r Unive[sitg of
Nottingham

Y
UK | CHINA | MALAYSIA

Design and Analysis of a
Quasigroup-based DNA
Encryption Scheme

Thesis submitted to the University of Nottingham for the degree of
Master of Philosophy

July 2025

Tiong Yih Lian
20619202

Supervisors
Dr. Chee Wing Loon
Dr. Liew Kian Wah

School of Mathematical Sciences

University of Nottingham Malaysia Campus

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to everyone who has
supported me throughout the journey of researching and writing this thesis.

First and foremost, to God, my anchor in every season. I give thanks to
God, by whose grace and through faith, I have been guided through every
challenge in my pursuit of knowledge. Thank you for lighting my path when
the words would not come and for turning doubt into faith

To my parents — my forever safe place and loudest cheerleaders, I owe
and immeasurable debt of gratitude. You are always here every step of the way
on my path to education, and for that I am forever grateful. This achievement is
as much yours as it is mine. I love you both to the moon and back.

I would also like to extend my profound thanks to my supervisors, Dr.
Chee and Dr. Liew, whose expertise and critical insight were indispensable to
this research. Your ability to navigate complex mathematical landscapes with
clarity, your willingness to engage in deep discussions, and your constructive
feedback has made this thesis possible.

Last but certainly not least, I gratefully acknowledge the support of
University of Nottingham Malaysia’s School of Mathematical Sciences. The
university has given me access to invaluable resources and a comfortable
environment for me to focus on my research. I would also like to thank the
administrative and technical staff of the Graduate School for their assistance.

TABLE OF CONTENTS

ACKNOWLEDGEMENTc.ooiiiiiiiieieieteiesieseee et 1
LIST OF TABLES ..ottt 5
LIST OF FIGURES ..ottt 7
ABSTRACT ...ttt ettt ettt sttt eneas 9
CHAPTER 1: INTRODUCTIONc.eeiiiiieieienierieeieseeeeeee e 11
1.1 Organisation of Chapterscoeceeriieiiiiniieieeeeeeeee e 11
1.2 Introduction to Cryptography..........ccceeeeeeeiieriieiriieniieiieeie e 12
1.3 Classical Cryptographycccceeeieeiiieiieeiiienie ettt 12
1.4 Modern Cryptographyccueeeuierieeiiienieeiieeie et eiee e eeee e esee e 13
1.5 BaSIiC CONCEPLS ...eeurieniieeiiieiieeieeeiie et esite et e eieeeteesiaeenbeesneeeseesaaeenseennnes 14
1.6 Types of Attacks in CryptanalysiS........ccceeeveerieeriienieeniienieeiee e 15
1.5.2 Adversarial Goals (Security NOtIONS).......cccueervierieeriierieeiienieeieens 17

1.7 DNA Cryptographycccveeeieeiieeie ettt 18
1.8 Quasigroup-based Cryptography.........ccceeevieeieeriieniieiieeie e 20
1.9 Motivation of Using Quasigroup with DNA Cryptography................... 23
1.10 AImS and ObJECHIVES. ...c.ueeruireiieiieeiieriie ettt ettt siaeebee e 25
CHAPTER 2: LITERATURE REVIEWcccooiiiiiiiiiiieeeeeeee 28
2.1 Development of Cryptography and Related Workscccevveiinnenne. 28
2.2 Development of DNA Cryptography and Related Works...................... 30

2.3 Development of Quasigroup-based Cryptography and Related Works .34

2.4 RESCATCH GAPSeievviiiiieiiecie ettt ettt ettt saae e e e 37

CHAPTER 3: METHODOLOGY ...cooetiiiiiieieiesiecieeieceeeeeee s 40
3.1 Basics of DNA Cryptographyccceeveeeiieerieeiiienieeieenieeieeiee e e 40
3.2 DNA Encoding and Decoding Rules............cccoecuieriiiiiiinieniieieeieeee 42
3.3 Basics Of QUASIZIOUPSeevueeeiieriieeiieniieeieeriteeteesieeeaeeseeeebeeseesnreeseens 43

3.3.1 Binary Operation, Groupoids and Quasigroupscccecceerveenneene 43
3.3.2 Parastrophes of QUaSiZroupscceevveerieerieeriienieeiie e eiee e 46
3.4 Encryption and Decryption FUNCtionccccoecieriiiiiienieniieiieeieeee 48

3.4.1 Example of Application of Encryption and Decryption Functions .49

3.5 Proposed SChemeccooviiiiiiiiieiieeceee e 50
3.5.1 Encryption SCheme.........ccceeiuiiiiiiiiiieeieeeieeieeee et 52
3.5.2 Decryption SCheme........cccoviiiriiiiiiiieeieeeie et 53

CHAPTER 4: IMPLEMENTATIONccccuiiiiiiiiiiieiteeeeee e 54

4.1 ENCIYPtion PrOCESScuvieiiiiiiieiieeiieeiie ettt ettt 54
4.1.1 Phase [: QUaSIZIOUP....cccueeruiiriieriieeieeiee et erieeete et eve e seaeeaee s 54
4.1.2 Phase I1: Parastrophecccueeriieriieniienieeiieeie e 56

4.2 DeCTyPtion PrOCESS.ieiviiiiieiieeiieiieeie ettt 59

CHAPTER 5: RESULTS AND DISCUSSIONSooiiiiieieiereieneeeeieeenes 64

5.1 Security ANALYSIS.....cccueeiuieiieeiienie ettt ettt et 64
5.1.1 Brute FOrce Attacki.........ooovevuieiiinienieiinieieeecteieeeseee e 64
5.1.2 Known Plaintext Attack (KPA)ccooviiiiiiiiiciieeeeeeee e 66

5.1.3 Complexity ANALYSIScccveeiiierieeiienieeieeeie ettt e see e 70
5.1.4 Shannon’s ENtroPY......c.cecveeriierieeiiienieeieeeie ettt 73

5.1.5 Provable Security in DNA and Quasigroup-based Cryptosystems:

Current State and Limitations..........coceveeririerieneenienieneeieseeeeeee e 77

5.2 Efficiency ANALYSIScccuierieiiiieiieeiiesiie ettt 78
5.2.1 Encryption and Decryption timMe...........ccceeeeeerieeneeenieenieenieeneeeenans 78

5.3 Comparative ANALYSISeecveeiiierieeiieiie ettt ettt 80
5.3.1 EAFICIENCY ...eiiiiiiiieiieeieee ettt 80
5.3.2 SECUITEY ettt ettt ettt ettt ettt e beesiaeebeesnseeaeens 85

54 Trade Off ..o 87
CHAPTER 6: CONCLUSIONociiiiiiiiieieieiesieieeie e 94
REFERENCESooiiiiiiieieeeee ettt 96
APPENDICES ...ttt s 112
Proposed MethOd.PY.....cccoveeiiiiiiiiiieieeieee et 112
Markovski MethOd.PY ...cc.eeeiieiiiiiieieceeee e 121
Padmapriya Method.pYocoveriieiieiiciieeeeee e 130
Quasigroup Size Phase NUMDELPY ...cccvveiiieriieiiieiiiiiieeie e 135
PIot GIaphpY coeeeieeieeiieee e 147
Chi_SqUAre TeSt.PY .eecveeeiieiieeiierie ettt ettt 150
Plaintexts for ENCTyption.........cccueeiiieiiiiiiiiiieeiieiieeie et 156

LIST OF TABLES

Table 3.1 Twenty-four possible types of combinations of 4 DNA bases......... 41

Table 3.2 Eight types of combinations which fulfil Watson-Crick rules.......... 41

Table 3.3 Eight rules for DNA encoding and decoding—...........ccccccvevvrenennee. 42
Table 3.4 Multiplication table of a qUasiZroupccoovviiiiiiniiiinnnn. 44
Table 3.5 Example of multiplication table of a quasigroup of order 4 44
Table 3.6 Number of quasigroups of order n < 11ccooiviiiiiiiiniininiineeee 48
Table 3.7 Quasigroup table of order 5 with elements 0,1,2,3,4........cccc..... 49
Table 4.1 Quasigroup table for Phase I of encryptionccccccvvevveniienennen. 55
Table 4.2 Conjugate of quasigroup table for Phase II of encryption................ 58
Table 4.3 Quasigroup table for Phase I of decryptioncccccccvvevvinirenennen. 60
Table 4.4 Quasigroup table for Phase II of decryption...........ccccueevvevirenennee. 61

Table 5.1 Chi-Square statistic and p-value for plaintext length of 500, 2000,

3500 and S000........c.coirieieieieieee et ens 68
Table 5.2 Proposed Method’s Shannon Entropy for Plaintext......................... 75
Table 5.3 Proposed Method’s Shannon Entropy for Ciphertext 75
Table 5.4 Encryption and decryption time for the proposed method............... 79

Table 5.5 Encryption time of three methods for different plaintext lengths....81
Table 5.6 Decryption time of three methods for different plaintext lengths....82
Table 5.7 Normalised Shannon’s entropy for ciphertext of all three methods.85
Table 5.8 Encryption and decryption time of the proposed method with
different qUASIZIOUP SIZESeevveeruiieiierieeiie et eiee ettt ete et e sae et e seeeebee e 87
Table 5.9 Encryption time and decryption time of the proposed method for

different numbers Of Phasesccceevuieiiieiiiiiieeeeee e 89

Table 5.10 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different quasigroup Sizesccceveiiniiiiinninn.n 90

Table 5.11 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different numbers of phasesc..coooiiiiii 91

LIST OF FIGURES

Figure 1.1 Flow Map of Encryption and Decryption Processc..cccceueee. 14
Figure 5.1 Histogram of Ciphertext Base Distribution for Plaintext of 500
Character Lengthisccciiiiiiiiiiiiieeceeeee ettt 68
Figure 5.2 Histogram of Ciphertext Base Distribution for Plaintext of 2000
Character Lengthisccciiiiieiiiiiiieieeeeeeee ettt 69
Figure 5.3 Histogram of Ciphertext Base Distribution for Plaintext of 3500
Character Lengthisc.ccoiiiiieiiiiiiieieee ettt 69
Figure 5.4 Histogram of Ciphertext Base Distribution for Plaintext of 5000
Character Lengthisccciiiiiiiiiiiieieceeeee ettt 70
Figure 5.5 Graph of Normalised Shannon’s Entropy of Plaintext and Ciphertext
of the Proposed Method against Plaintext Lengthccccooeeviniininiinnnnens 76

Figure 5.6 Graph of encryption time for the three methods against plaintext

Figure 5.8 Graph of Normalised Shannon’s entropy of all three methods against
plaintext IeNGth.........ccooiiiiiiiiii e 86

Figure 5.9 Graph of encryption and decryption time against different quasigroup

Figure 5.11 Graph of normalised Shannon entropy of plaintext and ciphertext

AZAINSt QUASIZIOUP SIZES .. evvtentent ettt ettt et ettt et et eaeneeean 90

Figure 5.12 Graph of normalised Shannon entropy of plaintext and ciphertext

against NUMDbET Of PhaSESo.vvuiieiti i, 91

ABSTRACT

DNA cryptography is an interdisciplinary field of cryptography inspired
from DNA computing which uses DNA molecules’ role as information carrier
for cryptographic purposes. In this thesis, we present an improvement on the
existing algorithm with the implementation of quasigroup in the process of
encryption and decryption of DNA cryptography. As opposed to traditional
cryptography, which is based on numerical values, the proposed scheme makes
use of DNA bases as elements of a quasigroup and unlike conventional
approaches that rely solely on standard DNA bases (A, T, C, G), the proposed
method introduces a DNA base U as an additional element, which appears only
in the process of encryption. The encryption process involves 2 phases, namely
Phase I, in which the DNA form of the plaintext undergoes transformation
through a randomly generated leader and a quasigroup of order 5, and Phase I,
in which the process repeats itself but the quasigroup is replaced by one of its
random parastrophes. The utilisation of quasigroup operations for the proposed
cryptographic scheme provides a mathematical foundation for data
transformation. Notably, since the total number of quasigroups of order n
increases exponentially with n, this makes them advantageous for constructing
cryptosystems with extensive key space, thus ensuring enhanced security
without increasing computational complexity. In summary, this thesis proposes
a novel, two-phase cryptographic scheme that successfully integrates
quasigroup operations with DNA encoding. The introduction of the Uracil base

and the use of parastrophes were shown to produce ciphertext with near-ideal

entropy, providing enhanced security against statistical attacks while

maintaining linear-time efficiency suitable for larger plaintexts.

10

CHAPTER 1: INTRODUCTION

1.1 Organisation of Chapters

This thesis is structured into six chapters. Chapter 1 introduces the
fundamental concepts of cryptography which includes classical and modern
cryptographic system and provides background information on DNA
cryptography and quasigroup-based cryptography. The motivation for
integrating quasigroup operations in DNA-based cryptographic system is also
outlined in this chapter. Chapter 2 presents a comprehensive literature review
on the history and related works in cryptography, DNA cryptography and
quasigroup-based cryptography. Chapter 3 outlines the methodology adopted in
this chapter. It covers the basics of DNA cryptography (such as DNA encoding
and decoding rules), quasigroup theory (including definitions, properties and
parastrophes), and the encryption and decryption functions. It also introduces
the proposed encryption scheme. Chapter 4 focuses on the implementation of
the proposed system, including the algorithm design and demonstrations.
Chapter 5 covers the results and discussion of the study. This includes the
security analysis of the proposed method, performance evaluation through
efficiency and complexity analysis as well as comparative analysis with selected
existing DNA and quasigroup-based cryptosystem along with trade-offs in
quasigroup size and encryption phases. Finally, Chapter 6 concludes the thesis
by summarising the contributions, highlighting limitations and suggesting

directions for future work, followed by references and appendices.

11

1.2 Introduction to Cryptography

Cryptography is the pillar of modern information security, which is
crucial for ensuring the confidentiality, integrity and authenticity of digital
communication. Confidentiality guarantees that only authorised individuals can
access the encrypted data. Integrity assures that no alterations are made to the
message during transmission, while authenticity ensures that the message

transmitted is genuine and originates from a trusted source.

Living in a digital era where data security has become an overwhelming
concern, there is a constant need for innovative cryptographic systems to
safeguard personal, corporate and government data. At present, modern
cryptosystems are expected to maintain strong security measures without
sacrificing efficiency. The growing interest in cryptosystems which are both
computationally simple and cryptographically strong continues to increase as

most security environments possess limited storage and processing power.

Generally, cryptography is broadly divided into two classifications,
classical cryptography, which predates the 1980s, and modern cryptography,

which has developed in the years since.

1.3 Classical Cryptography

Classical cryptography is more commonly known as “breakable”
ciphers as they are designed in a nonrigorous way which causes them to be
terribly vulnerable to various attacks [1]. The methods in this type of
cryptography primarily relied on manual techniques such as pen-and-paper

ciphers or early computers. There are two main types of classical cryptography:

12

substitution ciphers and transposition ciphers. In short, substitution ciphers are
ciphers where each letter of the plaintext is replaced by another, and
transposition ciphers are ciphers where the letters arranged in different orders
[2], [3]. The more commonly known examples of these ciphers are Caesar
cipher, Vigenére Cipher and Scytale cipher. While these classical ciphers have
provided a strong foundation for early cryptographic techniques, they have
become extremely susceptible to attacks with the introduction of modern

computers which has the ability to solve complex problems with great speed.

1.4 Modern Cryptography

In modern cryptography, cryptosystems are developed based on
complexity theory. In simpler terms, complexity theory is the theory of
computational difficulty of a given problem, some prime examples of difficult
problem include integer factorisation problem and discrete logarithm problem
[4]. Two major types of cryptographic systems in modern cryptography are
symmetric key cryptography and asymmetric key cryptography. In symmetric
key cryptography, one single key is used for both encryption and decryption
processes [5]. Symmetric key cryptography is infamous for being efficient and
fast, however, it requires a secure channel for key transmission, which can be a
limitation in some scenarios. Examples of such systems include Data
Encryption Standard (DES) [6] and its more advanced successor, the Advanced
Encryption Standard (AES) [7], which has become the global standard for
secure data encryption. For asymmetric key cryptography, also known as public
key cryptography, the process requires a pair of keys, one public and the other
private [5]. Asymmetric key cryptography ensures that even if the public key is

widely shared, only the holder of the private key can decrypt the information.

13

RSA and Elliptic Curve Cryptography (ECC) are examples of such
cryptography. Modern cryptography has evolved from the principles of classical
cryptography and plays a crucial role in meeting the security needs of the current

advanced digital era.

1.5 Basic Concepts

It has been a known fact that cryptography has been utilised throughout
decades for purposes of secure communication between two parties. In its
simplest form, two individuals who want to communicate with each other are
commonly referred to as Alice and Bob. When Alice, A wishes to convey a
secret message to Bob, B, they will both agree on a cryptographic method and
a shared secret key. The key is used to convert the original message (plaintext)
into unintelligible text (ciphertext). This process is called encryption. Bob, who
has a key in possession as well, is able to decipher the text back to its original
form. This process is referred to as decryption. The scenario above is described

more clearly using the following flow map:

Encryption Insecure Decryption

Alice e(p) =c > channel d(c) =p > Bob

v

A A

Secure channel

Figure 1.1 Flow Map of Encryption and Decryption Process

where p is plaintext, c is ciphertext, k is key, e is encryption function and d is
decryption function. The message is transmitted through an insecure channel

whilst the key is distributed through a secure channel between Alice and Bob.

14

Cryptanalysis, on the other hand, is the practice of analysing and
breaking cryptosystems. While cryptography aims to protect information,
cryptanalysis seeks to exploit weaknesses. In cryptography, an adversary is a
malicious entity, which aims to uncover confidential information or data. It has
always been a cryptographer’s instinct to assume that adversaries are able to
intercept the insecure channel to retrieve any information [8], [9]. Hence, in
order to protect secret data, it is always crucial to not rely heavily on a simple

and straightforward algorithm to encipher and hide the data to be conveyed.

1.6 Types of Attacks in Cryptanalysis
Adversarial Models/ Capabilities

In cryptographic systems, it is necessary to formally define the
capabilities and goals of potential adversaries in order to establish rigorous
security notions which allows for provable guarantees about a scheme’s
resilience against various attacks [10]. This section therefore distinguishes
between two key aspects: (i) Adversarial Models, which describe the level of
access an adversary has to the cryptosystem; and (ii) Adversarial Goals, which
describe the specific security property the system must satisfy under such
attacks. Together, these formalise the security notions used to assess the

robustness of a cryptographic scheme.
1.6.1 Adversarial Models (Capabilities)

Adversarial models are often described to be the information and level of
interaction an attacker may have with the cryptographic system, ranging from

passive observation to active manipulation. These capabilities determine the

15

adversary’s strength and the cryptosystem’s threat landscape. The following

adversarial capabilities are considered:

Ciphertext-Only Attack (COA)

In a COA, the attacker only has access to a sequence of ciphertexts. The attacker
aims to break the system by only observing the ciphertexts. In [11], it is stated
that a cryptosystem is deemed completely insecure if it is not resistant against
this attack. In addition, any public-key encryption scheme must be secure
against chosen-plaintext attacks (CPA); otherwise, it cannot be considered a

practical cryptosystem.

Known-Plaintext Attack (KPA)

The attacker possesses both the plaintext and corresponding ciphertext in a KPA.
With access to this information, the attacker could attempt to reverse-engineer
the encryption process by using frequency analysis. Some examples of KPA

include linear and differential cryptanalysis [12].

Chosen-Plaintext Attack (CPA)

In a chosen-plaintext attack, the attacker is able to temporary infiltrate the
cryptosystem and choose arbitrary plaintexts and obtain their corresponding
ciphertexts from the encryption system. Generally, if a cryptosystem is
breakable under a weaker model (e.g., known-plaintext attack), then it is also

breakable under stronger models (e.g., chosen-plaintext attack) [13].

Chosen-Ciphertext Attack (CCA)

In this scenario, the attacker can choose arbitrary ciphertexts and obtain their

decrypted plaintexts. By iteratively modifying the ciphertext and observing the

16

changes in the decrypted output, the adversary can gradually recover the secret

message [11].
Brute-Force Attack

A brute-force attack involves systematically trying all possible keys until the
correct one is found. The feasibility of this method depends on the size of the
key space. This attack becomes infeasible for algorithms with large key spaces
as it can be time-consuming. Modern encryption schemes are designed to have
key lengths that make brute-force attacks computationally infeasible within a

reasonable time frame [9], [14].

These models form a hierarchy of adversarial strength, where CCA is strictly
more powerful than CPA, and so forth. Demonstrating security against a

stronger adversarial model inherently implies security against weaker ones.

1.5.2 Adversarial Goals (Security Notions)

Beyond defining what adversaries can do, it is also important to specify
what the attacker aims to achieve under these attack models. The security of a
cryptosystem is evaluated with respect to indistinguishability properties, which
formalise the confidentiality requirement: ciphertexts should not reveal any
meaningful information about the corresponding plaintexts. This is expressed

through standard game-based security notions.
Indistinguishability under Chosen-Plaintext Attack (IND-CPA)

The adversary gains access to an encryption oracle and attempts to distinguish
ciphertexts of chosen messages [15]. This is the minimal acceptable security for

encryption schemes, ensuring semantic security under passive attacks.

17

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA)

IND-CCA security extends IND-CPA security by granting the adversary access
to a decryption oracle, except for the challenge ciphertext [15]. A cryptosystem
satisfying IND-CCA security maintains confidentiality even in the presence of

adversarial tampering or partial compromise of the decryption process.

Both IND-CPA and IND-CCA are consistent with semantic security,
which asserts that ciphertexts reveal no partial information regarding plaintexts.
The standard security goal in modern cryptography is indistinguishability, the
inability of an adversary to distinguish between encryptions of two different
messages. These indistinguishability-based notions formalised confidentiality
in modern cryptography. A scheme that satisfies IND-CCA is also secure against
all weaker adversarial models, while IND-CPA security guarantees protection

in contexts where only encryption oracle access is available.

1.7 DNA Cryptography

DNA cryptography possesses many potentials from its high storage
capacity to massive parallelism. The idea of DNA cryptography stems from the
properties of DNA molecules to store, process and transmit information.
Basically, DNA cryptography functions on the concept of DNA computing
which utilises 4 DNA bases i.e. Adenine (A), Guanine (G), Cytosine (C) and
Thymine (T) to perform computations. The concept for DNA information
storage was first proposed by the American physicist, Richard P. Feynman in
1959 [16]. In the current system, the information is encoded in binary form

before being encoded into DNA form through DNA synthesis technology and

18

subsequently stored. As we approached the 21 century, with the development
of 5G, Internet of Things (IoT) and artificial intelligence (AI), high density and
long-term storage solutions have become a worrying necessity. The global data
volume is expected to reach 175ZB (zettabytes) by 2025 according to the
Internet Data Center (IDC) and will continue to grow with an annual rate of
31.8%, far exceeding the storage capacity of any currently available storage
solutions [17]. As we reach 2025, forecasts suggest that this trend will only
continue and by 2040, the global datasphere could reach as much as 5000ZB if
the current growth rate persists [18]. DNA storage, in theory, can encode two
bits per nucleotide (nt) or 455 exabytes (1 billion gigabytes) per gram of single-
stranded DNA maximum. To put this into perspective, one cubic decimetre of
DNA solution has the potential to store one trillion bits of binary data [19]. It is
far denser compared to any traditional storage media, which proves its great

potential in cryptographic applications.

Compared to traditional silicon-based computers, DNA computers
possess certain advantages, most notably its massive parallelism, high data
density and minimal energy requirement [20]. Unlike traditional computers
which process tasks sequentially, DNA computers have the ability to perform
many operations simultaneously. Millions of DNA sequences can be
synthesised and read at the same time, which enable simultaneous processing of
vast amounts of data. The computing speed of a DNA computer can reach up to
1 billion times per second and its power consumption is only equal to one-
billionth of a traditional computer [19], [21]. This property of DNA computing
allows it to solve many complex problems faster than any conventional method.

For instance, Adleman’s seminal 1994 experiment solved a seven-node

19

Hamiltonian path problem in a single biochemical reaction using DNA strands
to represent graph nodes and edges [22]. The molecular processing occurred in
parallel, with trillions of molecules exploring all possible paths simultaneously,
achieving in minutes what digital computers would take far longer to enumerate

[22].

As mentioned in [23], various research is currently at works over the
world to introduces novel DNA cryptographic approaches and improve current
methods in this field. It is also stated that in coming decades when DNA
computers are available, it would be able to replace the current silicon-based
technology. It should also be noted that Luca Cardelli from Microsoft has taken
the lead to explore the field of DNA computing [23]. However, it is a fact that
DNA cryptography is still at infancy stage and is faced with a myriad of
unresolved challenges. Even with a growing number of researchers contributing
to the field, it has yet to achieve maturity in either theory or practical. Current
DNA-based methods depend heavily on advanced laboratory procedures, and
there is yet a unified theoretical framework for employing DNA molecules in

cryptographic applications [24].
1.8 Quasigroup-based Cryptography

Quasigroup-based cryptography, a cryptographic technique built upon
nonassociative algebraic structures known as quasigroups, whose flexible
structure and large size had deemed it suitable for designing lightweight, high-
speed and efficient cryptosystems [25]. Although less commonly used than

groups or fields (some well-studied algebraic structures in mathematics),

20

quasigroups possess distinctive features that make them highly suitable for

modern cryptographic applications.

