the
sharpness in his gaze softened, and
laughter found its way into his voice.
Elira watched him with quiet pride.
She knew the journey was not about
reaching a place, but about becoming
someone new. And so, when the time
came for him to leave, he did not take
the map, for he no longer needed it.
He carried the stars within him now.
Years passed, and tales of a
peacekeeper began to spread beyond
the valleys and rivers, of a man who
could unite feuding clans with a

168

single story, who healed wounds by
listening, and who bore on his cloak
the threads of a tapestry never seen.
Elira, older now but still steady of
hand and bright of eye, continued to
weave. Her newest creation, The
Tapestry of Echoes, depicted
moments of silence shared between
strangers, the strength of unspoken
bonds, and the beauty of stories that
require no words. Visitors came from
afar to witness her art, not only for its
beauty, but for the feeling it stirred, of
something ancient and sacred
remembered. The village endured,
untouched by war or famine, guided
by the quiet wisdom of those who
knew that power lies not in
dominance, but in connection. And in
this way, the golden hills continued to
roll, the chimes continued to sing,
and the wind whispered the names of
those who had learned to listen. As
we reflect upon stories such as Eliras,
it becomes clear that the greatest
journeys are not always measured in
miles. Some take place entirely
within the soul. And perhaps, in this
ever turning world, it is these quiet
revolutions of spirit that shape our
future more than any conquest or
discovery. In cities far beyond the
village, under skies dimmed by
towers and glass, there are still those
who feel the echo of Eliras song.
They may not know its origin, but
they pause at unexpected moments,
when a breeze carries the scent of
distant flowers, when a stranger
offers kindness with no expectation
of return, or when silence feels as full
as speech. These are the threads of the
old world, still woven into the new.

169

For every soul that listens, a loom
begins to turn. Stories begin to form
not in ink, but in experience, not on
parchment, but in the living tapestry
of our days. This is how we
remember, not through monuments
or legends alone, but through our
actions, our choices, and the way we
touch one anothers lives. And so, dear
reader, you too are a thread. May you
weave wisely, love fiercely, and listen
well. The tapestry is vast, and your
pattern is very exquisite.

