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Abstract

Acoustic cavitation remains, to this day, a peculiar acoustofluidic phenomenon that has
recently attained highly concentrated research traction, as many seek new passive solutions to
intensify a variety of chemical processes. However, the ever-increasing severity of water crisis
serves as the primary driver to expand on this research. It has been previously established that
ultrasonically induced cavitation retains the ability to induce high yields of volatile hydroxyl
OH' radicals within the working fluid domain through generating severe flow conditions upon
their collapse. However, the underlying coupled behaviour of the acoustically induced flow
behaviours and the acoustic cavitation remains prominently inconclusive. Therefore, the
presented investigation revolves around numerically exploring multiphase flow behaviours
observed in a horn-type reactor environment. This is performed by configuring a computational
fluid dynamics (CFD) setup with a new cavitation model and a dynamic mesh model,
generalizing the coupled flow behaviours observed under multiple horn tips of varying
diameters, and establishing the relationship between the cavitating flow with the reactor
performances observed.

In that manner, the CFD setup was coupled with a newly derived cavitation model based on a
series of derivations of the Rayleigh-Plesset equation that define the bubble radial development
in terms of water tension and inertial growth. Empirical values that surfaced from the model
were statistically optimized through a Design of Experiments approach, coupled with Monte
Carlo simulations, to assess the influence of empirical model constants on the model’s
performance by examining variations in amplitude and frequency responses. This was then
coupled with a dynamic meshing model that defines the oscillating ultrasonic horn walls as
uniformly and sinusoidally deforming. Upon comparatively assessing each model’s
performance, it was ultimately revealed that Kirchhoff-based model generally underpredicts
the acoustic cavitation structure experimentally observed under the horn tip. Based on the
Finite Time Lyapunov Exponent (FTLE) results, key differences lied within the vortex shape
and position proximally generated; the Kirchhoff-based model predicted an eccentric vortex
that induced an impinging jet that facilitates a two-step collapse of the cavitation, as opposed
to the single-step collapse typically observed.

As the vortex was revealed to have a key role in the flow-cavitation coupling, a parametric
analysis was conducted on a horn-type reactor domain considering multiple diameters, namely
3,6, 13, 16, and 19 mm, to further explore the extent of this coupling. It was uncovered that
the acoustic cavity structure falls between two geometrical structures, namely, mushroom-like
structure (MBS) and cone-like bubble structure (CBS), based on the actuated ultrasonic horn
tip diameter. The cavity structure is molded into MBS by the presence of a symmetric
locomotive vortex structure that extends up to 1.5 times the horn tip diameter. Meanwhile, CBS
takes shape in the presence of an eccentric locomotive vortex that attains a size within 0.2-0.6
times the horn tip diameter. Upon time-averaging the flow, the stream-linked vortex produced
in all cases was found to consistently create a stagnation plane at a distance two times the horn
tip diameter (2D) from the horn tip. A one-dimensional mathematical formulation was derived
and solved based on the Stuart streaming conservation of momentum and its respective
definition of the acoustic force (ﬁa). This revealed that compound attenuation («) of the
acoustic force decreases exponentially at a maximum rate of =~ 1.70 with the doubling of
Reynolds number (Re). However, an inverse trend was demonstrated, upon considering the




influence of the diameter, by the dimensionless attenuation (I"), as it gradually increased by a
factor of = 1.28.

Ultimately, the practical significance of this trend of acoustic attenuation induced by the
presence of the cavitation structure was most pronounced after conducting yet another
parametric investigation scrutinizing the reactor performance of horn-type reactors of the
following sizes: 3 mm, 7 mm, 14 mm, 24 mm, 32 mm, and 40 mm. A numerical investigation
of these cases highlighted that the vortex gradually becomes more viscous-dominant under
larger horns, which, in turn, prevents it from creating the low-pressure nodes previously
observed within the vicinity of smaller horns. As a result, this led to the shrinkage of the
cavitation structure, and ultimately, creating a slowly oscillating thin flat attached cavitation
structure. Due to the recurrence of this observation in cases of 24 mm, 32 mm, and 40 mm
horns, it was concluded that such low frequency oscillations of such structures release more
OH' radicals and create more activity zones.
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1 Introduction

1.1 Background and Motivation

Water scarcity is a crucial issue that continues to exacerbate annually as prominent scarcity
indicators, such as the Falkenmark matrix [1] and the Kummu et al. approach [2], successfully
identified; there is clear evidence of diminishing freshwater sources. As a form of adaptation,
a multitude of nation-sponsored research and projects were initiated in order to address and
adopt new solutions that suggest utilizing non-drinkable water as a new source of freshwater
by running it through multiple filtration processes. A major example of such is desalination
plants where saline water from nearby seas are driven into them to remove the salt and regulate
the total dissolved solids reasonably to meet the set standard for safe drinking water [3,4].
Leading technologies of such type are reverse osmosis [5], nano-filtration [6], and
electrodialysis [7]. On the other hand, thermal-based techniques are phase-transition
technologies that mimic the natural water cycle in a way where the saline solution is heated to
initiate its evaporation and later condensed into freshwater leaving the dissolved salts behind
[4,8]. However, this technology does not provide a solution to the problem of water
contamination, instead, it has expanded on this problem by introducing brine as a refuse that is
rejected into natural freshwater sources. Brine typically is composed of many toxic chemical
residuals, such as polyphosphates and cationic polymers [9,10] used in pre-treatment and post-
treatment stages.

Wastewater commonly refers to the polluted water discharged from communal sources,
regardless of their domestic or industrial origins. Often, wastewater retain recognizable
physical and chemical anomalies that critically harm the environment if disposed improperly.
Evaluation of water quality rely on terms like pH, temperature, total suspended solids (TSS),
biological oxygen demand (BOD), and chemical oxygen demand (COD) as key indicators to
the degree of water pollution [11-13]. These quantities tend to fall within a significant range
depending on the types of contaminants present in the aqueous solution; those can be grouped
as organic, non-organic [ 14], and biological pollutants [15]. For example, industrial wastewater
has an average of the following chemical attributes: pH — 9.2, COD — 1098 mg/L, BOD —215.0
mg/L, TSS — 217.5 mg/L [13]. What these quantities indicate, in this case, is that the solution
is basic and has large quantities of organic matter, both biologically reactive and non-
biologically reactive. In other words, bacteria and other microorganisms hold a dominant
presence in industrial wastewater which reduce the overall quality of water when rejected back
to natural water bodies. In return, this acts as a potential threat to existing organisms in those
water bodies. Therefore, many investigations have been allocated to finding novel solutions
that could curb water pollution in an operationally efficient and cost-efficient way [16-18].

Conventional wastewater treatment approaches are many; however, the plant procedures are
one and the same. As such, all wastewater treatment plants maintain pre-treatment, primary,
secondary, and tertiary treatment stages [ 19]. Nonetheless, the point of difference typically lies
in the specific mechanical and chemical methods used at these stages. Examples of such
processes are presented in Figure 1.1 below.
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Technologies available for pollutant removal

v L 4

Conventional Established Emerging removal
methods recovery process methods
- coagulation/flocculation - solvent extraction - advanced oxidation
- precipitation - evaporation - adsorption onto non-
- biodegradation - oxidation conventional solids
- filtration (sand) - electrochemical treatment - biosorption
- adsorption using AC - membrane separation - biomass
- membrane bioreactors - nanofiltration

- ion-exchange
- incineration

Figure 1.1: Groupings of existing mechanical, chemical, and biological treatment methods found commercially and in
recent literature [20].

The selection of these methods is dependent on the nature of pollutants found in the wastewater
effluent. Moreover, the selection process is constraint by its feasibility, efficiency, and
operational costs [20-22]. In addition, the environmental impact and the generation of toxic by-
products are also accounted for in the selection. Plants treating industrial wastewater encounter
many stubborn industrial pollutants that are extremely difficult to remove, such as
perfluorooctane sulfonate (PFOS) [23], ammonium nitrogen [24], perfluorooctanoic acid
(PFOA) [25], and diethylhexyl phthalate [26]. However, these materials are considered grey-
listed pollutants that pose as a potential risk to the environment but are not necessarily
considered hazardous. On the other hand, black-listed pollutants are often referred to as bio-
refractory pollutants that not only are toxic but lead to bioaccumulation. Particularly, these
kinds of pollutants have a higher chance of escaping treatment and being disposed of into the
environment in which it will, eventually, lead to a large growing population of these pollutants
in the environment [27]. Generally, this is mainly due to its persistence and resistive nature
towards conventional biological treatment. Moreover, microorganisms, specifically bacteria,
fall within that category, as some are classified as Gram-positive bacteria that have thick
peptidoglycan cell wall making them resistive to mechanical and chemical stresses [28]. As
exotic as such bacteria may seem, they are, in fact, quite common; bacteria E. Coli, L.
Pneumophila, B. Subtilis, and E. Faecalis all fall under the Gram-positive bacteria category.
Reasonably so, this gave a platform for researchers to investigate novel, reliable techniques
that would best solve the problem of environment intoxication.

One of the many techniques that have been, and remains consistently, investigated is cavitation.
In simple terms, cavitation is a term first introduced by J. Thornycroft and S.W. Barnaby in
1895 [29] to describe the phenomenon of bubble formation and collapse in a liquid body rapidly
passing through hydraulic machinery, such as ship propellers and pumps. This phenomenon is
typically initiated by a gradient in fluid pressure reducing the tensile strength holding the liquid
molecules together and allowing a formation of an unstable ‘cavity’ between the molecules
[30]. Cavitation is considered an unfavorable phenomenon in hydraulics because of the
mechanical complications that can occur in the machine due to the bubble implosions.
However, and ironically enough, this very phenomenon has attracted the attention of
researchers in the environmental engineering field to, perhaps, employ this in a such a way that
would tackle the water pollution problem generated by the bio-refractory pollutants. This is
justified by the extreme mechanical and chemical conditions that the bubble implosions induce
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in the liquid body, such as high local temperatures reaching 6000 K, and strong shockwaves
producing a pressure of approximately 5500 bar at a jet velocity of 2000 m/s [31].

These bubbles can be generated both hydrodynamically and acoustically. Hydrodynamic
cavitation, in other words, is the passive change in liquid pressure, such as a cross-sectional
area change, in order to induce a drop below the vaporization pressure line [32]. On the other
hand, acoustic cavitation is the production of an ultrasonic field, in the range of 20kHz and
above, to create a pressure gradient. Under such circumstance, the cavitation bubbles will
oscillate in and out of multiple expansion and compression acoustic cycles in which bubbles
will grow and collapse based on the rate of dissolved gas mass transfer occurring at the interface
between the bubbles and the liquid medium [33].

1.2 Wastewater Treatment Cavitation-based Methodologies

Wastewater treatment has undergone multiple stages of technological evolution, however, that
eventually settled at the use of adsorption, ultraviolet (UV) degradation, and membrane
filtration [32]. Such techniques are now recognized as conventional treatments that not only
prove to be energy inefficient but ineffective against persistent organic components. Currently,
a typical wastewater treatment plant consists of multiple stages, namely the primary, secondary,
and tertiary stages. As mentioned in the background, each commercialized method used at any
of these stages have their limitations. For example, aeration units commercially make up the
secondary stage of wastewater treatment plants and are composed of a large basin with multiple
air diffuser units fixed at the bottom to provide oxygen to the mechanically filtered influent to
induce a reaction between released oxygen molecules and any volatile contaminant
compounds. The unit then vents out these contaminants from the water. A simplified sketch of
the operation is shown in Figure 1.2.

Aerobic bioreactor

clarifier
influent Sfluent
—
- OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
At N St S S
aeration
> excess AS

return AS

Figure 1.2: Schematic of a typical aerobic bioreactor utilizing aeration units at the bottom of the basin [34].

Despite that, with these units, bacteria and fungi still tend to escape with the filtered influent.
In fact, around 80 - 6,900 CFU/m? and 510 — 3,900 CFU/m?® worth of bacteria and fungi
concentrations, respectively, are found in treated effluent [35]. Thus, recent explorations on
alternative methods for wastewater treatments began gaining traction. Mainly, the usage of
cavitation has been the primary field of investigation in alternative treatment plants. This could
be owed to its volatile hydrodynamic nature as highlighted in previous sections. So, such
cavitation units are referred to as hydrodynamic cavitation (HC) reactors. The literature divides
these HC reactors into multiple categories depending on their geometries and types of flow.
However, the five main forms of HC reactors are the venturi, orifice, vortex based, and rotating

types.
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1.2.1 Conventional Hydrodynamic Cavitation Reactors

Cavitation reactors typically come in many different geometries; however, they all share the
same core mechanism, i.e. initialize bulk cavitation nucleation and facilitate their collapse.
These reactors, ranging from the common venturi-type reactors to vortex-based reactors,
operate by manipulating the pressure field along the flow path whereby a series of low-pressure
zones are established at one end, and a high-pressure zone is maintained at the other end [36].
However, the most recent type of cavitation reactors is rotational type reactors. As this type of
reactor is considerably new and emerging, they mostly exist on lab scales in the literature.
Generally, the reactor consists of a rotor and a stator that rotate against one another generating
shear forces that then result in shear cavitation of the liquid flowing between the rotor and
stator. One positive reported on such reactors is that they are usually capable of generating a
suction force, through a pressure differential, into the reactor without the use of an external
pump. This way the power consumption witnesses a relative decrease compared to other reactor

types [31].

In the literature, there exists multiple geometrical variations of this basic operational concept.
Such geometrical variations typically revolve around the distributions and shapes of
indentations on the rotor and/or the stator. Table 1.1 summarizes recent novel developments of
rotational cavitation reactors in terms of their geometries and operational capabilities.
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Table 1.1: Tabulation of developments in hydrodynamic cavitation reactors.
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Sezun et teeth, and
al. [37] rotor-
stator
grooves.
No. of outer Attached, E.coli, E. P =650 High bubble
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1.2.2 Unconventional Wastewater Treatment Cavitation Methods

While there are many variations in the utilization of hydrodynamic cavitation in treatment,
recent research trends have been emerging on the development of reactors that utilize both
acoustic and hydrodynamic cavitation. This coupling was essentially seen to tackle prominent
controllability issues that rose in hydrodynamic cavitation. Additionally, a rather favorable
byproduct of the said cavitation coupling was substantially enhancing the overall treatment
performance of the reactor, otherwise known as process intensification. Currently, such
coupling is typically implemented on base reactor designs that resemble a typical Venturi tube
due to its simplicity and modularity. Meanwhile, the additional component to the Venturi base
reactor is an ultrasonic source, that is more commonly an ultrasonic sonotrode. Prime examples
of this, for instance, are the reactor models designed by Wu et al. [42] and Johansson et al. [43]
that generally consist of a converging-diverging tube configuration, aimed to induce
hydrodynamic cavitation, and an ultrasonic transducer along the sides of the tube to facilitate
the production of acoustic cavitation within the same region. The two reactor designs are
summarized in Figure 1.3 below.
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Figure 1.3: Experimental setups of HAC reactors designed by (a) Wu et al. [42] and (b) Johansson et al. [43]

1.3 Problem Statement

Aeration i1s generally defined as a major segment of the secondary treatment process
responsible for circulating air through the activated sludge to encourage microbial growth and
degradation of organic matter. With conventional wastewater treatment plants consuming
around 1% of the national electricity produced in European countries [44], in which Aeration
is responsible for an approximate of 50-90% of the plant’s total energy consumption [45] as
illustrated in Figure 1.4, implementation of hydrodynamic cavitation techniques in prototypes
of wastewater treatment alternatives gained notable momentum in recent works of literature.
However, as such techniques introduce more mechanical parts, it can be confidently speculated
that the usage of such technology may increase maintenance costs deeming it an inefficient
solution. Moreover, hydrodynamic cavitation, by nature, is typically governed by the reactor
geometry that influences the pressure distribution along the water flow trajectory. As a result,
this adds another barrier to performance optimization and tuning of such reactors. However,
with further investigations seeking development of novel HAC reactors, this issue can be
mitigated, as the usage of static geometries and, in turn, a more passive generation of cavitation,
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acoustic cavitation can be introduced to potentially intensify this process while sustaining a
reduced operational and maintenance costs.

The implementation of ultrasound has become rather common in the past several decades in
cases of hydrometallurgy leaching and fibre refining, however, challenges arise in upscaling,
robustness, and energy efficiency of ultrasonic reactors [43]. As such, there seems to be a
noticeable gap in the theoretical understanding in implementing acoustic cavitation as a form
of wastewater treatment. Thus, further investigation is required to explore its potential as a
catalyst of hydrodynamic cavitation in hydrodynamic-acoustic hybrid cavitation (HAC)
generation techniques. Ultimately, the lack of knowledge on the nonlinear bubble dynamics of
acoustically nucleated cavitation bubbles, such as their structural formations, their dissipation,
and their region of influence, act as barriers to the optimization of the acoustic part of HAC.
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Figure 1.4: Power usage approximations for Polish wastewater treatment plants, 20-mgd nitrifying activated sludge [45].

1.4 Research Aims and Objectives

The main aim of this thesis is to numerically explore the different cavitation flows and
structures produced under an ultrasonic transducer, or horn, submerged in an aqueous solution.
It aims to initially, and more essentially, demonstrate a series of prerequisite numerical
modelling of such horn-type reactors in order to ensure the accurate capturing of the
phenomenon. Afterwards, the presented thesis would then scrutinize the underexplored flow-
structure interactions between the bubbly structures and different acoustically streamed flow
regimes formed under differently sized horn tip diameters. The presented thesis seeks to
extrapolate and employ these observations in aims to justify aforementioned process
intensifications and performance enhancers in HAC wastewater treatment methodologies. In
that way, a well-rounded study that facilitates a strong platform for further development and
optimization of HAC is presented.




As for the key objectives the thesis aims to address are as follows:

e Construct and statistically optimize a Rayleigh-Plesset-based multiphase model that
accurately predicts macroscale acoustic cavitation nucleation and behavioral dynamics in
ultrasonic reactors operating within 20 — 40 kHz operational frequency range.

e Explore the produced bubbly macrostructures under different ultrasonic horn tip sizes and
evaluate any underlying bubble-flow interactions and couplings between the different
cavitation macrostructure shapes and the accompanied proximal flow regimes.

e Derive a generalized mathematical model that describes the proximal cavitating flow
behavior to facilitate horn-type reactor optimization.

e Correlate the shape and dynamic behavior of the bubbly macrostructures with the treatment
performance in an aqueous solution.

1.5 Thesis Overview

The thesis comprises 9 chapters with the current chapter summarizing the motivation of the
study, providing a general overview of conventional and unconventional wastewater treatment
methods that implement cavitation as their primary mechanism, and stating the project’s aims,
objectives, and novelty.

Chapter 2 then follows with an elaborate discussion of the previous literature on the nucleation
mechanism of cavitation-type bubbles, especially focusing on acoustically induced nucleation.
Moreover, the chapter discusses previously implemented ultrasonic horn geometries,
commonly explored operating conditions, and their impacts on resulting flow regimes and
cavitation structures. Lastly, a detailed review of commonly practiced acoustic cavitation
numerical modelling techniques is presented with a strong focus on defining key strengths and
weaknesses found in such modelling habits.

Chapter 3 then carries on with a detailed explanation of the numerical governance of the chosen
mathematical models and an elaborate justification of the choice of models used to model and
predict the cavitating flow produced within the considered horn-type reactor.

Furthermore, Chapter 4 describes the mathematical derivation and statistical optimization of
an additional model, based on the generalized Rayleigh-Plesset equation [46], that governs the
multiphase flow by specifically predicting the lifecycle of each cavitation instance in ultrasonic
reactors that operate within 20 — 24 kHz operational frequency range. The coupling of this
model with other governing models, such as the turbulence and compressibility models, is
demonstrated in this chapter as well to ultimately define and validate the multiphysics
configuration for implementation in the explorations that follow afterwards.

Moreover, Chapter 5 presents a comparative study that assesses the different flow fields
generated with different dynamic motion modelling of the ultrasonic horn tip. This chapter
highlights the underlying role of the horn’s periodic motion on the proximal flow behavior.

Chapter 6 then follows to discuss the two-way coupling between the vortical flows generated
and the attached acoustic cavitation about different sized horn tips in aims to reveal the
underlying nonlinearity induced by the horn tip geometry, specifically its diameter, on the flow
and cavitation development.
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Afterwards, Chapter 7 demonstrates the derivation of a one-dimensional mathematical
formulation that generalizes the proximal vortical flow typically observed under the horn tip.
Ultimately, Chapter 8 ventures towards a more practical study that explores the influence of
the dynamic behavior of the attached cavitation structure on the performance of wastewater
treatment. As such, Chapter 9 summarizes the key findings of the works and suggests potential
future work.
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2 Literature Review

2.1 Fundamentals of Cavitation

Cavitation is nothing more than an occurrence of a phase change where a simple kinetic theory
[30] understanding of the gaseous state is a sufficient head start to delve into a discussion on
cavitation nucleation. However, such discussions must be preceded with an elaborate
explanation of the behaviour of the liquid state. The pure liquid enters a metastable state when
the local pressure decreases past the saturation pressure threshold. Within this regime, the
liquid can continue in a ‘stretched state’ without vaporizing, however, the metastable state
ultimately becomes thermodynamically unstable upon a further pressure drop. This results in
the spontaneous vapor bubble nucleation in the bulk liquid. This transition is characterized by
the following criterion:

(Z—g)T =0 @.1)

which defines the spinodal limit where isothermal compressibility diverges. This provides
valuable information on fluid metastability, especially for Equation of State (EoS)
developments [47]. Specifically, this substantially defines different paths of nucleation a fluid
can take. Moreover, in more practical flows, this pressure drop is often captured by the
cavitation number:

G = Po — Pv
¢ 2.2

where p,, is the reference pressure, p,, is the vapor pressure, p; is the liquid density, and U is
the flow velocity. Typically, as o, goes to zero, the flow approaches the cavitation threshold.
Once nucleation taken place, the subsequent bubble development dynamics is described by the
Rayleigh-Plesset equation:
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(2.3)
where R is the instantaneous bubble radius, oy, is the surface tension, y; is the liquid’s dynamic
viscosity, and t is time. This equation expresses the balance between the inertial, pressure,
viscous, and surface tension forces acting on the bubble’s interface. However, the governance
of bubble growth and collapse dynamics is further discussed in Section 2.3.

2.1.1 Cavitation Inception and Nucleation

Generally, nucleation occurrences in a fluid are catalysed by many external parameters
(discussed further in later sections) involving the liquid medium’s properties, such as its purity,
dissolved gases, temperature, viscosity, and most importantly, the presence of nucleation sites.
In such cases, any liquid imperfections can cause spontaneous nucleation and instability.
Therefore, the liquid at such point is typically said to be in tension and the magnitude of said
tension is the pressure gradient.
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This analogy of tensile strength representing a liquid’s molecular forces has been first made by
Harvey et al. [48], as the investigation uncovered the effect of pre-existing nano-sized gaseous
nuclei on the development of cavitation. Moreover, Frenkel et al. [49] elaborates on this
attribution and illustrates tensile strength of a pure liquid through a series of simple, yet
informative calculations. The calculations consider two molecules at some distance r from each
other. The intermolecular forces that exist between the two molecules are represented in Figure
2.1 in terms of intermolecular potential energy plotted against their separation distance. The
equilibrium state of the molecules at which it is still able to sustain some attractive force is at
the energy minimum at r = 2.64 A; meanwhile, the water surface tension ruptures past that
point as the liquid is no longer able to counteract the translational tensile force. Frenkel et al.
[49] goes about quantifying the tensile strength through considerations of the liquid’s
compressibility moduli, x, and a pressure p expressed as follows:

p=—r("V/ Vo) (2.4)

AV . . . . .
where 518 the fractional volumetric expansion. In return, Frenkel et al. estimates pure water’s
0

tensile strength ranges from —3 X 10° to —3 x 101° kg/m s?. Experimentally, these numbers
defy all practical measurements and thus deemed inaccurate. Although the simplistic model
highlights its failure in predicting the tensile strength, many researchers have adopted the
attribution and addressed the dilemma to describe the process of liquid rupture from a decrease
in pressure below the vaporization pressure at constant liquid temperature [50, 51]. The process
of liquid rupture is referred to as cavitation and is governed by the difference in pressure.
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Figure 2.1: A typical intermolecular potential graph of water dimer molecules where potential energy (kJ/mol) is plotted
against the separation distance r (4) [49].

The tensile strength of the liquid refers to its ability to resist formations of discontinuities, or
nucleation, within its medium. ‘Weaknesses’ in the liquid medium typically refers to the
presence of impurities. Therefore, these weaknesses are what describe nucleation sites, since
they could be any of which: suspended rough particulates, contaminant gases, or crevices in
the fluid container and act as initiation points [52]. However, depending on the form of
weakness cavitation nucleation occurs at, nucleation is classified into two types: homogeneous
nucleation and heterogeneous nucleation. Their differences can be summarized as visualized
in Figure 2.2. In essence, the key differences the figure highlights are the mode of nucleation
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and its progression. Homogeneous nucleation occurs in a pure liquid body under nucleation-
encouraging conditions, where both pressure and liquid density sharply fall. In that sense, new
bubbles may appear. On the contrary, heterogenous nucleation occurs within a liquid body
containing impurities, such as dissolved gases, that act as seeds for nucleation. Under such
conditions, existing microbubbles grow out of these pockets and become larger with time.
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Figure 2.2: A visualization of the nature of development of homogeneous and heterogeneous nucleation in a body of pure
liquid [50].

2.1.2 Homogeneous Nucleation

Homogeneous nucleation is induced by the pre-existing impurities in the liquid body, possibly
due to thermal motions within the medium, that are sufficient in size and considerably
metastable to rupture and develop into macroscopic cavities [53]. According to many
researchers [54, 55], most of the current developments in the homogeneous nucleation theory
are based on Gibbs’ pioneering work in the field [56]. Gibbs’ work was aimed to lay the
foundation of homogeneous nucleation by deriving an expression for the net energy required
to form a bubble from pre-existing cavities Wcr. This was done by assuming a pure liquid
where the surface tension of the presumed bubble, otherwise termed as surface energy, is used
to approximate the tensile strength of the liquid. Therefore, given that the bubble only contains
vapor, the interior bubble pressure Pg is safely assumed to be equivalent to the saturated vapor
pressure Py. This is expressed by Eq. 2.5.

Pp—P=P,—P=AP, =— 2.5)

Where P is the local ambient pressure, g,(x) is the planar surface tension of the bubble wall,
and Rc is the bubble radius. APc is termed the tensile strength required to rupture the liquid
and create a cavity. Accordingly, Wcr was then formulated by taking into account the energy
stored in the surface of the bubble and the energy applied to displace the liquid outward from
the cavity. Thus, the net energy is equated as follows in Eq. 2.6.

2 4 s 4 2
Wer = 4nRz0oy — gnRCAPC = gnRCao (2.6)

Since Rc is practically difficult to approximate, Eq. 2.6 can then be re-written as follows:
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Following this, Gibbs then adopts a correlation between a given Gibbs number to Wcr and the
molecules’ kinetic energy kTc, where k is the Boltzmann’s constant and Tc is the critical
temperature at which nucleation occurs, to express the probability of nucleation occurrence
given a specific volume and time.
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2.1.3 Heterogeneous Nucleation

This type of nucleation typically refers to nucleation emerging from surfaces in contact with
the liquid medium. More specifically, it is when weaknesses in the bulk liquid occur at the
boundary between the liquid and a solid surface in which a rupture in the liquid occurs. Such
surfaces are not limited to container walls but also include rough contaminant particles. By
definition, this type of nucleation is much more commonly present in practice compared to
homogeneous nucleation. Examples of different modes of heterogeneous nucleation, based on
the contact angle 0 at the liquid/vapor/solid intersection, can exist in practice as shown in Fig.
2.3.

CASE(A) FLAT HYDROPHOBIC CASE (B) FLAT HYDROPHILIC
SURFACE (8>w/2) SURFACE (8<w/2)

BUBBLE

CASE (C) CONICAL CavITY

Figure 2.3: Cases of heterogeneous nucleation (4) nucleation at a plane hydrophobic surface (B) nucleation at a plane
hydrophilic surface (C) nucleation at a conical cavity [30].

By recalling the expression of tensile strength, stated in Eq. 2.6, heterogeneous nucleation is
generally defined with some minute variations. Considering Case A in Figure 2.3, the tensile
strength is given as such:
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20, sin 6
AP = ———— (2.9)
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Ideally, a tensile strength of zero could be achieved when applying the limit as 6 — m.
Practically, this scenario is deemed impossible, however, many recent studies have shown that
hydrophobic surfaces do in fact encourage heterogeneous nucleation due to the hefty reduction
in tensile strength. For instance, Zhou et al. [57] investigated the heterogeneous development
of nanobubbles on the surface of colloidal mineral particles. These mineral particles assume
hydrophobic surfaces, and thus, nanobubbles are able to actively form and enhance general
floatation performance of the particles, such as the attraction between the particles and
increased particle aggregation. Similarly, Huang et al. [58] observed changes in the behaviour
of heterogeneous nucleation as the surface hydrophobicity of gypsum was varied. The study
concluded that higher surface hydrophobicity was a direct influence on enhanced surface-
induced nucleation where this phenomenon was attributed to low tensile strength and energy
barrier. This conclusion has been supported by Lu et al. [59] by which the investigation
revolved around visualizing this phenomenon. On the other hand, hydrophilic surfaces tend to
do the exact opposite. Such surfaces induce an increased tensile strength and thus a larger
energy barrier for heterogeneous nucleation to occur. As a matter of fact, the tensile strengths
of such cases are comparable to that of homogeneous nucleation, since they share the same
bubble maximum dimensions. However, this property has been studied and utilized in many
investigations that attempt to explore nucleation inhibiting techniques. Guo et al. [60] witnesses
the great extent of using a hydrophilic substance, known as PVA, as an anti-icing coating due
to its nucleation inhibiting properties.

All studies discussed, regardless of whether it was on hydrophobic or hydrophilic surfaces,
infer that such nucleation scenarios occur on suspended particles. Thus, for heterogeneous
nucleation occurring at a container wall, for example, it is typically initiated from an
exemplified conical cavity found in said wall due to its irregular, rough nature. Figure 2.4
visualizes the bubble development in the conical cavity. The bubble growth begins at the cavity
vertex O and develops upwards. As the void proceeds to grow, 8 is actively compared with the
conical angle a as an indicator for the bubble’s new geometrical configurations [59,60].
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Figure 2.4: Evolution of a bubble in a conical cavity [59].

2.2 Cavitation Bubble Dynamics

Most investigative works on cavitation carry a recurring theme that typically infers the negative
impacts of cavitation in a variety of hydraulic machinery, such as pumps and turbines [62]. In
that sense, with the understanding of early bubble nucleation, it is crucial to further scrutinize
the bubble’s development in the downstream medium to broaden the understanding of
cavitation’s fluid dynamic behaviour in critical hydraulic systems. Moreover, similarly to the
studies on nucleation, previous studies on bubble dynamics, and generally cavitation, classify
vaporous cavitation on the basis of the mode of inducing a pressure change. These
classifications are namely hydrodynamic cavitation and acoustic cavitation.

2.2.1 Acoustic Cavitation

However, despite all advancements in hydrodynamic cavitation passive control systems, a
different mode of cavitation generation stands out owing to its active controllability. This type
of cavitation is commonly known in literature as acoustic cavitation. Acoustic cavitation is a
reproducible, complex phenomenon generated where the liquid’s surface tension is broken
apart due to exposure to an ultrasonic field oscillating at a frequency that typically falls within
the range of 20 kHz and above [30]. Under such circumstance, the cavitation bubbles generated
oscillate within a series of cyclic expansions and compressions in which the bubbles grow and
collapse based on the rate and direction of dissolved gas, or vapor, mass transfer occurring at
the bubble interface with the liquid medium [63].
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Figure 2.5: Acoustically generated bubble evolution at rarefaction and compression pressure wave phases [61].

This is illustrated in Figure 2.5 where a bubble embryo begins to oscillate and expand with
each rarefaction peak until it reaches a critical resonant size. At this size, the bubble energy
absorption is synchronized with the ultrasonic waves leading to its rapid growth. However, this
fast growth rate induces major instabilities within the bubble leaving it unable to support itself.
As a result, the bubble implodes during a compression trough followed by a series of
shockwaves and hotspots capable of generating, local temperatures that reach 6000 K and
localized pressures and velocities that reach 5500 bar and 2000 m/s, respectively [64].
Therefore, unlike the practical occurrences of hydrodynamic cavitation, where it is considered
an unfavourable phenomenon due to the mechanical complications that follows it, acoustic
cavitation is in fact employed as a controllable phenomenon that catalyses a variety of
processes in a multitude of industries. Examples of such processes are viscosity reduction of
crude oil [65], hydrogen production [66], tungsten extraction [43], and synthesis of
polyethylene glycol (PEG) [67]. Hence, this creates a solid platform for many novel process
intensification methodologies. However, the main obstacle faced is the parametric dependency
of acoustic cavitation; and thus, developing a strong understanding of their sonochemical and
physical activities would allow better control over the phenomenon.

2.2.1.1 Acoustic Cavitation Structures

In that regard, many studies have been conducted experimentally and numerically in an attempt
to scrutinize the bubble dynamics witnessed during cavitation development. For instance,
Tzanakis et al. [68] has investigated acoustic cavitation behaviour by varying multiple
parameters: medium viscosity by changing the liquid medium and the oscillation amplitude by
alternating the transducer power. Ultimately, the study’s key findings were on a macroscopic
level in which the morphing of cavitation zone structures from one medium to another was
examined; a conical cavitation zone occurs in water, a thick round layer occurs in glycerine,
while ethanol observes ultrasonic degassing where bubbles are dispersed and actively oscillate
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towards the free surface of the cuvette. These observations are universal as multiple studies
have reported the same macrostructures.

Similarly, studies have taken a deeper look into the liquid medium properties and its influence
on the acoustic cavitation evolution. In a study conducted by Znidar¢i¢ et al. [69], an
experimental investigation takes place on the potential transfigurations of acoustic cavitation
regions due to changes in the ultrasonic horn diameter and variations in liquid properties to
analyse their degree of influence.

The experimental setup used consisted of an ultrasonic horn emitter, with a small diameter of
3 mm, submerged in a 50x50x50 mm cuvette filled with water with varying properties.
Meanwhile, the emitter’s operating frequency is kept at 20 kHz. The control case consisted of
a water medium with a temperature at 23°C, dynamic viscosity of 0.000932 Pa s, a liquid
density of 998 kg/m3, and a vaporization pressure of 2808 Pa. The qualitative, and
quantitative, results of the investigation first deduced that changes in liquid properties seem to
have no significant effect on the cavitation life cycle corresponding to 1/4™ of the horn driving
frequency (5 kHz subharmonic frequency from the 20 kHz driving frequency). On another
note, it was concluded that the instant in which attached cavities partly cover the full horn tip
is comparable to the hydrodynamic ‘super-cavitation’. This hints at a possible shift in
understanding of acoustic cavitation nucleation away from considering negative acoustic
pressure fields being the direct cause of nucleation and towards accounting for the direct
influence of the fast-moving horn surface on nucleation.

On the other hand, studies, such as Altay et al. [70], investigate the influence of geometrical
setups. More specifically, the study scrutinizes the effect of ultrasonic horn roughness on the
acoustic cavitation bubble behaviour by varying the roughness between 100 nm to 1 pm. The
investigation concluded that the overall bubble radius of the cavitation stream shrunk in size,
as the roughness increased. Those bubbles with a diameter of 50 pm were targeted while those
sized 10 um showed no change. In turn, recorded temperatures dropped by 10 K with the
increase in roughness, and this was attributed to the lower intensity generated by smaller
bubbles.

However, a parameter that has been recently considered for further studies is the dual/multi-
frequency ultrasound and its effect on ultrasonic cavitation. Multi-frequency ultrasound,
referred to as high intensity focused ultrasound (HIFU), is generally known in the biomedical
field for its employment potential as a non-invasive surgery modality. This can be attributed to
the key observation witnessed by many biomedical explorations and that is its ability to
exaggerate cavitation intensity. A study conducted by Suo et al. [71] have explored this
phenomenon by observing the change in the inertial cavitation threshold due to the exposure
to multi-frequency ultrasound. It has been concluded that multi-frequency ultrasound reduces
this threshold and reduces the required power for cavitation production. This observation was
mirrored by the changes in pressure and bubble radius induced when comparing single band of
500 kHz and multi-band of 500 kHz + 1.5 MHz.

Therefore, the increased cavitation intensity is due to the increase in bubble radius that is not
facilitated in single-frequency ultrasound. In addition, the pressure fluctuation shows that
bubble collapse occurs much more frequently, further supporting the intensity claim. Another
study by Ye et al. [72] delves deeper into optimizing the frequency ratio and the phase
difference of dual-frequency ultrasound. It has been found that with the increase of the
frequency ratio, the maximum bubble radius, pressure, and bubble gas content decreases, and
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thus the intensity decreases, due to an increase in the frequency ratio. Meanwhile, these
cavitation parameters show no change towards a change in the phase difference.