The main factor which allows quasigroup theory to be applied in the
field of cryptography is vast number of quasigroup operations over a given finite
set [26]. The third party would face difficulty in uncovering the encrypted
message if these operations are used to define the encryption and decryption
processes [26]. Unlike the usual group-based cryptosystems, where operations
tend to follow predictable patterns due to properties such as associativity and
the existence of identity elements. Quasigroup-based systems present no such
regularities as each element in a quasigroup table (Latin square) appears only
once per row and column, thus ensuring that the transformation of input symbols
yields unique and non-repeating results. This nonlinearity significantly
increases resistance to attacks such as linear and differential cryptanalysis which
exploit structural patterns in encryption schemes. For instance, the INRU cipher
utilises quasigroup-based string transformations to achieve high nonlinearity
which strengthens the system against linear and differential cryptanalysis [27].
There are also several other quasigroup-based methods which have been proven

to be resistant against differential cryptanalysis [27], [28], [29], [30].

Quasigroup-based cryptography is also a strong candidate for
lightweight cryptography, especially in resource-constrained environments such
as embedded systems, wireless sensor networks, and Internet of Things (IoT)
devices [31]. There is a study on an efficient quasigroup block cipher which
highlights its low memory and computational requirements, rendering them

suitable in resource-constrained settings [32]. Moreover, the construction of

21

cryptographically strong 4 X 4-bit S-boxes using quasigroups of order 4 has

been proposed as a method for lightweight cryptographic applications [33].

Traditional cryptographic algorithms often rely on group-based
structures or number-theoretic problems, which, while effective, may face
limitations in computational efficiency or vulnerability when it comes to future
quantum attacks. As an example, widely used cryptosystems such as RSA and
ECC are susceptible to quantum attacks whilst quasigroup-based cryptographic
schemes are able to present alternative approaches that may resist quantum
attacks more effectively. In the work by Nager D. in 2021 [34], the proposed
Xifrat cipher, which is based on multiple quasigroups with restricted
commutativity, is shown to have a quantum attack complexity of approximately
2118 This is significantly higher than the 2% quantum attack complexity of
AES-128 under Grover’s algorithm, thereby suggesting stronger post-quantum
security. This result underscores the promising potential of quasigroup-based
cryptosystems not only in modern cryptography but also in post-quantum
cryptographic design, particularly in symmetric key environments where
lightweight and efficient structures are needed without compromising security

[34].

In addition to their cryptographic strength, quasigroups have also
contributed to parallel processing and high-speed encryption, which are
increasingly important in today’s digital landscape. Due to their nonassociative
nature, quasigroup operations allow each symbol in a message to be encrypted
independently of others. In contrast to group-based operations which often
depend on the outcomes of previous computations, quasigroup-based
transformations can be applied across all data points simultaneously, enhancing

22

overall efficiency without compromising the security. A notable example is the
Multivariate Quadratic Quasigroup (MQQ) cryptosystem, which has
demonstrated exceptional performance in terms of encryption and decryption
speeds [35]. Implemented on four Xilinx Virtex-5 FPGA chips running at
276.7MHz, the MQQ achieves an encryption throughput of 44.27 Gbps, which
is 10,000 times faster than RSA implementations on similar FPGA platforms.
This remarkable speed is attributed to the efficient use of quasigroup-based
transformations, which facilitate parallel processing and high-speed encryption.
Other research has also shown that quasigroup-based S-boxes can be
implemented efficiently in hardware with reduced area and power consumption
[36]. For instance, a study demonstrated over a 40% area reduction compared
to lookup table-based implementations and more than a 16% area reduction in
a parallel implementation of the PRESENT cipher. These efficiencies are due to
the properties of quasigroups which allow for parallelisable operations and
compact hardware designs. The MQQ stream cipher, which combines a linear
feedback shift register (LFSR) with a quasigroup filter, is another example of a
high performance quasigroup-based encryption system [37]. The quasigroup
filter enhances the cipher's performance by enabling parallel processing and
efficient data handling, making it well-suited for high-speed encryption

applications.

1.9 Motivation of Using Quasigroup with DNA Cryptography

With the development of DNA computers, DNA cryptography does
provide massive parallelism by enabling simultaneous operations on multiple
DNA bases. However, for applications with groups, parallelism is partially
limited due to structural constraints caused by group properties. Groups have

23

certain algebraic properties that must always hold, such as associativity,
existence of identity element and inverses. To maintain these properties, group
operation often depends on prior results. Therefore, group-based cryptographic
systems often force sequential dependencies in their operations, thus making it
hard to process all elements simultaneously and independently, even if DNA
computing’s parallelism is available. With that being said, for groups, DNA
computing’s parallelism can still be applied across multiple DNA strands. For
example, if you have 1000 DNA sequences, you can process each sequence
simultaneously, but within each sequence, the group operation remains
constrained by sequential dependencies. Now compared to quasigroups, since
quasigroups do not require associativity, the transformation of each base is
independent of others. Hence, DNA’s parallelism can be fully exploited by

transforming all bases across all strands simultaneously.

In addition to parallelism, security through nonlinearity is another
reason for selecting quasigroups. As previously mentioned, a quasigroup
operation output does not follow predictable patterns based on the input and
such nonlinearity makes the relationship between plaintext and ciphertext
highly complex. Groups, however, are associative by definition. This causes
linear dependencies between operations. With the presence of an identity

element, the operation might produce ciphertext with predictable patterns.

Although both groups and quasigroups are able to offer large key space,
groups, however, will become slower as the size increases due to the structural
constraints. In comparison, quasigroups can provide a larger and more flexible
key space. Additionally, parastrophes of quasigroups allow for multi-phase
encryption which further complicates the system for attackers. The concept of

24

parastrophes is specific to quasigroups. In groups, the binary operation is fixed
and cannot be rearranged while preserving group properties, hence, no

parastrophes.

1.10 Aims and Objectives

This thesis aims to develop, implement and evaluate a novel hybrid
DNA cryptosystem which integrates quasigroup operations to enhance both
security and efficiency. The main objectives of this research are outlined as

follows:
1. To design a quasigroup-based DNA encryption scheme.

The main objective of the research is to develop a novel and
unconventional encryption scheme which involves the properties of both
quasigroups and DNA bases. Many researchers have been exploring new
methods for encoding and decoding hidden messages in DNA sequences. The
proposed method shares with prior DNA-based and quasigroup-based methods
the foundational principles. Like previous DNA cryptosystems, it uses DNA
encoding rules to convert plaintext into symbolic biological representations.
Similarly, it adopts the core concept from quasigroup cryptography which is the
quasigroup operations to generate nonlinear substitutions that are difficult to
invert without the correct quasigroup table. The proposed work further expands
these principles by combining the two previously separate domains into a
unified framework. Unlike traditional DNA-based schemes, which rely
primarily on biological encoding and complementary pairing but lack strong
mathematical mechanisms to enhance confusion. In contrast, quasigroup-based

cryptographic systems provide algebraic nonlinearity and have large key spaces,

25

yet they have not been integrated with DNA representations. This thesis bridges
these two domains by combining DNA encoding with quasigroup and
parastrophe transformations to achieve both biological-inspired parallelism and
mathematically grounded security, thereby extending the current scope of DNA

cryptography research.

This thesis seeks to contribute to ongoing research and development
which are essential and necessary for realising the full potential of

interdisciplinary encryption techniques.

2. To analyse the security of the proposed scheme against potential

vulnerabilities and attacks.

One of the aims of the research is also to conduct a thorough analysis of
the security of the proposed system which will include examining its resistance
to common attacks such as brute-force attack and known plaintext attack
through statistical analysis. Key parameters such as Shannon entropy and
normalised entropy are used to evaluate the robustness of the system. We will
hopefully be able to identify any inherent vulnerabilities in the system and

discuss how these vulnerabilities could be exploited by attackers.

3. To evaluate the computational efficiency and complexity of the scheme

An essential goal of the research is to demonstrate the computational
efficiency of the algorithm. The thesis measures the encryption and decryption
time across various plaintext lengths, as well as analysing the time and space
complexity of the system. It also explores the trade-offs between performance
and cryptographic strength, particularly when quasigroup order and encryption

phases increases.

26

4. To compare the proposed scheme with existing cryptographic schemes.

The proposed method is compared against established DNA and
quasigroup based methods such as those by Padmapriya [38] and Markovski
[39], to evaluate improvements in efficiency, entropy and overall effectiveness.
These comparisons aim to position the proposed algorithm as a viable

alternative for secure communication.

27

CHAPTER 2: LITERATURE REVIEW

2.1 Development of Cryptography and Related Works

‘Cryptography’, derived from the Greek words ‘Krypto’ and ‘graphene’,
translate to ‘secret’ and ‘writing’ respectively. The roots of cryptography can be
traced back to ancient Roman and Egyptian civilisations. The earliest known
use of cryptography dates back to 1900 BCE with the use of hieroglyphs among
Egyptians [1]. The hieroglyphic symbols were discovered to be carved in the
chamber of the tomb of Khnumhotep II, an ancient Egyptian Great Chief in
Egypt. These hieroglyphic symbols, carved on tomb walls, served not only as
artistic and ceremonial purposes but also as encoded secret messages. Fast
forward to 100 BCE, cryptography had evolved further in ancient Rome, when
Julius Caesar, a Roman general, developed a simple substitution cipher, known
as Caesar Cipher [40]. This simple substitution cipher involves shifting each
letter in a plaintext by a fixed number of positions in the alphabet. The cipher
was a way for Julius Caesar to send covert military orders to his generals in the
field so that even in the event of the messages being intercepted, it would still
remain unreadable and unintelligible to his foes without knowledge of the shift
value. Cryptography, although a beautiful art of secret messages, is more
commonly and actively used as a strategic tool in warfare between men in the
past. At the beginning of the 20" century, with the outbreak of World War I and
World War 11, there was a surge in the demand for cryptography experts which
was well observed with the invention of Hebern Rotor Machine by Edward
Hebern in 1917 and shortly thereafter, the Enigma Machine by Arthur Scherbius
in 1918 [41]. The Enigma Machine was regularly used by the Germans for

military communication purposes. To secure victory during World War II,

28

codebreaking played a pivotal role. The British at Bletchley Park were
successful in cracking the Enigma Machine when they constructed the first

electronic computers, named Colossus.

In the 1970s, researchers at International Business Machines
Corporation (IBM) created a block cipher called Lucifer which went on to
become what is now known as the Data Encryption Standard (DES) [42]. DES
was a significant milestone as it combined transposition and substitution
techniques into a systematic algorithm and became the first cryptosystem to be
certified by the National Bureau of Standards (now known as the National
Institute of Standards and Technology (NIST)). However, in years to come, with
advancements in computational power and cryptanalysis techniques, the system
became vulnerable and was broken by exhaustive search attack due to its short

key length.

A year after the inception of DES, the first public key cryptography,
Diffie-Hellman key exchange method was introduced by Whitfield Diffie and
Martin Hellman [40]. Not long after, inspired by Diffie and Hellman’s concept
of public key cryptography, the RSA algorithm, conveniently named by the
researchers of Massachusetts Institute of Technology who invented it: Ron
Rivest, Adi Shamir and Leonard Adleman, was created. The algorithm involves
two keys, one private and one public. Unlike Diffie-Hellman, the basis of its
security lies in the mathematical difficulty of factoring two large prime numbers

instead of discrete logarithm problem.

Following the downfall of DES, cryptographic research shifted towards

developing more robust systems. AES superseded its predecessor in 2001 when

29

it was selected by the NIST to replace DES. This symmetric-key algorithm,
which is also a block cipher, operates with larger key lengths of 128, 192 and
256 bits whilst maintaining a fixed block size of 128 bits [43]. Its design offers
enhanced security and efficiency, making it suitable for wide range of

applications in today’s digital world.

2.2 Development of DNA Cryptography and Related Works

DNA cryptography is an interdisciplinary field that merges the
knowledge of molecular biology and cryptographic techniques. Unlike
conventional cryptography which generally relies on numerical algorithms,

DNA cryptography utilises DNA to encode and secure information.

The concept of DNA-based computation was pioneered by Leonard
Adleman in the year of 1994, when he demonstrated that DNA molecules could
be used to solve a searching problem, a directed Hamiltonian path problem
known as the “Travelling Salesman Problem” with seven vertices which he
assumed the molecules to be. In his study in 1998, he discovered that DNA
possesses high storage and computational capability [44]. This has led the study
to subsequently demonstrate the feasibility of using biological molecules for
complex computational tasks, setting the stage for further exploration into
DNA-based cryptographic systems. Following Adleman’s pioneering work,
early foundational exploration between the 1990s and the early 2000s focused
on the use of DNA in codebreaking and solving complex problems. The first
known application of DNA cryptology in codebreaking was performed by
Boneh et al. in 1996 on DES, which was broken in just 4 months [45] and a NP-

complete problem, the maximal clique problem was solved using the

30

approaches of DNA molecular theory by Ouyang et al. in 1997 [46]. These early
studies have also provided insight into how knowledge of DNA could be used

not only for computation but also for securing information.

During the early 2000s, researchers began exploring how DNA
computing principles can be applied to encryption. In 2003, Chen pioneered
DNA-based image encryption using one time pad (OTP) framework [47] and in
2004, Gehani et al. proposed a DNA-based one-time pad encryption technique
which is based upon DNA substitution method and bitwise XOR operations,
where the digital messages were translated into synthetic DNA sequences [48].
As one-time pads assure perfect secrecy, it is almost impossible for the
adversaries to break the encrypted message. This proposal has shown the

potential of DNA as a medium for secure communication.

As interest in DNA cryptography grew, researchers have expanded their
focus into symmetric key systems. In 2006, Amin et al’s symmetric key-based
DNA cryptography derived a single key for both sender and receiver is obtained
from a genetic database, which integrated publicly available biological data into
cryptographic process [49]. Shortly thereafter, in 2007, Lu et al. proposed the
DNA Symmetric Key Cryptosystem (DNASC), which has proven its resistant
to highly efficient quantum computers due to the massive parallelism and
information storage of DNA molecules [50]. Apart from symmetric key
systems, DNA cryptography has also been integrated into asymmetric key
cryptosystem and signature schemes such as Cui et al in 2008 who developed a
public key encryption method which involved processes like DNA synthesis,

DNA encoding and PCR amplification [51]; and Lai et al. in 2010 with their

31

DNA-PKC system, which combined DNA-based techniques with traditional

asymmetric cryptographic algorithms [52].

The subsequent decade had also witnessed advancements in this field as
more and more DNA-based methods are designed as well as refinement for
existing techniques. Research in this period also explored adaptations of
classical ciphers into DNA cryptography, for instance, Sabry et al. proposed a
playfair cipher using DNA and amino acids in 2010 [53]. Data hiding techniques
have also been enhanced by DNA properties when in 2010, Shiu et al. proposed
three separate methods which are: the Insertion Method, the Complementary
Pair Method and the Substitution Method [54]. In this paper, all three methods
utilise a reference DNA which only the sender and receiver know from public
DNA databases such as EBI database. The authors have also provided security
analysis on the methods which indicated better performance compared with
other competing methods. In 2012, a DNA fragment assembly-based
cryptography was introduced by Zhang et al. which involves breaking a long
chain of DNA encoded message into small DNA fragments and forwarding
them to the receiver to be reassembled to uncover the original message [55].
Other research such as the DNA cipher based on DNA indexing by Tornea et al.
in 2013 [56] and a DNA scheme with dynamic sequence table by Hossain et al.

in 2016 [57] are notable.

Recent innovations include Karimi et al’s DNA based algorithm which
involves random number of rounds with varying key size depending on user’s
password lengths [58] and Kolte et al’s index-based symmetric DNA encryption
schemes that employed DNA sequence from NCBI database which is used as
One Time Pad (OTP) symmetric key in 2017 [59]. In July 2018, Zhang et al.

32

introduced an image encryption scheme which is a combination of a Feistel
network and dynamic DNA encoding, using GenBank sequences as keys [60].
A cryptographic scheme involving DNA and RNA processes is proposed by
Nafea et al. in November 2018 [61]. Their OTP keys are generated by
transcribing ssDNA pads into RNA and translating them into amino acid
sequences, which were then converted into binary form for XOR encryption. In
the same year, Kumar et al. has refined the DNA-based playfair cipher which

was proposed in 2010 by Sabry et al [53].

In 2019, a level-based DNA security scheme which relies on DNA triplet
codons for substitution was proposed by Patnala et al. [62]. This method uses a
randomly arranged lookup table of codon-to-value mappings across 3 rounds
where the plaintext is translated and grouped into codon triplets, substituted via
a lookup table and re-encoded as DNA bases to produce the ciphertext. There
are also other notable genetic algorithms proposed with implementations of
DNA, RNA and amino acids like the RNA implementations on text encryption

by Rashid in 2021 [63].

After more than two decades of research, the body of work in DNA
cryptography from early demonstrations of molecular parallelism to modern
hybrid symmetric and asymmetric encryption schemes has established the
feasibility of using biological principles for cryptographic applications.
Researchers have shown that DNA’s massive storage density and parallel
processing can achieve efficient key expansion and resistance to quantum

attacks.

33

2.3 Development of Quasigroup-based Cryptography and

Related Works

In the late eighteenth century, a new theory was proposed by Euler [64]
in order to explore the idea of Latin squares. Cayley, famous for his work in the
domain of group multiplication tables, proved that quasigroup tables could be
represented as bordered Latin square. It was in the year 1935 that the term
‘quasigroup’ was first proposed by Moufang [65]. The general nature of
quasigroup allows for their application in fields like coding theory,

cryptography and telecommunications [66].

The widespread of cryptographic interest in quasigroups began much
further before the 1990s. In fact, as Keedwell [67] recount, the very first
recorded application was in Schauffler’s 1948 doctoral thesis [68], where he
showed that finding a suitable Latin square, which is essentially a quasigroup,
is the key to breaking the Vigenére cipher. The essential idea behind quasigroup-
based cryptography is that the nonassociative nature of quasigroup provides a
foundation for designing cryptographic algorithms that are hard to break. The
conceptual roots of quasigroup-based cryptography can be traced back to the
study of Latin squares. Keedwell [67] briefly discussed the potential
applications of Latin squares (which are basically quasigroups) in cryptography,
more specifically in error detecting and correcting codes. From 1995 to 1996,
Koscielny’s work marked the initial exploration of quasigroup properties for
stream and block ciphers [69]. These schemes have demonstrated that
quasigroup tables could be used to construct secure and efficient encryption
schemes In 1997, the work of researchers Gligoroski et al. further the

momentum by focusing their research on quasigroup transformations and

34

demonstrating that such methods could effectively thwart brute force and
statistical attacks, even when both plaintext and ciphertext were available to an
adversary [70]. Ritter also contributed to the field by examining the practical
uses of quasigroups in encryption in 1998 [71]. He emphasised that quasigroups
possess potential in environments where lightweight computations were
essential. Following the works of C. Koscielny in 1996, Ochodkova et al.
introduced yet another stream cipher based upon the properties of quasigroup to
encode file system [72]. In their findings, they believe that due to the simplicity
of the quasigroup operations, it can be easily implemented as well as providing

efficiency during the encryption and decryption procedure.

From 1999 onward, Markovski and his colleague introduced quasigroup
string transformation in a series of four-part research papers from 1999 to 2007
[26], [73], [74], [75]. Their research highlighted the use of quasigroups for
generating pseudorandom sequences and secure message encryption, even
under known-plaintext scenarios. The resistance to such attacks was attributed
to the unpredictable nature of quasigroup operations and the flexibility to vary
transformation rules between sessions. Furthermore, in 2003, an All-Or-
Nothing transformation (originally developed by Rivest), was combined with
random quasigroups for better processing speed and security by Marnas et al.
[76]. Their research has demonstrated the viability of hybrid systems which
combine traditional and quasigroup-based techniques. Inspired by their
research, researchers started to explore variations of quasigroup
transformations. For instance, Gligoroski et al. [28] presented a novel
asymmetric block cipher based on Multivariate Quadratic Quasigroups

(MQQs), where its security lies primarily on the computational difficulty of

35

solving systems of multivariate quadratic equations defined over quasigroup
operations. Based upon the concept of this system, they later proposed another
digital signature scheme known as MQQ-SIG [29], which demonstrated high
performance and resistance against chosen message attacks (CMA) based on
their experimental evaluations. In 2010, Xu designed a stream cipher based on
the concepts of quasigroup conjugates and has performed various cryptanalytic
attacks to validate its security [77]. Additionally, Bakeva et al. came up with a
parastrophic variation of the quasigroup string transformation in 2011 [78].
Parastrophes are alternate versions of the same quasigroup table, created by
permuting the inputs and outputs. This approach has further enhanced and

refined the security and flexibility of these systems.

Throughout the years, quasigroup concepts were applied to design more
complex cryptographic primitives, for instance, the n -quasigroup stream
ciphers by Petrescu in 2010 [79], which was then improved in 2012 by
Chakrabarti et al. [80] to enhance both security and performance. Markovski’s
work in 2015 provided an in-depth exploration of cryptographic primitives
based on quasigroups, which covered a range of applications, specifically in
block ciphers, stream ciphers, digital signatures, encryption schemes and hash
functions [81]. It should also be mentioned that there is an existing quasigroup
based encryption scheme with implementation of biological process and protein
codon codes known as sEncrypt algorithm which was proposed in 2013 [82]. In
2021, Tiwari et al. have proposed the block cipher INRU which features 64-bit
block length and 128-bit key length and had shown strong resistance against a

range of cryptanalytic attacks, including differential, linear and algebraic attacks

36

[27]. The lightweight block cipher was further improved in 2023 by Chauhan et

al. which has shown less memory consumption [83].

2.4 Research Gaps

The field of cryptography is in a constant state of evolution. The
emergence of DNA cryptography pioneered by Adleman’s work on DNA
computing has shown immense potential for information storage and
parallelism. Prior works have all been involved in OTPs, symmetric and
asymmetric systems, data hiding techniques and adaptation of classical domains
into the DNA domains. The potential of DNA bases as the elements of the
quasigroup itself to create a seamless encryption process in the biological
domain remains unexplored. On the other hand, research work on quasigroup-
based cryptography has shown inherent resistance to linear and differential
cryptanalysis as well as exceptional speed and suitability for lightweight,
resource-constrained environment. Existing quasigroup-based cryptographic
algorithm typically relies on numerical operations defined over algebraic
structures such as groups, rings, or finite fields. While these structures offer
well-established mathematical properties, they also impose algebraic
regularities such as associativity and predictable inverses which can be
exploited by modern cryptanalysis. The literature reveals the central research
gap between both fields, which is a lack of an integrated cryptosystem that fully
harnesses the mathematical strength and efficiency of quasigroups directly

within the DNA domain.

This research directly addresses the gap by proposing a novel symmetric

quasigroup-based DNA cryptographic scheme, where both encryption and

37

decryption are performed using the same shared secret key, which is comprised
of a randomly generated quasigroup table, a random parastrohe table, two
leaders and a randomly chosen DNA encoding rule. We introduce a two-phase
encryption process using a quasigroup and one of its parastrophes, with the
DNA bases (A, C, G, T, U) as the fundamental element set of the quasigroup
operations. The novelty of the proposed scheme becomes clear when contrasted
with the established norms DNA-based and quasigroup-based cryptographic
schemes. Existing quasigroup cryptosystems operate directly on binary bits,
integers modulo n or bytes (e.g., INRU cipher, MQQ cryptosystem), the
proposed method transposed this concept into a novel domain, applying
quasigroup operations on DNA bases. This makes the scheme’s design uniquely
suited for scenarios where data is stored or transmitted as DNA sequences.
Current DNA cryptographic schemes use the DNA bases A, T, C, G whilst the
proposed scheme expands the element set to five by introducing Uracil (U) as a
cryptographic element, thereby increasing complexity and blindsiding the
attackers from the existence of U. The only other literature which has applied
such 5 elements in its system [94] however, it is applied to the mathematical

concept of dihedral group.

The elements of this quasigroup could, in principle, be any set of five
distinct symbols. However, the choice to use DNA bases (including U) is not
arbitrary and is fundamental to the thesis's contribution. The primary motivation
for using DNA bases is to design a cryptosystem that is inherently compatible
with DNA computing and data storage. While the current implementation is in
silico (on traditional computers), its operation is defined natively in the

“language” of these biological molecules. If the future of computing involves

38

massive parallelism using DNA strands, a cipher that operates on bits or
numbers would require a translation layer. Our cipher, however, operates
directly on the fundamental units (bases) if that future platform. The quasigroup
transformations could, in theory, be executed as parallel, localised biochemical
reactions on a DNA strand, fully exploiting the parallelism that DNA computing
promises. A quasigroup using digits would lack the ability to directly be
interpreted into biological molecules. It is also important to note that there is
limited published work that measures how increasing quasigroup order or
adding parastrophic phases affects efficiency (encryption and decryption time)
and security (entropy) in quasigroup-based and DNA-based cryptographic
schemes. This research fills the gap by providing a quantitative trade-off
analysis connecting the quasigroup order and number of phases to performance

and security metrics.

39

CHAPTER 3: METHODOLOGY

3.1 Basics of DNA Cryptography

DNA, more commonly known as Deoxyribose Nucleic Acid, is a
complex molecule which serves as the fundamental storage space for genetic
information found within all living organisms. Every living organism carries its
own unique set of DNA which determines an organism’s traits, from physical
characteristics to cellular processes. DNA is composed of two long
polynucleotide chains that coil around each other to form a double helix
structure, which was first discovered in 1953 by scientists James Watson and
Francis Crick [84]. Each chain contains a sequence of four different monomers
of DNA, known as nucleotide. Each nucleotide comprises of three parts: a sugar
molecule, a phosphate group and a nitrogenous base. In DNA, the nitrogenous
base can be any one of four types: Adenine (A), Cytosine (C), Guanine (G) or
Thymine (T). The structure of DNA is held together by hydrogen bonds between
complementary pairs of nitrogenous bases which are always as follows where:
A with T, C with G. This is commonly known as the “Watson-Crick

complementary rules.

