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ABSTRACT 

DNA cryptography is an interdisciplinary field of cryptography inspired 

from DNA computing which uses DNA molecules’ role as information carrier 

for cryptographic purposes. In this thesis, we present an improvement on the 

existing algorithm with the implementation of quasigroup in the process of 

encryption and decryption of DNA cryptography. As opposed to traditional 

cryptography, which is based on numerical values, the proposed scheme makes 

use of DNA bases as elements of a quasigroup and unlike conventional 

approaches that rely solely on standard DNA bases (A, T, C, G), the proposed 

method introduces a DNA base U as an additional element, which appears only 

in the process of encryption. The encryption process involves 2 phases, namely 

Phase I, in which the DNA form of the plaintext undergoes transformation 

through a randomly generated leader and a quasigroup of order 5, and Phase II, 

in which the process repeats itself but the quasigroup is replaced by one of its 

random parastrophes. The utilisation of quasigroup operations for the proposed 

cryptographic scheme provides a mathematical foundation for data 

transformation. Notably, since the total number of quasigroups of order 𝑛 

increases exponentially with 𝑛, this makes them advantageous for constructing 

cryptosystems with extensive key space, thus ensuring enhanced security 

without increasing computational complexity. In summary, this thesis proposes 

a novel, two-phase cryptographic scheme that successfully integrates 

quasigroup operations with DNA encoding. The introduction of the Uracil base 

and the use of parastrophes were shown to produce ciphertext with near-ideal 
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entropy, providing enhanced security against statistical attacks while 

maintaining linear-time efficiency suitable for larger plaintexts.  
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CHAPTER 1: INTRODUCTION 

1.1 Organisation of Chapters 

This thesis is structured into six chapters. Chapter 1 introduces the 

fundamental concepts of cryptography which includes classical and modern 

cryptographic system and provides background information on DNA 

cryptography and quasigroup-based cryptography. The motivation for 

integrating quasigroup operations in DNA-based cryptographic system is also 

outlined in this chapter. Chapter 2 presents a comprehensive literature review 

on the history and related works in cryptography, DNA cryptography and 

quasigroup-based cryptography. Chapter 3 outlines the methodology adopted in 

this chapter. It covers the basics of DNA cryptography (such as DNA encoding 

and decoding rules), quasigroup theory (including definitions, properties and 

parastrophes), and the encryption and decryption functions. It also introduces 

the proposed encryption scheme. Chapter 4 focuses on the implementation of 

the proposed system, including the algorithm design and demonstrations. 

Chapter 5 covers the results and discussion of the study. This includes the 

security analysis of the proposed method, performance evaluation through 

efficiency and complexity analysis as well as comparative analysis with selected 

existing DNA and quasigroup-based cryptosystem along with trade-offs in 

quasigroup size and encryption phases. Finally, Chapter 6 concludes the thesis 

by summarising the contributions, highlighting limitations and suggesting 

directions for future work, followed by references and appendices. 
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1.2 Introduction to Cryptography 

 

Cryptography is the pillar of modern information security, which is 

crucial for ensuring the confidentiality, integrity and authenticity of digital 

communication. Confidentiality guarantees that only authorised individuals can 

access the encrypted data. Integrity assures that no alterations are made to the 

message during transmission, while authenticity ensures that the message 

transmitted is genuine and originates from a trusted source.  

Living in a digital era where data security has become an overwhelming 

concern, there is a constant need for innovative cryptographic systems to 

safeguard personal, corporate and government data. At present, modern 

cryptosystems are expected to maintain strong security measures without 

sacrificing efficiency. The growing interest in cryptosystems which are both 

computationally simple and cryptographically strong continues to increase as 

most security environments possess limited storage and processing power.  

Generally, cryptography is broadly divided into two classifications, 

classical cryptography, which predates the 1980s, and modern cryptography, 

which has developed in the years since.  

1.3 Classical Cryptography 

Classical cryptography is more commonly known as “breakable” 

ciphers as they are designed in a nonrigorous way which causes them to be 

terribly vulnerable to various attacks [1]. The methods in this type of 

cryptography primarily relied on manual techniques such as pen-and-paper 

ciphers or early computers. There are two main types of classical cryptography: 
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substitution ciphers and transposition ciphers. In short, substitution ciphers are 

ciphers where each letter of the plaintext is replaced by another, and 

transposition ciphers are ciphers where the letters arranged in different orders 

[2], [3]. The more commonly known examples of these ciphers are Caesar 

cipher, Vigenère Cipher and Scytale cipher. While these classical ciphers have 

provided a strong foundation for early cryptographic techniques, they have 

become extremely susceptible to attacks with the introduction of modern 

computers which has the ability to solve complex problems with great speed. 

1.4 Modern Cryptography  

 In modern cryptography, cryptosystems are developed based on 

complexity theory. In simpler terms, complexity theory is the theory of 

computational difficulty of a given problem, some prime examples of difficult 

problem include integer factorisation problem and discrete logarithm problem 

[4]. Two major types of cryptographic systems in modern cryptography are 

symmetric key cryptography and asymmetric key cryptography. In symmetric 

key cryptography, one single key is used for both encryption and decryption 

processes [5]. Symmetric key cryptography is infamous for being efficient and 

fast, however, it requires a secure channel for key transmission, which can be a 

limitation in some scenarios. Examples of such systems include Data 

Encryption Standard (DES) [6] and its more advanced successor, the Advanced 

Encryption Standard (AES) [7], which has become the global standard for 

secure data encryption. For asymmetric key cryptography, also known as public 

key cryptography, the process requires a pair of keys, one public and the other 

private [5]. Asymmetric key cryptography ensures that even if the public key is 

widely shared, only the holder of the private key can decrypt the information. 
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RSA and Elliptic Curve Cryptography (ECC) are examples of such 

cryptography. Modern cryptography has evolved from the principles of classical 

cryptography and plays a crucial role in meeting the security needs of the current 

advanced digital era.  

1.5 Basic Concepts 

 It has been a known fact that cryptography has been utilised throughout 

decades for purposes of secure communication between two parties. In its 

simplest form, two individuals who want to communicate with each other are 

commonly referred to as Alice and Bob. When Alice, 𝐴 wishes to convey a 

secret message to Bob, 𝐵, they will both agree on a cryptographic method and 

a shared secret key. The key is used to convert the original message (plaintext) 

into unintelligible text (ciphertext). This process is called encryption. Bob, who 

has a key in possession as well, is able to decipher the text back to its original 

form. This process is referred to as decryption. The scenario above is described 

more clearly using the following flow map: 

 

  

 

Figure 1.1 Flow Map of Encryption and Decryption Process 

where 𝑝 is plaintext, 𝑐 is ciphertext, 𝑘 is key, 𝑒 is encryption function and 𝑑 is 

decryption function. The message is transmitted through an insecure channel 

whilst the key is distributed through a secure channel between Alice and Bob.  

𝑝 𝑐 𝑐 𝑝 
Alice 

Encryption 
𝑒(𝑝) = 𝑐 

Insecure 
channel 

Decryption 
𝑑(𝑐) = 𝑝 Bob 

Secure channel 
𝑘 𝑘 
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Cryptanalysis, on the other hand, is the practice of analysing and 

breaking cryptosystems. While cryptography aims to protect information, 

cryptanalysis seeks to exploit weaknesses. In cryptography, an adversary is a 

malicious entity, which aims to uncover confidential information or data. It has 

always been a cryptographer’s instinct to assume that adversaries are able to 

intercept the insecure channel to retrieve any information [8], [9]. Hence, in 

order to protect secret data, it is always crucial to not rely heavily on a simple 

and straightforward algorithm to encipher and hide the data to be conveyed.  

1.6 Types of Attacks in Cryptanalysis  

Adversarial Models/ Capabilities 

In cryptographic systems, it is necessary to formally define the 

capabilities and goals of potential adversaries in order to establish rigorous 

security notions which allows for provable guarantees about a scheme’s 

resilience against various attacks [10]. This section therefore distinguishes 

between two key aspects: (i) Adversarial Models, which describe the level of 

access an adversary has to the cryptosystem; and (ii) Adversarial Goals, which 

describe the specific security property the system must satisfy under such 

attacks. Together, these formalise the security notions used to assess the 

robustness of a cryptographic scheme.  

1.6.1 Adversarial Models (Capabilities) 

Adversarial models are often described to be the information and level of 

interaction an attacker may have with the cryptographic system, ranging from 

passive observation to active manipulation. These capabilities determine the 
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adversary’s strength and the cryptosystem’s threat landscape. The following 

adversarial capabilities are considered: 

Ciphertext-Only Attack (COA) 

In a COA, the attacker only has access to a sequence of ciphertexts. The attacker 

aims to break the system by only observing the ciphertexts. In [11], it is stated 

that a cryptosystem is deemed completely insecure if it is not resistant against 

this attack. In addition, any public-key encryption scheme must be secure 

against chosen-plaintext attacks (CPA); otherwise, it cannot be considered a 

practical cryptosystem. 

Known-Plaintext Attack (KPA) 

The attacker possesses both the plaintext and corresponding ciphertext in a KPA. 

With access to this information, the attacker could attempt to reverse-engineer 

the encryption process by using frequency analysis. Some examples of KPA 

include linear and differential cryptanalysis [12]. 

Chosen-Plaintext Attack (CPA) 

In a chosen-plaintext attack, the attacker is able to temporary infiltrate the 

cryptosystem and choose arbitrary plaintexts and obtain their corresponding 

ciphertexts from the encryption system. Generally, if a cryptosystem is 

breakable under a weaker model (e.g., known-plaintext attack), then it is also 

breakable under stronger models (e.g., chosen-plaintext attack) [13].  

Chosen-Ciphertext Attack (CCA) 

In this scenario, the attacker can choose arbitrary ciphertexts and obtain their 

decrypted plaintexts. By iteratively modifying the ciphertext and observing the 
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changes in the decrypted output, the adversary can gradually recover the secret 

message [11]. 

Brute-Force Attack 

A brute-force attack involves systematically trying all possible keys until the 

correct one is found. The feasibility of this method depends on the size of the 

key space. This attack becomes infeasible for algorithms with large key spaces 

as it can be time-consuming. Modern encryption schemes are designed to have 

key lengths that make brute-force attacks computationally infeasible within a 

reasonable time frame [9], [14]. 

These models form a hierarchy of adversarial strength, where CCA is strictly 

more powerful than CPA, and so forth. Demonstrating security against a 

stronger adversarial model inherently implies security against weaker ones.  

1.5.2 Adversarial Goals (Security Notions) 

Beyond defining what adversaries can do, it is also important to specify 

what the attacker aims to achieve under these attack models. The security of a 

cryptosystem is evaluated with respect to indistinguishability properties, which 

formalise the confidentiality requirement: ciphertexts should not reveal any 

meaningful information about the corresponding plaintexts. This is expressed 

through standard game-based security notions.  

Indistinguishability under Chosen-Plaintext Attack (IND-CPA) 

The adversary gains access to an encryption oracle and attempts to distinguish 

ciphertexts of chosen messages [15]. This is the minimal acceptable security for 

encryption schemes, ensuring semantic security under passive attacks.  
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Indistinguishability under Chosen-Ciphertext Attack (IND-CCA) 

IND-CCA security extends IND-CPA security by granting the adversary access 

to a decryption oracle, except for the challenge ciphertext [15]. A cryptosystem 

satisfying IND-CCA security maintains confidentiality even in the presence of 

adversarial tampering or partial compromise of the decryption process. 

Both IND-CPA and IND-CCA are consistent with semantic security, 

which asserts that ciphertexts reveal no partial information regarding plaintexts. 

The standard security goal in modern cryptography is indistinguishability, the 

inability of an adversary to distinguish between encryptions of two different 

messages. These indistinguishability-based notions formalised confidentiality 

in modern cryptography. A scheme that satisfies IND-CCA is also secure against 

all weaker adversarial models, while IND-CPA security guarantees protection 

in contexts where only encryption oracle access is available.  

 

1.7 DNA Cryptography 

DNA cryptography possesses many potentials from its high storage 

capacity to massive parallelism. The idea of DNA cryptography stems from the 

properties of DNA molecules to store, process and transmit information. 

Basically, DNA cryptography functions on the concept of DNA computing 

which utilises 4 DNA bases i.e. Adenine (A), Guanine (G), Cytosine (C) and 

Thymine (T) to perform computations. The concept for DNA information 

storage was first proposed by the American physicist, Richard P. Feynman in 

1959 [16]. In the current system, the information is encoded in binary form 

before being encoded into DNA form through DNA synthesis technology and 
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subsequently stored. As we approached the 21st century, with the development 

of 5G, Internet of Things (IoT) and artificial intelligence (AI), high density and 

long-term storage solutions have become a worrying necessity. The global data 

volume is expected to reach 175ZB (zettabytes) by 2025 according to the 

Internet Data Center (IDC) and will continue to grow with an annual rate of 

31.8%, far exceeding the storage capacity of any currently available storage 

solutions [17]. As we reach 2025, forecasts suggest that this trend will only 

continue and by 2040, the global datasphere could reach as much as 5000ZB if 

the current growth rate persists [18]. DNA storage, in theory, can encode two 

bits per nucleotide (nt) or 455 exabytes (1 billion gigabytes) per gram of single-

stranded DNA maximum. To put this into perspective, one cubic decimetre of 

DNA solution has the potential to store one trillion bits of binary data [19]. It is 

far denser compared to any traditional storage media, which proves its great 

potential in cryptographic applications.  

Compared to traditional silicon-based computers, DNA computers 

possess certain advantages, most notably its massive parallelism, high data 

density and minimal energy requirement [20]. Unlike traditional computers 

which process tasks sequentially, DNA computers have the ability to perform 

many operations simultaneously. Millions of DNA sequences can be 

synthesised and read at the same time, which enable simultaneous processing of 

vast amounts of data. The computing speed of a DNA computer can reach up to 

1 billion times per second and its power consumption is only equal to one-

billionth of a traditional computer [19], [21]. This property of DNA computing 

allows it to solve many complex problems faster than any conventional method. 

For instance, Adleman’s seminal 1994 experiment solved a seven-node 
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Hamiltonian path problem in a single biochemical reaction using DNA strands 

to represent graph nodes and edges [22]. The molecular processing occurred in 

parallel, with trillions of molecules exploring all possible paths simultaneously, 

achieving in minutes what digital computers would take far longer to enumerate 

[22].    

As mentioned in [23], various research is currently at works over the 

world to introduces novel DNA cryptographic approaches and improve current 

methods in this field. It is also stated that in coming decades when DNA 

computers are available, it would be able to replace the current silicon-based 

technology. It should also be noted that Luca Cardelli from Microsoft has taken 

the lead to explore the field of DNA computing [23]. However, it is a fact that 

DNA cryptography is still at infancy stage and is faced with a myriad of 

unresolved challenges. Even with a growing number of researchers contributing 

to the field, it has yet to achieve maturity in either theory or practical. Current 

DNA-based methods depend heavily on advanced laboratory procedures, and 

there is yet a unified theoretical framework for employing DNA molecules in 

cryptographic applications [24]. 

1.8 Quasigroup-based Cryptography 

Quasigroup-based cryptography, a cryptographic technique built upon 

nonassociative algebraic structures known as quasigroups, whose flexible 

structure and large size had deemed it suitable for designing lightweight, high-

speed and efficient cryptosystems [25]. Although less commonly used than 

groups or fields (some well-studied algebraic structures in mathematics), 
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quasigroups possess distinctive features that make them highly suitable for 

modern cryptographic applications. 

The main factor which allows quasigroup theory to be applied in the 

field of cryptography is vast number of quasigroup operations over a given finite 

set [26]. The third party would face difficulty in uncovering the encrypted 

message if these operations are used to define the encryption and decryption 

processes [26]. Unlike the usual group-based cryptosystems, where operations 

tend to follow predictable patterns due to properties such as associativity and 

the existence of identity elements. Quasigroup-based systems present no such 

regularities as each element in a quasigroup table (Latin square) appears only 

once per row and column, thus ensuring that the transformation of input symbols 

yields unique and non-repeating results. This nonlinearity significantly 

increases resistance to attacks such as linear and differential cryptanalysis which 

exploit structural patterns in encryption schemes. For instance, the INRU cipher 

utilises quasigroup-based string transformations to achieve high nonlinearity 

which strengthens the system against linear and differential cryptanalysis [27]. 

There are also several other quasigroup-based methods which have been proven 

to be resistant against differential cryptanalysis [27], [28], [29], [30]. 

Quasigroup-based cryptography is also a strong candidate for 

lightweight cryptography, especially in resource-constrained environments such 

as embedded systems, wireless sensor networks, and Internet of Things (IoT) 

devices [31]. There is a study on an efficient quasigroup block cipher which 

highlights its low memory and computational requirements, rendering them 

suitable in resource-constrained settings [32]. Moreover, the construction of 
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cryptographically strong 4 × 4-bit S-boxes using quasigroups of order 4 has 

been proposed as a method for lightweight cryptographic applications [33]. 

Traditional cryptographic algorithms often rely on group-based 

structures or number-theoretic problems, which, while effective, may face 

limitations in computational efficiency or vulnerability when it comes to future 

quantum attacks. As an example, widely used cryptosystems such as RSA and 

ECC are susceptible to quantum attacks whilst quasigroup-based cryptographic 

schemes are able to present alternative approaches that may resist quantum 

attacks more effectively. In the work by Nager D. in 2021 [34], the proposed 

Xifrat cipher, which is based on multiple quasigroups with restricted 

commutativity, is shown to have a quantum attack complexity of approximately 

2!!". This is significantly higher than the 2#$ quantum attack complexity of 

AES-128 under Grover’s algorithm, thereby suggesting stronger post-quantum 

security. This result underscores the promising potential of quasigroup-based 

cryptosystems not only in modern cryptography but also in post-quantum 

cryptographic design, particularly in symmetric key environments where 

lightweight and efficient structures are needed without compromising security 

[34]. 

 In addition to their cryptographic strength, quasigroups have also 

contributed to parallel processing and high-speed encryption, which are 

increasingly important in today’s digital landscape. Due to their nonassociative 

nature, quasigroup operations allow each symbol in a message to be encrypted 

independently of others. In contrast to group-based operations which often 

depend on the outcomes of previous computations, quasigroup-based 

transformations can be applied across all data points simultaneously, enhancing 
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overall efficiency without compromising the security. A notable example is the 

Multivariate Quadratic Quasigroup (MQQ) cryptosystem, which has 

demonstrated exceptional performance in terms of encryption and decryption 

speeds [35]. Implemented on four Xilinx Virtex-5 FPGA chips running at 

276.7MHz, the MQQ achieves an encryption throughput of 44.27 Gbps, which 

is 10,000 times faster than RSA implementations on similar FPGA platforms. 

This remarkable speed is attributed to the efficient use of quasigroup-based 

transformations, which facilitate parallel processing and high-speed encryption.  

Other research has also shown that quasigroup-based S-boxes can be 

implemented efficiently in hardware with reduced area and power consumption 

[36]. For instance, a study demonstrated over a 40% area reduction compared 

to lookup table-based implementations and more than a 16% area reduction in 

a parallel implementation of the PRESENT cipher. These efficiencies are due to 

the properties of quasigroups which allow for parallelisable operations and 

compact hardware designs. The MQQ stream cipher, which combines a linear 

feedback shift register (LFSR) with a quasigroup filter, is another example of a 

high performance quasigroup-based encryption system [37]. The quasigroup 

filter enhances the cipher's performance by enabling parallel processing and 

efficient data handling, making it well-suited for high-speed encryption 

applications. 

1.9 Motivation of Using Quasigroup with DNA Cryptography 

With the development of DNA computers, DNA cryptography does 

provide massive parallelism by enabling simultaneous operations on multiple 

DNA bases. However, for applications with groups, parallelism is partially 

limited due to structural constraints caused by group properties. Groups have 
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certain algebraic properties that must always hold, such as associativity, 

existence of identity element and inverses. To maintain these properties, group 

operation often depends on prior results. Therefore, group-based cryptographic 

systems often force sequential dependencies in their operations, thus making it 

hard to process all elements simultaneously and independently, even if DNA 

computing’s parallelism is available. With that being said, for groups, DNA 

computing’s parallelism can still be applied across multiple DNA strands. For 

example, if you have 1000 DNA sequences, you can process each sequence 

simultaneously, but within each sequence, the group operation remains 

constrained by sequential dependencies. Now compared to quasigroups, since 

quasigroups do not require associativity, the transformation of each base is 

independent of others. Hence, DNA’s parallelism can be fully exploited by 

transforming all bases across all strands simultaneously.  

In addition to parallelism, security through nonlinearity is another 

reason for selecting quasigroups. As previously mentioned, a quasigroup 

operation output does not follow predictable patterns based on the input and 

such nonlinearity makes the relationship between plaintext and ciphertext 

highly complex. Groups, however, are associative by definition. This causes 

linear dependencies between operations. With the presence of an identity 

element, the operation might produce ciphertext with predictable patterns.  

Although both groups and quasigroups are able to offer large key space, 

groups, however, will become slower as the size increases due to the structural 

constraints. In comparison, quasigroups can provide a larger and more flexible 

key space. Additionally, parastrophes of quasigroups allow for multi-phase 

encryption which further complicates the system for attackers. The concept of 
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parastrophes is specific to quasigroups. In groups, the binary operation is fixed 

and cannot be rearranged while preserving group properties, hence, no 

parastrophes.  

1.10 Aims and Objectives 

 This thesis aims to develop, implement and evaluate a novel hybrid 

DNA cryptosystem which integrates quasigroup operations to enhance both 

security and efficiency. The main objectives of this research are outlined as 

follows:  

1. To design a quasigroup-based DNA encryption scheme. 

The main objective of the research is to develop a novel and 

unconventional encryption scheme which involves the properties of both 

quasigroups and DNA bases. Many researchers have been exploring new 

methods for encoding and decoding hidden messages in DNA sequences. The 

proposed method shares with prior DNA-based and quasigroup-based methods 

the foundational principles. Like previous DNA cryptosystems, it uses DNA 

encoding rules to convert plaintext into symbolic biological representations. 

Similarly, it adopts the core concept from quasigroup cryptography which is the 

quasigroup operations to generate nonlinear substitutions that are difficult to 

invert without the correct quasigroup table. The proposed work further expands 

these principles by combining the two previously separate domains into a 

unified framework. Unlike traditional DNA-based schemes, which rely 

primarily on biological encoding and complementary pairing but lack strong 

mathematical mechanisms to enhance confusion. In contrast, quasigroup-based 

cryptographic systems provide algebraic nonlinearity and have large key spaces, 
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yet they have not been integrated with DNA representations. This thesis bridges 

these two domains by combining DNA encoding with quasigroup and 

parastrophe transformations to achieve both biological-inspired parallelism and 

mathematically grounded security, thereby extending the current scope of DNA 

cryptography research. 

This thesis seeks to contribute to ongoing research and development 

which are essential and necessary for realising the full potential of 

interdisciplinary encryption techniques.    

2. To analyse the security of the proposed scheme against potential 

vulnerabilities and attacks. 

One of the aims of the research is also to conduct a thorough analysis of 

the security of the proposed system which will include examining its resistance 

to common attacks such as brute-force attack and known plaintext attack 

through statistical analysis. Key parameters such as Shannon entropy and 

normalised entropy are used to evaluate the robustness of the system. We will 

hopefully be able to identify any inherent vulnerabilities in the system and 

discuss how these vulnerabilities could be exploited by attackers. 

3. To evaluate the computational efficiency and complexity of the scheme 

An essential goal of the research is to demonstrate the computational 

efficiency of the algorithm. The thesis measures the encryption and decryption 

time across various plaintext lengths, as well as analysing the time and space 

complexity of the system. It also explores the trade-offs between performance 

and cryptographic strength, particularly when quasigroup order and encryption 

phases increases.  
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4. To compare the proposed scheme with existing cryptographic schemes. 

The proposed method is compared against established DNA and 

quasigroup based methods such as those by Padmapriya [38] and Markovski 

[39], to evaluate improvements in efficiency, entropy and overall effectiveness. 

These comparisons aim to position the proposed algorithm as a viable 

alternative for secure communication.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Development of Cryptography and Related Works 

‘Cryptography’, derived from the Greek words ‘Krypto’ and ‘graphene’, 

translate to ‘secret’ and ‘writing’ respectively. The roots of cryptography can be 

traced back to ancient Roman and Egyptian civilisations. The earliest known 

use of cryptography dates back to 1900 BCE with the use of hieroglyphs among 

Egyptians [1]. The hieroglyphic symbols were discovered to be carved in the 

chamber of the tomb of Khnumhotep II, an ancient Egyptian Great Chief in 

Egypt. These hieroglyphic symbols, carved on tomb walls, served not only as 

artistic and ceremonial purposes but also as encoded secret messages. Fast 

forward to 100 BCE, cryptography had evolved further in ancient Rome, when 

Julius Caesar, a Roman general, developed a simple substitution cipher, known 

as Caesar Cipher [40]. This simple substitution cipher involves shifting each 

letter in a plaintext by a fixed number of positions in the alphabet. The cipher 

was a way for Julius Caesar to send covert military orders to his generals in the 

field so that even in the event of the messages being intercepted, it would still 

remain unreadable and unintelligible to his foes without knowledge of the shift 

value. Cryptography, although a beautiful art of secret messages, is more 

commonly and actively used as a strategic tool in warfare between men in the 

past. At the beginning of the 20th century, with the outbreak of World War I and 

World War II, there was a surge in the demand for cryptography experts which 

was well observed with the invention of Hebern Rotor Machine by Edward 

Hebern in 1917 and shortly thereafter, the Enigma Machine by Arthur Scherbius 

in 1918 [41]. The Enigma Machine was regularly used by the Germans for 

military communication purposes. To secure victory during World War II, 
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codebreaking played a pivotal role. The British at Bletchley Park were 

successful in cracking the Enigma Machine when they constructed the first 

electronic computers, named Colossus. 