2.2.1.2 Single-Bubble Dynamics

While studies performed on macroscale ultrasonic cavitation structures provide practical
insight on acoustic cavitation performance under varying conditions, however, a noticeable gap
in understanding the behaviour of acoustic bubbles at a microscale level remains. Thus, many
studies attempt filling this knowledge gap by investigating single bubble and bubble-bubble
dynamic behaviour at different positions and conditions.

For instance, Liang et al. [73] investigated the influence of the ultrasonic horn’s distance from
the bottom of the cuvette on the bubble-bubble interaction in the cavitation region under the
ultrasonic horn. It has been observed that a nonlinear effect on bubble oscillation is caused by
increased bubble density, and bubble radii induced by the decreasing distance. Generally, the
increase in bubble radii is owned to the decrease in distance between smaller bubbles, thus,
forcing them to merge. Moreover, Wu et al. [74] has decided to isolate the effect of near-wall
positioning on a single bubble as shown in Figure 2.6 below.

.

0.0us 37.5us 50.0us 64.6ps 70.8us

79.2us 81. 3ps 89.6us

. 13

179.2us  181.3us  185.4us  187.5ps  191.7us

.

2292us  231.3pus  235.4ps  237.5pus 241.7ps

Figure 2.6: Microbubble evolution near a rigid wall in a medium of deionized water (initial radius = 20 um, surface tension
=72.59 mM/m) [72].
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Fig. 2.6 shows a bubble of radius R = 20 pm near a rigid wall in a deionized water. It has been
said that the bubble experiences two kinds of movements: (i) oscillation in place and that is
due to the sound field’s primary Bjerknes force and (ii) small transverse movements towards
the rigid wall due to the secondary Bjerknes force induced by the rigid wall. As the bubble
inches towards the wall, its firstly assumed spherical shape turns elliptical. However, as the
bubble achieves direct contact with the wall, the far bubble side away from the wall transforms
into a high jet that strikes the rigid wall by penetrating the bubble. Afterwards, a rebound
formation of the bubble can be seen marking the end of a single collapse cycle. Wu et al. [74]
further investigates the influence of a decreased liquid surface tension on this bubble-wall
dynamic. It has been found that with the decrease of surface tension, the bubble generally
follows the same initial collapse cycle; however, it has been shown that the bubble experiences
exaggerated surface depression and noticeable asymmetries, as it moves towards the wall.
Moreover, the bubble bursts into smaller bubbles and later merge together instead during the

second collapse cycle. This trend is clearly illustrated in Figure 2.7.
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Furthermore, attempted justification of the small bubble cluster has been shown in the works
of Crum [75] in which it has been revealed that the splitting of small bubbles from the main
cavity growth is due to the inertia induced by the rapid radial motion of the bubble that
generates an air jet. Inertia and its major role in bubble evolution is further pronounced in
Suslick et al.’s investigation [76] at which bubble radial oscillation becomes highly nonlinear.
Essentially, the bubble experiences rapid cyclical growths and collapses with compression and
rarefaction stages respectively. Particularly, this occurs due to strong compressions of gas and
vapor present in the bubble that allows the bubble to rebound nonlinearly during rarefaction,
which eventually leads to its runaway collapse.

Generally, a reduced surface tension reduces the bubble’s ability to maintain its typical
spherical shape. Another observation made in the study reiterates the direct relationship surface
tension shares with the nucleation pressure threshold; therefore, the time interval between the
first collapse cycle and the second collapse cycle of the bubble is shortened compared to the
bubble collapse cycle in deionized water.

As acoustic bubble near-wall dynamics show intriguing collapsing cycle behaviours,
Yamamoto et al.’s numerical investigation [77] emphasizes the role walls have on acoustic
bubbles’ growth behaviour as well. Specifically, the study simulates bubble growth dynamical
changes due to a variation in the crevice geometry. The exploration suggests the bubble
oscillation amplitude increases with the increase in the crevice depth. This, in turn, results in a
new non-linear oscillation and a vigorous bubble growth. A similar effect is observed at larger
contact angles, or larger crevice diameters. Typically, such phenomenon is seen as potential
improvement in the sonochemical reaction induced by the ultrasonic field.

Moving away from the wall, free surface acoustic bubble dynamics is yet another important
field of exploration. An exclusive dynamic behaviour found in ultrasonically induced acoustic
bubbles is a phenomenon known as the shielding effect. This was scrutinized by Ezzatneshan
et al. [78] in which he introduces a computational methodology that employs the Lattice
Bolztmann Method (LBM) coupled with the Multiple Relaxation Time (MRT) to visualize
acoustic bubble cluster dynamics. A crucial observation made was one the collapse behaviour
of the bubble cluster shown in Figure 2.8, where the collapse sequence of the cluster due to the
ultrasonic horn’s pressure pulse begins at the top bubble.
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(c) (d)

Figure 2.8: Acoustically drive bubble cluster collapse at timesteps (a) ts = 10 (b) ts =70 (c) ts = 110 (d) ts = 120 [76].

Interestingly, parallels can be drawn from both the top bubble’s symmetrical changes and a
typical bubble’s near-wall collapse. The bubble’s imbalance in energy induces an initiation of
collapse near the bubble cluster at the bottom layer of the top bubble. The kinetic energy is
concentrated at the collapsing bubble top side which, in turn, flattens the top surface. This is
known to result in a liquid jet that penetrates the bubble from the top and into the bubble core.
This occurrence was justified by concluding that the lower bubble behaves as a wall and
prevents the top bubble’s symmetrical collapse. It seems that the acoustically induced energy
imbalances predominantly effect the top layer of bubbles compared to the lower bubbles in the
cluster. This is explained by suggesting a “shielding effect” induced by the top bubble layer
collapse that prevents the pressure impulse from travelling to the lower bubble layers.

Bubble-bubble interactions like are known to occur in deionized, clear water. This suggests the
question on whether such interactions hold the same behaviour when the liquid medium is
changed. This question is explored by Qin et al. [79] by investigating the effect of lipid deposits
on the bubble surface on the commonly observed bubble-bubble interactions. It has been
confirmed that the encapsulating shell applies restraining effects of radial bubble oscillations.
This coating forces the bubbles into two modes of dynamic behaviour, namely compression
and expansion dominated oscillations. It has been observed that changes in bubble radius
during the compression cycle is larger than the compression phase of uncoated bubbles. This
could be due to the rupture of the lipid shell that induces a radius-dependent shell elasticity.
However, during the expansion phase, the shell elasticity and viscosity play a major role in
controlling the bubble oscillation and bubble expansion ratios. For instance, a negative
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relationship between the increase of the two properties and the oscillation is concluded; as the
elasticity and viscosity increases, the bubble oscillation and expansion ratio decrease
drastically. This phenomenon could be used as an active controller for acoustic bubble
dynamics, in turn, making it useful for therapeutic and pharmaceutical applications.

Cavitation and its hydrodynamic behaviours make it an intriguing phenomenon to investigate
and to implement in many industrial processes. As its violent expansion and collapse dynamics
are shown to be flexible and controllable throughout the previous sections, multiple studies
took the initiative to find novel ways of utilizing cavitation as a catalyst for many processes.

2.3 Numerical Cavitation Models

Cavitation models have become a primary integration of many commercial CFD programs. It
is for their ease of implementation and their ability to facilitate cavitation flow predictions.
Typically, cavitation models are classified as either single-bubble or multi-bubble models.
From their names, the categories describe the bubble density extent at which the models are
able to simulate.

2.3.1 Single-bubble Models

For single bubble models, they generally follow a direct numerical simulation of bubbles. In
other words, they directly solve the changes in the bubble interface in such a way that takes
accounts for sources of asymmetry in the interface. Examples of such are high speed jets due
to the presence of a gravitational force or a solid wall [80], high bubble viscous stresses during
a near-wall collapse [74], and high energy dissipation due to the development of vortex rings
[81].

The Front Tracking method [82] is one of the few models that previous works adopted to model
the bubble interface. It simply places a set of discrete points at a bubble’s surface and updates
them according to a kinematic condition expressed as:

dx!

dt
where x is the position of the particle, t is the flow time, and u is the velocity vector in x, y,
and z direction. The key advantage of this method is its simplicity to implement and solve
numerically. On the basis of this method, the Boundary Integral (BI) method and the free
surface method merge to numerically model bubble interfaces based on a set of assumptions.
The BI method assumes that the liquid flow is potential to directly solve the velocity of a
Lagrangian set of points without discretizing the Navier-Stokes equation [83]. This model has
been shown to successfully capture the bubble dynamics at near-wall conditions. One work
that has considered a particle tracking model to assume spherical particles for cavitation
bubbles was Altay et al. [70]. The investigation focused on deriving the effect of both the
acoustic generator surface roughness and the acoustic field frequency on bubble cluster
behavior, through single bubble numerical observations.

u! (2.10)

Another method of modelling the bubble surface boundary condition is through a coupling
between a modified Bernoulli equation and the wave equation. The wave equation is typically
expressed as:

CzVZ‘P = Qe 2.11)
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Where c is the speed of sound in the medium, and ¢ is the velocity of the fluid induced by the
cavitation bubble. This way the compressibility of the fluid is modelled, however, with the
assumptions that the speed of sound is constant and that the fluid is irrotational and inviscid.
The Bernoulli equation is then modified to become inclusive of the pressure induced by bubbles
P.the acoustic field pressure Py, and the far-field pressure P,. In addition, to include the
incompressibility, the equation is then re-written as:

Poo
P =Py + P = e + == VoI (2.12)

Where p,, is the density of the fluid and g is the material derivative of time t. In a study
conducted by Xi et al. [84], this was used to define the bubbles’ interface and their motion
when examining dynamics of multiple cavitation bubbles near a rigid wall.

Lastly, some studies have been seen implementing a modified Keller-Miksis equation [85]
describing the radial dynamics of the cavitation bubble; the bubble’s expansion and collapse
based on its exposure to specific pressure gradients. The equation was employed in a study
conducted by Kerboua et al. [86]. The study reported an energy analysis of an acoustic
cavitation bubble as a form of identification of energy gain and loss sources. The literary work
used the modified Keller-Miksis equation to express the bubble formation and deformation. It
appears that compressive work is a predominant source of energy gain while diffusive heat is
the main form of energy loss, with the exception of acoustic oscillation at 35kHz where water
condensation is the dominant source of energy loss.

Based on the aforementioned modeling techniques, it can be safely concluded that most of the
numerical studies of acoustic cavitation are mainly limited to the single acoustic cavitation
bubble model. This tends to be the case due to the complexity of the models used for single
bubble modelling that makes it computationally difficult to implement it for a multi-bubble
analysis.

2.3.2 Multi-bubble Models

Consequently, in order to investigate multi-bubble parameters, such as bubble density, bubble-
bubble interaction, and bubble size distributions, researchers began adopting cavitation models
developed on the basis of the Rayleigh-Plesset equation [46, 87]. This equation is formulated
while assuming a constant spherical geometry for cavitation bubbles in an infinite body of
incompressible liquid; bubble deformation is neglected.

Clz_R+§(d_R)2:Psat_Poo_20'_ .uld_R
dtz 2 \dt P le le dt

(2.13)

While the Rayleigh-Plesset equation attempts to describe the bubble dynamics and evolution
of a single spherical bubble, many pioneering works on developing multi-bubble models have
sourced from this very equation. Typically, a set of governing equations is solved for each
phase of the multiphase fluid. However, to account for the change in the vapor volume fraction,
an additional transport equation is introduced based on the mathematical model presented in
Frikha et al. [88]. Its general volume fraction expression is:

Ay

Jt

+ div(a,u) = a (2.14)
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where [ and v are subscripts representing the liquid and the vapor phase, respectively. « is the
volume fraction, t is the time, and u is the velocity vector. Moreover, the equation can be
morphed into representing the mass fraction of each phase as follows:

aplvalv
dat

where p is the density of the phase. The transport equation in Eq. 2.15 is expressed in terms of
a new variable known as the mass transfer rate, or the mass transfer source term. It is written
as th where m* represents the condensation process, or the bubble collapse, in which the liquid
mass increases. Meanwhile, m™ represents the evaporation process in which the liquid mass
decreases when bubbles begin to grow.

+ div(p,ap,u) = mt +m~ (2.15)

The first study to propose a homogeneous model based on Eqns. 2.13 and 2.15 was Kubota
[89] in which the investigation presents a local homogeneous model derived from the nonlinear
Rayleigh-Plesset equation. However, one of the proposed model’s weaknesses is its numerical
instability. Therefore, many proceeding studies presented their own solutions to address the
weakness. This was done through a series of simplifications and manipulations of the Rayleigh-
Plesset equation. For instance, Merkle et al. [90] presented a set of source terms independent
of the bubble radius, instead, it tracks the change in the liquid density. Kunz et al. [91], on the
other hand, present another set of source terms based on the Ginzburg-Landau potential.
However, an issue that has been highlighted in the mentioned models is that they heavily
depend on empirical constants. Hence, Schnerr and Sauer [92] suggested a transport-based
cavitation model independent of many empirical constants, while keeping the bubble density
as the only model constant. Moreover, the source terms of the model describe the dynamics of
bubble growth and collapse through tracking changes in the bubble radius. Similarly, Zwart et
al. [93] presented model source terms derived based on the manipulations of turbulence
governing equations of the eddy viscosity and the mixture density. However, four model
constants emerge in its source terms, namely the bubble radius, nucleation site volume fraction,
evaporation constant, and condensation constant. The constants are intended to control the rate
of growth and collapse of the bubbles in a validated and simple way. Following the same
derivation logic of both Schnerr-Sauer and Zwart et al., Singhal et al. [94] implemented a ‘full
cavitation model’ in which the model goes beyond tracking changes in the bubble radius and
considers changes in the turbulent kinetic energy, the surface tension, and the non-condensable
gas presence in the medium.

The usage of a single-bubble model like the Rayleigh-Plesset equation is based on its physically
grounded and computationally tractable means to describe bubble dynamics in practical flows
(i.e. hydraulic machines and ultrasonic horn reactors). From such governing equation, the
macroscopic vapor-liquid mass transfer source terms can be systematically derived and
incorporated into a phase continuity equation. While multi-bubble population balance or
Lattice Boltzmann Method (LBM) approaches do in fact grant higher fidelity and can resolve
bubble size distributions and interactions, they are computationally more demanding. As such,
a Rayleigh-Plesset-based model can facilitate a formulation that sufficiently governs the
coupling of cavitation dynamics to macroscopic flow behaviour. Meanwhile, it can also
implicitly capture multi-bubble effects through averaged, empirical parameters, such as the
aforementioned model constants, ultimately providing a robust compromise between physical
fidelity and computational efficiency. Table 2.1 below summarizes the aforementioned models,
alongside other similar models, and their source terms.
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Table 2.1 Common multi-bubble cavitation models and their mass transfer rate source terms.

Model Name Source Terms
Merkle et al. [90] g _ 2Ceyqap.pr min{0, Py — B}
evap. — PzPuugotoo
2Ceong. max{0, P, — P,}(1 — ap)
cond. = — pzugotoo
Kunz et al. [91] 2Cepqp.pr min{0, P, — P,}
Sevap. = 2
PiUsteo
_ ZCcond.pvalz(l - al)
Scand. - t
Sch dsS 92
chnerr and Sauer [92] s _Pipw 3a(1—a) 2|P, — B)|
R o R 3 m
¢« P 3a(l—a) |2|P, - Bl
contT oy R 3
Zwart et al. [93] 3anuc(1 — av)pv 2|P, — P,
Sevap. = Cevap. R § 0
3QAnucAvP,, |2|Ps — P,
Scond. = —Ccona. R §
P
Singhal et al. [94] N 2|P, — B,
Sevap. = Cevap a PuP; 3 P) (1 fv _fg)
Vi 2|P, — Bl
Scand = Ccond. 7pv 1 § o1 fy

Frobenious et al. [95] No 2 [2|Py — B,
Sevap. = Cevap. —347TR §
1+4/3nyTR pL
nO 2 2 |Poo - P |
Scond. = ~Ceona. —347TR 3 -
1+4/3nyR L

2.4 Ultrasonic Horn Tip Modelling

2.4.1 Stuart Streaming Theory

The Stuart streaming theory is an extension of the Rayleigh [96], Nyborg [97] and Westervelt
[98] (RNW) streaming theory that establishes the quantification of acoustic streaming using
the continuity equation and the Navier-Stokes equation as shown in Eq. 2.16 and Eq. 2.17,
respectively:

dp R

P —V- (p¥) (2.16)
ov ., g 2

p E+V'VV =-Vp+uVsv+F (2.17)

Where p is the density, V is the velocity, t, is the time, p is the pressure, u is the viscosity, and
F is the force per unit volume induced by streaming. This force term is expressed by Rayleigh
as the Reynolds stress spatial variation [96] and can be written as:
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F= _emm) (2.18)

axl-

Moreover, this force is typically calculated from the sound field attenuation with respect to the
plane waves [99]:

1_,
F=——Vi (2.19)

In Eq. 2.23, c is the speed of sound and [ is the acoustic intensity. In an attempt to solve the
continuity and the Navier-Stokes equations, Nyborg [97] implemented the successive
approximations method to represent each of the excess pressure, excess density, and excess
velocity at any point by expanding them into a series of terms, as such:

pt=pi+p+tpz (2.20)
pt=pi+p,+pst- (2.21)

Where the excess pressure is essentially p = (p — py), the excess density is p! = (p — py),
and the excess velocity is V1 = (¥ — V). Here, the excess value of each term is subtracted by
its unperturbed value of the fluid property. The subscript 1 for each fluid property in Eqns.
2.20-2.22 represent first order approximation of the property and are typically considered as
the solutions of the wave equation. This is because they vary sinusoidally in time at a given
frequency w, which in turn, represents the sound field produced. Moreover, the second order
approximations are time-averaged property terms acting as correction terms added to their
respective first order approximations. While this provides a reasonable approximation of the
streaming properties, the RN'W theory is only true for creeping motions or extremely slow fluid
flow at Reynolds numbers Re < 1. The reason behind this is because the inertial terms
presented in Eq. 2.17 were neglected in the approximation calculations. Since, this is
inapplicable for generic streaming motions generated by ultrasonic horns, Stuart [100] has led
a mathematical investigation to reintroduce the neglected inertia terms back into the equation
of motion, as follows:

p(7+VD) = —Vp + uv2o + F (2.23)

However, key differences in the Stuart’s Navier-Stokes equation is the omitting of the transient
term and replacing the vector terms with time-averaged terms (i.e. v and p). As discussed
earlier, the time-averaged terms simply are simply represented by the second-order
approximations in the RNW theory. Thus, this equation of motion is made applicable for the
estimation of acoustic streaming formed by concentrated high power acoustic beam in the form
of inertially dominated turbulent jets.

The imagery drawn about this high-power acoustic streaming is a narrow beam of sound with

an acoustic power of Wy = [4A, at its inlet. This is graphically illustrated in Figure 2.9. In an
ideal model, it is said that the energy entering this beam is equal to the energy exiting it.
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Figure 2.9: Lighthill's assumption of the attenuated acoustic beam [101].

And since the intensity I is defined as the rate of transport of energy per unit area A, this then
is idealized as IA = constant. However, upon attenuating the acoustic beam, the acoustic
power will then be expressed as:

W = Wye PX (2.24)

Here, X is the distance from the sound source and the exponential value e ~#X is the damping
term with respect to the beam’s spatial attenuation with  as the attenuation coefficient. An
acoustic momentum flow rate F, is defined, alongside the acoustic energy flow in Eq. 2.24, as:

E,=—=—eFX (2.25)
Cc c

Where the acoustic momentum flow rate is similarly attenuated with respect to the distance
from the source X. Furthermore, the law of conservation of momentum can be applied to obtain:

Wo Wy _ Wo _
Fh/a=T_Te ﬁX:T(l_e BX) (226)

In which acoustic streaming momentum appears as the hydrodynamic momentum which is
represented by Fp,. The momentum’s spatial rate of decay is then expressed as:

dF, pB B
=—==W -BX =—W 2.27
B dX ¢ 0€ c ( )

Here, F; is considered to be the net force per unit length that induces this streaming. The
kinematic momentum of this acoustic beam is then represented in the equation below:

7%
K = poFy = p07°(1 — e7BX) (2.28)

In the case of turbulent jetting, the attenuation coefficient is extremely high leading to the
exponential term e X approach zero at a short distance X. This makes the hydrodynamic
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momentum delivered equal to % Regardless of that, it has been concluded by Schlichting

[101] that the turbulent jet mean flow retains strong similarity to the laminar jet when taking a
constant eddy viscosity that equates to:

ue = 0.016(K)/? (2.29)

With Egs. 2.28 and 2.29, one can now describe the change in turbulent viscosity along the
sound beam. Finally, to define the velocity profile of the turbulent jet presumably generated by
the acoustic streaming, a Gaussian distribution is assumed as follows:

1/2

b= (p ZZ:S 2) el-(/9)] (2.30)

In Eq. 2.30, 7 is the radius of the beam’s axis and S represents the width of the jet. Now, with
this boundary defining model, it circumvents the numerically complex problem of modelling
streaming and heat generation caused by the oscillation of a high-power ultrasonic horn.
However, if the aim of a given study is to numerically explore the Multiphysics problem of
acoustic cavitation formation and motion, then the model would be deemed inapplicable due
to the highly nonlinear nature of the problem induced by the bubbles’ reduction of the acoustic
field’s speed of sound and the attenuation from their scattering. Moreover, the model fails to
consider the Bjerken forces applied by the acoustic field on the bubbles due to sound
absorption. Thus, for a multiphase problem as such, alternative boundary conditions have been
considered instead.

2.4.2 Pressure Determination Modelling

Instead of defining the ultrasonic horn tip as a velocity-inlet boundary condition, some studies
have considered implementing a pressure-based boundary condition instead. This was done
with the consideration of the pressure expansion-compression waves propagating within the
medium and governing the wave equation [102, 103]. So, the thought process of deriving the
pressure boundary condition is through solving for the wave equation stated in Eq. 2.31 and
applying a thermal boundary condition to solve the equation.

\% 1VP(X t) ! azP(X’t)—o 2.31
p ’ pc? otz 231

With the harmonic pulsation induced by the horn and the domain boundaries generally being
set at a pressure equating to zero, the pressure field is then defined as harmonically fluctuating,
respectively. As such, the general solution to the Helmholtz equation (Eq. 2.31) is:

P(X,t) = p(X)e'®t (2.32)

And substituting Eq. 2.32 into Eq. 2.31 will result in:

1 w?
v(=vP(x,t) | - P(X) = 0 (2.33)
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With the above equation, many things can be inferred, such as the pressure distribution is
dependent on the transducer frequency, fluid density, and speed of sound. In addition, the
reliance on the density and the sound speed indirectly correlates to being dependent on
temperature, as both fluid parameters are influenced by it. Therefore, potential thermal effects
must be taken into consideration. The pressure magnitude of the horn tip face pressure is
computed from the ultrasonic horn’s acoustic intensity expression:

[jc=—=
vs Ay 2pc

In which Py is the power input of the ultrasonic horn, A is the horn area, and P;,;,; is the
pressure wave amplitude. By computing P;,:4;, One can calculate the required pressure value
set at the horn tip face by capturing its sinusoidal temporal variation:

P = Piytqr Sin(wt) (2.35)

This boundary condition surely defines the horn tip more accurately than the boundary
definition the velocity-inlet presents. This is because acoustic pressures from high-power
ultrasonic transducers are easily adapted into the numerical boundary condition. However,
another limitation appears with this kind of boundary condition and that is its inability to
capture influence of wall movement on the formation and development of cavitation in the
proximal region. Therefore, more recent studies have begun scrutinizing dynamic mesh models
instead.

2.5 Horn Tip Vibration Modelling

When it comes to adopting moving wall boundary condition, some studies went with a simpler
solution to assign a sinusoidal motion to the horn tip, while others have gone the extra mile to
adopt a sinusoidal model inspired by the achievable mode shapes of the piezoelectric element,
and thus the horn tip, during its oscillation at 20 kHz. For the simple model, the equation
defined is simply based on a sine function multiplied by the maximum amplitude achieved by
the horn at a specific power input. Eq. 2.36 demonstrates its general expression.

v, (t) = & 2nf cos(2mft) (2.36)

Where v, (t) is the displacement of the nodes from its neutral position, &,,,, is the maximum
displacement of the node, and f is the oscillation frequency. However, some studies, like
Rahimi et al. [104], suggest that the mode shapes experienced by the piezoelectric ceramic
integrated in the transducer is completely transmitted to the ultrasonic horn tip. It has been
inferred that the symmetrical, longitudinal vibrational modes of a circular piezoelectric disk
are the most prominent [105]. Specifically, the mode shape indicating a maximum
displacement at the horn tip centre is what has been commonly observed at approximately 20
kHz and thus has been considered as the base of the following vibration model derivation.

Before beginning with the derivation, a few assumptions were made prior to reduce the
complexity of the mathematical model. These assumptions were made based on Kirchhoff’s
bending theory for circular thin plates [106]. The assumptions made are the following, and are
illustrated in Figures 2.10a and 2.10b:

- The plate material is linearly elastic and obeys Hooke’s law.

47




- Elastic deformation of plate is characterized by Modulus of Elasticity and Poisson’s
ratio.

- Horn tip vibrates due to a load applied on top of radiating surface perpendicular to
circular cross-section.

- Straight lines normal to middle plane before bending remain straight and normal to
said plane during deformation based on the hypothesis of straight normals [107].

dr

dA

o, dA
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dA
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®(Q,+dQ,)(r + dr)dg (b)

Figure 2.10: (a) A schematic of a segment of a circular piezoelectric disk displaying the stresses and shear forces acting on
the segment in the cylindrical coordinates, (b) A top-view schematic of the segment illustrating a balance in the moments
acting on the segment illustrating a balance in the moments acting on the segment [104].

Kirchoff’s bending theory allows the assumption of normality of lateral sides of circular plate
by simply rotating about neutral axes, thus:

oo, %

u?=-z - u? = u?(r) (2.37)

Where u? is the displacement of some point at a distance z from the middle surface, ¢ is a small
displacement of circular plate in z direction. Normal strains (elongation) of edges in the
direction of coordinate axes can then be:

du? d?
£ = dli _ _Zd_ri (2.38)
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where ¢ is the specific displacement component. Moreover, assuming that the shear strain in
r¢ plane is negligible, we can move to finding the normal stresses in that plane using Hooke’s
law.

_E _ Ez (d*¢ wvd¢
or =1z (e +vey) =T |77t o (2.40)
E Ez (1dé  d%
Io =1 _,2 (£<p+vgr) ~1—2 (;E vﬁ) 241

Where v is the poisson’s ratio, o, and o, are the normal stresses in r and ¢ directions, E is the

Young’s modulus. Now, deriving the moment equations acting along the circumferential
section:

T —l/zo-rz “T1na-v)\ar? T rar (2.42)
y _fl/z by B (1dt o d% .

v —l/z%z ‘= 12(1 —v)\rdr Viar? (2.43)
Where 12'(511;) is flexural rigidity, and [ is thickness of circular plate. The shearing force per

unit length of the cylindrical section is defined as:

1 2T T
- 2.44
0 =50 | | ardrde (.44

where q is intensity of load as a function of 7. Summing up the moments of the element:

dM
(Mr + drr dr) (r +dr)dp — M,rdg — M,drde + Q,rdrdep =0 (2.45)
Neglecting small quantities of higher order differential terms:
dM, B

where M, and M,, are the radial and hoop moment per unit length, respectively. Finally,
substituting previous definitions of moments and shear strain:

d’¢ 1d?§¢ 1d§ 0 (2.47)

dr3 ' rdr? ridr D

In the case of acoustic radiation, Q, represents the equivalent radiating forces per unit length
for peak-to-peak displacements:
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Fvib

= 2.48
Qr 2mr (248)
Integrating three times to get the displacement equation:
B e o T i a
E—%(T nr r )+ 1Z+ 2 nr+ 3 (249)
To get the three constants, apply three boundary conditions:
&(r = 0) = limited (horizontal asymptote) (2.50)
(=0 @2.51)
dé(r=R) _ 0
ar (2.52)
C, = Fuiv (1-2InR) (2.53)
4ntD
§r=R)=0 (2.54)
FvibR2
= 2.55
37 16mD (2:53)

By direct replacement of the three constants into Eq. 2.49, the simplified equation then
becomes:

Fvi RZ z z
§ = J6nD (1 B (%) ~Z (%) i (%)) (230

Given that the motion is sinusoidal, Eq. 2.56 can then be written as:

2 r\2

F=¢ (1 _ (%) _2 (E> In (%)) sin(2mft) (2.57)

Such model represents a rather realistic micro-scale boundary condition that attempts to
account for the potential variation in the proximal flow field under the horn tip with the change
of shape of the horn tip surface. A basic schematic of what the displacement boundary condition
translates to in the physical domain can be observed in Figure 2.11.
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Figure 2.11: Schematic of the deformation of the horn tip surface with respect to mode shape 1 of the piezoelectric ceramic
[104].

While the derivation has been validated and holds true in multiple studies, numerical setups
with that apply the simple sinusoidal model have also witnessed a strong agreement between
their numerical results and their respective experimental results [108-110].
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3 Establishment of the Base Numerical Model

3.1 Introduction

The following chapter delves into the theory and implementation of different numerical models
considered for the foundational numerical configuration carried throughout different segments
of the investigation. Detailed descriptions of different governing equations and their working
principles are elaborated on throughout this chapter. Ultimately, this chapter provides reason
for the selection of each model involved in the CFD Multiphysics system that is developed in
ANSYS FLUENT 23R2. Essentially, the governing equations solved within the simulation
compute turbulence, the compressibility of the two phases of water liquid and vapor, and the
mass transfers between them. However, as a primary part of the investigation objectives of the
presented project is to further the development of the numerical modelling of cavitation, it is
important to note that models discussed here are implementations of pre-existing governing
equations in ANSYS FLUENT that were utilized to configure the base numerical setup. As
such, the methodology discussed in this chapter lays out the foundation of the CFD model used
to describe, build on the models, and ultimately capture key attributes of the multiphase flow
in an ultrasonically irradiated domain. The newly derived physics model, specifically, the
cavitation model is discussed later in-depth in Chapter 4.

3.2 Turbulence Modelling

Generally, the essence of implementing a turbulence model sources from the existence of the
acoustofluidic byproduct known as acoustic streaming, as discussed previously in Chapter 2.
Such phenomenon instigates a time-averaged turbulent flow within the radiation column under
the ultrasonic horn. This, in turn, both initializes and governs many other physical phenomena,
primarily acoustic cavitation. Therefore, modeling turbulence becomes a necessity to
accurately capture the flow field, both proximal and far, from the radiating source.

Typically, there exist many turbulence models previously derived and commonly used in a
multitude of modeling applications. Simply put, they are more commonly categorized as
Reynolds Averaged Navier-Stokes (RANS) [111]. It is true that there are other complex and
computationally intensive models, such as the Detached Eddy Simulation (DES) and Large
Eddy Simulations (LES) [111]. However, such models provide marginal benefit of modelling
key time-averaged flow phenomena observed in a typical horn-type reactor. Therefore, these
models were not considered.

Instead, with the shear stress transport (SST) k — w model [112], turbulence was approximated.
This RANS turbulence model was set based on its ability to accurately capture proximal flow
near the horn wall [109]. Such flow is crucial, as the horn tip acts as the source of flow agitation
in the domain and the hub of cavitation nucleation. As such, the model was deemed fit to
capture the expected turbulent flow within the proximity of the horn. The two additional
equations introduced by the turbulence model solve for the turbulent kinetic energy k and the
specific rate of turbulence energy dissipation w as follows:

d(pk) 0w 9 ok
T:Tija_xj_ﬁ Pwk+a—le(#+0kﬂt)a—%_l (3.1)
dlpw) vy Oy , 0 Jw 1 0k dw

at v, U o Bpw® + o I(M + 0ulie) a—x}l +2(1 = F)poy, 9%, 0%, (3.2)
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The p term represents the density, t represents time, 7;; is the shear stress between cells i and

J, u 1s the molecular viscosity, i is the turbulent viscosity, v; is the eddy viscosity, w is the
specific dissipation rate, k is the specific turbulent energy. model constants are given as: f* =

B k2
0.09, g = 0.075, g3, = 0.85, g, = 0.5, k = 041, y= 5~ Ow N
represents a rational function designed to produce binary values (0,1). This function is
expressed as follows:

Meanwhile, the F term

F = tanh (arg}) (3.3)

in which,

(3.4)

. vk 500v,\ 4po,k
arg; = min |max 0.090y° 32w )’ CDy.y?
where y is the distance to the closest wall and CDy,, is the postive part of the cross-diffusion
term in Eq. 3.2. This is expressed as:

1 0k
bl 10-2°> (3.5)

CDkw = max (2,00'002 Zaax ,
A

With such function integration, the governing equations of both k and w transfigure between
Wilcox’s standard k — w model [113] and the standard k — € model [114] based on the
proximity of flow to the wall, or in the current case, the horn surface and container walls. As
such, the model implements the prediction effectiveness of k — w for near-wall flows and the
k — € for far-field flows.

3.3 Compressibility Modelling

Regarding the liquid phase compressibility, the Tait equation of state [115] was used to define
a nonlinear isotropic relationship between water density and pressure, considering that
cavitation is generally an isothermal, thus barotropic, process. The nonlinear density-pressure
relationship is defined as follows:

p(p) =a+b" . (3.6)
p(p) = (pw + B) (p%) — By (3.7)

In Eq. 3.6, p is the absolute pressure, a and b are coefficients derived from an assumption
stating linear proportionality of the bulk modulus By, and the pressure. In Eq. 3.7, po is the
atmospheric pressure, p and p,, are the liquid density and the atmospheric density respectively,
and n is the density exponent. Moreover, a rearranged expression is implemented in the form
of Eq. 3.8.
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( p )” _ By +n((p) —po) (3.8)
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Here, the bulk modulus relates to the effect a pressure gradient has in inducing a relative change
in density. In fact, the bulk modulus is defined as the inverse of the compressibility £
expression shown in Eq. 3.9.

1)

Hence, the speed of sound is in the compressible liquid phase is then defined as:
c= /Bm/p (3.10)

Meanwhile, as vapor phase compressibility sources from the bubble’s spherically symmetrical
collapses, the ideal gas law was set to govern the compressibility of vapor structures during
cavitation. This was implemented by assigning the following density-pressure relationship to
the vapor phase:

p= ~ (3.11)

In which R is the specific gas constant and T being the liquid temperature. Furthermore, the
speed of sound of an ideal gas is then expressed as:

c,RT c,RT c
c= JyRT = |[2—— |22 _ |2 _ P (3.12)
Cy cp— R cp—R p

In Eq. 3.12, ¢, and c,, are specific heat capacities at constant pressure and volume respectively.
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4 Modelling the mass transfer at acoustically generated bubble
interface using Rayleigh—Plesset equation second-order derivatives

4.1 Introduction

As it was previously discussed in Chapter 3, modeling acoustic cavitation in a typical horn-
type reactor requires a strong coupling between multiple physical models to tackle this
Multiphysics flow problem. In this chapter, cavitation modelling, along with its mathematical
and theoretical backgrounds, is thoroughly explained, in Sections 4.2 and 4.3, in aims to
identify the shortcomings of popular cavitation models. Moreover, the derivation of a new
cavitation model is demonstrated and later validated against previously published experimental
work. The following investigation is dissected as follows: (1) In Sections 4.4 and 4.5, a thorough
explanation of the methodology is presented including a complete mathematical derivation of
the modified ZGB model. (i1) Section 4.6 demonstrates the procedure of the four statistical
analysis techniques utilized in the study. (iii) Section 4.7 illustrates the numerical comparative
analysis results and validates them against experimental findings. (iv) Lastly, Section 4.8
summarizes conclusions drawn out from the respective results.

4.2 Conventional Cavitation Numerical Methods

Many studies have been conducted on acoustic bubble dynamics to experimentally scrutinize
the bubble dynamics witnessed during acoustic cavitation development [116-118]. For
instance, Tzanakis et al.[68] has investigated acoustic cavitation behavior by varying multiple
parameters: viscosity by changing the liquid medium and the oscillation amplitude by
alternating the transducer power. Ultimately, the study’s key findings were on a macroscopic
level in which morphing of cavitation zone structures from one medium to another was
examined; a conical cavitation zone occurs in water, a thick round layer occurs in glycerin,
while ethanol observes ultrasonic degassing where bubbles disperse and actively oscillate
towards the free surface of the cuvette. Similarly, Jiang et al.[73] investigated the influence of
the ultrasonic horn’s distance from the bottom of the cuvette on the acoustic cavitation structure
produced and their interaction with one another. It has been observed that the nonlinearity of
bubble oscillation is caused by increased bubble density and bubble radii induced by the
decreasing distance. Despite its insightfulness, experimental work can be costly, and thus
limiting; therefore, recent studies developed an interest in numerical cavitation modelling
techniques.