Through various combinations of the four bases, DNA is able to store
vast and complex genetic data of any living organisms [85]. For the four DNA
bases, there would be a total of 24 possible types of combination which are as

follows [84]:

40

Table 3.1 Twenty-four possible types of combinations of 4 DNA bases

CTAG CTGA CATG CAGT CGTA CGAT
TCAG TCGA TACG TAGC TGAC TGCA
ATCG ATGC ACTG ACGT AGCT AGTC
GTAC GTCA GATC GACT GCTA GCAT

For combinations which fulfil the Watson-Crick complementary rules,

it is mentioned in [84] that there are 8 types which are:

Table 3.2 Eight types of combinations which fulfil Watson-Crick rules

CTAG CATG GTAC GATC
TCGA TGCA ACGT AGCT

DNA'’s primary role is to store and transmit genetic information. Specific
segments of DNA, called genes, encode instructions for synthesizing proteins
which function in structuring tissues, regulating bodily functions and catalysing
biochemical reactions. The sequence of bases (A, C, T, G) acts as a code, with
triplet of bases (codons) specifying individual amino acids, the building blocks

of proteins.

Other than DNA, there exist another acid, ribonucleic acid known as
RNA, whereby they are structurally similar except T is substituted with a base
known as Uracil (U). RNA acts as an intermediary between DNA and protein,
for instance, the genetic data of DNA is moved and translated to protein through

messenger RNA (mRNA) [85].

41

3.2 DNA Encoding and Decoding Rules

In DNA cryptography, DNA bases are used as a medium for information
exchange. Data can be encoded by mapping binary digits to corresponding
nucleotides and to retrieve the original information, nucleotides are mapped to
corresponding binary digits. These processes are known as DNA encoding and
decoding rules. There are 8 possible DNA encoding and decoding rules which

are shown in the table below [84].

Table 3.3 Eight rules for DNA encoding and decoding

Rule 1 | Rule 2 | Rule 3 | Rule 4 | Rule 5 | Rule 6 | Rule 7 | Rule 8
00 C C G G T T A A
01 T A T A C G C G
10 A T A T G C G C
11 G G C C A A T T

The encoding process typically follows these steps. Binary data (0s and
Is) is converted into DNA sequences using predefined mapping scheme as
shown above. For example, based on Rule 7, 00 is mapped to A, 01 is mapped
to C, 10 is mapped to G and 11 is mapped to T. This mapping ensures that every
pair of binary digits corresponds to a specific nucleotide base, thus allowing
digital data to be represented in the form of DNA sequence. Textual data can
also be encoded into DNA by first converting characters into their binary
representation and then applying the binary-to-DNA mapping. For example, the
letter “A” in ASCII is 01000001 in binary form and by using Rule 7, “A” can

be encoded as “CAAC”.

42

Decoding in DNA cryptography involves reversing the encoding process
to retrieve the original message from the DNA sequence. The process can be
done by converting DNA sequence back into binary data using the same
mapping scheme used during the encoding process. For example, A = 00, C >
01, G = 10 and T = 11. The binary data is then converted back into textual

form using ASCII.

3.3 Basics of Quasigroups

3.3.1 Binary Operation, Groupoids and Quasigroups
Definition 3.1. A binary operation on a nonempty set G is a function
a:GxXG-aG.

That is, given any two elements a and b in G, the operation a assigns an
element a(a, b) in G. When discussing general algebraic structures, it is often

convenient to use a product notation * such as writing a * b in place of a(a, b).

Definition 3.2. A groupoid is a nonempty set G with binary operation *, which
is denoted as (G,*). The order of (G,*) is the cardinality |G| which means the

number of elements in G. A groupoid is also said to be finite if |G| is finite.

Definition 3.3. A quasigroup (Q,*) is a groupoid which satisfies the following

law:

For every a, b € Q, there exist unique x,y € @Q such that

a*x=bandyx*a=>b.

For a finite set Q, the structure of a quasigroup (Q,*) can be represented

using a multiplication table. From Definition 3.3, due to the unique solvability

43

property, each element will appear exactly once in each row and each column
of the multiplication table of (Q,*). To construct a multiplication table of
quasigroup, let Q be a finite set with n elements {a,, a,, ..., a,}. An n X n table
is formed where the entry a;; located in the i-th row and j-th column is the
product of the element a; and a;. Each cell in the table is filled with the
elements of the quasigroup without repetition in each row and column. Note
that a given quasigroup can produce more than one multiplication table

depending on the order of the elements formed at the border of the table.

Table 3.4 Multiplication table of a quasigroup

* | 4 | 4 an
a; | A11 | Aq2 A1n
a | Az1 | A2z Ao
an anl anZ ann

The following is an example of a multiplication table of a quasigroup

(Q,*) of order 4:

Table 3.5 Example of multiplication table of a quasigroup of order 4

* 1 2 3 4
1 2 3 1 4
2 4 1 3 2
3 3 4 2 1
4 1 2 4 3

Quasigroups are defined by a binary operation that ensures the Latin

square property which states that, for each a and b in @, there exist unique

44

elements x and y in Q such that a x x = b and y * a = b hold. This property is
equivalent to the operation table of * forming a Latin Square, where each
element of @ appears exactly once in every row and column. The absence of
repeated elements in rows or columns guarantees that solutions to the equations
a * x = b and y * a = b are always unambiguous. Thus, (Q,*) has the property

of unique divisibility.

Definition 3.4. We define the left division operation, denoted a\b as:

a\b =xifandonlyifaxx =b

Similarly, we define the right division operation, denoted by b/a, as:

b/a=yifandonlyify*xa=>»

Due to the divisibility laws, quasigroup ensures that both the left and

right cancellation laws hold. The cancellations laws are as follows:

(1) Fora,x,y € Q, a * x = a * y implies that x = y (left cancellation)
(i) For a, x, yEQ, x*a=y=*a implies that x =y (right

cancellation)

In algebra, a group is a mathematical structure which consists of a set
paired with a binary operation that follows specific constraints: the operation
must be associative, there must be an identity element, and every element has

an inverse.

Definition 3.5. A group is an algebraic structure consisting of a set G together

with a binary operation * that satisfies the following four axioms:

(1) For all a, b € G, the result of the operation a * b is also in G.

45

(i)) Foralla,b,c € G, (a*b)*c=ax(b*c).
(ii1)) There exists an element e € G (identity) such that for every element
aE€EG,axe=e*xa=a.

(iv) For every element a € G, there exists an inverse elementa™! € G

1 -1

such that a * a™ a ‘t*xa=e.

From Definition 3.5, it follows that every group is a quasigroup. A
quasigroup is a mathematical structure similar to a group but with less restrictive
properties as they are not required to satisfy properties such as associativity or
commutativity or having an identity element and this also means that its

elements need not have inverses.

3.3.2 Parastrophes of Quasigroups

Definition 3.6. For each quasigroup operation ‘*’, we can associate a new

operation ‘o’ on Q defined by:
xoy=zifandonlyifx xz = y.

Definition 3.7. Each quasigroup Q@ = (Q,*) forms five new quasigroup Q; =

(Q,*;) with operations *; defined as follows:
X %1y =z x *z =y (right division)
X *,y =z z xy = x (left division)
X *3 Yy =z < z *x =y (opposite multiplication)
X *, Yy =2z y xz=Xx (opposite right division)

X x5y =z <y *xx = z (opposite left division)

46

Quasigroups which are defined as such are known as parastrophes or
conjugates of Q. It is worth noting that the operation o in Definition 3.6 is
actually the same operation *; in Definition 3.7. We single out this operation as

it will be very useful in the decryption process in the next section.

The significance of parastrophes lies in their ability to provide
alternative perspectives on the structure of quasigroup. In the study of
quasigroups, one encounters not just the original binary operation but also a
family of related operations known as parastrophes. Parastrophes (or conjugates)
of a quasigroup are essentially just variations of the original quasigroup
obtained by permuting the order of operations. Recall that a quasigroup is
defined by the property that for any elements a and b in set Q, the equation a *
b = c has a unique solution for the unknown when any two of the three elements
are fixed. The unique solvability property implies that one can “rearrange” the
equation to define other operations. It is a well-established fact in quasigroup
theory [86] that from any given quasigroup, one can define 6 conjugate
quasigroups which are not necessarily distinct (including the original

quasigroup).

It is also proven in [86] that the number of distinct parastrophes is always
a divisor of 6, which are 1, 2, 3 or 6 and that for any n > 4, there exists a
quasigroup of order n with m = {1, 2, 3, 6} distinct conjugates. The number of
distinct parastrophes does not depend on the cardinality of the quasigroup Q

(the number of elements in Q) but rather on the structural properties.

In quasigroup theory, the parastrophes can either be pairwise distinct or

pairwise equal. When the parastrophes are pairwise distinct, it means that each

47

of the five parastrophes exhibits different quasigroup structure. In other words,

no two parastrophes are the same. However, when the parastrophes are

described as pairwise equal, it means that some or all of the parastrophes

coincide, resulting in quasigroup with identical structures. This occurs when the

original quasigroup exhibits certain symmetries or special properties. Pairwise

equality often occurs in specific types of quasigroups, such as commutative

quasigroups or idempotent quasigroups. For instance, in a commutative

quasigroup, the order of the elements does not affect the outcome, so the

operations derived from switching the positions of the operands may end up

being identical.

Table 3.6 Number of quasigroups of ordern < 11

On

1

2

12

576

161280

812851200

61479419904000

108776032459082956800

O 0| 9| o ;| | W N| =] S

5524751496156892842531225600

Uy
(=)

9982437658213039871725064756920320000

11

776966836171770144107444346734230682311065600000

3.4 Encryption and Decryption Function

Let A be a finite set with elements {a,, a,, ...

,a,} and we construct

nonempty finite strings x;x, *- x,,, of length m, from elements in A (i.e. x; € A

for all i =1,2,...,m). Let L be a leader chosen from the set A. Define a

48

quasigroup operation * on the set A and the corresponding o operation as
mentioned in Definition 3.6. For the chosen L € A, we define two functions as
follows:
(1) Encryption function, E(x;%5 - X;n) = (V1Y2 =* Ym), Where y; =
Lxx;andy; =y;_4 *xx; fori =2,3,...,m.
(i) Decryption function, D(y,y, ** Ym) = (X1X3 *** X)) , Where x; =

Loy andx; =y;_qoy;.fori =23, .. m
3.4.1 Example of Application of Encryption and Decryption
Functions

The applied encryption and decryption functions are demonstrated as

follows:

We let Q be a quasigroup with operation * and set of elements

{0,1,2,3,4}. A quasigroup table is formed and shown as follows:

Table 3.7 Quasigroup table of order 5 with elements {0, 1, 2, 3, 4}

1 3

2 1 2 0

3 3 4 2 1
4 4 2 0 1 3

The quasigroup table acts as the key for encryption and decryption. At
the start of encryption, a Leader, L which can be any element of the quasigroup
table is chosen. To start the encryption process, the plaintext message is chosen

tobe M = (x1%, ** X;n) = (30412431). Then the encryption method is carried

49

out using: E(x1 Xz - Xpm) = (¥1¥2 ** Ym), Where y; = L *x; and y; = y;_q *
x;. According to the plaintext message M, x; = 3, x, = 0, x3 = 4 and so on.
For this example, the Leader, L = 0 is chosen and based on the encryption

formula and quasigroup table given above, the following result is obtained:

y1=L*xq Y2 =YV1*¥X, V3 = Y2 ¥ X3 Vo = Y3 * Xy

=0%*3 =3x*0 =3%4 =1x1
=3 =3 =1 =3

Vs =Ya*Xs Yo = Y5 *Xe Y7 = Y6 * X7 Yg = Y7 * Xg
=3x%x2 =2x4 =4x3 =1=x1
=2 =4 =1 =3

Thus, the encrypted message, E(M) = (33132413) is obtained.

Since there are various choices for choosing a leader, the encryption is
made strong by choosing different leaders for each encryption. The quasigroup
table can also be changed by permuting its rows and columns to produce
different versions of quasigroup and this in turn increases the complexity of

encryption scheme.

3.5 Proposed Scheme

The process of designing the system is mainly focused on combining the
properties of DNA sequences with quasigroup operations. The algorithm has
two phases of encryption as well as two phases of decryption, with the 1% phase
involving quasigroup and the second phase involving its parastrophes. The first
step of the process is to decide the order and elements of the quasigroup to be
used. For the proposed model, a quasigroup, Q of order 5 which comprises of

DNA bases {U, 4, C, G, T} as elements is selected. The number of Latin squares

50

of order n is known for small n. According to Table 3.7, for n = 5, the number

of distinct Latin squares is 161280.

In this algorithm, base Uracil (U) which appears in Ribonucleic Acid
(RNA) is used and will be considered as one of the elements to be used in the
quasigroup table. Element 'U' enhances security by being absent in the plaintext
DNA sequence but present in the ciphertext through quasigroup operations.
Since 'U' does not appear in the original DNA bases (A, T, C, G), attackers may
overlook its existence in the quasigroup and parastrophe table. By adding ‘U’ to
the set of DNA bases used in the encryption process, the number of possible
outputs for each operation can be exponentially increased, thus effectively
increasing the complexity of the algorithm and resistance against statistical
attacks. A larger key space also enhances security against brute force attacks by
making them less computationally feasible. While 'U' naturally appears in RNA
instead of DNA, its role in this cryptographic scheme is to increase security and
differentiate the method from traditional DNA cryptography, which only uses

four bases.

Our scheme which comprises of quasigroups and parastrophe
transformation as well as DNA encoding with the introduction of element ‘U’
offers a novel approach not commonly explored in traditional cryptographic
algorithms. Encryption begins by converting plaintext into DNA using a random
encoding rule. In Phase I, a random leader is chosen from the set of elements
{U,A,C,G,T} and a random quasigroup table is generated. The plaintext was
then encrypted using quasigroup operation x * y = z to produce the first
ciphertext. In Phase II, a new random leader and a random parastrophe table of

the quasigroup used in Phase I are used to further encrypt to form the final

51

ciphertext. The two leaders, DNA encoding rule, quasigroup table and

parastrophe table will act as the key and are transmitted through a secure

channel to the receiver. The decryption process involves reversing the

encryption steps using the inverse operation. The receiver retrieves the original

plaintext by applying the decryption operation to the ciphertext with the key

received.

3.5.1 Encryption Scheme

The encryption scheme is shown as follows:

1.

A plaintext message M is chosen and is converted into hexadecimal
form and subsequently binary form by referring to the ASCII table.

The message is then encoded into DNA bases to form a string of DNA
sequence (Xx;X; -+ X,,) of length m using a randomly chosen encoding
rule.

Once the DNA form of the message is obtained, the system enters into
Phase I of encryption, where a Leader, L, is chosen randomly from a set
of elements {4,C,G,T,U}. The quasigroup table for encryption is
generated randomly using quasigroup operation x * y = Zz.

The function used for encryption Phase I is defined as E; (x;x5 -+ xp,) =
(V1Y2 *** ¥m), where y; = Ly * x5 and y; = ;4 * x;.

The message is encrypted using the function E; and first ciphertext,
Ci = (V1Y32 *** Ym), wWhich is in DNA form is obtained.

In Phase II of encryption, a leader L, and a parastrophe operation *; are

randomly chosen, and the corresponding parastrophe table is generated.

52

7.

Encryption function for Phase II is defined as E,(C;) =
Ey(y1Y2 - ¥m) = (z122 " 2m) , Where z3 =Ly %, y; and z; =
Zi-1 *k Vi

The final ciphertext, C, = (212, ... Z,,) 1s obtained and sent to the

receiver.

3.5.2 Decryption Scheme

The decryption scheme is shown as follows:

1.

2.

The ciphertext C, is received in DNA form.

In Phase I of decryption, a parastrophe table for o, is generated using
the parastrophe table of *;, such that x o, y = z if and only if x *;, z =
y.

The function for decryption process is defined as D;(z,2, - zp,) =
(V1Y2 ** Ym), where yy = Ly op z; and y; = z;_4 o z;.

The ciphertext, C; = (¥1Y, *** Vi) is obtained by decrypting with the
leader L, received and the quasigroup generated using decryption
operation oy.

For Phase II of decryption, the quasigroup table for o is generated using
the quasigroup table of * in Phase I of encryption.

The decryption function is defined as D, (y1Y2 *** Ym) = (X1X3 *** X)),
where x; = Ly oy, and x; = y;_1 0 y;.

The plaintext (x;%, - x,,) is obtained by decrypting the leader L,
received and the quasigroup table for o. The decrypted message is
converted into hexadecimal form and finally into the original message

M by using corresponding DNA decoding rule and ASCII table.

53

CHAPTER 4: IMPLEMENTATION

4.1 Encryption Process

The implementation of the algorithm is demonstrated below:

Let the plaintext message, M = NOTTINGHAM.

Convert M = NOTTINGHAM to Hexadecimal:

4E 4F 54 54 49 4E 47 48 41 4D

Convert M = NOTTINGHAM to Binary:
0100111001001111 010101000101 01000100 1001
0100 111001000111 0100 1000 0100 0001 0100 1101

We will be using DNA encoding Rule 7 in this demonstration.

N(4E) - 0100 1101 - TCGA 0(4F) - 0100 1111 - TCGG
T(54) - 0101 0100 > TTTC T(54) - 0101 0100 > TTTC
1(49) - 0100 1001 - TCAT N(4E) - 0100 1110 - TCGA
G(47) - 0100 0111 - TCTG H(48) — 0100 1000 —» TCAC
A(41) - 0100 0001 > TCCT M(4D) - 0100 1101 - TCGT

The encoded plaintext M in DNA form is a string of length m = 40,
(TCGATCGG TTTICTTTC TCAT TCGA TCTG TCAC TCCT TCGT) (1)

4.1.1 Phase I: Quasigroup
We choose a Leader, L; = G

Our quasigroup table is formed and shown as follows:

54

Table 4.1 Quasigroup table for Phase I of encryption

N QA A

NS Al Qx| g
S Al Qx| N~
~Q NS Al A
Ql &~ Q| N8| Q) Q
Ql N x| A | N

The function used for encryption is defined as:

Ei(x1x3) = (V1Y2*** Ym)»

where n is the length of the plaintext M in DNA form, y; = L, * x; and

Yi = Yi-1 * X;.

The encryption process for Phase I is carried out with leader L; = G and

x=T,x, =C,x3 =G, ... from (1).

Y1 =Ly *xx; V2 =Y1*X; V3 =Y2 *X3 V4 = Y3 *Xy
=Gx*T =Tx*xC =Ax*xG =Tx*A

Vs = Y4 * Xg Ve = Y5 * Xg V7 =Ye * Xy Vs = Y7 *Xg
=U=xT =U=xC =Cx*xG =U=x*xG

L) =Yg*Xg Yio TVo*Xi0 Y11 T Yio*¥X11 YViz2 T Y11 *X12
=G=*T =TT =G=xT =T=xC

Yiz = Vi2*¥X13 Yia = VY13 *X14 YVis T Y1a*X15 YVie T Yis * X16
=Ax*T =Cx*T =AxT =CxC
=C =4 =C =T

55

Yi7 = Vie*X17 Y18 = VY17 *X1g Y19 T Y18 *X19 Y20 = Y19 * X0

=T=x*T =G+*C =G+A =Cx*T
=G =G =C =A

Y21 =Yoo *X21 Y22 T Y21*¥Xp2 Y23 T Y22%X23 Yoau T Y23 *%Xp4
=AxT =Cx*xC =T=x*G =C=x*xA
=C =T =C =G

Yos = Voa*Xos Yae T Y25 *¥Xoe Vo7 T Y26 ¥*X27 Yog T Y27 *X2g
=Gx*T =Tx*xC =AxT =Cx*G
=T =4 =C =U

Y29 = YVag*Xp9 Y30 T YV29*X39 Y31 T V30*X31 Y32 T V31 *X3
=UxT =UxC =CxA =Gx*C

Y33 = YV32*X33 Y34 = Y33%¥X34 Y35 T Y34 *¥X3z5 Y3 T Y35 * X3¢
=Gx*T =Tx*xC =AxC =UxT
=T =4 =U =U

Y37 = V36 *X37 Y3g = Y37 *¥X3g Y39 = Y3g*¥X3zg Yao T Y39 * Xy
=U=xT =U=xC =Cx*xG =U=xT
=U =C =U =U

The encrypted message C; = E; (M) for the Phase I is

(TATU UCUG TGTA CACT GGCA CTCG TACU UCGG TAUU UCUU) (2)

4.1.2 Phase II: Parastrophe

There exist 5 distinct parastrophes (conjugates) for each quasigroup. The
conjugates can form a quasigroup table by using their corresponding operations:

The conjugates of quasigroup table are shown as follows:

56

X*¥Yy=ZSX *xZ=Y X*, Yy =ZSZ xy =X

%, Ul 4| C |G| T *, Ul 4d4,|C |G| T
u| T |U|C| G| 4 U| G | T | 4| C|U
A C | 4| T|U|G A Ul 4| T)|G]|C
C | G| T |U|4]|C C Cc |G| U|T)| 4
G U| G| 4| C|T G |4 | C |G |U|T
T |4 |C| G| T|U T r | Uu|C|4]|G
X*3 V=2 Z xX =Y X*, V=2 Y *Z=X
*q Ul 4| C |G| T *y Ul 4 ,|C |G| T
u| T)|C| G| U\ 4 u| G |u|Cc|4A4|T
Y| Ul 4| T |G| C A T 14| G| C|U
C C | T | U| 4| G C | 4 r M uUu| G| C
G | G |U|4|C|T G C |G| T|U| 4
T |4 |G| C | T|U T Uul|Cc| 4| T)|G
X+ V=2 Y *xX =2
*g Ul 4| C |G| T
Ul 4 |G| C|U|T
A T 4| G| C|U
C Cc|U|T| G| 4
G | G| T|U|A]|C
T U| C| 4| T]|G

For the second phase of the encryption process, the algorithm is similar
to the first phase. The only distinct part of the process would be the use of

quasigroup table which is replaced with a random conjugate of quasigroup table.
To start the second phase, we choose a Leader, L, = A.

The random conjugate of quasigroup table for this phase is chosen to be:

57

Table 4.2 Conjugate of quasigroup table for Phase II of encryption

s, Ul A]CclG]|T
ulGclulclalT
A | rl4a|l6|cluU
cla|lr|ulac]|c
G | clG|r|ul4
T |luvlc|l4a|T]|G

The function used for encryption is defined as:

E;(V1y2 Ym) = (2123 Zp),

where z; = L, x4, y; and z; = z;_4 *, ;.

The encryption process for Phase II is carried out with leader L, = A

andy, =T,y, =A4,y; =T, ... from (2).

zy =Lly*ay1 Zy = Zy* Y, Z3 = Zp*4 Y3 Zy = Z3 %4 Vs
:A*4T :U*4A :U*4T :T*4_U
=U =U =T =U

Zs T Zp*y Vs Zg T Zs*p Ve Zy T Zg*a Y7 Zg T Zy ¥4)Yg
:U*4U :G*4C :T*4U :U*4G
=G =T =U =4

Zg = Zg*4 Y9 Z1g T Zg*4 Y10 Z11 T Z10 *a Y11 Z12 T Z11 *4 Y12
:A*4T :U*4G :A*4T :U*4A

Z13 T Z12 *4 Y13 Z14 T Z13 *4 Y14 Z15 T Z14 *4 V15 Z16 T Z15 *4 Y16
:U*4C :C*4A :T*4C :A*4T

Z17 T Zi1e *a Y17 Z1g T Z17 *4 Y18 Z19 T Z18 *4 Y19 Zz0 = Z19 *4 Y20
:U*4G :A*4G :C*4C :U*4A
=A =C =U =U

58

Z33

Z37

= Zy0 *4 Y21 Z22
:U*4C

=C

= Z24 *4 Y25 Z26
:A*4T

=U

= Z28 *4 Y29 Z30
:A*4U

=T

= Z32 *4 Y33 Z34
:G*4T

=A

= Z36 *4 Y37 Z38
:U*4U

=G

= Z21 *4 Y22

:C*4T

=C

= Z5 *4 Yog
= U *4_14

=U

= Z9 *4 Y30

:T*4C

=A

= Z33 *4 Y34

:A*4A

=A

= Z37 *4 Y33

:G*4C

=T

Z35

Z39

= Z2 *4 Y23
:C*4C
=U

= Z6 *4 Y27
:U*4C
=C

= Z30 *4 Y31
:A*4G
=C

= Z34 *4 Y35
:A*4U
=T

= Z3g *4 Y39
:T*4U
=U

Finally, we obtained our ciphertext to be:

EZ(CI) =(, =

Z36

Zo

= Z33 *4 Vo4

:U*4G
=A

= Zy7 *4 Y8

:C*4U
=A

= Z31 *4 Y32

:C*4G
=G

= Z35 *4 Y36

:T*4U
=U

= Z39 *4 Y40

:U*4U
=G

(UUTU GTUA UAUU CTAU ACUU CCUA UUCA TACG AATU GTUG).

4.2 Decryption Process

An encrypted message C, is received as shown below:

(UUTU GTUAUAUU CTAU ACUU CCUAUUCATACG AATU GTUG)

The quasigroup table for decryption Phase I is shown as follows:

59

3)

Table 4.3 Quasigroup table for Phase I of decryption

o U A C G T
U A G C U T
A T A G C U
C C U T G A
G G T U A C
T U C A T G

Phase I of the decryption is carried out as follows:

Di(2123 * Zp) = (V1Y2 *** Ym)>

where y; = L, o, z; and y; = z;_1 04 Z;.