In the 1970s, researchers at International Business Machines 

Corporation (IBM) created a block cipher called Lucifer which went on to 

become what is now known as the Data Encryption Standard (DES) [42]. DES 

was a significant milestone as it combined transposition and substitution 

techniques into a systematic algorithm and became the first cryptosystem to be 

certified by the National Bureau of Standards (now known as the National 

Institute of Standards and Technology (NIST)). However, in years to come, with 

advancements in computational power and cryptanalysis techniques, the system 

became vulnerable and was broken by exhaustive search attack due to its short 

key length. 

A year after the inception of DES, the first public key cryptography, 

Diffie-Hellman key exchange method was introduced by Whitfield Diffie and 

Martin Hellman [40]. Not long after, inspired by Diffie and Hellman’s concept 

of public key cryptography, the RSA algorithm, conveniently named by the 

researchers of Massachusetts Institute of Technology who invented it: Ron 

Rivest, Adi Shamir and Leonard Adleman, was created. The algorithm involves 

two keys, one private and one public. Unlike Diffie-Hellman, the basis of its 

security lies in the mathematical difficulty of factoring two large prime numbers 

instead of discrete logarithm problem.  

Following the downfall of DES, cryptographic research shifted towards 

developing more robust systems. AES superseded its predecessor in 2001 when 
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it was selected by the NIST to replace DES. This symmetric-key algorithm, 

which is also a block cipher, operates with larger key lengths of 128, 192 and 

256 bits whilst maintaining a fixed block size of 128 bits [43]. Its design offers 

enhanced security and efficiency, making it suitable for wide range of 

applications in today’s digital world. 

2.2 Development of DNA Cryptography and Related Works 

DNA cryptography is an interdisciplinary field that merges the 

knowledge of molecular biology and cryptographic techniques. Unlike 

conventional cryptography which generally relies on numerical algorithms, 

DNA cryptography utilises DNA to encode and secure information.  

The concept of DNA-based computation was pioneered by Leonard 

Adleman in the year of 1994, when he demonstrated that DNA molecules could 

be used to solve a searching problem, a directed Hamiltonian path problem 

known as the “Travelling Salesman Problem” with seven vertices which he 

assumed the molecules to be. In his study in 1998, he discovered that DNA 

possesses high storage and computational capability [44]. This has led the study 

to subsequently demonstrate the feasibility of using biological molecules for 

complex computational tasks, setting the stage for further exploration into 

DNA-based cryptographic systems. Following Adleman’s pioneering work, 

early foundational exploration between the 1990s and the early 2000s focused 

on the use of DNA in codebreaking and solving complex problems. The first 

known application of DNA cryptology in codebreaking was performed by 

Boneh et al. in 1996 on DES, which was broken in just 4 months [45] and a NP-

complete problem, the maximal clique problem was solved using the 
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approaches of DNA molecular theory by Ouyang et al. in 1997 [46]. These early 

studies have also provided insight into how knowledge of DNA could be used 

not only for computation but also for securing information.  

During the early 2000s, researchers began exploring how DNA 

computing principles can be applied to encryption. In 2003, Chen pioneered 

DNA-based image encryption using one time pad (OTP) framework [47] and in 

2004, Gehani et al. proposed a DNA-based one-time pad encryption technique 

which is based upon DNA substitution method and bitwise XOR operations, 

where the digital messages were translated into synthetic DNA sequences [48]. 

As one-time pads assure perfect secrecy, it is almost impossible for the 

adversaries to break the encrypted message. This proposal has shown the 

potential of DNA as a medium for secure communication.  

As interest in DNA cryptography grew, researchers have expanded their 

focus into symmetric key systems. In 2006, Amin et al’s symmetric key-based 

DNA cryptography derived a single key for both sender and receiver is obtained 

from a genetic database, which integrated publicly available biological data into 

cryptographic process [49]. Shortly thereafter, in 2007, Lu et al. proposed the 

DNA Symmetric Key Cryptosystem (DNASC), which has proven its resistant 

to highly efficient quantum computers due to the massive parallelism and 

information storage of DNA molecules [50]. Apart from symmetric key 

systems, DNA cryptography has also been integrated into asymmetric key 

cryptosystem and signature schemes such as Cui et al in 2008 who developed a 

public key encryption method which involved processes like DNA synthesis, 

DNA encoding and PCR amplification [51]; and Lai et al. in 2010 with their 
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DNA-PKC system, which combined DNA-based techniques with traditional 

asymmetric cryptographic algorithms [52]. 

The subsequent decade had also witnessed advancements in this field as 

more and more DNA-based methods are designed as well as refinement for 

existing techniques. Research in this period also explored adaptations of 

classical ciphers into DNA cryptography, for instance, Sabry et al. proposed a 

playfair cipher using DNA and amino acids in 2010 [53]. Data hiding techniques 

have also been enhanced by DNA properties when in 2010, Shiu et al. proposed 

three separate methods which are: the Insertion Method, the Complementary 

Pair Method and the Substitution Method [54]. In this paper, all three methods 

utilise a reference DNA which only the sender and receiver know from public 

DNA databases such as EBI database. The authors have also provided security 

analysis on the methods which indicated better performance compared with 

other competing methods. In 2012, a DNA fragment assembly-based 

cryptography was introduced by Zhang et al. which involves breaking a long 

chain of DNA encoded message into small DNA fragments and forwarding 

them to the receiver to be reassembled to uncover the original message [55]. 

Other research such as the DNA cipher based on DNA indexing by Tornea et al. 

in 2013 [56] and a DNA scheme with dynamic sequence table by Hossain et al. 

in 2016 [57] are notable.  

Recent innovations include Karimi et al’s DNA based algorithm which 

involves random number of rounds with varying key size depending on user’s 

password lengths [58] and Kolte et al’s index-based symmetric DNA encryption 

schemes that employed DNA sequence from NCBI database which is used as 

One Time Pad (OTP) symmetric key in 2017 [59]. In July 2018, Zhang et al. 
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introduced an image encryption scheme which is a combination of a Feistel 

network and dynamic DNA encoding, using GenBank sequences as keys [60]. 

A cryptographic scheme involving DNA and RNA processes is proposed by 

Nafea et al. in November 2018 [61]. Their OTP keys are generated by 

transcribing ssDNA pads into RNA and translating them into amino acid 

sequences, which were then converted into binary form for XOR encryption. In 

the same year, Kumar et al. has refined the DNA-based playfair cipher which 

was proposed in 2010 by Sabry et al [53].  

In 2019, a level-based DNA security scheme which relies on DNA triplet 

codons for substitution was proposed by Patnala et al. [62]. This method uses a 

randomly arranged lookup table of codon-to-value mappings across 3 rounds 

where the plaintext is translated and grouped into codon triplets, substituted via 

a lookup table and re-encoded as DNA bases to produce the ciphertext. There 

are also other notable genetic algorithms proposed with implementations of 

DNA, RNA and amino acids like the RNA implementations on text encryption 

by Rashid in 2021 [63].  

After more than two decades of research, the body of work in DNA 

cryptography from early demonstrations of molecular parallelism to modern 

hybrid symmetric and asymmetric encryption schemes has established the 

feasibility of using biological principles for cryptographic applications. 

Researchers have shown that DNA’s massive storage density and parallel 

processing can achieve efficient key expansion and resistance to quantum 

attacks.  
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2.3 Development of Quasigroup-based Cryptography and 

Related Works 

In the late eighteenth century, a new theory was proposed by Euler [64] 

in order to explore the idea of Latin squares. Cayley, famous for his work in the 

domain of group multiplication tables, proved that quasigroup tables could be 

represented as bordered Latin square. It was in the year 1935 that the term 

‘quasigroup’ was first proposed by Moufang [65]. The general nature of 

quasigroup allows for their application in fields like coding theory, 

cryptography and telecommunications [66]. 

The widespread of cryptographic interest in quasigroups began much 

further before the 1990s. In fact, as Keedwell [67] recount, the very first 

recorded application was in Schauffler’s 1948 doctoral thesis [68], where he 

showed that finding a suitable Latin square, which is essentially a quasigroup, 

is the key to breaking the Vigenère cipher. The essential idea behind quasigroup-

based cryptography is that the nonassociative nature of quasigroup provides a 

foundation for designing cryptographic algorithms that are hard to break. The 

conceptual roots of quasigroup-based cryptography can be traced back to the 

study of Latin squares. Keedwell [67] briefly discussed the potential 

applications of Latin squares (which are basically quasigroups) in cryptography, 

more specifically in error detecting and correcting codes. From 1995 to 1996, 

Koscielny’s work marked the initial exploration of quasigroup properties for 

stream and block ciphers [69]. These schemes have demonstrated that 

quasigroup tables could be used to construct secure and efficient encryption 

schemes In 1997, the work of researchers Gligoroski et al. further the 

momentum by focusing their research on quasigroup transformations and 
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demonstrating that such methods could effectively thwart brute force and 

statistical attacks, even when both plaintext and ciphertext were available to an 

adversary [70]. Ritter also contributed to the field by examining the practical 

uses of quasigroups in encryption in 1998 [71]. He emphasised that quasigroups 

possess potential in environments where lightweight computations were 

essential. Following the works of C. Koscielny in 1996, Ochodkova et al. 

introduced yet another stream cipher based upon the properties of quasigroup to 

encode file system [72]. In their findings, they believe that due to the simplicity 

of the quasigroup operations, it can be easily implemented as well as providing 

efficiency during the encryption and decryption procedure.  

From 1999 onward, Markovski and his colleague introduced quasigroup 

string transformation in a series of four-part research papers from 1999 to 2007 

[26], [73], [74], [75].  Their research highlighted the use of quasigroups for 

generating pseudorandom sequences and secure message encryption, even 

under known-plaintext scenarios. The resistance to such attacks was attributed 

to the unpredictable nature of quasigroup operations and the flexibility to vary 

transformation rules between sessions. Furthermore, in 2003, an All-Or-

Nothing transformation (originally developed by Rivest), was combined with 

random quasigroups for better processing speed and security by Marnas et al. 

[76]. Their research has demonstrated the viability of hybrid systems which 

combine traditional and quasigroup-based techniques. Inspired by their 

research, researchers started to explore variations of quasigroup 

transformations. For instance, Gligoroski et al. [28] presented a novel 

asymmetric block cipher based on Multivariate Quadratic Quasigroups 

(MQQs), where its security lies primarily on the computational difficulty of 
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solving systems of multivariate quadratic equations defined over quasigroup 

operations. Based upon the concept of this system, they later proposed another 

digital signature scheme known as MQQ-SIG [29], which demonstrated high 

performance and resistance against chosen message attacks (CMA) based on 

their experimental evaluations. In 2010, Xu designed a stream cipher based on 

the concepts of quasigroup conjugates and has performed various cryptanalytic 

attacks to validate its security [77]. Additionally, Bakeva et al. came up with a 

parastrophic variation of the quasigroup string transformation in 2011 [78]. 

Parastrophes are alternate versions of the same quasigroup table, created by 

permuting the inputs and outputs. This approach has further enhanced and 

refined the security and flexibility of these systems.  

Throughout the years, quasigroup concepts were applied to design more 

complex cryptographic primitives, for instance, the 𝑛 -quasigroup stream 

ciphers by Petrescu in 2010 [79], which was then improved in 2012 by 

Chakrabarti et al. [80] to enhance both security and performance. Markovski’s 

work in 2015 provided an in-depth exploration of cryptographic primitives 

based on quasigroups, which covered a range of applications, specifically in 

block ciphers, stream ciphers, digital signatures, encryption schemes and hash 

functions [81]. It should also be mentioned that there is an existing quasigroup 

based encryption scheme with implementation of biological process and protein 

codon codes known as sEncrypt algorithm which was proposed in 2013 [82]. In 

2021, Tiwari et al. have proposed the block cipher INRU which features 64-bit 

block length and 128-bit key length and had shown strong resistance against a 

range of cryptanalytic attacks, including differential, linear and algebraic attacks 
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[27]. The lightweight block cipher was further improved in 2023 by Chauhan et 

al. which has shown less memory consumption [83]. 

2.4 Research Gaps 

The field of cryptography is in a constant state of evolution. The 

emergence of DNA cryptography pioneered by Adleman’s work on DNA 

computing has shown immense potential for information storage and 

parallelism. Prior works have all been involved in OTPs, symmetric and 

asymmetric systems, data hiding techniques and adaptation of classical domains 

into the DNA domains. The potential of DNA bases as the elements of the 

quasigroup itself to create a seamless encryption process in the biological 

domain remains unexplored. On the other hand, research work on quasigroup-

based cryptography has shown inherent resistance to linear and differential 

cryptanalysis as well as exceptional speed and suitability for lightweight, 

resource-constrained environment. Existing quasigroup-based cryptographic 

algorithm typically relies on numerical operations defined over algebraic 

structures such as groups, rings, or finite fields. While these structures offer 

well-established mathematical properties, they also impose algebraic 

regularities such as associativity and predictable inverses which can be 

exploited by modern cryptanalysis. The literature reveals the central research 

gap between both fields, which is a lack of an integrated cryptosystem that fully 

harnesses the mathematical strength and efficiency of quasigroups directly 

within the DNA domain.  

This research directly addresses the gap by proposing a novel symmetric 

quasigroup-based DNA cryptographic scheme, where both encryption and 
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decryption are performed using the same shared secret key, which is comprised 

of a randomly generated quasigroup table, a random parastrohe table, two 

leaders and a randomly chosen DNA encoding rule. We introduce a two-phase 

encryption process using a quasigroup and one of its parastrophes, with the 

DNA bases (A, C, G, T, U) as the fundamental element set of the quasigroup 

operations. The novelty of the proposed scheme becomes clear when contrasted 

with the established norms DNA-based and quasigroup-based cryptographic 

schemes. Existing quasigroup cryptosystems operate directly on binary bits, 

integers modulo 𝑛  or bytes (e.g., INRU cipher, MQQ cryptosystem), the 

proposed method transposed this concept into a novel domain, applying 

quasigroup operations on DNA bases. This makes the scheme’s design uniquely 

suited for scenarios where data is stored or transmitted as DNA sequences. 

Current DNA cryptographic schemes use the DNA bases A, T, C, G whilst the 

proposed scheme expands the element set to five by introducing Uracil (U) as a 

cryptographic element, thereby increasing complexity and blindsiding the 

attackers from the existence of U. The only other literature which has applied 

such 5 elements in its system [94] however, it is applied to the mathematical 

concept of dihedral group.  

The elements of this quasigroup could, in principle, be any set of five 

distinct symbols. However, the choice to use DNA bases (including U) is not 

arbitrary and is fundamental to the thesis's contribution. The primary motivation 

for using DNA bases is to design a cryptosystem that is inherently compatible 

with DNA computing and data storage. While the current implementation is in 

silico (on traditional computers), its operation is defined natively in the 

“language” of these biological molecules. If the future of computing involves 
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massive parallelism using DNA strands, a cipher that operates on bits or 

numbers would require a translation layer. Our cipher, however, operates 

directly on the fundamental units (bases) if that future platform. The quasigroup 

transformations could, in theory, be executed as parallel, localised biochemical 

reactions on a DNA strand, fully exploiting the parallelism that DNA computing 

promises. A quasigroup using digits would lack the ability to directly be 

interpreted into biological molecules. It is also important to note that there is 

limited published work that measures how increasing quasigroup order or 

adding parastrophic phases affects efficiency (encryption and decryption time) 

and security (entropy) in quasigroup-based and DNA-based cryptographic 

schemes. This research fills the gap by providing a quantitative trade-off 

analysis connecting the quasigroup order and number of phases to performance 

and security metrics. 
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CHAPTER 3: METHODOLOGY 

3.1 Basics of DNA Cryptography 

DNA, more commonly known as Deoxyribose Nucleic Acid, is a 

complex molecule which serves as the fundamental storage space for genetic 

information found within all living organisms. Every living organism carries its 

own unique set of DNA which determines an organism’s traits, from physical 

characteristics to cellular processes. DNA is composed of two long 

polynucleotide chains that coil around each other to form a double helix 

structure, which was first discovered in 1953 by scientists James Watson and 

Francis Crick [84]. Each chain contains a sequence of four different monomers 

of DNA, known as nucleotide. Each nucleotide comprises of three parts: a sugar 

molecule, a phosphate group and a nitrogenous base. In DNA, the nitrogenous 

base can be any one of four types: Adenine (A), Cytosine (C), Guanine (G) or 

Thymine (T). The structure of DNA is held together by hydrogen bonds between 

complementary pairs of nitrogenous bases which are always as follows where: 

A with T, C with G. This is commonly known as the “Watson-Crick 

complementary rules. 

Through various combinations of the four bases, DNA is able to store 

vast and complex genetic data of any living organisms [85]. For the four DNA 

bases, there would be a total of 24 possible types of combination which are as 

follows [84]: 
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Table 3.1 Twenty-four possible types of combinations of 4 DNA bases 

CTAG CTGA CATG CAGT CGTA CGAT 

TCAG TCGA TACG TAGC TGAC TGCA 

ATCG ATGC ACTG ACGT AGCT AGTC 

GTAC GTCA GATC GACT GCTA GCAT 

 

For combinations which fulfil the Watson-Crick complementary rules, 

it is mentioned in [84] that there are 8 types which are: 

Table 3.2 Eight types of combinations which fulfil Watson-Crick rules 

CTAG CATG GTAC GATC 

TCGA TGCA ACGT AGCT 

 

DNA’s primary role is to store and transmit genetic information. Specific 

segments of DNA, called genes, encode instructions for synthesizing proteins 

which function in structuring tissues, regulating bodily functions and catalysing 

biochemical reactions. The sequence of bases (A, C, T, G) acts as a code, with 

triplet of bases (codons) specifying individual amino acids, the building blocks 

of proteins.  

Other than DNA, there exist another acid, ribonucleic acid known as 

RNA, whereby they are structurally similar except T is substituted with a base 

known as Uracil (U). RNA acts as an intermediary between DNA and protein, 

for instance, the genetic data of DNA is moved and translated to protein through 

messenger RNA (mRNA) [85].  
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3.2 DNA Encoding and Decoding Rules 

In DNA cryptography, DNA bases are used as a medium for information 

exchange. Data can be encoded by mapping binary digits to corresponding 

nucleotides and to retrieve the original information, nucleotides are mapped to 

corresponding binary digits. These processes are known as DNA encoding and 

decoding rules. There are 8 possible DNA encoding and decoding rules which 

are shown in the table below [84].  

Table 3.3 Eight rules for DNA encoding and decoding   

 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 

00 C C G G T T A A 

01 T A T A C G C G 

10 A T A T G C G C 

11 G G C C A A T T 

 

 The encoding process typically follows these steps. Binary data (0s and 

1s) is converted into DNA sequences using predefined mapping scheme as 

shown above. For example, based on Rule 7, 00 is mapped to A, 01 is mapped 

to C, 10 is mapped to G and 11 is mapped to T. This mapping ensures that every 

pair of binary digits corresponds to a specific nucleotide base, thus allowing 

digital data to be represented in the form of DNA sequence. Textual data can 

also be encoded into DNA by first converting characters into their binary 

representation and then applying the binary-to-DNA mapping. For example, the 

letter “A” in ASCII is 01000001 in binary form and by using Rule 7, “A” can 

be encoded as “CAAC”. 
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 Decoding in DNA cryptography involves reversing the encoding process 

to retrieve the original message from the DNA sequence. The process can be 

done by converting DNA sequence back into binary data using the same 

mapping scheme used during the encoding process. For example, A à 00, C à 

01, G à 10 and T à 11. The binary data is then converted back into textual 

form using ASCII.  

3.3 Basics of Quasigroups 

3.3.1 Binary Operation, Groupoids and Quasigroups 

Definition 3.1. A binary operation on a nonempty set 𝐺 is a function  

𝛼: 𝐺 × 𝐺 → 𝐺. 

That is, given any two elements 𝑎  and 𝑏  in 𝐺 , the operation 𝛼  assigns an 

element 𝛼(𝑎, 𝑏) in 𝐺. When discussing general algebraic structures, it is often 

convenient to use a product notation ∗ such as writing 𝑎 ∗ 𝑏 in place of 𝛼(𝑎, 𝑏). 

Definition 3.2. A groupoid is a nonempty set 𝐺 with binary operation ∗, which 

is denoted as (𝐺,∗). The order of (𝐺,∗) is the cardinality |𝐺| which means the 

number of elements in 𝐺. A groupoid is also said to be finite if |𝐺| is finite.  

Definition 3.3. A quasigroup (𝑄,∗) is a groupoid which satisfies the following 

law:  

For every 𝑎, 𝑏 ∈ 𝑄, there exist unique 𝑥, 𝑦 ∈ 𝑄 such that  

𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏.  

For a finite set 𝑄, the structure of a quasigroup (𝑄,∗) can be represented 

using a multiplication table. From Definition 3.3, due to the unique solvability 
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property, each element will appear exactly once in each row and each column 

of the multiplication table of (𝑄,∗) . To construct a multiplication table of 

quasigroup, let 𝑄 be a finite set with 𝑛 elements {𝑎!, 𝑎%, … , 𝑎&}. An 𝑛 × 𝑛 table 

is formed where the entry 𝑎'(  located in the 𝑖-th row and 𝑗-th column is the 

product of the element 𝑎'  and 𝑎( . Each cell in the table is filled with the 

elements of the quasigroup without repetition in each row and column. Note 

that a given quasigroup can produce more than one multiplication table 

depending on the order of the elements formed at the border of the table. 

Table 3.4 Multiplication table of a quasigroup  

∗ 𝑎! 𝑎% ⋯ 𝑎& 

𝑎! 𝑎!! 𝑎!% ⋯ 𝑎!& 

𝑎% 𝑎%! 𝑎%% ⋯ 𝑎%& 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑎& 𝑎&! 𝑎&% ⋯ 𝑎&& 

 

The following is an example of a multiplication table of a quasigroup 

(𝑄,∗) of order 4: 

Table 3.5 Example of multiplication table of a quasigroup of order 4 

 1 2 3 4 

1 2 3 1 4 

2 4 1 3 2 

3 3 4 2 1 

4 1 2 4 3 

 

Quasigroups are defined by a binary operation that ensures the Latin 

square property which states that, for each 𝑎  and 𝑏 in 𝑄 , there exist unique 

∗



45 
 

elements 𝑥 and 𝑦 in 𝑄 such that 𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏 hold. This property is 

equivalent to the operation table of ∗  forming a Latin Square, where each 

element of 𝑄 appears exactly once in every row and column. The absence of 

repeated elements in rows or columns guarantees that solutions to the equations 

𝑎 ∗ 𝑥 = 𝑏 and 𝑦 ∗ 𝑎 = 𝑏 are always unambiguous. Thus, (𝑄,∗) has the property 

of unique divisibility.  

Definition 3.4. We define the left division operation, denoted 𝑎\𝑏 as: 

𝑎\𝑏 = 𝑥 if and only if 𝑎 ∗ 𝑥 = 𝑏 

Similarly, we define the right division operation, denoted by 𝑏/𝑎, as: 

𝑏/𝑎 = 𝑦 if and only if 𝑦 ∗ 𝑎 = 𝑏 

Due to the divisibility laws, quasigroup ensures that both the left and 

right cancellation laws hold. The cancellations laws are as follows: 

(i) For 𝑎, 𝑥, 𝑦 ∈ 𝑄, 𝑎 ∗ 𝑥 = 𝑎 ∗ 𝑦 implies that 𝑥 = 𝑦 (left cancellation) 

(ii) For 𝑎 , 𝑥 , 𝑦 ∈ 𝑄 , 𝑥 ∗ 𝑎 = 𝑦 ∗ 𝑎  implies that 𝑥 = 𝑦  (right 

cancellation) 

In algebra, a group is a mathematical structure which consists of a set 

paired with a binary operation that follows specific constraints: the operation 

must be associative, there must be an identity element, and every element has 

an inverse.  

Definition 3.5. A group is an algebraic structure consisting of a set 𝐺 together 

with a binary operation ∗ that satisfies the following four axioms: 

(i) For all 𝑎, 𝑏 ∈ 𝐺, the result of the operation 𝑎 ∗ 𝑏 is also in  𝐺. 
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(ii) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐). 

(iii) There exists an element 𝑒 ∈ 𝐺 (identity) such that for every element 

𝑎 ∈ 𝐺, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎. 