Generally, numerical explorations on the dynamics of acoustic cavitation essentially rely on a
single assumption that states that the cavitation bubble retains its spherical form throughout its
lifecycle. However, some studies utilized a different approach in an attempt to achieve a
substantially realistic model. Hence, single-bubble cavitation models were employed to capture
the dynamics and geometrical transformations of a single cavitation bubble. Common models
as such applied in the literature were the particle tracking model [119], the coupled modified
Bernoulli-Wave equation [84], and the Keller-Miksis model [120]. Many numerical
investigations were successful in observing multiple acoustic bubble dynamic features at a
microscopic scale, such as Altay et al. [121] and Ye et al. [84] where both scrutinized the
bubble-surface interactions and the effect of surface features, such as wall roughness, on bubble
evolution. Moreover, Kerboua et al. [86] reported an energy analysis of an acoustic cavitation
bubble to identify energy gain and loss sources using the aforementioned approach. While this
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approach successfully demonstrates non-spherical bubble oscillations, it is computationally
expensive to scale these models for multi-bubble cavitation modelling. Therefore, multi-bubble
modelling typically refers to the spherical bubble assumption for easier computational
adaptations.

Multi-bubble oscillations have been modelled by the Rayleigh-Plesset equation [46, 87], the
Gilmore equation[122], and the Keller-Miksis equation [123]. Despite their assumption, the
models consider the effects of pressure and temperature enabling them to predict hydrodynamic
phenomena witnessed in experiments, such as non-linear bubble oscillations, stability of
bubble oscillations, and the bifurcation of bubble oscillation modes [124-126]. Furthermore,
the Rayleigh-Plesset model appears to be relatively the most favorable model, as it considers
the influence of liquid surface tension, viscosity, and nucleation inertia on bubble evolution. In
fact, most commercially available models, namely the Kunz et al. [91], Schnerr-Sauer [92],
and Zwart-Gerber-Belamri (ZGB) [93] models, are derived and implemented based on a
simplified Rayleigh-Plesset model. Generally, these models define a pair of source terms
resembling mass transfer rate per unit volume occurring at the bubble interface during both
condensing and evaporating conditions. Moreover, these models have undergone thorough
validations against hydrodynamic experiments in which rapid changes to driving pressure are
unlikely to occur; thus, implementing these models may not qualify as accurate representations
of acoustic cavitation.

Previous experimental studies have explored the effect of liquid properties and geometrical
variations on acoustic cavitation evolution to pinpoint any underlying dependencies that
acoustic cavitation may have with other parameters [126, 127]. A prime example was a study
conducted by Znidar¢i¢ et al. [128] that investigates potential transfigurations of acoustic
cavitation regions due to changes in the ultrasonic horn diameter and variations in air
saturation, viscosity, surface tension, and temperature of the medium. Qualitative and
quantitative results conclude that the liquid properties have no significant effects on acoustic
bubble oscillation; however, they suggest rapid horn surface vibrations play a major role in
nucleation leading to an “acoustic supercavitation”. Typically, this reiterates the distinct
features acoustic cavitation compared to traditional hydrodynamic cavitation: fast propagation
of pressure within microseconds timeframe, bubbles may attain an extended lifetime before
collapse, and bubble oscillation acoustic impendence’s influence on driving pressure.

4.3 Previous Modifications of Cavitation Models

Typically, modifications of cavitation equations to fit case-specific models are common in
literature [129, 130], whether it was through changing model constants or introducing new
terms. For the case of acoustic cavitation, Znidarcic et al. [109] adopts this approach by
modifying the Schnerr-Sauer model by reintroducing Rayleigh-Plesset’s inertia term into the
derived source terms to improve acoustic cavitation prediction accuracy. Afterwards, a series
of validations was conducted with the new source terms. Moreover, the choice of using the
original Schnerr-Sauer model as a base model was justified by stating that the model was the
most competent in predicting micro-scale vapor structures that follow the driving frequency of
the horn, 20 kHz. Furthermore, Znidaricic et al. further elaborate that their model constants
showed marginal influence on calculation results based on a performed sensitivity analysis and
hence kept as is. However, their comparative analysis illustrated a noticeable discrepancy
between numerical and experimental results; acoustic pressure peaks are overestimated by an
average of 1.08 bar, in addition to the overprediction of cavitation volume. Furthermore, it is

56




also arguable that the assumption of constant bubble density may lead to some modelling
inaccuracies, since it varies with acoustic intensity and ultrasonic frequency [131].

The current investigation attempts to contribute to improving existing cavitation models’
accuracy in predicting acoustic cavitation by adopting Znidaricic et al.’s approach of
introducing the inertial term from the Rayleigh-Plesset equation to the Schnerr-Sauer model,
but instead, using the ZGB model as the base model. This is because the ZGB model is
numerically stable and easier to implement, since its continuity equation is casted in volumetric
form while retaining its conservativeness without the need for an additional transport
equation[93]. In addition, during any cavitation model modifications, empirical constants often
pose as a major challenge for researchers due to their ambiguous physical nature. For instance,
in the case of using the ZGB model as a base model, constants emerging like bubble density,
bubble radius, and nucleation site volume fraction can potentially affect acoustic cavitation
prediction. Despite the important roles of these constants in characterization of acoustic
cavitations, most past studies have not considered the sensitivity of these constants to the
pressure fluctuation amplitude and frequency associated with acoustic cavitation. Thus, this
study aims to obtain an optimal combination of these model constants to achieve the desired
acoustic pressure and frequency oscillation objectives. The study employs a Design of
Experiments methodology consisting of a full factorial design matrix and response surface
methodology (RSM) coupled with the desirability method and Monte Carlo simulations to
establish a complete statistical understanding of model constants’ significance and underlying
interactions. To the best of the authors’ knowledge, the methodological framework adopted in
this study is unique and the framework provides new perspectives into the numerical
characterizations of acoustic cavitation.

4.4 Cavitation Model Derivations

4.4.1 ZGB Cavitation Model

4.4.1.1 Governing Conservation Equations

Here, the ZGB model is taken as the base model, as mentioned earlier. Initially, the multiphase
model is governed by a set of conservation equations; the conservation of mass for each phase
a, shown in Eq. 4.1, and the conservation of momentum for the homogeneous mixture where
no interphase slip is assumed, shown in Eq. 4.2.

0py) AP

S 4.1
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= —— r.g.
ot ax; ax,  PmTedi T 5y (4.2)
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P stands for the pressure, and 7, p,, and S, represent the volume fraction, density, and mass
generation rate of phase a respectively. Subscript m simply indicates the mixture phase
observed. Meanwhile, u;, g;, and 7;; are the Cartesian velocity components, gravitational
acceleration, and the shear stress exerted on the bubble-liquid spherical interface in the i and j
directions, otherwise known as the Stokes’ law stress tensor [132].
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One of the model’s assumptions when solving for conservation equations is that mass transfer
only occurs at the interphase. In other words, the mass transfers of dissolved gases into and out
of the bubble are vector quantities that are equal but opposite in direction. Another assumption
states that the homogeneous mixture is composed of N number of phases in which the addition
of their volume fractions equates to unity representing the mixture. Working on the basis of the
two assumptions, Eq. 4.1 and 4.2 form a system of N+4 equations with N+4 unknowns. The
system of equations is presented as a summation of continuity equations simplified as follows:

N
1 (0(rep,) O(rep i) .
Z—( + —Sa) =0 (4.3)
P, at ox;

a=1

If the said multiphase model was to be implemented in a system of incompressible phases, Eq.
4.3 is then further rearranged reduced, while assuming incompressibility, to an equation as
such:

oy, X 1 1
—=5|—-- (4.4)
0x; P, P,

Of course, as cavitation typically revolves around alternating phase changes between liquid
and vapor, their source terms, referring to the mass transfer rates, adopt the following
relationship:

Sp=38,=-5 4.5)

However, in the case of observing turbulent flow, Eq. 4.4 then denotes mean velocities from
the Reynolds decomposition. Moreover, the Reynolds Stress term makes an appearance in the
momentum conservation equations. In such case, a viscous model must be chosen and
coupled with the multiphase model which will be later discussed in Section 4.5.2.

4.4.1.2 The derivation of the original source terms

With the continuity equation defined, the source terms are then derived from the six-term
Rayleigh-Plesset equation.

2
d’R 3 (dR) 20 4w dR _py(Te) =P @(@)” (4.6)
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Starting from the left-hand side, the first two terms represent the second and first order
derivatives for the rate of change of the bubble radius R. The third term refers to the partial
contribution of surface tension o at the bubble interface where it acts radially inwards against
bubble growth. Afterwards, the fourth term considers the contribution of the medium’s
dynamic viscosity | on the rate bubble growth and collapse alike. However, one may notice
the inverse relationship between both surface tension and dynamic viscosity have with bubble
radius R; the importance of this relationship is its suggestion that the terms do not carry much
significance for fully developed bubbles with large radii. As for the term containing the
pressure difference between the temperature-dependent vaporization pressure and the liquid
ambient pressure, it presents the foundational understanding of bubble evolution. This is
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because it quantifies the pressure threshold required for cavitation bubble nucleation. Lastly,
the final term describes the effect of non-condensable gas partial pressure pg in the bubble as

it grows from its initial radius R, to R.

In the original ZGB model, Eq. 4.6 is reduced by a series of assumptions including neglecting
the effects of the second-order inertia term, surface tension, dynamic viscosity, and non-
condensable gas, where a simplified expression is then yielded as shown in Eq. 4.7.

E(dR>2 _ p,(T.) —p,

— 4.7
2 \dt P, “.7)

Such assumptions are generally found appropriate by Sauer [133] for hydrodynamic cavitation
operating in a water medium at room temperature. Moreover, the acceleration term is typically
insignificant in cases of macroscopic hydrodynamic cavitation, as bubble evolution
acceleration occurs within the window of 10 s and becomes further insignificant with the
increase of the pressure gradient between the bubble and the medium. Thus, with a bit of
rearranging, the first-order derivative becomes the equation’s subject directly relating it to the
bubble evolution driving term.

4.8)

Before deducing the general form of the source terms, the rate of change of mass and the vapor
volume fraction expressions of an assumed single spherical bubble are defined in Eq. 4.9 and
4.10 respectively.

dm dR )

E = AgphereP,, E = 4nR°p, (4.9)
4 3

r, = Vsphererubble = ET[R Nbubble (410)

Where Npyppie in Eq. 4.10 represents the number of bubbles per unit volume. Finally, a general
form for the total interphase mass transfer rate per unit volume is:

p,(T..) —p|
P,

Sw = FNpyppie == = “4.11)

. dm 3ryp, 2%
dt R 3

F is an added empirical multiplier [136]. Moreover, the pressure gradient alternates in sign
depending on the type of mass transfer process, i.e., evaporation or condensation. In the
expression’s current form, it assumes no interaction between cavitation bubbles and thus it is
only accurate and numerically stable during the bubble’s condensation process due to its small
size; it is inaccurate to adopt for the evaporation process. Therefore, an inversely proportional
relationship is introduced between the vapor volume fraction and the nucleation site density;
as the vapor volume fraction increases, the nucleation site density decreases respectively. For
this reason, a variable r is introduced in which r = 1,,,,.(1 — 1;,) during evaporation and r =7,
during condensation. Thus, Eq. 4.11 then transforms to:
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4.4.1.3 The Derivation of the Modified Source Terms

Similar to the derivation logic carried out in deducing the source terms of the original ZGB
model, the derivation starts off by reducing Eq. 4.6 to three terms instead of two: the driving
term, the velocity term, and the additional acceleration term, otherwise known as the inertial
term. This simplification has been discussed by Znidarcic et al.[109] in which it has been found
that most of the fluid parameters, hypothesized to have an effect on the attached cavity
oscillation frequency and the cavitation maximum volume, do not have any notable impact on
the two cavitation properties. For instance, the mean frequency and the maximum volume
negligibly shift from 5058 Hz and 8.97 mm? to 5085 Hz and 8.58 mm? respectively when 50%
saturation of dissolved gas is added into the water medium. Moreover, a frequency and volume
of 5095 Hz and 8.95 mm? when water’s surface tension is increased with the addition of Sodium
Dodecyl Sulphate (SDS). Finally, when changing the medium from water to Ethylene Glycol
(C2H60O2) to decrease viscosity, the frequency increases to 5074 Hz and the volume drops to
8.63 mm°. It can easily be noted that the surface tension has the greatest impact on the mean
cavitation oscillation frequency, while the presence of dissolved gases has the most influence
over the maximum cavitation volume. Despite that, those changes remain considerably small
and thus negligible.

In this regard, the time step of the numerical simulation will have to fall below t; < 10 s (a
time step tg = 5 x 10 s is selected, more on that can be found in Section 4.5.2) to capture the
inertial effect on acoustic cavitation development [109]. Thus, the simplified Rayleigh-Plesset
equation then becomes:

(4.13)
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Given that there are two derivative terms of bubble radius, the source term derivations require
an additional step before proceeding with the traditional derivation procedure witnessed in the
original model. It is worth noting that, with this model derivation, the interpretation of R
changes; Ry here is interpreted as a constant reference radius characterizing the interfacial area
density, and not the instantaneous physical bubble size. This way, its derivatives represent the
growth and acceleration rates of the representative interface obtained from local pressure
gradients and vapor volume fraction and evaluated at the constant scale Rg. This makes d*R/dt>
an “effective inertia” of the phase interface only. Hence, the additional step is rearranging Eq.
4.13 to create a general solution for this acceleration term:

dZRB_pv—poo 3 (ﬁf
dt

4.14
dt? pR; 2R (4.14)

Given the two unknowns of Eq. 4.14, a differential equation is expressed to define the velocity
term based on its previous value and its acceleration term as shown below:

d’R
dtf (6) x t, (4.15)
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The Cauchy boundary conditions for — (t) an d (t) are set in a way where both equate

to 0 at t = 0. As flow time progresses and becomes t = t1, Eq. 4.15 then expresses the new
velocity in terms of the previous velocity and the acceleration. Lastly, in similarity with the
original source term derivations, the bubble evolution velocity equation in Eq. 4.15 can then
be replaced in the general source term expression suggested in Eq. 4.11.

3rp, dRy

Sy =F - ——() (4.16)
B

Where the evaporation and condensation source terms can be defined as:
3rnuc(1 - TU),D dRB

. vap p ——Q)#P<P
Slv = 3T.Vp dR () (417)
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cond RB dt f

Following the same procedure, Eq. 4.14 and Eq. 4.15 shall be looped and reiterated after each
time step tn = tn-1 + ts to calculate the new acceleration term, velocity term, and then the source
terms, in that order.

4.5 Numerical simulation setup and modelling

4.5.1 Cuvette and ultrasonic horn geometry

The numerical setup used in this study is an imitation of the simple experimental setup shown
in the investigation conducted by Znidarcic et al. [109]. The setup consists of an ultrasonic
horn, a tapered metal rod containing a piezo-ceramic element to excite longitudinal waves, that
is 175 mm long with its 3 mm diameter tip submerged 1 cm deep into a 50x50x50 mm
rectangular cuvette. The sonotrode is operated at its maximum power of 70 W where the tip
oscillates with an amplitude of 164 um. Its output signal fed into the horn by the power
generator has a nominal frequency of 20 kHz and an uncertainty of + 500 Hz. The significance
of this setup is in its simplicity, and thus the setup translation into a numerical model is made
much easier. Therefore, the numerical setup follows a two-dimensional fluid domain with a
rectangular model of the ultrasonic horn tip submerged 20 mm down the cuvette for considered
planar calculations. As for the hydrophone, a numerical monitor point 7 mm away from the
horn is coded into the fluid domain for pressure data collection. The 2D axisymmetric geometry
is illustrated in Figure 4.1a with the red dot representing the monitor point placement.

4.5.2  Setting of boundary conditions

The cuvette boundaries are categorized into two groups: rigid static wall and free surface. As
the name suggests, the static wall boundary condition simply defines a non-moving wall with
the addition of the no-slip condition where the velocity boundary layer is described by a zero-
velocity at the boundary wall. As for the free surface boundary condition, it instates the top
surface of the fluid domain as a surface experiencing zero parallel shear stress that defines the
homogeneous interface between water and atmospheric air. Numerically, this is interpreted as
a pressure outlet boundary condition with a gauge pressure of 0 Pa and an operating pressure

61




of 1 atm. Moreover, as a setup assumption, boundary conditions related to modelling a
gravitational field were not considered for the simulation.

As for the ultrasonic horn, its rigid walls are designed to oscillate at a frequency of 20 kHz,
thus making it a “moving wall” to present a moving boundary problem Essentially, the nodes
that lie along the horn walls and tip are temporally oscillated to accommodate for the
boundaries’ motion. In this study, dynamic meshing is chosen as the preferred modelling
method for this, since the validity of the method has been verified in previous works of
literature [134]. Therefore, using dynamic meshing, a User-Defined Function (UDF) is written
in C language to define the sinusoidal motion of all three horn boundaries to set an oscillating
motion corresponding to 20 kHz and an amplitude of 164 pm reached by the horn. The UDF
assigns the transient velocity function stated in Eq. 4.18 to the horn boundaries.

v = Aw cos wt (4.18)

Where v is the axial velocity, A is the amplitude, w is the angular velocity, and t refers to the
flow time of the simulation. The general working principle of dynamic meshing here is to move
the discretized boundary’s nodes sinusoidally stated in Eq. 4.18. However, the technique
considered in this study to simulate the mesh motion is a joint method of spring-based
smoothing [135] and local remeshing. The working principle behind the spring-based method
is assuming that each edge between any two nodes is a series of interconnected springs.
Accordingly, Hooke’s law [136] is used to calculate the force transmitted due to a displacement
found at a neighboring boundary node using Eq. 4.19 [135].
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Figure 4.1: (a) A dimensioned schematic (in mm) of the axisymmetric calculation domain
representing the 50 x 50 mm cuvette where the rectangular cut from the top surface represents the
vibrating ultrasonic horn of ¢ = 3, and the red dot represents the pressure monitor point 7 mm
away from the horn tip. (b) A representation of the structured mesh used for domain discretization.
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F, = Z ky(Ax; — Ax,) (4.19)

J

In which i and j subscripts represent two neighboring nodes, and thus F; is the net force, n; is
the number of nodes connecting to node i, k;; is the spring constant of the springs at the edge
between nodes i and j. Moreover, the k;; is presented as:

(4.20)

Using Eq. 4.19 and the assumption of force equilibrium at the observed node, an iterative
equation is deduced, as shown in Eq. 4.21, that is then solved using the Jacobi iterative method
until convergence to obtain the final position using Eq. 4.22.

Sk Ax;™
At ==l 4.21)
Zj kij
xin+1 — xin + Axin,converged (422)

Where n and n+1 represent the positions at the current and the next timestep, respectively. This
method is then coupled with the smoothing remeshing method to account for potentially large
displacements in the dynamic mesh that can lead to numerical instability and convergence
problems. The method sets a criterion that it follows to classify the aspect ratio and skewness
of each cell during the mesh evaluation that takes place before finalizing the mesh motion
[135].

Meanwhile, a full coupling between the pressure and velocity solvers was selected based on
convergence optimization considerations. As for the selection of spatial discretization schemes,
a second-order upwind scheme was used to discretize density, momentum, turbulent kinetic
energy, and energy transport equations. Meanwhile, a first-order upwind scheme was chosen
for volume fraction and the specific dissipation rate equations. The pressure interpolation
scheme used in the current setup is the Pressure Staggering Option (PRESTO!). Lastly, the
transient formulation adopted in the setup was a first order implicit scheme. Moreover, in
accordance with the inertial term added to the cavitation model to account for its influence on
acoustic cavitation evolution, the time step size chosen for the transient calculation is 5 ps with
600 timesteps and a maximum of 40 iterations per time step. This way, the simulation captures
approximately 1.5 times the period of the expected acoustic cavitation life cycle. Furthermore,
the convergence criteria set for the governing equations were 10, with the exception of the
energy equation where 10® was used instead.
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4.5.3 Geometry grid independence test

With the aforementioned setup settings in the previous sections, an iterative calculation was
performed with six grids. Illustrated in Figure 4.2 is a graph showing the gradual mesh
refinement and its effect on the maximum pressure detected by the assigned monitor point. It
can be clearly seen that the maximum acoustic pressure attained drops drastically as the mesh
is refined up to 40,000 elements in which the effect of the grid is no longer significant after
that point. The percentage change in the maximum pressure is highlighted in Table 4.1.
Therefore, the mesh pertaining to 40,000 cells, with a 0.25 x 0.25 mm cell size is then chosen
for the study with a cell size, as shown in Figure 4.1b.
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Figure 4.2: Grid independence test comparing the number of mesh elements with the maximum
pressure recorded by the monitor point shown in Figure 4.1a.

Table 4.1: Grid independence test percentage change in pressure readings per increase in number of elements.

Meshing Elements (-) Maximum Pressure (Pa) Percentage Change (%)

2,053 474,736.84 -
9,459 463,976.61 2.27
21,793 414,152.05 10.74
38,623 347,017.54 16.21
60,299 336,257.31 3.10
86,971 329,941.52 1.88
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4.6 Statistical design of experiments
4.6.1 Full factorial design

Observing the new bubble growth and collapse mass transfer equations shown in Eq.4.17, one
can notice that it contains a set of four constants that are yet to be defined. Specifically, the
constants are the evaporation, condensation, bubble radius, and nucleation site volume fraction
constants. Given that these constants are originally empirically derived, as noted in Section
4.4.1, there is no analytical justification for setting their values. Therefore, in this study, a
statistical approach, known as Design of Experiments, is adopted to establish an understanding
of each constant’s statistical significance on the cavitation model’s performance in predicting
acoustic cavitation. Particularly, the full factorial approach is employed to identify the effects
of multiple parameters on the maximum acoustic pressure and oscillation frequency responses
[137]. In this investigation, a four-factor, two-level (2%) full factorial design is implemented, as
shown in Table 4.2.

Table 4.2: 2* Full Factorial Design Setup.

Lower Level Higher Level
Numeric Factors Factor Label
-1 +7
Evaporation Constant, Fy A 10 50
Condensation Constant, F, B 0.01 0.1
Bubble Radius, R (m) C 15x10¢ 25x 106
Nucleation Site Volume Fraction, Inuc D 5x10* 15x10*

The lower and higher levels of factors Fy, F¢, and 1 were chosen on the basis of values that
previous studies in literature have investigated when scrutinizing the effect of the ZGB model
constants on their simulation results in which they go about selecting their set values by
incrementing each model constant value about its original value [138-140]. As for factor R, the
levels were chosen based on the qualitative observation made in Znidarcic et al.’s experiment
[109] and quantitative observation in the bubble radius probability distribution in Reuter et al.’s
investigation [141]. In retrospect, the aforementioned studies have revealed that the variations
in any of the coefficients in the ZGB model tend to have a linear effect on the cavitation
predictive performance. This could be due to the coefficients representing ‘gain’ parameters,
as shown in Eq. 4.7. As such, it could be assumed that a 2* factorial design is sufficient to
scrutinize crucial parametric interactions, such as two-way and three-way interactions, that
influence the predictive performance of the cavitation model. Moreover, the range of values
presented in Table 4.2 is selected in such a way that it provides a reasonable, but sufficient,
‘distance’ between them to capture the factors’ ‘true effects’ on the response values.
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Table 4.3: 24 Full Factorial Design Matrix.

Basic Design

Run A B C D Treatment Combination
1 -1 -1 -1 -1 1

2 1 -1 -1 -1 a
3 -1 1 -1 -1 b
4 1 1 -1 -1 ab
5 -1 -1 1 -1 c
6 1 -1 1 -1 ac
7 -1 1 | -1 be
8 1 1 1 -1 abc
9 -1 -1 -1 1 d
10 1 -1 -1 1 ad
11 -1 1 -1 1 bd
12 1 1 -1 1 abd
13 -1 -1 1 1 cd
14 1 -1 1 1 acd
15 -1 1 | 1 bed
16 1 1 1 1 abcd

Table 4.3 above tabulates a design matrix of all 16 possible combinations of the four factors
that are then replaced in the new cavitation model equations and used in the numerical
simulation to obtain their response values for a comparative analysis.

4.6.2 Response surface methodology

The response surface methodology, generally, is the proceeding step after developing a full-
factorial design matrix and obtaining each treatment’s response. The said methodology
provides a platform for a comparative analysis of the responses collected and attempts to draw
hidden statistical trends. One way of doing so is by developing a regression model; a general
expression, derived from response data collected, that attempts to generalize the degree of
effect each factor has on the response model. In this study, this was done by employing Minitab
21 [142] in which it generated main effect, interaction effect, and response surface plots as a
qualitative demonstration of conclusive trends drawn out of the dataset.

To take into account both main effects, two-way interaction effects, and three-way interaction
effects, a second order polynomial model multiple regression model is generated for each
response term, i.e. maximum pressure and oscillation frequency, using the following equation:
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where Y is the response, I and j are factor indexes, and thus Xi and Xj are coded values of the
factors. Meanwhile, B,, B;, Bi;, and pB;; are the intercept, linear, quadratic and interaction
coefficients respectively. Lastly, € represents the experimental error. Moreover, to optimize the
obtained regression model, a stepwise regression analysis was conducted. Particularly, a
backward-elimination method was chosen to examine the statistical significance of each
variable in the regression model. This is performed by observing the change in variance by
removing each predictor to the model one step at a time. As a result, unnecessary terms and
interactions are eliminated from the model accordingly.

4.6.3 Response optimization and desirability

After finalizing the regression model, an optimal combination of evaporation constant,
condensation constant, bubble radius, and nucleation site volume fraction values can be found
through the desirability optimization approach [143]. This approach, among many other
methods, stands out due to its simplicity and flexibility in designating different weightings and
importance level to each factor. Furthermore, this approach takes an input of optimization
objectives that can be either to maximize, minimize, or obtain a specific target value for the
response. Thus, depending on the given objective, the approach utilizes different desirability
functions. Moreover, the selected function then transforms the estimated response, Y; into a
dimensionless value known as desirability, d; (Y;). With that in mind, the desirability of each
response is calculated by the following objective-specific equations accordingly.

d(v) = (4.24)

In Eq. 4.24, the subscript i indicates the response iteration, and thus [; and u; represent the
lower limit and the upper limit of the response. Moreover, t; is the target response value.
Meanwhile, s and t are the weightings of the response that dictate the shape of the desirability
function. Generally, the weights vary from 0.1 to 10 in which weights less than 1 indicate low
emphasis on the response, while weights greater than 1 indicate otherwise. The desirability
value d;(Y;) obtained is then fed into another dimensionless function known as the overall
desirability function, D, where 0 < D <I.

1/n

D= (1_[ di(xn)") (4.25)

The variable n in Eq. 4.25 represents the number of responses. As for the interpretation of Eq.
4.25, a high value of D simply indicates a more desirable function, hence, revealing the optimal
solution. Ultimately, the main goal of the desirability approach is to maximize D; therefore,
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the optimum factor values of the four model constants are indicated by the value of the desired
function d; (Y;) they achieve, that then maximizes D accordingly.

4.6.4 Monte Carlo simulation

With the regression and optimization procedure completed, the analysis is taken further to
provide a complete statistical overview of the influence of the model constants on the acoustic
cavitation modelling performance. In other words, insight on the influence of randomness
present in the model constants’ values on the response values is limited. Therefore, a sensitivity
analysis was used to fill this knowledge gap and validate the optimized model constants chosen.
More specifically, the Monte Carlo method was employed to quantify the degree of influence
random errors have on the input-dependent outcome of a regression model resembling the
physical process of acoustic cavitation. This method follows an iterative process that simulates
a real experiment being run several times to observe any changes in the distribution of the
outcome. In the case of acoustic cavitation modelling, the investigative interest emphasizes the
impact of variability in the already optimized governing factors, i.e., evaporation and
condensation constants, bubble radius, and nucleation site volume fraction, on the maximum
acoustic pressure and its oscillation frequency. In this study, MATLAB code was created to
conduct the Monte Carlo simulation by using MATLAB’s random number generator (RNG)
to create random variations in each factor within the range of + 10%. Furthermore, as a mode
of controlling the variation due to MATLAB RNG, seeding is used to lead the RNG towards
producing a predictable sequence of random numbers affiliated to the random errors being
investigated. Shown in Figures 4.3a and 4.3b are two plots illustrating variations in the standard
deviation of the maximum acoustic pressure and oscillation frequency respectively, as the
sample size is increased.

As both graphs show that the standard deviation of both samples fluctuate minimally and
converge at approximately 7,000 iterations, this sample size is then reasonably chosen to be
used for this study.
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Figure 4.3: The standard deviation of (a) maximum acoustic pressure (b) oscillation frequency plotted against the number of
iterations executed by the Monte Carlo simulation.
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4.7 Simulation Results and Statistical Analysis

4.7.1 Original model acoustic cavitation prediction

Initially, as means to assess the true acoustic cavitation performance of the original ZGB
model, the numerical calculations were performed with the original model and qualitatively
and quantitatively compared to Znidarcic et al.’s experimental results [109]. Figure 4.4 below
presents a comparative illustration between the numerically generated contour plots and the
high-speed camera pictures taken of cyclic cavity structures formed. As Znidarcic et al. [109]
explains, the experimental results generally display a single large ‘mushroom-shaped’ cavity
covering the ultrasonic horn tip and is undergoing periodic expansion-collapse cycles. This
observation is reiterated by Tzanakis et al. [68] and justified by the usage of water as the
cavitation medium. However, the mushroom structure is only retained during the expansion
phase and later transforms into a conical shape during the structure’s shrinkage. Moreover, a
stream of micro bubbles emerges during the large cavity development. In addition, these clouds
of micro bubbles are then released downstream into the medium and oscillate at their own sub-
harmonic frequency.

0.00 0.50 1.00

Vapor Volume Fraction

Figure 4.4: Comparative illustration of instantaneous cavitation structures observed experimentally [109] and predicted by
the original ZGB model numerical setup at coinciding time steps.

Meanwhile, numerical results obtained highlight multiple structural and periodic differences in
the cavity. Firstly, a parallel can be drawn during the first stages of development where large
cavity structure begins to engulf the horn tip; the mushroom-like shape is visible during t = 0
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— 20 us. However, at t =40 pus, the cavity structure diverges from the experimental observation,
as it adopts a conical phase instead. As mentioned earlier, this typically suggests that the cavity
structure is entering its shrinking phase; however, it begins to expand again from t = 80 — 100
us before it shrinks again at t = 120 ps. At later time steps, a repeated structural pattern can be
seen when compared to the structure found at t = 0 — 40 ps. This simply marks the end of a
single expansion-collapse cycle and the beginning of a new cycle at t = 140 ps. On the other
hand, a single cycle is experimentally shown to take place at t =180 pus and generally illustrating
a longer cycle period. Figure 4.5 plots the static pressure at the monitor against flowtime, where
it shows the variations in pressure due to acoustic cavitation evolution.
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Figure 4.5: Static pressure fluctuation predicted by the Original ZGB model plotted against flowtime at the monitor point.

Given that the pressure peaks do not occur the end of each cycle indicates that the cavitation
structure does not entirely collapse at the end of the cycle, instead, it shrinks while retaining its
shape. Therefore, this indicates that the large cavity structure is oscillating at its own
subharmonic frequency. In other words, the complete collapse of the structure takes place every
4.54 periodic cycles or within approximately 1176 kHz. Another major difference Figure 4.5
highlights is the inability of the original ZGB model to capture micro-scale bubble collapse.
This is noted by the minimal oscillations that occur between each pressure peak. Thus,
cavitation model modifications are justified to tune the pressure oscillation and its frequency
to that of the experimental acoustic cavitation.

4.7.2 Response surface optimization results

In this section, the model constants of the modified ZGB model, namely the evaporation and
condensation constants, bubble radius, and nucleation site volume fraction, undergo a series of
statistical analysis with the analysis of variance (ANOV A) being the principal model analysis.
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The statistical significance of the four factors considered including two-way and three-way
interactions were assessed on the basis of their resultant F-statistic and p-values for each
response, i.e., maximum pressure and oscillating frequency, as shown in Table 4.4. In this case,
a backward elimination stepwise regression analysis was applied to sieve the model from
unnecessary predictors, in return, to improve out-of-sample accuracy by yielding a sample size
larger than the number of variables. Mainly, the statistical criterion adopted to rule a factor’s
significance is the 95% confidence level in which the p-values shall be less than <0.05 for a
factor, or an interaction, to qualify as significant [137]. In addition, the larger the F-statistic for
a source, the safer the assumption of significance.

Table 4.4: ANOVA of Maximum Pressure and Oscillation Frequency Responses for Backward-Stepwise Regression.

Maximum Pressure, Ppax Oscillation Frequency, F
Adj F- P F-  P-

Source DF AdjSS MS Value Value VIF Adj SS  Adj MS Value Value VIF
Model 10 28.9907 2.8991 9.87 0.010 12199231 1524904 6.88 0.010
Linear 4 17.7244 4.4311 15.09 0.005 8260133 2065033 9.32  0.006

A 1 8.9559 8.9559 30.50 0.003 1.00 1604795 1604795 7.24 0.031 1.00

B 1 04114 041141.40 0.290 1.00 1578202 1578202 7.12 0.032 1.00

C 1 43356 4.3356 14.77 0.012 1.00 2454988 2454988 11.07 0.013 1.00

D 1 4.0214 4.021413.70 0.014 1.00 2622149 2622149 11.83 0.011 1.00
2-Way Interactions 5  7.8155 1.5631 5.32 0.045 3003661 1001220 4.52 0.046 1.00

AxB

AxC 1 0.1590 0.1590 0.54 0.495 1.00

AxD 1 1.3090 1.3090 4.46 0.088 1.00

BxC 1 25385 2.53858.65 0.032 1.00 901997 901997 4.07 0.083 [.00

BxD 1 22963 22963 7.82 0.038 1.00 1312170 1312170 5.92 0.045 1.00

CxD 1 1.5127 1.5127 5.15 0.072 1.00 789494 789494 3.56 0.101 1.00
3-Way Interactions 1 3.4508 3.4508 11.75 0.019 935437 935437 4.22  0.079

AxBxC

AxCxD 1 3.4508 3.4508 11.75 0.019 1.00

BxCxD 1 1.00 935437 935437 4.22 0.079 1.00
Error 5 1.4682 0.2936 1551754 221679
Total 15 30.4589 13750985

Table 4.4 tabulates values of sum of square (SS), mean square (MS), F-statistic, and p-statistic
for the reduced models of maximum pressure and oscillation frequency. Both SS and MS
represent a measure of variation from the mean indicating variation attribution to a specific
factor. Thus, this reiterates the degree of significance a factor has over the response. As a result,
a cubic multivariant regression model is fitted for the maximum pressure response while a
quadratic multivariant regression model has been found appropriate to model the oscillation
frequency response where both are statistically significant at a 95% confidence level.

Furthermore, to evaluate the goodness of fit of experimental data into the resultant models, the
coefficient of determination, R?, is used as a statistical indicator for the evaluation. Typically,
a value of 0 means that experimental data do not fit the regression line, while a value of 1
indicates otherwise. In the current case, an inference of a strong correlation between
experimental and predicted can be safely assumed given that R? values were 0.9518 and 0.8872
for the maximum pressure and oscillation frequency respectively. Moreover, the adjusted R?
values for pressure and frequency show a high value, yet lower than the non-adjusted R?, of
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0.8554 and 0.7582 respectively. This is justified as the adjusted R? is corrected to identify the
degree of variance in the response explained by the input variables. As such, the indicator
provides a more realistic evaluation of goodness-of-fit rather than an optimistic one. However,
this noticeable difference may be an indicator that introducing additional terms to the model
does not necessarily improve its reliability, let alone its accuracy, by a significant value.

Despite that, one may question the reliability of the regression models due to the usage of a
stepwise regression method which typically results in errors, mainly overfitting led by
multicollinearity. However, the Variance Inflation Factor (VIF) for all factors appear to be
equal to = 1. A value of 1 suggests that there is no correlation between the predictor variables.
Meanwhile, a value between 1 < VIF < 5 shows moderate correlation but can often be
neglected. However, in the case of a value great than > 5, this infers severe correlation between
the predictor variables making the p-values generated unreliable.
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Figure 4.6: Main effect of the four model constants on the response values of pressure peak (Pa) and pressure oscillation
frequency (Hz).

4.7.2.1 Analysis of regression predictors’ effects on maximum pressure

As per the ANOVA presented in Table 4.4, most of the factors, main effects and interaction
effects, are included in the maximum pressure regression model, with the exception of the
evaporation-condensation constant (AB) two-way interactions and the evaporation-
condensation-bubble (ABC) radius three-way interaction effects. However, while the
mentioned interactions were removed due to their complete failure to meets the F-test and P-
test, B main effect, evaporation-nucleation site volume fraction (AD), evaporation-bubble
radius (AC), and bubble radius-nucleation site volume fraction (CD) two-way interaction
effects were included regardless of their inability to meet the same criterion. These exceptions
were made on the basis of examining both main effect plots and their respective interaction
plots to avoid making any immature interpretations.
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Initially, the condensation constant (B) main effect, as per the p-value, appears to be
insignificant; meanwhile, its interactions with bubble radius (C) and nucleation sit volume
fraction (D) are significant. This is graphically demonstrated in both Figures 4.6 and 4.8
respectively. By observing the main effects alone, Figure 4.6 highlights the change in the
maximum pressure peak by changing each variable one at a time while keeping the remaining
variables at their lower values as default. The figure reiterates that the evaporation constant (A)
has the highest influence relative to the other constants given that the pressure value changes
from 5.1 bar to 6.5 bar as the constant is increased from 10 to 50. Meanwhile, B shows its
insignificance by demonstrating a small change in pressure from 5.9 to 5.6 bar when decreased
from 0.1 to 0.01. Here, this statistical anomaly is further examined by deducing the type of
interaction that exists at BC and BD. In this case, there exists a significant antagonistic effect
shown in Figure 4.7 for both interactions where any change along either of the factors leads to
an interaction in the opposite direction. Graphically, this is highlighted by assigning a light
green color to represent the highest achievable value for the maximum pressure peak while
dark green represents the lowest value achieved. Moreover, a with twisted surface plots due to
its edges’ opposing directions. Furthermore, an inference that B is a main effect in the current
case is misleading, as it does not show an independent effect, instead of a conditional effect. In
other words, the coefficient of B is interpreted as the effect of B when A = 0 where in this case,
it is insignificant. Thus, it can be inferred that B may carry larger significance for other values
of A, as decomposed by Figure 4.7.