The decryption process for Phase I is carried out with leader L, = A and

Zl == U, Z2 - U, Z3 - T, e fI‘OIIl (3).

i =Lyoszy Y, =Zyo4Z; Y3 = Zy04Z3 Y4 T Z394 74
:A04U :UO4U :U04T :T04U
= :A = =

Vs T Zy%4Zs Yg T Z5%4Zg Y7 T ZgO4Zy Yg T Zy©4Zg
:Uo4G :Go4T :T04U :U04A

Yo T Zg©%4Zyg Y10 T Z9°%Z10 Y11 T Z10°4Z11 Y12 T Z11°4 Z12
:A04U :U04A :A04U :U04U

Y13 T Z12°4 213 Y14 T Z13°4Z14 Y15 T Z14°4 Z15 Y16 T Z15 %4 Z16
:Uo4C :Co4T :T04A :A04U
=C =A =C =T

Y17 = Z16°4 Z17 Y18 T Z17 °4Z18 Y19 T Z18°4Z19 Y20 T Z19 °4 Zpg
:U04A :A04C :Co4U :U04U
=G =G =C =A

60

Y21

Y2s

Y29

Y33

Y37

= Z20°1Z21 Y22
:U°4C

=C

= Z24°4 225 Y26
:A04U

=T

= Z28 °4Z29 Y30
:A04T

=U

= Z32 °2 733 Y34
=Go, A

=T

= Z36 °4 Z37 Y38
=Uo, G

=U

= Z31 °4 233

:Co4C

=T

= Z35 °4 226

:U04U

=A

= Z39 %4 Z3p

:T04A

=C

= Z33 °4 Z34
04A

=A
=A

= Z37 °4 Z3g
o, T

=G
=C

Y23

Y27

Y31

V3s

Y39

= Z33 ©4 Z33
:C°4U
=C

= Z26 °4 227
:UO4C
=C

= Z30 °4 231
:A04C
=G

= Z34 °4 Z35
:A04T
=U

= Z38 °4 Z39
:T°4U
=U

The decrypted message D, (C,)for Phase I is

D, (Cz) =(;

Y24

Y28

Y32

Y36

Y40

= Z33 °4 234
:U°4A
=G

= Z37 ©4 Z28
:Co4A
=U

= 231 °4 Z32
:CO4G
=G

= Z35 °4 Z36
:T04U
=U

= Z39 %4 Zy0
:U°4G
=U

(TATU UCUG TGTA CACT GGCACTCG TACU UCGG TAUU UCUU).

The quasigroup table used for Phase II of decryption is as follows:

Table 4.4 Quasigroup table for Phase II of decryption

o

U
A
C
G
T

NS Q Al N T

Q| Q) N8|~ Q] ~

Q ~ Q| 8 Ol QO

N QA Q Q@

TN O QN

The Phase II of the decryption process is carried out with

Dy(y1y2 Ym) = (X1X3 = Xp),

where x; = Ly oy, and x; = y;_1 0 ;.

Recall the leader Ly = Gandy, =T,y, =A,y; =T, ... from (4).

Second phase of the decryption process is carried out as shown below:

=Loy
=GoT
=T

=Ys°)s

=UolU

=Yg°Yo
=GoT
=T
=Y12°Y13
=Ao(C
=T

= Y16 ° Y17
=ToG
=T
=Y20°Y21
=Ao(C

= Y24 °Y25
=GoT

= Y29 ° Y30
=UolU

= Y33 °)Y34
=GoT

X2

Xe

=Y1°)2
=ToA
=C
=YVs5°Ye
=UoC

=Y9° Y10
=ToG
=T
=Y13°)Y14
=CoA
=T
=Y17°Y1s8
=Go(
=C
=Y21°Y22
=CoT
=C

= Y25 ° Y26
=ToA
=C
=Y30°Y31
=Uo(C

= Y34 ° Y35
=ToA

X3

X7

62

=Y2°Y3
=AoT
=G
=Ye°Y7
=ColU
=G
=Y10°Y11
=GoT
=T

= Y14 °Y1s
=Ao(C
=T

= Y18 ° Y19
=GoC
=A
=Y22°Y23
=ToC

= Y26 ° Y27
=Ao(C
=T
=Y31°Y32
=Co(G
=4

= Y35 ° Y36
=AoU
=C

X4

Xg

=Y3°)Ys
=Tol
=A
=Y7°Ys
=UoG
=G
=Y11°Y12
=ToA
=C

= Y15 °Y1s6
=CoT
=C

= Y19 ° Y20
=CoA
=T

= Y23°Y24
=GoG

=Y27°)Y2s8
=ColU

= Y32 °Y33
=GoG

= Y36 ° Y37
=UolU

X37 = Y36°Y37 X3g —Y37°)YV38 X39 =VY38°YV39 X0 = Y39°DYi0
=UoU =Uo(C =ColU =UoU
=T =C =G =T

After decryption, the original message is recovered as shown:

Dy(C) =M =

(TCGATCGG TTTICTTTC TCAT TCGA TCTG TCAC TCCT TCGT)

From the obtained DNA sequence, the message is converted back into

textual form based on DNA encoding rule and ASCII table.

The final form of the plaintext recovered is shown as follows:

TCGA - 0100 1101 > N(4E) TCGG — 0100 1111 > O(4F)
TTTC - 0101 0100 - T'(54) TTTC - 0101 0100 - T'(54)
TCAT — 0100 1001 — I(49) TCGA - 0100 1110 > N(4E)
TCTG - 0100 0111 - G(47) TCAC - 0100 1000 — H(48)
TCCT — 0100 0001 —> A(41) TCGT — 0100 1101 —» M(4D)

63

CHAPTER 5: RESULTS AND DISCUSSIONS

This chapter comprises of 2 main sections: security and efficiency
analysis of the proposed method and a comparative study with two established

methods: Padmapriya’s method [76] and Markovski’s method [57].

5.1 Security Analysis

The proposed scheme was simulated using Python 3.11 on a system

with 2.38 GHz processor and 16GB RAM.

5.1.1 Brute Force Attack

The strength of any encryption system lies in its key space, which is the
total number of unique keys that an attacker requires for a brute force attack.
For the proposed system, the key space, K is determined by secret random
parameters involved in the encryption process, which are the leaders, DNA
encoding rule, quasigroup table and parastrophe table. The proposed encryption
system applies a quasigroup operation at every step of the DNA-encoded
message. As stated in Theorem 2 by [26], this means that an attacker trying to
reverse the transformation must search through all possible sequences of
quasigroup operations, even when the input and output are known. In this thesis,
although the cryptographic system uses only one quasigroup table and one
parastrophe table for the entire message, each symbol in the message is
encrypted using a different pair of inputs (previous ciphertext and current
plaintext). As a result, from the attacker’s perspective, the actual operation
applied at each step appears to be different and unknown. This justifies
modelling the encryption system as a sequence f1, f5, :**, f; of unknown two-
input functions, where L is the number of quasigroup operations performed,

64

each selected from a total of C = 161,280 X 6 = 967,680 possible quasigroup
and parastrophe combinations. The value of C represents the total number of
distinct quasigroup operations that can be applied at each step of the encryption
process. Based on Table 3.6, there are precisely 161,280 quasigroups for n =
5. In the context of our algorithm, this corresponds to the number of possible
quasigroup tables that can be randomly generated for Phase I of the encryption.
As defined in Section 3.3.2, every quasigroup has 5 parastrophe, leading to a
total of 6 related quasigroup (the original plus its five conjugates). While not all
re always distinct, the maximum number of distinct parastrophes is 6. By
applying the rule of product, the total number of unique combinations of a

quasigroup and one of its parastrophes is:

C = number of quasigroups x number of parastrophes per quasigroup

=161,280 x 6 = 967,680

Thus, applying the rule of product, the key space becomes

K=RXLXCM™

K =8 x 5% x (967,680)™

where:

e R: Number of DNA encoding rules

e [: Number of leader combinations

e (: Number of possible quasigroup and parastrophe combinations

e m: Length of the encoded message in DNA form

65

As a simple example, we use m = 10, in an exhaustive attack, the key

space is:
K =200 X (967,680)°
K =1.44 x 10°2

As can be observed, the key space is exponentially large even with just
the length of encoded message being 10, this implies that it would be difficult
for an attacker to break the system using brute force attack. Compared with two
other cryptosystems’ key space, specifically Umesh Kumar’s quasigroup-based
block cipher method which is 2128 ~ 3.4 x 1038 [87] and Al-Ahmadi’s DNA-
based method which is 28° ~ 1.21 x 102* [88], the key space of the proposed
method is significantly bigger. The algorithm enhances security through the
random parameters. Even with the knowledge of the plaintext and ciphertext,
attackers would struggle to reconstruct the encryption process without the

specific information of the key.

5.1.2 Known Plaintext Attack (KPA)

In the Known Plaintext Attack (KPA), the adversaries have access to
both plaintext and its corresponding ciphertext. In this type of scenario, they
aim to reverse engineer the encryption process by deducing and analysing any
possible patterns or relations between the ciphertext and its corresponding
plaintext. Randomness and unpredictability are the keys to protecting the
system against this attack, they make it difficult for the attackers to infer and

correlate any useful patterns that may expose the system.

66

In this section, we analyse how the proposed method is resistant against
KPA. We use chi-square test to evaluate the uniformity of the DNA bases
(4,C,T,G,U) distribution in the ciphertext. As mentioned in [95], chi-square
test is used to check randomness of a string of numbers or symbols. The use of
the Chi-square test to evaluate the uniformity of DNA base distribution in the
ciphertext is a direct application of a fundamental principle in cryptography: a
secure cipher must produce output that is statistically indistinguishable from
random data [89]. If certain DNA bases appear more frequently than the others
in the ciphertext, the adversary might be able to use these patterns to restructure
the contents of the original plaintext. The application of the Chi-square test for
cryptographic purpose is well-documented in both general cryptographic
literature and in the specific field of DNA cryptography [11], [90], [91],. By
applying the Chi-square test and obtaining high p-values for our ciphertext
across different plaintext lengths, we are able to provide quantifiable, standards-
based evidence that our proposed algorithm successfully eliminates

statistical biases.

The chi-square statistics is numerically represented as:

n
2 _ Z (0; — Ep)?
X . E;
i=1

Where:

e n is the number of distinct DNA bases (4,C, T, G,U)

e 0, is the observed frequency of the i*" base
o E; =% is the expected frequency where N is the total number of

characters in the ciphertext.

67

The resulting chi-square statistic is then used to calculate the p-value. The closer
the chi-square statistic is to 0 and the higher the p-value (usually more than

0.05), the more uniform the distribution.

Table 5.1 Chi-Square statistic and p-value for plaintext length of 500,

2000, 3500 and 5000
Plaintext Length | Chi-Square Statistic p-value
500 0.5600 0.9674
2000 0.3944 0.9829
3500 2.1219 0.7133
5000 4.2240 0.3765

Histogram of Ciphertext Base Distribution

402 411 401

&
=)

Frequency

[)

o

o
"

100 A1

A T C G U
DNA Bases

Figure 5.1 Histogram of Ciphertext Base Distribution for Plaintext of 500

Character Lengths

68

Histogram of Ciphertext Base Distribution

1750 1

1609 1625 1598 1604

1500 1

1250 1

Frequency

._.
8 @ 3
e & o

250 A

A T C G U
DNA Bases

Figure 5.2 Histogram of Ciphertext Base Distribution for Plaintext of 2000

Character Lengths

Histogram of Ciphertext Base Distribution

3000 A 28939

2848 2824
2500 1

2000 A

Frequency

&
S

1000 A

500 A

A T C G U
DNA Bases

Figure 5.3 Histogram of Ciphertext Base Distribution for Plaintext of 3500

Character Lengths

69

Histogram of Ciphertext Base Distribution

4065 4018

4000

3000 -

2000 A

Frequency

1000 H

A T C G U
DNA Bases

Figure 5.4 Histogram of Ciphertext Base Distribution for Plaintext of 5000

Character Lengths

All p -values are above the 0.05 threshold and all histograms of
ciphertext base distribution for plaintext of 500, 2000, 3500 and 5000 are
uniformly distributed and shows no sign of bias. The consistency in the
distribution of each figure proves to be hard for the adversary to find any type
of pattern or relation in the proposed system. Thus, the system is resistant

against KPA.

5.1.3 Complexity Analysis

Complexity analysis determines the efficiency of an algorithm.
According to the approximations from complexity theory, the smallest possible
class of functions is used to express the growing rate of algorithm’s runtime.
For instance, if the number of operations is 1 + 2n, then the complexity would
be O(n) and if the number of operations is 4 + n + n3, then the complexity

would be 0(n?3).

Time complexity is defined as the time required to execute an algorithm.

The runtime of an algorithm is defined as the sum of all operations. The time

70

required to convert plaintext to ciphertext is referred to as encryption time. The
time complexity of an encryption scheme is the sum of the time required at

phase 1 and phase 2.

For the proposed algorithm, the time complexity of the operations will
be measured based on the order of the quasigroup. For the proposed method,
the quasigroup has 5 elements {4, C, G, T, U}. The lookup and operation on the
quasigroup table are constant time operations O(1). The larger the quasigroup,
the more elements will need to be processed in terms of memory O (n?), where
n is the order of quasigroups, due to the need to store the quasigroup
multiplication table. Since we are using two layers of encryption, where the first
layer uses the original quasigroup and the second layer uses its conjugate, The
time complexity for a single layer of encryption is O (m), where m is the length
of the message being encrypted, since each element of the message goes through
the quasigroup multiplication operation once. With two layers, this results in
0(2m) time complexity for encryption and decryption, which simplifies to
0(m), as the constant factor can be disregarded in Big-O notation. An O (m)
algorithm performs a number of operations proportional to the size of the input
n. For example, if n doubles, the time taken also doubles. Searching through an
unsorted list of n elements for a specific item typically takes O(m) time, as it
requires examining each element once. This is generally faster and more
efficient for large datasets than O(n?). Thus, since the encryption and
decryption process operate with a linear time complexity of O(m), the

algorithm’s performance remains efficient even as the input size increases.

71

Space complexity is defined as the amount of memory the algorithm
uses as the input size grows. The quasigroup table has n? elements, where n is
the number of elements in quasigroup, resulting in 0(n?) space complexity for
the table itself. This means that as the number of elements in the quasigroup

increases, the space required to store the table increases significantly.

When encrypting a message, the ciphertext must be stored. The size of
the ciphertext is directly proportional to the length of the input message, m. The
DNA sequence requires space proportional to the length of input message m,
meaning the total space complexity is O(m) for the storage of the ciphertext.
This means that the length of the message is directly proportional to the storage
requirement for the ciphertext. When considering both the storage required for
the quasigroup multiplication table and the storage for the ciphertext, the overall
space complexity can be expressed as the sum of the two individual
complexities. Thus, overall space complexity would be O(m + n?) due to the
message size and quasigroup storage, which indicates that the storage

requirements grow with both the message length and the size of the quasigroup.

The linear growth in time complexity with message length O(m)
ensures the system is suitable for long plaintexts, as the computational cost is
proportional to input size. However, the quadratic growth in space complexity
due to the quasigroup table O(n?) highlights a trade-off: increasing the

quasigroup size enhances security but demands significantly more memory.

The cryptosystem achieves a balance between computational efficiency
and storage demands, with its linear time complexity being a standout feature

for practical applications. However, as the quasigroup size increases to enhance

72

security, the associated storage requirements must be carefully managed to
avoid excessive resource consumption. This balance makes the cryptosystem
particularly suitable for environments with moderate storage constraints and a
need for fast encryption and decryption processes. In future work, we may
consider looking into the possibility of developing algorithm which can reduce

the space complexity while only marginally increase the time complexity.

5.1.4 Shannon’s Entropy

In the field of cryptography, Shannon entropy is used to assess the
strength of encryption systems. Shannon’s entropy, developed by Claude
Shannon, is a measure of uncertainty or randomness in a set of data, such as a
sequence of text or encoded information. Higher entropy values indicate more
randomness and unpredictability, while lower values imply more regularity or
predictability. For instance, a repetitive sequence, such as “AAAA”, has low
entropy because there is little surprise in each new character, the next character
is likely “a” again whilst a sequence like “AGCTGTCA?”, where each character
is less predictable, has high entropy because each new character introduces
more “surprise”. An encryption system with high entropy means it is harder for

attackers to reverse engineer the system, making the encryption system more

secure.

Definition 5.1. For a random variable a with n possible values a4, ..., &, such

that P[a = a;] = p;, we define its Shannon’s entropy as

n
1
H(@) =) piog, —
i=1 Pi

It is measured in bits.

73

Where:

e p,; represents the probability of each unique event i

e The log, calculates the “information” of each event in bits.

If an event occurs with probability 1, it has 0 entropy (it’s entirely
predictable). The maximum entropy occurs when all events are equally probably,

maximising uncertainty.
Suppose you have a simple text string like “AABBCCDD”:

The probabilities for each character are [0.25, 0.25, 0.25,0.25] for “A”, “B”,

‘6C9’ and ‘GDB’.

Shannon’s entropy calculation:

4
H = z 0.25 - log,(4) = 2
1

Normalised Shannon entropy is a scaled version of Shannon entropy that
adjusts for the size of the alphabet used in the data. It provides a value between
0 and 1, making it easier to compare entropy across datasets with different
character sets or symbol sizes. Raw Shannon entropy values can vary
significantly depending on the alphabet size. Normalised entropy scales these

values to a consistent range (0 to 1).

Normalised entropy would compare this to the maximum entropy

possible for a system with four unique characters:

Max entropy = log,(4) = 2

74

Giving a normalised entropy of 1, indicating maximal randomness for a

sequence with four equally probable outcomes.

The maximum possible entropy H,, 4, = log,(n)

Normalised entropy = HH

max

In this thesis, we obtained the data through python coding for maximum
possible entropy, Shannon Entropy and Normalised Shannon Entropy for
plaintext and ciphertext of the proposed method. The obtained data are listed in

the table shown below:

Table 5.2 Proposed Method’s Shannon Entropy for Plaintext

Plaintext Maximum Shannon Normalised Shannon

Length Possible Entropy Entropy Entropy
500 5.209453 4.406603 0.845886
1000 5.285402 4.351083 0.823226
1500 5.523562 4.381499 0.793238
2000 5.523562 4.346915 0.786977
2500 5.554589 4.364680 0.785779
3000 5.672425 4.373745 0.771054

Table 5.3 Proposed Method’s Shannon Entropy for Ciphertext

Ciphertext Maximum Shannon Entropy Normalised
Length Possible Entropy Shannon Entropy
500 2.321928 2.320869 0.999544
1000 2.321928 2.320915 0.999564
1500 2.321928 2.321286 0.999723
2000 2.321928 2.321455 0.999796
2500 2.321928 2321513 0.999821
3000 2.321928 2.321871 0.999975

75

As can be observed, the normalised Shannon’s entropy for ciphertext of
length 500 to 3000 are all relatively close to one, showing high unpredictability

of the system.

Plaintext and Ciphertext Normalized Shannon's Entropy vs Plaintext Length

-
o
o

=]
o
[

0.90 1

0.85 1

0.80

—&— Normalized Shannon's Entropy (Plaintext)
Normalized Shannon's Entropy (Ciphertext)

Normalized Shannon's Entropy of Plaintext and Ciphertext

500 1000 1500 2000 2500 3000
Plaintext Length and Ciphertext Length

Figure 5.5 Graph of Normalised Shannon’s Entropy of Plaintext and

Ciphertext of the Proposed Method against Plaintext Length

Figure 5.5 shows the graphs of Shannon’s Entropy and Normalised
Shannon’s Entropy of the Proposed Method against Plaintext Length and
Ciphertext Length respectively. The blue line represents the normalised
Shannon’s Entropy of plaintext while the orange line represents normalised
Shannon’s entropy of ciphertext. For Shannon’s entropy analysis, the plaintext
starts with a low Shannon entropy (approximately 4.3 to 4.4), indicating a high
degree of predictability and redundancy in the data. After encryption, the
ciphertext entropy rises to approximately 2.32, which is close to the maximum
possible entropy for the given plaintext size. This increase also suggests that the
encryption process has effectively removed patterns and made the data more

random.

76

For the analysis of Normalised Shannon’s Entropy, the normalised
entropy for plaintext begins near 0.77. After encryption, the normalised entropy
is approximately 0.999, approaching to 1, which is the theoretical maximum for
randomness. This indicates that the ciphertext has high unpredictability and
randomness, which is pivotal property for a cryptosystem. The result of the
normalised Shannon entropy of the ciphertext would not be affected and
different even if the plaintext came from different domains as the transformation
operations of the plaintext depends not on the context of the plaintext but the

length of said plaintext.

The increase in both Shannon entropy and normalised Shannon entropy
demonstrates the cryptosystem’s ability to obscure patterns in the plaintext,
making it resistant to statistical and frequency-based attacks. The graph has also
demonstrated the effectiveness of the cryptosystem in transforming plaintext
into ciphertext with significantly increased randomness, as indicated by both the
result of Shannon’s entropy and normalised Shannon’s entropy. Overall, these
results confirm that the cryptosystem is both effective and secure, as it achieves
high levels of randomness and entropy in the ciphertext regardless of the

plaintext length.

5.1.5 Provable Security in DNA and Quasigroup-based

Cryptosystems: Current State and Limitations
There is limited literature discussing theoretical and provable security analysis
for DNA-based and quasigroup-based cryptosystem and existing work remains

primarily empirical or descriptive. For DNA cryptosystems, most studies focus

on improving randomness and efficiency using DNA coding combined with

77

other mathematical models, with analysis including randomness test like NIST
suite and resistance to common attacks like brute force attacks. For quasigroup-
based cryptography, some work adopts provable security frameworks for
quasigroup-based cryptosystems, for instance, symmetric encryption scheme
based on quasigroups (SEBQ) has been proven to achieve IND-CPA security
[92]. Nevertheless, while provable security frameworks are emerging for
specific quasigroup-based encryption, overall coverage in literature remains
less extensive compared to classical cryptosystems. Overall, while empirical
and descriptive security analysis dominate in these areas, there are ongoing
efforts toward integrating provable security frameworks particularly for
quasigroup-based cryptosystems. DNA cryptosystems are generally at an earlier
stage where provable security remains a research challenge due to novelty and
complexity of biological encoding models. While a full provable security
analysis is beyond the scope of this thesis, it represents a vital and recommended

direction for future work.

5.2 Efficiency Analysis

5.2.1 Encryption and Decryption time

The results for encryption time of the proposed method for plaintext of
different lengths, from 10 characters up to 500 characters are obtained and

shown in the tables below:

78

Table 5.4 Encryption and decryption time for the proposed method

Plaintext Length Encryption time (ms) Decryption time (ms)
10 0.4479 0.1200
20 0.5256 0.2619
40 0.5820 0.4291
80 0.6747 0.8275
100 0.7610 1.0465
500 2.5488 5.3951

As shown in the table, the encryption and decryption time grows
gradually as the plaintext length increases. For very short plaintexts (10 — 100
characters), the encryption and decryption time remains below 1ms, indicating
that the overhead of the encryption and decryption procedure is minimal for
small data. Even for 500 characters, the encryption and decryption time are only

about 2.5488 ms and 5.3951 ms respectively.

These results indicate the efficiency of the encryption and decryption
process of the proposed method. For typical applications, an encryption time of
less than a millisecond (for up to 100 characters) is practically negligible. The
linear increase in encryption time and decryption time with respect to the
plaintext length also confirms that the proposed method has a time complexity
of O(m), as predicted in Section 5.1.3. Different character sets of the same
length would produce very similar timing results because the algorithm’s
performance is fundamentally determined by the quantity of data (number of

DNA bases to process) rather than the specific content of that data.

79

5.3 Comparative Analysis

5.3.1 Efficiency

In this section, the proposed method will be compared to two
cryptographic methods which are Padmapriya’s method [38] that involves DNA
cryptography and Markovski’s method [39] that involves quasigroup-based
cryptography. These three methods are compared in terms of security
(Shannon’s entropy) and efficiency (encryption and decryption time). I
implemented Padmapriya’s and Markovski’s method from scratch based on the
description in [78] and [79] respectively. The results were not taken directly
from the published papers but came from my own implementations of all three
methods and exactly the same plaintext sets for all three methods to ensure

fair comparison.

Padmapriya’s scheme [38] is a two-phase symmetric key stream cipher
which combines a DNA-derived One-Time Pad (OTP) with a frequency-based
(Huffman style) prefix code to produce storage optimised ciphertext whilst
Markovski’s method [39] introduces BCMPQ, a symmetric block cipher that

employs quasigroups of order 4 in a compact matrix form.

The proposed scheme is a hybrid that integrates two distinct concepts:
DNA cryptography and quasigroup-based transformations. To properly assess
the contribution of the proposed scheme in terms of security and efficiency, it is
necessary to compare against a benchmark that represents each domain of the
hybrid which are DNA and quasigroups. Thus, the comparative study focuses
on two representative schemes, that is, Padmapriya’s DNA-based method and

Markovski’s quasigroup-based method as they are directly comparable to the

80

proposed hybrid scheme. By comparing a pure DNA method and a pure
quasigroup method, we can effectively demonstrate the synergistic advantages
of the proposed hybrid approach. If the proposed scheme outperforms or
matches both in key metrics, it strongly validates the hybrid design principle.
Padmapriya’s and Markovski’s methods were chosen specifically because they
are well-documented, implementable, and directly relevant to the core
innovations of this thesis, thereby enabling a clear and interpretable

comparative analysis.