(iv) For every element 𝑎 ∈ 𝐺, there exists an inverse element 𝑎)! ∈ 𝐺  

such that 𝑎 ∗ 𝑎)! = 𝑎)! ∗ 𝑎 = 𝑒. 

From Definition 3.5, it follows that every group is a quasigroup. A 

quasigroup is a mathematical structure similar to a group but with less restrictive 

properties as they are not required to satisfy properties such as associativity or 

commutativity or having an identity element and this also means that its 

elements need not have inverses. 

3.3.2 Parastrophes of Quasigroups 

Definition 3.6. For each quasigroup operation ‘∗’, we can associate a new 

operation ‘∘’ on 𝑄 defined by: 

𝑥 ∘ 𝑦 = 𝑧 if and only if 𝑥 ∗ 𝑧 = 𝑦. 

Definition 3.7. Each quasigroup 𝑄 = (𝑄,∗) forms five new quasigroup 𝑄' =

(𝑄,∗' 	) with operations ∗' 	 defined as follows: 

𝑥 ∗! 𝑦 = 𝑧 ↔ 𝑥	 ∗ 𝑧 = 𝑦 (right division) 

𝑥 ∗% 𝑦 = 𝑧 ↔ 𝑧	 ∗ 𝑦 = 𝑥 (left division) 

𝑥 ∗* 𝑦 = 𝑧 ↔ 𝑧	 ∗ 𝑥 = 𝑦 (opposite multiplication) 

𝑥 ∗$ 𝑦 = 𝑧 ↔ 𝑦	 ∗ 𝑧 = 𝑥 (opposite right division) 

𝑥 ∗+ 𝑦 = 𝑧 ↔ 𝑦	 ∗ 𝑥 = 𝑧 (opposite left division) 
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Quasigroups which are defined as such are known as parastrophes or 

conjugates of 𝑄 . It is worth noting that the operation ∘ in Definition 3.6 is 

actually the same operation ∗! in Definition 3.7. We single out this operation as 

it will be very useful in the decryption process in the next section. 

The significance of parastrophes lies in their ability to provide 

alternative perspectives on the structure of quasigroup. In the study of 

quasigroups, one encounters not just the original binary operation but also a 

family of related operations known as parastrophes. Parastrophes (or conjugates) 

of a quasigroup are essentially just variations of the original quasigroup 

obtained by permuting the order of operations. Recall that a quasigroup is 

defined by the property that for any elements 𝑎 and 𝑏 in set 𝑄, the equation 𝑎	 ∗

𝑏 = 𝑐 has a unique solution for the unknown when any two of the three elements 

are fixed. The unique solvability property implies that one can “rearrange” the 

equation to define other operations. It is a well-established fact in quasigroup 

theory [86] that from any given quasigroup, one can define 6 conjugate 

quasigroups which are not necessarily distinct (including the original 

quasigroup).  

It is also proven in [86] that the number of distinct parastrophes is always 

a divisor of 6, which are 1, 2, 3 or 6 and that for any 𝑛 ≥ 4, there exists a 

quasigroup of order 𝑛 with	𝑚 = {1, 2, 3, 6}	distinct conjugates. The number of 

distinct parastrophes does not depend on the cardinality of the quasigroup 𝑄 

(the number of elements in 𝑄) but rather on the structural properties.   

In quasigroup theory, the parastrophes can either be pairwise distinct or 

pairwise equal. When the parastrophes are pairwise distinct, it means that each 
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of the five parastrophes exhibits different quasigroup structure. In other words, 

no two parastrophes are the same. However, when the parastrophes are 

described as pairwise equal, it means that some or all of the parastrophes 

coincide, resulting in quasigroup with identical structures. This occurs when the 

original quasigroup exhibits certain symmetries or special properties. Pairwise 

equality often occurs in specific types of quasigroups, such as commutative 

quasigroups or idempotent quasigroups. For instance, in a commutative 

quasigroup, the order of the elements does not affect the outcome, so the 

operations derived from switching the positions of the operands may end up 

being identical.  

Table 3.6 Number of quasigroups of order 𝑛 ≤ 11 

𝑛 𝑄& 

1 1 

2 2 

3 12 

4 576 

5 161280 

6 812851200 

7 61479419904000 

8 108776032459082956800 

9 5524751496156892842531225600 

10 9982437658213039871725064756920320000 

11 776966836171770144107444346734230682311065600000 

3.4 Encryption and Decryption Function 

Let 𝐴  be a finite set with elements {𝑎!, 𝑎%, … , 𝑎&}  and we construct 

nonempty finite strings 𝑥!𝑥%⋯𝑥, of length 𝑚, from elements in 𝐴 (i.e. 𝑥' ∈ 𝐴 

for all 𝑖 = 1, 2, … ,𝑚 ). Let 𝐿  be a leader chosen from the set 𝐴 . Define a 
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quasigroup operation ∗  on the set 𝐴  and the corresponding ∘  operation as 

mentioned in Definition 3.6. For the chosen 𝐿 ∈ 𝐴, we define two functions as 

follows:  

(i) Encryption function, 𝐸(𝑥!𝑥%⋯𝑥,) = (𝑦!𝑦%⋯𝑦,) , where 𝑦! =

𝐿 ∗ 𝑥! and 𝑦' = 𝑦')! ∗ 𝑥' for 𝑖 = 2, 3, … ,𝑚. 

(ii) Decryption function, 𝐷(𝑦!𝑦%⋯𝑦,) = (𝑥!𝑥%⋯𝑥,) , where 𝑥! =

𝐿	 ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'.for 𝑖 = 2, 3, … ,𝑚. 

3.4.1 Example of Application of Encryption and Decryption 

Functions   

The applied encryption and decryption functions are demonstrated as 

follows: 

We let 𝑄  be a quasigroup with operation ∗  and set of elements 

{0, 1, 2, 3, 4}. A quasigroup table is formed and shown as follows: 

Table 3.7 Quasigroup table of order 5 with elements {0, 1, 2, 3, 4} 

 0 1 2 3 4 

0 4 1 0 3 2 

1 2 3 1 4 0 

2 1 2 0 3 4 

3 3 4 2 0 1 

4 4 2 0 1 3 

 

The quasigroup table acts as the key for encryption and decryption. At 

the start of encryption, a Leader,  which can be any element of the quasigroup 

table is chosen. To start the encryption process, the plaintext message is chosen 

to be 𝑀 = (𝑥!𝑥%⋯𝑥,) = (30412431). Then the encryption method is carried 

!

!
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out using: 𝐸(𝑥!𝑥%⋯𝑥,) = 	 (𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿 ∗ 𝑥!  and  𝑦' = 𝑦')! ∗

𝑥'. According to the plaintext message 𝑀, 𝑥! = 3, 𝑥% = 0, 𝑥* = 4 and so on. 

For this example, the Leader, 𝐿 = 0 is chosen and based on the encryption 

formula and quasigroup table given above, the following result is obtained: 

𝑦! = 𝐿 ∗ 𝑥! 

       = 0 ∗ 3 

       = 3 

𝑦% = 𝑦! ∗ 𝑥% 

       = 3 ∗ 0 

       = 3 

𝑦* = 𝑦% ∗ 𝑥* 

       = 3 ∗ 4 

       = 1 

𝑦$ = 𝑦* ∗ 𝑥$ 

       = 1 ∗ 1 

       = 3 

𝑦+ = 𝑦$ ∗ 𝑥+ 

      = 3 ∗ 2 

      = 2 

𝑦# = 𝑦+ ∗ 𝑥# 

       = 2 ∗ 4 

       = 4 

𝑦- = 𝑦# ∗ 𝑥- 

       = 4 ∗ 3 

       = 1 

𝑦" = 𝑦- ∗ 𝑥" 

       = 1 ∗ 1 

       = 3 

 

Thus, the encrypted message, 𝐸(M) = (33132413) is obtained. 

Since there are various choices for choosing a leader, the encryption is 

made strong by choosing different leaders for each encryption. The quasigroup 

table can also be changed by permuting its rows and columns to produce 

different versions of quasigroup and this in turn increases the complexity of 

encryption scheme. 

3.5 Proposed Scheme 

The process of designing the system is mainly focused on combining the 

properties of DNA sequences with quasigroup operations. The algorithm has 

two phases of encryption as well as two phases of decryption, with the 1st phase 

involving quasigroup and the second phase involving its parastrophes. The first 

step of the process is to decide the order and elements of the quasigroup to be 

used. For the proposed model, a quasigroup, 𝑄 of order 5 which comprises of 

DNA bases {𝑈, 𝐴, 𝐶, 𝐺, 𝑇} as elements is selected. The number of Latin squares 
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of order 𝑛 is known for small 𝑛. According to Table 3.7, for 𝑛 = 5, the number 

of distinct Latin squares is 161280.  

In this algorithm, base Uracil (U) which appears in Ribonucleic Acid 

(RNA) is used and will be considered as one of the elements to be used in the 

quasigroup table. Element 'U' enhances security by being absent in the plaintext 

DNA sequence but present in the ciphertext through quasigroup operations. 

Since 'U' does not appear in the original DNA bases (A, T, C, G), attackers may 

overlook its existence in the quasigroup and parastrophe table. By adding ‘U’ to 

the set of DNA bases used in the encryption process, the number of possible 

outputs for each operation can be exponentially increased, thus effectively 

increasing the complexity of the algorithm and resistance against statistical 

attacks. A larger key space also enhances security against brute force attacks by 

making them less computationally feasible. While 'U' naturally appears in RNA 

instead of DNA, its role in this cryptographic scheme is to increase security and 

differentiate the method from traditional DNA cryptography, which only uses 

four bases.  

Our scheme which comprises of quasigroups and parastrophe 

transformation as well as DNA encoding with the introduction of element ‘U’ 

offers a novel approach not commonly explored in traditional cryptographic 

algorithms. Encryption begins by converting plaintext into DNA using a random 

encoding rule. In Phase I, a random leader is chosen from the set of elements 

{𝑈, 𝐴, 𝐶, 𝐺, 𝑇} and a random quasigroup table is generated. The plaintext was 

then encrypted using quasigroup operation 𝑥 ∗ 𝑦 = 𝑧  to produce the first 

ciphertext. In Phase II, a new random leader and a random parastrophe table of 

the quasigroup used in Phase I are used to further encrypt to form the final 
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ciphertext. The two leaders, DNA encoding rule, quasigroup table and 

parastrophe table will act as the key and are transmitted through a secure 

channel to the receiver. The decryption process involves reversing the 

encryption steps using the inverse operation. The receiver retrieves the original 

plaintext by applying the decryption operation to the ciphertext with the key 

received.  

3.5.1 Encryption Scheme 

The encryption scheme is shown as follows: 

1. A plaintext message 𝑀  is chosen and is converted into hexadecimal 

form and subsequently binary form by referring to the ASCII table. 

2. The message is then encoded into DNA bases to form a string of DNA 

sequence (𝑥!𝑥%⋯𝑥,) of length 𝑚 using a randomly chosen encoding 

rule.  

3. Once the DNA form of the message is obtained, the system enters into 

Phase I of encryption, where a Leader, 𝐿! is chosen randomly from a set 

of elements {𝐴, 𝐶, 𝐺, 𝑇, 𝑈} . The quasigroup table for encryption is 

generated randomly using quasigroup operation 𝑥 ∗ 𝑦 = 𝑧.  

4. The function used for encryption Phase I is defined as 𝐸!(𝑥!𝑥%⋯𝑥,) =

(𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿! ∗ 𝑥! and 𝑦' = 𝑦')! ∗ 𝑥'. 

5. The message is encrypted using the function 𝐸!  and first ciphertext, 

𝐶! = (𝑦!𝑦%⋯𝑦,), which is in DNA form is obtained.  

6. In Phase II of encryption, a leader 𝐿% and a parastrophe operation ∗. are 

randomly chosen, and the corresponding parastrophe table is generated.  
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7. Encryption function for Phase II is defined as 𝐸%(𝐶!) =

𝐸%(𝑦!𝑦%⋯𝑦,) = (𝑧!𝑧%⋯𝑧,) , where 𝑧! = 𝐿% ∗. 𝑦!  and 𝑧' =

𝑧')! ∗. 𝑦'. 

8. The final ciphertext, 𝐶% = (𝑧!𝑧%…𝑧,)  is obtained and sent to the 

receiver. 

3.5.2 Decryption Scheme 

The decryption scheme is shown as follows: 

1. The ciphertext 𝐶% is received in DNA form. 

2. In Phase I of decryption, a parastrophe table for ∘. is generated using 

the parastrophe table of ∗. such that 𝑥 ∘. 𝑦 = 𝑧 if and only if 𝑥 ∗. 𝑧 =

𝑦. 

3. The function for decryption process is defined as 𝐷!(𝑧!𝑧%⋯𝑧,) =

(𝑦!𝑦%⋯𝑦,), where 𝑦! = 𝐿% ∘. 𝑧! and 𝑦' = 𝑧')! ∘. 𝑧'. 

4. The ciphertext, 𝐶! = (𝑦!𝑦%⋯𝑦,) is obtained by decrypting with the 

leader 𝐿%  received and the quasigroup generated using decryption 

operation ∘..  

5. For Phase II of decryption, the quasigroup table for ∘ is generated using 

the quasigroup table of ∗ in Phase I of encryption. 

6. The decryption function is defined as 𝐷%(𝑦!𝑦%⋯𝑦	,) = (𝑥!𝑥%⋯𝑥,), 

where 𝑥! = 𝐿! ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'. 

7. The plaintext (𝑥!𝑥%⋯𝑥,)  is obtained by decrypting the leader 𝐿! 

received and the quasigroup table for ∘ . The decrypted message is 

converted into hexadecimal form and finally into the original message 

𝑀 by using corresponding DNA decoding rule and ASCII table.  
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CHAPTER 4: IMPLEMENTATION 

4.1 Encryption Process 

The implementation of the algorithm is demonstrated below: 

Let the plaintext message, 𝑀 = NOTTINGHAM.  

Convert 𝑀 = NOTTINGHAM to Hexadecimal:  

4𝐸	4𝐹	54	54	49	4𝐸	47	48	41	4𝐷 

Convert 𝑀 = NOTTINGHAM to Binary: 

0100	1110	0100	1111	0101	0100	0101	0100	0100	1001	 

0100	1110	01000111	0100	1000	0100	0001	0100	1101 

We will be using DNA encoding Rule 7 in this demonstration. 

N(4𝐸) → 0100	1101 → 𝑇𝐶𝐺𝐴 O(4𝐹) → 0100	1111 → 𝑇𝐶𝐺𝐺 

T(54) → 0101	0100 → 𝑇𝑇𝑇𝐶 T(54) → 0101	0100 → 𝑇𝑇𝑇𝐶 

I(49) → 0100	1001 → 𝑇𝐶𝐴𝑇 N(4𝐸) → 0100	1110 → 𝑇𝐶𝐺𝐴 

G(47) → 0100	0111 → 𝑇𝐶𝑇𝐺 H(48) → 0100	1000 → 𝑇𝐶𝐴𝐶 

A(41) → 0100	0001 → 𝑇𝐶𝐶𝑇 M(4𝐷) → 0100	1101 → 𝑇𝐶𝐺𝑇 

 

The encoded plaintext 𝑀 in DNA form is a string of length 𝑚 = 40, 

(TCGA TCGG TTTC TTTC TCAT TCGA TCTG TCAC TCCT TCGT) (1) 

4.1.1 Phase I: Quasigroup 

We choose a Leader, 𝐿! = 𝐺   

Our quasigroup table is formed and shown as follows: 
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Table 4.1 Quasigroup table for Phase I of encryption 

∗ U A C G T 

U A T C G U 

A G A U T C 

C C G T U A 

G U C G A T 

T T U A C G 

 

The function used for encryption is defined as: 

𝐸!(𝑥!𝑥%⋯𝑥,) = (𝑦!𝑦%⋯𝑦,), 

where 𝑛 is the length of the plaintext 𝑀 in DNA form, 𝑦! = 𝐿! ∗ 𝑥! and 

𝑦' = 𝑦')! ∗ 𝑥'. 

The encryption process for Phase I is carried out with leader 𝐿! = 𝐺 and 

𝑥! = 𝑇, 𝑥% = 𝐶, 𝑥* = 𝐺, … from (1). 

𝑦! = 𝐿! ∗ 𝑥!
= 𝐺 ∗ 𝑇

= 𝑇 

𝑦% = 𝑦! ∗ 𝑥% 

= 𝑇 ∗ 𝐶

= 𝐴 

𝑦* = 𝑦% ∗ 𝑥* 

= 𝐴 ∗ 𝐺

= 𝑇 

𝑦$ = 𝑦* ∗ 𝑥$ 

= 𝑇 ∗ 𝐴

= 𝑈 

𝑦+ = 𝑦$ ∗ 𝑥+
= 𝑈 ∗ 𝑇

= 𝑈 

𝑦# = 𝑦+ ∗ 𝑥#
= 𝑈 ∗ 𝐶

= 𝐶 

𝑦- = 𝑦# ∗ 𝑥-
= 𝐶 ∗ 𝐺

= 𝑈 

𝑦" = 𝑦- ∗ 𝑥"
= 𝑈 ∗ 𝐺

= 𝐺 

𝑦0 = 𝑦" ∗ 𝑥0
= 𝐺 ∗ 𝑇

= 𝑇 

𝑦!1 = 𝑦0 ∗ 𝑥!1
= 𝑇 ∗ 𝑇

= 𝐺 

𝑦!! = 𝑦!1 ∗ 𝑥!!
= 𝐺 ∗ 𝑇

= 𝑇 

𝑦!% = 𝑦!! ∗ 𝑥!%
= 𝑇 ∗ 𝐶

= 𝐴 

𝑦!* = 𝑦!% ∗ 𝑥!*
= 𝐴 ∗ 𝑇

= 𝐶 

𝑦!$ = 𝑦!* ∗ 𝑥!$
= 𝐶 ∗ 𝑇

= 𝐴 

𝑦!+ = 𝑦!$ ∗ 𝑥!+
= 𝐴 ∗ 𝑇

= 𝐶 

𝑦!# = 𝑦!+ ∗ 𝑥!#
= 𝐶 ∗ 𝐶

= 𝑇 
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𝑦!- = 𝑦!# ∗ 𝑥!-
= 𝑇 ∗ 𝑇

= 𝐺 

𝑦!" = 𝑦!- ∗ 𝑥!"
= 𝐺 ∗ 𝐶

= 𝐺 

𝑦!0 = 𝑦!" ∗ 𝑥!0
= 𝐺 ∗ 𝐴

= 𝐶 

𝑦%1 = 𝑦!0 ∗ 𝑥%1
= 𝐶 ∗ 𝑇

= 𝐴 

𝑦%! = 𝑦%1 ∗ 𝑥%!
= 𝐴 ∗ 𝑇

= 𝐶 

𝑦%% = 𝑦%! ∗ 𝑥%%
= 𝐶 ∗ 𝐶

= 𝑇 

𝑦%* = 𝑦%% ∗ 𝑥%*
= 𝑇 ∗ 𝐺

= 𝐶 

𝑦%$ = 𝑦%* ∗ 𝑥%$
= 𝐶 ∗ 𝐴

= 𝐺 

𝑦%+ = 𝑦%$ ∗ 𝑥%+
= 𝐺 ∗ 𝑇

= 𝑇 

𝑦%# = 𝑦%+ ∗ 𝑥%#
= 𝑇 ∗ 𝐶

= 𝐴 

𝑦%- = 𝑦%# ∗ 𝑥%-
= 𝐴 ∗ 𝑇

= 𝐶 

𝑦%" = 𝑦%- ∗ 𝑥%"
= 𝐶 ∗ 𝐺

= 𝑈 

𝑦%0 = 𝑦%" ∗ 𝑥%0
= 𝑈 ∗ 𝑇

= 𝑈 

𝑦*1 = 𝑦%0 ∗ 𝑥*1
= 𝑈 ∗ 𝐶

= 𝐶 

𝑦*! = 𝑦*1 ∗ 𝑥*!
= 𝐶 ∗ 𝐴

= 𝐺 

𝑦*% = 𝑦*! ∗ 𝑥*%
= 𝐺 ∗ 𝐶

= 𝐺 

𝑦** = 𝑦*% ∗ 𝑥**
= 𝐺 ∗ 𝑇

= 𝑇 

𝑦*$ = 𝑦** ∗ 𝑥*$
= 𝑇 ∗ 𝐶

= 𝐴 

𝑦*+ = 𝑦*$ ∗ 𝑥*+
= 𝐴 ∗ 𝐶

= 𝑈 

𝑦*# = 𝑦*+ ∗ 𝑥*#
= 𝑈 ∗ 𝑇

= 𝑈 

𝑦*- = 𝑦*# ∗ 𝑥*-
= 𝑈 ∗ 𝑇

= 𝑈 

𝑦*" = 𝑦*- ∗ 𝑥*"
= 𝑈 ∗ 𝐶

= 𝐶 

𝑦*0 = 𝑦*" ∗ 𝑥*0
= 𝐶 ∗ 𝐺

= 𝑈 

𝑦$1 = 𝑦*0 ∗ 𝑥$1
= 𝑈 ∗ 𝑇

= 𝑈 

 

The encrypted message 𝐶! = 𝐸!(𝑀) for the Phase I is  

	(TATU UCUG TGTA CACT GGCA CTCG TACU UCGG TAUU UCUU) (2) 

4.1.2 Phase II: Parastrophe 

There exist 5 distinct parastrophes (conjugates) for each quasigroup. The 

conjugates can form a quasigroup table by using their corresponding operations: 

The conjugates of quasigroup table are shown as follows: 

 

 

 



57 
 

𝑥 ∗! 𝑦 = 𝑧⇔ 𝑥	 ∗ 𝑧 = 𝑦 𝑥 ∗% 𝑦 = 𝑧⇔ 𝑧	 ∗ 𝑦 = 𝑥 

∗! U A C G T 

 U T U C G A 

A C A T U G 

C G T U A C 

G U G A C T 

T A C G T U 
 

∗% U A C G T 

 U G T A C U 

A U A T G C 

C C G U T A 

G A C G U T 

T T U C A G 
 

𝑥 ∗* 𝑦 = 𝑧⇔ 𝑧	 ∗ 𝑥 = 𝑦 𝑥 ∗$ 𝑦 = 𝑧⇔ 𝑦	 ∗ 𝑧 = 𝑥 

∗* U A C G T 

 U T C G U A 

A U A T G C 

C C T U A G 

G G U A C T 

T A G C T U 
 

∗$ U A C G T 

 U G U C A T 

A T A G C U 

C A T U G C 

G C G T U A 

T U C A T G 
 

𝑥 ∗+ 𝑦 = 𝑧⇔ 𝑦	 ∗ 𝑥 = 𝑧  

∗+ U A C G T 

 U A G C U T 

A T A G C U 

C C U T G A 

G G T U A C 

T U C A T G 
 

 

 
For the second phase of the encryption process, the algorithm is similar 

to the first phase. The only distinct part of the process would be the use of 

quasigroup table which is replaced with a random conjugate of quasigroup table. 

To start the second phase, we choose a Leader, 𝐿! = 𝐴. 

The random conjugate of quasigroup table for this phase is chosen to be: 

 

 



58 
 

Table 4.2 Conjugate of quasigroup table for Phase II of encryption 

∗$ U A C G T 

 U G U C A T 

A T A G C U 

C A T U G C 

G C G T U A 

T U C A T G 

 

The function used for encryption is defined as: 

𝐸%(𝑦!𝑦%⋯𝑦,) = (𝑧!𝑧%⋯𝑧,), 

where 𝑧! = 𝐿% ∗$ 𝑦! and 𝑧' = 𝑧')! ∗$ 𝑦'. 

The encryption process for Phase II is carried out with leader 𝐿% = 𝐴 

and 𝑦! = 𝑇, 𝑦% = 𝐴, 𝑦* = 𝑇, … from (2). 