Therefore, to interpret the influence of the condensation constant on the maximum peak, BC
and BD are observed. Pressure peak generally intensifies as bubble radius is reduced; however,
this effect is more pronounced with the increase of the condensation constant. From a
mathematical perspective, the decrease in bubble radius reduces the emphasis of both bubble
growth and collapse mass transfers. However, when coupled with an increase in the
condensation gain coefficient, this effect is compensated for at the collapse mass transfer. In
physical terms, bubbles are limited to grow to a smaller size and pushed to collapse at a higher
rate.

On the other hand, the remaining factors A, C, and D retain their main effect status in the
model, according to the p-test. This is due to the statistical insignificance of AC, AD, and CD
carry. However, as Table 4.4 shows, a three-way interaction ABC is statistically significant
inferring that the two-way interactions do exist physically; however, they vary across a third
continuous factor, i.e., AC vary significantly along factor D.

In Figure 4.6, main effects A and D are shown to have positive independent effects on the
pressure peak while C shares a negative relationship with the pressure peak. Moreover, A
shows the most influence on the pressure. The interaction effects of AC, AD, and CD are shown
in Figure 4.7. Surprisingly, interaction AC does not show that the bubble radius C shares the
same effect it had on the condensation constant B. Instead, it appears to only highlight the main
effects of both A and C. Meanwhile, interaction AD emphasizes its significance where
maximum pressure is achieved with the increase of both nucleation site volume fraction and
the evaporation constant. Physically, this translates to intense cumulative collapses in regions
of high bubble density. Lastly, the CD interaction demonstrates its negative interaction in
which an increase in nucleation site volume fraction and a decrease in bubble radius leads to a
maximum pressure peak. In this case, both mass transfer directions experience an inflated
effect, hence, leading to a more intense collapse.
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Figure 4.7: Surface and contour plots showing two-way interaction effects between the four model constants on the response
values of pressure peak (Pa). The constants’ interactions are (a) Condensation - Evaporation (b) Bubble Radius — Evaporation
(¢) Nucleation Volume Fraction — Evaporation (d)Bubble Radius — Condensation (e) Nucleation Volume Fraction —

Condensation (f) Nucleation Volume Fraction — Bubble Radius.

4.7.2.2 Analysis of regression predictors’ effect on oscillation frequency

Unlike the maximum pressure regression model, all factors A, B, C, and D can be interpreted
as main effects on the frequency response. The evaporation constant A appears to have a
negative relationship where any increase leads to a decrease in the oscillation frequency. On
the other hand, an increase in the condensation constant, bubble radius, and nucleation site
volume fraction lead to an increase in frequency. Figure 4.8 further points out that both main
effects C and D share the status of being the most impactful effects on the frequency response.
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An analysis of the interaction terms in both Table 4.4 and Figure 4.8 shows that BD shows
most significance compared to BC and CD. As Table 4.3 suggested and Figure 4.8 supports,
interactions AB, AC, and AD are completely neglected in the regression model. Specifically,
this emphasizes that the evaporation constant (A) has no noticeable effect on the frequency
responses when any of B, C, or D are changed, and it is indicated by the parallel edges of
surface plots.

An additional dissimilarity in the interactions’ behavior from pressure peak responses is that
there are no significant three-way interaction effects; interaction BCD is shown to be
insignificant in Table 4.3. This way, BD is the only interaction that qualifies to remain in the
model, while BC and CD are not required, as they are unable to justify the significance of any
three-way interaction. The frequency regression model is then a quadratic model with one
second-order term, as opposed to the cubic regression model obtained for the maximum
pressure response.
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Figure 4.8: Surface and contour plots showing two-way interaction effects between the four model constants on the response
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4.7.2.3 Regression model optimization

The regression models obtained only show a cubic and a quadratic relationship that the model
constants statistically maintain with the pressure fluctuation peak and its oscillation frequency,
respectively. However, in this study, the main objective is to tune the modified cavitation model
to enhance its acoustic cavitation predictions. Thus, the optimization criteria set, as presented
in Table 4.5, is dissected to acceptable ranges of model constants’ lower and upper limits, their
weightages, and their importance. The selected targets for both pressure and frequency
responses are 3.62 bar and 5058 Hz, respectively’, as they represent the values obtained
experimentally by Znidarcic et al. [109]. Moreover, both targets are given the same weight and
high importance, indicated by the set value of 1, to the multiple response optimization method.

Table 4.5: Optimization Criteria for Pressure and Frequency Responses

Limits
Response Goal Lower Target Upper Weight Importance
Freq./Hz Target 4109.090 5058.00 5563.80 1 1
Max Pres. /Bar  Target 3.482 3.62 4.07 1 1

Figure 4.9 and Table 4.6 summarize the selection process of model’s optimal values by
utilizing the desirability approach. The solutions obtained for each of the evaporation constant,
condensation constant, bubble radius, and nucleation site volume fraction were through an
input set in Minitab. The interpretation process of the optimal results was simply off their
desirability values; those solutions with highest desirability are often chosen as the optimal
solution. Thus, Table 4.5 shows the uncoded optimal settings as follows: Factor A = 17.35988,
Factor B = 0.1, Factor C = 25 x 10°m, and Factor D = 5 x 10™. This setting has achieved
responses of 3.62 bar and 4928.73 Hz for pressure and frequency respectively. The maximum
desirability achieved by the solution was 88.092%.

Table 4.6: Optimal Solution Achieved by Multiple Response Optimization

95% CI 95% PI
Max
Coded Uncoded Fregq. Pres. Composite
Factors Setting Setting Fit Fit Desirability ~ Press. Freq.  Press. Freq.

A -0.632006 17.35988

B 1 0.1

(2599, (3322, (2.893, (3754,
c | 25410 4128.73 362 0880920 00N Uoas)  5347)  5504)
D -1 5x 10

Figure 4.9 below illustrates the consideration of optimized values for each factor by comparing
their desirability values and adjusting their settings accordingly. The vertical red lines running
through each column represent the optimal level at which the factor is set in to achieve
maximum desirability. Perhaps, the factor with the most volatile effect in both the responses is
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the evaporation constant. This is highlighted by the visible kink in the desirability graph of the
factor; any increase in the evaporation factor will skew both pressure and frequency responses
away from 3.62 bar and 5058 Hz target values respectively. Meanwhile, the remaining factors
were comfortably set at either low or high value ends signified by their linear desirability

relationship.
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Figure 4.9: Desirability and main factor effect plots for pressure and frequency responses highlighting the optimal settings

for highest desirability.

4.7.2.4 Monte Carlo sensitivity analysis

While it is true that the desirability approach resulted in two optimized regression models,
insight on the induced scatter on the response values due to uncertainty in the governing model
constants is lacking. With the ANOVA study revealing the extent of control the empirical
constants have over the model’s predictive performance of acoustic cavitation properties,
exploring the sensitivity of results to any variation in the empirical constants become crucial.
Therefore, a series of Monte Carlo simulations is implemented to identify the random input of
model constants that contribute the most to the random scatter of pressure and frequency
response values. This approach was setup and performed in a MATLAB environment. The
number of iterations used for the simulations is 7000 iterations, as suggested by Figures 4.3a
and 4.3b. The simulations were setup by setting the two regression models as the simulation
objectives and assuming a = 10% randomness in each model constant to study the response
sensitivity to input uncertainty. The uncertainty value is assumed based on the range of values
commonly used in literature [138-140]. This way, a uniform distribution was deliberately
chosen for the model constants’ values, as the true probabilistic distribution of their values is
not available. The aim of the analysis is to perform a non-informative sensitivity assessment
that would identify dominant parameters affecting the collapse pressure and cavitation lifecycle

frequency.
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Table 4.7 summarizes important statistical properties the response variables showed during the
Monte Carlo simulations. One of the parameters highlighted is the mean for both responses.
Interestingly, the mean values demonstrate a strong agreement with the deterministic values
achieved during optimization. The maximum pressure is of particular interest, as its standard
deviation indicate that response values are retain low variance and are closely distributed
around about the mean. Meanwhile, this cannot be said about the oscillation frequency
response, since its standard deviation shows relatively larger variance. Nevertheless, the near-
zero skewness values highlight that the random response variables are not skewed to either side
of the mean. Moreover, kurtosis values of less than < 3 show that the response values examine
a platykurtic distribution, which typically describes a distribution with a lower likelihood of
achieving response mean values compared to a normal distribution. While this is statistically
true, kurtosis values are also considerably close to 3, and hence, ultimately, it is more
reasonable to consider the response values well-modelled with a normal distribution. This is
reiterated in the corresponding histograms shown in Figure 4.10.
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Figure 4.10: Histograms of output random responses of (a) Maximum pressure (b) Oscillation frequency considering a + 10%
uncertainty in all four model constants.

Table 4.7: Statistical Properties of Random Response Variables

Response Name Unit Mean St. Deviation ~ Skewness  Kurtosis Min. Max.
Maximum Pressure Bar 3.5941 0.096111 -0.069492 2.693 3.295 3.883
Oscillation Frequency Hz 4193.0288 115.285 0.084987 2.631 3864.2 4545.8

A sensitivity analysis is then performed to find reason for the obscure trends presented in the
Monte Carlo simulation and to identify the factor with the greatest influence on the response
output. Figure 4.11 draws a sensitivity plot that shows percent contributions of each random
input factor to the uncertainty of random output responses. For instance, Figure 4.11a considers
the maximum pressure response in which it uncovers that randomness in all four factors
generally share equal responsibility for the scatter in the pressure response. The condensation
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constant seems to have the most influence. This can reasonably be attributed to the fact that
cavitation collapse intensity equally depends on the cavitation region and bubble size, and the
rate of their collapse that generates the spike in pressure. On the other hand, this trend is not
reiterated in the Oscillation Frequency sensitivity plot. Figure 4.11b highlights that the main
contributors to output randomness are the nucleation site volume fraction, bubble radius, and
condensation constant. Meanwhile, the evaporation constant contributes only 8% of frequency
response randomness. Interestingly, this occurrence can be attributed to the dependence of the
oscillation frequency primarily to the rate of cavitation collapse.
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Figure 4.11: Desirability and main factor effect plots for pressure and frequency responses highlighting the optimal settings
for highest desirability.

Table 4.8: Correlation Coefficient Matrix between Input Factors and Response Values.

Response Name Evap. Cond. Bubb. Rad. Nuc. Site Vol. Frac.
Maximum Pressure 0.4980 0.5568 0.5065 0.4162
Oscillation Frequency 0.1525 0.5302 0.5439 0.6248

Moreover, Table 4.8 provides the correlation matrix between input factors and output
responses. Generally, a correlation coefficient equal to one defines a perfectly correlated
relationship between the input and output; however, a zero represents the lack of a statistical
correlation. In that sense, the matrix reiterates the information shown in Figure 4.11 by showing
that correlation coefficients for nucleation site volume fraction are lowest for maximum
pressure response and lowest for the oscillation frequency.

81




4.7.2.5 Numerical validation of the modified ZGB model with the response surface optimized
parameters

With the completion and optimization of the modified ZGB cavitation model, the model has to
undergo validation against physical experiments to ensure that the statistically obtained model,
with its optimized model constants, does in fact achieve the predicted acoustic cavitation
performance. The reader is referred to Appendix A for the source code of the optimized
cavitation model. In this section, the new model was implemented into the ANSYS FLUENT
numerical setup described in Section 4.4 and prepared for validation against Znidarcic et al.
[109] Case A experiment setup. The new model’s performance in acoustic cavitation modelling
is assessed based on its ability to predict acoustic cavitation structures and pressure oscillations
of amplitude and frequency agreeable to that measured during the experiment.

140 ps

t=
__ N
0.50 1.00

Vapor Volume Fraction

Figure 4.12: Comparative illustration of instantaneous cavitation structures observed experimentally [109] and predicted by
the modified ZGB model numerical setup at coinciding time steps.
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Figure 4.12 shows snapped grey-scaled pictures of acoustic cavitations structures observed
experimentally with vapor volume fraction contour plots. When comparing Figure 4.12 to
Figure 4.4, a clear contrast in the cavitation structure and its evolution becomes noticeable.
Firstly, the contour plots, in Figure 4.12, show an underprediction in the early mushroom-
shaped cavitation region, and instead, it predicts a thick flat sheet of cavitation engulfing the
horn tip at t = 0 — 80 ps. However, it predicts the late conical shaped attached cavitation
transformation shown at t = 100 — 140 ps followed by its collapse at t = 160 — 180 pus. In
addition, the model no longer assumes complete symmetry of cavitation region and is able to
predict the existing asymmetries of attached cavitation. Perhaps, this can be linked to the
decrease in the model’s evaporation constant which in turn limited the rate of cavitation growth.
Interestingly, with the new model, the simulation could predict the presence of downstream
cloud cavitation micro-structures under the horn tip throughout the entire expansion-collapse
cycle. As illustrated, cloud cavitation shows an inverse relationship with attached cavitation.
As the attached cavitation enters its expansion phase, cloud cavitation slowly begins to
collapse. Meanwhile, it begins to regrow during the attached cavitation collapse phase
eventually leading to complete detachment. Ultimately, the new model qualitatively shows
excellent performance in modelling acoustic cavitation.
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Figure 4.13: Comparative illustration of instantaneous cavitation structures observed

experimentally [109] and predicted by the modified ZGB model numerical setup at
coinciding time steps.

However, to assess the new model quantitively, Figure 4.13 plots the pressure fluctuation
captured in both the experiment and the simulation. As illustrated, there is a strong agreement
between the simulation and the experiment, as the new model is now capable of capturing
microscale acoustic bubbles, frequent, small oscillations can be seen between one peak and the
other. Furthermore, the pressure peaks resemble attached cavitation collapse marking the end
of each expansion-collapse cycle. These peaks appear to be overlapping pressure peaks
observed in the experiment at times, while mostly appearing slightly delayed. Moreover,
another model prediction inaccuracy can be seen at time t = 2.49 s where the pressure peak is
underpredicted. By looking at the proceeding peaks, it is clearly shown that they are

&3




overpredicted instead. This phenomenon can be attributed to a mode of cavitation described by
Qin et al. [79] as inertial cavitation where the cavitation in a single cycle does not collapse at
its critical size, instead, it grows to a new critical size before it violently collapses. A
comparative summary of pressure fluctuation predictions is provided in Figure 4.14 where both
the maximum pressure attained, and the mean oscillation frequency of both the simulations and
the experiment are plotted.
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Figure 4.14: Bar diagrams of experimentally measured and numerically predicted, using both the original and modified
ZGB cavitation model, maximum pressure amplitude and mean oscillation frequency.

The figure further emphasizes the strong agreement between the modified ZGB model’s results
and the experimental results. While the experiment attains a maximum pressure of 3.54 bar and
a mean subharmonic frequency of 5058 Hz, the modified ZGB model achieves a maximum
pressure and a mean frequency of 3.48 bar and 4894.56 Hz respectively. As for the original
model, the figure quantifies its inaccurate predictions of acoustic cavitation where it assumes
0.70 bar and 1176.47 Hz for the pressure peak and the mean oscillation frequency respectively.
Lastly, the values generated by the modified ZGB model validates the predicted values
provided by the response optimization of the pressure and frequency regression models. The
response optimization concluded that with the suggested model constants, the modified ZGB
model will output 3.62 bar and 4128.72 Hz. As predicted, the modified ZGB model generated
values considerably close to the statistically predicted values with the pressure response being
closer than the frequency response. Perhaps, this could be attributed to the omitting of many
two-way and three-way interaction terms which, in turn, resulted in the neglection of important
terms and in an oversimplified model. However, the values remain satisfactory and show a
similar correct trend.
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4.8 Conclusion

In the presented investigation, inaccuracies of current cavitation models, specifically the ZGB
model, in predicting acoustically induced attached cavitation. Results from Znidarcic et al.’s
experimental investigation [109] were used to evaluate the numerical results achieved by the
original ZGB cavitation model implemented in a numerical setup that captured the
experimental setup used. The model was incapable of accurately capturing primary features
that included attached cavity structural formations, downstream cloud cavitation regions,
pressure pulse amplitudes and cavity oscillation frequency. To resolve these problems,
mathematical manipulations suggested by Znidarcic et al. [109] were applied on the original
7ZGB model. Furthermore, a statistical Design of Experiment approach, coupled with the Monte
Carlo method, was adopted to scrutinize and optimize the model constants to improve the
model’s acoustic cavitation prediction performance. The optimized model constants were later
validated against the experimental results. The following conclusions were drawn from the
study:

e The stepwise regression uncovered that all four model constants are in fact significant
to both maximum pressure and oscillation frequency responses. However, the
condensation constant did not appear statistically significant for the pressure response,
but it later showed hierarchal importance due to its two-way interaction significance.

e Response optimization, using the desirability approach, of the two regression models
suggested that model constants of 17.35988, 0.1, 25 x 10° m, and 5 x 10 for the
evaporation constant, condensation constant, bubble radius, and nucleation sit volume
fraction, respectively, will achieve a maximum pressure value of 3.62 bar and an
oscillation frequency of 4128.73 Hz. The optimization desirability d = 0.88 attained is
considered satisfactory.

e Investigative Monte Carlo simulations on the optimized regression models summarized
the sensitivity of each model from a 10% random variation in the four model constants.
It illustrated that the pressure response was approximately equally influenced by any
randomness present in all four model constants. Meanwhile, the frequency response
scatter was mainly affected by uncertainty in the nucleation site volume fraction
constant showing 34% correlation. The condensation constant and the bubble radius
equally contributed 29% to the frequency response randomness, while the evaporation
constant had a minimal contribution of 8§%.

e Validation of the modified ZGB model showed that with the statistically optimized
model constants, the cavitation model predicted 3.48 bar and 4894.56 Hz for the
pressure peak and mean oscillation frequency, respectively. These values showed
strong agreement with the experimental values and further emphasized the accuracy of
the statistical model optimization. Nevertheless, it is crucial to acknowledge that the
model was only developed and optimized for reactor configurations operating within
the 20 kHz range, therefore, additional validation is required to assess its performance
in higher operation frequency ranges.

The next stage of the project consists of developing a numerical model of the hydrodynamic
reactor for a series of setup validations. This is then followed by a modified numerical model
of the reactor where an ultrasonic horn is introduced, and the acoustic cavitation model is
implemented.
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5 Influence of Toroidal Vortex Dynamics on Acoustic Cavitation
Development under Different Ultrasonic Horn Tip Vibration
Modes

5.1 Introduction

With the validation of the complete numerical configuration and model of the horn-type
reactor, this chapter delves into what was extensively discussed in Chapter 2, as many
investigators have attempted to strategize improving the horn’s sonochemical efficiency
through a series of parametric analyses that explore underlying relationships between cavitation
development, sonication media, operational conditions, and transducer geometries [144-146].
With further reading of literature, however, it has been notably interesting that each
investigation conducted has implemented its own transducer operating conditions, such as
input power, horn tip diameter, and tip amplitude. Moreover, it has been revealed that there is
noticeable inconsistency in the numerical modelling of ultrasonic horn’s vibration, where some
studies consider the entire horn structure to oscillate at a frequency of 20 kHz and above, while
others assume an isolated oscillation performed by the horn tip surface submerged in the fluid.
It has been noted that the choice of vibration model varies vastly with the ultrasonic horn
geometry, specifically, the horn tip diameter. A sample of recent studies has been tabulated and
categorized in Table 5.1 to summarize this trend.

Table 5.1: Ultrasonic transducer operating conditions previously used in experimental studies to explore developed
cavitation behaviors.

Size Input Power, Horn Tip Amplitude, Horn Tip Diameter,

Authors Category w um mm
Znidari€ et al.
[128] 7-70 68 —212 3
Kozmus et al. Small
[144] Horns - 135270 3-438
Petkovsek et al.
[147] 150 - 300 130 -270 4.8
Patil et al. [148] Mid- 100 - 13
Fattahi et al. ranged
[149] Horns  24.7-87.15 - 13
Tzanakis et al Large
[68] Horns 78 — 230 8.5-17 40

Typically, this myriad of horn properties is primarily driven by the cavitation performance
required for a specific ultrasonic-assisted task, such as process intensifications and rheological
manipulations [150, 151]. In terms of acoustic cavitation, its performance is both qualified and
quantified by assessing the cavity structures produced at the horn’s proximity and the
pressure/volume fluctuations generated, respectively. Many studies have adopted the route of
numerical methodologies, as they can facilitate the instantaneous capturing of such data. A
thought-provoking trend noticeable in previous studies is that those considering a small tip
diameter tend to assume a uniform sinusoidal vibration model for the oscillating tip ‘wall’ [128,
152]. Meanwhile, studies considering notably larger diameters lean towards adopting a
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classical thin-plate vibration theory to model the sinusoidal motion [104, 148]. The simple
uniform sinusoidal motion is typically modelled as a smoothly cyclical variance based on the
sine function. On the other hand, those that adopt the classical elasticity equations generally
attempt to simplify their boundary value problem by essentially implementing the Gurtin-
Murdoch theory [153]. Moreover, this has been extrapolated to simplify the boundary problem
using Kirchhoff’s plate theory [154].

This begs the question, what is the reason behind this modelling habit, why has it been
subliminally deemed that the uniform vibration model is unfit for larger tip diameters, and why
has the thin-plate vibration models not been adopted in smaller diameters?

Therefore, a numerical investigation has been commenced to compare the performances of two
recurring mathematical vibration modelling methods in the literature, namely the ‘uniform
sinusoidal vibration model’ and the ‘Kirchhoff-based vibration model’. With the use of a
validated numerical setup of acoustic cavitation, the two vibration models were implemented
as horn wall boundary conditions in that setup through the use of user-defined functions
(UDFs) that define the special cases of dynamic meshing. Moreover, as a way to further
examine the potentially underlying relationship between the vibration model performance and
the horn tip diameter, the study takes into consideration two horn diameters, a 3 mm and a 12
mm horn tip diameter. The methodology implemented for this investigation carried forward
from the previously discussed numerical configuration in Chapters 3 and 4.

5.2 Horn Tip Vibration Models

In this study, the two horn tip vibration models described in Chapter 2.5 were implemented for
a comparative numerical analysis on the same validated domain created in Chapter 4.5. The
general mode of implementation of the two models was simply through drafting and compiling
a user defined function (UDF) source code and importing it into ANSYS Fluent 23R2 [54] as
a moving wall boundary condition assigned to the horn tip boundary. However, the type of
boundary condition slightly differs between the two vibration models.

To reiterate, the simple sinusoidal motion simply defines the sinusoidal movement of the entire
boundary wall by moving its nodes, as defined in Eq. 2.36, which translates to a uniform motion
of all the nodes along the horn tip boundary in both of negative and positive displacements.
Therefore, the UDF enforces an automated dynamic meshing of the proximal grid elements to
ensure that no extreme defeaturing, such as drastic increase and drop in skewness and aspect
ratio of the elements respectively, occurs during the movement of the horn tip.

On the other hand, the Kirchhoff-based vibration model is slightly different. As stated in Eq.
2.57, each segment of the horn tip boundary experiences a different magnitude of force, and
thus displacement. Therefore, the programming logic adopted here is to assign a unique
displacement value for each of the nodes lying about the horn tip, where the maximum
displacement is assigned to the node at the horn’s axis and zero displacement at the horn’s
maximum radius. Nevertheless, the displacement direction of all nodes remains unified.

With that said, both vibration models adopted consider the same displacement amplitude of

164 um. The full source codes can be found in Appendix B and Appendix C for the simple
sinusoidal vibration model and the Kirchhoff-based vibration model, respectively.
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5.3 Analysis Methodology and Results Discussion

5.3.1 Front Fourier Transform Analysis of the 3 mm Horn Tip

We began the investigation by closely monitoring the pressure and vapor volume signals
recorded by the monitor point and within the fluid domain, respectively. This way, a
quantitative distinction between key quasiperiodic features of both signals is drawn out.
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Figure 5.1: Vapor volume signals (left) and pressure signals (right) resulting from uniform and Kirchhoff model-coupled
3mm horn tip boundaries. Red boxes highlight a signal segment showing the frequency offset between the two predicted
signals.

Figure 5.1 illustrates pressure and vapor volume signals obtained from numerical models of
the 3 mm tip implementing both uniform and Kirchhoff-based models. Here, the numerical
model coupled with the uniform model has been validated in a previous study [110] and taken
as the correct solution, and the reader is referred to Section 4 for the validation encompassing
this model. There exists a significant difference in the predicting powers of the uniform and
the Kirchhoff-coupled numerical models. The implementation of the Kirchhoff model has led
to a severe underprediction of both the pressure and vapor volume amplitudes. Mean lines were
drawn to emphasize this difference in which the differences in the vapor volume and the
pressure signal means are 2.38457 X 1071% m3 and 445.32 Pa, respectively. However, to give
meaning to these values, it is crucial to acknowledge the meaning of the amplitudes. A pressure
peak suggests a major collapse in the cavity’s structure, while a vapor volume peak suggests
maximum growth in this cavity structure, which generally occurs before its sudden collapse
[155,156]. Cavitation does not appear to expand with the Kirchhoff model in comparison with
the cavitation produced under the uniform model. Therefore, this justifies why the pressure
spike produced by the collapse is not equivalent to the uniform model.

To derive further insight, a Front Fourier Transform (FFT) was performed on the two signals
produced by each of the vibration models to accurately isolate and quantify the low
characteristic frequencies of the signals, which is illustrated in Figure 5.2. Initially, the figure
highlights the frequencies of the decomposed pressure and volume signals, where multiple
spikes can be observed. Each spike refers to a frequency found in the signal that are
categorically either low or high frequencies. In the present analysis, the high frequencies are
considered as sub-oscillation frequencies that represent the frequent minor collapses of
cavitation during its growth stage. Thus, only the low frequencies are sought out to extract the
main oscillation frequency. Figures 5.2a and 5.2b highlight the lowest frequencies of the
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respective vapor volume signals where the signal obtained from the uniform vibration model
is 4991.68 Hz. However, the Kirchhoff model presents a rather unorthodox trend where there
exist two distinct low oscillation frequencies, 3660.57 Hz and 7986.69 Hz. To sieve the
frequencies into a single characteristic frequency, FFT has been performed on the pressure
signals to identify the shared low frequency. As Figs. 4c and 4d demonstrate, the same low
frequency of 4991.68 Hz has been obtained in the uniform model’s pressure signal; moreover,
the frequency of 7986.92 Hz has been captured which validates the same frequency obtained
in the model’s vapor volume signal.

Building on the established fact that the Kirchhoff model underpredicts the amplitudes of both
pressure and vapor volume, it seems that there is an inverse trend regarding the frequency of
their oscillation. As such, the Kirchhoff model overpredicts the cavitation cycle frequency
hinting at a series of short-lived cavities under the horn. It can only be suspected that the plate
mode shape-inspired vibration model, represented by Eq. 2.57, has an underlying influence on
the flow structures around the tip that may cause this fast-paced disintegration of the cavities
under the horn. Therefore, a qualitative analysis may provide supplementary insight on the said
flow structures. Going back to Figure 5.1, one can notice a few recurring trends between the
uniform and Kirchhoff model signals, such as offset peaks and, surprisingly, occasional
overlapping peaks. These trends can be found in the sample highlighted in the red box.
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5.3.2  Finite Time Lyapunov Exponent Lagrangian Analysis

The finite time Lyapunov exponent fields were calculated on MATLAB, which can be found
in Appendix D, to materialize hyperbolic manifolds of particle trajectories x(t) to define the
resulting proximal Lagrangian coherent structures (LCS) induced by the oscillatory motion of
the ultrasonic horn in the fluid domain [157]. This was performed by importing velocity fields
u calculated in ANSYS Fluent into MATLAB for a sequence of integrations that result in the
creation of the particle flow map ®7, and the eventual mapping of the FTLE contours. The
computational steps involved in calculating FTLE typically start with the creation of a grid of
particles, X, € R", is initialized over a selected subdomain from the primary fluid domain
created in section 2.1. The particles are then integrated along the flow from an initial time 0 s
to a final time T, in which ®7 is then defined as:

T

ol R" -» R, x(0) — x(0) + j u(x(1),7)dr (5.1)

Here, 7 is the instantaneous integration time. The next step is to differentiate the Jacobian flow
map to compute the Cauchy-Green deformation tensor defined as follows:

A= (DO DT (5.2)

In this equation, the transpose operation is denoted with Tr to not confuse with the final time
T. Lastly, the eigenvalue A is calculated and filtered to obtain its largest value A,,,,. The
maximum eigenvalue is then used as input to obtain the respective FTLE field as such:

1
o(®F;x,) = mlog fxlmax(A(xo)) (5.3)

In the given exploration, the subdomain selected for the Lagrangian analysis is a 5 X 5 mm
region under the horn where a grid of particles with a grid spacing of Ax = 25 pm is initialized
into the subdomain, as shown in Figure 5.3. The particle advections were computed using a
fixed timestep equivalent to 5 us and the fourth order Runge-Kutta scheme.
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Figure 5.3: A dimensioned sketch of the chosen subdomain (left) and particle grid (right) showing that the size of the
selected subdomain and its respective particle grid is 5 x 5 mm.

To analyse vectors and contours of the flow velocity, Finite-Time Lyapunov Exponent (FTLE)
has been used to compute the backward integration of these flows at their instantaneous flow
times to examine Lagrangian Coherent Structures (LCS) and resolve the spatial locations of
temporal vortex boundaries. The grid resolution implemented for the FTLE was 25 um. By
matching the diagrams, in Figures 5.4 and 5.5, corresponding to the pressure peaks and troughs
observed in Figure 5.1, the difference between the two models in the cavity structural
development becomes obvious.

Essentially, this difference is highlighted in the cavity growth and collapse cycles predicted by
both models. In Figures 5.4b and Fig 5.5a, the difference in the collapse cycles is introduced
as a single-stage collapse predicted by the uniform-based model against a two-staged collapse
in the Kirchhoff-based model at t = 0.00193 s. In each of Figures 5.4b, 5.4c, and 5.4e, a
complete collapse of the attached cavity and a departure of a smaller cavity downstream of the
tip is shown as the collapse mechanism of a uniformly vibrating tip, as opposed to the
Kirchhoff-based vibration, where a small cavity remains situated on the side of the tip during
the collapse phase of the center cavity. However, this collapse mechanism is only observed in
Figures 5.4a, 5.4c and 5.4f. Meanwhile, in Figures 10d and 10e, while they also demonstrate a
collapse phase, a different collapse mechanism appears at t = 0.002085 s and t = 0.002135 s.
Here, the collapse is shown as the collapse of the side cavity with the support of the attached
center cavity instead. As a preliminary observation, this collapse phase was interpreted as a
two-stage collapse mechanism, where in the first stage, the side cavity could plausibly be
inhibiting the pressure pulse generated by the center cavity collapse, in turn, inducing an
underpredicted pressure peak at the monitor point. Meanwhile, the smaller side cavity collapses
correspond to the smaller pressure pulses that remain within the range of 53.1484 kPa and
56.1832 kPa. The second stage collapse could just be the underlying reason behind the
increased pressure and vapor signal frequency predicted by the Kirchhoff model.
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Moreover, the vector plots highlight the dynamic flow behaviours corresponding to cavitation
development. Generally, it can be drawn out that the vortices, whether produced by the uniform
or the Kirchhoff sinusoidal horn oscillation, react the same way to cavitation growth and
collapse. During cavity growth, Karman vortex structures are maintained within the horn’s
proximity due to low pressures within the region; however, with the cavity’s collapse, vortex
breakdown is seen to occur by the shockwaves induced by the said collapse [158]. While this
behaviour is shared between the two models, many differences exist in their vortices’
positioning and length. Firstly, the uniform vibration of the horn appears to be inducing a
circular vortex that shifts from the tip downstream to the tip side; on the other hand, the
Kirchhoff model consistently predicts an elliptical vortex in the same position downstream of
the tip.

With the FTLE contours, the boundaries of those vortices are highlighted as continuous ridges
that gradually extend downstream of the tip. The ridges appear primarily parallel with the
horn’s centerline. Moreover, thin stretching examined at the tip of the ridges can be interpreted
as an inertia-dominant turbulent jet that sources from the tip, as described by Lighthill [159]
and Trujillo et al. [160]. With this definition, it can extend the observation and relate it to the
thin ridges at the tip, coincident with the cavitation zones, and as such, it is interpreted as a
secondary jet impinging the cavitating zone. Its temporal development can be seen with each
collapse phase, where its presence becomes more prominent. Since the jet is present in both
vibration models, it can be associated with the primary collapse mechanism of their respective
cavitation zones. However, the primary difference is outlined as the angle at which the
impinging jet penetrates the cavity. In the case of uniform vibration, the jet enters almost
parallel to the tip, while the jet cuts through the zone diagonally with the Kirchhoff-based
model. Interestingly, this could be linked back to the collapse mechanisms discussed earlier.
As the uniform model induces a secondary jet in the horizontal direction, the jet penetrates
through the attached cavities and detaches a smaller cavity downstream. Meanwhile, with the
diagonal entry of the jet in the Kirchhoff model, the center cavity is attacked first, splitting it
into two smaller side cavities. This jet’s angle of attack appears to pulsate within a tight range
between 28° — 31° with the cavitation’s development cycle. Based on that, it could be
ultimately said that spatial non-uniformity of displacement, such as the suggested by Kirchoff’s
model, has a negligible effect in this regime due to the dominance of axial motion and low
radial gradients. This is due to the high acoustic energy concentration in smaller tip diameters
that facilitate this dominant axial flow, which is captured by the uniform model’s near-rigid
behaviour.

92




FTLE

0

1

<

1

0.5

Figure 5.4: Diagram of a 5 x 5 mm region in proximity of the horn (Uniform Model) illustrating the vector and contour plots
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5.3.3 Front Fourier Transform Analysis of the 12 mm Horn Tip

Evidently, the Kirchhoff vibration model significantly diverges from experimental
observations when applied to a small horn tip of 3 mm. However, this contradicts the
observations made in previous studies that utilize this vibration model and obtain comparable
results to those obtained experimentally. Therefore, the same numerical setups were used, with
a 12 mm horn tip, to observe the degree of skewness of results obtained by either model. The
choice of a 12 mm horn tip diameter was inspired by the dimensions of many horn models used
in the literature, such as the horn investigated by Rahimi et al. [104]. Like Figures 5.1, Fig. 5.6
below compares the raw pressure and vapor volume signals obtained when implementing both
models.
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Figure 5.6: Vapor volume signals (left) and pressure signals (right) resulting from uniform and Kirchhoff model-coupled
3mm horn tip boundaries.

The Kirchhoff model displays drastic improvement in its performance and illustrates relatively
comparable results with the Uniform model’s output. While it is true that the amplitudes are
still underpredicted in the Kirchhoff model, its signal frequency almost matches the uniform
model’s signal frequency. Here, the Kirchhoff model and uniform model output signals
oscillate at a frequency of 1996.67 Hz and 1663.89 Hz, respectively. This slight phase shift
suggests that the cavitation produced by the Kirchhoff-based vibration induces early onset
collapse. This could be due to the fixation of the side edges of the horn tip where minimal
cavitation is formed. In addition, the shape adopted by the vibrating wall may be agitating the
center cavity inducing its early collapse.

To further visualize the mismatch between the amplitudes and frequencies, a set of consecutive
timesteps was selected about the red box highlighted in Figures 5.6. The flowtimes chosen are
0.00043, 0.00049, 0.000535, 0.000585, 0.000635, and 0.000695 s highlighting instances of
peak differences and overlap achieved by the two vibration models. Therefore, vector plots
drawing flow structures and contour plots outlining the generated vapor volume fraction and
FTLE were generated for the respective flowtimes and presented in Figures 5.7 and 5.8. For
the uniform model, it is shown that the peak mushroom-shaped cavity growth alongside its
following collapse has been captured within this 0.265 ms timeframe. Generally, the main
cavity structure’s shape retains its mushroom shape, as it shrinks symmetrically during the
early stages of its collapse phase. However, what is interesting is that soon after, the main
cavity is punctured in its center by an impinging jet inducing the same phenomenon observed
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in the 3 mm horn tip condition, where two side cavities are created. This instant can be observed
at t = 0.000695 s. Looking at the corresponding FTLE plots of each timestep, it can be drawn
out that the location and the entrance angle of the impinging jet remain the same compared to
the 3 mm horn tip condition. Thus, this could justify the similarity in the collapse structure of
the cavity. Furthermore, judging by the direction of the vectors and their particle stretching
drawn by the FTLE, the main player for the formation of this jet in this manner could be the
vertical motion of the horn tip vertices on both sides. The small vortical structures generated at
those sides could be the reason behind this flow formation in those respective tip regions.
However, a primary difference between the 3 mm and the 12 mm horn tip is the contraction of
the recirculation zone in the region under the horn tip, as it became more localized near the
cavity structure. This could be due to the large size of the main cavity zone inducing a more
localized recirculation due to the pressure gradient resulting from it. Additionally, based on the
vortex tracking method conducted by Rahimi et al. [104], it seems that the Kirchhoff-based
model underestimates the size of the secondary counter-rotating vortices on the side of the horn

tip.
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Figure 5.7: Diagram of a 9.5 x 19 mm region in proximity of the horn (Uniform Model) illustrating the vector and contour
plots of flow direction and vapor volume fraction on the left and FTLE on the right where (a-e) represent flow times at t =
0.00043, 0.00049, 0.000535, 0.000585, 0.000635, and 0.000695 s, respectively.