The encryption time and decryption time for Padmapriya, Markovski

and proposed method for different plaintext lengths are shown below:

Table 5.5 Encryption time of three methods for different plaintext lengths

Plaintext Encryption time (ms)
Length Padmapriya | Markovski | Proposed

10 2 0.2402 0.4479
20 4 0.2899 0.5256
40 3 0.5242 0.5820
80 5 0.8386 0.6747
100 5 1.4333 0.7610
500 8 4.4841 2.5488

81

Encryption Time (ms)

Encryption Time vs. Plaintext Length

1 —&— Padmapriya

| —&— Proposed

- Markovski

0 100 200 300 400 500
Plaintext Length

Figure 5.6 Graph of encryption time for the three methods against plaintext

length

Table 5.6 Decryption time of three methods for different plaintext lengths

Plaintext Decryption time (ms)
Length | Padmapriya | Markovski | Proposed
10 2 0.1739 0.1200
20 2 0.2510 0.2619
40 3 0.4756 0.4291
80 3 0.8060 0.8275
100 3 1.3891 1.0465
500 7 7.6478 5.3951

82

Decryption Time vs. Plaintext Length

—&— Padmapriya
Markovski

7 1 —&— Proposed /
6 =

Decryption Time (ms)

T T

0 100 200 300 400 500
Plaintext Length
Figure 5.7 Graph of decryption time for the three methods against plaintext

length

It can be observed that Padmapriya’s method exhibits moderate but the
slowest encryption times among the three methods, ranging from 2 ms (10
characters) to 8 ms (500 characters), thus not the most efficient compared to the
other two methods. Markovski’s method achieves the fastest encryption time
for small plaintexts (10 — 20 characters), with time as low as 0.2402 ms for 10
characters. However, its encryption time surpasses the proposed method’s time
at larger input sizes like 500 characters with 4.4841 ms. Overall, Markovski’s
method leads for small plaintext lengths, while the proposed method shows

superior performance at larger plaintext sizes.

The same cannot be said for the decryption times as well. Padmapriya’s
method shows much higher decryption time than the other two methods for
plaintext lengths between 10 (2 ms) to 100 (3 ms). The decryption time for
Markovski’s method is longest among three methods when it comes to large

plaintext like 500 characters. The proposed method, however, delivers the

83

fastest decryption times at all measure plaintext lengths, from 0.1200 ms (10
characters) to 5.3951 ms (500 characters), which indicates minimal overhead

for both small and large messages.

Overall, for small plaintext sizes, Markovski’s method encrypts the
fastest while the proposed method decrypts the fastest and Padmapriya’s method
is generally in the slowest range. For larger plaintext sizes, the proposed method

outperforms all the other methods for both encryption and decryption.

The rationale as to why Markovski’s method leads in performance for
small plaintext lengths while the proposed method shows superior performance
at larger plaintext sizes stems from their respective algorithmic characteristics
and scalability. Markovski’s method uses quasigroups of order 4 and operates
on fixed 64-bit blocks with compact matrix operations, which incurs minimal
overhead on small data sizes. This design leads to very low overhead per block,
and thus results in faster encryption time, making it highly efficient for small
plaintext lengths because lightweight operations and small block handling
dominate efficiency at this scale. However, as plaintext size grows, the overhead
accumulates as more blocks are processed, and the time complexity is less
favourable on large inputs, leading to slower performance as size increases.
Conversely, the proposed method processes plaintext linearly as the operation
on the quasigroup table is constant-time, and the encryption has a linear time
complexity O(m) with respect to plaintext length m. Although there is some
overhead from the more complex transformations and two-phase structure, this
overhead becomes negligible as plaintext length grows. This linear scaling

ensures that the performance of the proposed method becomes increasingly

84

efficient for larger plaintext sizes and eventually outperforms Markovski’s

method as input size becomes substantial.

Thus, the comparative analysis for efficiency has shown that the
proposed method is the most balanced choice, delivery high encryption speed

and the lowest decryption time.

5.3.2 Security

The securities of the three methods are compared using normalised
Shannon’s entropy for ciphertext. All the data of the three methods for

normalised Shannon’s entropy are listed in the table as shown below:

Table 5.7 Normalised Shannon’s entropy for ciphertext of all three methods

Plaintext Length Normalised Shannon Entropy

Padmapriya Markovski Proposed
500 0.860536 0.972287 0.999544
1000 0.864609 0.979534 0.999564
1500 0.861672 0.982073 0.999723
2000 0.858049 0.987947 0.999796
2500 0.858435 0.988624 0.999821
3000 0.863743 0.991953 0.999975

85

Normalized Shannon Entropy vs. Plaintext Length
1000 & * * * & A

0975

o
v}
u
o

0925

0.900

0875

Normalized Shannon Entropy

- e . e

0.850

0.825 { —®— Padmapriya
Markovski
—&— Proposed

0.800

500 1000 1500 2000 2500 3000
Plaintext Length

Figure 5.8 Graph of Normalised Shannon’s entropy of all three methods

against plaintext length

Padmapriya’s method exhibits low normalised Shannon’s entropy,
ranging from 0.858049 to 0.864609. Markovski’s method’s value ranges from
0.972287 to 0.991953. The proposed method has highest value with 0.999544
at 500 characters and up to 0.999975 at 3000 characters. The proposed method
achieves marginally highest values indicating that ciphertext distribution are
highly uniform. This suggests strong randomness and minimal exploitable
patterns in the ciphertext. High normalised Shannon’s entropy is generally
desirable as it reduces the likelihood of successful statistical attacks. The

proposed method’s value suggests it is more resistant to such attacks.

Padmapriya’s scheme may offer storage efficiency, but it falls short in
operational flexibility and speed. Each encryption run of Padmapriya’s method
must retrieve a random DNA sequence from public database GenBank and this
introduces operational dependencies on Padmapriya’s end. The proposed

method does not rely on fetching large DNA sequences for each message,

86

thereby eliminating external key-retrieval overhead and still attaining high
randomness which is comparable to Padmapriya’s. Markovski’s quasigroup
matrix block cipher may be a lightweight block cipher whose entire public
parameter set fits in 160 bytes and whose operations reduce to fixed-size
Boolean matrix transforms which is ideal for resource-constrained hardware,
yet it operates on fixed 64-bit blocks with quasigroups of order 4, which limits
its security under modern block cipher standards and it yields only moderate
randomness. In comparison, the proposed method uses higher order quasigroup

and yields higher entropy.

5.4 Trade Off

Additional experiments were conducted to examine how encryption

time and decryption time scale with larger quasigroup sizes and more phases.

Table 5.8 Encryption and decryption time of the proposed method with

different quasigroup sizes

Quasigroup Size Encryption Time (ms) | Decryption Time (ms)
4 0.202320 0.049240
5 0.301180 0.049940
6 0.474340 0.050080
7 0.736340 0.051020
8 1.330600 0.068320
9 1.815320 0.056280
10 2.320840 0.058460
11 3.430860 0.056280
12 4.767060 0.060100
13 7.151600 0.064280
14 9.155140 0.064840
15 10.776880 0.064580

87

Performance vs Quasigroup Size

—&— Encryption Time
Decryption Time

10 4

Average Time (milliseconds)

3 6 8 10 12 14
Quasigroup Size

Figure 5.9 Graph of encryption and decryption time against different

quasigroup size

According to Table 5.8 and Figure 5.9, the encryption time increases
quite drastically from about 0.189980 ms for quasigroup of size 5 to 15.168740
ms for quasigroup of size 15. This rapid rise indicates that larger quasigroups
demand significantly more computation in the encryption phase, making the
method less practical for real-time or resource constrained environments. The
decryption time, however, does not increase as drastically as the encryption time.
This is due to the fact that decryption requires no random generation or table
construction as it merely applies the already established inverse operations with

known keys and tables.

It is true that a larger quasigroup size theoretically expands the key space
and can enhance security. However, once a certain point is reached, the
slowdown in performance outweighs the security boost gained, making it less

practical for applications. Quasigroup of size 5 strikes a practical balance as it

88

still manages to offer large numbers of possible quasigroups while keeping the

encryption time under 1ms for small and moderate input sizes.

Table 5.9 shows the encryption and decryption time of the proposed

method with different number of phases ranging from 2 to 10. Each additional

phase adds another transformation step, although it aims to improve complexity

in the ciphertext, it also increases computational overhead.

Table 5.9 Encryption time and decryption time of the proposed method for

different numbers of phases

Number of Phases Encryption Time (ms) | Decryption Time (ms)
2 0.401020 0.053100
4 0.577720 0.087640
6 0.878320 0.126000
8 1.186460 0.165060
10 1.596760 0.202080

Performance vs Number of Phases

16 4 —®— Encryption Time
Decryption Time

14 1

12

10 1

0.8 1

0.6

Average Time (milliseconds)

0.4 1

0.2 4

0.0 1

5 £

7 B 9 10

Number of Phases (Even numbers only)

Figure 5.10 Graph of encryption and decryption time against number of phases

89

Table 5.10 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different quasigroup

Quasigroup Size Normalised Shannon Normalised Shannon

Entropy of Plaintext Entropy of Ciphertext
4 0.4855 0.9995
5 0.6284 0.9996
6 0.5645 0.9995
7 0.6736 0.9992
8 0.6304 0.9991
9 0.5966 0.9990
10 0.5693 0.9993
11 0.5466 0.9986
12 0.5275 0.9990
13 0.5867 0.9986
14 0.5702 0.9988
15 0.5557 0.9987

Normalised Shannon Entropy of Plaintext and Ciphertext vs Quasigroup Size

10 A r—r—r—r—r—r—r—r—r—r——9

o (=} o
~ (=<} [Yel
" "

Normalized Shannon Entropy

o
(=]

0.5 1

-0

Normalised Shannon Entropy Ciphertext
Normalised Shannon Entropy Plaintext

a 6

8 10
Quasigroup Size

12 14

Figure 5.11 Graph of normalised Shannon entropy of plaintext and ciphertext

against quasigroup sizes

90

Table 5.11 Normalised Shannon Entropy of Plaintext and Ciphertext of the

proposed method for different numbers of phases

Number of Phases Encryption Time (ms) | Decryption Time (ms)
2 0.4182 0.9992
4 0.4182 0.9993
6 0.4182 0.9994
8 0.4182 0.9992
10 0.4182 0.9995

Normalised Shannon Entropy of Plaintext and Ciphertext vs Number of Phases

L

10 A L 4

0.9 1

(=}
@

(=]
[=2]

Normalized Shannon Entropy
o
~

0.5 1

0.4 1

A 4

A 4

—&— Normalised Shannon Entropy of Ciphertext
Normalised Shannon Entropy of Plaintext

5

6
Number of Phases

7 8

10

Figure 5.12 Graph of normalised Shannon entropy of plaintext and ciphertext

against number of phases

The proposed encryption method operates entirely on DNA symbols, where the

input plaintexts are transformed into DNA bases before applying quasigroup

and parastrophic transformations that produce essentially random-like

ciphertexts. The randomness and uniformity analysis in Chapter 5 has shown

that the ciphertext distributions remain consistent across varying plaintext

91

lengths, indicating robust statistical obfuscation that should generalise across
different plaintext domain types. However, while the method generally achieves
excellent diffusion and near uniform distribution with normalised entropy >
0.99 in most cases, extremely low entropy domains, for instance, highly
repetitive plaintext such as long strings of identical characters can result in
slightly reduced ciphertext entropy. The proposed method has been tested with
low entropy plaintext AAAAAAAAAA of length 10 which yields normalised
Shannon entropy of ciphertext of 0.816376, comparatively lower than the
random plaintext of length 10 which yields normalised Shannon entropy of
ciphertext of 0.963329. The combination of a large key space, random initial
parameters and multiple quasigroup phases ensure that any domain specific
characteristics are effectively masked. For typical plaintext domains, the
ciphertext is expected to maintain high entropy and exhibit uniform symbol

distribution.

From Table 5.9 and Figure 5.10, it can be seen that the encryption time
grows from about 0.286640 ms at 2 phases to 1.203000 ms at 10 phases. The
decryption time increases proportionally from 0.062660 ms to 0.283780 ms. As
mentioned before, each phase adds an additional transformation layer,
theoretically enhancing security. However, beyond 2 phases, each additional
layer adds only a small boost in security compared to the extra work it requires.
For practicality, 2 phases of quasigroup-based DNA encryption already provide
robust complexity, making additional phases unnecessary and redundant. While
more phases could be beneficial for extremely sensitive data, real-world
systems typically require a balance between encryption strength and latency.

Doubling or tripling the encryption time to add extra layers may not be

92

worthwhile if 2 phases are already sufficient to strike a balance between security

and efficiency.

Based on Table 5.10 and Figure 5.11, all ciphertexts achieve entropy
near 1, which is the theoretical maximum for a uniformly random sequence. It
is observed that larger quasigroups do not produce more random ciphertexts.
Increasing quasigroup size greatly increases computational cost but does not
effectively increase the normalised Shannon entropy of ciphertext. Therefore,
the overhead is not justified from the perspective of Shannon entropy-based

security.

According to Table 5.11 and Figure 5.12, there is no noticeable gain in
normalised Shannon entropy when it comes to the number of phases. Increasing
the number of phases to 4, 6, 8 or 10 does not produce any significant increase
in the normalised Shannon entropy. Thus, adding more than 2 phases
significantly increases the computational overhead without any measurable
improvement in the normalised Shannon entropy of ciphertext. Minimal
configurations already achieve the theoretical randomness bound, making

further expansion is deemed unnecessary.

In short, while it is technically feasible to increase the quasigroup size
or the number of phases, these results show that doing so significantly impacts
performance without providing a reasonable improvement in security for real-

world applications.

93

CHAPTER 6: CONCLUSION

The research sets out to explore and develop a novel cryptographic
algorithm by integrating the unique properties of DNA with nonassociative
transformations provided by quasigroups. The proposed method distinguishes
itself from traditional cryptosystems by directly mapping plaintext into DNA
form using a randomly chosen DNA encoding rule and then applying a two-
phase encryption process that leverages both a random quasigroup table and one
of its random parastrophes. One of the key innovations in the proposed method
is the introduction of element Uracil (U). The design choice not only increases
the key space but also obfuscates statistical patterns, thereby enhancing the
system’s resistance against known plaintext and statistical attacks. The two-
phase encryption scheme significantly increases the complexity and
randomness of the ciphertext, as evidenced by the high normalised Shannon
entropy value which approaches 1. The extensive key space demonstrates that
even for a small encoded message length of 10, the key space reaches an
exponential size (approximately 1.44 X 10%2). The enormous key space
ensures that an exhaustive search attack would be computationally infeasible,

thereby reinforcing the cryptosystem’s security.

In addition to its strong security, the proposed method also demonstrates
high efficiency. Experimental results show that both the encryption and
decryption times scale linearly with the plaintext length. Comparative analysis
with existing DNA cryptographic schemes such as Padmapriya’s and
Markovski’s methods indicate that while all methods achieve high levels of
randomness, the proposed method offers a balanced approach with faster
encryption and decryption time, especially for larger plaintexts.

94

Furthermore, additional experiments were conducted to assess the trade-
offs associated with using larger quasigroup sizes and increasing the number of
encryption phases. These investigations revealed that although increasing these
parameters could theoretically enhance security by expanding the key space and
adding more layers of transformation, the practical impact on performance is
significant. In particular, encryption times grow rapidly with larger quasigroup
sizes and additional phases, while security gains remain marginal beyond the
chosen configuration. This finding validates the design choices made in this
thesis, ensuring that the system achieves robust security without compromising

efficiency.

Despite the promising results, the current implementation is limited to
text file encryption. Future work could focus on extending the method to handle
multimedia data such as images and audio, as well as exploring further
optimisations in key management and transformation efficiency. On the whole,
the proposed method represents a significant step forward in the application of

quasigroup in DNA cryptography.

95

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

J. F. Dooley, A brief history of cryptology and cryptographic algorithms,

vol. 21. New York: Springer, 2013. doi: 10.5860/choice.51-4489.

Dave, “Understanding Classical cryptography,” Coded Insights.

D. Davies, “A brief history of cryptography,” Information Security

Technical Report, vol. 2, no. 2, pp. 1417, 1997.

W. Trappe and L. C. Washington, Introduction to cryptography with

Coding Theory 3rd. 2007.

B. Preneel, C. Paar, and J. Pelzl, Understanding Cryptography.: A

Textbook for Students and Practitioners, vol. 2009, no. April. 2009.

D. E. Standard, “Data encryption standard,” Federal Information

Processing Standards Publication, vol. 112, no. 3, 1999.

NIST, “FIPS 197 Advanced encryption standard,” 2001.

D. R. Stinson and M. B. Paterson, Cryptography Theory and Practice 4th

Edition, vol. 1, no. 1. 2018.

“What Are Cryptographic Attacks?: The Complete Guide.” Accessed:
Sep. 20, 2024. [Online]. Available:
https://www.goallsecure.com/blog/cryptographic-attacks-complete-

guide/

T. Hanoymak, “On provable security of cryptographic schemes,”
International Journal of Information Security Science, vol. 2, no. 2, pp.

44-56, 2013.

96

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of

applied cryptography. 1996. doi: 10.2307/2589608.

S. Ramakrishnan, Cryptographic and Information Security Approaches

for Images and Videos. CRC Press, 2018.

A. Biryukov, “Chosen plaintext attack,” in Encyclopedia of
Cryptography, Security and Privacy, Boston, MA: Springer US, 2011, pp.

205-206.

Simon Burge, “8 Types of Attack in Cryptography,” ISJ
INTERNATIONAL SECURITY JOURNAL. Accessed: Sep. 20, 2024.
[Online]. Available: https://internationalsecurityjournal.com/types-of-
attack-in-

cryptography/#:~:text=Cryptography%?20attacks%20are%20malicious

%?20attempts,and%?20availability%200f%20encrypted%20data.

“Cryptography: Theory and practice,” Computers & Mathematics with

Applications, vol. 30, no. 9, 1995, doi: 10.1016/0898-1221(95)90225-2.

L. Chu, Y. Su, X. Yao, P. Xu, and W. Liu, “A review of DNA

cryptography,” Intelligent Computing, vol. 4, p. 0106, 2025.

Z. Zhang and Z. Zhang, “DNA Information Storage and Cryptography
System,” Academic Journal of Science and Technology, vol. 10, no. 1,

pp. 243-249, 2024.

Sénat & Assemblée nationale, “Science and Technology Briefings:

Briefing 29 — DNA data storage,” 2021. Accessed: Jul. 15, 2025. [Online].

97

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Available: https://www.assemblee-nationale.fr/commissions/opecst-

index.asp

Y. Zhang and L. H. Bochen Fu, “Research on DNA Cryptography,” in
Applied Cryptography and Network Security, vol. 357, Springer, 2012,

pp- 357-376. doi: 10.5772/34510.

L. N. de Castro, Fundamentals of natural computing: Basic concepts,

algorithms, and applications. 2006.

O. Tornea, “Contributions to DNA Cryptography: Applications to Text
and Image Secure Transmission,” University of Nice Sophia Antipolis,

2013.

L. M. Adleman, “Molecular computation of solutions to combinatorial
problems,” Science (1979), vol. 266, no. 5187, 1994, doi:

10.1126/science.7973651.

M. Mondal and K. S. Ray, “Review on DNA cryptography,” arXiv

preprint, 2019.

S. KK*, “DNA Cryptography an Area of DNA Computing,”
Bioinformatics & Proteomics Open Access Journal, vol. 1, no. 1, 2017,

doi: 10.23880/bpoj-16000103.

A. Mileva, “New developments in quasigroup-based cryptography,” in
Multidisciplinary Perspectives in Cryptology and Information Security,

2014. doi: 10.4018/978-1-4666-5808-0.ch012.

S. Markovski, D. Gligoroski, and V. Bakeva, “Quasigroup string

processing. Part, 1,” pp. 1-2, 1999.

98

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. K. Tiwari, A. Awasthi, S. Chkrabarti, and S. Yadav, “INRU: A
Quasigroup Based Lightweight Block Cipher,” arXiv preprint

arXiv:2112.07411,2021.

D. Gligoroski, S. Markovski, and S. J. Knapskog, “A public key block
cipher based on multivariate quadratic quasigroups,” arXiv preprint,

2008.

D. Gligoroski et al., “MQQ-SIG: An ultra-fast and provably CMA
resistant digital signature scheme,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2012. doi: 10.1007/978-3-642-32298-3 13.

G. Teseleanu, “The Security of Quasigroups Based Substitution
Permutation Networks,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2023. doi: 10.1007/978-3-031-32636-3 18.

M. Battey and A. Parakh, “Efficient quasigroup block cipher for sensor
networks,” in 2012 2lIst International Conference on Computer
Communications and Networks, ICCCN 2012 - Proceedings, 2012. doi:

10.1109/ICCCN.2012.6289294.

M. Battey and A. Parakh, “An efficient quasigroup block cipher,” Wirel

Pers Commun, vol. 73, pp. 63-76, 2013.

D. Chauhan, 1. Gupta, P. R. Mishra, and R. Verma, “Construction of
cryptographically strong S-boxes from ternary quasigroups of order 4,”

Cryptologia, vol. 46, no. 6, 2022, doi: 10.1080/01611194.2021.1934915.

99

[34]

[35]

[36]

[37]

[38]

[39]

D. Nager, “Xifrat-Compact Public-Key Cryptosystems based on

Quasigroups,” Cryptology, 2021.

M. El-Hadedy, D. Gligoroski, and S. J. Knapskog, “High performance
implementation of a public key block cipher - MQQ, for FPGA
platforms,” in Proceedings - 2008 International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2008, 2008. doi:

10.1109/ReConFig.2008.11.

H. Mihajloska, T. Yalcin, and D. Gligoroski, “How lightweight is the
hardware implementation of quasigroup S-boxes,” in Advances in
Intelligent Systems and Computing, 2013. doi: 10.1007/978-3-642-

37169-1 12.

M. Matsumoto, M. Saito, T. Nishimura, and M. Hagita, “A fast stream
cipher with huge state space and quasigroup filter for software,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2007. doi:

10.1007/978-3-540-77360-3 _16.

M. K. Padmapriya and P. V. Eric, “A Technique of Data Security using
DNA Cryptography with Optimized Data Storage,” Journal of System
and Management Sciences, vol. 12, no. 4, 2022, doi:

10.33168/JSMS.2022.0425.

S. Markovski, V. Dimitrova, Z. Trajcheska, M. Petkovska, M.
Kostadinoski, and D. Buhov, “Block cipher defined by matrix

presentation of quasigroups,” Cryptology, 2021.

100

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Sidhpurwala H., “A Brief History of Cryptography,” Red Hat Customer
Portal. Accessed: Sep. 20, 2024. [Online]. Available:

https://www.redhat.com/en/blog/brief-history-cryptography

P. Bajpai, “Contribution of Ciphering machines in world wars-a review,”

Anusandhaan-Vigyaan Shodh Patrika, vol. 7, no. 01, pp. 87-91, 2019.

D. E. Standard, “Data encryption standard,” Federal Information

Processing Standards Publication, vol. 112, no. 3, 1999.

J. S. Revathy, M. S. Prakash, K. Lingeshwaran, J. D. Dhinakaran, and V.
Harish, “A Comprehensive Study of the Advanced Encryption Standard
(AES) for Secure Communications,” in 2025 3rd IEEE International

Conference on Industrial Electronics: Developments & Applications

(ICIDeA), TEEE, 2025, pp. 1-6.

Leonard M. Adleman, “Computing with DNA,” Sci Am, vol. 279, no. 2,

pp. 54-61, Aug. 1998.

D. Boneh, C. Dunworth, and R. Lipton, “Breaking DES using a

molecular computer,” 1996. doi: 10.1090/dimacs/027/04.

Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA solution of the
maximal clique problem,” Science (1979), vol. 278, no. 5337, 1997, doi:

10.1126/science.278.5337.446.

J. Chen, “A DNA-based, biomolecular cryptography design,” in
Proceedings - IEEE International Symposium on Circuits and Systems,

2003. doi: 10.1109/iscas.2003.1205146.

101

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Ashish Gehani, LaBean Thomas, and John Reif, “DNA-based

cryptography,” Springer Berlin Heidelberg, pp. 167-188, 2004.

S. T. Amin, M. Saeb, and S. El-Gindi, “A DNA-based implementation of
yaea encryption algorithm,” in Proceedings of the 2nd IASTED

International Conference on Computational Intelligence, CI 2006, 2006.

M. X. Lu, X. J. Lai, G. Z. Xiao, and L. Qin, “Symmetric-key
cryptosystem with DNA technology,” Science in China, Series F:
Information Sciences, vol. 50, no. 3, 2007, doi: 10.1007/s11432-007-

0025-6.

G. Cui, L. Qin, Y. Wang, and X. Zhang, “An encryption scheme using
DNA technology,” in 2008 3rd International Conference on Bio-Inspired

Computing: Theories and Applications, IEEE, 2008, pp. 37-42.

X. J. Lai, M. X. Ly, L. Qin, J. S. Han, and X. W. Fang, “Asymmetric
encryption and signature method with DNA technology,” Science in
China, Series F: Information Sciences, vol. 53, no. 3, 2010, doi:

10.1007/s11432-010-0063-3.

M. Sabry, M. Hashem, T. Nazmy, and M. E. Khalifa, “A DNA and Amino
Acids-Based Implementation of Playfair Cipher,” 2010. [Online].