𝑧! = 𝐿% ∗$ 𝑦!
= 𝐴 ∗$ 𝑇

= 𝑈 

𝑧% = 𝑧! ∗$ 𝑦%
= 𝑈 ∗$ 𝐴

= 𝑈 

𝑧* = 𝑧% ∗$ 𝑦*
= 𝑈 ∗$ 𝑇

= 𝑇 

𝑧$ = 𝑧* ∗$ 𝑦$
= 𝑇 ∗$ 𝑈

= 𝑈 

𝑧+ = 𝑧$ ∗$ 𝑦+
= 𝑈 ∗$ 𝑈

= 𝐺 

𝑧# = 𝑧+ ∗$ 𝑦#
= 𝐺 ∗$ 𝐶

= 𝑇 

𝑧- = 𝑧# ∗$ 𝑦-
= 𝑇 ∗$ 𝑈

= 𝑈 

𝑧" = 𝑧- ∗$ 𝑦"
= 𝑈 ∗$ 𝐺

= 𝐴 

𝑧0 = 𝑧" ∗$ 𝑦0
= 𝐴 ∗$ 𝑇

= 𝑈 

𝑧!1 = 𝑧0 ∗$ 𝑦!1
= 𝑈 ∗$ 𝐺

= 𝐴 

𝑧!! = 𝑧!1 ∗$ 𝑦!!
= 𝐴 ∗$ 𝑇

= 𝑈 

𝑧!% = 𝑧!! ∗$ 𝑦!%
= 𝑈 ∗$ 𝐴

= 𝑈 

𝑧!* = 𝑧!% ∗$ 𝑦!*
= 𝑈 ∗$ 𝐶

= 𝐶 

𝑧!$ = 𝑧!* ∗$ 𝑦!$
= 𝐶 ∗$ 𝐴

= 𝑇 

𝑧!+ = 𝑧!$ ∗$ 𝑦!+
= 𝑇 ∗$ 𝐶

= 𝐴 

𝑧!# = 𝑧!+ ∗$ 𝑦!#
= 𝐴 ∗$ 𝑇

= 𝑈 

𝑧!- = 𝑧!# ∗$ 𝑦!-
= 𝑈 ∗$ 𝐺

= 𝐴 

𝑧!" = 𝑧!- ∗$ 𝑦!"
= 𝐴 ∗$ 𝐺

= 𝐶 

𝑧!0 = 𝑧!" ∗$ 𝑦!0
= 𝐶 ∗$ 𝐶

= 𝑈 

𝑧%1 = 𝑧!0 ∗$ 𝑦%1
= 𝑈 ∗$ 𝐴

= 𝑈 
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𝑧%! = 𝑧%1 ∗$ 𝑦%!
= 𝑈 ∗$ 𝐶

= 𝐶 

𝑧%% = 𝑧%! ∗$ 𝑦%%
= 𝐶 ∗$ 𝑇

= 𝐶 

𝑧%* = 𝑧%% ∗$ 𝑦%*
= 𝐶 ∗$ 𝐶

= 𝑈 

𝑧%$ = 𝑧%* ∗$ 𝑦%$
= 𝑈 ∗$ 𝐺

= 𝐴 

𝑧%+ = 𝑧%$ ∗$ 𝑦%+
= 𝐴 ∗$ 𝑇

= 𝑈 

𝑧%# = 𝑧%+ ∗$ 𝑦%#
= 𝑈 ∗$ 𝐴

= 𝑈 

𝑧%- = 𝑧%# ∗$ 𝑦%-
= 𝑈 ∗$ 𝐶

= 𝐶 

𝑧%" = 𝑧%- ∗$ 𝑦%"
= 𝐶 ∗$ 𝑈

= 𝐴 

𝑧%0 = 𝑧%" ∗$ 𝑦%0
= 𝐴 ∗$ 𝑈

= 𝑇 

𝑧*1 = 𝑧%0 ∗$ 𝑦*1
= 𝑇 ∗$ 𝐶

= 𝐴 

𝑧*! = 𝑧*1 ∗$ 𝑦*!
= 𝐴 ∗$ 𝐺

= 𝐶 

𝑧*% = 𝑧*! ∗$ 𝑦*%
= 𝐶 ∗$ 𝐺

= 𝐺 

𝑧** = 𝑧*% ∗$ 𝑦**
= 𝐺 ∗$ 𝑇

= 𝐴 

𝑧*$ = 𝑧** ∗$ 𝑦*$
= 𝐴 ∗$ 𝐴

= 𝐴 

𝑧*+ = 𝑧*$ ∗$ 𝑦*+
= 𝐴 ∗$ 𝑈

= 𝑇 

𝑧*# = 𝑧*+ ∗$ 𝑦*#
= 𝑇 ∗$ 𝑈

= 𝑈 

𝑧*- = 𝑧*# ∗$ 𝑦*-
= 𝑈 ∗$ 𝑈

= 𝐺 

𝑧*" = 𝑧*- ∗$ 𝑦*"
= 𝐺 ∗$ 𝐶

= 𝑇 

𝑧*0 = 𝑧*" ∗$ 𝑦*0
= 𝑇 ∗$ 𝑈

= 𝑈 

𝑧$1 = 𝑧*0 ∗$ 𝑦$1
= 𝑈 ∗$ 𝑈

= 𝐺 

	

Finally,	we	obtained	our	ciphertext	to	be:		

𝐸%(𝐶!) = 𝐶% =	

(UUTU	GTUA	UAUU	CTAU	ACUU	CCUA	UUCA	TACG	AATU	GTUG).	

4.2 Decryption Process 

An encrypted message 𝐶% is received as shown below:  

(𝑈𝑈𝑇𝑈	𝐺𝑇𝑈𝐴	𝑈𝐴𝑈𝑈	𝐶𝑇𝐴𝑈	𝐴𝐶𝑈𝑈	𝐶𝐶𝑈𝐴	𝑈𝑈𝐶𝐴	𝑇𝐴𝐶𝐺	𝐴𝐴𝑇𝑈	𝐺𝑇𝑈𝐺) (3) 

The quasigroup table for decryption Phase I is shown as follows: 
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Table 4.3 Quasigroup table for Phase I of decryption 

∘$ U A C G T 

U A G C U T 

A T A G C U 

C C U T G A 

G G T U A C 

T U C A T G 

 

Phase I of the decryption is carried out as follows: 

𝐷!(𝑧!𝑧%⋯𝑧,) = (𝑦!𝑦%⋯𝑦,), 

where 𝑦! = 𝐿% ∘$ 𝑧! and 𝑦' = 𝑧')! ∘$ 𝑧'. 

The decryption process for Phase I is carried out with leader 𝐿% = 𝐴 and 

𝑧! = 𝑈, 𝑧% = 𝑈, 𝑧* = 𝑇, … from (3). 

𝑦! = 𝐿% ∘$ 𝑧!
= 𝐴 ∘$ 𝑈

= 𝑇 

𝑦% = 𝑧! ∘$ 𝑧%
= 𝑈 ∘$ 𝑈

= 𝐴 

𝑦* = 𝑧% ∘$ 𝑧*
= 𝑈 ∘$ 𝑇

= 𝑇 

𝑦$ = 𝑧* ∘$ 𝑧$
= 𝑇 ∘$ 𝑈

= 𝑈 

𝑦+ = 𝑧$ ∘$ 𝑧+
= 𝑈 ∘$ 𝐺

= 𝑈 

𝑦# = 𝑧+ ∘$ 𝑧#
= 𝐺 ∘$ 𝑇

= 𝐶 

𝑦- = 𝑧# ∘$ 𝑧-
= 𝑇 ∘$ 𝑈

= 𝑈 

𝑦" = 𝑧- ∘$ 𝑧"
= 𝑈 ∘$ 𝐴

= 𝐺 

𝑦0 = 𝑧" ∘$ 𝑧0
= 𝐴 ∘$ 𝑈

= 𝑇 

𝑦!1 = 𝑧0 ∘$ 𝑧!1
= 𝑈 ∘$ 𝐴

= 𝐺 

𝑦!! = 𝑧!1 ∘$ 𝑧!!
= 𝐴 ∘$ 𝑈

= 𝑇 

𝑦!% = 𝑧!! ∘$ 𝑧!%
= 𝑈 ∘$ 𝑈

= 𝐴 

𝑦!* = 𝑧!% ∘$ 𝑧!*
= 𝑈 ∘$ 𝐶

= 𝐶 

𝑦!$ = 𝑧!* ∘$ 𝑧!$
= 𝐶 ∘$ 𝑇

= 𝐴 

𝑦!+ = 𝑧!$ ∘$ 𝑧!+
= 𝑇 ∘$ 𝐴

= 𝐶 

𝑦!# = 𝑧!+ ∘$ 𝑧!#
= 𝐴 ∘$ 𝑈

= 𝑇 

𝑦!- = 𝑧!# ∘$ 𝑧!-
= 𝑈 ∘$ 𝐴

= 𝐺 

𝑦!" = 𝑧!- ∘$ 𝑧!"
= 𝐴 ∘$ 𝐶

= 𝐺 

𝑦!0 = 𝑧!" ∘$ 𝑧!0
= 𝐶 ∘$ 𝑈

= 𝐶 

𝑦%1 = 𝑧!0 ∘$ 𝑧%1
= 𝑈 ∘$ 𝑈

= 𝐴 
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𝑦%! = 𝑧%1 ∘$ 𝑧%!
= 𝑈 ∘$ 𝐶

= 𝐶 

𝑦%% = 𝑧%! ∘$ 𝑧%%
= 𝐶 ∘$ 𝐶

= 𝑇 

𝑦%* = 𝑧%% ∘$ 𝑧%*
= 𝐶 ∘$ 𝑈

= 𝐶 

𝑦%$ = 𝑧%* ∘$ 𝑧%$
= 𝑈 ∘$ 𝐴

= 𝐺 

𝑦%+ = 𝑧%$ ∘$ 𝑧%+
= 𝐴 ∘$ 𝑈

= 𝑇 

𝑦%# = 𝑧%+ ∘$ 𝑧%#
= 𝑈 ∘$ 𝑈

= 𝐴 

𝑦%- = 𝑧%# ∘$ 𝑧%-
= 𝑈 ∘$ 𝐶

= 𝐶 

𝑦%" = 𝑧%- ∘$ 𝑧%"
= 𝐶 ∘$ 𝐴

= 𝑈 

𝑦%0 = 𝑧%" ∘$ 𝑧%0
= 𝐴 ∘$ 𝑇

= 𝑈 

𝑦*1 = 𝑧%0 ∘$ 𝑧*1
= 𝑇 ∘$ 𝐴

= 𝐶 

𝑦*! = 𝑧*1 ∘$ 𝑧*!
= 𝐴 ∘$ 𝐶

= 𝐺 

𝑦*% = 𝑧*! ∘$ 𝑧*%
= 𝐶 ∘$ 𝐺

= 𝐺 

𝑦** = 𝑧*% ∘$ 𝑧**
= 𝐺 ∘$ 𝐴

= 𝑇 

𝑦*$ = 𝑧** ∘$ 𝑧*$
= 𝐴 ∘$ 𝐴

= 𝐴 

𝑦*+ = 𝑧*$ ∘$ 𝑧*+
= 𝐴 ∘$ 𝑇

= 𝑈 

𝑦*# = 𝑧*+ ∘$ 𝑧*#
= 𝑇 ∘$ 𝑈

= 𝑈 

𝑦*- = 𝑧*# ∘$ 𝑧*-
= 𝑈 ∘$ 𝐺

= 𝑈 

𝑦*" = 𝑧*- ∘$ 𝑧*"
= 𝐺 ∘$ 𝑇

= 𝐶 

𝑦*0 = 𝑧*" ∘$ 𝑧*0
= 𝑇 ∘$ 𝑈

= 𝑈 

𝑦$1 = 𝑧*0 ∘$ 𝑧$1
= 𝑈 ∘$ 𝐺

= 𝑈 

The decrypted message 𝐷!(𝐶%)for Phase I is  

𝐷!(𝐶%) = 𝐶! =

(𝑇𝐴𝑇𝑈	𝑈𝐶𝑈𝐺	𝑇𝐺𝑇𝐴	𝐶𝐴𝐶𝑇	𝐺𝐺𝐶𝐴	𝐶𝑇𝐶𝐺	𝑇𝐴𝐶𝑈	𝑈𝐶𝐺𝐺	𝑇𝐴𝑈𝑈	𝑈𝐶𝑈𝑈).  

The quasigroup table used for Phase II of decryption is as follows: 

Table 4.4 Quasigroup table for Phase II of decryption 

∘ U A C G T 

 U T U C G A 

A C A T U G 

C G T U A C 

G U G A C T 

T A C G T U 

 

The Phase II of the decryption process is carried out with 

𝐷%(𝑦!𝑦%⋯𝑦,) = (𝑥!𝑥%⋯𝑥,), 



62 
 

where 𝑥! = 𝐿! ∘ 𝑦! and 𝑥' = 𝑦')! ∘ 𝑦'. 

Recall the leader 𝐿! = 𝐺 and 𝑦! = 𝑇, 𝑦% = 𝐴, 𝑦* = 𝑇, … from (4). 

Second phase of the decryption process is carried out as shown below: 

𝑥! = 𝐿 ∘ 𝑦! 

= 𝐺 ∘ 𝑇

= 𝑇 

𝑥% = 𝑦! ∘ 𝑦%
= 𝑇 ∘ 𝐴

= 𝐶 

𝑥* = 𝑦% ∘ 𝑦*
= 𝐴 ∘ 𝑇

= 𝐺 

𝑥$ = 𝑦* ∘ 𝑦$
= 𝑇 ∘ 𝑈

= 𝐴 

𝑥+ = 𝑦$ ∘ 𝑦+
= 𝑈 ∘ 𝑈

= 𝑇 

𝑥# = 𝑦+ ∘ 𝑦#
= 𝑈 ∘ 𝐶	

= 𝐶 

𝑥- = 𝑦# ∘ 𝑦-
= 𝐶 ∘ 𝑈

= 𝐺 

𝑥" = 𝑦- ∘ 𝑦"
= 𝑈 ∘ 𝐺

= 𝐺 

𝑥0 = 𝑦" ∘ 𝑦0
= 𝐺 ∘ 𝑇

= 𝑇 

𝑥!1 = 𝑦0 ∘ 𝑦!1
= 𝑇 ∘ 𝐺

= 𝑇 

𝑥!! = 𝑦!1 ∘ 𝑦!!
= 𝐺 ∘ 𝑇

= 𝑇 

𝑥!% = 𝑦!! ∘ 𝑦!%
= 𝑇 ∘ 𝐴

= 𝐶 

𝑥!* = 𝑦!% ∘ 𝑦!*
= 𝐴 ∘ 𝐶

= 𝑇 

𝑥!$ = 𝑦!* ∘ 𝑦!$
= 𝐶 ∘ 𝐴

= 𝑇 

𝑥!+ = 𝑦!$ ∘ 𝑦!+
= 𝐴 ∘ 𝐶

= 𝑇 

𝑥!# = 𝑦!+ ∘ 𝑦!#
= 𝐶 ∘ 𝑇

= 𝐶 

𝑥!- = 𝑦!# ∘ 𝑦!-
= 𝑇 ∘ 𝐺

= 𝑇 

𝑥!" = 𝑦!- ∘ 𝑦!"
= 𝐺 ∘ 𝐺

= 𝐶 

𝑥!0 = 𝑦!" ∘ 𝑦!0
= 𝐺 ∘ 𝐶

= 𝐴 

𝑥%1 = 𝑦!0 ∘ 𝑦%1
= 𝐶 ∘ 𝐴

= 𝑇 

𝑥%! = 𝑦%1 ∘ 𝑦%!
= 𝐴 ∘ 𝐶

= 𝑇 

𝑥%% = 𝑦%! ∘ 𝑦%%
= 𝐶 ∘ 𝑇

= 𝐶 

𝑥%* = 𝑦%% ∘ 𝑦%*
= 𝑇 ∘ 𝐶

= 𝐺 

𝑥%$ = 𝑦%* ∘ 𝑦%$
= 𝐺 ∘ 𝐺

= 𝐴 

𝑥%+ = 𝑦%$ ∘ 𝑦%+
= 𝐺 ∘ 𝑇

= 𝑇 

𝑥%# = 𝑦%+ ∘ 𝑦%#
= 𝑇 ∘ 𝐴

= 𝐶 

𝑥%- = 𝑦%# ∘ 𝑦%-
= 𝐴 ∘ 𝐶

= 𝑇 

𝑥%" = 𝑦%- ∘ 𝑦%"
= 𝐶 ∘ 𝑈

= 𝐺 

𝑥*1 = 𝑦%0 ∘ 𝑦*1
= 𝑈 ∘ 𝑈

= 𝑇 

𝑥*! = 𝑦*1 ∘ 𝑦*!
= 𝑈 ∘ 𝐶

= 𝐶 

𝑥*% = 𝑦*! ∘ 𝑦*%
= 𝐶 ∘ 𝐺

= 𝐴 

𝑥** = 𝑦*% ∘ 𝑦**
= 𝐺 ∘ 𝐺

= 𝐶 

𝑥*$ = 𝑦** ∘ 𝑦*$
= 𝐺 ∘ 𝑇

= 𝑇 

𝑥*+ = 𝑦*$ ∘ 𝑦*+
= 𝑇 ∘ 𝐴

= 𝐶 

𝑥*# = 𝑦*+ ∘ 𝑦*#
= 𝐴 ∘ 𝑈

= 𝐶 

𝑥*- = 𝑦*# ∘ 𝑦*-
= 𝑈 ∘ 𝑈

= 𝑇 
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𝑥*- = 𝑦*# ∘ 𝑦*-
= 𝑈 ∘ 𝑈

= 𝑇 

𝑥*" = 𝑦*- ∘ 𝑦*"
= 𝑈 ∘ 𝐶

= 𝐶 

𝑥*0 = 𝑦*" ∘ 𝑦*0
= 𝐶 ∘ 𝑈

= 𝐺 

𝑥$1 = 𝑦*0 ∘ 𝑦$1
= 𝑈 ∘ 𝑈

= 𝑇 

 

After decryption, the original message is recovered as shown: 

𝐷%(𝐶!) = 𝑀 = 

(TCGA TCGG TTTC TTTC TCAT TCGA TCTG TCAC TCCT TCGT) 

From the obtained DNA sequence, the message is converted back into 

textual form based on DNA encoding rule and ASCII table. 

The final form of the plaintext recovered is shown as follows: 

𝑇𝐶𝐺𝐴 → 0100	1101 → 𝑁(4𝐸) 𝑇𝐶𝐺𝐺 → 0100	1111 → 𝑂(4𝐹) 

𝑇𝑇𝑇𝐶 → 0101	0100 → 𝑇(54) 𝑇𝑇𝑇𝐶 → 0101	0100 → 𝑇(54) 

𝑇𝐶𝐴𝑇 → 0100	1001 → 𝐼(49) 𝑇𝐶𝐺𝐴 → 0100	1110 → 𝑁(4𝐸) 

𝑇𝐶𝑇𝐺 → 0100	0111 → 𝐺(47) 𝑇𝐶𝐴𝐶 → 0100	1000 → 𝐻(48) 

𝑇𝐶𝐶𝑇 → 0100	0001 → 𝐴(41) 𝑇𝐶𝐺𝑇 → 0100	1101 → 𝑀(4𝐷) 
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CHAPTER 5: RESULTS AND DISCUSSIONS 

 This chapter comprises of 2 main sections: security and efficiency 

analysis of the proposed method and a comparative study with two established 

methods: Padmapriya’s method [76] and Markovski’s method [57].  

5.1 Security Analysis  

 The proposed scheme was simulated using Python 3.11 on a system 

with 2.38 GHz processor and 16GB RAM. 

5.1.1 Brute Force Attack   

The strength of any encryption system lies in its key space, which is the 

total number of unique keys that an attacker requires for a brute force attack. 

For the proposed system, the key space, 𝐾  is determined by secret random 

parameters involved in the encryption process, which are the leaders, DNA 

encoding rule, quasigroup table and parastrophe table. The proposed encryption 

system applies a quasigroup operation at every step of the DNA-encoded 

message. As stated in Theorem 2 by [26], this means that an attacker trying to 

reverse the transformation must search through all possible sequences of 

quasigroup operations, even when the input and output are known. In this thesis, 

although the cryptographic system uses only one quasigroup table and one 

parastrophe table for the entire message, each symbol in the message is 

encrypted using a different pair of inputs (previous ciphertext and current 

plaintext). As a result, from the attacker’s perspective, the actual operation 

applied at each step appears to be different and unknown. This justifies 

modelling the encryption system as a sequence 𝑓!, 𝑓%, ⋯ , 𝑓2 of unknown two-

input functions, where 𝐿 is the number of quasigroup operations performed, 
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each selected from a total of 𝐶 = 161,280 × 6 = 967,680 possible quasigroup 

and parastrophe combinations. The value of C represents the total number of 

distinct quasigroup operations that can be applied at each step of the encryption 

process. Based on Table 3.6, there are precisely 161,280 quasigroups for 𝑛 =

5. In the context of our algorithm, this corresponds to the number of possible 

quasigroup tables that can be randomly generated for Phase I of the encryption. 

As defined in Section 3.3.2, every quasigroup has 5 parastrophe, leading to a 

total of 6 related quasigroup (the original plus its five conjugates). While not all 

re always distinct, the maximum number of distinct parastrophes is 6. By 

applying the rule of product, the total number of unique combinations of a 

quasigroup and one of its parastrophes is: 

C = number of quasigroups x number of parastrophes per quasigroup 

   = 161,280 x 6 = 967,680 

Thus, applying the rule of product, the key space becomes  

𝐾 = 𝑅 × 𝐿 × 𝐶, 

𝐾 = 8	 ×	5% 	× (967,680), 

where: 

• 𝑅: Number of DNA encoding rules 

• 𝐿: Number of leader combinations 

• 𝐶: Number of possible quasigroup and parastrophe combinations 

• 𝑚: Length of the encoded message in DNA form 
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As a simple example, we use 𝑚 = 10, in an exhaustive attack, the key 

space is: 

𝐾 = 200 × (967,680)!1 

𝐾 = 1.44	 × 10#% 

As can be observed, the key space is exponentially large even with just 

the length of encoded message being 10, this implies that it would be difficult 

for an attacker to break the system using brute force attack. Compared with two 

other cryptosystems’ key space, specifically Umesh Kumar’s quasigroup-based 

block cipher method which is 2!%" ≈ 3.4 × 10*" [87] and Al-Ahmadi’s DNA-

based method which is 2"1 ≈ 1.21 × 10%$ [88], the key space of the proposed 

method is significantly bigger. The algorithm enhances security through the 

random parameters. Even with the knowledge of the plaintext and ciphertext, 

attackers would struggle to reconstruct the encryption process without the 

specific information of the key.  

5.1.2 Known Plaintext Attack (KPA) 

In the Known Plaintext Attack (KPA), the adversaries have access to 

both plaintext and its corresponding ciphertext. In this type of scenario, they 

aim to reverse engineer the encryption process by deducing and analysing any 

possible patterns or relations between the ciphertext and its corresponding 

plaintext. Randomness and unpredictability are the keys to protecting the 

system against this attack, they make it difficult for the attackers to infer and 

correlate any useful patterns that may expose the system.  
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 In this section, we analyse how the proposed method is resistant against 

KPA. We use chi-square test to evaluate the uniformity of the DNA bases 

(𝐴, 𝐶, 𝑇, 𝐺, 𝑈) distribution in the ciphertext. As mentioned in [95], chi-square 

test is used to check randomness of a string of numbers or symbols. The use of 

the Chi-square test to evaluate the uniformity of DNA base distribution in the 

ciphertext is a direct application of a fundamental principle in cryptography: a 

secure cipher must produce output that is statistically indistinguishable from 

random data [89]. If certain DNA bases appear more frequently than the others 

in the ciphertext, the adversary might be able to use these patterns to restructure 

the contents of the original plaintext. The application of the Chi-square test for 

cryptographic purpose is well-documented in both general cryptographic 

literature and in the specific field of DNA cryptography [11], [90], [91],. By 

applying the Chi-square test and obtaining high p-values for our ciphertext 

across different plaintext lengths, we are able to provide quantifiable, standards-

based evidence that our proposed algorithm successfully eliminates 

statistical biases.   

 The chi-square statistics is numerically represented as:  

𝜒! =$
(𝑂" − 𝐸")!

𝐸"

#

"$%

 

Where: 

• 𝑛 is the number of distinct DNA bases (𝐴, 𝐶, 𝑇, 𝐺, 𝑈) 

• 𝑂' is the observed frequency of the 𝑖34 base 

• 𝐸' =
5
&

 is the expected frequency where 𝑁  is the total number of 

characters in the ciphertext.  
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The resulting chi-square statistic is then used to calculate the 𝑝-value. The closer 

the chi-square statistic is to 0 and the higher the 𝑝-value (usually more than 

0.05), the more uniform the distribution. 

Table 5.1 Chi-Square statistic and 𝑝-value for plaintext length of 500, 

2000, 3500 and 5000 

Plaintext Length Chi-Square Statistic 𝑝-value 

500 0.5600 0.9674 

2000 0.3944 0.9829 

3500 2.1219 0.7133 

5000 4.2240 0.3765 

 

 

 

 

 

 

 

Figure 5.1 Histogram of Ciphertext Base Distribution for Plaintext of 500 

Character Lengths 

 

 

 

 

 



69 
 

 

 

 

 

 

Figure 5.2 Histogram of Ciphertext Base Distribution for Plaintext of 2000 

Character Lengths 

 

 

 

 

 

 

Figure 5.3 Histogram of Ciphertext Base Distribution for Plaintext of 3500 

Character Lengths 
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Figure 5.4 Histogram of Ciphertext Base Distribution for Plaintext of 5000 

Character Lengths 

All 𝑝 -values are above the 0.05 threshold and all histograms of 

ciphertext base distribution for plaintext of 500, 2000, 3500 and 5000 are 

uniformly distributed and shows no sign of bias. The consistency in the 

distribution of each figure proves to be hard for the adversary to find any type 

of pattern or relation in the proposed system. Thus, the system is resistant 

against KPA.  

5.1.3 Complexity Analysis 

Complexity analysis determines the efficiency of an algorithm. 

According to the approximations from complexity theory, the smallest possible 

class of functions is used to express the growing rate of algorithm’s runtime. 

For instance, if the number of operations is 1 + 2𝑛, then the complexity would 

be 𝑂(𝑛) and if the number of operations is 4 + 𝑛 + 𝑛*, then the complexity 

would be 𝑂(𝑛*). 