As for the Kirchhoff model, there are clear differences between the 3 mm and the 12 mm horn
tip conditions. Firstly, the phase cycle of the cavity structure seems to overlap with the phase
cycle of the cavity present in the uniform model. In other words, both cavity structures appear
to have peaked in growth at t = 0.00043 s and are experiencing shrinkage, and eventual
collapse, during the chosen timeframe. This indicates that the two models’ predictions are
relatively in-phase. Moreover, the cavity structures generated share the same mushroom-like
shape as observed in the uniform model. This generation of this structure is confirmed by the
experimental observations made by Rahimi et al. [104]. However, parallels can still be seen in
the mid and late sections of the collapse cycle. It still appears that the Kirchhoff model predicts
a two-step collapse cycle where a complete collapse of the cavity structure occurs at t =
0.000535 s to 0.000585 s and is later followed by a brief growth and eventually followed by
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shedding of the main cavity. Judging by the vector and FTLE plots, the impinging jet here does
not appear to attack at an inclined angle, but instead, is shown to be horizontal along the surface
of the tip. Perhaps, this could be the justification for the disappearance of the prominent
collapse phase where two smaller cavities appear on the side. Moreover, this change in jet angle
is accompanied by the appearance of a small vortical structure at the horn tip vertices as well
confirming its major association with the impinging jet direction. The large vortex that used to
appear about the horn axis downstream of the horn tip in the 3 mm case has shrunk. A similar
observation was made by Rahimi et al. [104] and Tzanakis et al. [68]. Perhaps, its absence
plays yet another role in the direction of the impinging jet. Moreover, it can be strongly
suggested that the acoustic field generated in larger tip diameters are relatively insensitive to
the radial displacement distribution, as reflected by the vector and FTLE profiles.
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Figure 5.8: Diagram of a 9.5 x 19 mm region in proximity of the horn (Kirchhoff Model) illustrating the vector and contour
plots of flow direction and vapor volume fraction on the left and FTLE on the right where (a-e) represent flow times at t =
0.00043, 0.00049, 0. 000535, 0.000585, 0.000635, and 0.000695 s, respectively.

5.4 Conclusion

In summary, the study concludes that the Kirchhoff-based vibration model leads to significant
underprediction of cavitation growth and collapse in which it has been associated with low-
pressure peaks and higher cycle frequencies. Moreover, the study delved deeper to find the
induced differences in flow behavior within the proximity of the tip and the attached cavitation
by visualizing LCS using FTLE. As it turned out, an impinging jet is formed near the tip with
both vibration models, however, it is important emphasize that the development direction of
the jet is rather distinct. The Kirchhoff-based model manipulates the proximal flow in which
the jet develops diagonally to the tip surface and penetrates the center cavity inducing its
collapse and subsequent splitting into two smaller cavities near the tip edges. These also end
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up collapsing upon reaching the following pressure peak. Meanwhile, the uniform vibration
model shows the jet impinging the entire cavity horizontally forcing the attached structure into
a complete collapse. It could be argued that the reason behind the different jet formations could
be related to the position and eccentricity of the Karman vortex formed downstream of the tip.
With the Kirchhoff model, the vortex is primarily positioned under the horn while the uniform
model has its vortex appearing on its side. Interestingly, all these differences begin to dissolve
with the increase of the tip diameter. Perhaps, it is a strong indication that the influence of the
first mode shape of the horn tip’s vibration gradually loses significance with larger surface
areas. The finding of this underlying relationship between the vibration model and the diameter
highlights the significance of the choice of the model when defining the vibration of the horn
tip, as it strongly manipulates the cavitation collapse mechanisms. Generally, a new window
for acoustic cavitation controllability may accompany this discovery that may offer new
approaches to location-specific surface processing. In retrospect, the uniform vibration model
appears to be more suitable universally in modelling ultrasonic horns of small tip diameters,
while the Kirchhoff-based vibration model performs better in larger tip diameters, as it captures
the influence of displacement’s radial distribution on radial flow velocity and pressure
distribution.
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6 Analyzing the influence of toroidal vortex development on
acoustic multi-bubble macrostructures under different ultrasonic
horn tip diameters

6.1 Introduction

In this chapter, deeper scrutiny of the flow dynamics instigated by the irradiation of ultrasonic
acoustic waves within an aqueous domain is conducted based on the aforementioned
observations on the toroidal vortex made in Chapter 5. Here, a numerical study was conducted
on a two-dimensional horn-type reactor domain in aims to explore the different acoustically
driven flow types induced by varying horn tip diameters of horns oscillating at 20 kHz in an
aqueous solution. The diameters that were considered in the said exploration were 3, 6, 13, 16,
and 19 mm.

Notably, with such investigations on different horn geometries and operating conditions, many
observations have surfaced on the resemblance of the cavity structures formed under the horn,
namely, streamers, clusters, CBS, and MBS [161-163]. It has been reported that governance of
the aforementioned cavity structures is strongly influenced by multiple factors, be it working
fluid properties or horn geometry. It was widely accepted that a higher vaporization pressure,
for instance, would result in an encouraging fluidic environment that facilitates the formations
of cavitation. However, Znidar¢i¢ et al. [128] delved further into different liquid properties,
namely liquid temperature, surface tension, and viscosity. While it has been reported that none
of the properties had any substantial role in the cavitation formation dynamics, it has been
established that surface tension and viscosity relatively share a notable effect on the cavity’s
collapse intensity. In particular, the main cavity collapse demonstrated a potential cushioning
effect with higher viscosity. Similar observations were made by Tzanakis et al. [68], where
they added that the damping effect induced by the viscosity led to an increase in the bubble
oscillation period. However, unlike Znidar¢i¢ et al. [109, 128], significant differences in the
cavity structure and its respective dynamics were observed. It has been suggested that a primary
reason behind this is the attenuation of acoustic energy due to high viscosity. The different
cavity structures witnessed in the investigation were categorized as either conical or spherical.
In the case of the low surface tension fluid (ethanol), it was noted that no continuous structure
was formed.

In more recent studies, similar qualitative observations were made on the cavity structure;
however, these were all found in aqueous media [164, 165]. As a matter of fact, these were the
qualitative conclusions of studies scrutinizing different horn tip diameters. For instance,
Moussatov et al. [166] considered three tip diameters of 20, 80 and 120 mm, in which bubble
clusters were shown to self-arrange into the stable cone-like macrostructure. Upon examining
w
cm?
concluded that the increase in the diameter results in a more prominently localized cone-like
structure under the horn tip. Other studies have found that the said structure can also be attained
with intermediate horn diameters, typically within the range of 10-12 mm [161, 167, 168].
However, any further decrease in the horn diameter transfigures this cavity structure into a
mushroom-like attached cavity, namely acoustic supercavitation [128, 116]. In an attempt to
establish an understanding behind the different structures, some studies have initially tried to
identify the flow field dynamics. Previous studies suggested that this may be due to the

the macrostructure under the three tips at a constant acoustic intensity of I = 8.2 , it is

101




direction reversal of the Bjerknes force [169-171] that is induced by the formulated high
pressure proximal regions near the horn axis. This unfolds into a series of repulsive and
attractive bubble regions that in turn shape the cone. On a more recent note, Biasiori-Poulanges
et al. [161] have utilized high-speed X-RAY imaging to precisely visualize the proximal flow
field and understand its role in the formation of the conical structure. Here, the investigation
concluded that the conical shape formation is simply due to a multi-stage cavitation
development sequence in which it begins with the splitting of single bubbles into ‘daughter’
bubbles forming clouds that later merge down the horn tip center. Complementing this stage,
radial pressure at the center then molds the clouds into what is known as CBS.

While the aforementioned studies have successfully been able to justify the development of
such structures, the sudden geometry-induced transformation from CBS to MBS with the
decrease of the horn tip diameter has had limited scrutiny in literature. Ma et al. [164] hinted
at the fragility of CBS in highly turbulent flows induced in smaller diameters, while other
studies have added, based on their consistent observations of proximal toroidal vortices, that
their formations within the vicinity of the cavity may play a role in the cavity’s dynamics [104,
172]. However, the role of the flow manipulations induced by these vortices has not been
explored and remains unclear. Therefore, the presented study is a numerical exploration of the
origin of the toroidal vortex and its development in aims to uncover any underlying
relationships with the cavity’s development and structure. The investigative methodology is a
computational fluid dynamic (CFD) assessment of cavitation development and its proximal
flow field that considers five horn tip diameters that are typically categorized in literature as
small-diameter and large-diameter ultrasonic horns. As such, this is to capture any behavioral
changes by the proximal vortex upon changing the horn’s diameter. In addition, this study aims
to uncover a more elaborate understanding of the nonlinear variation in the cavity
macrostructures’ shape and the proximal toroidal vortex’s locomotion and size.

6.2 Ultrasonic Computational Modelling

The presented study adopts a numerical methodology that facilitates two stages of the
investigation: a structural modal analysis of considered ultrasonic transducers to assess the
adopted mode shape during a 20 kHz oscillation, and a computational fluid dynamics (CFD)
analysis to define the proximal flow generated by the chosen myriad of horn diameters. Each
segment of the methodology describes the geometries considered, and the equations that govern
the physics of the solid and fluid domains.

6.2.1 Modal Analysis Setup

6.2.1.1 Establishing ultrasonic transducer domains and defining boundary conditions

As it has been established by the previous literature, the horn diameter appears to play a crucial
role in defining the cavity structure generated underneath its tip. Initially, this can be taken as
an indicator of a possible change in the longitudinal vibration mode shape the horn tip
experiences with an increase in its diameter. However, to scrutinize this and be able to rule out
such change, two transducer geometries were generated based on dimensional extractions from
physical transducer models found in published literature [173, 173, 174]. It is of extreme
importance to replicate the geometries to an exact scale to ensure that the acoustic energy
transmission throughout the transducer body is replicated as well [175]. Therefore, the two
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geometries constructed, illustrated and dimensioned in Figure 6.1, were assigned Ti-6Al-4V as
the material. Table 6.1 tabulates the respective isotropic elastic material properties.

Table 6.1: Ti-6A1-4V material properties describing its isotropic elasticity.

Material Temp féature, Young’s Modulus, Pa  Poisson’s Ratio  Bulk Modulus, Pa Shear Arjl;dulus,
Ti-6Al-4V 20 1.07 x 10** 0.323 1.0075 x 10" 4.0438 x 10*°

Furthermore, the geometries were discretized using a structured mesh. The modal analysis
deals with free vibration characteristics, as such, no external loads were applied. The horn
geometries were left free to oscillate in their unconstrained state. The modal analysis
considered is in fact a linear dynamics analysis, in which the general equation of motion is
taken into consideration. This was solved using ANSYS Modal as the finite element solver.
Moreover, the damping effects have been ignored for simplicity, and thus, they have been
zeroed out in the equation of motion. Lastly, these reconsiderations of the equation of motion
result in the definition of a free and undamped system that is expressed in Eq. 6.1 below.

[M]{i} + [K{u} = {0} (6.1)

Here, M is the mass matrix, i is the vector of acceleration, K is the global stiffness matrix, and
u is the displacement vector. The equation was solved for its eigenvalues and eigenvectors that
correspond to the mode shapes of the geometries. These mode shapes were used to assess the
influence of the horn geometry, specifically the diameter, on the longitudinal vibration mode.

[ 178.0 -

¢ 12.7
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(a)

" 111.0 >

(b)
Figure 6.1: Dimensioned solid domains of the two ultrasonic horns considered (in mm) with (a) a horn tip
diameter of 3 mm 11, 34 and (b) a horn tip diameter of 20 mm 3.
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6.2.2 Computational Fluid Dynamics Domain
6.2.2.1 Creation of the Calculation Domain

In the investigation presented in this chapter, the numerical setup previously constructed in
Chapters 4 and utilized in Chapter 5, is implemented here as well. This generalized domain has
been further extrapolated in the presented study to consider a range of horn diameters; the
values of ¢, chosen are 3 mm, 6 mm, 13 mm, 16 mm, and 19 mm. The axisymmetric condition
defined in the CFD solver essentially solves the flow equations for the domain slice then
implicitly rotates the 2D plane around the axis of symmetry to account for the full volume.

6.2.2.2 Extended Numerical Setup Validation

Given that the study investigates larger tip diameters compared to Chapters 4 and 5, extensions
in the flow time and number of timesteps may be required to ensure that the numerical setup is
still able to capture slower cavitation cycle in larger tip diameters. Therefore, the simulation
was run for double the flow time specified to ensure that all cavitation behaviors are well-
captured within the 3 ms timeframe. The pressure signal was extracted, as shown in Figure 6.2,
and the near-subharmonic frequency of the cavitation cycle was obtained in aims to compare
it with the previously obtained 5990 Hz oscillation frequency. From Figures 4.13 and 6.3, it
seems that the signal and its frequency of oscillation obtained closely resemble the previous
signal obtained. This ensures that using a longer flow time for all considered horn tip diameters
will still guarantee capturing the two-phase flow behaviour.
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Figure 6.2: Time evolution of pressure signal obtained from a monitor point positioned next to the 3 mm horn tip running for
12 ms.
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Figure 6.3: Frequency response plot of the pressure signal obtained in Fig. 3.5.

6.3 Analysis Methodology and Results Discussion

6.3.1 Modal Analysis of Ultrasonic Transducers and Categorizing their Mode Shapes

In the presented modal analysis, two reasonably distinct ultrasonic transducer models were
selected in order to extract any potentially underlying structural changes to the horn tip
oscillation at their expected oscillation frequency. It has been assumed that the two transducers
are comprised of a Titanium alloy (Ti-6Al-4V), as the material is found to be rather common
in the production of physical ultrasonic transducer models [176-178]. Highlighted in Figure
6.4 are shared observations made in the two transducers of first mode shape occurring at distinct
frequencies. While it is easily observed that the two mode shapes exist in both transducer
models, their general trends attributed to each mode are also the same. Interestingly, the
longitudinal mode shape (Mode Shape 1) occurs within a tight frequency range around 20 kHz.
Moreover, the longitudinal mode shape in both transducers is seen to experience very similar,
if not exact, shape transfiguration, where the horn tip is seen to extend uniformly forward. This
emphasizes that despite the geometry distinction, the mode shape maintains its behavior with
both small and large diameters.
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Longitudinal Mode Shape — 19,379 Hz Longitudinal Mode Shape — 20,615 Hz

Figure 6.4: Longitudinal mode shapes and their respective frequencies observed in (a) the transducer geometry with a 3 mm
tip diameter and (b) the transducer geometry with a 20 mm tip diameter. The red lines highlight the shape and position of
the transducer edges prior to deformation.

6.3.2 Analysis of Cavity Structural Behaviour under Different Horn Tip Diameters

Upon establishing the consistent mode shape during the transducer’s longitudinal vibration, the
horn tip was numerically programmed to oscillate accordingly by introducing Eq. 2.36 in UDF
form to govern its oscillation throughout the CFD simulations. Multiple diameters have been
examined in aims to track the potential differences in development of acoustic cavitation.
Figures 6.5 through 6.9 illustrate the cavity development and its structural formations during a
single cycle consisting of its growth and collapse stages.

With the 3 mm horn tip, a clear set of sub-cycles of minor growths and collapses make up the
single lifecycle of the attached cavity is initially observed. At its first few moments, from ¢t to
to + 6AT, the attached cavity structure emerges in the form of a thin sheet about the horn tip,
starting from the center of the tip, which later is seen to transfigure into an inverse mushroom
upon reaching its growth climax, at t; + 16AT. However, with its cycle’s progression, the
structure begins to gradually shrink radially and flatten against the horn tip until it bursts from
its center, splitting it into two small-sized clouds. These clouds take position on the sides of the
horn tip, where they are lastly seen to be unable to sustain their shape leading to their eventual
collapse. On a similar note, this observation has also been found in the case of the 6 mm horn
tip diameter, as shown in Figure 6.6. However, two notable differences lie at the attached center
of the cavity. The first divergence in the 3 mm trend is apparent during the early onset
cavitation, where the cavity is seen to gradually take form on the sides of the horn, unlike the
3 mm horn tip where the cavity began at the center. This can be clearly observed during the
early stages of growth from t, + 4AT till t, + 22AT.
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Figure 6.5: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of
acoustic cavitation under a 3 mm horn tip diameter. Surface streamline and vector plots were also highlighted in the contour
plots to visualize the proximal flow behaviour and direction.
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Figure 6.6. A series of vapor volume fraction contour plots that demonstrate a
single cycle of the growth and collapse of acoustic cavitation under a 6 mm horn
tip diameter. Surface streamline and vector plots were also highlighted in the
contour plots to visualize the proximal flow behaviour and direction.




With the progression of its growth, highlighted at times ty + 24AT to t, + 34AT, the two
cavities expand radially towards one another until they merge completely forming one
continuous MBS cavity. However, this in turn creates a minute condensation region that
situates a buffer zone between the horn tip and the cavity center. In other words, this kink in
the cavity center appears to slightly levitate and detach the cavity structure from the horn tip;
however, this small condensation remains rather static and does not develop any further.
Nevertheless, this structural deformation eventually alleviates and is backfilled by vapor, as
shown at time t, + 56AT. From this point onwards, the cavity’s collapse stage commences by
closely following the collapse mechanism observed in the 3 mm case in Figure 6.5. Essentially,
the cavity’s collapse is observed as an initial radial shrinkage until the small circular-like cavity
is pushed against the horn tip, where it is seen to split into two smaller cavities positioned on
the horn tip sides. Lastly, these cavities eventually collapse marking the end of the cavitation
lifecycle. Interestingly, it seems that horn tips industrially categorized as ‘small horn tips’ share
very similar cavitation growth-collapse structural progression. These aforementioned
observations made on the two horn tip diameters are in full agreement with observations and
conclusions made in previous studies on small horn tips, where CBS is hardly pronounced
throughout the lifecycle [147, 179]. However, it has been argued that CBS is rather a common
cavitation structural formation under horn tips with considerably larger diameters. Thus, Figure
6.7 demonstrates the cavity structures predicted under a 13 mm horn tip.

The cavitation formation observed under the 13 mm horn tip essentially maintains the same
point of growth, in which an attached sheet of cavitation is seen to collectively form about the
tip’s center. However, shortly after, the cavity begins to take shape by centralizing and
expanding axially from the tip. This can be clearly observed from t, + 10AT to t, + 22AT.
Interestingly, the first significant deviation in the previously noted cavitation development
trend is observed, where the centrally concentrated cavity experiences a wave of temporary
shrinkage; generally, the center cavity gradually dissipates, as minor nucleation sites are
initialized along the tip’s surface. It is important to note that in the following growth cycle
instances, from ty + 42AT to ty + 54AT, highlights a struggle in the regrowth of the center
cavity. More specifically, the cavity does not reattain the equivalent saturation of the center
bubble region previously observed at early stages of the lifecycle. Instead, cavitation clouds
established in proximity to each attached cavity site were dragged towards the center region
and molded into CBS. This, in turn, marks the second deviation in the aforementioned small
horn cavitation trends. This cavity development sequence aligns with conclusions made by
previous studies on large horns [165, 180].
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Figure 6.8: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of acoustic cavitation
under a 16 mm horn tip diameter. Surface streamline and vector plots were also highlighted in the contour plots to visualize the proximal
flow behavior and direction.
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Parallel observations and recurring nucleation themes are examined with larger horn tip
diameters. Upon observing the cavitation dynamics under the 16 mm horn tip, it can be safely
said that the cavitation dynamics maintain the same relative growth mechanism in terms of
cavitation centralization and CBS adaptation. However, the collapse mechanism under the
governance of such large horn tip is instead dissimilar. The contours illustrated in Figure 6.8
stretching from t, + 160AT to ty, + 196AT demonstrate an alternate initialization and
proceeding of the collapse cycle. Initially, the conical cavity structure is seen to stretch axially
leading to the narrowing of its body’s midsection. This is seen to continue until the attached
section is thinned out completely and the stretching cavity head is ‘pinched off’. Furthermore,
the detached cavity experiences a post-detachment deformity from its top side as it is launched
towards the downstream vortex, eventually leading to its collapse. Notably, based on
qualitative inspection, this collapse can be analogous to the collapse of a near-wall cavity.
Knowing that the vortex pressure distribution is highest at its ends, it could perhaps be assumed
that vortex region acts as a wall. Thus, the detached cavity is seen to be impinged by a jet
through its center. Meanwhile, shortly after this instance, the attached sheet cavity follows with
its own collapse.

With the last case of a 19 mm horn tip diameter, Figure 6.9 presents that neither the cavitation
growth nor collapse mechanisms witnessed any significant divergence from what has been
observed in the 16 mm case. However, a minute difference has been noted to exist in the
pinched cavity; the cavity head is seen to have a plunged top, rather than the parabolic top
demonstrated in the 16 mm case. As it has been observed, these transformations of the cavity
structure have had an eventual significant impact on the growth and collapse mechanism.
Typically, this could be a solid indicator to an underlying change in the cavitation-induced
extremities in the proximal flow properties, i.e. transmission of the pressure shockwave upon
collapse. It is understood that collapse intensity is crucial for many process-intensification
ultrasonic methodologies [181], and thus to better understand the significance of each cavity
structure, a proper quantification of the frequency of cavity collapse and the resultant pressure
peaks that follow becomes important to assess the extent of their respective cavitation collapse
intensities.
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Figure 6.9: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of acoustic cavitation under a 16 mm horn tip diameter. Surface streamline

and vector plots were also highlighted in the contour plots to visualize the proximal flow behavior and direction.
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6.3.3 Quantifying Cavitation-induced Proximal Flow Conditions

The quantification of these flow attributes has been numerically performed by tracing pressure
variations at the monitor point highlighted in Figure 6.2 and by quantifying the vapor volume
generated under each horn tip. The vapor volume was calculated by cycling through the meshed
domain and summing the products of the vapor volume fraction and the respective mesh cell
volume. Figure 6.10 below illustrates the constructed pressure and volume signals obtained
from each horn tip geometry.
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Figure 6.10: Comparative plots of pressure signals (top) and vapor volume signals (bottom) for different horn tip diameters.

Initial observations of the two graphs show that the pressure and volume peaks incrementally
increase with the increase of the horn tip diameter, while keeping the horn oscillation
amplitude, oscillation frequency, and aqueous environment constant. However, this is no new
behavior and rather much expected; the increase in the horn tip diameter facilitates further
cavitation growth by increasing the number of nucleation sites, which can be seen by the large
vapor volume peaks.
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Figure 6.11: FFT plots of the vapor volume signals obtained from (a) 3 mm (b) 6 mm (c) 13 mm (d) 16 mm and (e) 19 mm
horn tips.

Moreover, with the expansion of the cavitation region, its proceeding collapse would then
naturally be of higher intensity, thus, this is reflected as larger pressure peaks. With the
consideration of the previously observed cavity structures, this increase in cavitation collapse
intensity can also be justified by the collapse mechanism. As it seems, MBS tends to produce
a less intense pressure shockwave compared to cases with CBS. Recalling the cavity structures
present during the collapse sequences illustrated in Figures 6.5 — 6.9, it has been observed that
the collapse of MBS induces a sub-cavity positioned at the sides of the horn tip. It could be
suggested that the pressure wave induced by the collapse of the center cavity is dampened by
those temporary side cavities. Perhaps, this potentially can be analogous to the shielding effect
discussed in [182, 183]. This is because during the cases of CBS, these side cavities no longer
govern the collapse of the center cavity, as the collapse mechanism detaches the center cavity
from the horn surface. Therefore, this facilitates the radial traveling of the pressure shockwave
without experiencing any of the said damping effects.
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Evidently, another key difference illustrated between the different diameters is the gradual
change of phase and frequency induced by the increase in diameter, as shown in Figure 6.11.
It appears that the structural integrity of MBS is rather unstable and thus, it is seen that the
growth-collapse cycle occurs quite frequently. Meanwhile, the CBS that appears under the 13
mm, 16 mm, and 19 mm horn tips demonstrates a longer lifecycle, where the structure grows
gradually but rather steadily. Previous studies have argued that small horns tend to experience
highly aggressive and turbulent flows proximal to the horn tip [152, 184]. Therefore, it would
be reasonable to suggest that the cavity structures found under small horns are frequently
broken down due to high turbulence.

6.3.4 Analysis of the Toroidal Vortex Lifecycle

To garner further insight on the source of this turbulence and its flow attributes, initial
qualitative observations must be made to develop a preliminary idea of the type of flow
proximal to the horn tip. Referring back to Figures 6.5 — 6.9, a recurring theme can be deduced
and that there always exists a strong presence of some toroidal vortex within the vicinity of the
horn tips. Interestingly, this vortex tends to morph and experience a series of transfigurations
in its eccentricity and size depending on the horn tip size. After examining the progression of
the toroidal vortex in each of the horn tip cases, two general vortex development trends were
extracted and summarized in Figure 6.12 below.
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Figure 6.12: A schematic diagram of the fluid subdomain within the vicinity of the horn tip showing the progression of the
toroidal vortex in cases of (a) small horn tip diameters, namely 3, 6 mm and 13 mm and (b) large horn tip diameters, such as
16 and 19 mm. The red arrow in both diagrams highlights the trajectory of the vortex.

In the case of small horn tip diameters, it has been observed that the toroidal vortex maintains
a consistent behavior. Generally, the toroidal vortex starts as an attached minute recirculation
zone on the horn wall due to the ramming oscillatory motion of the horn tip in the aqueous
medium. This recirculation then begins to gradually expand in size and march downstream
towards the horn tip axis of symmetry. The vortex finally settles at the horn tip axis and reaches
its maximum size threshold, before beginning abruptly dissipating at the end of the cavitation
collapse phase. On the other hand, the vortex found under larger horn tips behaves quite
differently. Essentially, the vortex initialization still sources from the recirculation zone
induced by the horn tip motion; however, with the expansion of the vortex, it is seen to stay in
place instead. This recirculation then generates a short-lived vortex rotating counterclockwise.
With its gradual dissipation, a new vortex emerges closer to the horn tip axes, where it is seen
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to grow. Though, an important feature to note is that the initial side recirculation remains
present during the growth of the secondary vortex near the horn axis.

Upon establishing the general fact that the toroidal vortex has a dynamic behavior of expanding
and relocating, the vortex center and the vortex size were tracked against dimensionless time,
as demonstrated in the MATLAB code in Appendix E, to draw signals that highlight the vortex
trajectory, vortex dimensionless length, and frequency of motion. These signals have been
compiled and presented in Figures 6.13 and 6.14 below. The normalized vortex diameter has
been evaluated by taking the recirculation length (¢,,), measured by the distance between two
inflection points of high radial velocity along the axial direction, and normalizing it against the
respective horn tip diameter (¢y,) of the evaluated case.
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Figure 6.13: Plots of transient signals of vortex center cylindrical coordinates and normalized vortex diameter drawn for
cases (a) 3 mm horn tip and (b) 6 mm horn tip. The frequencies of each of the complex signals were extracted through
implementations of FFT.

At first glance, a few obvious trends can be immediately spotted, for instance, both the vortex
movement, in the radial and axial direction, and its expansion-contraction cycle decrease in
frequency with increasing horn diameters. Furthermore, an increasingly apparent jitter appears
in the motion and development of the vortex with the increase in size of the horn tip. These
observations are qualitatively represented by the surface streamlines in Figures 6.5 — 6.9, where
the vortices formed in proximity to small horn tips appear rather steady in their growth. In other
words, the trajectory of their development does not involve any form of sub-expansionary-
contractionary cycles, instead, the vortex continues to expand in size and move downstream in
position until it settles at its final location before dissipating and marking the end of its
lifecycle. Interestingly, vortices of small horn tips tend to frequently march in the axial
direction downstream of the horn relative to the radial direction. With the 3 mm horn tip, the
vortex center moves in the axial direction at a frequency of 5.67 kHz, compared to the 4.67
kHz locomotion frequency in the radial direction. Similarly, the vortices under the 6 mm horn
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tip are shown to march axially at a frequency of 2.33 kHz compared to the 2.00 kHz radially.
However, the reversal of this trend occurs upon enlarging the horn tips. This transition is
marked by the 13 mm horn tip, where surprisingly, the vortex moves in both directions at the
same exact frequency of 1.33 kHz. However, moving forward, the 16 mm and the 19 mm horn
tips demonstrate a bias towards the radial direction where their oscillation maintained a
frequency of 1.67 kHz and 2.33 kHz, respectively. Interestingly, the effect of this directional
preference is seen to govern the growth of the vortex.

It is rather intriguing to observe that the vortices under the small horn tips are significantly
larger than those formed under large horn tips. Under the 3 mm and 6 mm tips, the vortices can
reach a size ranging from 1.0 to 1.5 times the tip diameter. However, with larger tips, the
vortices maximum lengths become limited to a range between 0.3 to 0.6 times their respective
tip diameters. Recalling that these values of vortex diameters represent the vortices’ axial
expansion, it is then understood that the decreasing trend observed can indicate a change in the
vortices’ eccentricity. As a matter of fact, the streamlines in Figures 6.5 — 6.9 do indicate
changing vortex morphology. It is rather intriguing to observe that the vortices respective to
the small horn tips appear rather symmetrical and do not present any significant asymmetry or
eccentricity during their lifecycle. Meanwhile, the vortices present under larger horn tips
demonstrate more volatility in shapeshifting. Initially, these vortices form symmetrically and
share a circular shape, however, with their progression, the vortices are seen to fidget and
stretch radially in parallel to the horn tip surface, as they relocate underneath the tip surface.
Finally, the vortex is then observed to stretch in the axial direction [172, 185]. A potential
explanation of this categorized vortex behaviour is its strong attribution to the presence and
sustenance of the negative pressure gradient under the horn tip. With larger horn tips, the
attached cavity appears flatter and appears to sustain the instantaneous negative pressure
gradient for longer periods of time. The flow motion dynamic composed of a ‘push’ by the
ultrasonic horn and a ‘pull’ by the negative pressure gradient field, sustains the presence of the
vortex and positions it at the horn axis, where the pressure nodes are most prominent.
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Figure 6.14: Plots of transient signals of vortex center cylindrical coordinates and normalized vortex diameter
drawn for cases (a) 13 mm horn tip (b) 16 mm horn tip and (c) 19 mm horn tip. The frequencies of each of the
complex signals were extracted through implementations of FFT.

6.3.5 Uncovering the Influence of the Toroidal Vortex Morphology on Cavitation Growth

Based on the previous observations made in Section 3.2, the difference between MBS and CBS
is the diameter of the cavity’s base and the axial length of the cavity’s downstream reach.
Essentially, MBS is described as having a small length-to-diameter ratio while CBS is vice
versa. Therefore, the maximum growth of the cavities observed can be generalized by the

drawing presented in Figure 6.15.
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Figure 6.15: A generalized schematic of the common bubble macrostructure observed under the horn tips illustrating key
geometrical features, namely the axial length of reach, 1, and diameter of attached cavity’s base, ¢y,.

Thus, in an attempt to align the trends observed by the cavitation and vortex structures under
small and large horn tips, the maximum vortex and cavitation sizes have been extracted for
each horn tip geometry to assess the existence of an underlying trend between the vortex and
the cavitation sizes. This was performed by extracting a series of vortex diameter and cavitation
volume maxima under each horn tip and plotting the trends, as shown in Figure 6.16.
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Figure 6.16: Bar graphs and trendlines highlighting the change in the maximum normalized vortex diameter and maximum
vapor volume for each respective horn tip size.
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From what it seems, the vortex diameter maintains an inversely proportional relationship with
the vapor volume produced under the horn tip. To reiterate previously mentioned conclusions,
the increase of the horn tip diameter induces a gradual, linear-like decrease in the vortex size.
Moreover, this increase in horn tip size leads to an increased vapor-filled volume under the
horn tip. In reference to the aforementioned bubble structures, namely MBS and CBS, in
Section 6.1, it can be categorically said that the large symmetrical vortex structures mold the
cavity structure into this mushroom-like bubble structure. Perhaps, the equidistant extension of
the vortex structure in the radial and axial directions exerts significant axial pressure on the
bubble structure, limiting its growth in the axial direction and depressing it against the horn tip
surface. However, the bubble structure takes form by expanding radially instead. In retrospect
to Section 6.1, these observations of cavitation structure transitions were observed in prior
works, where such transitions were initialized by the medium content and its temperature under
the same horn tip diameter [173]. With the presented study, the underlying role of the horn tip
diameter in assisting this transition is uncovered upon increasing the diameter while keeping
remaining control variables constant. This strongly indicates that the diameter plays a role in
the acoustic energy distribution about the radiating surface area, which ultimately manipulates
the pressure distribution and flow structures in proximity to the horn.

When moving from 3 mm to 13 mm, the trend begins to noticeably differ. In Figure 6.16, it is
highlighted that the vapor structure increases in volume upon a drastic drop in the vortex size.
This is also reflected in Figure 6.7, in which the vortex seems to examine its first dynamic in
eccentricity. The vortex initially appears symmetrical when forming itself on the side, however,
it becomes progressively eccentric in the radial direction as it progresses in front of the horn
tip. During that stage, the cavitation structure appears to struggle to grow outward and remains
flattened against the tip surface. However, the vortex changes the direction of its eccentricity
shifting it from eccentrically radial to axial. Upon that occurrence, the pressure exerted on the
cavity structure is gradually released, and the cavity center is allowed to grow axially.
Interestingly, this growth formation appears to take a cone-shape, as discussed earlier. This
may be due to the radial pressure exerted on the cavity structure molding it the bubble structure
into a cone. In similar fashion, the same vortex-cavitation structural dynamic is observed in the
16 mm and the 19 mm horn tips. This is also reflected in the trendlines in Figure 6.16, in which
vapor volume proceeds to increase, while vortex size continues to decrease. However, away
from qualitative deduction, Figure 6.17 quantifies the dimensions of the cavity structures
indicated in Figure 6.15, at their maximum instances, observed under each horn tip and tracks
the change in dimensions with respect to the size of the vortex.
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Figure 6.17: Diagrams of fitted lines along datapoints plotted for (a) normalized structure length and (b) normalized
structural base diameter against the normalized vortex diameter. Each point represents the dimension of the maximum
cavity structure obtained under its respective horn tip size. The normalization was performed using varying ¢y. The points
represent a decreasing horn tip from left to right.

Interestingly, it appears that the vortex structure affects the cavity structure very distinctly. The
influence of the vortex size on the base diameter and the length of the bubble structure is rather
different. Looking at the structure length, based on the fittings of the datapoints, it seems that
the increase in the vortex size, with respect to the respective horn size, has a parabolic effect
on the cavity’s length. Furthermore, the normalized structure length seems to be rather
0.22, ¢, =19 mm
143, ¢, =3mm °
However, based on the observations made in the previous sections, this increase in in the length
when ¢y /¢, = 0.22 can be interpreted as it being due to the decrease in the vortex’s
eccentricity in the axial direction and expanding in the radial direction instead. This coincides
with the observations made for the case of ¢ /¢, = 1.43, thus, highlighting the role of the
vortices’ eccentricity in influencing the cavity’s axial length. Moving forward, the decrease in
the vortex size seems to lead to a temporary drop in the vortex length, before it rises again.

equivalent approximately equating to L./¢, = 0.53 at ¢y, /P, = {

However, looking at the influence of the vortex diameter on the base diameter of the attached
cavity, a distinctly different trend is observed. It seems that the increase in the vortex size
induces a general growth in the cavity base diameter. Similar to the previous analysis, the radial
eccentricity here seems to play its role in controlling the base diameter, as well. Interestingly,
the parabolic trend previously observed does not carry forward when examining the base
diameter, despite similar eccentricities for the small and large vortices. However, upon
factoring in the horn tip diameter, things become much clearer. In supplement to the qualitative
observations made, the vortices present at large tip diameters are relatively smaller, and thus
their radial eccentricity is considered local to the center of the horn tip. As such, the radial
pressure applied by the vortex is seen to strongly contain the cavity structure within the horn
tip center. On the other hand, smaller horn tips, i.e. 3 mm and 6 mm, are seen to experience
relatively larger vortices, in which their radial eccentric structure expands beyond the horn tip,
approximately 1.0 to 1.5 times the horn tip size for the 6 mm and 3 mm horn tips, respectively.
Therefore, the radial pressure is no longer localized and is seen to spread the cavity against the
entire horn tip surface. To examine the overall effect of the vortex on the cavity structure, Table
6.2 summarizes the vortex and cavity structure dimensions and evaluates the resultant aspect
ratio (AR) of the cavity structure found under each horn tip calculated as follows. This
highlights that MBS is essentially a lumped cone-like structure with a small AR.
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AR = LC/¢B (6.2)

The insight provided by this term is the decreasing trend increase in symmetricity of the cavity
structure with the increase of the horn tip diameter.