Available: https://www.researchgate.net/publication/45198045

H. J. Shiu, K. L. Ng, J. F. Fang, R. C. T. Lee, and C. H. Huang, “Data
hiding methods based upon DNA sequences,” Inf'Sci (N Y), vol. 180, no.

11, 2010, doi: 10.1016/5.ins.2010.01.030.

102

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Y. Zhang, B. Fu, and X. Zhang, “DNA cryptography based on DNA
fragment assembly,” in Proceedings - ICIDT 2012, 8th International

Conference on Information Science and Digital Content Technology,

IEEE, 2012, pp. 179-182.

O. Tornea and M. E. Borda, “Security and complexity of a DNA-based
cipher,” in Proceedings - RoEduNet IEEE International Conference,

2013. doi: 10.1109/RoEduNet.2013.6511755.

E. M. S. Hossain, K. M. R. Alam, M. R. Biswas, and Y. Morimoto, “A
DNA cryptographic technique based on dynamic DNA sequence table,”
in 2016 19th International Conference on Computer and Information
Technology (ICCIT), 1EEE, 2016, pp. 270-275. doi:

10.1109/ICCITECHN.2016.7860208.

M. Karimi, M. A. Jinnah, U. Karachi, and P. W. Haider, “Cryptography

using DNA Nucleotides,” 2017. [Online]. Available: www.ijcaonline.org

N. S. Kolte, K. V Kulhalli, and S. C. Shinde, “DNA Cryptography using
Index-Based Symmetric DNA Encryption Algorithm.” [Online].

Available: http://www.irphouse.com

X. Zhang, Z. Zhou, and Y. Niu, “An Image Encryption Method Based on
the Feistel Network and Dynamic DNA Encoding,” IEEE Photonics J,

vol. 10, no. 4, 2018, doi: 10.1109/JPHOT.2018.2859257.

S. S. Nafea and M. K. Ibrahem, “Cryptographic Algorithm based on DNA
and RNA Properties,” International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET), vol. 7,no. 11, pp. 804—

811, 2018.

103

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

B. D. Patnala and R. Kiran Kumar, “A Novel Level-Based DNA Security
Algorithm Using DNA Codons,” in SpringerBriefs in Applied Sciences
and Technology, Springer Verlag, 2019, pp. 1-13. doi: 10.1007/978-981-

13-0544-3 1.

O. F. Rashid, “Text Encryption Based on DNA Cryptography , RNA , and
Amino Acid,” E- Proceedings of The 5th International Multi-Conference
on Artificial Intelligence Technology (MCAIT 2021) Artificial

Intelligence in the 4th Industrial Revolution, no. 2017, 2021.

L. Euler, “Recherches sur une espece de carrés magiques,”

Commentationes Arithmeticae Collectae, vol. 2, pp. 302-361, 1849.

R. Moufang, “Zur Struktur von Alternativkorpern,” Math Ann, vol. 110,

no. 1, 1935, doi: 10.1007/BF01448037.

V. Shcherbacov, Elements of quasigroup theory and applications. 2017.

doi: 10.1201/9781315120058.

A. D. Keedwell and J. Dénes, Latin Squares and their Applications:

Second Edition. 2015. doi: 10.1016/C2014-0-03412-0.

R. Schauftler, “Eine Anwendung zykligcher Permutationen und ihre

theorie,” Philipps-Universitat zu Marburg, 1948.

C. Koscielny, “A method of constructing quasigroup-based stream-

ciphers,” 1996.

S. Markovski, D. Gligoroski, and S. Andova, “Using quasigroups for
one-one secure encoding,” Proc. VIII Conf. Logic and Computer

Science 'LIRA, vol. 97, pp. 157-162, 1997.

104

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Ritter T., “Latin squares: a literature survey,” Research comments from
Ciphers By Ritter. Accessed: Jul. 15, 2025. [Online]. Available:

http://www.ciphersbyritter.com/RES/LATSQ.HTM#Bose84

E. Ochodkova and V. Snasel, “Using quasigroups for secure encoding of
file system,” In Proceedings of the International Scientific NATO
PfP/PWP Conference Security and Information Protection, pp. 175181,

2001.

S. Markovski and V. Kusakatov, “Quasigroup String Processing: Part 2,”
Contributions, Section of Natural, Mathematical and Biotechnical

Sciences, vol. 21, no. 1-2, pp. 15-32, 2000.

S. Markovski and V. Kusakatov, “Quasigroup String Processing: Part 3,”
Contributions, Section of Natural, Mathematical and Biotechnical

Sciences, vol. 24, no. 1-2, pp. 7-27, 2003.

S. Markovski and V. Bakeva, “Quasigroup String Processing: Part 4,”
Contributions, Section of Natural, Mathematical and Biotechnical
Sciences, vol. 27, no. 1-2, 2007, doi: 10.20903/csnmbs.masa.2006.27.1-

2.5.

S. I. Marnas, L. Angelis, and G. L. Bleris, “All-Or-Nothing Transforms
Using Quasigroups ,” In Proc. 1st Balkan Conference in Informatics, pp.

183-191, 2003.

Y. Xu, “A cryptography application of conjugate quasigroups,” in
Proceedings - 2010 International Conference on Web Information
Systems and Mining, WISM 2010, 2010, pp. 63-65. doi:

10.1109/WISM.2010.15.

105

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Bakeva, Verica, Vesna Dimitrova, and Aleksandra Popovska-Mitrovikj,

“Parastrophic quasigroup string processing,” 2011.

A. Petrescu, “n-QUASIGROUP CRYPTOGRAPHIC PRIMITIVES:
STREAM CIPHERS,” Studia Universitatis Babes-Bolyai, Informatica,

55(2), vol. 55, 2010.

S. Chakrabarti, S. K. Pal, and S. Gangopadhyay, “An improved 3-

quasigroup based encryption scheme,” ICT Innovations, vol. 173, 2012.

S. Markovski, “Design of crypto primitives based on quasigroups,”

Quasigroups and Related Systems, vol. 23, no. 1, 2015.

O. Bonham-Carter, A. Parakh, and D. Bastola, “SEncrypt: An encryption
algorithm inspired from biological processes,” in Proceedings - 12th
IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2013, 2013. doi:

10.1109/TrustCom.2013.43.

D. Chauhan, I. Gupta, P. R. Mishra, and R. Verma, “An ultra-lightweight
block cipher with string transformations,” Cryptologia, 2023, doi:

10.1080/01611194.2023.2224107.

N. A. N. Abdullah et al, “A THEORETICAL COMPARATIVE
ANALYSIS OF DNA TECHNIQUES USED IN DNA BASED
CRYPTOGRAPHY,” J Sustain Sci Manag, vol. 17, no. 5, pp. 165-178,

May 2022, doi: 10.46754/jssm.2022.05.014.

106

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

A. P. Thiruthuvadoss, “Comparison and Performance Evaluation of
Modern Cryptography and DNA Cryptography,” Royal Institute of

Technology, 2012.

C. C. Lindner and D. Steedley, “On the number of conjugates of a
quasigroup,” Algebra Universalis, vol. 5, no. 1, 1975, doi:

10.1007/BF02485252.

U. Kumar and V. C. Venkaiah, “A Family of Block Ciphers Based on

Multiple Quasigroups,” Cryptology, 2022.

W. A. E. Al-Ahmadi, A. O. Aljahdali, F. Thabit, and A. Munshi, “A secure
fingerprint hiding technique based on DNA sequence and mathematical

function,” PeerJ Comput Sci, vol. 10, p. e1847, 2024.

J. Katz and Y. Lindell, Introduction to modern cryptography: principles

and protocols. Chapman and hall/CRC, 2007.

D. Sharma, “Implementing Chi-Square method and even mirroring for
cryptography of speech signal using Matlab,” in Proceedings on 2015 1st
International Conference on Next Generation Computing Technologies,

NGCT 2015, 2016. doi: 10.1109/NGCT.2015.7375148.

N. H. Munshi, P. Das, and S. Maitra, “Chi-Squared Test Analysis on
Hybrid Cryptosystem,” Micro and Nanosystems, vol. 14, no. 1,2021, doi:

10.2174/1876402913666210508235706.

S. Kumar, H. Singh, I. Gupta, and A. J. Gupta, “Symmetric Encryption

Scheme Based on Quasigroup Using Chained Mode of Operation,” 2024.

107

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

M. A. Abdelaal, A. 1. Moustafa, H. Kasban, H. Saleh, H. A. Abdallah, and
M. Y. L. Afifi, “DNA-Inspired Lightweight Cryptographic Algorithm for
Secure and Efficient Image Encryption,” Sensors, vol. 25, no. 7, p. 2322,

2025.

I. Aisah, E. Djauhari, and A. Singgih, “Dihedral Group in The Ancient
Genetic,” Jurnal Matematika Integratif, vol. 16, no. 1, 2020, doi:

10.24198/jmi.v1611.26646.

K. A. Ameen, W. khalid Abdulwahab, and Y. N. A. Taher, “Encryption
Technique Using a Mixture of Hill Cipher and Modified DNA for Secure
Data Transmission,” International Journal of Computing, vol. 17, no. 1,

pp. 1-9, 2025.

Anne-Sophie Boutaud, “Data storage: the DNA revolution,” CNRS News.

G. Bhoi, R. Bhavsar, P. Prajapati, and P. Shah, “A review of recent trends
on DNA based cryptography,” in Proceedings of the 3rd International
Conference on Intelligent Sustainable Systems, ICISS 2020, 2020. doi:

10.1109/1CISS49785.2020.9316013.

Boaz Barak, An Intensive Introduction to Cryptography. 2021.

M. U. Bokhari, S. Afzal, I. Khan, and M. Z. Khan, “Securing IoT
Communications: A Novel Lightweight Stream Cipher Using DNA
Cryptography and Grain-80 Cipher,” SN Comput Sci, vol. 6, no. 2, p. 88,

2025.

A. Bopalkar, “Sustainable Computation: Harnessing DNA for Solving

NP Problems, Secure Cryptography, and High-Density Data Storage,”

108

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Vidhyayana-An International Multidisciplinary Peer-Reviewed E-

Journal-ISSN 2454-8596, vol. 10, no. si4, 2025.

K. J. Brakas and M. Alanezi, “A Dynamic DNA Cryptosystem for Secure
File Sharing,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 2, pp.

424435, 2025.

G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital

information storage in DNA,” 2012. doi: 10.1126/science.1226355.

L. D. Dang, D. V. Lu, and N. T. Bac, “Quantum-Enhanced DNA
Cryptography: A Revolutionary Intersection of Quantum Computing and
Biological Security,” in International conference on WorldS4, Singapore:

Springer Singapore, 2024, pp. 441-456.

A. Das, S. K. Sarma, and S. Deka, “Data security with DNA
cryptography,” in Transactions on Engineering Technologies: World

Congress on Engineering 2019, Springer Singapore, 2020, pp. 159-173.

W. A. Dudek, “Parastrophes of quasigroups,” Quasigroups and Related

Systems, vol. 23, no. 2, 2015.

A. Kairi, T. Bhadra, S. K. Pandey, A. Sinha, and A. Nag, “Adaptive DNA
Cryptography With Intelligent Machine Learning for Cloud Data

Defense,” Engineering Reports, vol. 7, no. 6, p. €70223, 2025.

S. Kumar, I. Gupta, and A. J. Gupta, “Quantum secure digital signature
scheme based on multivariate quadratic quasigroups (MQQ),” Advances

in Mathematics of Communications, 2024.

109

[108] C. Lound and R. M. Sirkin, “Statistics for the Social Sciences.,” J R Stat

Soc Ser A Stat Soc, vol. 159, no. 3, 1996, doi: 10.2307/2983353.

[109] D. Mechkaroska, A. Popovska-Mitrovikj, and V. Bakeva, Cryptocoding

[110]

[111]

[112]

[113]

[114]

Based on Quasigroups. Springer, 2024.

P. Mukherjee, C. Pradhan, R. K. Barik, and H. Dubey, “Emerging DNA
cryptography-based encryption schemes: a review,” International
Journal of Information and Computer Security, vol. 20, no. 1-2, 2023,

doi: 10.1504/1jics.2023.128000.

A. Parakh, W. Mahoney, L. Gerlock, and M. Battey, “Quasigroup-Based
encryption for low-powered devices,” in Security, Privacy and Reliability

in Computer Communications and Networks, 2017. doi:

10.1201/9781003339410-9.

S. Rawther and S. Sivaji, “Protecting Cloud Computing Environments
from Malicious Attacks using Multi-factor Authentication and Modified
DNA Cryptography,” Recent Patents on Engineering, vol. 19, no. 1, 2025,

doi: 10.2174/1872212118666230905141926.

M. V. K. Reddy, R. R. Reddy, E. P. Latha, S. Alamanda, and P. V. S.
Srinivas, “Introduction of DNA Computing in Cryptography,” Artificial
Intelligence-Enabled Blockchain Technology and Digital Twin for Smart

Hospitals, pp. 39-60, 2024.

Renda Zhang, “Information Theory Series: 1 — Entropy and Shannon
Entropy,” Medium. Accessed: Jul. 15, 2025. [Online]. Available:
https://rendazhang.medium.com/information-theory-series- 1 -entropy-

and-shannon-entropy-a20a2101108e

110

[115] T. A. Taj and M. 1. Hossain, “A multi-level random key cryptosystem
based on DNA encoding and state-changing mealy machine,” Journal of

Information Security and Applications, vol. 83, p. 103760, 2024.

[116] X., W. Xie et al., “DNA computers: advances in storage, cryptography

and logic circuits,” ChemBioChem, vol. 26, no. 1, p. €202400670, 2025.

[117] M. Talu, “DNA-based Cryptography for Internet of Things Security:
Concepts, Methods, Applications, and Emerging Trends,” Buletin llmiah

Sarjana Teknik Elektro, vol. 7, no. 2, pp. 68-94, 2025.

111

APPENDICES

Proposed_Method.py

import random
import time

from math import log2

ENCODING RULES = {
"Rule 1": {'00":'C",'01":'T", '10": 'A", '11": 'G"},
"Rule 2": {'00":'C",'01":'A",'10": 'T", '11": 'G"},
"Rule 3": {'00":'G'",'01": 'T", '10":'A", '11": 'C'},
"Rule 4": {'00":'G','01": 'A", '10": 'T",'11": 'C'},
"Rule 5": {'00":'T",'01": 'C', '10": 'G', '11": 'A"},
"Rule 6": {'00":'T",'01": 'G', '10": 'C', '11": 'A"},
"Rule 7": {'00":'A",'01": 'C','10": 'G", '11": "T"},
"Rule 8": {'00":'A",'01": 'G", '10":'C", '11": 'T"}
}
Compute the inverse for each rule
DECODING RULES = {
rule: {v: k for k, v in mapping.items()}

for rule, mapping in ENCODING_RULES.items()

def text to binary(text):
#Convert ASCII text to binary string.

return ".join(format(ord(ch), '08b') for ch in text)

112

def binary to_text(binary_str):
#Convert binary string back to ASCII text.
return ".join(
chr(int(binary_str[i:i+8], 2))
for 1 in range(0, len(binary_str), 8)

def binary to DNA(binary_str, mapping):
Map each pair of bits to a DNA base using 'mapping'.
Pads with '0' if necessary to complete the last pair.
if len(binary_str) % 2 !=0:
binary str +="0'
dna="
for 1 in range(0, len(binary_str), 2):
dna += mapping[binary_str[i:i+2]]

return dna

def DNA to_ binary(dna, mapping):
Map each DNA base back to its binary string using 'mapping'.

return ".join(mapping[base] for base in dna)

deftext to DNA(text, encoding_mapping):
Convert text to binary to DNA (using chosen encoding)

return binary to DNA(text to binary(text), encoding mapping)

def DNA to_text(dna, decoding mapping):
Convert DNA to binary to text (using chosen decoding)
return binary to text(DNA to binary(dna, decoding mapping))

def generate latin_square(bases):

113

Construct a random Quasigroup table of size nxn over 'bases' by
backtracking.

Ensures each row and column is a permutation of 'bases'.
n = len(bases)

square = [[None]*n for _in range(n)]

def valid(r, c, v):
Check that 'v' does not appear in row r or column c yet
return (v not in square[r]

and all(square[i][c] != v for i in range(n)))

def backtrack(idx=0):
Fill cells one by one; if we reach n*n, we're done
if idx == n*n:
return True
r, ¢ = divmod(idx, n)
Try each base in random order
for v in random.sample(bases, n):
if valid(r, c, v):
square[r][c] =V
if backtrack(idx+1):
return True
Backtrack
square[r][c] = None

return False

if backtrack():
return square
else:

raise ValueError("Failed to generate Latin square")

def convert_square to table(square, bases):

114

Convert a 2D list 'square' into a dict-of-dicts table: table[a][b] = result of
a*b

return {
bases[i]: {
bases[j]: square[i][j]
for j in range(len(bases))

}

for 1 in range(len(bases))

def generate random_quasigroup table(bases):
Generate and convert one random quasigroup table.
square = generate latin_square(bases)

return convert_square to_table(square, bases)

def compute parastrophes(Q):
Given a quasigroup table Q, compute its 5 parastrophe tables.
bases = list(Q.keys())
P=[{b: {} for b in bases} for _in range(5)]

for x in bases:
for y in bases:
#)x* ly=z <=> x*z=y
z1 = next(z for z in bases if Q[x][z] ==y)
#2)x* 2y=z <=> z*y=x
z2 = next(z for z in bases if Q[z][y] == x)
#3)x* 3y=z <=> z*x=y
z3 = next(z for z in bases if Q[z][x] ==y)
#4)x* dy=z <=> y*z=x
74 = next(z for z in bases if Q[y][z] == x)

#5)x* Sy=z <> y*x=z

115

z5 = Q[y][x]

Store in the corresponding table
P[O][x][y] = z1
P[1][x][y] = z2
P[2][x][y] = z3
PR3][x][y] = z4
P[4][x][y] = 25

return P

def generate random_parastrophe table(quasigroup table):
Choose one of the five parastrophes at random for Phase II.
parastrophes = compute parastrophes(quasigroup_table)

return random.choice(parastrophes)

def print_table(table, title="Table"):
print(f"\n--- {title} ---")
headers = list(table.keys())
print(" "+ " "join(f"{h:>3}" for h in headers))
for a in headers:
row = "" join(f" {table[a][b]:>4}" for b in headers)
print(f'{a:>3}: {row}")

def encrypt_phase(dna_input, leader, table):
prev = leader
out="
for sym in dna_input:
¢ = table[prev][sym]
out+=c¢

prev=c

116

return out

defleft divide(a, c, table):

return next(m for m in table[a] if table[a][m] == ¢)

def decrypt phase(dna_cipher, leader, table):
prev = leader
out="
for c in dna_cipher:
m = left_divide(prev, c, table)
out +=m
prev=c

return out

def encrypt_method(plaintext):
1) Choose a random DNA -encoding rule
rule = random.choice(listtENCODING RULES .keys()))
enc_map = ENCODING RULES rule]
dec_map = DECODING_RULES rule]

2) Convert plaintext to DNA string

dna plain =text to DNA(plaintext, enc_map)

3) Phase I: quasigroup encryption

leaderl = random.choice(DNA BASES)

Q = generate_random_quasigroup table(DNA BASES)
phasel = encrypt_phase(dna plain, leaderl, Q)

4) Phase II: parastrophe encryption
leader2 = random.choice(DNA BASES)

P = generate_random_parastrophe table(Q)

117

final = encrypt_phase(phasel, leader2, P)

Store all keys needed for decryption
keys = {

"leaderl": leaderl, "Q": Q,

"leader2": leader2, "P": P,

"rule": rule, "enc_map": enc_map, "dec_map": dec_map
}

return final, keys

def decrypt method(final cipher, keys):
Reverse Phase II (parastrophe)
phasel = decrypt_phase(final cipher, keys["leader2"], keys["P"])
Reverse Phase I (original Q)
dna plain = decrypt_phase(phasel, keys["leader1"], keys["Q"])
Convert DNA to text

return DNA to text(dna plain, keys["dec_map"])

--- Entropy Calculation ---
def shannon_entropy(s):
from collections import Counter
total = len(s)
if total == 0:
return 0.0
freqs = Counter(s)

return -sum((count/total) * log2(count/total) for count in fregs.values())

def compute entropy metrics(s, allowed_alphabet=None):
H = shannon_entropy(s)
if allowed alphabet is None:
allowed_alphabet = set(s)
max_H = log2(len(allowed_alphabet)) if allowed alphabet else 0

118

norm H=H/max Hifmax H>0else 0

return H, max H, norm H

n "

if name ==" main "

plaintext = input("Enter plaintext: ")

Encrypt and measure time
start = time.perf counter()
cipher, keys = encrypt_method(plaintext)

enc_time = (time.perf counter() - start)*1000

print("\nEncryption Complete")
print("Cipher DNA:", cipher)
print("Leader1:", keys["leader1"],
"Leader2:", keys["leader2"],
"Encoding Rule:", keys["rule"])
print_table(keys["Q"], "Quasigroup Table")
print_table(keys["P"], "Parastrophe Table")

print(f"Encryption time: {enc_time:.4f}ms")

Decrypt and measure time
start = time.perf counter()
decrypted = decrypt _method(cipher, keys)

dec_time = (time.perf counter() - start)*1000

print("\nDecryption Complete")
print("Decrypted Text:", decrypted)
print(f"Decryption time: {dec_time:.4f}ms")

Entropy metrics

pt H, pt maxH, pt norm = compute entropy metrics(plaintext)

119

ct H, ct maxH, ct norm = compute entropy metrics(cipher,
allowed_alphabet=DNA_BASES)

print("\n--- Entropy Metrics ---")
print("Plaintext Shannon Entropy: {:.6f}".format(pt H))
print("Plaintext Max Entropy: {:.6f}".format(pt maxH))

print("Plaintext Normalized Entropy: {:.6f}".format(pt norm))
print("Ciphertext Shannon Entropy: {:.6f}".format(ct H))

print("Ciphertext Max Entropy: {:.6f}".format(ct maxH))
print("Ciphertext Normalized Entropy: {:.6f}".format(ct norm))

120

Markovski_Method.py

import random
import time

from math import log2

---- GF(2) & Matrix Utilities ----

def bits_to_vec(x):
return [(x>>1) & 1, x & 1]

def vec to bits(v):

return (v[0] << 1) | v[1]

def random_inv_2x2():

while True:

M = [[random.randint(0,1) for _in range(2)] for _ in range(2)]
if (M[O][O]*M[1][1] ~ M[O][1]*M[1][0]) == 1:

return M

---- Matrix-Based Quasigroup Class (Used only for table generation) ----

class MGQuasigroup:

def init (self, m, A, B, C=None):

self.m = m # 2-bit constant

self A=A # 2x2 GF(2) matrix

self.B =B # 2x2 GF(2) matrix

self.C=Cor[[1,1],[1,1]]
def mul(self, x, y):

XV, yv = bits_to_vec(x), bits_to_vec(y)
Ax = [self. A[i][0]*xv[0] ~ self. A[i][1]*xv[1] for i in (0,1)]
By = [self.B[i][0]*yV[0] ~ self.B[i][1]*yv[1] for i in (0,1)]

121

CAx = [self.C[i][0]*Ax[0] * self.C[i][1]*Ax[1] for i in (0,1)]
CBy = [self.C[1][0]*By[0] " self.C[i][1]*By[1] for i in (0,1)]
dot = (CAx[0] & CBy[0]) " (CAx[1] & CBy[1])

res = [self.m[i] » Ax[i] * By[i] foriin (0,1)]

res[1] *= dot

return vec_to_bits(res)

---- Table Generation (Forward & Inverse) ----

def make forward table(Q: MGQuasigroup):
table = [[0]*4 for _in range(4)]
for x in range(4):
for y in range(4):
table[x][y] = Q.mul(x, y)

return table

def make inv_table(Q: MGQuasigroup):
inv = [[None]*4 for _in range(4)]
for x in range(4):
for y in range(4):
z=Q.mul(x, y)
inv[x][z] = y

return inv

---- Public Quasigroup Tables Generator ----

def generate public_quasigroups(n=128):
QT forward, QT inverse =[], []
for in range(n):
m = [random.randint(0,1) for _ in range(2)]
A, B =random_inv_2x2(), random_inv_2x2()

Q = MGQuasigroup(m, A, B)

122

QT _forward.append(make forward table(Q))
QT inverse.append(make inv_table(Q))

return QT forward, QT inverse

---- Transformations (e/d) with Table Lookups ----

def e transform(seq, leader, QT):
b = [QT[leader][seq[0]]]
for i in range(1, len(seq)):
b.append(QT[b[i-1]][seq[i]])

return b

def d transform(seq, leader, QT inv):
a=[QT .inv[leader][seq[0]]]
for i in range(1, len(seq)):
a.append(QT inv[seq[i-1]][seq[i]])

return a

def bytes to elements(block bytes):
bit_str =".join(format(b, '08b") for b in block bytes)
if len(bit_str) % 2 !=0:
bit_str +="'0'

return [int(bit_str[i:i+2], 2) for i in range(0, len(bit_str), 2)]

def elements to bytes(elements):
bit str =".join(format(e, '02b") for e in elements)
b = bytearray()
for i in range(0, len(bit_str), 8):
b.append(int(bit_str[i:i+8], 2))
return bytes(b)