Time complexity is defined as the time required to execute an algorithm. 

The runtime of an algorithm is defined as the sum of all operations. The time 
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required to convert plaintext to ciphertext is referred to as encryption time. The 

time complexity of an encryption scheme is the sum of the time required at 

phase 1 and phase 2.  

For the proposed algorithm, the time complexity of the operations will 

be measured based on the order of the quasigroup. For the proposed method, 

the quasigroup has 5 elements {𝐴, 𝐶, 𝐺, 𝑇, 𝑈}. The lookup and operation on the 

quasigroup table are constant time operations 𝑂(1). The larger the quasigroup, 

the more elements will need to be processed in terms of memory 𝑂(𝑛%), where 

𝑛  is the order of quasigroups, due to the need to store the quasigroup 

multiplication table. Since we are using two layers of encryption, where the first 

layer uses the original quasigroup and the second layer uses its conjugate, The 

time complexity for a single layer of encryption is 𝑂(𝑚), where 𝑚 is the length 

of the message being encrypted, since each element of the message goes through 

the quasigroup multiplication operation once. With two layers, this results in 

𝑂(2𝑚) time complexity for encryption and decryption, which simplifies to 

𝑂(𝑚), as the constant factor can be disregarded in Big-O notation. An 𝑂(𝑚) 

algorithm performs a number of operations proportional to the size of the input 

𝑛. For example, if 𝑛 doubles, the time taken also doubles. Searching through an 

unsorted list of 𝑛 elements for a specific item typically takes 𝑂(𝑚) time, as it 

requires examining each element once. This is generally faster and more 

efficient for large datasets than 𝑂(𝑛%) . Thus, since the encryption and 

decryption process operate with a linear time complexity of 𝑂(𝑚) , the 

algorithm’s performance remains efficient even as the input size increases.  



72 
 

Space complexity is defined as the amount of memory the algorithm 

uses as the input size grows. The quasigroup table has 𝑛% elements, where 𝑛 is 

the number of elements in quasigroup, resulting in 𝑂(𝑛%) space complexity for 

the table itself. This means that as the number of elements in the quasigroup 

increases, the space required to store the table increases significantly.  

When encrypting a message, the ciphertext must be stored. The size of 

the ciphertext is directly proportional to the length of the input message, 𝑚. The 

DNA sequence requires space proportional to the length of input message 𝑚, 

meaning the total space complexity is 𝑂(𝑚) for the storage of the ciphertext. 

This means that the length of the message is directly proportional to the storage 

requirement for the ciphertext. When considering both the storage required for 

the quasigroup multiplication table and the storage for the ciphertext, the overall 

space complexity can be expressed as the sum of the two individual 

complexities. Thus, overall space complexity would be 𝑂(𝑚 + 𝑛%) due to the 

message size and quasigroup storage, which indicates that the storage 

requirements grow with both the message length and the size of the quasigroup.  

The linear growth in time complexity with message length 𝑂(𝑚) 

ensures the system is suitable for long plaintexts, as the computational cost is 

proportional to input size. However, the quadratic growth in space complexity 

due to the quasigroup table 𝑂(𝑛%)  highlights a trade-off: increasing the 

quasigroup size enhances security but demands significantly more memory.  

The cryptosystem achieves a balance between computational efficiency 

and storage demands, with its linear time complexity being a standout feature 

for practical applications. However, as the quasigroup size increases to enhance 
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security, the associated storage requirements must be carefully managed to 

avoid excessive resource consumption. This balance makes the cryptosystem 

particularly suitable for environments with moderate storage constraints and a 

need for fast encryption and decryption processes. In future work, we may 

consider looking into the possibility of developing algorithm which can reduce 

the space complexity while only marginally increase the time complexity.  

5.1.4 Shannon’s Entropy 

In the field of cryptography, Shannon entropy is used to assess the 

strength of encryption systems. Shannon’s entropy, developed by Claude 

Shannon, is a measure of uncertainty or randomness in a set of data, such as a 

sequence of text or encoded information. Higher entropy values indicate more 

randomness and unpredictability, while lower values imply more regularity or 

predictability. For instance, a repetitive sequence, such as “AAAA”, has low 

entropy because there is little surprise in each new character, the next character 

is likely “a” again whilst a sequence like “AGCTGTCA”, where each character 

is less predictable, has high entropy because each new character introduces 

more “surprise”. An encryption system with high entropy means it is harder for 

attackers to reverse engineer the system, making the encryption system more 

secure.   

Definition 5.1. For a random variable 𝛼 with 𝑛 possible values 𝛼!, … , 𝛼&	such 

that 𝑃[𝛼 = 𝛼'] = 𝑝', we define its Shannon’s entropy as  

𝐻(𝛼) ≔�𝑝'log2
1
𝑝'

&

'6!

 

It is measured in bits.  
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Where: 

• 𝑝' represents the probability of each unique event 𝑖 

• The log% calculates the “information” of each event in bits. 

If an event occurs with probability 1, it has 0 entropy (it’s entirely 

predictable). The maximum entropy occurs when all events are equally probably, 

maximising uncertainty.  

Suppose you have a simple text string like “AABBCCDD”: 

The probabilities for each character are [0.25, 0.25, 0.25,0.25] for “A”, “B”, 

“C” and “D”. 

Shannon’s entropy calculation: 

𝐻 =�0.25 ⋅ log%(4)
$

!

= 2 

Normalised Shannon entropy is a scaled version of Shannon entropy that 

adjusts for the size of the alphabet used in the data. It provides a value between 

0 and 1, making it easier to compare entropy across datasets with different 

character sets or symbol sizes. Raw Shannon entropy values can vary 

significantly depending on the alphabet size. Normalised entropy scales these 

values to a consistent range (0 to 1). 

Normalised entropy would compare this to the maximum entropy 

possible for a system with four unique characters: 

Max entropy = log%(4) = 2 
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Giving a normalised entropy of 1, indicating maximal randomness for a 

sequence with four equally probable outcomes.  

The maximum possible entropy 𝐻,78 = log%(𝑛) 

Normalised entropy = 9
9!"#

 

 In this thesis, we obtained the data through python coding for maximum 

possible entropy, Shannon Entropy and Normalised Shannon Entropy for 

plaintext and ciphertext of the proposed method. The obtained data are listed in 

the table shown below: 

Table 5.2 Proposed Method’s Shannon Entropy for Plaintext 

Plaintext 

Length 

Maximum 

Possible Entropy 

Shannon 

Entropy 

Normalised Shannon 

Entropy 

500 5.209453 4.406603 0.845886 

1000 5.285402 4.351083 0.823226 

1500 5.523562 4.381499 0.793238 

2000 5.523562 4.346915 0.786977 

2500 5.554589 4.364680 0.785779 

3000 5.672425 4.373745 0.771054 

Table 5.3 Proposed Method’s Shannon Entropy for Ciphertext 

Ciphertext 

Length 

Maximum 

Possible Entropy 

Shannon Entropy Normalised 

Shannon Entropy 

500 2.321928 2.320869 0.999544 

1000 2.321928 2.320915 0.999564 

1500 2.321928 2.321286 0.999723 

2000 2.321928 2.321455 0.999796 

2500 2.321928 2.321513 0.999821 

3000 2.321928 2.321871 0.999975 
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As can be observed, the normalised Shannon’s entropy for ciphertext of 

length 500 to 3000 are all relatively close to one, showing high unpredictability 

of the system. 

 

Figure 5.5 Graph of Normalised Shannon’s Entropy of Plaintext and 

Ciphertext of the Proposed Method against Plaintext Length 

Figure 5.5 shows the graphs of Shannon’s Entropy and Normalised 

Shannon’s Entropy of the Proposed Method against Plaintext Length and 

Ciphertext Length respectively. The blue line represents the normalised 

Shannon’s Entropy of plaintext while the orange line represents normalised 

Shannon’s entropy of ciphertext. For Shannon’s entropy analysis, the plaintext 

starts with a low Shannon entropy (approximately 4.3 to 4.4), indicating a high 

degree of predictability and redundancy in the data. After encryption, the 

ciphertext entropy rises to approximately 2.32, which is close to the maximum 

possible entropy for the given plaintext size. This increase also suggests that the 

encryption process has effectively removed patterns and made the data more 

random.  
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For the analysis of Normalised Shannon’s Entropy, the normalised 

entropy for plaintext begins near 0.77. After encryption, the normalised entropy 

is approximately 0.999, approaching to 1, which is the theoretical maximum for 

randomness. This indicates that the ciphertext has high unpredictability and 

randomness, which is pivotal property for a cryptosystem.  The result of the 

normalised Shannon entropy of the ciphertext would not be affected and 

different even if the plaintext came from different domains as the transformation 

operations of the plaintext depends not on the context of the plaintext but the 

length of said plaintext.  

The increase in both Shannon entropy and normalised Shannon entropy 

demonstrates the cryptosystem’s ability to obscure patterns in the plaintext, 

making it resistant to statistical and frequency-based attacks. The graph has also 

demonstrated the effectiveness of the cryptosystem in transforming plaintext 

into ciphertext with significantly increased randomness, as indicated by both the 

result of Shannon’s entropy and normalised Shannon’s entropy. Overall, these 

results confirm that the cryptosystem is both effective and secure, as it achieves 

high levels of randomness and entropy in the ciphertext regardless of the 

plaintext length.  

5.1.5 Provable Security in DNA and Quasigroup-based 

Cryptosystems: Current State and Limitations 

There is limited literature discussing theoretical and provable security analysis 

for DNA-based and quasigroup-based cryptosystem and existing work remains 

primarily empirical or descriptive. For DNA cryptosystems, most studies focus 

on improving randomness and efficiency using DNA coding combined with 
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other mathematical models, with analysis including randomness test like NIST 

suite and resistance to common attacks like brute force attacks. For quasigroup-

based cryptography, some work adopts provable security frameworks for 

quasigroup-based cryptosystems, for instance, symmetric encryption scheme 

based on quasigroups (SEBQ) has been proven to achieve IND-CPA security 

[92]. Nevertheless, while provable security frameworks are emerging for 

specific quasigroup-based encryption, overall coverage in literature remains 

less extensive compared to classical cryptosystems. Overall, while empirical 

and descriptive security analysis dominate in these areas, there are ongoing 

efforts toward integrating provable security frameworks particularly for 

quasigroup-based cryptosystems. DNA cryptosystems are generally at an earlier 

stage where provable security remains a research challenge due to novelty and 

complexity of biological encoding models. While a full provable security 

analysis is beyond the scope of this thesis, it represents a vital and recommended 

direction for future work. 

5.2 Efficiency Analysis 

5.2.1 Encryption and Decryption time 

 The results for encryption time of the proposed method for plaintext of 

different lengths, from 10 characters up to 500 characters are obtained and 

shown in the tables below: 
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Table 5.4 Encryption and decryption time for the proposed method  

Plaintext Length Encryption time (ms) Decryption time (ms) 

10 0.4479 0.1200 

20 0.5256 0.2619 

40 0.5820 0.4291 

80 0.6747 0.8275 

100 0.7610 1.0465 

500 2.5488 5.3951 

 

 As shown in the table, the encryption and decryption time grows 

gradually as the plaintext length increases. For very short plaintexts (10 – 100 

characters), the encryption and decryption time remains below 1ms, indicating 

that the overhead of the encryption and decryption procedure is minimal for 

small data. Even for 500 characters, the encryption and decryption time are only 

about 2.5488 ms and 5.3951 ms respectively. 

 These results indicate the efficiency of the encryption and decryption 

process of the proposed method. For typical applications, an encryption time of 

less than a millisecond (for up to 100 characters) is practically negligible. The 

linear increase in encryption time and decryption time with respect to the 

plaintext length also confirms that the proposed method has a time complexity 

of 𝑂(𝑚), as predicted in Section 5.1.3. Different character sets of the same 

length would produce very similar timing results because the algorithm’s 

performance is fundamentally determined by the quantity of data (number of 

DNA bases to process) rather than the specific content of that data.  
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5.3 Comparative Analysis 

5.3.1 Efficiency 

 In this section, the proposed method will be compared to two 

cryptographic methods which are Padmapriya’s method [38] that involves DNA 

cryptography and Markovski’s method [39] that involves quasigroup-based 

cryptography. These three methods are compared in terms of security 

(Shannon’s entropy) and efficiency (encryption and decryption time). I 

implemented Padmapriya’s and Markovski’s method from scratch based on the 

description in [78] and [79] respectively. The results were not taken directly 

from the published papers but came from my own implementations of all three 

methods and exactly the same plaintext sets for all three methods to ensure 

fair comparison.  

 Padmapriya’s scheme [38] is a two-phase symmetric key stream cipher 

which combines a DNA-derived One-Time Pad (OTP) with a frequency-based 

(Huffman style) prefix code to produce storage optimised ciphertext whilst 

Markovski’s method [39] introduces BCMPQ, a symmetric block cipher that 

employs quasigroups of order 4 in a compact matrix form.  

 The proposed scheme is a hybrid that integrates two distinct concepts: 

DNA cryptography and quasigroup-based transformations. To properly assess 

the contribution of the proposed scheme in terms of security and efficiency, it is 

necessary to compare against a benchmark that represents each domain of the 

hybrid which are DNA and quasigroups. Thus, the comparative study focuses 

on two representative schemes, that is, Padmapriya’s DNA-based method and 

Markovski’s quasigroup-based method as they are directly comparable to the 
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proposed hybrid scheme. By comparing a pure DNA method and a pure 

quasigroup method, we can effectively demonstrate the synergistic advantages 

of the proposed hybrid approach. If the proposed scheme outperforms or 

matches both in key metrics, it strongly validates the hybrid design principle. 

Padmapriya’s and Markovski’s methods were chosen specifically because they 

are well-documented, implementable, and directly relevant to the core 

innovations of this thesis, thereby enabling a clear and interpretable 

comparative analysis. 

 The encryption time and decryption time for Padmapriya, Markovski 

and proposed method for different plaintext lengths are shown below:  

Table 5.5 Encryption time of three methods for different plaintext lengths 

Plaintext 

Length 

Encryption time (ms) 

Padmapriya Markovski Proposed 

10 2 0.2402 0.4479 

20 4 0.2899 0.5256 

40 3 0.5242 0.5820 

80 5 0.8386 0.6747 

100 5 1.4333 0.7610 

500 8 4.4841 2.5488 
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Figure 5.6 Graph of encryption time for the three methods against plaintext 

length 

Table 5.6 Decryption time of three methods for different plaintext lengths 

Plaintext 

Length 

Decryption time (ms) 

Padmapriya Markovski Proposed 

10 2 0.1739 0.1200 

20 2 0.2510 0.2619 

40 3 0.4756 0.4291 

80 3 0.8060 0.8275 

100 3 1.3891 1.0465 

500 7 7.6478 5.3951 
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Figure 5.7 Graph of decryption time for the three methods against plaintext 

length 

It can be observed that Padmapriya’s method exhibits moderate but the 

slowest encryption times among the three methods, ranging from 2 ms (10 

characters) to 8 ms (500 characters), thus not the most efficient compared to the 

other two methods. Markovski’s method achieves the fastest encryption time 

for small plaintexts (10 – 20 characters), with time as low as 0.2402 ms for 10 

characters. However, its encryption time surpasses the proposed method’s time 

at larger input sizes like 500 characters with 4.4841 ms. Overall, Markovski’s 

method leads for small plaintext lengths, while the proposed method shows 

superior performance at larger plaintext sizes.  

The same cannot be said for the decryption times as well. Padmapriya’s 

method shows much higher decryption time than the other two methods for 

plaintext lengths between 10 (2 ms) to 100 (3 ms). The decryption time for 

Markovski’s method is longest among three methods when it comes to large 

plaintext like 500 characters. The proposed method, however, delivers the 
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fastest decryption times at all measure plaintext lengths, from 0.1200 ms (10 

characters) to 5.3951 ms (500 characters), which indicates minimal overhead 

for both small and large messages.  

Overall, for small plaintext sizes, Markovski’s method encrypts the 

fastest while the proposed method decrypts the fastest and Padmapriya’s method 

is generally in the slowest range. For larger plaintext sizes, the proposed method 

outperforms all the other methods for both encryption and decryption.  

The rationale as to why Markovski’s method leads in performance for 

small plaintext lengths while the proposed method shows superior performance 

at larger plaintext sizes stems from their respective algorithmic characteristics 

and scalability. Markovski’s method uses quasigroups of order 4 and operates 

on fixed 64-bit blocks with compact matrix operations, which incurs minimal 

overhead on small data sizes. This design leads to very low overhead per block, 

and thus results in faster encryption time, making it highly efficient for small 

plaintext lengths because lightweight operations and small block handling 

dominate efficiency at this scale. However, as plaintext size grows, the overhead 

accumulates as more blocks are processed, and the time complexity is less 

favourable on large inputs, leading to slower performance as size increases. 

Conversely, the proposed method processes plaintext linearly as the operation 

on the quasigroup table is constant-time, and the encryption has a linear time 

complexity 𝑂(𝑚) with respect to plaintext length 𝑚. Although there is some 

overhead from the more complex transformations and two-phase structure, this 

overhead becomes negligible as plaintext length grows. This linear scaling 

ensures that the performance of the proposed method becomes increasingly 
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efficient for larger plaintext sizes and eventually outperforms Markovski’s 

method as input size becomes substantial.  

Thus, the comparative analysis for efficiency has shown that the 

proposed method is the most balanced choice, delivery high encryption speed 

and the lowest decryption time.  

5.3.2 Security 

 The securities of the three methods are compared using normalised 

Shannon’s entropy for ciphertext. All the data of the three methods for 

normalised Shannon’s entropy are listed in the table as shown below: 

Table 5.7 Normalised Shannon’s entropy for ciphertext of all three methods 

Plaintext Length Normalised Shannon Entropy 

Padmapriya Markovski Proposed 

500 0.860536 0.972287 0.999544 

1000 0.864609 0.979534 0.999564 

1500 0.861672 0.982073 0.999723 

2000 0.858049 0.987947 0.999796 

2500 0.858435 0.988624 0.999821 

3000 0.863743 0.991953 0.999975 
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Figure 5.8 Graph of Normalised Shannon’s entropy of all three methods 

against plaintext length 

 Padmapriya’s method exhibits low normalised Shannon’s entropy, 

ranging from 0.858049 to 0.864609. Markovski’s method’s value ranges from 

0.972287 to 0.991953. The proposed method has highest value with 0.999544 

at 500 characters and up to 0.999975 at 3000 characters. The proposed method 

achieves marginally highest values indicating that ciphertext distribution are 

highly uniform. This suggests strong randomness and minimal exploitable 

patterns in the ciphertext. High normalised Shannon’s entropy is generally 

desirable as it reduces the likelihood of successful statistical attacks. The 

proposed method’s value suggests it is more resistant to such attacks.  

Padmapriya’s scheme may offer storage efficiency, but it falls short in 

operational flexibility and speed. Each encryption run of Padmapriya’s method 

must retrieve a random DNA sequence from public database GenBank and this 

introduces operational dependencies on Padmapriya’s end. The proposed 

method does not rely on fetching large DNA sequences for each message, 
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thereby eliminating external key-retrieval overhead and still attaining high 

randomness which is comparable to Padmapriya’s. Markovski’s quasigroup 

matrix block cipher may be a lightweight block cipher whose entire public 

parameter set fits in 160 bytes and whose operations reduce to fixed-size 

Boolean matrix transforms which is ideal for resource-constrained hardware, 

yet it operates on fixed 64-bit blocks with quasigroups of order 4, which limits 

its security under modern block cipher standards and it yields only moderate 

randomness. In comparison, the proposed method uses higher order quasigroup 

and yields higher entropy.  

5.4 Trade Off 

Additional experiments were conducted to examine how encryption 

time and decryption time scale with larger quasigroup sizes and more phases. 

Table 5.8 Encryption and decryption time of the proposed method with 

different quasigroup sizes 

Quasigroup Size Encryption Time (ms) Decryption Time (ms) 

4 0.202320 0.049240 

5 0.301180 0.049940 

6 0.474340 0.050080 

7 0.736340 0.051020 

8 1.330600 0.068320 

9 1.815320 0.056280 

10 2.320840 0.058460 

11 3.430860 0.056280 

12 4.767060 0.060100 

13 7.151600 0.064280 

14 9.155140 0.064840 

15 10.776880 0.064580 
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Figure 5.9 Graph of encryption and decryption time against different 

quasigroup size 

 According to Table 5.8 and Figure 5.9, the encryption time increases 

quite drastically from about 0.189980 ms for quasigroup of size 5 to 15.168740 

ms for quasigroup of size 15. This rapid rise indicates that larger quasigroups 

demand significantly more computation in the encryption phase, making the 

method less practical for real-time or resource constrained environments. The 

decryption time, however, does not increase as drastically as the encryption time. 

This is due to the fact that decryption requires no random generation or table 

construction as it merely applies the already established inverse operations with 

known keys and tables.  

 It is true that a larger quasigroup size theoretically expands the key space 

and can enhance security. However, once a certain point is reached, the 

slowdown in performance outweighs the security boost gained, making it less 

practical for applications. Quasigroup of size 5 strikes a practical balance as it 
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still manages to offer large numbers of possible quasigroups while keeping the 

encryption time under 1ms for small and moderate input sizes. 

 Table 5.9 shows the encryption and decryption time of the proposed 

method with different number of phases ranging from 2 to 10. Each additional 

phase adds another transformation step, although it aims to improve complexity 

in the ciphertext, it also increases computational overhead. 

Table 5.9 Encryption time and decryption time of the proposed method for 

different numbers of phases 

Number of Phases Encryption Time (ms) Decryption Time (ms) 

2 0.401020 0.053100 

4 0.577720 0.087640 

6 0.878320 0.126000 

8 1.186460 0.165060 

10 1.596760 0.202080 

 

 

Figure 5.10 Graph of encryption and decryption time against number of phases 
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Table 5.10 Normalised Shannon Entropy of Plaintext and Ciphertext of the 

proposed method for different quasigroup 

Quasigroup Size Normalised Shannon 
Entropy of Plaintext 

Normalised Shannon 
Entropy of Ciphertext 

4 0.4855 0.9995 

5 0.6284 0.9996 

6 0.5645 0.9995 

7 0.6736 0.9992 

8 0.6304 0.9991 

9 0.5966 0.9990 

10 0.5693 0.9993 

11 0.5466 0.9986 

12 0.5275 0.9990 

13 0.5867 0.9986 

14 0.5702 0.9988 

15 0.5557 0.9987 

 

Figure 5.11 Graph of normalised Shannon entropy of plaintext and ciphertext 

against quasigroup sizes 
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Table 5.11 Normalised Shannon Entropy of Plaintext and Ciphertext of the 

proposed method for different numbers of phases 

Number of Phases Encryption Time (ms) Decryption Time (ms) 

2 0.4182 0.9992 

4 0.4182 0.9993 

6 0.4182 0.9994 

8 0.4182 0.9992 

10 0.4182 0.9995 

 

Figure 5.12 Graph of normalised Shannon entropy of plaintext and ciphertext 

against number of phases 

The proposed encryption method operates entirely on DNA symbols, where the 

input plaintexts are transformed into DNA bases before applying quasigroup 

and parastrophic transformations that produce essentially random-like 

ciphertexts. The randomness and uniformity analysis in Chapter 5 has shown 

that the ciphertext distributions remain consistent across varying plaintext 
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lengths, indicating robust statistical obfuscation that should generalise across 

different plaintext domain types. However, while the method generally achieves 

excellent diffusion and near uniform distribution with normalised entropy >

0.99  in most cases, extremely low entropy domains, for instance, highly 

repetitive plaintext such as long strings of identical characters can result in 

slightly reduced ciphertext entropy. The proposed method has been tested with 

low entropy plaintext AAAAAAAAAA of length 10 which yields normalised 

Shannon entropy of ciphertext of 0.816376, comparatively lower than the 

random plaintext of length 10 which yields normalised Shannon entropy of 

ciphertext of 0.963329. The combination of a large key space, random initial 

parameters and multiple quasigroup phases ensure that any domain specific 

characteristics are effectively masked. For typical plaintext domains, the 

ciphertext is expected to maintain high entropy and exhibit uniform symbol 

distribution. 

 From Table 5.9 and Figure 5.10, it can be seen that the encryption time 

grows from about 0.286640 ms at 2 phases to 1.203000 ms at 10 phases. The 

decryption time increases proportionally from 0.062660 ms to 0.283780 ms. As 

mentioned before, each phase adds an additional transformation layer, 

theoretically enhancing security. However, beyond 2 phases, each additional 

layer adds only a small boost in security compared to the extra work it requires. 

For practicality, 2 phases of quasigroup-based DNA encryption already provide 

robust complexity, making additional phases unnecessary and redundant. While 

more phases could be beneficial for extremely sensitive data, real-world 

systems typically require a balance between encryption strength and latency. 

Doubling or tripling the encryption time to add extra layers may not be 
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worthwhile if 2 phases are already sufficient to strike a balance between security 

and efficiency.  

Based on Table 5.10 and Figure 5.11, all ciphertexts achieve entropy 

near 1, which is the theoretical maximum for a uniformly random sequence. It 

is observed that larger quasigroups do not produce more random ciphertexts. 