Table 6.2: Summary of the vortex and cavity structural dimensions with respect to the horn tip diameter.

¢bn,mm ¢v/¢h ¢B/¢h LC/¢h ¢y, mm ¢5, mm L¢, mm AR
3 1.44 0.82 0.52 4.31 2.50 1.56 0.62
6 1.03 0.87 0.37 6.20 5.20 2.20 0.42
13 0.58 0.64 0.37 7.49 8.30 4.80 0.58
16 0.43 0.55 0.46 6.95 8.90 7.33 0.82
19 0.26 0.58 0.53 5.03 11.00 10.00 0.91

6.3.6 Examining the Governance of the Toroidal Vortex on Cavitation Collapse

It has been established that the vortex structure has a significant potential role in governing the
growth of the cavity structure under the horn tip in ways that set specific limits in its growth
direction and extension. However, the role of the vortex in the cavity’s collapse remains
ambiguous. Based on the shared conclusions of many previous studies, the collapse of the
cavitation structure generated under the horn tip is typically initialized by a dent induced by
the formation of an impinging jet. However, the source and formation of this jet is yet unknown.
It can be speculated that due to the nature of the vortex and its consistent proximal position
near the horn tip surface, the vortex may play a role in redirecting flow. Therefore, a set of
vector plots to track the flow field is shown in Figure 6.18.

Figure 6.18 illustrates a couple of frames for each horn tip size, where the frames in the left
column represent the instance at which cavitation reaches a maximum in the growth-collapse
cycle. Meanwhile, the right column shows a set of frames that shows the instance at which the
collapse cycle first commences. The focus here is to highlight the vortex structure in each of
the cycle scenarios under each horn tip. At maximum growth, the vortices appear to contour
around the attached cavity creating a dent into the vortex structure. In other words, the flow
directed by the vortex curves around the borders of the cavity. This observation is found to be
consistent in all cavity formations found under every horn tip. However, during the initiation
of the cavity collapse phase, the vortex is simultaneously seen to redirect flow through the
vapor zone and impinging the cavity structure. It is crucial to note that the cavitation’s structural
scattering in larger horn tip groups, such as 13 mm and above, may be due to the designated
displacement shape of the horn tip. Recalling that the horn tip motion was defined as a
uniformly displacing sinusoidal motion for all cases, this eliminates any potentially significant
effects from the neglected flexural motion on the acoustic energy distribution. In turn, its
influence on the radial behaviour of the cavitation structure is not captured. Additionally,
judging from the velocity contour plots, the consistent congregation of these counter-rotating
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vortices about the horn axis appears to be due to the axial acoustic streaming flow (discussed
further in Section 7) and its resultant radial pressure gradient driving the flow inward. This is
facilitated by the axisymmetric geometry of the horn tip, as any off-axis vortex would be
unstable and decay, while the central vortex pair is self-sustained by the streaming field.
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Figure 6.18: Vector and streamline plots at instances of maximum cavity growth (left column) and cavity collapse
(right column) for each of (a) 3 mm (b) 6 mm (c) 13 mm (d) 16 mm (e) and 19 mm.

125




This divergence and impingement flow behavior of the liquid phase can perhaps be justified
by a potential compressibility effect of the vapor phase. However, in attempts to justify this
flow behavior, an analogous method taken from coaxial flow analyses has been adopted here.
More specifically, the momentum ratio (MR) has been calculated to evaluate the vortex-
directed flow’s ability to impinge the cavity structure. MR here is defined as [186]:

2
_ Pvapor Ua,vapor

MR = DXeRor _avapor (6.3)
pliquid Ua,liquid 2

Where pyapor and pjiguiq are the water vapor and water liquid phase densities, respectively.
Ugvapor and Ug jiquiq here are the axial velocities for the vapor and liquid phase, respectively.
The extraction of these velocity values was performed by identifying the first point of contact
between the two phases, namely the liquid and vapor, and extracting the axial component of
velocity for each phase. With these values, MR is then calculated and plotted against horn tip
diameter to observe the trendlines in Figure 6.19. The trendlines observed for both the
diverging and impinging jet instances demonstrate similar trends; however, each with a
different meaning. The diverging line refers to the scenario in which the vortex is seen to curve
or ‘diverge’ around the cavity structure, while the impinging line refers to the scenario in which
the vortex flow penetrates the cavity structure. The decreasing diverging trendline, with the
increase of the horn tip diameter, indicates that the cavity structure’s ability in diverting the
vortex-directed jet drops. Relatively, the decreasing trend of the impinging line dictates that
the vortex-directed jet increases in strength.

As such, the momentum ratio highlights a possible explanation of the role of the vortex in
redirecting flow into the cavity structure, in which it initializes the collapse phase of the cavity.
It is crucial to note that the vortex expansion-contraction frequencies highlighted in Figures
6.13 and 6.14 almost always tend to fall close within the subharmonic frequency range of the
cavitation pressure and volume signals provided in Figure 6.10. This could in fact be a solid
indicator for the strong underlying correlation the vortex development has with the cavitation
structural development. However, while it is typically known that correlation does not
automatically mean causation, however, the vortex has been seen to hold a share in governing
the collapse mechanism of the acoustic cavity.
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Figure 6.19: Momentum ratio trendlines for cases of diverging and impinging water liquid jet flows.
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6.4 Conclusion

The present study has demonstrated a thorough numerical investigation that scrutinized the role
of the typically observed toroidal vortex in governing the cavitation structure produced under
the ultrasonic horn tip. Multiple horn tip diameters, categorically labelled as small and large
horn tips, have been explored to identify the role and behaviour of the vortex in molding the
cavity. This was inspired by the recurring observations made in previous studies where small
horn tips tend to establish a mushroom-like bubble structure while larger horn tips facilitate the
growth of a cone-like bubble structure. Thus, it was of great interest to observe whether the
toroidal vortex has any involvement in this phenomenon.

This chapter delved into the origin of the toroidal vortex by conducting a modal analysis of the
horn tip and identifying the mode shape at the typical vibration frequency of 20 kHz. Moreover,
the parametric analysis conducted has identified the general vortex structural progression
trends under small and large horn tips. It has been observed that the vortex tends to initialize at
the side of the horn as a recirculation zone induced by the horn tip vibration, where it later
enlarges and marches around the horn tip and toward the horn tip axis. The primary differences
in the vortex behaviour in small and large horn tips fell within the vortex size and eccentricity.
Under small horn tips, the toroidal vortex tends to be symmetrical and significantly large with
respect to the horn tip size. Meanwhile, large horn tips witness toroidal vortices that undergo
two stages of eccentricity changes, starting with eccentricity in the radial direction followed by
eccentricity in the axial direction.

It has been determined that these structural behaviours govern the cavity structure's shape,
growth, and collapse. The MBS adopted by cavities under small horn tips is partially due to the
vortex's occupation of the axial space downstream of the cavity. Thus, the cavity's axial
expansion is limited, and instead, the cavity is seen to extend radially covering the horn tip
surface. Meanwhile, CBS observed under large horn tips is plausibly molded by the eccentric
vortex present within its vicinity. Based on the orientation of the vortex eccentricity, the cavity
structural growth is limited accordingly. Upon having the vortex take up a radially eccentric
stance, the cavity structure is seen strongly depressed against the horn tip surface limited from
growing outwards. However, with the gradual axial shift in vortex position and eccentricity,
the cavity clouds are pushed and pinched toward the horn axis forming the commonly
witnessed cone-like structure.

Moreover, the collapse of the cavity structure, both MBS and CBS, is shown to be governed
by the impinging jet directed by the proximal toroidal vortex. An attempt to justify the instance
of impingement was conducted by evaluating the momentum ratio between the vapor and water
liquid momentum. Once the vapor structure is seen to lose momentum and the vortex gaining
momentum, the impingement becomes successful agitating the cavity structure and initializing
its collapse.
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7 Time-averaged Early Stagnation Point Formations during
Transient Acoustic Cavitation

7.1 Introduction

The aforementioned CFD results have highlighted that the sonoreactor geometry plays a major
role in inhibiting or enhancing sonochemical reactions, which is essentially in line with a
multitude of pervious observations [187-189]. Thus, in the previous CFD studies, the
underlying influence of the horn tip surface area on the inertial bubble self-organizing capacity
during the transient state of the reactor was scrutinized [190]. Generally, the role of the
proximal toroidal vortex, a product of a developing acoustic streaming, on the inertial
cavitation development was hypothesized. As observed, one of the key observations made was
the dimensional variation of the cluster’s shape; the aspect ratio (AR) approaches unity with
larger diameters, as the dimensionless vortex length shortens, with the increase of the horn tip
diameter (D). While this is rather an eye-catching trend, it is crucial to note that these
instantaneous readings have been recorded at transient cavitation growth amplitudes and may
not precisely reflect the reality of the trend.

Therefore, as part of a deeper scrutiny of the phenomenon, we have attempted time-averaging
the flow. To our surprise, however, we found that the extent at which the stream-linked vortex
produced under all reactor cases reached their respective stagnation plane at a distance of 2D
away from the horn tip. We have therefore, in addition to reporting our own results, attempted
what we hope to be a numerical justification of the observed phenomenon through a
mathematical formulation based on the Stuart streaming conservation of momentum and its

respective definition of the acoustic force (Fa)). What follows is a comparison between a
parametric one-dimensional iterative calculation and the two-dimensional computational fluid
dynamics (CFD) simulation conducted in our aforementioned work. We are keen to
hypothesize that there exists a two-way coupling between the time-averaged bubble cluster
shape and the said distance of stagnation. More specifically, the one-dimensional model will
facilitate the unravelling of the underlying role of effective cavitation-based attenuation on the
acoustic wave propagation that may justify the halting of axial flow and the development of
the stagnation plane. This investigation would, in turn, provide further insight on the flow
mechanism and transportation of inertial cavity bubbles, which are commonly known to play
a vital role in facilitating ultrasonic-assisted process intensification [191-193].

7.2 Streaming Modelling and Flow Dynamics

The inherent nonlinear behaviour a fluid adopts, upon the imposition of an ultrasonic field, has
been enriched with decades of research. This scrutiny of the underlying two-way coupling
between acoustics and hydrodynamics has led to the definition of a well-developed area of
acoustofluidics known as acoustic streaming. Essentially, the term refers to the steady Stokes
drift component upon decomposing the fluid’s reaction to some periodic stimulation. In simple
terms, it is the establishment of a steady-state vortical jet, or ’stream’, accompanying the
ultrasonic wave propagation to some point of stagnation [194]. With the extensive scrutiny
acoustic streaming underwent, many authors have made key contributions to stitch up a string
of governing equations that, in turn, provides a complete general solution of the flow problem.
Rayleigh [195], for instance, has made an attempt on this multi-physics flow problem by
resolving the second-order average velocity produced by the proximal behaviour of the fluid
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near a plate. Adhering to that, both Nyborg [196] and Westervelt [197] highlighted a multitude
of cases where Rayleigh’s base interpretation of streaming holds true. Essentially, it has been
highlighted that this type of streaming is typically observed in standing wave systems with
wavelength-scale channels (L/A = 1) [198]. However, the nature of the said Rayleigh-Nyborg-
Westervelt (RNW) streaming theory is its negligence of fluid inertia effects and thus making
this theory exclusively applicable to slow flows, otherwise known as ’creeping motion’ [199-
201]. It is known that this kind of streaming is only observed in reactors with significantly low
acoustic power sources falling within micro-watts [202]. In aims to capture the streaming’s
large Reynolds asymptotic behaviour, Lighthill [203] established the Reynolds stress approach
by linking the flow turbulence with acoustic perturbations defining what is known now as
’Stuart streaming’.

Practically speaking, Stuart streaming is more commonly found in industrial applications of
sonochemical reactors, as such systems operate at relatively high acoustic power. The nature
of this streaming is justified as a steady flow that is induced by the attenuation of transverse
acoustic waves in the present fluid domain [202, 204]. While streaming is a ubiquitous
acoustofluidic phenomenon, the nature of the fluid can influence the strength of the presence
of acoustic streaming. Primarily, a strong damping effect of acoustic streaming was clearly
observed in inhomogeneous fluids due the presence of a density gradient caused by a solute
concentration field [194, 205]. Such damping can also occur in homogeneous fluids, however,
it would require specifically shaped confinements, or channels, for this to occur [206].
Nevertheless, the acoustic attenuation that drives this streaming sources from all composites of
the fluid domain; it can be the compound absorption property of a multi-phase fluid domain,
for instance. More specifically, the bubbly phase generated as a byproduct of the ultrasonic
source’s periodic stimulation has been shown to be a primary contributor to the acoustic
attenuation.

Given that these resonating bubbles heavily influence both density and compressibility of the
domain, the viscous losses are deemed negligible. Therefore, this implied variation in the speed
of sound then induces the reflection, absorption, and scattering of the acoustic energy away
from the initial sound beam directed from the ultrasonic source [207]. Surely, the present
quantity of resonating bubbles within the vicinity of the sound beam is a decisive factor on the
degree of its attenuation; however, the question that arises is, what are the factors that then
influence the concentration of bubbles about an ultrasonic transducer? Well, the concentrations
of bubble cluster formation positively follow an increasing trend in acoustic power.
Interestingly, this is based on an established sonochemical fact agreed upon by many, as it has
been observed that sonochemiluminiscence (SCL) decreases with the increase in input power
[188, 208, 209]. This tends to indicate that there exists a decrease in sonochemical active region
volumes [171]. It has been noted that the bubble cluster formations tend to adopt specific shapes
at instantaneous times, such as MBS, volcano-like bubble structures (VBS), and more
commonly CBS [161]. Biasiori-Poulanges et al. [161], in their investigation, have scrutinized
the transient cavity generated under a 12 mm horn-type reactor in aims to visualize and identify
the mechanism responsible for the commonly observed CBS.

It has been previously understood that there exists an interaction between neighbouring bubbles
where one applies a force, known as the Bjerknes force, on another. Considering that two
neighbouring bubbles exist in a strong acoustic field, it can be said that the pressure gradient
field is the source of the Bjerknes forces acting from the first bubble on the second bubble.
This force can be quantified as F; , = —V,VP. It has been deduced that primary and secondary
Bjerknes forces play a role the self-organizing ’streamers’ and ’acoustic Lichtenberg figures’
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[166, 170] at anti-nodal regions [169, 210], and thus it has been analogized to the bubble
behaviour during transient cavitation. Conclusions on its step mechanism were that (i) existing
single bubbles oscillate at amplitudes overcoming their interface repelling force, (ii) single
bubbles then deform and merge with one another to form a cloud, (iii) and lastly the cloud is
molded into the cone shape due to the radial pressure distribution along the horn tip.

7.3 One-dimensional Mathematical Formulation

This section focuses on translating the fluid problem tackled in Chapter 6 to a one-dimensional
problem by considering the proximal flow induced by the horn vibration, as shown in Figure
7.1. The developing flow, attributed to the transient cavitation state, was observed to
consistently flow towards some stagnation point, z = 0, positioned at | = 2D and proceed to
outwardly flow in the radial direction with axial symmetry to form the proximal toroidal
vortices. However, we reiterate that this observation has been made upon time-averaging the
flow for each geometrical case. Thus, it is desired to unfold this trend by focusing on
developing a one-dimensional formulation to track the variation in the axial flow. Essentially,
this formulation isolates axial flow dynamics and its variation with acoustic forcing sourcing
from the radiating surface, while neglecting azimuthal and radial flow instabilities. As such,
any radial flow variations, sourcing from the previously acknowledge counter-rotating vortices
are assumed negligible. Upon eliminating the transient term, we utilize definitions of continuity
and conservation of momentum for a steady flow with the aforementioned fluid mixture
properties. We have also safely assumed a no-slip boundary at the horn tip based on many
observations made on the radial profile [171, 201]. Lastly, the flat profile nature of the axial
velocity was approximated for our case for mathematical modelling convenience [184].
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Figure 7.1: A schematic of the axisymmetric flow configuration, with respect to the cylindrical coordinate system, observed
in all considered horn diameter cases. (a) An overview of the time-averaged flow during transient cavitation highlighting the
developing acoustic streaming and the stagnation plane encountered. (b) A detailed picture of the flow profile in proximity
to the horn tip of diameter D and the position of the stagnation plane at a distance [ from the horn tip surface.
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The flow field and pressure distribution governing equations are then laid out as the continuity

—v,=0 (7.1)

conservation of r-momentum
v, N 6vr) 3 ap+ 210 )) + 0%v, 75
Pm (V’W Veag) = Tar T o\ oy 922 (7.2)

and conservation of z-momentum

v, 61/2) op [1 0 ( avz> 0%v,

e - e A T G R

> yH%§+§ (73)
z

The 8-momentum equation has been neglected due to the initial two-dimensional assumption
of the domain. Here, v, is the flow velocity in the z-direction, p,, and y,, are the fluid mixture
density and the fluid mixture dynamic viscosity. The z-momentum equation shows two

additional force terms, namely the gravitational force p,,g and the acoustic force Fj For this
problem, however, we neglect the role of the gravitational force on the flow and only consider
the propagating acoustic force in the axial domain. Based on Lighthill [211], the acoustic
force, in the case of a downstream moving plane wave, is defined as

. apv?
B= -2 (7.4)

With the expression of acoustic intensity, I, and establishing the relationship between spatial
variation of I and streaming, I is then represented as

[ =pcv? = [je2ez (7.5)

where p is the fluid density, ¢ is the speed of sound, v is the flow velocity, and « is the
compound attenuation of the acoustic wave. One can then translate F, in terms of I where

. 1dl 2«
Fa = —EE = Tloe—Zaz (76)
in which
PZ
I, = 2‘;2 (7.7)

P, o here is the acoustic pressure at the horn tip surface. Like many acoustic properties in the
fluid domain, P, experiences adverse attenuation as the plane wave progresses away from the
horn tip. Its spatial distribution has been modeled by Yasui et al. [118] about the axis of
symmetry such that
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T D\?
— in — 2 — —
P,(z) = pcv,o|2f sin p ( z2 + (2) Z> (7.8)
Upon taking P, at z= 0 and replacing in equation 6.6, Fa) finally becomes
— Dr
F, = 4Bapvi gyssin® ﬁe‘z"‘z (7.9)

where v, pys 1s the time-averaged flow velocity, D is the horn tip diameter, and A is the
acoustic wavelength. Taking note of £, it is essentially defined as an under-relaxation term,
introduced by Yasui et al. [118], to correct the attenuation of the acoustic wave. This factor
was inspired by a comparative study investigating the variation in local bubble radii under an
acoustic horn. In our case, however, we have obtained a set of [ values through a fitting
algorithm, implementing least squares, to satisfy the curve-fitting criterion that ensures the
predicted boundary conditions from the two-dimensional CFD simulation are met. Essentially,
the criterion was obtained by conducting a validation simulation comparing the numerical
results we obtained of a horn reactor of D = 10 mm to the pressure model Yasui et al. [118]
obtained. The small resultant percentage error was then extracted and implemented as a
benchmark for fittings of the curves of the remaining diameters.

v, =0 atz =0 (7.10)
d =
Dr_o atz=0 (7.11)
0z
d =
Dr_o atz=1 (7.12)
0z

V; = —VyrMs atz =1 (7.13)
P =P, atz=0,r=0 (7.14)

Equations 7.10, 7.11, and 7.12 arise based on observations made in our CFD study, which will
be discussed later in section 4 of this chapter, on the extensions of the induced vortical
structures during the transient state of the reactor. The stagnation point predicted by our CFD
model has revealed that the velocity radial flow profile converges to 0, with respect to the axial
coordinate, before accelerating in the radial direction. Interestingly, a strong analogy can be
drawn out from the assumed uniformity of the boundary conditions constraining the reactor
system to the porous plate system established by Chapman & Bauer [212]. As such, we have
adopted the following proven relationship where

v, =1 (2) (7.15)

Upon replacing this definition in Eq. 7.1, the following definition of v, is obtained
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dav,

= =-2¢() (7.16)
in which
v, = —2 J-qu(z)dz (7.17)
0

This way, we have isolated v,'s definition to be only in terms of z. Ultimately, this transforms
our boundary conditions to

av, atz =0

=0 7.18

e (7.18)

0%v, atz=0 (7.19)
dz2 .

0%, atz =1 (7.20)
dz2 ’

Vz; = —VyrMs atz =1 (7.21)

Furthermore, as our intended model is one-dimensional in the axial direction, Eq. 7.3 is
nondimensionalized using the following dimensionless quantities

0= 7.22
Vu,RMS ( )
_z 7.23
¢= D (7.23)
v D
Re = PYurusZ (7.24)
HUm
Equation 7.3 then becomes
20 Un  d%0 1 ap D
——————— = —————>+ 4PaDsin? (—) e~2ab¢ 7.25
0 pmVyrusD aqg? pmVLZL,RMS a¢ 22 ( )
or
1
06’ ——8" = Dp +TCe™ (7.26)

Re

Notably, the process of deriving the nondimensional momentum equation has resulted in the
surfacing of three additional nondimensional numbers that are
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1 dp

Dp = —————
F PszE,RMS a¢ (7.27)
I = —2aD (7.28)
and
5 (7D
C = 2fsin (ﬁ) (7.29)

These dimensionless numbers were taken as model constants governed by fluid mixture
op
0z
is insignificant, as any observed pressure variation in the system is essentially radiation

properties. Firstly, Piercy & Lamb [213] have suggested that the first-order differential term

pressure driven by 77; Thus, the nondimensional pressure Dp here is considered a negligible,
yet potentially corrective, constant. Similarly, C resembles an under-relaxation factor for a

given D. Based on the nature of the function when taking its limit at 5 lior{)l16 C(D) = Cpin E

experiences reduced amplification with the increase of D. Lastly, I' consists of two terms, «
being the compound attenuation coefficient [214] and D. As such, it is defined as the
dimensionless compound attenuation.

The solution of Eqns. 7.18 to 7.26 provides the complete analytical solution of the present flow
problem. However, the approach we have taken to obtain the exact solution is a more iterative
approach, in which we solved Eqn. 7.26 numerically with a finite-differencing method where
we created a system of coupled differential equations of an order no greater than one by
modifying Eq. 7.26 as such. That is, we define the coupled system starting with a new
dimensionless partial differential equation of some function f ({)

f) =6'©) (7.30)

such that Eqn. 7.26 becomes

1
_ ' — D, _TCe-T¢ 7.31
of Ref » —I'Ce (7.31)

Additionally, recalling that Dp is a constant,

Dp
7 (7.32)

Meanwhile, Re, I, and C are varied parametrically from case to case. The three equations were
then linearized about a trial solution to, ultimately, implement the numerical method designed
by Newmann [215]. This facilitates iterative computation of the trial solution until the solution
finally meets the residual criterion of 10710, It is noteworthy to state that convergence has been
achieved within 7-50 steps depending on the initial guess used upon initialization. The
implementation of this subroutine can be found in Appendix F.
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7.4 Results and Discussion

7.4.1 Two-dimensional Flow Approximation

Building upon the previous study's observations [190], we considered the following
geometrical variation in horn-type reactors, tabulated in Table 7.1, to assess their overall
acoustic and cavitation performances during their transient states. We have fixed the power
input, operational frequency, and oscillation amplitude at 49 W, 20 kHz, and 164 pm,
respectively, for all cases to isolate the influence of the horn tip diameter on the flow. To draw
out this comparison, we performed the transient CFD calculation on all cases to monitor and
extract instantaneous velocities at every discretized point along the horn axis. This was
followed by computing the RMS velocity at each mesh point of the axis to, ultimately,
normalize it against v, pys. These normalized velocity values were then plotted against the
normalized axial length {, as it is illustrated in Figure 7.2a. Here, it becomes clear that there
exists an unusual flow trajectory, where the agitated flow eventually reaches some point of
stagnation { = 2 along the axis. Recalling that D sustains a relationship with the acoustic
power density Pj, such that

P P

Pp=3= 7.33
V' inpeH (7.33)

This strikingly highlights that regardless of the size of the volume of influence V' the acoustic
power transmission reaches, the stagnation plane remains positioned at a distance 2D. It is
arguable that the usage of an unsteady RANS model, like SST k — w, might facilitate this trend
by averaging out the turbulent acoustic streaming structures and increasing the rate of decay of
the acoustic pressure wave. However, the consistency of this trend under different horn
diameters highlights that the effect of the turbulence model is not as pronounced. Ultimately,
the only impact the change in D, or Pp, had on flow is the rate of exponential decay the flow
experiences as it approaches the said stagnation. In an attempt to garner deeper insight to this
trend, we monitored the averaged variation in the RMS vapor volume fraction a,, along the
same axial distance to identify any coupled effect, if any, of the vapor structure on the point of
stagnation, as shown in Figure 7.2b. Interestingly, and as highlighted by the two instances of
inset plots, it was revealed that the vapor structure has no definitive influence on the stagnation
point either. The two distinct vapor structure profiles are highlighted in Figure 7.3, where MBS
is prominent under the 3 and 6 mm horn tips, while CBS takes shape under the 13 and 16 mm
horn tips. However, upon examining the vapor structures' axial extension, we were able to
capture the endpoints of cavitation dissipation for each case, as numbered from (1) - (4). It was
revealed that these endpoints unanimously coincide with the velocity decay curves' kinks
towards 8 = 0 for all cases. Such observation reinforced the extent of attenuation the inertial
bubbles have on this acoustic force-driven flow. Therefore, we have decided to further
scrutinize the vapor-induced attenuation role in influencing the time-averaged flow through a
one-dimensional approximation of the axial flow.
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Table 7.1: Tabulation of time-averaged velocity, vapor volume fraction for each of the marked points in figure 22 and the

power density of each horn geometry.

Marked Points D (mm) 0% (-) ay (-) Pp (W /cm3)
1 3 -0.0434 0.00087 64.785
2 6 -0.0539 0.00065 16.196
3 13 -0.0779 0.00079 3.45
4 16 -0.0881 0.00079 2.278
*extracted values at respective marked points highlighted in Figure 7.2.
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Figure 7.2: (a) Variation of normalized RMS velocity plotted against the downstream axial distance normalized with respect

to the horn tip diameter of the respective geometrical case (D = 3, 6, 13, and 16 mm). The inset plot highlights the observed

stagnation. (b) Variation of RMS vapor volume fraction along the horn axis, with an inset plot showing the convergence of

a, to 0 at the stagnation point for all cases. Points (1) - (4) highlight the points at which a,, first reaches 0 for cases D = 3 -
16 mm, respectively. { is the dimensionless z-position normalized with respect to the tip diameter D for each case.
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Figure 7.3: Comparative plots illustrating time-averaged bubble cluster structure radial profiles, dimensioned based on
their normalized radial and axial position under horn tips of diameters D = 3, 6, 13, and 16 mm. Here, the axial position z is
normalized against the maximum height H reached by the profile formed under D = 16 mm, while the radial position r is
normalized against the horn tip radius R.

7.4.2 One-dimensional Axial Flow Interpretations

7.4.2.1 Complete Numerical Simulation

Equations 7.30 — 7.32 were solved by constraining the system with their respective boundary
conditions from Eqns. 7.18 —7.21. Moreover, the initialization of the one-dimensional iterative
calculation consists of inputting the desired acoustic and domain phase properties, in addition
to a set of initial guesses for the equations' unknowns, namely %, 0, and Dp. Meanwhile, Re
and C were kept as model constants governed by the given flow properties induced in each
case; they are computed as per the D of the considered case. As for I', while in practice
['(a,D) = —2aD, we have manually controlled its variation from case to case through
artificially varying a. This is to observe its contribution to the flow behaviour, especially to the
stagnation point position, within our numerical region. However, to obtain a of each case, we
have utilized the least squares fitting method to essentially optimize the dimensionless
attenuation coefficient ensuring a satisfactory fitting of the one-dimensional calculated flow to
the numerically-extracted trends shown in Figure 7.4. Technically, we have fixed 8 = 0 as a
boundary condition at { = 2 while keeping the boundary at { = 0 free-floating to maintain
its dependency on the attenuation coefficient.

In that sense, as the one-dimensional model neglects the plausible effects of bubble-bubble
interactions and flows in the radial direction and thus a here may carry underpredicted values
that are underpredicted the amplified scattering and attenuation effects induced by bubbles
radially positioned about the horn axis. Moreover, various mesh sizes were tested to extrapolate
the calculation towards the horn tip boundary. Based on that, we have settled on a discretization
composed of 1,000 points. Considering the fact that all our horn-type reactor geometries induce
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largely turbulent flows, such mesh size was required to capture the boundary layer phenomenon
at ¢ = [. Mathematically, this is justified by the diminishing effect of the highest-order term
due to the high Re.
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Figure 7.4: Comparative plot between the variation of normalized RMS velocity against the normalized downstream axial
predicted by the CFD computation and the one-dimensional (PDE) calculation for various horn reactor cases, D = 3, 6, 13,
and 16 mm. { is the dimensionless z-position normalized with respect to the tip diameter D for each case.

As demonstrated in Figure 7.4, we performed a validation comparing the trends predicted by
the one-dimensional steady flow model and the two-dimensional time-averaged transient CFD
model. While the predicted one-dimensional trends do in fact come across as reasonably
satisfactory, it seems, however, that there is a noticeable discrepancy in the 8 magnitudes. This
can be potentially justified by the one-dimensional model's dismissal of any small, yet
noticeable, transient, or more specifically turbulent, components of the acoustically-driven
flow [216]. Moreover, this justification is complicit with the results presented in the numerical
exploration conducted by Dentry et al. [217], where they observed that a turbulent-dominant
jet tends to lead to a marginally faster streaming decay. However, as the curves' slopes are,
nevertheless, well-captured within the region 0.75 < { < 2, we speculate that the steady
component here does in fact play a major role in the overall axial flow examined under the
horn.
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Figure 7.5: A series of comparative plots, produced by the one-dimensional iterative calculation, summarizing the predicted
trends of (a) the normalized RMS flow deceleration, (b) the normalized RMS flow velocity, and (c) the dimensionless

pressure gradient plotted against the downstream axial distance normalized with respect to the horn tip diameter of the

respective geometrical case (D = 3, 6, 13, and 16 mm). The two inset plots highlight regions of interest and clarify the

o ao . . . . . . o
variation of ’ra and Dp values. { is the dimensionless z-position normalized with respect to the tip diameter D for each case.

Table 7.2: Tabulation of values of artificially fitted model coefficients (C, f, a, and I) for each horn tip diameter D and its

respective Reg.

D (mm) Reg () Dp () C() B () a(m™) a(dB/cm) |I|()
3 61692 0.0284  0.0158  2.0000  299.52 0.495 1.797
6 123381 0.0041  0.0014  0.0435  246.92 0.479 2.963
13 267326 0.001 0.0003  0.0018 145.4 0.433 3.780
16 329106 0.0003  0.0001  0.0003  138.33 0.428 4.427
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Observing the predicted flow behaviours in Figures 7.5a and 7.5b, it becomes clear that the
flow decelerates much faster towards the & = 0 stagnation point with larger horn diameters.
This is perhaps due to the amplified 'push' effect of the steady component of flow on the
acoustic wave in relation to the growing Re. Figure 7.5a has highlighted this trend, however, it
unveils an interesting trend in the initial flow acceleration at the horn surfaces. It initially

appeared that with the doubling of the horn diameter from 3 mm to 6 mm, % increases by a

factor of 1.5. However, upon further doubling the diameter, % was amplified by a rather

noticeably reduced factor of 1.24. the further increase in diameter would still induce a
heightened acceleration by the same factor of approximately 1.24, despite the diameter increase
being a factor of 1.23. Moreover, the inset plot in Figure 7.5a magnifies the junction of
deceleration curves where it amplifies the 3 mm horn flow deceleration as an anomaly due to
its relatively exaggerated gradual decline towards the stagnation point. We speculate that the
formulation of this junction may be due to the attached cavitation axial extension, this is further
discussed in detail in section 7.5 of this chapter. However, the deceleration trends of the
remaining tip diameters all show similar decelerating trends with a joint intersection at { =
1.46.

Furthermore, when it came to scrutinizing these trends with respect to the model coefficients,
we were able to uncover potential correlations with what has been observed in the flow velocity
and deceleration. As per the tabulated data in Table 7.2, we noticed that the effects of the
dimensionless pressure gradient Dp becomes more and more insignificant with the increase of
D. Judging by the flow type induced under each horn tip, this could be potentially due to
significantly increased turbulence of the acoustically-driven flow. Thus, recalling the
conclusive suggestion made by Piercy & Lamb [213], this leads us to believe that the
observation aligns with their justification. However, what is rather eye-catching, is the sharp
shrinkage of Dp upon initially doubling the diameter, which is later followed by a more
continuous and gradual decrease of Dp's influence on flow.

It is hypothesized that, perhaps, there exists an underlying non-linearity in the influence of
turbulent flow properties on the acoustic wave behaviour. This was based on conclusions drawn
from Miller & Comings [218], in which they illustrated the amplification of the static pressure's
insignificance on the axial flow due to the large disparity between longitudinal mean
momentum and static pressure. Thus, we have taken their case as an analogy to our case of
acoustically-driven flow. On another note, coefficients related to the governance of the
acoustic force, namely C, 8, and a, demonstrate inverse proportionality to the increase in Re.
It is unsurprising to see that both C and f share the same effect due to their coupled nature
shown in Eq. 7.29. Here, § primarily plays the role of under-relaxing the amplification effect
of C on the force. Physically, this indicates a reduction in strong interference effects, that is
typically experienced by the axial pressure during acoustic radiation from a cylindrical piston,
governed by the Rayleigh Length [207].

As for a, its trend can be attributed to the observations previously made in our study, where
we recorded a decrease in the active cavitation zones proximal to the horn tip, as the inertial
bubbles self-assemble into a CBS [190]. The values obtained for @ do in fact align with
observations made by Feuillade [219], however, a slight underprediction is noticeable. What is
interesting, though, is the opposing I' trend, despite its direct correlation with a. As clearly
shown, I marches upward by an increment of approximately unity with the doubling of D. This
eventually highlights the possible role of the factor 2D that arose during
nondimensionalization, as it introduces direct proportionality of the horn tip diameter to the
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attenuation induced by the multiphase medium downstream. Acknowledging the high Re with
larger D, we are led to believe that the flow becomes inertia-dominated, therefore, minimizing
the losses due the mixture viscosity. We have thus interpreted 2D as a corrective term for
attenuation and defined I as a corrected dimensionless attenuation coefficient.

7.4.2.2 Small Re Number Asymptotic Behaviour

Thus far, our investigation demonstrated a strong focus on practical cases of horn-type reactors,
where 'fast-streaming' dominated our flow observations. As we have scrutinized the trends of
compound attenuation effects of the fluid composition on the acoustically-driven flow, it would
of great importance to explore the nature of attenuation during 'creeping motion'. Typically,
'near-field' flow behaviour becomes the primary focus during such flows, and such proximal

flow is seen to form when the Rayleigh length is % > 1. Taking the unity of % is then reflected

in the value of C as it also converges to unity. With that said, Eq. 7.26 then becomes

1
66" — R—ee" = Dp—Te ¢ (7.34)

We then solved this expression analytically through a regular perturbation procedure, that
considers a small parameter € = Re <« 1, using the following coefficient expansions:

6(0) =6, +6;Re + 6,Re? + O(Re>) (7.35)
8'(Q) =6, +6; Re + 6, Re? + O(Re®) (7.36)
0"(0) =6 +6;Re +0;Re? + O(Re®) (7.37)
Dp = Dpy + Dp Re + Dp,Re? + O(Re®) (7.38)
I =T, + [ Re +TL,Re? + O(Re?) (7.39)

We went with applying the aforementioned boundary conditions in section 7.3, with the
exception of the boundary condition in Eq. 7.11. Instead, we have replaced that boundary
condition with another that constrains the flow at { = 0 to ensure that & = 0. This way, we
reach the following small Re approximations below. Their derivations are demonstrated in
Appendix G.

i{5>Re

0 = —1(2 + (—iqz — 0.057709¢3 — 0.0084897* +
4 20 ' ' 160

1
+(0.141961{2 — 0.06893170% — 0.014967* + - + 0.0024106° (7.40)

1
0.0003032¢7 — ——— S)R 2
+ ¢ ~5120° ) Re
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o= 1 +( ! 0.173127¢2 — 0.033958¢° + — 4>R
= =3¢ 105 ~ ¢ ¢ : ¢ +35 Re

1
+ (0.2839225 ~ 0.206795¢% — 0.059869¢° +==¢* + 0.0144634¢° (7.41)
+0.0021224276 —iﬁ) Re?
' 640
97 = — 1y ( L 03118477 — 0.087073¢2 + X 3)R
=72 10 ¢-0 ¢" +gl)Re
2 1 4 (7.42)
+ (0.283922 — 0.4135901¢ — 0.179609¢% +=¢° + 0.072137¢ ~
+ 0.0127345¢5 —L(G)
: 640
1
Dp == 0.767250Re — 0.641065Re? (7.43)
(7.44)

I = —0.579026Re — 0.357143Re?
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Table 7.3: Tabulation of time-averaged flow profile, cavitation axial region, and bulk Reynolds number of each horn
geometry.