123

def extract key parts(key bytes):
if len(key bytes) != 16:
raise ValueError("Key must be 16 bytes (128 bits).")
key bits = ".join(format(b, '08b") for b in key bytes)
leaders = [int(key bits[i*2:1*2+2], 2) for i in range(8)]
start = 16
Q indices = [int(key bits[start + i*7 : start + 1*7 + 7], 2) for i in range(8)]
start += 56
T indices = [int(key bits[start + 1*7 : start + 1*7 + 7], 2) for i in range(8)]

return leaders, Q indices, T indices

BLOCK BYTE SIZE =8 # 64 bits = 8 bytes

def pad(plaintext):

pad len = BLOCK BYTE SIZE - (len(plaintext) %
BLOCK BYTE SIZE)

return plaintext + bytes([pad_len] * pad len)

def unpad(padded):
pad_len = padded[-1]
return padded[:-pad len]

def encrypt block(block bytes, leaders, Q indices, T indices,
public QT forward, public QT inverse):

elems = bytes _to_elements(block bytes)

Step 1: Process mini-blocks
mini_blocks = [elems[i*4:(i+1)*4] for i in range(8)]
for i in range(8):

Q _index = Q _indices[i] % len(public QT _forward)

124

QT =public QT _forward[Q index]

1 = leaders[i]

mini_blocks[i] = e_transform(mini_blocks[i], 1, QT)
X=1]
for mini in mini_blocks:

X.extend(mini)

Step 2: Full block transformation
for 1 in range(8):
T index =T indices[i] % len(public QT forward)
QT =public QT forward[T index]
1 = leaders|[i]
ifi%2==0:
X =e_transform(X, 1, QT)
else:
X rev = list(reversed(X))
X rev =e_transform(X rev, I, QT)
X = list(reversed(X rev))

return elements_to_bytes(X)

def decrypt block(block bytes, leaders, Q indices, T indices,
public QT forward, public QT inverse):

X =bytes_to_elements(block bytes)

Reverse Step 2
for 1 in reversed(range(8)):
T index =T indices[i] % len(public QT inverse)
T inv =public QT inverse[T index]
1 = leaders|[i]
ifi%2==0:
X =d transform(X, 1, T inv)

else:

125

X rev = list(reversed(X))
X rev=d_transform(X rev, 1, T inv)

X = list(reversed(X rev))

Reverse Step 1
mini_blocks = [X[i*4:(i+1)*4] for i in range(8)]
for i in range(8):
Q _index = Q _indices[i] % len(public_QT inverse)
Q _inv=public QT inverse[Q index]
1 = leaders[i]
mini_blocks[i] = d _transform(mini_blocks[i], I, Q inv)
elems =[]
for mini in mini_blocks:
elems.extend(mini)

return elements_to bytes(elems)

def encrypt message(plaintext, key bytes, public QT forward,
public QT _inverse):

padded = pad(plaintext)
ciphertext = bytearray()
leaders, Q indices, T indices = extract key parts(key bytes)
for 1 in range(0, len(padded), BLOCK BYTE SIZE):
block = padded[i:i+tBLOCK BYTE SIZE]

cipher block = encrypt block(block, leaders, Q indices, T indices,
public QT forward, public QT _inverse)

ciphertext.extend(cipher block)

return bytes(ciphertext)

def decrypt _message(ciphertext, key bytes, public QT forward,
public QT _inverse):

plaintext = bytearray()
leaders, Q indices, T indices = extract key parts(key bytes)

126

for i in range(0, len(ciphertext), BLOCK BYTE SIZE):
block = ciphertext[i:i+BLOCK BYTE SIZE]

plain_block = decrypt block(block, leaders, Q indices, T indices,
public QT forward, public QT _inverse)

plaintext.extend(plain_block)

return unpad(plaintext)

--- Entropy Functions ---
def shannon_entropy(data):
Compute Shannon entropy (in bits per symbol) for data.
freqs = {}
for symbol in data:
freqs[symbol] = fregs.get(symbol, 0) + 1
total = len(data)
H=0.0
for count in freqs.values():
p = count / total
H -=p * log2(p)

return H

def compute entropy metrics(data, allowed alphabet=None):
H = shannon_entropy(data)
if allowed alphabet is None:
allowed_alphabet = set(data)
max_H =log2(len(allowed_alphabet)) if allowed alphabet else 0
norm H=H/max Hifmax H>0else 0

return H, max H, norm H

def main():
user_text = input("Enter plaintext: ")

plaintext = user_text.encode('utf-8')

127

key bytes = bytes(random.getrandbits(8) for _in range(16))

public QT _forward, public QT inverse =
generate_public_quasigroups(128)

start_enc = time.perf counter()

ciphertext = encrypt message(plaintext, key bytes, public QT forward,
public QT inverse)

end enc = time.perf counter()

enc_time = (end_enc - start_enc) * 1000

start_dec = time.perf counter()

decrypted = decrypt message(ciphertext, key bytes, public QT forward,
public QT inverse)

end dec = time.perf counter()

dec time = (end_dec - start_dec) * 1000

Compute entropy metrics for plaintext

pt H, pt max H, pt norm H = compute entropy metrics(plaintext,
allowed_alphabet=set(plaintext))

Compute entropy metrics for ciphertext

ct H, ct max H, ct norm H = compute entropy metrics(ciphertext,
allowed_alphabet=set(ciphertext))

print("\nCiphertext (hex):")
print(ciphertext.hex())
try:

decrypted text = decrypted.decode('utf-8')
except UnicodeDecodeError:

decrypted text = str(decrypted)
print("\nDecrypted Plaintext:")
print(decrypted_text)

128

print("\nEncryption Time: {:.6f} ms".format(enc_time))

print("Decryption Time: {:.6f} ms".format(dec_time))

if decrypted == plaintext:
print("\nSuccess: Decrypted text matches original plaintext.")
else:

print("\nError: Decrypted text does not match original plaintext.")

print("\n--- Entropy Metrics ---")
print("Plaintext Shannon Entropy: {:.6f}".format(pt H))
print("Plaintext Max Entropy: {:.6f}".format(pt max H))

print("Plaintext Normalized Entropy: {:.6f}".format(pt norm H))

print("Ciphertext Shannon Entropy: {:.6f}".format(ct H))
print("Ciphertext Max Entropy: {:.6f}".format(ct max H))
print("Ciphertext Normalized Entropy: {:.6f}".format(ct norm H))

' '

if name ==' main "

main()

129

Padmapriya_Method.py

import heapq
import collections
import time
import random

from datetime import datetime

DNA <-> Binary mapping

BASES =['A",'C','G",'T"]

BASE TO BIN = {'A" [0, 0],'C": [0, 1],'G": [1, O], "T": [1, 1]}
BIN TO BASE = {'00":'A",'01":'C', '10": 'G", "11": "T"}

Huffman Tree
class Node:
def init (self, freq, symbol, left=None, right=None):
self.freq = freq
self.symbol = symbol
self.left = left
self.right = right
def It (self, other): return self.freq < other.freq
def build huffman_tree(freq):
heap = [Node(freq[s], s) for s in freq if freq[s] > 0]
heapq.heapify(heap)
while len(heap) > 1:
left = heapq.heappop(heap)
right = heapq.heappop(heap)
merged = Node(left.freq + right.freq, None, left, right)
heapq.heappush(heap, merged)
return heap[0]
def get huffman_codes(root):
codes = {}

130

def traverse(node, cur="):
if node.symbol is not None:
codes[node.symbol] = cur or '0'
return
if node.left: traverse(node.left, cur +'0")
if node.right: traverse(node.right, cur +'1")
traverse(root)

return codes

Key generation
def generate_dna_key(bit length):
bases needed = (bit length + 1) // 2

return ".join(random.choice(BASES) for _ in range(bases_needed))

File I/O helpers
def write key to file(dna key, filename="dna key.txt"):
with open(filename, "w", encoding="ut{-8") as f:
f.write(dna_key)
defread key from file(filename="dna key.txt"):
with open(filename, "r", encoding="utf-8") as f:
return f.read().strip()
def log(message, log_file="encryption_log.txt"):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
line = f"'[{timestamp}] {message}"
print(line)
with open(log_file, "a", encoding="utf-8") as f:

f.write(line + "\n")

ENCRYPTION
def encrypt(plaintext):
start_total = time.perf counter()

1. plaintext — binary

131

bin_plain = [int(b) for ¢ in plaintext for b in f'{ord(c):08b}']
bit len = len(bin_plain)
2. DNA key
dna_key = generate dna_key(bit_len)
bin_key = [bit for b in dna_key for bit in BASE TO_BIN[b]]
if len(bin_key) < bit_len:
bin_key +=[0] * (bit_len - len(bin_key))
3. XOR (DNA OTP)
bin_cipher = [a * b for a, b in zip(bin_plain, bin_key)]
4. binary — DNA
dna cipher ="join(BIN_TO BASE[".join(map(str, bin_cipher[i:i+2]))]
for 1 in range(0, len(bin_cipher), 2))
5. Huffman compression
freq = collections.Counter(dna_cipher)
root = build_huffman_tree(freq)
codes = get_huffman_codes(root)
encoded = ".join(codes[b] for b in dna_cipher)
---- file writes ----
write_key to file(dna key)
with open("ciphertext.bin", "w", encoding="utf-8") as f:

f.write(encoded)

total _ms = (time.perf counter() - start_total) * 1000

return encoded, root, dna_key, total ms

DECRYPTION
def decrypt(encoded, root, dna_key, expected bit len):
start_total = time.perf counter()
1. Huffman — DNA (Z2)
Z=]
X =root

for bit in encoded:

132

if bit=="0":
if x.left:
x = x.left
else:
raise ValueError("Invalid bit '0' - no left child")
else:
if x.right:
X = x.right
else:
raise ValueError("Invalid bit '1' - no right child")
if x.left is None and x.right is None:
Z.append(x.symbol)
X =root
2. DNA — binary (C as list of 0/1)
C=1
for Ziin Z:
if Zi=="A"
C.append(0)
C.append(0)
elif Zi =="'C": # Fixed paper typo: use elif to avoid extra appends
C.append(0)
C.append(1)
elif Zi =='G":
C.append(1)
C.append(0)
else: #'T'
C.append(1)
C.append(1)
3. key — binary
bin_key = [bit for b in dna_key for bit in BASE TO_ BIN[b]]

bin_key = bin_key + [0] * (expected bit len - len(bin_key)) if len(bin_key)
< expected bit len else bin_key[:expected bit len]

133

4. XOR back (M)

M = [Ci * Keyi for Ci, Keyi in zip(C, bin_key)]

5. binary — text (Convert M to ASCII)

plaintext ="

for i in range(0, len(M), 8):
chunk = M[i:1+8]
byte val = sum(bit * (1 << (7 -)) for j, bit in enumerate(chunk))
plaintext += chr(byte val)

---- log ----

log(f"DECRYPT: Success > '{plaintext}"")

total _ms = (time.perf counter() - start_total) * 1000

return plaintext, total ms

#
MAIN
def main():
print("\n" + "-"*60)
plaintext = input("Enter plaintext: ").strip()
print(f"Encrypting: \" {plaintext}\" ({len(plaintext)} chars)")
---- ENCRYPT ----
encoded, root, key, enc_ms = encrypt(plaintext)
---- DECRYPT ----
decrypted, dec_ms = decrypt(encoded, root, key, len(plaintext)*8)
---- RESULTS ----
print("\n" + "="%*62)
print(" RESULT")
print("="%62)
print(f"Encryption Time : {enc_ms:8.3f} ms")
print(f"Decryption Time : {dec_ms:8.3f} ms")
print("="%62)

print("\nFiles created: dna_key.txt, ciphertext.bin, encryption log.txt")

" n

if name ==" main_ "

main()

134

Quasigroup_Size Phase Number.py

import random

import time

import matplotlib.pyplot as plt
import string

import math

from collections import Counter

ENCODING RULES = {
"Rule 1": {'00":'C', '01": 'T", '10": 'A", '11": 'G"},
"Rule 2": {'00":'C', '01": 'A", '10": 'T", '11": 'G"},
"Rule 3": {'00":'G','01": 'T", '10": 'A", '11": 'C"},
"Rule 4": {'00":'G','01": 'A", '10": 'T", '11": 'C"},
"Rule 5": {'00": 'T",'01":'C', '10": 'G', 'I11": 'A"},
"Rule 6": {'00": 'T",'01": 'G', '10": 'C', 'I11": 'A"},
"Rule 7": {'00":'A','01": 'C', '10": 'G", '11": "T"},
"Rule 8": {'00":'A",'01": 'G', '10": 'C", '11": "T"}
}
DECODING RULES = { rule: {v: k for k, v in mapping.items()}
for rule, mapping in ENCODING_RULES.items() }

def text to binary(text):

return ".join(format(ord(ch), '08b') for ch in text)

def binary to_text(binary_str):

return ".join(chr(int(binary_str[i:i+8], 2)) for i in range(0, len(binary_str),

8))

def binary to DNA(binary_str, mapping):
if len(binary_str) % 2 !=0:

135

binary str +="0'

dna="

for 1 in range(0, len(binary_str), 2):
dna += mapping[binary_str[i:i+2]]

return dna

def DNA to_ binary(dna, mapping):

return ".join(mapping[base] for base in dna)

deftext to DNA(text, encoding_mapping):

return binary to DNA(text to binary(text), encoding mapping)

def DNA to_text(dna, decoding mapping):
return binary to text(DNA to binary(dna, decoding mapping))

def generate latin_square(bases):
n = len(bases)

square = [[None] * n for _in range(n)]

defis_valid(row, col, value):
for j in range(n):
if square[row][j] == value:
return False
for 1 in range(n):
if square[i][col] == value:
return False

return True

def backtrack(cell=0):
if cell ==n * n:

return True

136

row, col = divmod(cell, n)
for value in random.sample(bases, len(bases)):
if is_valid(row, col, value):
square[row][col] = value
if backtrack(cell + 1):
return True
square[row][col] = None

return False

if backtrack():
return square
else:

raise ValueError("Failed to generate Latin square.")

def convert_square to table(square, bases):
table = {}
for i, row_label in enumerate(bases):
table[row_label] = {}
for j, col label in enumerate(bases):
table[row_label][col label] = square[i][j]

return table

def generate random_quasigroup table(bases):

return convert_square to_table(generate latin square(bases), bases)

def compute parastrophes(Q):
bases = list(Q.keys())
P=[{x: {} for x in bases} for _in range(5)]

for x in bases:

for y in bases:

137

#)x* ly=z <=> x*z=y
z1 = next(z for z in bases if Q[x][z] ==y)
#2)x* 2y=z <=> z*y=x
72 = next(z for z in bases if Q[z][y] == x)
#3)x* 3y=z <=> z*x=y
z3 = next(z for z in bases if Q[z][x] ==y)
#4)x* dy=z <=> y*z=x
74 = next(z for z in bases if Q[y][z] == x)
#5)x* Sy=z <=> y*x=1z

z5 = Q[y][x]

PlO][x][y] = z1
P[1][x]ly] = 22
PI2][x][y] = z3
P[3][x]ly] = z4
P[4][x][y] = z5

return P

def generate random_parastrophe table(Q):
Pick one of the parastrophes at random.
parastrophes = compute parastrophes(Q)

return random.choice(parastrophes)

def encrypt_phase(dna_input, leader, table):
result=""

prev = leader

for symbol in dna_input:
¢ = table[prev][symbol]

result +=c¢

prev=c

138

return result

defleft divide(a, c, table):
for m in table[a]:
if table[a][m] == c:
return m

raise ValueError("No valid division found.")

def decrypt _phase(dna_cipher, leader, table):
result =""

prev = leader

for c in dna_cipher:
m = left_divide(prev, c, table)
result += m
prev=c

return result

def normalized shannon_entropy(sequence, alphabet):

nmn

Returns normalized Shannon entropy in [0,1] for ‘sequence” over
“alphabet’.

Normalization is by log2(|alphabet|).
if len(sequence) == 0:

return 0.0
counts = Counter(sequence)
total = sum(counts[a] for a in alphabet if a in counts)
If total==0 (none of alphabet chars present), return 0
if total == 0:

return 0.0

H=0.0

139

for a in alphabet:
p = counts.get(a, 0) / total
ifp>0:
H -=p * math.log2(p)
max_H = math.log2(len(alphabet)) if len(alphabet) > 1 else 1.0

return H/ max H

def encrypt_method(plaintext, dna_bases, num_phases=2):
Encrypts the plaintext using an even number of phases.

Each pair of phases starts with encryption using a random quasigroup
table, and ends with encryption using the corresponding parastrophe table.

if num_phases % 2 !=0:

raise ValueError("Number of phases must be an even number.")

chosen_rule = random.choice(listtENCODING RULES keys()))
encoding mapping = ENCODING RULES[chosen_rule]
dna plaintext = text to DNA(plaintext, encoding_mapping)

phase leaders =[]
phase tables =[]

current_cipher = dna_plaintext

for in range(num_phases // 2):
Phase 1: encryption using a random quasigroup table.
leaderl = random.choice(dna bases)
table = generate random_quasigroup table(dna_bases)
current_cipher = encrypt phase(current cipher, leaderl, table)
phase leaders.append(leaderl)
phase_tables.append(table)

Phase 2: encryption using the parastrophe of the quasigroup table.

140

leader2 = random.choice(dna bases)
parastrophe table = generate_random_parastrophe_table(table)

current_cipher = encrypt phase(current cipher, leader2,
parastrophe_table)

phase leaders.append(leader2)
phase _tables.append(parastrophe table)

keys = {

"dna bases": dna_ bases,

"phase leaders": phase leaders,

"phase tables": phase_tables,

"encoding_rule": chosen rule,

"decoding mapping": DECODING RULES|[chosen rule]
}

return current _cipher, keys

def decrypt method(final cipher, keys):
current_dna = final _cipher

for leader, table in zip(reversed(keys["phase leaders"]),
reversed(keys["phase tables"])):

current_dna = decrypt _phase(current dna, leader, table)

return DNA_to_text(current dna, keys["decoding_mapping"])

n "

if name ==" main "

user_plaintext = input("Enter your plaintext: ")

def measure quasigroup performance custom(plaintext):
sizes = list(range(4, 16)) # Quasigroup sizes from 4 to 15
num_runs =5

results = {}

for size in sizes:

141

if size == 4:
dna bases =['A", 'T','C','G"]
else:

extras = [ch for ch in string.ascii_uppercase if ch not in ['A", 'T",
ICV, |G|]]

dna bases =['A', 'T','C', 'G'] + extras[:size-4]

enc_times = []
dec_times =[]
entropies_cipher = []

entropies_plain = []

for _in range(num_runs):
start = time.perf counter()
cipher, keys = encrypt_method(plaintext, dna_bases, 2)

enc_time = (time.perf counter() - start) * 1000 # milliseconds

compute entropies (normalized)
h plain = normalized shannon_entropy(plaintext, dna_bases)

h_cipher = normalized shannon_entropy(cipher, dna bases)

start = time.perf counter()
decrypt_method(cipher, keys)

dec_time = (time.perf counter() - start) * 1000 # milliseconds

enc_times.append(enc_time)
dec_times.append(dec_time)
entropies_plain.append(h_plain)
entropies_cipher.append(h_cipher)

results[size] = {

'enc_avg': sum(enc_times) / num_runs,

142

'dec_avg': sum(dec_times) / num_runs,
'plain_entropy avg': sum(entropies_plain) / num_runs,
'cipher_entropy avg': sum(entropies_cipher) / num_runs
}
Display average times only

print(f"Quasigroup Size {size}: Encryption Avg =
{results[size]['enc_avg']:.6f} ms, "

f"Decryption Avg = {results[size]['dec_avg']:.6f} ms"

f'"Normalised Shannon Entropy Plaintext =
{results[size]['plain_entropy avg']:.4f}, "

f'"Normalised Shannon Entropy Ciphertext =
{results[size]['cipher_entropy avg'l:.4f}")

Plotting

sizes_list = list(results.keys())

enc_avgs = [results[s]['enc_avg'] for s in sizes_list]

dec_avgs = [results[s]['dec_avg'] for s in sizes_list]

cipher_ent avgs = [results[s]['cipher_entropy avg'] for s in sizes_list]

plain_ent avgs = [results[s]['plain_entropy avg'] for s in sizes_list]

plt.figure(figsize=(10, 6))

plt.plot(sizes_list, enc_avgs, marker='0', label='"Encryption Time")
plt.plot(sizes_list, dec_avgs, marker='s', label="Decryption Time')
plt.xlabel('Quasigroup Size')

plt.ylabel('Average Time (milliseconds)')

plt.title(f' Performance vs Quasigroup Size')

plt.legend()

plt.grid(True)

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(sizes_list, cipher ent avgs, marker='0', label="Normalised
Shannon Entropy Ciphertext')

143

plt.plot(sizes_list, plain_ent_avgs, marker='s', label="Normalised
Shannon Entropy Plaintext')

plt.xlabel('Quasigroup Size')
plt.ylabel('Normalized Shannon Entropy")

plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs
Quasigroup Size')

plt.legend()
plt.grid(True)
plt.show()

return results

def measure phases performance custom(plaintext):
Use even number of phases only: 2, 4, 6, 8, 10
phases = list(range(2, 11, 2))
num_runs =5
results = {}

dna_bases =['A",'T','C','G', 'U']

for num_phase in phases:
enc_times = []
dec_times =[]
entropies_cipher = []

entropies_plain = []

for _in range(num_runs):
start = time.perf counter()
cipher, keys = encrypt_method(plaintext, dna bases, num_phase)

enc_time = (time.perf counter() - start) * 1000 # milliseconds

start = time.perf counter()
decrypt_method(cipher, keys)
dec_time = (time.perf counter() - start) * 1000 # milliseconds

144

entropy calculation (normalized)
h plain = normalized shannon_entropy(plaintext, dna_bases)

h_cipher = normalized shannon_entropy(cipher, dna bases)

enc_times.append(enc_time)
dec_times.append(dec_time)
entropies_plain.append(h_plain)
entropies_cipher.append(h_cipher)

results[num_phase] = {
'enc_avg': sum(enc_times) / num_runs,
'dec_avg': sum(dec_times) / num_runs,
'plain_entropy avg': sum(entropies plain) / num_runs,
'cipher_entropy avg': sum(entropies_cipher) / num_runs
}
Display average times only

print(f"Phases {num_phase}: Encryption Avg =
{results[num_phase]['enc_avg']:.6f} ms, "

f"Decryption Avg = {results[num_phase]['dec_avg']:.6f} ms"

f'"Normalised Shannon Entropy of Plaintext =
{results[num_phase]['plain_entropy avg']:.4f},"

f'"Normalised Shannon Entropy of Ciphertext =
{results[num_phase]['cipher entropy avg']:.4f}")

Plotting

phase_list = list(results.keys())

enc_avgs = [results[p]['enc_avg'] for p in phase list]

dec_avgs = [results[p]['dec_avg'] for p in phase list]

cipher ent avgs = [results[p]['cipher_entropy avg'] for p in phase _list]

plain_ent avgs = [results[p]['plain_entropy avg'] for p in phase list]

plt.figure(figsize=(10, 6))

145

plt.plot(phase list, enc_avgs, marker='0', label="Encryption Time")
plt.plot(phase list, dec_avgs, marker='s', label='"Decryption Time")
plt.xlabel("Number of Phases (Even numbers only)")
plt.ylabel('Average Time (milliseconds)')

plt.title(fPerformance vs Number of Phases')

plt.legend()

plt.grid(True)

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(phase list, cipher ent avgs, marker='o', label="Normalised
Shannon Entropy of Ciphertext')

plt.plot(phase list, plain_ent avgs, marker='s', label='Normalised
Shannon Entropy of Plaintext')

plt.xlabel('Number of Phases')
plt.ylabel('Normalized Shannon Entropy")

plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs
Number of Phases')

plt.legend()
plt.grid(True)
plt.show()

return results

print("\n=== Measuring Performance vs Quasigroup Size ===")

gs_results = measure quasigroup performance custom(user plaintext)

print("\n=== Measuring Performance vs Number of Phases ===")

phase results = measure phases performance custom(user plaintext)

146

Plot_Graph.py

import matplotlib.pyplot as plt

Graph of Normalised Shannon’s Entropy of Plaintext and Ciphertext of the
Proposed Method against Plaintext Length

Data from Tables 5.2 and Table 5.3
plaintext_lengths = [500, 1000, 1500, 2000, 2500, 3000]

normalised_entropy plaintext = [0.845886, 0.823226, 0.793238, 0.786977,
0.785779, 0.771054]

normalised_entropy_ciphertext =[0.999544, 0.999564, 0.999723, 0.999796,
0.999821, 0.999975]

plt.figure(figsize=(10, 5))

plt.plot(plaintext lengths, normalised entropy plaintext, marker='o',
label="Normalized Shannon's Entropy (Plaintext)")

plt.plot(plaintext lengths, normalised entropy ciphertext, marker='x',
label="Normalized Shannon's Entropy (Ciphertext)")

plt.title("Plaintext and Ciphertext Normalised Shannon's Entropy vs Plaintext
Length")

plt.xlabel("Plaintext Length and Ciphertext Length")
plt.ylabel("Normalised Shannon's Entropy of Plaintext and Ciphertext")
plt.legend()

plt.grid(True)

plt.tight layout()

plt.show()

Graph of encryption time for the three methods against plaintext length
Data from Table 5.5

plaintext lengths =[10, 20, 40, 80, 100, 500]

padmapriya times =[2, 4, 3, 5, 5, 8]

markovski times = [0.2402, 0.2899, 0.5242, 0.8386, 1.4333, 4.4841]
proposed _times = [0.4479, 0.5256, 0.5820, 0.6747, 0.7610, 2.5488]