Increasing quasigroup size greatly increases computational cost but does not 

effectively increase the normalised Shannon entropy of ciphertext. Therefore, 

the overhead is not justified from the perspective of Shannon entropy-based 

security.  

According to Table 5.11 and Figure 5.12, there is no noticeable gain in 

normalised Shannon entropy when it comes to the number of phases. Increasing 

the number of phases to 4, 6, 8 or 10 does not produce any significant increase 

in the normalised Shannon entropy. Thus, adding more than 2 phases 

significantly increases the computational overhead without any measurable 

improvement in the normalised Shannon entropy of ciphertext. Minimal 

configurations already achieve the theoretical randomness bound, making 

further expansion is deemed unnecessary.  

 In short, while it is technically feasible to increase the quasigroup size 

or the number of phases, these results show that doing so significantly impacts 

performance without providing a reasonable improvement in security for real-

world applications.  
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CHAPTER 6: CONCLUSION 

The research sets out to explore and develop a novel cryptographic 

algorithm by integrating the unique properties of DNA with nonassociative 

transformations provided by quasigroups. The proposed method distinguishes 

itself from traditional cryptosystems by directly mapping plaintext into DNA 

form using a randomly chosen DNA encoding rule and then applying a two-

phase encryption process that leverages both a random quasigroup table and one 

of its random parastrophes. One of the key innovations in the proposed method 

is the introduction of element Uracil (U). The design choice not only increases 

the key space but also obfuscates statistical patterns, thereby enhancing the 

system’s resistance against known plaintext and statistical attacks. The two-

phase encryption scheme significantly increases the complexity and 

randomness of the ciphertext, as evidenced by the high normalised Shannon 

entropy value which approaches 1. The extensive key space demonstrates that 

even for a small encoded message length of 10, the key space reaches an 

exponential size (approximately 1.44 × 10#% ). The enormous key space 

ensures that an exhaustive search attack would be computationally infeasible, 

thereby reinforcing the cryptosystem’s security. 

In addition to its strong security, the proposed method also demonstrates 

high efficiency. Experimental results show that both the encryption and 

decryption times scale linearly with the plaintext length. Comparative analysis 

with existing DNA cryptographic schemes such as Padmapriya’s and 

Markovski’s methods indicate that while all methods achieve high levels of 

randomness, the proposed method offers a balanced approach with faster 

encryption and decryption time, especially for larger plaintexts.  
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Furthermore, additional experiments were conducted to assess the trade-

offs associated with using larger quasigroup sizes and increasing the number of 

encryption phases. These investigations revealed that although increasing these 

parameters could theoretically enhance security by expanding the key space and 

adding more layers of transformation, the practical impact on performance is 

significant. In particular, encryption times grow rapidly with larger quasigroup 

sizes and additional phases, while security gains remain marginal beyond the 

chosen configuration. This finding validates the design choices made in this 

thesis, ensuring that the system achieves robust security without compromising 

efficiency.  

Despite the promising results, the current implementation is limited to 

text file encryption. Future work could focus on extending the method to handle 

multimedia data such as images and audio, as well as exploring further 

optimisations in key management and transformation efficiency. On the whole, 

the proposed method represents a significant step forward in the application of 

quasigroup in DNA cryptography. 
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APPENDICES 

Proposed_Method.py 

import random 

import time 

from math import log2 

 

# ----- DNA Bases ----- 

DNA_BASES = ['A', 'T', 'C', 'G', 'U'] 

 

# ----- DNA Encoding/Decoding Rules ----- 

ENCODING_RULES = { 

    "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'}, 

    "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'}, 

    "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'}, 

    "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'}, 

    "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'}, 

    "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'}, 

    "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'}, 

    "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'} 

} 

# Compute the inverse for each rule 

DECODING_RULES = { 

    rule: {v: k for k, v in mapping.items()} 

    for rule, mapping in ENCODING_RULES.items() 

} 

 

# ----- Conversion Functions ----- 

def text_to_binary(text): 

    #Convert ASCII text to binary string. 

    return ''.join(format(ord(ch), '08b') for ch in text) 
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def binary_to_text(binary_str): 

    #Convert binary string back to ASCII text. 

    return ''.join( 

        chr(int(binary_str[i:i+8], 2)) 

        for i in range(0, len(binary_str), 8) 

    ) 

 

def binary_to_DNA(binary_str, mapping): 

    # Map each pair of bits to a DNA base using 'mapping'.  

    # Pads with '0' if necessary to complete the last pair. 

    if len(binary_str) % 2 != 0: 

        binary_str += '0' 

    dna = '' 

    for i in range(0, len(binary_str), 2): 

        dna += mapping[binary_str[i:i+2]] 

    return dna 

 

def DNA_to_binary(dna, mapping): 

    # Map each DNA base back to its binary string using 'mapping'. 

    return ''.join(mapping[base] for base in dna) 

 

def text_to_DNA(text, encoding_mapping): 

    # Convert text to binary to DNA (using chosen encoding) 

    return binary_to_DNA(text_to_binary(text), encoding_mapping) 

 

def DNA_to_text(dna, decoding_mapping): 

    # Convert DNA to binary to text (using chosen decoding) 

    return binary_to_text(DNA_to_binary(dna, decoding_mapping)) 

 

# ----- Quasigroup Table Generation ----- 

def generate_latin_square(bases): 
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    # Construct a random Quasigroup table of size n×n over 'bases' by 
backtracking. 

    # Ensures each row and column is a permutation of 'bases'. 

    n = len(bases) 

    square = [[None]*n for _ in range(n)] 

 

    def valid(r, c, v): 

        # Check that 'v' does not appear in row r or column c yet 

        return (v not in square[r] 

                and all(square[i][c] != v for i in range(n))) 

 

    def backtrack(idx=0): 

        # Fill cells one by one; if we reach n*n, we're done 

        if idx == n*n: 

            return True 

        r, c = divmod(idx, n) 

        # Try each base in random order 

        for v in random.sample(bases, n): 

            if valid(r, c, v): 

                square[r][c] = v 

                if backtrack(idx+1): 

                    return True 

        # Backtrack 

        square[r][c] = None 

        return False 

 

    if backtrack(): 

        return square 

    else: 

        raise ValueError("Failed to generate Latin square") 

 

def convert_square_to_table(square, bases): 
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    # Convert a 2D list 'square' into a dict-of-dicts table: table[a][b] = result of 
a * b 

    return { 

        bases[i]: { 

            bases[j]: square[i][j] 

            for j in range(len(bases)) 

        } 

        for i in range(len(bases)) 

    } 

 

def generate_random_quasigroup_table(bases): 

    # Generate and convert one random quasigroup table. 

    square = generate_latin_square(bases) 

    return convert_square_to_table(square, bases) 

 

# ----- Parastrophe Table Generation ----- 

def compute_parastrophes(Q): 

    # Given a quasigroup table Q, compute its 5 parastrophe tables. 

    bases = list(Q.keys()) 

    P = [{b: {} for b in bases} for _ in range(5)] 

 

    for x in bases: 

        for y in bases: 

            # 1) x *_1 y = z  <=>  x * z = y 

            z1 = next(z for z in bases if Q[x][z] == y) 

            # 2) x *_2 y = z  <=>  z * y = x 

            z2 = next(z for z in bases if Q[z][y] == x) 

            # 3) x *_3 y = z  <=>  z * x = y 

            z3 = next(z for z in bases if Q[z][x] == y) 

            # 4) x *_4 y = z  <=>  y * z = x 

            z4 = next(z for z in bases if Q[y][z] == x) 

            # 5) x *_5 y = z  <=>  y * x = z 
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            z5 = Q[y][x] 

 

            # Store in the corresponding table 

            P[0][x][y] = z1 

            P[1][x][y] = z2 

            P[2][x][y] = z3 

            P[3][x][y] = z4 

            P[4][x][y] = z5 

 

    return P 

 

def generate_random_parastrophe_table(quasigroup_table): 

    # Choose one of the five parastrophes at random for Phase II. 

    parastrophes = compute_parastrophes(quasigroup_table) 

    return random.choice(parastrophes) 

 

def print_table(table, title="Table"): 

    print(f"\n--- {title} ---") 

    headers = list(table.keys()) 

    print("    " + " ".join(f"{h:>3}" for h in headers)) 

    for a in headers: 

        row = "".join(f"{table[a][b]:>4}" for b in headers) 

        print(f"{a:>3}:{row}") 

 

# ----- Quasigroup Encryption/Decryption ----- 

def encrypt_phase(dna_input, leader, table): 

    prev = leader 

    out = '' 

    for sym in dna_input: 

        c = table[prev][sym] 

        out += c 

        prev = c 
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    return out 

 

def left_divide(a, c, table): 

    return next(m for m in table[a] if table[a][m] == c) 

 

def decrypt_phase(dna_cipher, leader, table): 

    prev = leader 

    out = '' 

    for c in dna_cipher: 

        m = left_divide(prev, c, table) 

        out += m 

        prev = c 

    return out 

 

# ----- Full Encryption/Decryption Process ----- 

def encrypt_method(plaintext): 

    # 1) Choose a random DNA-encoding rule 

    rule = random.choice(list(ENCODING_RULES.keys())) 

    enc_map = ENCODING_RULES[rule] 

    dec_map = DECODING_RULES[rule] 

 

    # 2) Convert plaintext to DNA string 

    dna_plain = text_to_DNA(plaintext, enc_map) 

 

    # 3) Phase I: quasigroup encryption 

    leader1 = random.choice(DNA_BASES) 

    Q = generate_random_quasigroup_table(DNA_BASES) 

    phase1 = encrypt_phase(dna_plain, leader1, Q) 

 

    # 4) Phase II: parastrophe encryption 

    leader2 = random.choice(DNA_BASES) 

    P = generate_random_parastrophe_table(Q) 
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    final = encrypt_phase(phase1, leader2, P) 

 

    # Store all keys needed for decryption 

    keys = { 

        "leader1": leader1, "Q": Q, 

        "leader2": leader2, "P": P, 

        "rule": rule, "enc_map": enc_map, "dec_map": dec_map 

    } 

    return final, keys 

 

def decrypt_method(final_cipher, keys): 

    # Reverse Phase II (parastrophe) 

    phase1 = decrypt_phase(final_cipher, keys["leader2"], keys["P"]) 

    # Reverse Phase I (original Q) 

    dna_plain = decrypt_phase(phase1, keys["leader1"], keys["Q"]) 

    # Convert DNA to text 

    return DNA_to_text(dna_plain, keys["dec_map"]) 

 

# --- Entropy Calculation --- 

def shannon_entropy(s): 

    from collections import Counter 

    total = len(s) 

    if total == 0: 

        return 0.0 

    freqs = Counter(s) 

    return -sum((count/total) * log2(count/total) for count in freqs.values()) 

 

def compute_entropy_metrics(s, allowed_alphabet=None): 

    H = shannon_entropy(s) 

    if allowed_alphabet is None: 

        allowed_alphabet = set(s) 

    max_H = log2(len(allowed_alphabet)) if allowed_alphabet else 0 
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    norm_H = H / max_H if max_H > 0 else 0 

    return H, max_H, norm_H 

 

# ----- Main Routine ----- 

if __name__ == "__main__": 

    plaintext = input("Enter plaintext: ") 

 

    # Encrypt and measure time 

    start = time.perf_counter() 

    cipher, keys = encrypt_method(plaintext) 

    enc_time = (time.perf_counter() - start)*1000 

 

    print("\nEncryption Complete") 

    print("Cipher DNA:", cipher) 

    print("Leader1:", keys["leader1"], 

          "Leader2:", keys["leader2"], 

          "Encoding Rule:", keys["rule"]) 

    print_table(keys["Q"], "Quasigroup Table") 

    print_table(keys["P"], "Parastrophe Table") 

    print(f"Encryption time: {enc_time:.4f}ms") 

 

    # Decrypt and measure time 

    start = time.perf_counter() 

    decrypted = decrypt_method(cipher, keys) 

    dec_time = (time.perf_counter() - start)*1000 

 

    print("\nDecryption Complete") 

    print("Decrypted Text:", decrypted) 

    print(f"Decryption time: {dec_time:.4f}ms") 

     

    # Entropy metrics 

    pt_H, pt_maxH, pt_norm = compute_entropy_metrics(plaintext) 
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    ct_H, ct_maxH, ct_norm = compute_entropy_metrics(cipher, 
allowed_alphabet=DNA_BASES) 

 

    print("\n--- Entropy Metrics ---") 

    print("Plaintext Shannon Entropy: {:.6f}".format(pt_H)) 

    print("Plaintext Max Entropy: {:.6f}".format(pt_maxH)) 

    print("Plaintext Normalized Entropy: {:.6f}".format(pt_norm)) 

 

    print("Ciphertext Shannon Entropy: {:.6f}".format(ct_H)) 

    print("Ciphertext Max Entropy: {:.6f}".format(ct_maxH)) 

    print("Ciphertext Normalized Entropy: {:.6f}".format(ct_norm))  



121 
 

Markovski_Method.py 

import random 

import time 

from math import log2 

 

# ---- GF(2) & Matrix Utilities ---- 

 

def bits_to_vec(x): 

    return [(x >> 1) & 1, x & 1] 

 

def vec_to_bits(v): 

    return (v[0] << 1) | v[1] 

 

def random_inv_2x2(): 

    while True: 

        M = [[random.randint(0,1) for _ in range(2)] for __ in range(2)] 

        if (M[0][0]*M[1][1] ^ M[0][1]*M[1][0]) == 1: 

            return M 

 

# ---- Matrix-Based Quasigroup Class (Used only for table generation) ---- 

 

class MGQuasigroup: 

    def __init__(self, m, A, B, C=None): 

        self.m = m  # 2-bit constant 

        self.A = A  # 2x2 GF(2) matrix 

        self.B = B  # 2x2 GF(2) matrix 

        self.C = C or [[1,1],[1,1]] 

    def mul(self, x, y): 

        xv, yv = bits_to_vec(x), bits_to_vec(y) 

        Ax = [self.A[i][0]*xv[0] ^ self.A[i][1]*xv[1] for i in (0,1)] 

        By = [self.B[i][0]*yv[0] ^ self.B[i][1]*yv[1] for i in (0,1)] 
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        CAx = [self.C[i][0]*Ax[0] ^ self.C[i][1]*Ax[1] for i in (0,1)] 

        CBy = [self.C[i][0]*By[0] ^ self.C[i][1]*By[1] for i in (0,1)] 

        dot = (CAx[0] & CBy[0]) ^ (CAx[1] & CBy[1]) 

        res = [self.m[i] ^ Ax[i] ^ By[i] for i in (0,1)] 

        res[1] ^= dot 

        return vec_to_bits(res) 

 

# ---- Table Generation (Forward & Inverse) ---- 

 

def make_forward_table(Q: MGQuasigroup): 

    table = [[0]*4 for _ in range(4)] 

    for x in range(4): 

        for y in range(4): 

            table[x][y] = Q.mul(x, y) 

    return table 

 

def make_inv_table(Q: MGQuasigroup): 

    inv = [[None]*4 for _ in range(4)] 

    for x in range(4): 

        for y in range(4): 

            z = Q.mul(x, y) 

            inv[x][z] = y 

    return inv 

 

# ---- Public Quasigroup Tables Generator ---- 

 

def generate_public_quasigroups(n=128): 

    QT_forward, QT_inverse = [], [] 

    for _ in range(n): 

        m = [random.randint(0,1) for _ in range(2)] 

        A, B = random_inv_2x2(), random_inv_2x2() 

        Q = MGQuasigroup(m, A, B) 
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        QT_forward.append(make_forward_table(Q)) 

        QT_inverse.append(make_inv_table(Q)) 

    return QT_forward, QT_inverse 

 

# ---- Transformations (e/d) with Table Lookups ---- 

 

def e_transform(seq, leader, QT): 

    b = [QT[leader][seq[0]]] 

    for i in range(1, len(seq)): 

        b.append(QT[b[i-1]][seq[i]]) 

    return b 

 

def d_transform(seq, leader, QT_inv): 

    a = [QT_inv[leader][seq[0]]] 

    for i in range(1, len(seq)): 

        a.append(QT_inv[seq[i-1]][seq[i]]) 

    return a 

 

# ----- Utility Functions for Bit/Element Conversions ----- 

def bytes_to_elements(block_bytes): 

    bit_str = ''.join(format(b, '08b') for b in block_bytes) 

    if len(bit_str) % 2 != 0: 

        bit_str += '0' 

    return [int(bit_str[i:i+2], 2) for i in range(0, len(bit_str), 2)] 

 

def elements_to_bytes(elements): 

    bit_str = ''.join(format(e, '02b') for e in elements) 

    b = bytearray() 

    for i in range(0, len(bit_str), 8): 

        b.append(int(bit_str[i:i+8], 2)) 

    return bytes(b) 
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# ----- Key Schedule Extraction ----- 

def extract_key_parts(key_bytes): 

    if len(key_bytes) != 16: 

        raise ValueError("Key must be 16 bytes (128 bits).") 

    key_bits = ''.join(format(b, '08b') for b in key_bytes) 

    leaders = [int(key_bits[i*2:i*2+2], 2) for i in range(8)] 

    start = 16 

    Q_indices = [int(key_bits[start + i*7 : start + i*7 + 7], 2) for i in range(8)] 

    start += 56 

    T_indices = [int(key_bits[start + i*7 : start + i*7 + 7], 2) for i in range(8)] 

    return leaders, Q_indices, T_indices 

 

# ----- Padding Functions ----- 

BLOCK_BYTE_SIZE = 8  # 64 bits = 8 bytes 

 

def pad(plaintext): 

    pad_len = BLOCK_BYTE_SIZE - (len(plaintext) % 
BLOCK_BYTE_SIZE) 

    return plaintext + bytes([pad_len] * pad_len) 

 

def unpad(padded): 

    pad_len = padded[-1] 

    return padded[:-pad_len] 

 

# ----- Encryption/Decryption per Block (Optimized with Tables) ----- 

def encrypt_block(block_bytes, leaders, Q_indices, T_indices, 
public_QT_forward, public_QT_inverse): 

    elems = bytes_to_elements(block_bytes) 

     

    # Step 1: Process mini-blocks 

    mini_blocks = [elems[i*4:(i+1)*4] for i in range(8)] 

    for i in range(8): 

        Q_index = Q_indices[i] % len(public_QT_forward) 
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        QT = public_QT_forward[Q_index] 

        l = leaders[i] 

        mini_blocks[i] = e_transform(mini_blocks[i], l, QT) 

    X = [] 

    for mini in mini_blocks: 

        X.extend(mini) 

     

    # Step 2: Full block transformation 

    for i in range(8): 

        T_index = T_indices[i] % len(public_QT_forward) 

        QT = public_QT_forward[T_index] 

        l = leaders[i] 

        if i % 2 == 0: 

            X = e_transform(X, l, QT) 

        else: 

            X_rev = list(reversed(X)) 

            X_rev = e_transform(X_rev, l, QT) 

            X = list(reversed(X_rev)) 

    return elements_to_bytes(X) 

 

def decrypt_block(block_bytes, leaders, Q_indices, T_indices, 
public_QT_forward, public_QT_inverse): 

    X = bytes_to_elements(block_bytes) 

     

    # Reverse Step 2 

    for i in reversed(range(8)): 

        T_index = T_indices[i] % len(public_QT_inverse) 

        T_inv = public_QT_inverse[T_index] 

        l = leaders[i] 

        if i % 2 == 0: 

            X = d_transform(X, l, T_inv) 

        else: 
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            X_rev = list(reversed(X)) 

            X_rev = d_transform(X_rev, l, T_inv) 

            X = list(reversed(X_rev)) 

     

    # Reverse Step 1 

    mini_blocks = [X[i*4:(i+1)*4] for i in range(8)] 

    for i in range(8): 

        Q_index = Q_indices[i] % len(public_QT_inverse) 

        Q_inv = public_QT_inverse[Q_index] 

        l = leaders[i] 

        mini_blocks[i] = d_transform(mini_blocks[i], l, Q_inv) 

    elems = [] 

    for mini in mini_blocks: 

        elems.extend(mini) 

    return elements_to_bytes(elems) 

 

# ----- Full Message Encryption/Decryption ----- 

def encrypt_message(plaintext, key_bytes, public_QT_forward, 
public_QT_inverse): 

    padded = pad(plaintext) 

    ciphertext = bytearray() 

    leaders, Q_indices, T_indices = extract_key_parts(key_bytes) 

    for i in range(0, len(padded), BLOCK_BYTE_SIZE): 

        block = padded[i:i+BLOCK_BYTE_SIZE] 

        cipher_block = encrypt_block(block, leaders, Q_indices, T_indices, 
public_QT_forward, public_QT_inverse) 

        ciphertext.extend(cipher_block) 

    return bytes(ciphertext) 

 

def decrypt_message(ciphertext, key_bytes, public_QT_forward, 
public_QT_inverse): 

    plaintext = bytearray() 

    leaders, Q_indices, T_indices = extract_key_parts(key_bytes) 
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    for i in range(0, len(ciphertext), BLOCK_BYTE_SIZE): 

        block = ciphertext[i:i+BLOCK_BYTE_SIZE] 

        plain_block = decrypt_block(block, leaders, Q_indices, T_indices, 
public_QT_forward, public_QT_inverse) 

        plaintext.extend(plain_block) 

    return unpad(plaintext) 

 

# --- Entropy Functions --- 

def shannon_entropy(data): 

    # Compute Shannon entropy (in bits per symbol) for data. 

    freqs = {} 

    for symbol in data: 

        freqs[symbol] = freqs.get(symbol, 0) + 1 

    total = len(data) 

    H = 0.0 

    for count in freqs.values(): 

        p = count / total 

        H -= p * log2(p) 

    return H 

 

def compute_entropy_metrics(data, allowed_alphabet=None): 

    H = shannon_entropy(data) 

    if allowed_alphabet is None: 

        allowed_alphabet = set(data) 

    max_H = log2(len(allowed_alphabet)) if allowed_alphabet else 0 

    norm_H = H / max_H if max_H > 0 else 0 

    return H, max_H, norm_H 

 

# ----- Main Routine ----- 

def main(): 

    user_text = input("Enter plaintext: ") 

    plaintext = user_text.encode('utf-8') 
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    key_bytes = bytes(random.getrandbits(8) for _ in range(16)) 

    public_QT_forward, public_QT_inverse = 
generate_public_quasigroups(128) 

     

    start_enc = time.perf_counter() 

    ciphertext = encrypt_message(plaintext, key_bytes, public_QT_forward, 
public_QT_inverse) 

    end_enc = time.perf_counter() 

    enc_time = (end_enc - start_enc) * 1000 

     

    start_dec = time.perf_counter() 

    decrypted = decrypt_message(ciphertext, key_bytes, public_QT_forward, 
public_QT_inverse) 

    end_dec = time.perf_counter() 

    dec_time = (end_dec - start_dec) * 1000 

     

    # Compute entropy metrics for plaintext 

    pt_H, pt_max_H, pt_norm_H = compute_entropy_metrics(plaintext, 
allowed_alphabet=set(plaintext)) 

     

    # Compute entropy metrics for ciphertext 

    ct_H, ct_max_H, ct_norm_H = compute_entropy_metrics(ciphertext, 
allowed_alphabet=set(ciphertext)) 

     

     

    print("\nCiphertext (hex):") 

    print(ciphertext.hex()) 

    try: 

        decrypted_text = decrypted.decode('utf-8') 

    except UnicodeDecodeError: 

        decrypted_text = str(decrypted) 

    print("\nDecrypted Plaintext:") 

    print(decrypted_text) 
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    print("\nEncryption Time: {:.6f} ms".format(enc_time)) 

    print("Decryption Time: {:.6f} ms".format(dec_time)) 

     

    if decrypted == plaintext: 

        print("\nSuccess: Decrypted text matches original plaintext.") 

    else: 

        print("\nError: Decrypted text does not match original plaintext.") 