Re =0.25 Re=0.5 Re=0.75 Re=1.0
() 6() 6'(-) 0 (-) 6'(-) 0 (-) ' (-) 6 () ' (-)
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 -0.0026 -0.0513 -0.0024 -0.0493 -0.0022 -0.044  -0.0017 -0.0355
0.2 -0.0103 -0.1038 -0.01  -0.1016 -0.009  -0.0933 -0.0074 -0.0791
0.3 -0.0234 -0.1575 -0.0299 -0.1569 -0.021 -0.1481 -0.0178 -0.1312
0.4 -0.0418 -0.2124 -0.0414  -0.2153 -0.0388 -0.2084 -0.0339 -0.1919
0.5 -0.0659 -0.2686 -0.066  -0.2768 -0.0629 -0.2744 -0.0565 -0.2615
0.6 -0.0956 -0.326  -0.0969 -0.3414 -0.0939 -0.3460 -0.0865 -0.3398
0.7 -0.1311 -0.3846 -0.1344 -0.4089 -0.1323 -0.4229 -0.1247 -0.4265
0.8 -0.1726  -0.4442 -0.1788 -0.4791 -0.1786  -0.5048 -0.1721 -0.5212
0.9 -0.2200 -0.5048 -0.2303 -0.5519 -0.2334 -0.5913 -0.2292 -0.623
1.0 -0.2735 -0.5662 -0.2892 -0.6267 -0.297 -0.6817 -0.2969 -0.7311
1.1 -0.3333 -0.6282 -0.3557 -0.7033 -0.3698 -0.7753 -0.3756 -0.8442
1.2 -0.3992 -0.6907 -0.4299 -0.7811 -0.4521 -0.8712  -0.4658 -0.9611
1.3 -0.4714 -0.7534 -0.5119 -0.8595 -0.5441 -0.9684  -0.5679 -1.0800
1.4 -0.5499 -0.816 -0.6018 -0.9379 -0.6458 -1.0657 -0.6818 -1.1992
1.5 -0.6346 -0.8784 -0.6995 -1.0157 -0.7572 -1.1618 -0.8077 -1.3168
1.6 -0.7255 -0.9402 -0.8049 -1.092 -0.8781 -1.2555  -0.9451 -1.4306
1.7 -0.8226  -1.0011 -0.9178 -1.1661 -1.0081 -1.3453  -1.0936 -1.5384
1.8 -0.9257 -1.0607 -1.038  -1.2372 -1.1469  -1.4297 -1.252 -1.638
1.9 -0.9883 -1.1187 -1.1651 -1.3045 -1.2938 -1.5073 -1.4208 -1.7272
2.0 -1.0000 -1.1748 -1.2987 -1.367 -1.4481 -1.5767 -1.5975 -1.8038
D, = 0.2681 D, = —0.0439 Dp = —0.4360 Dp = —0.9083
IT| = 0.1671 IT| = 0.3788 IT| = 0.6352 IT] = 0.9362

Considering the following small increments of Re = 0.25, 0.5, 0.75, and 1.0, we tabulate each
coefficient at each Re to track their trends and visualize the corresponding flow behaviours, as
shown in Table 7.3. The overall trends are quite consistent with each increase in Re; we observe
that the |6| and |6'| increase upon approaching the horn tip in all cases of Re. However,
interestingly, we have noticed the surfacing of an underlying non-linearity within the field
proximal to the horn tip surface. It initially becomes prominent at Re = 0.5 in which the velocity
values begin to slightly overshoot at 1.8 < { < 2.0. Moreover, this trend minutely develops,
in which it begins to be expand downstream, such that at Re = 0.75 onwards, the region
becomes constraint within 1.7 < ¢ < 2.0. This could be analogous to the variation in the axial
velocity profile between a low and a high acoustic frequency setting[217]. However, soon
enough, with the progression of Re, this discrepancy surfaces as a probable accuracy limitation
of the small perturbation assumption of Re. On the other hand, Dp and I' here demonstrate
direct proportionality with Re. It is speculated the gradual rise of T' is an indicator of an
expanding cavitation region within the proximal axial direction, and thus an increase in
attenuation is to be expected. However, to compare its value marching trend with the trend
observed in Table 7.2, we have taken into account the proportionality of increase in value of T
with Re in both the laminar and turbulent regimes. Here, we observe that in the previously
explored turbulent regime, I' presented a slow decay in the factor increase upon doubling Re.
For instance, the factor rise of I' from Re = 61,692 to Re = 123,381 demonstrates an increase
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by a factor of ® 1.65. However, the further doubling of Re has led to an increase by a factor
of = 1.26 instead. This trend does not exist in the laminar regime, as we consistently witness
doubling in I' upon doubling Re. The rise of Dp, however, hints at the presence of some
nonlinear trend when compared to its progression in larger Re, as shown in Table 7.2. However,
this requires further scrutiny to validate this trend.

7.4.3 Bubble Cluster Shape-driven Acoustic Attenuation

Nevertheless, it has been interestingly observed that the general trends of both @ and I' remain
true to the exact solution in both laminar and turbulent regimes, where « is seen to decrease,
while I' increases, with the increase in turbulence of the flow regime. While this points in the
direction of a proper explanation to the constant location of the observed stagnation point,
however, the justification remains inconclusive. Specifically, it is not yet understood as to why
the acoustically-driven flow is strongly attenuated with the presence of MBS compared to the
cases with the presence of CBS. Therefore, in an attempt to scrutinize this relationship, we took
the initial step to delve deeper into justifying the bubble structure arrangements. By
acknowledging the horn-proximal flow features, specifically its vorticity, it can be suggested
that the arrangement of bubbles can be induced by nature of the flow recirculation. Related
studies conducted by Stommel [220], Toobey et al. [221], Manton [222], and Maxey [223] all
explore the gravitational settling of heavy particles within vortex flows. All of Stommel [220],
Toobey et al. [221], and Manton [222] have explored the entrapment of assumingly small
spherical particles in two-dimensional, incompressible cellular flows. Maxey [223], however,
has further defined the importance of accounting the compound effect induced by particle
inertia and virtual mass on the gravitational settling of these spherical particles. In situations of
coherent vortical structures, Tio et al. [224] and Ganan-Calvo and Lasheras [225] have
investigated the long-term evolution of particle dynamics. Based on a four-parameter, and later
five-parameter, dynamical system they have developed by accounting for the effects of particle
size, turbulent intensity, vorticity distribution, and gravity, they were able to categorize the
suspension mechanisms of particles of different densities. Effectively, a particle-path function
was defined as

¢ = W (x,(0), ¥, (1)) (7.45)

to represent a stream function W evaluated at a given instantaneous particle position
(x, (), y,()) along its respective trajectory. From that, they have further derived a rate of change
of @ as follows

do 9w

dxp v
dt ~ ox

p dt  0dy

dy,
L dt

=ul - wl (7.46)

However, in the case of buoyant particles, such as bubbles, it has been well-established that
bubbles released in rotational flow fields tend to be entrapped by a series of equilibrium points,
if their rise speed in still fluid Q is below a given threshold based on an observation made by
Maxey [223] when investigating Langmuir cellular flow fields. Upon exceeding the threshold
value of Q, bubbles may escape this 'captivity' and to rise and accumulate along asymptotic
paths. As such, this observation was later modeled and confirmed by Tio et al. [224] by
numerically showing the instantaneous locations of a grid of bubbles that entered and escaped
captivity of the vortex and highlighting their accumulated suspension points above the vortex.
Aside from the primary and secondary Bjerknes forces, it can be argued that the buoyant nature
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of bubbles can be a primary factor that governs their accumulation and formation into the
variety of bubble structures witnessed under the acoustic horn. While this grants us a good
indicator of the underlying role the proximal vortex has on the bubble structure, this
justification may not be applicable for our numerical results, as the modified ZGB model does
not model vapor as particulates but more as local nucleation governed by the local pressure
gradient. As such, we have dissected the time-averaged flow behaviours observed in each case
that are categorically attributed to the vortex presence and its core position.
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Figure 7.6: Time-averaged axisymmetric contour and vector plots of (up) vapor volume fraction and (down) axial velocity
for flows driven by (a) the 3 mm horn tip and (b) the 6 mm horn tip. The red vertical line outlines the horn tip and the red
asterisk marks the vortex core center.

As shown in Figure 7.6 and Figure 7.7, contours and vector plots of the time-averaged flow
field were extracted for the aforementioned horn-type reactor cases of D =3, 6, 13, and 16 mm
horn tips. Upon initial observation, a primary vortex consistently positioned = 0.5 mm above
the horn tip edge appears in all horn-type reactors. However, a secondary vortex surfaces under
the larger horn tips, namely the 13 and 16 mm horn tips, positioning itself relatively closer to
the horn axis. Categorically, cases with bubble structures resembling MBS sustain the primary
vortex only, while cases with CBS are seen to sustain both the primary and secondary vortices.
It is crucial, however, to note that both primary and secondary vortices were only observed to
shift radially but never axially. with the increase of the horn tip diameter. Perhaps, this may
only emphasize the locality of the vortices effect on the bubble structures and its negligible
effects on the freestream flow. Another general trend observed, regardless of the diameter size
and the bubble structural shape, is the flow behavior from within the bubble structure itself.
Upon axially examining the progression of the bubble structure, a velocity gradient is revealed.
Specifically, the velocity at the tip surface unanimously starts at vzys, however, it begins to
gradually decrease to a minimum velocity. Interestingly, the initialization of the velocity
recovery phase coincides with the interface of the cavitation structure. While the phenomenon
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itself has been observed across all reactor geometries, a deeper qualitative observation would
reveal that the extent of this velocity gradient varies from one reactor to the other. Looking at
the axial velocity contour plots about the horn axis, one can qualitatively note an offset distance
following the negative velocity gradient from the horn tip surface, where maximum velocity is
achieved, till the instance where the lowest velocity. When comparing this offset distance and
marking it on the vapor volume fraction contour plots, we find that this marks the bubble
structures' core length.
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Figure 7.7: Time-averaged axisymmetric contour and vector plots of (up) vapor volume fraction and (down) axial velocity
for flows driven by (a) the 13 mm horn tip and (b) the 16 mm horn tip. The red vertical line outlines the horn tip and the red
asterisk marks the vortex core center.

To quantitatively scrutinize this, Figure 7.8 plots the velocity gradients achieved about the axes
of all four horn reactors. By nondimensionalizing the z-axis with respect to the diameter of the
respective horn reactor, the offset distance appears to shrink with the increase of D. From
Figure 7.8, the offset distances are measured at 0.27, 0.20, 0.12, and 0.11 for cases of D = 3, 6,
13, and 16 mm, respectively. In retrospect, however, this offset distance increases instead from
0.81 mm, 1.2 mm, 1.56 mm to 1.76 mm for the aforementioned diameters, respectively.
Nevertheless, by taking scaling into account, we notice that the core size increase is rather
insignificant compared to the increase in size of the horn reactor. Furthermore, another
interesting trend in the curves drawn in Figure 7.8 was the hump that occurs marking a
maximum change in velocity before reaching a steady-state velocity value downstream of the
horn. The insights provided by this hump lies in its midpoint, as it highlights the velocity
gradient and recovery marking the axial length of the bubble structure from the horn tip.
Surprisingly, the maxima reached at each hump is very consistent, as it equates to ~ 0.1 ms™2.
Moreover, with nondimensionalizing its axial length, we do notice the significant recession in
the bubble structure extension when put into perspective with the tip diameter of the horn
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reactor. Once again, this does not necessarily indicate that the cavity itself is shrinking, as it
shown that the contrary is true in Figures 7.6 and 7.7. However, all this begs the question as to
whether this variation in the velocity gradient is indicative of the bubble distribution within the
bubble structure under the horn.

Therefore, Figure 7.9 has been plotted to illustrate the progression of the bubble population
within each of the bubble structures generated under all considered horn reactors. The bubble
population was calculated within mesh cell n by multiplying the volume of the cell V; by the
interpolated vapor volume fraction occupying cell n and dividing it by the volume of the
bubble, given that the implemented modified ZGB model assumes a constant equivalent bubble
radius R. One of the prominent trends one may notice is the linearity and nonlinearity of the
bubble distribution within MBS and CBS, respectively. The nonlinearity witnessed within CBS
closely resembles an exponential distribution. Moreover, judging by their slopes, it seems that
CBS tends to experience a sharp drop in bubble population density within the structure's center
and the interface, meanwhile, MBS seems to relatively sustain the bubble population density
throughout most of its structure. Generally, it can be said that any increase in the horn tip
diameter tends to increase the rate of decay of bubble population about both structure types.
Interestingly, however, this is compensated for by a drastic increase in the bubble population
near the horn tip. This may indicate the growth in the bubble structure core size and density,
with CBS cores being much denser. However, despite that, all bubble structures' interfaces
seem to sustain the same amount of bubbles of approximately ny = 7,573. As it has been
mentioned that the interface marker, based on the velocity gradient plot in Figure 7.8 is rather
equivalent in all cases, it can be speculated that there exists some form relationship between
the velocity gradient and the bubble density. Perhaps, it can be boiled down to a possible
generation of similar pressure fields at the interface regions that governs the presence of
bubbles. With this explanation, it can be suggested that the different rates of bubble population
decay is due to the different pressure fields induced by the position of the primary vortex. As
aforementioned in Figures 7.6 and 7.7, the primary vortex core consistently positions itself
about the corner of the horn tip edge, and thus, the vortex position is only up-scaled radially
with the increase of D. Ultimately, the vortex core is found to be positioned further away from
the bubble structure axis leading to a relatively high pressure field about the axis.

In retrospect, this may be a potential justification for the attenuation trend captured by the exact
solution of the one-dimensional mathematical formulation of the acoustically-driven axial
flow. It seems that a more linear bubble population distribution throughout the bubbly structure
has the tendency to increase the acoustic attenuation of flow, as opposed to a more biased
bubble distribution towards the near-horn region demonstrated by the CBS found under the 13
and 16 mm horn reactors.
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7.5 Conclusion

This chapter presented a numerical study that delves deeper into understanding the averaged
flow behavior under each of the horn tips considered in order to establish a better idea on the
steady-state two-way coupling between the toroidal vortex and the cavity structure. Upon time-
averaging the flow, an early stagnation point was revealed at a point 2D away from the horn
tip with a diameter D.

A 2D axisymmetric simulation was conducted to predict the flow about the horn's axis of
multiple horn-type reactor geometries, D = 3, 6, 13, and 16 mm. With respect to that, we have
tracked the trends of dimensionless quantities, such as the dimensionless velocity 6, to
highlight demonstrate its convergence to 0 at a non-dimensional axial distance of { = 2D. We
numerically obtained the exact solution of a non-dimensional conservation of momentum
equation governing the flow in the axial direction. This involved resolving newly emerged
dimensionless model coefficients, such as the dimensionless absorption coefficient a and the
under-relaxation factor C. These factors were artificially fitted into the equation based on the
least square fitting method that aims to match the curves computed from the CFD calculation.
An odd trend was demonstrated by the coupled absorption coefficients, « and I'.

We witnessed a steady drop in a with the increase of the horn tip diameter, or Re, while I' was
seen to steadily increase instead. We hypothesize that this factor's gradual prominence sources
from the fact the flow is inertia-dominated, as the flow becomes more turbulent with larger D.
Upon comparing between the behavior of I' in a laminar regime and a turbulent regime, we
observed that I" sustains direct proportionality with Re in which a double in the value of Re, in
turn, induces a double in the value of I'. On the contrary, this was not observed in turbulent
regimes, as [''s increase gradually decays with the increase in Re. Based on these accounts, we
are keen to hypothesize that the attenuation factor 2D does not only attribute attenuation to the
flow regime, but it also sustains an underlying link to the cloud bubble structure and self-
organization.

While most cases of horn-type reactors operate under the ‘fast streaming’ category, the
nondimensionalized equation obtained provides a level of controllability of proximal flow
about the horn through manipulation of the empirical constants of both a and . Despite that,
it is still crucial to conduct a set of experiments to validate the observed trends and strengthen
confidence in the proposed scaling law.
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8 The Two-way Coupling between Acoustically Generated Vortical
Flows and Bubbly Activity Zone Dispersion

8.1 Introduction

In Chapters 5, 6 and 7, the acoustically generated vortical-type flows were introduced as
phenomena specific to horn-type reactors. Chapter 6 has scrutinized the source of their
formations and their development to ultimately describe the generated vortical flow’s lifecycle.
Moreover, Chapter 7 takes on the underlying effect of the presence of such vortical structures,
and that is the establishment of a scalable stagnation plane with respect to the horn tip diameter.
The mutual theme in these two chapters, however, is the underlying influence between the
attached bubbly structures along the horn tip on the attenuation of the acoustic flow. It was
made clear that different cavitation structures have different attenuation capabilities and
mechanisms that alter the propagation of the acoustic wave throughout the medium. This can
potentially have a significant impact on the performance of the reactor. Therefore, in this
chapter, further scrutiny of the acoustofluidic mechanism of this attenuation takes place in aims
to provide the missing link to justify the nonlinear variety in performance, and more
specifically, reactivity of horn-type reactors.

The fundamental mechanism of the resultant reactivity of a horn-type reactor has been
extensively discussed, in Chapter 2, where the collective collapse of acoustic bubbles produces
local pressure and temperature conditions that satisfy the formation of hydroxyl (OH -),
hydrogen (H -) and hydroperoxyl (HO, -) radicals in a given water medium. The presence of
these volatile radicals then creates active zones that react with compounds and substrates within
their vicinity. As such, it has been agreed that there exists an underlying correlation between
the concentration of free radicals and the dispersion of bubble populations within the domain
[149]. Therefore, many studies have explored horn-type reactor optimization based on the
premise of ‘taming’ the formation of bubbles within the system [149, 209, 226]. Several
investigations have noted the influence of a multitude of deterministic parameters that impact
the formation of cavitation bubbles, such as acoustic power, oscillation frequency, domain
temperature, and even the geometry of the ultrasonic horn, specifically the tip diameter. For
instance, Hatanak et al. [227] and Kojima et al. [226] investigated the underlying dependency
of sonochemical efficiency on the acoustic power. Both have observed nonlinearity in the
efficiency trends with the linear increase in acoustic power that starts off as quenching and
ultimately ends as extinguishing. Both studies have suggested that this trend could potentially
be due to the increase in active bubble population per unit volume.

This nonlinear behaviour was further carried forward in the observations made by Viciconte et
al. [228], however, conclusions made here diverge away from the aforementioned suggestion
on the bubble population. In this exploration, the authors have scrutinized the reactivity of
multiple ultrasonic horns of different tip diameters. Essentially, horns of larger tip diameters
appear to produce larger concentrations of the fluorescent product 70HC, and ultimately,
achieving a higher chemical efficiency, defined as:

Cronc X BDEoy
Nchem = Au (8.1)

where €,y 1s the concentration of this fluorescent product, which is assumed to be an indicator
to the concentration OH radicals, BDE, is the bond dissociation energy, and Au is the internal
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energy absorbed by the reactor. However, the nonlinearity finally surfaces in the vapor volume
trends. While generally, an increase in the horn tip diameter from 3 mm to 40 mm does in fact
increase the vapor volume produced, however, an inflection point emerges at the 14 mm
diameter in which there is a noticeable drop in the vapor volume in comparison to the 7 mm
tip before increasing along with the diameter to 40 mm. This leaves sufficient room to assume
that the present differences in the cavitation structure and dynamics have an underlying impact
on the reaction rate of the reactors. Viciconte et al. [228], along with Rivas et al. [229] and
Ashokkumar [230], have reached the same conclusion suggesting that smaller dispersed
bubbles induce a dissipation of higher energy density upon their collapse in comparison to
larger bubbles. In turn, this leads to a higher production of radicals. Given that larger tip
diameters sustain the presence of such small bubbles, this phenomenon is then reflected in the
increasing 7., With the increase of the tip diameter.

As it appears, there is a lot of speculation on the reason behind the nonlinear performance
trends that are seen to converge towards the role of the cavitation structure. Based on the
previous investigations in Chapters 6 and 7, we understand that the proximal vortical flow field
about the horn tip maintains some governing role over the cavitation structure structural
characteristics. This then provides us with a strong foundation to scrutinize the interplay
between proximal vortex characteristics and the cavitation structural and flow dynamics.
Similar to the methodology followed in the aforementioned explorations, the investigative
methodology is an extrapolation of the CFD configuration described in the previous chapters
to facilitate the assessment of the cavitation structure and its accompanied proximal velocity
and pressure fields under horn geometries summarized in Table 8.1. This parametric analysis
is inspired by Viciconte et al.’s experimental work [228] and initialized by a collaboration with
the authors to further scrutinize their observed trends.

8.2 Ultrasonic Horn Geometries and Reactor Configurations

The range of reactor geometries and operating configurations considered in the presented
exploration in this Chapter are fundamentally based on the experimental setup implemented in
Viciconte et al. [228] in which a 200 mL aqueous solution is ultrasonically irradiated by
titanium probes, of varying diameters tabulated in Table 8.1, submerged 25 mm into the
domain. These probes are excited by a Hielscher ultrasonic transducer UP400S that operates at
an oscillation frequency of 24 kHz and sustains a maximum power of 400 W. With this
configuration, controllability of the oscillation amplitude is facilitated through the power
regulation of the device, represented as percentage powers with respect to the maximum power.
Experimentally, this percentage is translated to a metric amplitude and a calorimetric power.
Furthermore, an immersed thermocouple in the solution, specifically positioned at the corner
of the cylindrical container, to monitor the solution temperature without interfering with the
ultrasonic multiphase flow field and wave propagation. Lastly, the electric power extracted by
the ultrasonic transducer was recorded using a socket-type multimeter. Numerically, on the
other hand, this experimental setup was replicated by exactly implementing the same domain
created and utilized in Chapter 6, with the oscillation amplitude being governed by a UDF
implementing Eq. 2.36. It is important to note that the experimental study scrutinized only ¢p=
3,7, 14, and 40 mm. However, based on the aforementioned nonlinearity observed between
the 14 mm and the 40 mm horn tips, we have interpolated two additional configurations,
namely the 24 mm and the 32 mm horn tips to deeply explore and characterize this inflection.
Figure 8.1 illustrates the fitted trendlines obtained based on the configurations implemented
experimentally to define the interpolation scheme.
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Table 8.1: Different ultrasonic horn reactor configurations and operating conditions. The bold text refers to the interpolated
operating horn reactor geometries and their respective oscillating parameters.

¢p (pm) Anom (%) Ay (um) £2.35 ¢p (um) Anom (%) Ay (um) £2.35
30 23.54 30 14.70
50 25.89 50 26.48
3 70 47.08 24 70 30.52
90 62.38 90 41.09
100 64.74 100 41.87
30 - 30 9.13
50 36.39 50 16.76
7 70 50.47 32 70 18.83
90 64.55 90 25.37
100 64.08 100 25.65
30 19.95 30 2.35
50 29.34 50 2.35
14 70 39.91 40 70 4.70
90 53.99 90 5.88
100 55.16 100 5.88
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Figure 8.1: Fitted trend lines plotting the variation of horn tip displacement amplitude A, (in pm) with respect to the horn
tip diameter ¢p (in mm) operating at different power level conditions.
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A second-order line fitting scheme was used to facilitate the interpolation of the acoustic
configurations of horn diameters between 14 mm and 40 mm. For the case of 4,,5,, = 30%, it
is understood that there is relatively limited number of data points, this single-point absence is
due to the lack of experimental measurements at that operating condition. Nevertheless, the
same polynomial fit was applied uniformly to all cases to maintain a consistent interpolation
methodology across different power levels and to ensure comparability of trends. Despite this
being a limitation of the presented dataset, the fitting still provides reasonable interpolation
within the measured range, while avoiding introducing additional bias through the use of
different fitting methods.

Moreover, a secondary consistent trend noticeable in Figure 8.1 is the slight increase in the
displacement amplitude of the 7 mm horn tip at all power levels alike. Given a constant power
level, this hike could be the interplay between impedance matching, resonant frequency tuning
and radiation damping. At this intermediate diameter, an impedance match between the horn
and the liquid was established and thus allowing for efficient energy transfer and maximum
displacement. Meanwhile, at the small tip diameter, a poor impedance matching might have
limited achieving displacement amplitude. On a similar note, the increased radiation resistance
and modal redistribution with larger tip diameters led to a continuous reduction in their
displacement amplitude.

8.3 Results and Discussion

8.3.1 Attached Cavitation Macrostructural Dynamics

Building on what was previously observed in Chapters 6 and 7, the observed time-averaged
radial profiles sustained by the attached cavitation macrostructures overlap with the
aforementioned trends, shown in Figure 7.3, by similarly demonstrating the same transition
from MBS to CBS when moving from small horn tip diameters to larger diameters. However,
observations of this trend begin to gradually diverge when reducing the power input into the
ultrasonic transducer. Essentially, MBS found in smaller diameters remain present even at
lower acoustic powers, however, they do shrink in size. However, upon climbing towards the
14 mm horn tip, the attached macrostructure begins to flatten instead, merely resembling a
layered cushion placed on the larger horn tips. With further increasing the diameter from 14
mm to 40 mm, this cushion proceeds to become incrementally thinner.

Nevertheless, the cavitation structure shape here is merely a shallow comparison between the
cavitation performance of the horn-type reactors and do not reveal much about their influence
on the reactor’s reaction rate. Instead, we speculate that perhaps the size of the cavitation and
its oscillating frequency may reveal underlying correlations between the structure and the
reactor chemical performance, as they may act as indicators to the extent of active zone
presence within the domain. The typical lifecycle of an acoustic cavitation bubble disclosed in
Chapter 2.2.1 summarizes the expansion of micronuclei through rectification diffusion or even
coalescence with one another due to secondary Bjerknes forces, followed by reaching their
resonance size that eventually leads to their collapse. This mechanism then disperses smaller
active bubbles that undergo the same process [231]. By taking inspiration of this well-
established mechanism, we attempted to draw analogous themes from the single-bubble
lifecycle with the attached cavitation cluster. It was assumed that the bubble cluster attached to
the horn tip is a single, continuous cavitation body — more like a large single bubble with an
interface defined by its outermost layer that maintains a vapor volume fraction equal to 0.1. To
mirror the dynamic behaviour of a bubble, we equivalently translated the cavitation structure
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attached to the horn tip of diameter D into a single spherical bubble structure with a constant
equivalent radius R, that retains the same vapor volume Vg, as shown in Figure 8.2.

D

[

VB ﬁ

Figure 8.2: The translation procedure of the attached cavitation macrostructure on a horn tip surface of diameter D to an
equivalent single spherical bubble of constant equivalent radius R.q and vapor volume V.

Moreover, the dynamic oscillation, and specifically the resonance, of this equivalent bubble is
assessed by adopting the previously established bubble natural frequency generalized model
by Brennen et al. [30]. To derive the said model, Brennen et al. [30] started by neglecting both
the thermal and compressibility effects and decomposing p., in the Rayleigh-Plesset equation,
stated in Eq. 2.3, into a mean value p,, and a small perturbation of the pressure amplitude p
with a radian frequency w, such that

Peo = Poo + Re{DeE/*t} (3.2)

the bubble linear dynamic response becomes

R = Rp[1 + Re{pe/*t}] (8.3)

where Ry is the equilibrium bubble radius sustained at p,, and ¢ is the bubble radius response
in the form of a complex number. This way, Re|g| is simply the oscillation amplitude of the
bubble radius. Moreover, ¢ phase represents the difference between p,, and R. In that regard,
by replacing Eqns. 8.2 and 8.3 into Eq. 2.3, an expression that defines the bubble radius
frequency is formulated as follows

W —joy LB g, ]:L~ (8.4)
RZ  piRE\Rg ot piRE@ ’
where
pGE_poo_pv'i'R_E_W (8.5)

For a given perturbed pressure amplitude p, the maximum amplitude response appears to occur
at a frequency wp, which can be evaluated by the minimum radius value in the left-hand side
(LHS) of Eq. 8.4. This, in turn, gives us the following
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(3chE - %) 8v?

o (8.6)
piRE Rg

Wp =

With this equation, and assuming negligible damping of the bubble radius oscillation induced
by viscous effects, one can ultimately obtain an expression for the natural frequency of the
bubble

1

1 SH]Z2
_ . S 8.7
wN—[p1R§{3k(pm ) + 23k — 1) RE}] (8.7)

where S is the liquid surface tension and k is a constant equal to 1 in our case, assuming that
the bubble oscillation is an isothermal process. Here, it becomes noticeable that the natural
frequency wy becomes solely dependent on the pressure gradient (p,, — p,,). More popularly,
Minnaert [277] reduced this equation to

_ 326

Wy = R_E (88)

given that the single bubble is present in an aqueous domain at atmospheric conditions. In that
regard, we have utilized the said equivalencies and frequency definitions on the acoustic
cavitation structures observed in the stated cases in Table 8.1. Specifically, we started with
extracting the monitored vapor volume signal and implementing FFT on each of them to obtain
the underlying oscillation frequency, assuming that this represents the resonance frequency of
the macrostructure. This assumption sources from the natural frequency definition in Eq. 8.7
in which it expresses that bubble resonance occurs when zero viscous damping is assumed on
the bubble radius. Likewise, the modified ZGB cavitation model derived in Chapter 4 is based
on a simplified Rayleigh-Plesset equation, expressed in Eq. 4.13, that neglects the influence of
viscosity on the bubble radius progression. Following that, the vapor signals and their
respective FFT are summarized in Figures 8.3 — 8.7.
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Figure 8.7: Vapor volume signals and their respective frequency response plots for all cases of Apom = 100% where (a) -
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Furthermore, by calculating the RMS of the vapor volume signal, we can then evaluate the
time-averaged equivalent radius of each case by utilizing the following volume equation of the
sphere.

4
Vp = SR, (8.9)

With both frequency and radius data obtained, data points were plotted alongside the Minnaert
resonance curve to compare the potential overlap or translation of the data points obtained from
the established Minnaert resonance curve. These datapoints were categorized based on the horn
tip diameter they were generated under. Therefore, based on Eq. 8.8, we have fitted a curve
similar to the Minnaert resonance curve along each category of points to illustrate the
differences. This comparison is highlighted in Figure 8.8 below. Generally, it is shown that
with the increase of the horn tip diameter, the curve translates upward deeming that the
cavitation structures generated are ultimately larger in size and oscillate at increasing
bandwidths. Interestingly, the 3 mm tip diameter almost overlaps with the Minnaert resonance
curve suggesting that the structure under such horn tip acts as a bubble at atmospheric
conditions.
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Figure 8.8: Comparative plot showing the resonance frequency of each cavitation macrostructure obtained under each horn
tip diameter.

Furthermore, another interesting trend revealed is the nonlinearity that occurs past the 14 mm
horn tip. With the increase of the tip diameter from 14 to 40 mm, the curve begins to translate
downwards instead indicating lower oscillation frequencies, however, with larger cavitation
structures. Essentially, the large cavitation structures observed under the 14 mm to the 40 mm
horn tips are not due to their axial extensions but their flat spreading along a larger surface area
of the horn tip. Therefore, vapor within their respective domains occupy more volume. These
trends were in fact obtained numerically for each case, however, to ensure confidence in these
trends, we have extracted experimental data and plotted them alongside the numerical results,
as shown in Figure 8.9. Given that the numerical setup used is the same setup validated in
Sections 4, 5 and 6, this plot acts as an extended validation and reinforces the capability of this
configuration to comparatively capture the experimentally observed oscillatory behaviours of
generated cavitation structures. While additional quantitative comparisons could further enrich
the validation, the comparative plot here focuses on demonstrating the model’s ability to
reproduce the frequency scaling behaviour with respect to the horn tip geometry, which is the
physical phenomenon of interest. Ultimately, this provides sufficient ground to assess the
reactors’ performance from a purely hydrodynamic perspective.
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Figure 8.9: Validation plot comparing the numerical results with the experimental results by showing the resonance
[requency of each cavitation macrostructure obtained under each horn tip diameter.

Here, a small discrepancy between the numerical and the experimental results can be seen
highlighting the numerical simulation’s relatively small underprediction of the frequency
trends. Nevertheless, the fitted lines generally precisely capture matching trends and dynamic
behaviours of all bubbly structures. The fitted trendline translations were plotted using the
following generalized function of the Minnaert resonance expression

wn=E;+b (8.10)

where a and b are fitting coefficients, where a = 3.26 and b = 0 for Minnaert resonance
equation. As mentioned earlier, this is generally obtained by solving the natural frequency
equation expressed in Eq. 8.7 by assuming atmospheric conditions. This way, it can be said
that the manipulation of these coefficients for the different trendlines indicate a possible shift
in the value of the pressure gradient in Eq. 8.7 away from atmospheric conditions. To prove
this, we have attempted to replot the fitted trendlines using Eq. 8.7 to quantify the exact change
in the pressure gradient term, as shown in Figure 8.10.
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With trial and error, the pressure gradient values were chosen to fit as closely as possible to the
fitted lines. These pressure gradient values were then recorded for each diameter, as illustrated
in Figure 8.11, and plotted against the inlet Reynolds number of each horn tip. What was rather
eye-catching is the remerging of the said nonlinearity in the pressure gradient values as well.
Initially, the pressure gradient seems to increase drastically with the increase in the horn tip
diameter from 3 mm to 14 mm. Afterwards, the inflection point becomes apparent with short
stepdown in the pressure gradient when moving from a 14 mm to a 24 mm horn tip, until it
ultimately, and rather surprisingly, reaches a value almost equivalent to the value observed at
3 mm horn tip. Another interesting point is the overlap of this nonlinearity with the nonlinearity
observed in progression of the Reynolds number. This could be a potential indicator towards
the role of the flow field on the generation of these pressure gradient values. Recalling that
AP = p,, — p,, Where p,, 1s a constant material property referring to the vaporization pressure,
this typically means that it is p,, that governs the value of AP. Essentially, Brennen et al. [30]
defines this term as the ambient pressure of the container a single bubble is settled in. However,
it is obvious that perhaps this definition does not exactly apply for the case of acoustic
cavitation. Instead, it was found that p,, here is defined as the RMS pressure of the domain.
Therefore, p,, will be referred as pgys from this point onwards. As such the questions that rise
from these observations are as follows: (i) what are the factors that govern the value of pgps?
(i1) to what extent is the influence of cavitation’s presence on pgys? (iii) If so, what governs
the structural dynamics of the cavitation structure? The following sections will answer the
raised questions.
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Figure 8.11: The generated pressure gradient by different inlet Reynolds number under different horn tips.

8.3.2 Proximal Acoustic Multiphase Flow Field

As preliminary measures taken to answer the stated queries, we started by isolating this
section’s scrutiny to the triangular inflection region observed in Figure 8.11 formed by the 14
mm, 24 mm, and the 32 mm points. This is to shine light on the underlying factors that play a
role in the establishment of this nonlinear region. Based on the exploration in Chapter 7, it has
been understood that the acoustic wave tends to experience attenuation due to a multitude of
factors, such as the material property of the fluid domain, the presence of impurities, and in our
case, the presence of homogenous phases within the continuous domain. We have already
concluded that the larger the axial presence of cavitation is the more refracted, and eventually
attenuated, the acoustic wave will be. While the conclusion was consistent with our
observations in multiple cases, however, it fails to justify the present nonlinearity here. It is
crucial to note that the investigation conducted in Chapter 7 was a mere change of diameter
while keeping all horn operating conditions constant, i.e. the oscillation amplitude was kept
constant for horn tips considered, while not necessarily physically possible. In the present case,
on the other hand, the oscillation amplitude changes from one tip diameter to another, since the
parameters are based on an experimental setup. Furthermore, the selection of the oscillation
amplitude varies with respect to the power level set for the ultrasonic transducer. As such, the
cavitation flow fields were analysed in both amplitude variation directions.
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8.3.2.1 Flow Field Variations with Tip Diameter Changes

For the first case, we have scrutinized the flow fields of the three diameters during their
operation at 30% power. In a similar fashion conducted in Chapter 7, the flow field parameters
for each case were time-averaged, as shown in Figure 8.12. Going by the shape of the cavitation
structure, it seems as though the macrostructure sustains this sheet-like structure about the horn
tips, only that it appears to get thinner with larger horn tip diameters. This becomes clearer in
Figure 8.13, where the position of the hump starts off the furthest at around ¢ = 0.25 for the
14 mm case and begins to recede until { = 0.1 for the 32 mm case. This attribution between
the grad v, hump location and the cavitation axial extension was proven in Chapter 7. The
slight resemblance of a cone-like structure with the cavitation’s axial extension under the 14
mm tip clearly defines itself as the turning point for the cavitation structure towards a flatter
structure with larger horn tips.