147

plt.figure(figsize=(8, 5))
plt.plot(plaintext lengths, padmapriya times, marker='0', label='"Padmapriya’)
plt.plot(plaintext lengths, markovski times, marker='s', label='Markovski')

plt.plot(plaintext lengths, proposed times, marker=""', label='"Proposed")

plt.title('Encryption Time vs. Plaintext Length')
plt.xlabel('Plaintext Length')
plt.ylabel("Encryption Time (ms)')
plt.grid(True)

plt.legend()

plt.tight layout()

plt.show()

Graph of decryption time for the three methods against plaintext length
Data from Table 5.6

plaintext lengths = [10, 20, 40, 80, 100, 500]

padmapriya times = [2, 2, 3, 3, 3, 7]

markovski_times = [0.1739, 0.2510, 0.4756, 0.8060, 1.3891, 7.6478]
proposed_times = [0.1200, 0.2619, 0.4291, 0.8275, 1.0465, 5.3951]

plt.figure(figsize=(8, 5))
plt.plot(plaintext lengths, padmapriya times, marker='0', label='"Padmapriya’)
plt.plot(plaintext lengths, markovski times, marker='s', label='Markovski')

plt.plot(plaintext lengths, proposed times, marker=""', label='"Proposed")

plt.title('Decryption Time vs. Plaintext Length')
plt.xlabel('Plaintext Length')
plt.ylabel('Decryption Time (ms)")
plt.grid(True)

plt.legend()

plt.tight layout()

148

plt.show()

Graph of Normalised Shannon’s entropy of all three methods against
plaintext length

Data from Table 5.7

plaintext lengths = [500, 1000, 1500, 2000, 2500, 3000]

padmapriya = [0.860536, 0.864609, 0.861672, 0.858049, 0.858435, 0.863743]
markovski = [0.972287, 0.979534, 0.982073, 0.987947, 0.988624, 0.991953]
proposed = [0.999544, 0.999564, 0.999723, 0.999796, 0.999821, 0.999975]

plt.figure(figsize=(10, 6))

plt.plot(plaintext lengths, padmapriya, marker='0', label='"Padmapriya’,
linestyle="-")

plt.plot(plaintext lengths, markovski, marker='s', label='Markovski',
linestyle="-")

plt.plot(plaintext lengths, proposed, marker="""', label="Proposed', linestyle='-")

plt.title("Normalised Shannon Entropy vs. Plaintext Length", fontsize=14)
plt.xlabel("Plaintext Length", fontsize=12)

plt.ylabel("Normalised Shannon Entropy", fontsize=12)
plt.xticks(plaintext lengths)

plt.ylim(0.80, 1.005)

plt.grid(True, linestyle='"--', alpha=0.6)

plt.legend(loc="lower left', fontsize=10)

plt.tight layout()
plt.show()

149

Chi_Square_Test.py

import random

import matplotlib.pyplot as plt

DNA Bases and Encoding Rules
DNA BASES=['A",'T','C",'G','U']

ENCODING RULES = {
"Rule 1": {'00": 'C','01": 'T", '10": 'A", '11": 'G'},
"Rule 2": {'00": 'C','01":'A", '10": 'T", '11": 'G'},
"Rule 3": {'00": 'G','01": 'T", '10": 'A", '11": 'C"},
"Rule 4": {'00": 'G','01": 'A", '10": 'T", '11": 'C'},
"Rule 5": {'00": 'T",'01": 'C', '10": 'G', '11": 'A"},
"Rule 6": {'00": 'T",'01": 'G", '10": 'C', '11": 'A"},
"Rule 7": {'00": 'A",'01": 'C", '10":'G'", '11": 'T"},
"Rule 8": {'00": 'A",'01": 'G', '10": 'C', '11": 'T"}

}

DECODING RULES = {
rule: {v: k for k, v in mapping.items()}

for rule, mapping in ENCODING_RULES.items()

--- Conversion Functions ---
def text to binary(text):

return ".join(format(ord(ch), '08b') for ch in text)

def binary to_ text(binary_str):

return ".join(chr(int(binary_str[i:i+8], 2)) for 1 in range(0, len(binary_str),

8))

def binary to DNA(binary_str, mapping):
if len(binary_str) % 2 !=0:

150

binary str +="0'

return ".join(mapping[binary_str[i:i+2]] for i in range(0, len(binary_str), 2))

def DNA to binary(dna, mapping):

return ".join(mapping[base] for base in dna)

def text to DNA(text, mapping):
return binary to DNA(text to binary(text), mapping)

def DNA to_text(dna, mapping):
return binary to text(DNA to binary(dna, mapping))

--- Quasigroup and Parastrophe Generation ---
def generate latin_square(bases):
n = len(bases)

square = [[None]*n for _ in range(n)]

def valid(r, c, v):

return v not in square[r] and all(square[i][c] != v for 1 in range(n))

def backtrack(idx=0):
if idx == n*n:
return True
r, ¢ = divmod(idx, n)
for v in random.sample(bases, n):
if valid(r, c, v):
square[r][c] =V
if backtrack(idx+1):
return True
square[r][c] = None

return False

151

if not backtrack():
raise ValueError("Failed to generate Latin square")

return square

def convert square to table(square, bases):

return {bases[i]: {bases[j]: square[i][j] for j in range(len(bases))} for i in
range(len(bases))}

def generate_random_quasigroup_table(bases):

return convert_square to table(generate latin_square(bases), bases)

def compute parastrophes(Q):
bases = list(Q.keys())
P=[{b: {} for b in bases} for _in range(5)]
for x in bases:
for y in bases:
z1 = next(z for z in bases if Q[x][z] ==y)
z2 = next(z for z in bases if Q[z][y] == x)
1=

z3 = next(z for z in bases if Q[z][x] ==y)
74 = next(z for z in bases if Q[y][z] == x)
z5 = Q[yl[x]

P[O][x][y] = z1
PII][x]ly] =22
PI2][x][y] =23
P3][x]ly] = z4
P[4][x]y] = z5

return P

def generate_random_parastrophe table(Q):

return random.choice(compute parastrophes(Q))

--- Quasigroup Encryption/Decryption ---

152

def encrypt_phase(dna_input, leader, table):
prev, out = leader, "
for sym in dna_input:
c = table[prev][sym]
out+=c¢
prev=c

return out

defleft divide(a, c, table):

return next(m for m in table[a] if table[a][m] == ¢)

def decrypt phase(dna_cipher, leader, table):
prev, out = leader, "
for ¢ in dna_cipher:
m = left_divide(prev, c, table)
out +=m
prev=c

return out

from collections import Counter

from scipy.stats import chisquare

def chi_square uniform_test(ciphertext, bases):
observed = [ciphertext.count(b) for b in bases]
expected = [len(ciphertext) / len(bases)] * len(bases)
chi_stat, p_value = chisquare(f obs=observed, f exp=expected)

return chi_stat, p_value
def plot_ciphertext histogram(ciphertext, bases):

freq = Counter(ciphertext)

counts = [freq[b] for b in bases]

153

plt.figure(figsize=(6, 4))
plt.bar(bases, counts, color="skyblue', edgecolor='black")
plt.xlabel('DNA Bases')
plt.ylabel('Frequency")
plt.title('Histogram of Ciphertext Base Distribution')
plt.ylim(0, max(counts) * 1.2) # Add some padding
for i1, count in enumerate(counts):
plt.text(i, count + 1, str(count), ha='center', va='bottom")
plt.tight layout()
plt.grid(axis="y', linestyle="--', alpha=0.7)
plt.show()

--- Main with Metrics ---

n n

if name ==" main_ "
plaintext = input("Enter plaintext: ")

rule = random.choice(listtENCODING RULES .keys()))
enc_map = ENCODING RULES rule]

dec_map = DECODING RULES] rule]

Encode to DNA

dna plain = text to DNA(plaintext, enc_map)

Phase I encryption

leaderl = random.choice(DNA BASES)

Q = generate_random_quasigroup table(DNA BASES)
phasel = encrypt phase(dna plain, leaderl, Q)

Phase II encryption (parastrophe)

leader2 = random.choice(DNA BASES)

P = generate_random_parastrophe_table(Q)
final cipher = encrypt phase(phasel, leader2, P)

Simulate encryption

154

_ =encrypt_phase(phasel, leader2, P)

Decryption

phasel dec = decrypt phase(final cipher, leader2, P)
dna dec = decrypt phase(phasel dec, leaderl, Q)
decrypted text = DNA to text(dna dec, dec_map)

Output encryption/decryption results
print("\n--- Encryption ---")
print("Cipher DNA:", final cipher)

print("Leader1:", leaderl, " Leader2:", leader2, " Rule:", rule)

print("\n--- Decryption ---")
print("Decrypted Text:", decrypted_text)

chi_stat, p_value = chi_square uniform_test(final cipher, DNA BASES)
print("\n--- Chi-Square Uniformity Test ---")
print(f'Chi-Square Statistic: {chi_stat:.4f}")
print(f"P-Value: {p_value:.4f}")
if p_value > 0.05:
print("Result: Pass (Ciphertext appears uniformly distributed)")
else:

print("Result: Fail (Ciphertext may not be uniformly distributed)")

plot ciphertext histogram(final cipher, DNA BASES)

155

Plaintexts for Encryption

Plaintext for encryption of different lengths was generated by ChatGPT.

Plaintext Length Plaintext

10 Hello, Bob

20 Hello there, matey!!

40 In art and truth, beauty endures
always.

80 Knowledge grows when curiosity
meets dedication; each lesson shapes
true wisdom.

100 In the silent hours of dawn, gentle
light awakens dreams and kindles
hope in every heart, so healing

500 In the quiet embrace of nature, the

gentle murmur of a distant brook
creates a symphony that soothes the
soul. Each ray of sunlight filters
through the leaves, casting a mosaic
of shadows on the forest floor. The
whispering wind carries tales of
ancient times, while vibrant blossoms
add splashes of color to the
landscape. In this serene moment,
every heartbeat echoes the promise of
renewal and timeless beauty.Soft
echoes of nature remind us that every
ending births a new beginning. And
hold on!!

1000

Success is not final, failure is not
fatal. It is the courage to continue that
counts. Life is a journey filled with
ups and downs. What matters most is
how we respond to challenges. Stay
focused on your goals, work hard,
and never give up. Every obstacle is
an opportunity to learn. Surround
yourself with positive people who
inspire you. Time is precious, use it
wisely. Develop good habits and

156

maintain discipline. Reading expands
knowledge, while action brings
results. Small consistent efforts lead
to big changes. Be kind, stay humble,
and help others when possible. True
happiness comes from within, not
from material possessions.
Appreciate the little things in life.
Laughter is the best medicine, enjoy
moments of joy. Travel, explore, and
experience new cultures. Keep an
open mind and embrace diversity.
Mistakes are lessons in disguise,
learn from them. Stay patient, as
great things take time. Believe in
your potential and keep pushing
forward. The future belongs to those
who are prepared.

1500

Communication is the foundation of
strong relationships. Whether in
personal or professional life, clear
and respectful dialogue builds trust.
Listening is just as important as
speaking, understand before being
understood. Technology has
transformed how we connect, but
face-to-face interactions remain
invaluable. Empathy allows us to see
things from others' perspectives.
Honesty fosters deeper connections,
even when the truth is difficult.
Conflict is natural, but resolution
requires patience and compromise.
Words have power, use them wisely
to inspire, not hurt. A simple thank
you or I appreciate you can brighten
someone's day. Teamwork achieves
more than individual effort alone.
Collaboration brings diverse ideas
together for innovation. Leadership is
about guiding, not controlling,
empower others to grow. Time
management increases productivity

157

and reduces stress. Prioritize tasks
based on importance and urgency.
Breaks are essential for maintaining
focus and creativity. Health is wealth,
exercise regularly, eat well, and sleep
sufficiently. Mental well-being is
equally crucial, practice mindfulness
and self-care. Financial discipline
ensures long-term security, save and
invest wisely. Lifelong learning
keeps the mind sharp, read books,
take courses, and seek new skills.
Adaptability is key in a fast-changing
world. Stay curious and open to new
experiences. Gratitude turns what we
have into enough. Positivity attracts
opportunities, maintain an optimistic
outlook. Keep at it.

2000

Education is the most powerful
weapon which you can use to change
the world. Knowledge empowers
individuals and transforms societies.
A well rounded education includes
not only academics but also
emotional and social learning.
Critical thinking enables us to
analyze information objectively.
Creativity fuels innovation and
problem solving. Curiosity drives
discovery, never stop asking

questions. Reading broadens
perspectives and enhances
imagination. Writing clarifies
thoughts and improves
communication. Mathematics

teaches logic and precision. Science
explains the wonders of the universe.
History provides lessons from the
past to shape a better future. Art and
music express emotions beyond
words. Physical education promotes
health and teamwork. Technology is

158

a tool, use it responsibly and
ethically. Digital literacy is essential
in the modern world. Respect for
diversity fosters inclusive
communities. Kindness costs nothing
but means everything. Volunteering
strengthens empathy and social
bonds. Environmental awareness
ensures a sustainable planet, reduce
waste, recycle, and conserve
resources. Small eco friendly habits
make a big difference. Financial
literacy helps manage money wisely,
budgeting, saving, and avoiding debt.
Entrepreneurship encourages
innovation and self reliance. Hard
work beats talent when talent does
not work hard. Discipline turns goals
into achievements. Time is non
renewable, spend it on what truly
matters. Failure is feedback, not
defeat, learn and improve. Resilience
helps bounce back from setbacks.
Patience yields long term rewards.
Self confidence comes from
preparation and practice. Humility
keeps us grounded despite success.
Integrity means doing the right thing
even when no one is watching.
Honesty builds trust in relationships.
Courage is taking action despite fear.
Persistence turns dreams into reality.
Gratitude brings contentment and joy.
Positivity attracts opportunities and
happiness. Laughter is universal
medicine for the soul. Smiles.

2500

The journey of a thousand miles
begins with a single step. Setting
clear goals provides direction and
motivation. Break big ambitions into
smaller manageable tasks.
Consistency is more effective than

159

occasional intensity. Progress may be
slow but perseverance ensures
success. Self discipline is choosing
what you want most over what you
want now. Time management
maximizes productivity, focus on
priorities first. Distractions are
everywhere, stay committed to your
objectives. Learning from mistakes
turns failures into stepping stones.
Feedback helps refine skills and
strategies. Adaptability is crucial in
an ever changing world. Embrace
challenges as opportunities to grow.
Resilience means bouncing back
stronger after setbacks. A positive
mindset attracts solutions not
problems. Gratitude shifts focus from
what is lacking to what is abundant.
Happiness comes from within not
external validation. Kindness creates
ripples of positivity, small acts
matter. Respect differences, diversity
enriches perspectives. Effective
communication prevents
misunderstandings, listen actively.
Body language conveys unspoken
messages, be mindful of it. Emotional
intelligence fosters better
relationships. Patience avoids rushed
decisions with long term
consequences. Integrity builds trust
and credibility. Honesty even when
difficult strengthens character.
Accountability =~ means owning
actions and their outcomes.
Teamwork achieves collective
success, value each member and their
contribution. Leadership inspires
others through vision and example.
Mentorship shares knowledge and
accelerates growth. Financial literacy
ensures wise money management,

160

save invest avoid debt. Health is true
wealth, exercise eat well sleep
sufficiently. Mental well being
requires self care and stress
management. Lifelong learning
keeps the mind sharp, read explore
stay curious. Creativity solves
problems in innovative ways. Critical
thinking evaluates information
objectively. Technology should
enhance life not control it. Digital
detoxes maintain balance in a
connected world. Nature rejuvenates
the spirit, spend time outdoors.
Sustainability protects the planet for
future generations. Reduce waste
recycle and support eco friendly
practices. Volunteering gives back to
the community. Family bonds
provide unconditional love and
support. Friendships enrich life with
shared experiences. Travel broadens
horizons and fosters cultural
appreciation. Laughter relieves stress
and strengthens connections. The
world awaits.

3000

Growth is a continuous process that
requires patience, discipline, and
consistent effort. No achievement is
born overnight. Progress may be slow
at times, but it is steady dedication
that brings lasting success. Small
steps taken daily lead to major
milestones. Believe in your journey,
even when the path seems unclear.
Stay committed to your goals, and
trust that your hard work will pay off.
Challenges are opportunities in
disguise. They teach us to be strong,
to adapt, and to evolve. Difficult
moments are often the ones that
shape our character. Stay focused on

161

what matters, and let go of what you
cannot control. The most powerful
thing you can do is take responsibility
for your actions. Accountability
brings growth. Learn from each
mistake, reflect on each failure, and
use them as stepping stones. Every
setback carries a lesson. Your
response determines your future.
Attitude shapes experience.
Approach life with optimism and
gratitude. Appreciate the little things,
and celebrate progress. Kindness and
humility open doors. Treat others
with respect, even when you
disagree. Empathy builds
understanding and reduces conflict.
Communication is the bridge
between confusion and clarity. Listen
actively and speak with intention.
Words carry weight, so use them to
uplift. Honesty nurtures trust, and
trust strengthens relationships. In any
team, collaboration leads to
innovation. Diverse ideas lead to
better solutions. Everyone has a role
to play. Great leaders inspire,
support, and serve. Leadership is not
about power, but about guidance.
Encourage others to grow, and you
will grow too. Time is a limited
resource. Use it wisely. Organize
your day, prioritize your tasks, and
rest when needed. Productivity is not
about doing more, but about doing
what matters. Avoid distractions that
steal your focus. Discipline is the key
to freedom. Healthy routines build
resilience. A balanced life includes
physical, mental, and emotional well-
being. Take care of your body
through exercise and rest. Eat
nourishing food. Sleep deeply.

162

Maintain mental health through
mindfulness and reflection. Make
space for silence, nature, and
stillness. These moments refresh your
soul. Let go of comparison. Your
journey is unique. Measure your
progress by your own growth. Stay
true to your values. Integrity is a
compass that guides you in difficult
times. Even when no one is watching,
do what is right. Be brave enough to
start. Be patient enough to keep
going. Believe in your ability to
change and adapt. Stay curious, and
continue learning. = Knowledge
expands our understanding and
unlocks potential. Read, ask
questions, and welcome feedback.
Feedback is a gift that helps us
improve. Do not fear failure, for it is
part of learning. What matters is that
you rise each time you fall. Keep
your vision clear and your heart
strong. Support those around you.
Build communities of
encouragement and respect. Share
your lights, and it will multiply.
Practice gratitude every day. It
challenges you.

3500

Success is not final, and failure is not
fatal. What truly matters is the
courage to continue when the path
gets hard. Life is a journey filled with
ups and downs, and every experience
shapes who we become. Challenges
are not meant to break us, but to help
us discover our strengths. With
perseverance, obstacles become
opportunities. Stay focused on your
goals, work hard, and never give up.
Every small step forward matters.
Consistency beats intensity. The

163

people we surround ourselves with
influence our mindset. Choose
positivity and kindness. Encourage
others, and they will uplift you in
return. Listening is a powerful skill,
often more impactful than speaking.
Understand before trying to be
understood. In communication,
clarity and respect build lasting trust.
Honesty creates deep connections,
even when the truth is difficult. Be
truthful, but always gentle. Empathy
allows us to see the world through
another person's eyes. It softens
conflict and builds bridges. Mistakes
are part of growth. Learn from them,
reflect, and improve. Progress is not
always visible, but each effort builds
momentum. Time 1is our most
precious resource. Use it with
intention. Prioritize tasks that align
with your values and goals. Breaks
are necessary for sustained creativity
and energy. Rest is not a reward, but
a requirement. Good habits are the
foundation of long term success.
Discipline brings freedom. Self
control lets you make better choices.
Confidence comes from preparation
and action. Face your fears, and they
lose their power. Resilience is built in
adversity. We grow when we adapt
and endure. Adaptability allows us to
thrive in a changing world. Keep an
open mind, be willing to learn, and
welcome new ideas. Curiosity leads
to discovery. Reading expands our
knowledge and imagination. Writing
helps us organize thoughts and
communicate clearly. Math teaches
logic and precision. Science reveals
the wonders of the universe. History
offers lessons to guide our future. Art

164

and music express what words
cannot. Physical activity strengthens
body and mind. Nutrition fuels
performance. Sleep restores us.
Mental health is equally important.
Practice mindfulness and self
compassion. Reach out when you
need support. Financial literacy
builds stability. Save regularly, spend
wisely, and invest in what matters.
Simplicity often leads to clarity. Let
go of what no longer serves you.
Gratitude turns what we have into
enough. Celebrate progress, no
matter how small. Positivity attracts
new opportunities. A smile can
change someone's day. Laughter
lightens heavy moments. Acts of
kindness create ripples of joy. Be
generous not only with resources, but
with your time and attention.
Leadership is not about control, but
about inspiration and service. Great
leaders empower others.
Collaboration brings diverse
strengths together. Teamwork
achieves more than individual effort.
Conflict is natural, but resolution
requires empathy and patience. Seek
solutions, not blame. Everyone
makes mistakes. Forgiveness sets us
free. The past cannot be changed, but
the future is unwritten. Dream big,
but act with purpose. Set intentions
and take consistent steps. Stay true to
your values. Integrity is doing the
right thing when no one is watching.
Your actions define your character.
Never underestimate the impact of
your presence. The world needs your
unique voice and talents. Let go of
perfection and embrace progress.
Life is not a race. It is a dance of

165

moments, a song of connection, a
canvas for your story. You are
enough. Keep going.

5000

In the heart of a distant land, where
golden hills roll into the horizon and
the skies remain painted in eternal
hues of lavender and gold, there lies
a village untouched by time. It is said
that the people of this village live in
harmony, their lives intertwined not
by force or necessity, but by a deep
unspoken understanding passed
down through generations. Every
morning, as the sun rises behind the
snow dusted peaks of Mount Aeloria,
the villagers awaken to the sound of
chimes hanging in doorways, each
one uniquely tuned to the family that
lives within. The soft music floats
through the air like a hymn of unity, a
reminder of the rhythm that binds all
who dwell there. Among the villagers
is a young woman named Elira, a
weaver of exceptional talent. Her
tapestries tell stories more vividly
than words, depicting events not yet
occurred and memories long
forgotten. Some say she was born
with the gift of foresight, though she
claims her visions come only through
listening deeply to the wind and
watching how the leaves fall on her
loom. Eliras days are spent in her
sunlit studio at the edge of the forest,
where birds gather on the windowsill
and sing as she works. Her most
prized creation, a tapestry titled The
Thread of Truth, is kept hidden
beneath layers of linen, shown only to
those who truly seek it. It tells the
story of a child born under a crimson
moon, destined to unite the broken
realms. One evening, as twilight

166

began to settle over the village, a
stranger arrived on horseback. Clad
in a cloak woven from the night itself,
the stranger spoke in riddles and
carried a map inked in silver. He
asked for Elira, for he had heard of
her gift, and he believed she alone
could interpret the hidden path that
the stars had laid before him. Elira
welcomed him into her studio,
offering tea brewed with petals of the
dreaming rose, a flower known to
calm the mind and open the heart. As
the fire crackled in the hearth, the
stranger unrolled his map, revealing
constellations unfamiliar to any
known chart. Elira studied them in
silence, her fingers tracing the lines
with reverence. Then she spoke. This
path, she whispered, is not one of
direction but of transformation. You
will not find your way by walking,
you must become the road itself.
Puzzled but compelled, the stranger
stayed in the village for many moons,
learning its rhythms, helping in the
fields, listening to the stories told by
the elders beside the sacred flame.
Slowly, he changed. The weight he
carried in his shoulders eased, the
sharpness in his gaze softened, and
laughter found its way into his voice.
Elira watched him with quiet pride.
She knew the journey was not about
reaching a place, but about becoming
someone new. And so, when the time
came for him to leave, he did not take
the map, for he no longer needed it.
He carried the stars within him now.
Years passed, and tales of a
peacekeeper began to spread beyond
the valleys and rivers, of a man who
could unite feuding clans with a

167

single story, who healed wounds by
listening, and who bore on his cloak
the threads of a tapestry never seen.
Elira, older now but still steady of
hand and bright of eye, continued to
weave. Her newest creation, The
Tapestry of Echoes, depicted
moments of silence shared between
strangers, the strength of unspoken
bonds, and the beauty of stories that
require no words. Visitors came from
afar to witness her art, not only for its
beauty, but for the feeling it stirred, of
something ancient and sacred
remembered. The village endured,
untouched by war or famine, guided
by the quiet wisdom of those who
knew that power lies not in
dominance, but in connection. And in
this way, the golden hills continued to
roll, the chimes continued to sing,
and the wind whispered the names of
those who had learned to listen. As
we reflect upon stories such as Eliras,
it becomes clear that the greatest
journeys are not always measured in
miles. Some take place entirely
within the soul. And perhaps, in this
ever turning world, it is these quiet
revolutions of spirit that shape our
future more than any conquest or
discovery. In cities far beyond the
village, under skies dimmed by
towers and glass, there are still those
who feel the echo of Eliras song.
They may not know its origin, but
they pause at unexpected moments,
when a breeze carries the scent of
distant flowers, when a stranger
offers kindness with no expectation
of return, or when silence feels as full
as speech. These are the threads of the

old world, still woven into the new.

168

For every soul that listens, a loom
begins to turn. Stories begin to form
not in ink, but in experience, not on
parchment, but in the living tapestry
of our days. This is how we
remember, not through monuments
or legends alone, but through our
actions, our choices, and the way we
touch one anothers lives. And so, dear
reader, you too are a thread. May you
weave wisely, love fiercely, and listen
well. The tapestry is vast, and your
pattern is very exquisite.

169