 

 

    print("\n--- Entropy Metrics ---") 

    print("Plaintext Shannon Entropy: {:.6f}".format(pt_H)) 

    print("Plaintext Max Entropy: {:.6f}".format(pt_max_H)) 

    print("Plaintext Normalized Entropy: {:.6f}".format(pt_norm_H)) 

 

    print("Ciphertext Shannon Entropy: {:.6f}".format(ct_H)) 

    print("Ciphertext Max Entropy: {:.6f}".format(ct_max_H)) 

    print("Ciphertext Normalized Entropy: {:.6f}".format(ct_norm_H)) 

     

 

if __name__ == '__main__': 

main() 
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Padmapriya_Method.py 

import heapq 

import collections 

import time 

import random 

from datetime import datetime 

 

# DNA <-> Binary mapping 

BASES = ['A', 'C', 'G', 'T'] 

BASE_TO_BIN = {'A': [0, 0], 'C': [0, 1], 'G': [1, 0], 'T': [1, 1]} 

BIN_TO_BASE = {'00': 'A', '01': 'C', '10': 'G', '11': 'T'} 

 

# Huffman Tree 

class Node: 

    def __init__(self, freq, symbol, left=None, right=None): 

        self.freq = freq 

        self.symbol = symbol 

        self.left = left 

        self.right = right 

    def __lt__(self, other): return self.freq < other.freq 

def build_huffman_tree(freq): 

    heap = [Node(freq[s], s) for s in freq if freq[s] > 0] 

    heapq.heapify(heap) 

    while len(heap) > 1: 

        left = heapq.heappop(heap) 

        right = heapq.heappop(heap) 

        merged = Node(left.freq + right.freq, None, left, right) 

        heapq.heappush(heap, merged) 

    return heap[0] 

def get_huffman_codes(root): 

    codes = {} 
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    def traverse(node, cur=''): 

        if node.symbol is not None: 

            codes[node.symbol] = cur or '0' 

            return 

        if node.left: traverse(node.left, cur + '0') 

        if node.right: traverse(node.right, cur + '1') 

    traverse(root) 

    return codes 

 

# Key generation 

def generate_dna_key(bit_length): 

    bases_needed = (bit_length + 1) // 2 

    return ''.join(random.choice(BASES) for _ in range(bases_needed)) 

 

# File I/O helpers 

def write_key_to_file(dna_key, filename="dna_key.txt"): 

    with open(filename, "w", encoding="utf-8") as f: 

        f.write(dna_key) 

def read_key_from_file(filename="dna_key.txt"): 

    with open(filename, "r", encoding="utf-8") as f: 

        return f.read().strip() 

def log(message, log_file="encryption_log.txt"): 

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] 

    line = f"[{timestamp}] {message}" 

    print(line) 

    with open(log_file, "a", encoding="utf-8") as f: 

        f.write(line + "\n") 

 

# ENCRYPTION 

def encrypt(plaintext): 

    start_total = time.perf_counter() 

    # 1. plaintext → binary 
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    bin_plain = [int(b) for c in plaintext for b in f'{ord(c):08b}'] 

    bit_len = len(bin_plain) 

    # 2. DNA key 

    dna_key = generate_dna_key(bit_len) 

    bin_key = [bit for b in dna_key for bit in BASE_TO_BIN[b]] 

    if len(bin_key) < bit_len: 

        bin_key += [0] * (bit_len - len(bin_key)) 

    # 3. XOR (DNA OTP) 

    bin_cipher = [a ^ b for a, b in zip(bin_plain, bin_key)] 

    # 4. binary → DNA 

    dna_cipher = ''.join(BIN_TO_BASE[''.join(map(str, bin_cipher[i:i+2]))] 

                         for i in range(0, len(bin_cipher), 2)) 

    # 5. Huffman compression 

    freq = collections.Counter(dna_cipher) 

    root = build_huffman_tree(freq) 

    codes = get_huffman_codes(root) 

    encoded = ''.join(codes[b] for b in dna_cipher) 

    # ---- file writes ---- 

    write_key_to_file(dna_key) 

    with open("ciphertext.bin", "w", encoding="utf-8") as f: 

        f.write(encoded) 

 

    total_ms = (time.perf_counter() - start_total) * 1000 

    return encoded, root, dna_key, total_ms 

 

# DECRYPTION 

def decrypt(encoded, root, dna_key, expected_bit_len): 

    start_total = time.perf_counter() 

    # 1. Huffman → DNA (Z) 

    Z = [] 

    x = root 

    for bit in encoded: 
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        if bit == '0': 

            if x.left: 

                x = x.left 

            else: 

                raise ValueError("Invalid bit '0' - no left child") 

        else: 

            if x.right: 

                x = x.right 

            else: 

                raise ValueError("Invalid bit '1' - no right child") 

        if x.left is None and x.right is None: 

            Z.append(x.symbol) 

            x = root 

    # 2. DNA → binary (C as list of 0/1) 

    C = [] 

    for Zi in Z: 

        if Zi == 'A': 

            C.append(0) 

            C.append(0) 

        elif Zi == 'C':  # Fixed paper typo: use elif to avoid extra appends 

            C.append(0) 

            C.append(1) 

        elif Zi == 'G': 

            C.append(1) 

            C.append(0) 

        else:  # 'T' 

            C.append(1) 

            C.append(1) 

    # 3. key → binary 

    bin_key = [bit for b in dna_key for bit in BASE_TO_BIN[b]] 

    bin_key = bin_key + [0] * (expected_bit_len - len(bin_key)) if len(bin_key) 
< expected_bit_len else bin_key[:expected_bit_len] 
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    # 4. XOR back (M) 

    M = [Ci ^ Keyi for Ci, Keyi in zip(C, bin_key)] 

    # 5. binary → text (Convert M to ASCII) 

    plaintext = '' 

    for i in range(0, len(M), 8): 

        chunk = M[i:i+8] 

        byte_val = sum(bit * (1 << (7 - j)) for j, bit in enumerate(chunk)) 

        plaintext += chr(byte_val) 

    # ---- log ---- 

    log(f"DECRYPT: Success -> '{plaintext}'") 

    total_ms = (time.perf_counter() - start_total) * 1000 

    return plaintext, total_ms 

# -------------------------------------------------------------- 

# MAIN 

def main(): 

        print("\n" + "-"*60) 

        plaintext = input("Enter plaintext: ").strip() 

        print(f"Encrypting: \"{plaintext}\" ({len(plaintext)} chars)") 

        # ---- ENCRYPT ---- 

        encoded, root, key, enc_ms = encrypt(plaintext) 

        # ---- DECRYPT ---- 

        decrypted, dec_ms = decrypt(encoded, root, key, len(plaintext)*8) 

        # ---- RESULTS ---- 

        print("\n" + "="*62) 

        print(" RESULT") 

        print("="*62) 

        print(f"Encryption Time : {enc_ms:8.3f} ms") 

        print(f"Decryption Time : {dec_ms:8.3f} ms") 

        print("="*62) 

        print("\nFiles created: dna_key.txt, ciphertext.bin, encryption_log.txt")         

if __name__ == "__main__": 

    main()  
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Quasigroup_Size_Phase_Number.py 

import random 

import time 

import matplotlib.pyplot as plt 

import string 

import math 

from collections import Counter 

 

# ----- DNA Encoding/Decoding Rules -----  

ENCODING_RULES = { 

    "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'}, 

    "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'}, 

    "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'}, 

    "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'}, 

    "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'}, 

    "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'}, 

    "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'}, 

    "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'} 

} 

DECODING_RULES = { rule: {v: k for k, v in mapping.items()}  

                   for rule, mapping in ENCODING_RULES.items() } 

 

# ----- Conversion Functions ----- 

def text_to_binary(text): 

    return ''.join(format(ord(ch), '08b') for ch in text) 

 

def binary_to_text(binary_str): 

    return ''.join(chr(int(binary_str[i:i+8], 2)) for i in range(0, len(binary_str), 
8)) 

 

def binary_to_DNA(binary_str, mapping): 

    if len(binary_str) % 2 != 0: 
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        binary_str += '0' 

    dna = '' 

    for i in range(0, len(binary_str), 2): 

        dna += mapping[binary_str[i:i+2]] 

    return dna 

 

def DNA_to_binary(dna, mapping): 

    return ''.join(mapping[base] for base in dna) 

 

def text_to_DNA(text, encoding_mapping): 

    return binary_to_DNA(text_to_binary(text), encoding_mapping) 

 

def DNA_to_text(dna, decoding_mapping): 

    return binary_to_text(DNA_to_binary(dna, decoding_mapping)) 

 

# ----- Latin Square Generation ----- 

def generate_latin_square(bases): 

    n = len(bases) 

    square = [[None] * n for _ in range(n)] 

     

    def is_valid(row, col, value): 

        for j in range(n): 

            if square[row][j] == value: 

                return False 

        for i in range(n): 

            if square[i][col] == value: 

                return False 

        return True 

 

    def backtrack(cell=0): 

        if cell == n * n: 

            return True 
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        row, col = divmod(cell, n) 

        for value in random.sample(bases, len(bases)): 

            if is_valid(row, col, value): 

                square[row][col] = value 

                if backtrack(cell + 1): 

                    return True 

                square[row][col] = None 

        return False 

 

    if backtrack(): 

        return square 

    else: 

        raise ValueError("Failed to generate Latin square.") 

 

def convert_square_to_table(square, bases): 

    table = {} 

    for i, row_label in enumerate(bases): 

        table[row_label] = {} 

        for j, col_label in enumerate(bases): 

            table[row_label][col_label] = square[i][j] 

    return table 

 

def generate_random_quasigroup_table(bases): 

    return convert_square_to_table(generate_latin_square(bases), bases) 

 

# ----- Parastrophe Table Generation ----- 

def compute_parastrophes(Q): 

    bases = list(Q.keys()) 

    P = [{x: {} for x in bases} for _ in range(5)] 

 

    for x in bases: 

        for y in bases: 
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            # 1) x *_1 y = z  <=>  x * z = y 

            z1 = next(z for z in bases if Q[x][z] == y) 

            # 2) x *_2 y = z  <=>  z * y = x 

            z2 = next(z for z in bases if Q[z][y] == x) 

            # 3) x *_3 y = z  <=>  z * x = y 

            z3 = next(z for z in bases if Q[z][x] == y) 

            # 4) x *_4 y = z  <=>  y * z = x 

            z4 = next(z for z in bases if Q[y][z] == x) 

            # 5) x *_5 y = z  <=>  y * x = z 

            z5 = Q[y][x] 

 

            P[0][x][y] = z1 

            P[1][x][y] = z2 

            P[2][x][y] = z3 

            P[3][x][y] = z4 

            P[4][x][y] = z5 

 

    return P 

 

def generate_random_parastrophe_table(Q): 

    # Pick one of the parastrophes at random. 

    parastrophes = compute_parastrophes(Q) 

    return random.choice(parastrophes) 

 

# ----- Encryption/Decryption Functions ----- 

def encrypt_phase(dna_input, leader, table): 

    result = "" 

    prev = leader 

    for symbol in dna_input: 

        c = table[prev][symbol] 

        result += c 

        prev = c 
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    return result 

 

def left_divide(a, c, table): 

    for m in table[a]: 

        if table[a][m] == c: 

            return m 

    raise ValueError("No valid division found.") 

 

def decrypt_phase(dna_cipher, leader, table): 

    result = "" 

    prev = leader 

    for c in dna_cipher: 

        m = left_divide(prev, c, table) 

        result += m 

        prev = c 

    return result 

 

# ----- Normalized Shannon Entropy -----  

def normalized_shannon_entropy(sequence, alphabet): 

    """ 

    Returns normalized Shannon entropy in [0,1] for `sequence` over 
`alphabet`. 

    Normalization is by log2(|alphabet|). 

    """ 

    if len(sequence) == 0: 

        return 0.0 

    counts = Counter(sequence) 

    total = sum(counts[a] for a in alphabet if a in counts) 

    # If total==0 (none of alphabet chars present), return 0 

    if total == 0: 

        return 0.0 

    H = 0.0 
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    for a in alphabet: 

        p = counts.get(a, 0) / total 

        if p > 0: 

            H -= p * math.log2(p) 

    max_H = math.log2(len(alphabet)) if len(alphabet) > 1 else 1.0 

    return H / max_H 

 

# ----- Encrypt/Decrypt Methods with Even Phases ----- 

def encrypt_method(plaintext, dna_bases, num_phases=2): 

    # Encrypts the plaintext using an even number of phases. 

    # Each pair of phases starts with encryption using a random quasigroup 
table, and ends with encryption using the corresponding parastrophe table. 

    if num_phases % 2 != 0: 

        raise ValueError("Number of phases must be an even number.") 

     

    chosen_rule = random.choice(list(ENCODING_RULES.keys())) 

    encoding_mapping = ENCODING_RULES[chosen_rule] 

    dna_plaintext = text_to_DNA(plaintext, encoding_mapping) 

     

    phase_leaders = [] 

    phase_tables = [] 

    current_cipher = dna_plaintext 

     

    for _ in range(num_phases // 2): 

        # Phase 1: encryption using a random quasigroup table. 

        leader1 = random.choice(dna_bases) 

        table = generate_random_quasigroup_table(dna_bases) 

        current_cipher = encrypt_phase(current_cipher, leader1, table) 

        phase_leaders.append(leader1) 

        phase_tables.append(table) 

         

        # Phase 2: encryption using the parastrophe of the quasigroup table. 
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        leader2 = random.choice(dna_bases) 

        parastrophe_table = generate_random_parastrophe_table(table) 

        current_cipher = encrypt_phase(current_cipher, leader2, 
parastrophe_table) 

        phase_leaders.append(leader2) 

        phase_tables.append(parastrophe_table) 

     

    keys = { 

        "dna_bases": dna_bases, 

        "phase_leaders": phase_leaders, 

        "phase_tables": phase_tables, 

        "encoding_rule": chosen_rule, 

        "decoding_mapping": DECODING_RULES[chosen_rule] 

    } 

    return current_cipher, keys 

 

def decrypt_method(final_cipher, keys): 

    current_dna = final_cipher 

    for leader, table in zip(reversed(keys["phase_leaders"]), 
reversed(keys["phase_tables"])): 

        current_dna = decrypt_phase(current_dna, leader, table) 

    return DNA_to_text(current_dna, keys["decoding_mapping"]) 

 

# ----- Main Routine ----- 

if __name__ == "__main__": 

    user_plaintext = input("Enter your plaintext: ") 

     

    def measure_quasigroup_performance_custom(plaintext): 

        sizes = list(range(4, 16))  # Quasigroup sizes from 4 to 15 

        num_runs = 5 

        results = {} 

         

        for size in sizes: 
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            if size == 4: 

                dna_bases = ['A', 'T', 'C', 'G'] 

            else: 

                extras = [ch for ch in string.ascii_uppercase if ch not in ['A', 'T', 
'C', 'G']] 

                dna_bases = ['A', 'T', 'C', 'G'] + extras[:size-4] 

             

            enc_times = [] 

            dec_times = [] 

            entropies_cipher = [] 

            entropies_plain = [] 

             

            for _ in range(num_runs): 

                start = time.perf_counter() 

                cipher, keys = encrypt_method(plaintext, dna_bases, 2) 

                enc_time = (time.perf_counter() - start) * 1000  # milliseconds 

                 

                # compute entropies (normalized) 

                h_plain = normalized_shannon_entropy(plaintext, dna_bases) 

                h_cipher = normalized_shannon_entropy(cipher, dna_bases) 

                 

                start = time.perf_counter() 

                decrypt_method(cipher, keys) 

                dec_time = (time.perf_counter() - start) * 1000  # milliseconds 

                 

                enc_times.append(enc_time) 

                dec_times.append(dec_time) 

                entropies_plain.append(h_plain) 

                entropies_cipher.append(h_cipher) 

             

            results[size] = { 

                'enc_avg': sum(enc_times) / num_runs, 
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                'dec_avg': sum(dec_times) / num_runs, 

                'plain_entropy_avg': sum(entropies_plain) / num_runs, 

                'cipher_entropy_avg': sum(entropies_cipher) / num_runs 

            } 

            # Display average times only 

            print(f"Quasigroup Size {size}: Encryption Avg = 
{results[size]['enc_avg']:.6f} ms, " 

                  f"Decryption Avg = {results[size]['dec_avg']:.6f} ms" 

                  f"Normalised Shannon Entropy Plaintext = 
{results[size]['plain_entropy_avg']:.4f}, " 

                  f"Normalised Shannon Entropy Ciphertext = 
{results[size]['cipher_entropy_avg']:.4f}") 

         

        # Plotting 

        sizes_list = list(results.keys()) 

        enc_avgs = [results[s]['enc_avg'] for s in sizes_list] 

        dec_avgs = [results[s]['dec_avg'] for s in sizes_list] 

        cipher_ent_avgs = [results[s]['cipher_entropy_avg'] for s in sizes_list] 

        plain_ent_avgs = [results[s]['plain_entropy_avg'] for s in sizes_list] 

         

        plt.figure(figsize=(10, 6)) 

        plt.plot(sizes_list, enc_avgs, marker='o', label='Encryption Time') 

        plt.plot(sizes_list, dec_avgs, marker='s', label='Decryption Time') 

        plt.xlabel('Quasigroup Size') 

        plt.ylabel('Average Time (milliseconds)') 

        plt.title(f'Performance vs Quasigroup Size') 

        plt.legend() 

        plt.grid(True) 

        plt.show() 

         

        plt.figure(figsize=(10, 6)) 

        plt.plot(sizes_list, cipher_ent_avgs, marker='o', label='Normalised 
Shannon Entropy Ciphertext') 
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        plt.plot(sizes_list, plain_ent_avgs, marker='s', label='Normalised 
Shannon Entropy Plaintext') 

        plt.xlabel('Quasigroup Size') 

        plt.ylabel('Normalized Shannon Entropy') 

        plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs 
Quasigroup Size') 

        plt.legend() 

        plt.grid(True) 

        plt.show() 

         

        return results 

 

    def measure_phases_performance_custom(plaintext): 

        # Use even number of phases only: 2, 4, 6, 8, 10 

        phases = list(range(2, 11, 2)) 

        num_runs = 5 

        results = {} 

        dna_bases = ['A', 'T', 'C', 'G', 'U'] 

         

        for num_phase in phases: 

            enc_times = [] 

            dec_times = [] 

            entropies_cipher = [] 

            entropies_plain = [] 

             

            for _ in range(num_runs): 

                start = time.perf_counter() 

                cipher, keys = encrypt_method(plaintext, dna_bases, num_phase) 

                enc_time = (time.perf_counter() - start) * 1000  # milliseconds 

                 

                start = time.perf_counter() 

                decrypt_method(cipher, keys) 

                dec_time = (time.perf_counter() - start) * 1000  # milliseconds 



145 
 

                 

                # entropy calculation (normalized) 

                h_plain = normalized_shannon_entropy(plaintext, dna_bases) 

                h_cipher = normalized_shannon_entropy(cipher, dna_bases) 

                 

                enc_times.append(enc_time) 

                dec_times.append(dec_time) 

                entropies_plain.append(h_plain) 

                entropies_cipher.append(h_cipher) 

             

            results[num_phase] = { 

                'enc_avg': sum(enc_times) / num_runs, 

                'dec_avg': sum(dec_times) / num_runs, 

                'plain_entropy_avg': sum(entropies_plain) / num_runs, 

                'cipher_entropy_avg': sum(entropies_cipher) / num_runs 

            } 

            # Display average times only 

            print(f"Phases {num_phase}: Encryption Avg = 
{results[num_phase]['enc_avg']:.6f} ms, " 

                  f"Decryption Avg = {results[num_phase]['dec_avg']:.6f} ms" 

                  f"Normalised Shannon Entropy of Plaintext = 
{results[num_phase]['plain_entropy_avg']:.4f}, " 

                  f"Normalised Shannon Entropy of Ciphertext = 
{results[num_phase]['cipher_entropy_avg']:.4f}") 

         

        # Plotting 

        phase_list = list(results.keys()) 

        enc_avgs = [results[p]['enc_avg'] for p in phase_list] 

        dec_avgs = [results[p]['dec_avg'] for p in phase_list] 

        cipher_ent_avgs = [results[p]['cipher_entropy_avg'] for p in phase_list] 

        plain_ent_avgs = [results[p]['plain_entropy_avg'] for p in phase_list] 

         

        plt.figure(figsize=(10, 6)) 
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        plt.plot(phase_list, enc_avgs, marker='o', label='Encryption Time') 

        plt.plot(phase_list, dec_avgs, marker='s', label='Decryption Time') 

        plt.xlabel('Number of Phases (Even numbers only)') 

        plt.ylabel('Average Time (milliseconds)') 

        plt.title(f'Performance vs Number of Phases') 

        plt.legend() 

        plt.grid(True) 

        plt.show() 

         

        plt.figure(figsize=(10, 6)) 

        plt.plot(phase_list, cipher_ent_avgs, marker='o', label='Normalised 
Shannon Entropy of Ciphertext') 

        plt.plot(phase_list, plain_ent_avgs, marker='s', label='Normalised 
Shannon Entropy of Plaintext') 

        plt.xlabel('Number of Phases') 

        plt.ylabel('Normalized Shannon Entropy') 

        plt.title('Normalised Shannon Entropy of Plaintext and Ciphertext vs 
Number of Phases') 

        plt.legend() 

        plt.grid(True) 

        plt.show() 

         

        return results 

 

    print("\n=== Measuring Performance vs Quasigroup Size ===") 

    qs_results = measure_quasigroup_performance_custom(user_plaintext) 

     

    print("\n=== Measuring Performance vs Number of Phases ===") 

    phase_results = measure_phases_performance_custom(user_plaintext)  
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Plot_Graph.py 

import matplotlib.pyplot as plt 

 

# Graph of Normalised Shannon’s Entropy of Plaintext and Ciphertext of the 
Proposed Method against Plaintext Length 

# Data from Tables 5.2 and Table 5.3 

plaintext_lengths = [500, 1000, 1500, 2000, 2500, 3000] 

normalised_entropy_plaintext = [0.845886, 0.823226, 0.793238, 0.786977, 
0.785779, 0.771054] 

normalised_entropy_ciphertext = [0.999544, 0.999564, 0.999723, 0.999796, 
0.999821, 0.999975] 

 

plt.figure(figsize=(10, 5)) 

plt.plot(plaintext_lengths, normalised_entropy_plaintext, marker='o', 
label="Normalized Shannon's Entropy (Plaintext)") 

plt.plot(plaintext_lengths, normalised_entropy_ciphertext, marker='x', 
label="Normalized Shannon's Entropy (Ciphertext)") 

 

plt.title("Plaintext and Ciphertext Normalised Shannon's Entropy vs Plaintext 
Length") 

plt.xlabel("Plaintext Length and Ciphertext Length") 

plt.ylabel("Normalised Shannon's Entropy of Plaintext and Ciphertext") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

# Graph of encryption time for the three methods against plaintext length 

# Data from Table 5.5 

plaintext_lengths = [10, 20, 40, 80, 100, 500] 

padmapriya_times = [2, 4, 3, 5, 5, 8] 

markovski_times = [0.2402, 0.2899, 0.5242, 0.8386, 1.4333, 4.4841] 

proposed_times = [0.4479, 0.5256, 0.5820, 0.6747, 0.7610, 2.5488] 



148 
 

 

plt.figure(figsize=(8, 5)) 

plt.plot(plaintext_lengths, padmapriya_times, marker='o', label='Padmapriya') 

plt.plot(plaintext_lengths, markovski_times, marker='s', label='Markovski') 

plt.plot(plaintext_lengths, proposed_times, marker='^', label='Proposed') 

 

plt.title('Encryption Time vs. Plaintext Length') 

plt.xlabel('Plaintext Length') 

plt.ylabel('Encryption Time (ms)') 

plt.grid(True) 

plt.legend() 

plt.tight_layout() 

plt.show() 

 

# Graph of decryption time for the three methods against plaintext length 

# Data from Table 5.6 

plaintext_lengths = [10, 20, 40, 80, 100, 500] 

padmapriya_times = [2, 2, 3, 3, 3, 7] 

markovski_times = [0.1739, 0.2510, 0.4756, 0.8060, 1.3891, 7.6478] 

proposed_times = [0.1200, 0.2619, 0.4291, 0.8275, 1.0465, 5.3951] 

 

plt.figure(figsize=(8, 5)) 

plt.plot(plaintext_lengths, padmapriya_times, marker='o', label='Padmapriya') 

plt.plot(plaintext_lengths, markovski_times, marker='s', label='Markovski') 

plt.plot(plaintext_lengths, proposed_times, marker='^', label='Proposed') 

 

plt.title('Decryption Time vs. Plaintext Length') 

plt.xlabel('Plaintext Length') 

plt.ylabel('Decryption Time (ms)') 

plt.grid(True) 

plt.legend() 

plt.tight_layout() 
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plt.show() 

 

# Graph of Normalised Shannon’s entropy of all three methods against 
plaintext length 

# Data from Table 5.7 

plaintext_lengths = [500, 1000, 1500, 2000, 2500, 3000] 

padmapriya = [0.860536, 0.864609, 0.861672, 0.858049, 0.858435, 0.863743] 

markovski = [0.972287, 0.979534, 0.982073, 0.987947, 0.988624, 0.991953] 

proposed = [0.999544, 0.999564, 0.999723, 0.999796, 0.999821, 0.999975] 

 

plt.figure(figsize=(10, 6)) 

 

plt.plot(plaintext_lengths, padmapriya, marker='o', label='Padmapriya', 
linestyle='-') 

plt.plot(plaintext_lengths, markovski, marker='s', label='Markovski', 
linestyle='-') 

plt.plot(plaintext_lengths, proposed, marker='^', label='Proposed', linestyle='-') 

 

plt.title("Normalised Shannon Entropy vs. Plaintext Length", fontsize=14) 

plt.xlabel("Plaintext Length", fontsize=12) 

plt.ylabel("Normalised Shannon Entropy", fontsize=12) 

plt.xticks(plaintext_lengths) 

plt.ylim(0.80, 1.005) 

plt.grid(True, linestyle='--', alpha=0.6) 

 

plt.legend(loc='lower left', fontsize=10) 

 

plt.tight_layout() 

plt.show()  
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Chi_Square_Test.py 

import random 

import matplotlib.pyplot as plt 

 

# DNA Bases and Encoding Rules 

DNA_BASES = ['A', 'T', 'C', 'G', 'U'] 

 

ENCODING_RULES = { 

    "Rule 1": {'00': 'C', '01': 'T', '10': 'A', '11': 'G'}, 

    "Rule 2": {'00': 'C', '01': 'A', '10': 'T', '11': 'G'}, 

    "Rule 3": {'00': 'G', '01': 'T', '10': 'A', '11': 'C'}, 

    "Rule 4": {'00': 'G', '01': 'A', '10': 'T', '11': 'C'}, 

    "Rule 5": {'00': 'T', '01': 'C', '10': 'G', '11': 'A'}, 

    "Rule 6": {'00': 'T', '01': 'G', '10': 'C', '11': 'A'}, 

    "Rule 7": {'00': 'A', '01': 'C', '10': 'G', '11': 'T'}, 

    "Rule 8": {'00': 'A', '01': 'G', '10': 'C', '11': 'T'} 

} 

DECODING_RULES = { 

    rule: {v: k for k, v in mapping.items()} 

    for rule, mapping in ENCODING_RULES.items() 

} 

 

# --- Conversion Functions --- 

def text_to_binary(text): 

    return ''.join(format(ord(ch), '08b') for ch in text) 

 

def binary_to_text(binary_str): 

    return ''.join(chr(int(binary_str[i:i+8], 2)) for i in range(0, len(binary_str), 
8)) 

 

def binary_to_DNA(binary_str, mapping): 

    if len(binary_str) % 2 != 0: 
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        binary_str += '0' 

    return ''.join(mapping[binary_str[i:i+2]] for i in range(0, len(binary_str), 2)) 

 

def DNA_to_binary(dna, mapping): 

    return ''.join(mapping[base] for base in dna) 

 

def text_to_DNA(text, mapping): 

    return binary_to_DNA(text_to_binary(text), mapping) 

 

def DNA_to_text(dna, mapping): 

    return binary_to_text(DNA_to_binary(dna, mapping)) 

 

# --- Quasigroup and Parastrophe Generation --- 

def generate_latin_square(bases): 

    n = len(bases) 

    square = [[None]*n for _ in range(n)] 

 

    def valid(r, c, v): 

        return v not in square[r] and all(square[i][c] != v for i in range(n)) 

 

    def backtrack(idx=0): 

        if idx == n*n: 

            return True 

        r, c = divmod(idx, n) 

        for v in random.sample(bases, n): 

            if valid(r, c, v): 

                square[r][c] = v 

                if backtrack(idx+1): 

                    return True 

        square[r][c] = None 

        return False 
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    if not backtrack(): 

        raise ValueError("Failed to generate Latin square") 

    return square 

 

def convert_square_to_table(square, bases): 

    return {bases[i]: {bases[j]: square[i][j] for j in range(len(bases))} for i in 
range(len(bases))} 

 

def generate_random_quasigroup_table(bases): 

    return convert_square_to_table(generate_latin_square(bases), bases) 

 

def compute_parastrophes(Q): 

    bases = list(Q.keys()) 

    P = [{b: {} for b in bases} for _ in range(5)] 

    for x in bases: 

        for y in bases: 

            z1 = next(z for z in bases if Q[x][z] == y) 

            z2 = next(z for z in bases if Q[z][y] == x) 

            z3 = next(z for z in bases if Q[z][x] == y) 

            z4 = next(z for z in bases if Q[y][z] == x) 

            z5 = Q[y][x] 

            P[0][x][y] = z1 

            P[1][x][y] = z2 

            P[2][x][y] = z3 

            P[3][x][y] = z4 

            P[4][x][y] = z5 

    return P 

 

def generate_random_parastrophe_table(Q): 

    return random.choice(compute_parastrophes(Q)) 

 

# --- Quasigroup Encryption/Decryption --- 
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def encrypt_phase(dna_input, leader, table): 

    prev, out = leader, '' 

    for sym in dna_input: 

        c = table[prev][sym] 

        out += c 

        prev = c 

    return out 

 

def left_divide(a, c, table): 

    return next(m for m in table[a] if table[a][m] == c) 

 

def decrypt_phase(dna_cipher, leader, table): 

    prev, out = leader, '' 

    for c in dna_cipher: 

        m = left_divide(prev, c, table) 

        out += m 

        prev = c 

    return out 

 

from collections import Counter 

from scipy.stats import chisquare 

 

def chi_square_uniform_test(ciphertext, bases): 

    observed = [ciphertext.count(b) for b in bases] 

    expected = [len(ciphertext) / len(bases)] * len(bases) 

    chi_stat, p_value = chisquare(f_obs=observed, f_exp=expected) 

    return chi_stat, p_value 

 

def plot_ciphertext_histogram(ciphertext, bases): 

    freq = Counter(ciphertext) 

    counts = [freq[b] for b in bases] 
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    plt.figure(figsize=(6, 4)) 

    plt.bar(bases, counts, color='skyblue', edgecolor='black') 

    plt.xlabel('DNA Bases') 

    plt.ylabel('Frequency') 

    plt.title('Histogram of Ciphertext Base Distribution') 

    plt.ylim(0, max(counts) * 1.2)  # Add some padding 

    for i, count in enumerate(counts): 

        plt.text(i, count + 1, str(count), ha='center', va='bottom') 

    plt.tight_layout() 

    plt.grid(axis='y', linestyle='--', alpha=0.7) 

    plt.show() 

 

# --- Main with Metrics --- 

if __name__ == "__main__": 

    plaintext = input("Enter plaintext: ") 

    rule = random.choice(list(ENCODING_RULES.keys())) 

    enc_map = ENCODING_RULES[rule] 

    dec_map = DECODING_RULES[rule] 

 

    # Encode to DNA 

    dna_plain = text_to_DNA(plaintext, enc_map) 

 

    # Phase I encryption 

    leader1 = random.choice(DNA_BASES) 

    Q = generate_random_quasigroup_table(DNA_BASES) 

    phase1 = encrypt_phase(dna_plain, leader1, Q) 

 

    # Phase II encryption (parastrophe) 

    leader2 = random.choice(DNA_BASES) 

    P = generate_random_parastrophe_table(Q) 

    final_cipher = encrypt_phase(phase1, leader2, P) 

    # Simulate encryption 
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    _ = encrypt_phase(phase1, leader2, P) 

 

     

    # Decryption 

    phase1_dec = decrypt_phase(final_cipher, leader2, P) 

    dna_dec = decrypt_phase(phase1_dec, leader1, Q) 

    decrypted_text = DNA_to_text(dna_dec, dec_map) 

 

    # Output encryption/decryption results 

    print("\n--- Encryption ---") 

    print("Cipher DNA:", final_cipher) 

    print("Leader1:", leader1, " Leader2:", leader2, " Rule:", rule) 

 

    print("\n--- Decryption ---") 

    print("Decrypted Text:", decrypted_text) 

 

    chi_stat, p_value = chi_square_uniform_test(final_cipher, DNA_BASES) 

    print("\n--- Chi-Square Uniformity Test ---") 

    print(f"Chi-Square Statistic: {chi_stat:.4f}") 

    print(f"P-Value: {p_value:.4f}") 

    if p_value > 0.05: 

        print("Result: Pass (Ciphertext appears uniformly distributed)") 

    else: 

        print("Result: Fail (Ciphertext may not be uniformly distributed)") 

     

plot_ciphertext_histogram(final_cipher, DNA_BASES) 
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Plaintexts for Encryption 

Plaintext for encryption of different lengths was generated by ChatGPT. 

Plaintext Length Plaintext 
10 Hello, Bob 
20 Hello there, matey!! 
40 In art and truth, beauty endures 

always. 
80 Knowledge grows when curiosity 

meets dedication; each lesson shapes 
true wisdom. 
 

100 In the silent hours of dawn, gentle 
light awakens dreams and kindles 
hope in every heart, so healing 
 

500 In the quiet embrace of nature, the 
gentle murmur of a distant brook 
creates a symphony that soothes the 
soul. Each ray of sunlight filters 
through the leaves, casting a mosaic 
of shadows on the forest floor. The 
whispering wind carries tales of 
ancient times, while vibrant blossoms 
add splashes of color to the 
landscape. In this serene moment, 
every heartbeat echoes the promise of 
renewal and timeless beauty.Soft 
echoes of nature remind us that every 
ending births a new beginning. And 
hold on!! 

1000 Success is not final, failure is not 
fatal. It is the courage to continue that 
counts. Life is a journey filled with 
ups and downs. What matters most is 
how we respond to challenges. Stay 
focused on your goals, work hard, 
and never give up. Every obstacle is 
an opportunity to learn. Surround 
yourself with positive people who 
inspire you. Time is precious, use it 
wisely. Develop good habits and 
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maintain discipline. Reading expands 
knowledge, while action brings 
results. Small consistent efforts lead 
to big changes. Be kind, stay humble, 
and help others when possible. True 
happiness comes from within, not 
from material possessions. 
Appreciate the little things in life. 
Laughter is the best medicine, enjoy 
moments of joy. Travel, explore, and 
experience new cultures. Keep an 
open mind and embrace diversity. 
Mistakes are lessons in disguise, 
learn from them. Stay patient, as 
great things take time. Believe in 
your potential and keep pushing 
forward. The future belongs to those 
who are prepared. 

1500 Communication is the foundation of 
strong relationships. Whether in 
personal or professional life, clear 
and respectful dialogue builds trust. 
Listening is just as important as 
speaking, understand before being 
understood. Technology has 
transformed how we connect, but 
face-to-face interactions remain 
invaluable. Empathy allows us to see 
things from others' perspectives. 
Honesty fosters deeper connections, 
even when the truth is difficult. 
Conflict is natural, but resolution 
requires patience and compromise. 
Words have power, use them wisely 
to inspire, not hurt. A simple thank 
you or I appreciate you can brighten 
someone's day. Teamwork achieves 
more than individual effort alone. 
Collaboration brings diverse ideas 
together for innovation. Leadership is 
about guiding, not controlling, 
empower others to grow. Time 
management increases productivity 
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and reduces stress. Prioritize tasks 
based on importance and urgency. 
Breaks are essential for maintaining 
focus and creativity. Health is wealth, 
exercise regularly, eat well, and sleep 
sufficiently. Mental well-being is 
equally crucial, practice mindfulness 
and self-care. Financial discipline 
ensures long-term security, save and 
invest wisely. Lifelong learning 
keeps the mind sharp, read books, 
take courses, and seek new skills. 
Adaptability is key in a fast-changing 
world. Stay curious and open to new 
experiences. Gratitude turns what we 
have into enough. Positivity attracts 
opportunities, maintain an optimistic 
outlook. Keep at it. 
 

2000 Education is the most powerful 
weapon which you can use to change 
the world. Knowledge empowers 
individuals and transforms societies. 
A well rounded education includes 
not only academics but also 
emotional and social learning. 
Critical thinking enables us to 
analyze information objectively. 
Creativity fuels innovation and 
problem solving. Curiosity drives 
discovery, never stop asking 
questions. Reading broadens 
perspectives and enhances 
imagination. Writing clarifies 
thoughts and improves 
communication. Mathematics 
teaches logic and precision. Science 
explains the wonders of the universe. 
History provides lessons from the 
past to shape a better future. Art and 
music express emotions beyond 
words. Physical education promotes 
health and teamwork. Technology is 
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a tool, use it responsibly and 
ethically. Digital literacy is essential 
in the modern world. Respect for 
diversity fosters inclusive 
communities. Kindness costs nothing 
but means everything. Volunteering 
strengthens empathy and social 
bonds. Environmental awareness 
ensures a sustainable planet, reduce 
waste, recycle, and conserve 
resources. Small eco friendly habits 
make a big difference. Financial 
literacy helps manage money wisely, 
budgeting, saving, and avoiding debt. 
Entrepreneurship encourages 
innovation and self reliance. Hard 
work beats talent when talent does 
not work hard. Discipline turns goals 
into achievements. Time is non 
renewable, spend it on what truly 
matters. Failure is feedback, not 
defeat, learn and improve. Resilience 
helps bounce back from setbacks. 
Patience yields long term rewards. 
Self confidence comes from 
preparation and practice. Humility 
keeps us grounded despite success. 
Integrity means doing the right thing 
even when no one is watching. 
Honesty builds trust in relationships. 
Courage is taking action despite fear. 
Persistence turns dreams into reality. 
Gratitude brings contentment and joy. 
Positivity attracts opportunities and 
happiness. Laughter is universal 
medicine for the soul. Smiles. 
 

2500 The journey of a thousand miles 
begins with a single step. Setting 
clear goals provides direction and 
motivation. Break big ambitions into 
smaller manageable tasks. 
Consistency is more effective than 
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occasional intensity. Progress may be 
slow but perseverance ensures 
success. Self discipline is choosing 
what you want most over what you 
want now. Time management 
maximizes productivity, focus on 
priorities first. Distractions are 
everywhere, stay committed to your 
objectives. Learning from mistakes 
turns failures into stepping stones. 
Feedback helps refine skills and 
strategies. Adaptability is crucial in 
an ever changing world. Embrace 
challenges as opportunities to grow. 
Resilience means bouncing back 
stronger after setbacks. A positive 
mindset attracts solutions not 
problems. Gratitude shifts focus from 
what is lacking to what is abundant. 
Happiness comes from within not 
external validation. Kindness creates 
ripples of positivity, small acts 
matter. Respect differences, diversity 
enriches perspectives. Effective 
communication prevents 
misunderstandings, listen actively. 
Body language conveys unspoken 
messages, be mindful of it. Emotional 
intelligence fosters better 
relationships. Patience avoids rushed 
decisions with long term 
consequences. Integrity builds trust 
and credibility. Honesty even when 
difficult strengthens character. 
Accountability means owning 
actions and their outcomes. 
Teamwork achieves collective 
success, value each member and their 
contribution. Leadership inspires 
others through vision and example. 
Mentorship shares knowledge and 
accelerates growth. Financial literacy 
ensures wise money management, 
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save invest avoid debt. Health is true 
wealth, exercise eat well sleep 
sufficiently. Mental well being 
requires self care and stress 
management. Lifelong learning 
keeps the mind sharp, read explore 
stay curious. Creativity solves 
problems in innovative ways. Critical 
thinking evaluates information 
objectively. Technology should 
enhance life not control it. Digital 
detoxes maintain balance in a 
connected world. Nature rejuvenates 
the spirit, spend time outdoors. 
Sustainability protects the planet for 
future generations. Reduce waste 
recycle and support eco friendly 
practices. Volunteering gives back to 
the community. Family bonds 
provide unconditional love and 
support. Friendships enrich life with 
shared experiences. Travel broadens 
horizons and fosters cultural 
appreciation. Laughter relieves stress 
and strengthens connections. The 
world awaits. 
 

3000 Growth is a continuous process that 
requires patience, discipline, and 
consistent effort. No achievement is 
born overnight. Progress may be slow 
at times, but it is steady dedication 
that brings lasting success. Small 
steps taken daily lead to major 
milestones. Believe in your journey, 
even when the path seems unclear. 
Stay committed to your goals, and 
trust that your hard work will pay off. 
Challenges are opportunities in 
disguise. They teach us to be strong, 
to adapt, and to evolve. Difficult 
moments are often the ones that 
shape our character. Stay focused on 
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what matters, and let go of what you 
cannot control. The most powerful 
thing you can do is take responsibility 
for your actions. Accountability 
brings growth. Learn from each 
mistake, reflect on each failure, and 
use them as stepping stones. Every 
setback carries a lesson. Your 
response determines your future. 
Attitude shapes experience. 
Approach life with optimism and 
gratitude. Appreciate the little things, 
and celebrate progress. Kindness and 
humility open doors. Treat others 
with respect, even when you 
disagree. Empathy builds 
understanding and reduces conflict. 
Communication is the bridge 
between confusion and clarity. Listen 
actively and speak with intention. 
Words carry weight, so use them to 
uplift. Honesty nurtures trust, and 
trust strengthens relationships. In any 
team, collaboration leads to 
innovation. Diverse ideas lead to 
better solutions. Everyone has a role 
to play. Great leaders inspire, 
support, and serve. Leadership is not 
about power, but about guidance. 
Encourage others to grow, and you 
will grow too. Time is a limited 
resource. Use it wisely. Organize 
your day, prioritize your tasks, and 
rest when needed. Productivity is not 
about doing more, but about doing 
what matters. Avoid distractions that 
steal your focus. Discipline is the key 
to freedom. Healthy routines build 
resilience. A balanced life includes 
physical, mental, and emotional well-
being. Take care of your body 
through exercise and rest. Eat 
nourishing food. Sleep deeply. 
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Maintain mental health through 
mindfulness and reflection. Make 
space for silence, nature, and 
stillness. These moments refresh your 
soul. Let go of comparison. Your 
journey is unique. Measure your 
progress by your own growth. Stay 
true to your values. Integrity is a 
compass that guides you in difficult 
times. Even when no one is watching, 
do what is right. Be brave enough to 
start. Be patient enough to keep 
going. Believe in your ability to 
change and adapt. Stay curious, and 
continue learning. Knowledge 
expands our understanding and 
unlocks potential. Read, ask 
questions, and welcome feedback. 
Feedback is a gift that helps us 
improve. Do not fear failure, for it is 
part of learning. What matters is that 
you rise each time you fall. Keep 
your vision clear and your heart 
strong. Support those around you. 
Build communities of 
encouragement and respect. Share 
your lights, and it will multiply. 
Practice gratitude every day. It 
challenges you. 
 

3500 Success is not final, and failure is not 
fatal. What truly matters is the 
courage to continue when the path 
gets hard. Life is a journey filled with 
ups and downs, and every experience 
shapes who we become. Challenges 
are not meant to break us, but to help 
us discover our strengths. With 
perseverance, obstacles become 
opportunities. Stay focused on your 
goals, work hard, and never give up. 
Every small step forward matters. 
Consistency beats intensity. The 
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people we surround ourselves with 
influence our mindset. Choose 
positivity and kindness. Encourage 
others, and they will uplift you in 
return. Listening is a powerful skill, 
often more impactful than speaking. 
Understand before trying to be 
understood. In communication, 
clarity and respect build lasting trust. 
Honesty creates deep connections, 
even when the truth is difficult. Be 
truthful, but always gentle. Empathy 
allows us to see the world through 
another person's eyes. It softens 
conflict and builds bridges. Mistakes 
are part of growth. Learn from them, 
reflect, and improve. Progress is not 
always visible, but each effort builds 
momentum. Time is our most 
precious resource. Use it with 
intention. Prioritize tasks that align 
with your values and goals. Breaks 
are necessary for sustained creativity 
and energy. Rest is not a reward, but 
a requirement. Good habits are the 
foundation of long term success. 
Discipline brings freedom. Self 
control lets you make better choices. 
Confidence comes from preparation 
and action. Face your fears, and they 
lose their power. Resilience is built in 
adversity. We grow when we adapt 
and endure. Adaptability allows us to 
thrive in a changing world. Keep an 
open mind, be willing to learn, and 
welcome new ideas. Curiosity leads 
to discovery. Reading expands our 
knowledge and imagination. Writing 
helps us organize thoughts and 
communicate clearly. Math teaches 
logic and precision. Science reveals 
the wonders of the universe. History 
offers lessons to guide our future. Art 
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and music express what words 
cannot. Physical activity strengthens 
body and mind. Nutrition fuels 
performance. Sleep restores us. 
Mental health is equally important. 
Practice mindfulness and self 
compassion. Reach out when you 
need support. Financial literacy 
builds stability. Save regularly, spend 
wisely, and invest in what matters. 
Simplicity often leads to clarity. Let 
go of what no longer serves you. 
Gratitude turns what we have into 
enough. Celebrate progress, no 
matter how small. Positivity attracts 
new opportunities. A smile can 
change someone's day. Laughter 
lightens heavy moments. Acts of 
kindness create ripples of joy. Be 
generous not only with resources, but 
with your time and attention. 
Leadership is not about control, but 
about inspiration and service. Great 
leaders empower others. 
Collaboration brings diverse 
strengths together. Teamwork 
achieves more than individual effort. 
Conflict is natural, but resolution 
requires empathy and patience. Seek 
solutions, not blame. Everyone 
makes mistakes. Forgiveness sets us 
free. The past cannot be changed, but 
the future is unwritten. Dream big, 
but act with purpose. Set intentions 
and take consistent steps. Stay true to 
your values. Integrity is doing the 
right thing when no one is watching. 
Your actions define your character. 
Never underestimate the impact of 
your presence. The world needs your 
unique voice and talents. Let go of 
perfection and embrace progress. 
Life is not a race. It is a dance of 



166 
 

moments, a song of connection, a 
canvas for your story. You are 
enough. Keep going. 

5000 In the heart of a distant land, where 
golden hills roll into the horizon and 
the skies remain painted in eternal 
hues of lavender and gold, there lies 
a village untouched by time. It is said 
that the people of this village live in 
harmony, their lives intertwined not 
by force or necessity, but by a deep 
unspoken understanding passed 
down through generations. Every 
morning, as the sun rises behind the 
snow dusted peaks of Mount Aeloria, 
the villagers awaken to the sound of 
chimes hanging in doorways, each 
one uniquely tuned to the family that 
lives within. The soft music floats 
through the air like a hymn of unity, a 
reminder of the rhythm that binds all 
who dwell there. Among the villagers 
is a young woman named Elira, a 
weaver of exceptional talent. Her 
tapestries tell stories more vividly 
than words, depicting events not yet 
occurred and memories long 
forgotten. Some say she was born 
with the gift of foresight, though she 
claims her visions come only through 
listening deeply to the wind and 
watching how the leaves fall on her 
loom. Eliras days are spent in her 
sunlit studio at the edge of the forest, 
where birds gather on the windowsill 
and sing as she works. Her most 
prized creation, a tapestry titled The 
Thread of Truth, is kept hidden 
beneath layers of linen, shown only to 
those who truly seek it. It tells the 
story of a child born under a crimson 
moon, destined to unite the broken 
realms. One evening, as twilight 
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began to settle over the village, a 
stranger arrived on horseback. Clad 
in a cloak woven from the night itself, 
the stranger spoke in riddles and 
carried a map inked in silver. He 
asked for Elira, for he had heard of 
her gift, and he believed she alone 
could interpret the hidden path that 
the stars had laid before him. Elira 
welcomed him into her studio, 
offering tea brewed with petals of the 
dreaming rose, a flower known to 
calm the mind and open the heart. As 
the fire crackled in the hearth, the 
stranger unrolled his map, revealing 
constellations unfamiliar to any 
known chart. Elira studied them in 
silence, her fingers tracing the lines 
with reverence. Then she spoke. This 
path, she whispered, is not one of 
direction but of transformation. You 
will not find your way by walking, 
you must become the road itself. 
Puzzled but compelled, the stranger 
stayed in the village for many moons, 
learning its rhythms, helping in the 
fields, listening to the stories told by 
the elders beside the sacred flame. 
Slowly, he changed. The weight he 
carried in his shoulders eased, the 
sharpness in his gaze softened, and 
laughter found its way into his voice. 
Elira watched him with quiet pride. 
She knew the journey was not about 
reaching a place, but about becoming 
someone new. And so, when the time 
came for him to leave, he did not take 
the map, for he no longer needed it. 
He carried the stars within him now. 
Years passed, and tales of a 
peacekeeper began to spread beyond 
the valleys and rivers, of a man who 
could unite feuding clans with a 
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single story, who healed wounds by 
listening, and who bore on his cloak 
the threads of a tapestry never seen. 
Elira, older now but still steady of 
hand and bright of eye, continued to 
weave. Her newest creation, The 
Tapestry of Echoes, depicted 
moments of silence shared between 
strangers, the strength of unspoken 
bonds, and the beauty of stories that 
require no words. Visitors came from 
afar to witness her art, not only for its 
beauty, but for the feeling it stirred, of 
something ancient and sacred 
remembered. The village endured, 
untouched by war or famine, guided 
by the quiet wisdom of those who 
knew that power lies not in 
dominance, but in connection. And in 
this way, the golden hills continued to 
roll, the chimes continued to sing, 
and the wind whispered the names of 
those who had learned to listen. As 
we reflect upon stories such as Eliras, 
it becomes clear that the greatest 
journeys are not always measured in 
miles. Some take place entirely 
within the soul. And perhaps, in this 
ever turning world, it is these quiet 
revolutions of spirit that shape our 
future more than any conquest or 
discovery. In cities far beyond the 
village, under skies dimmed by 
towers and glass, there are still those 
who feel the echo of Eliras song. 
They may not know its origin, but 
they pause at unexpected moments, 
when a breeze carries the scent of 
distant flowers, when a stranger 
offers kindness with no expectation 
of return, or when silence feels as full 
as speech. These are the threads of the 
old world, still woven into the new. 
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For every soul that listens, a loom 
begins to turn. Stories begin to form 
not in ink, but in experience, not on 
parchment, but in the living tapestry 
of our days. This is how we 
remember, not through monuments 
or legends alone, but through our 
actions, our choices, and the way we 
touch one anothers lives. And so, dear 
reader, you too are a thread. May you 
weave wisely, love fiercely, and listen 
well. The tapestry is vast, and your 
pattern is very exquisite. 
 

 