Making preliminary judgements, based on the variation in the operating conditions of the
considered horn tips, the appearance of these flatter structures might be due to the fact that the
same percentage acoustic energy is being distributed over a larger surface area, ultimately,
forcing the horn tip into a smaller amplitude oscillation. In other words, the amount of acoustic
energy transferred to the fluid domain is gradually decreasing with increase in the diameter, as
previously discussed by Viciconte et al. [228]. This also is reflected in the axial velocity
contour plots, in which a gradual deceleration in the acoustically excited flow is demonstrated
when moving from the 14 mm horn towards the 32 mm horn, which may justify the hump size
variation observed in Figure 8.13. However, what is rather eye catching is the pressure
distribution about the horn tip; it appears as though the high-pressure interface perfectly
overlaps the attached cavitation structure wavy interface. This perhaps can be taken as a hint
towards uncovering the correlation between the two.

Recalling the attenuation trends computed using the one-dimensional model in Chapter 7, it is
understood that attenuation of the acoustic wave is in fact governed by the cavitation, however,
it is not governed by its overall size but by its bubble density. With larger horns, we have
observed, both here and in the previous chapter, that the cavitation structure is generally larger,
whether it adopts a sheet-like structure or a cone-like structure. Nevertheless, the attenuation
was proven to be greatest under the smaller horn tip diameters, i.e. 3 mm and 6 mm tips. We
have suggested then that this is probably due to the bubble density and distribution within the
macrostructure. This suggestion is shown to apply in the present case as well, judging by the
trends plotted in Figure 8.14, which were obtained by following the same methodology
discussed in Section 7.4.3. A general overview of the trends will reveal that the rate of decay
of the bubble population within the structures increases significantly under larger tip diameters,
which, in turn, further highlights the shortened axial extension of the cavitation structure.
Moreover, the bubble density, specifically within the structure’s core, seem to sharply drop at
the 32 mm case, while it was quite comparable between the 14 mm and 24 mm cases. In
reference to the pressure distribution observed in Figure 8.12, the acoustic pressure wave
transverses further downstream when faced with a smaller bubble population, and in turn, the
ultrasonic radiation has more influence over the domain. This could be a plausible explanation
to the noted variation in pgys from one case to another, however, it is important to see if these
observations hold true in the remaining power levels before making any ultimatums.
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Figure 8.12: Axisymmetric contour-vector plots of the time-averaged (top) vapor volume fraction (center) axial velocity and (bottom) pressure of the proximal flow about (a) a 14 mm tip (b) a
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8.3.2.2 Flow Field Variations with Power Level Changes

In this subsection, we have taken the 14 mm horn tip and scrutinized all its power levels to
explore the potential impact the increase in amplitude with the same diameter has on the
proximal flow field. At first glance, we can immediately observe that the cavitation structure
gradually grows in size and morph into a closer shape resembling CBS. This axial growth
downstream is highlighted in both Figure 8.15 and Figure 8.16. In Figure 8.16, specifically, the
axial extension can be quantified by the shift in the maximum point of the hump. Interestingly,
the structural extensions of cavitation seem comparable enough in such a way that one can
categorize them in the following groups: (i) low power range (ii) mid-power range and (iii)
high power range. At 30% power, the axial extension reaches 0.25D, while the structure’s axial
extension reaches at about 0.45D at both 50% and 70% power. Lastly, at 90% and 100%, the
axial extension ultimately reaches 0.75D. Moreover, the axial flow seems to drastically
accelerate with the increase of power, which is justified due to the proportional increase in
acoustic energy density distributed about the same horn tip surface area, moreover, this induces
a higher energy concentration being transmitted into the fluid domain through the radiation
column created under the acoustic horn. Using Eq. 7.33, we tabulated the acoustic intensity I,
and the acoustic power density Pj, trends for each power level, as shown in Table 8.2.

Table 8.2: Acoustic horn oscillation conditions and acoustic energy concentration parameters for the 14 mm horn tip at
each power level.

¢p (um)  Anom (%) Ap(um) £2.35  P(W) I (W/mm?) Pp (W /mm?)

30 19.95 120 0.21 0.009
50 29.34 200 0.35 0.015
14 70 39.91 280 0.53 0.021
90 53.99 360 0.81 0.024
100 55.16 400 0.90 0.030

It is expected to observe that the trends of both I, and Pj, are collinear in nature and increasing
with the increase in the power input P, as it shows that the increase acoustic energy
concentration on the surface of the horn tip will eventually dissipate to the fluid radiation
column under the horn tip. One may notice that the energy density within the fluid column is
substantially less than the acoustic energy density about the surface area of the horn tip,
however, this trend surely complies with the simple fact that the energy is being distributed
over a larger volume, and thus the energy concentration is spread thin.

Despite that, the flow field particularly demonstrates a significant change in its behaviour
within the system through the change in the pressure distribution about the horn tip. Essentially,
the once curvy pressure interface appears to smoothen out with a power level increase from
30% to 70%. As what was discussed earlier, this new pressure interface falls in-line with the
smoothened cavitation interface, as well. This gradual transfiguration from a sheet-like
structure to CBS is also reflected in the bubble distribution, plotted in Figure 8.17, based on
the yet another deduction made in Chapter 7 stating that CBS tends to sustain a highly nonlinear
bubble distribution. This is particularly observed for 70%, 90%, and 100% power. Furthermore,
and as one can already predict, a higher power level induces a higher bubble density within the
macrostructure. However, it now becomes of great significance to understand the governing
factors of the bubble distribution and population. Conclusions drawn previously suggesting
that the bubble distribution is a consistent indicator to the cavitation macrostructure’s shape
provides a solid platform to build on in our current case; the question ultimately boils down to,
what governs the bubble structure shape?
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Figure 8.15: Axisymmetric contour-vector plots of the time-averaged (top) vapor volume fraction (center) axial velocity and (bottom) pressure of the proximal flow about a 14 mm tip operating
at (a)-(e) 30% - 100% power, respectively The red vertical lines represent the horn tip, and the red asterisks label the vortex centers.
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8.3.3 Vortical Structural Behaviours

In both Chapters 5 and 6, we have established that there exists a generative locomotive toroidal
vortex produced by the periodic motion of the horn as a recirculation zone on both its sides,
initially. These then reposition themselves downstream along the horn axis forming a couple
of counter-rotating vortices. In Chapter 6, specifically, we have placed major focus vortex-
bubble interaction and ultimately concluded that the vortex has some hand in governing the
lifecycle of the transient cavitation structure through flow manipulations and ultimately
forming an impinging jet that breaks down the continuous structure. As we are currently
scrutinizing the steady structure of cavitation, the role of the time-averaged vortices in the
manipulation of the cavitation structure remains unknown. In Figure 8.12, this primary counter-
rotating vortex seems to be actively present under all three horn tips, of course with different
sizes, eccentricities, and lengths. Moreover, the aforementioned side recirculation is also
present in the steady domain. However, what was rather interesting was the formations of new
secondary vortices along the tip surface of the larger horn tips. Noticing the overlap between
the scattering of these vortices, the pressure distribution, and the flatter appearance of the
cavitation structure hint at a potential coupled effect between them all. In aims to look further
into the change in the vortex property and position with respect to its correlative occurrence
with different cavitation structures, Figure 8.18 zooms into the recurring primary vortex and
plots the respective pressure distribution and the flow curl within the chosen confined
subdomain for the same cases shown in Figure 8.12.

The purpose of this figure is to shine light on what was hinted at in Figure 8.12, and that is the
variation in the pressure distribution and interface is being governed by the presence of the
vortex. One can notice from the previous figure, and the current figure below, that the vortex
centre appears as though it is initially positioned at low pressure node in the 14 mm case,
however, this immediately begins to gradually change with the increase of the tip diameter.
Moreover, upon plotting the curl of the velocity vector field, the vector field within the
confinement of the vortex core comes across as initially very rotational, however, its vorticity
begins to dissipate with the increase in the tip diameter hinting at a possible weakening of the
vortex. Usually, when a vortex core loses its vorticity, it starts to slow down leading it to shift
from its inertial-dominated behaviour to a more viscous-dominated behaviour. At this point,
its circulation begins to significantly dissipate, and its vorticity is seen to diffuse. However, to
quantify this effect and precisely judge the transformation of the primary vortex under scrutiny,
the vortex Reynolds number has been computed for each case through the following expression

r
Rey =~ (8.11)

where I is the circulation around the vortex confined region, which is evaluated by

r= fﬁ-d§= ffwsz (8.12)
Cc S

Here, I is defined in two ways, the first being the line integral of the velocity field # over a
closed curve C, where ds = ¥ dt. Moreover, this is equivalent to the double integration of the
angular momentum in the z-direction over a closed surface S. Provided the curl in Figure 8.18,
w, can directly be computed using the following relationship
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1
wZ=EV><v (8.13)

Ultimately, this way, we can use the second definition of I to interpret the value of circulation
and replace it in Eq. 8.11 to obtain Rey,. The vortex Reynolds number for each case in Figure
8.18 are 32.6, 14.6, and 4.57 for the 14 mm, 24 mm, and the 32 mm tips, respectively. The
obvious trend is that the viscous effects gradually overcome the inertial effects on the vortex
causing its vorticity to dissipate much faster. This in turn justifies the pressure change in the
low-pressure node at which the vortex centres lie in, since the insufficient sustenance of vortex
rotation prevents the creation of a low-pressure node proximal to the horn tip. As a result, this
may be the reason behind the flattening of the cavitation structure; the proximal pressure field
is insufficiently low to encourage any further nucleation downstream of the horn tip.

On the other hand, however, a change in the power input into the 14 mm horn tip resulted in
what was already observed in Figure 8.15. In Figure 8.19, the incremental increases in the
power level were generally observed to facilitate larger steady high-pressure zones proximal
to the horn tip, however, no significant change to the vortex position was observed at all.
Instead, the vortex was seen sustaining its high vorticity and minimizing its viscous dissipation,
almost acting like an ideal vortex. Interestingly as well, the vortex core seems to consistently
appear at a low-pressure node, which appears to partially facilitate the axial extension of the
cavitation structure observed in Figure 8.15. This is of course a compound effect of a more
inertia-dominated vortex behaviour and a higher amplitude of oscillation of the acoustic wave
that generated these low-pressure nodes. This observation is supported by the computed values
of Rey, for each power level where it was found that Re;, = 32.60, 611.17, 549.67, 782.00, and
941.14 for power levels 30% through 100%, respectively. As it was concluded that the
cavitation structural shape influences the propagation of the acoustic wave throughout the
domain, it leads us to think that the said variation in the vortex structural behaviour does in fact
have moulding capabilities over the cavitation structure through manipulations of the pressure
field. As such, this ultimately controls the equivalent radius obtained for each case. Moreover,
manipulations of the size and shape of the cavitation structure then allow for the control of the
extent of attenuation of the acoustic wave that, in turn, influence the value of pgy,s. Therefore,
this directly influences the observed variation in the resonance frequency of the
macrostructure’s oscillation.
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Figure 8.18: Axisymmetric contour-vector plots of the time-averaged (top) curl and (bottom) pressure of the proximal flow about the closest vortex to the horn axis of the (a) 14 mm tip (b) 24

mm tip and (c) 32 mm tip cases all operating at 30% power.
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8.3.4 Bubble Dispersion and Active Zone Creation

Moving slightly downstream from the horn tip and the attached cavitation, we experimentally
uncover yet another major difference in the transversion of acoustic cavitation bubbles,
summarized in Figure 8.20. As it appears that the vapor far-field comprises of relatively smaller
bubbles in comparison to the bubbles agglomerated within the attached cavitation
macrostructure, the presented numerical configuration is unable to capture the vapor nucleation
in the downstream region. Specifically, this inaccuracy sources from the implemented
cavitation model, where it assumes that the nucleating bubbles typically attain a constant
equivalent radius of 25 X 1073 m. As such, anything smaller is averaged out and neglected.
Essentially, the difference observed was that with smaller horns, 3 mm and 7 mm tips, the far-
field cavitation bubbles appear as nanoscale bubbles that independently transverse downstream
without any traces of coalescence. However, upon observing the far-field under larger horns,
14 mm and 40 mm tips, we observe that these bubbles begin to decelerate in their downstream
motion, as shown specifically under the 14 mm horn, and instead begin to coalesce and
agglomerate in place, as shown under the 40 mm horn.

(a) 3 mm probe, 100% (14.4 W)

(b) 7 mm probe, 100% (33 W)

(c) 14 mm probe, 30% (32 W)

(d) 40 mm probe, 70% (36.5 W)

10 ps 15 us 20 us 25 ps 30 ps 35 ps 40 ps 45 ps 50 us

Figure 8.20: Sequential high-speed frames of instantaneous transient cavitation under (a) 3 mm horn tip operating at 100%
power, (b) 7 mm horn tip operating at 100% power, (c) 14 mm horn tip operating at 30%, and (d) 40 mm horn tip operating
at 70% power [228].

Additionally, an interesting attribute that was observed lies within these bubbles’ oscillations,
as their oscillation frequency appear in line with that of their respective macrostructure’s
oscillation. Therefore, we are keen to hypothesize that there exists an underlying interaction,
or at least a correlation, between the macrostructure and the far-field vapor. As we have already
established, the toroidal vortex tends to be more turbulent and ideal with smaller horn tips,
while it is more viscous-dominant with larger tips. Considering that the vortex found under
smaller tips tend to sustain their high-speed recirculation, it could probably be said the observed
bubbles transverse along the established path by the vortex downstream of the horn tip. As for
larger horns, the vortex tends to viscous dominant resulting in a slower, more dissipative
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recirculation. Therefore, these nanobubbles appear rather stationary, which facilitates their
agglomeration and coalescence. Furthermore, if we were to draw parallels between the
observed far-field bubble motion and the bubble distribution streamlines discussed in Chapter
7, one can further highlight the potentially bigger role the vortex has over the far-field
behaviour of these bubbles. It was essentially discussed that buoyant particles, i.e. cavitation
bubbles, tend to follow path lines established by the proximal vortex [221-223]. However, these
types of particles end up getting entrapped at equilibrium points within the vortex if their rise
speed does not exceed a given threshold Q empirically defined by the vortical flow field [223].
In a previous study scrutinizing Stuart vortices, these bubbles were seen accumulating at
equilibrium points in such a way that remarkably resembles a ’cat’s eye’, ultimately matching
the shape of the Stuart vortex [224]. The three main equilibrium points are highlighted in Figure
8.21.

Stuart vortex closure

. 1

Buoyant particle path

Figure 8.21: A boundary streamline of a Stuart vortex, or ‘cat’s eye’, showing the typical path of a buoyant particle takes
within the vortex. Points labelled 1, 2, and 3 represent the equilibrium points observed by Tio et al. [224].

This comes across as potentially analogous to what we observed in the far-field of the 40 mm
case. The agglomerations of bubbles formed, represented by the darkened clusters, downstream
of the horn tip may just be stable equilibrium points at which bubble coalescence and
agglomeration is strongly encouraged. Additionally, this falls in line with the position of the
vortex resolved in the numerical simulation in Figures 8.18 and 8.19, where the primary vortex
falls within approximately 2-3 mm axially away from the tip. This can then justify the
distributions of vapor zones areas under the different horn tips observed by Viciconte et al.
[228], as summarized in Figure 8.22. Given that Viciconte et al. [228] have observed a more
polydisperse stationary vapor regions in the far-field under the more chemically efficient horn-
type reactor, i.e. 40 mm case, it can be added that the additional low frequency oscillation of
these agglomerates may further facilitate the production of OH radicals and enhance the
treatment of water pollutants.
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Figure 8.22: Sequential processing of high-speed frames to extract the histogram distribution of far-field vapor regions
areas under the (a) 7 mm tip operating at 100% power, (b) 14 mm tip operating at 30%, and (c) 40 mm tip operating at 70%
power [228].

8.4 Conclusion

This chapter presented both a numerical study that explores the structural dynamics of the
attached cavitation macrostructure and its relationship with production of hydroxyl radicals.
Through leveraging previously observed multiphase flow dynamics, this chapter generally
provided a practical perspective of the primary role of acoustically induced proximal flow in
governing the overall performance and reactivity of the horn-type reactor. Based on
experimental observations made by Viciconte et al. [228], it was initially detected that the
production of radicals had achieved the highest yield under the 40 mm horn tip, although the
attached cavitation structure was the thinnest, in comparison to the structures observed under
smaller horns, and had no axial presence downstream of the domain.

As a means to scrutinize this behaviour, the same two-dimensional axisymmetric numerical
setup configured in Chapters 6 and 7, was utilized to conduct a parametric analysis considering
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multiple horn tip sizes, namely 3-, 7-, 14-, 24-, 32-, and 40-mm horn tips operating at five
different power levels, 30%, 50%, 70%, 90%, and 100% power. As such, a two-way analysis
examining the performance variation of the horn-type reactor with respect to both the tip
diameter and the oscillation amplitude. By considering the attached cavitation macrostructure
as one continuous bubbly body, we have assumed equivalency between the attached structure
and the structure of a perfectly spherical bubble. Well-established structural models and
attributes of a spherical bubble were assumed applicable to the observed macrostructures,
specifically, the bubble oscillation models were implemented to describe the oscillation of the
macrostructure within each design point.

Generally, the macrostructures observed appeared to be rather in-line with what was observed
previously in Chapters 6 and 7; small horn tips facilitate MBS while larger horn tips produce
CBS. However, with the change in the horn’s amplitude, it was noted that both MBS and CBS
tend to initially adopt a sheet-like structure at low power levels but eventually achieve their
respective fully developed structures at higher power levels. Moreover, by following the
generalized bubble resonance model and the Minnaert resonance model, we have observed that
small MBS oscillates at a much higher bandwidth when compared to the larger CBS observed
under larger horn tips. Justifications of this trend sourced from the vortical flows predicted by
the numerical simulations. It appeared as though the vortex gradually becomes viscous
dominated, as its core’s vorticity dissipates at higher rates. This loss of rotation in the vortex
core leads to the inability of generating a low-pressure node at the vortex location, and thus,
preventing the attached cavity from further nucleating and expanding downstream from the
horn tip. As it is noted that the oscillation frequency is governed by the pressure gradient within
the domain, the shrinking in the cavitation structure decreased the attenuation of the acoustic
wave propagation, ultimately, facilitating the proportional decrease in the resonance frequency
of the cavitation structure. As a result, correlation conclusions can be drawn suggesting that
low frequency oscillations of the sheet-like structure, in addition to the stationary polydisperse
vapor regions, can facilitate larger yields of hydroxyl radicals and create more activity regions
throughout the domain.
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9 Conclusions and Future Works

The presented thesis had dedicated aims and objectives to precisely define the working
principle of horn-type ultrasonic reactors and to generalize the flow field produced under those
types of reactors. Following these investigative targets, the thesis has presented a series of
sequential numerical studies that aimed to tackle the research objectives stated in Section 1.4
as follows: (1) build and experimentally validate a complete numerical configuration coupled
with a new cavitation model to accurately predict acoustically generated cavitation structures,
(2) explore different horn oscillation modelling techniques and their influence on flow field,
(3) identify key flow attributes and properties of the acoustically induced multiphase flow
proximal to the horn, (4) generalize the time-averaged multiphase flow, and (5) investigate the
two-way interactions between the cavitation macrostructure produced and the proximal flow
field about the horn tip. In that manner, a set of key conclusions were drawn for each stage of
the investigation.

9.1 Conclusions

Initially, a multi-bubble cavitation model was derived on the assumptions that the multiphase
domain is a continuous homogenous mixture between the water liquid and the water vapor
phases.

e As such, the new model was derived from the Rayleigh-Plesset equation through a
ZGB-inspired simplification of the equation. However, deviating away from the ZGB
model’s derivation, the new model accounts for inertial effects on the development of
the bubble interface. This resulted in a mathematical expression the development of the
bubble interface based on four empirical constants, namely the equivalent bubble
radius, the nucleation site volume fraction, the vaporization constant, and the
condensation constant.

e Based on a stepwise regression and response optimization, through the desirability
approach, achieved a set of optimized values, 25 X 107®m, 5 x 10™%, 17.35988, and
0.1, for each aforementioned constant, respectively.

e The optimized model was successfully validated against previous experimental results
of a 3 mm horn-type reactor operating at 20 kHz and set at a 164 um oscillation
amplitude.

This directly addresses Objective 1, establishing a validated numerical foundation capable of
predicting cavitation structure formation and behaviour under ultrasonic excitation. Carrying
forward with the new model, and as a final step for configuring the full numerical model, a
comparative exploration was conducted to draw parallels between the uniform and the
Kirchhoff-based vibration models used to oscillate the horn geometry in the domain. The basis
of the comparison lied within the different flow features induced under each model, and this
was studied by visualizing the LCS using FTLE.

e It appeared that the Kirchhoff-based model led to significant underprediction of
cavitation growths and collapses in which it has been associated with low-pressure
peaks and higher cycle frequencies.
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This was justified by the model’s facilitation of the formation of a diagonally impinging
jet that penetrates the centre of the cavitation macrostructure leading to its two-step
collapse.

It was argued that this jet formation is governed by the instantaneous position and
eccentricity of the toroidal vortex downstream of the horn, as the vortex is primarily
positioned under the horn under the Kirchhoff-based vibration, while the uniform
model has its vortex offset to the horn’s side.

The vortex-cavitation interaction is reflected in the frequency response of both the
pressure and vapor volume signals; the collapse of the cavitation structure is observed
to occur at a frequency of 7966.69 Hz under the Kirchhoff-based model, while it occurs
at 4991.68 Hz frequency under the uniform model.

This doubling in magnitude of oscillation frequency is a strong indicator that this is due
to the two-step collapse that occurs under the Kirchhoff-based vibration. Interestingly
however, all these differences begin to dissolve with the increase of the tip diameter.
Perhaps, it is a strong indication that the influence of the first mode shape of the horn
tip’s vibration gradually loses significance with larger surface areas.

This fulfils Objective 2 by demonstrating how the choice of horn oscillation modelling
influences cavitation morphology and dynamics. As the underlying significance of the vortex-
cavitation interaction was revealed, a numerical parametric analysis followed that scrutinized
the general vortex structural progression trends under a set of small and large horn tips
comprised of 3-, 6-, 13-, 16-, and 19-mm horns. The primary differences in the vortex
behaviour in small and large horn tips fell within the vortex size and eccentricity.

Under small horn tips, the toroidal vortex tends to be symmetrical and significantly
large with respect to the horn tip size. Meanwhile, large horn tips witness toroidal
vortices that undergo two stages of eccentricity changes, starting with eccentricity in
the radial direction followed by eccentricity in the axial direction.

Regarding the vortex-cavitation interaction, the first indicator of potential correlation
was the equivalency of the vortex expansion—contraction frequency and the cavity's
sub-harmonic frequency. It has been found that the cavity structure is molded into MBS
by the presence of a symmetric locomotive vortex structure that extends up to 1.5 times
the horn tip diameter. Meanwhile, CBS is observed to take shape in the presence of an
eccentric locomotive vortex that attains a size within 0.2—0.6 times the horn tip
diameter.

The significance of the vortex size and position is also observed in the cavity's collapse,
as the vortex appears to govern the ability of the cavity impinging jet to initialize the
collapse phase. An attempt to justify the instance of impingement was conducted by
evaluating the momentum ratio between the vapor and water liquid momentum. Once
the vapor structure is seen to lose momentum and the vortex gaining momentum, the
impingement becomes successful agitating the cavity structure and initializing its
collapse.

This addresses Objective 3 by identifying vortex topology, eccentricity evolution, and
frequency coupling as key flow attributes governing cavitation structure behaviour. It was
clearly shown that the vortex size in the time domain tends to oscillate rather rapidly and behave
distinctly from one horn-type reactor to the other. Therefore, this acted as an obstacle to the
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acoustic flow generalization that this investigation intended to achieve in aims of building a
foundation for optimization. As such, a follow-up numerical study was conducted to obtain the
time-averaged behaviour of the vortices observed.

This ultimately demonstrated the emerging early stagnation point that consistently
positions itself at a distance of two times the ultrasonic horn tip diameter 2D, regardless
of the tip size. Referring back to the established vortex-cavitation coupling, cavitation
attenuation was scrutinized by mathematically modeling the time-averaged axial flow
during the cavitation transient state and solving the flow using Newman's subroutine.
During fast streaming, acoustic force attenuation decreases exponentially at a
maximum rate of = 1.70 with the doubling of Re. However, an inverse trend was
demonstrated by the dimensionless attenuation I' = —2aD, as it increased by a factor
of = 1.28. Similarly, I' exponentially increased with the doubling of Re during slow
streaming suggesting direct proportionality between I' and Re. This emphasized the
underlying role of the term 2D in amplifying attenuation induced by morphing
structures of inertial bubble clusters.

Moreover, tracking the bubble population along the horn axis revealed that mushroom-
like structures formed under small horn tips have a linear bubble distribution, while
cone-like structures under larger tips maintained an exponential distribution. This may
suggest that a linear distribution may enhance attenuation and justify the
aforementioned trends.

This directly responds to Objective 4 by providing a scalable, geometry-independent flow
feature useful for modelling and design. Lastly, insights on the vortex significance on the intra-
structural bubble distribution and acoustic wave attenuation provided a strong platform to
properly assess the reactivity performance of the horn-type reactor.

Experimentally, a trend has been identified demonstrating that the production of
radicals had achieved the highest yield under the 40 mm horn tip, although the attached
cavitation structure was the thinnest, in comparison to the structures observed under
smaller horns, and had no axial presence downstream of the domain.

A parametric analysis considering multiple horn tip sizes, namely 3-, 7-, 14-, 24-, 32-,
and 40-mm horn tips operating at five different power levels, 30%, 50%, 70%, 90%,
and 100% power was conducted. By considering the attached cavitation macrostructure
as one continuous bubbly body, we have assumed equivalency between the attached
structure and the structure of a perfectly spherical bubble.

Generally, by following the generalized bubble resonance model and the Minnaert
resonance model, we have observed that small MBS oscillates at a much higher
bandwidth when compared to the larger CBS observed under larger horn tips. The
vortex gradually becomes viscous dominated, which appeared to drop its vorticity. As
a result, the slow-down in the vortex core rotation induced a high-pressure node, instead
of the typical low-pressure node observed in smaller horn tips, ultimately, preventing
the attached cavity from further nucleating and expanding downstream from the horn
tip. Moreover, this induced shrinking in the cavitation structure decreased the
attenuation of the acoustic wave and decreased the resonance frequency of the
cavitation structure.
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e As a result, this suggests that the sheet-like polydisperse cavitation structure can
achieve resonance at a much lower frequency, ultimately, leading to the facilitation of
a larger amount of activity zones and higher radical concentrations.

This addresses Objective 5 by linking cavitation—vortex coupling to functional performance
metrics such as the reactor reaction rate.

9.2 Contributions to Literature and Future Works

With that study, the investigation achieves all research aims and objectives that primarily
revolve around numerically modelling acoustically induced multiphase flow in horn-type
reactors in hopes to provide a deeper understanding of the generalized working principle of
horn-type reactors and to build a solid foundation for optimization of these reactors depending
on the usage intended. Prominent contributions to literature made from the aforementioned
series of investigations are as follows:

e A new homogenous mixture cavitation model was developed and optimized
specifically for capturing bubble cluster inertia-dominant development in an
ultrasonically irradiated environment.

e The two-way coupled nature of the horn-tip proximal toroidal vortex and the attached
acoustic cavitation is identified and generalized in horn-type reactors operating at the
low-to-mid range bandwidth.

e Under different horn geometries, the initial role of the acoustic attenuation induced by
the preliminary attached cavity was revealed to facilitate acoustic streaming that births
the proximal toroidal vortex. In turn, the vortex” ability to ‘mold’ the attached cavitation
structure during its proceeding growth stages was demonstrated.

e This revealed a resultant dynamic attenuation of ultrasonic wave propagation
throughout the medium that effectively controls the chemical performance of the horn-
type reactor.

e Ultimately, a set of control parameters, responsible for dictating the reaction rate of the
horn-type reactor, was defined and compiled.

The series of studies have advanced the fundamental understanding of the proximal vortical
flow, its lifecycle, and its governing significance of the number of chemically active sites
created throughout the domain. This, however, hints at the next research steps that should
follow this extended investigation.

e Firstly, it would be great to carry out a deeper optimization of the new cavitation model
through testing and examining the performance of each empirical constant in cases of
different flow conditions and high bandwidths of ultrasonic radiation, such as
frequencies of 1 MHz and above. This would refine the modularity of the model and
enhance its prediction of bubble dynamics nonlinearities that may arise in cases of high
frequencies. Possibly, this may facilitate the usage of the model as a predictive tool in
biomedical applications. However, the proposed extension should be viewed as a long-
term development direction, as new numerical modelling challenges arise within that
frequency range. Specifically, complexities such as nonlinear acoustic propagation,
strong viscous and thermal attenuation and overall higher computational costs would
require to be addressed as prerequisites.
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Similarly, to better generalize the flow about a wider range of horn-type reactors, a
further optimization study must be conducted to adjust the relaxation factors set in the
one-dimensional mathematical model. This would then facilitate another study that
explores a wider range of operation conditions and bandwidths of the horn reactors,
such as 1 MHz and above, that are typically exclusively used in the medical field in a
variety of treatment procedures.

Moreover, recalling that the numerical model is configured to only capture fluid
dynamic behaviors within the horn-type reactors’ domains, it would be of great
improvement to the accuracy of the numerical model to couple the current setup with a
chemical model that would capture the radical formations and dissipation that occurs
within the acoustically nucleated bubbles. This way, a more concise relationship
between the acoustic flow features and the reactor performance can be established and
assessed, respectively.
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APPENDIX A: Modified Cavitation Model Source Code

As discussed in Chapter 4, the new cavitation model derivation was essentially inspired by the
ZGB interpretation of the relationship between the equivalent bubble radius, the vapor volume
fraction, and the nucleation site volume fraction. The source code below summarizes the
optimized implementation of the derived cavitation model into ANSYS FLUENT as a
multiphase homogeneous mixture model.

#include <udf.h>
#include <stdio.h>
#include <math.h>

//Modified Zwart et al. Cavitation Model

#define F_vap (17.35988) //Vaporization Constant
#define F_cond (0.1) // Condensation Constant

#define dt (0.000005) //Time Step Size

#define r (25.*pow(10,-6)) //Bubble Radius Constant
#define r_nuc (5.*pow(10,-4)) //Nucleation Volume Fraction

#define rhoV (C_R(c,vap)) //Vapor Density

DEFINE_LINEARIZED MASS_TRANSFER(zwart_mod, c, t,from_index, from_species_index,
to_index, to species index, d _mdot_d vof from,d mdot d _vof to)

{

//Definitions
real m_dot;
real m_source;

real ts = N_TIME; //Current Time Step
real final ts = 500; //Final Time Step

real p_vap = 2808; //Vapor Pressure

real p op = RP_Get Real ("operating-pressure"); //Operating Pressure
real press = C P(c, t) + p_op; //Absolute Pressure

real dp = p vap-press; //Pressure Difference

real dpo = ABS(dp); //Absolute Value

// dp@ = MAX(dpo, le-4);

Thread *liq = THREAD_SUB_THREAD(t, from_index);
Thread *vap = THREAD_SUB_THREAD(t, to_index);

real rhoL = C R(c,liq); //Liquid Density

real rl = C VOF(c,liq); //Liquid Volume Fraction
real rv = C_VOF(c,vap); //Vapor Volume Fraction
real r_rho_Lv = 1./rhoV - 1./rholL;

//Growth Rate and Acceleration at t = @

real dr_2 = dpé/(rholL*r);
real dr = dr_2*dt;
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real source = sqrt(2./3.*dpo/C R(c,liqg));
m_dot = 0.;
m_source = 0.0;

C_UDMI (c,t,0)
C_UDMI (c,t,1)

dpo/(rholL*r);
dr_2*dt;

//Source Terms at Remaining Time Steps

if (dp > 0){

m_dot = F_vap*(3.*r_nuc*(1.-C_VOF(c,vap))/r)*rhovV*C_UDMI (c,t,1);
m_source = m_dot * rl;

*d_mdot_d_vof_from = m_dot;

*d_mdot_d_vof_to = -m_dot;

} else {

m_dot = -F_cond*(3.*C_VOF(c,vap)*rhoV/r)*C_UDMI (c,t,1);
m_source = m_dot * rv;

*d_mdot_d_vof_from = m_dot;

*d _mdot_d _vof to = -m_dot;

}

C_UDMI (c,t,0)
C_UDMI (c,t,1)

dpo/(rhoL*r) - (3./(2.%*r))*pow(C_UDMI (c,t,1),2);
C_UDMI (c,t,1) + (C_UDMI (c,t,0)*dt);

/*  ++++++++++ ds/dp term ++++++++HHHHH+ K/
if(NNULLP(THREAD_STORAGE(t, SV_MT_DS _DP)))
C_STORAGE_R(c,t,SV_MT_DS _DP) = ABS(r_rho_Lv*m_source/(2*dp®));

return m_source;

}
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APPENDIX B: Uniform Vibration Model Source Code

In Chapter 5, the equation of the uniform sinusoidal vibration of the ultrasonic horn boundaries
is translated as a ANSYS FLUENT-compatible boundary condition. This custom boundary
condition is fed as a ‘rigid boundary’ dynamic meshing algorithm, as it allows ANSYS
FLUENT to automatically accommodate for any excessively deformed mesh cells caused by
the motion of the horn walls.

#include <udf.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

DEFINE_CG_MOTION(uniformVib, dt, vel, omega, time, dtime)

{

Thread *t; /*is the pointer to the structure that stores*/

real A= 164*pow(10,-6); /* Assign amplitude*/

real H= 20000; /* Assign frequency*/

real w = 2. * M PI * H; /*Calculate the omega*/

real v = A*w*sin(w*time); /*Calculate velocity*/

/* reset velocities . The Llinear and angular velocities are returned to FLUENT
by overwriting the

arrays vel and omega, respectively*/

NS (vel, =, 0.9);

NV_S (omega, =, 0.0);

/* obtain the thread pointer for which this motion is defines */
t = DT_THREAD(dt);

/* compute velocity */

v = A*w*cos(w*time);

vel[1] = v;

}
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APPENDIX C: Kirchhoff-based Vibration Model Source Code

In a different implementation manner to that shown for the uniform vibration model in Chapter
5, the Kirchhoff-based vibration equation is described by the DEFINE GRID MOTION
ANSYS FLUENT-specific macro that typically defines the motion of mesh nodes along the
selected boundary. In the source code below, the nodes were selected and displaced with time
according to Eq. 2.61. However, similar to the uniform vibration source code, the boundary
condition is introduced as a ‘rigid boundary’ dynamic meshing algorithm, to facilitate the
remeshing of the excessively deformed mesh cells during the defined deformation of the
boundary.

#include <udf.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

DEFINE GRID MOTION(kirchVib,domain,dt, time,dtime)

{

Thread *tf = DT_THREAD(dt);
face_t f;

Node *v;

real NV_VEC(omega), NV_VEC(axis), NV_VEC(dx);
real NV_VEC(origin), NV_VEC(rvec);
real r, disp;

real R = 0.0015;

real dis_max= 164*pow(10, -6);

real h = 20000;

real delta = 0.000001;

real w = 2. * M_PI * h; 1int n;

real axis multi = -1;
real NV_VEC(axis_neutral);

SET_DEFORMING _THREAD_FLAG(THREAD To(tf)); //set pointer to reference point at
adjacent cell zone

NV _D(axis, =, 1.0, 0.0, 0.9);

NV_D(axis_neutral, =, 0.0, 0.0, 0.9);

begin f Lloop(f,tf)

{

f node_Lloop(f,tf,n)

{

v = F_NODE(f,tf,n);

1f (NODE_POS NEED UPDATE (v) && NODE Y(v) >= @) //update node only 1if the node
has not been previously updated

{

NODE_POS_UPDATED(v); //label current node as updated

r = (NODE_Y(v))/R; //non-dimensionalize the poisiton
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Message ("Node Number = Zf\n", NODE_Y(v));

disp = dis_max*(1-pow((r),2)+2*pow((r),2)*log(r+delta/R))*sin(w*time);
NODE_X(v) = disp;

Message ("Node Coord (x) = %f\n", NODE_X(v));

}

}

}

end_f_Loop(f,tf);

}
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APPENDIX D: Finite Time Lyapunov Exponent MATLAB Code

The Finite Time Lyapunov Exponent procedure summarized by Egs. 5.2 — 5.3 in Chapter 5
was applied and solved in a step-by-step process coded on MATLAB. The object-oriented
program simply consists of two files, the main code, otherwise known here as FTLE.m, and
the FTLE calculation function, labelled as calculate ftle.m that is called by FTLE.m. The
program simply discretizes a subdomain, extracted from the CFD domain, with a clutter of
particles of a specific resolution. Afterwards, these particles are advected across the subdomain
with an imported velocity field from the CFD simulation. Ultimately, by calling
calculate ftle.m, Eq. 5.3 is solved to obtain the FTLE across the subdomain.

FTLE.m

clc
clear
tic

% Creating the grid of particles

XBound = [-0.005 0];
yBound = [0 0.005];

gridResX
gridResY

2.5e-05;
2.5e-05;

xInt = floor((xBound(2) - xBound(1))/gridResX)+1;
yInt = floor((yBound(2) - yBound(1))/gridResY)+1;

X
y

Linspace(xBound(1), xBound(2), xInt);
Linspace(yBound(1), yBound(2), yInt);

gridResX_1
gridResY_1

x(2)-x(1);
y(2)- y(1);

[X,Y] = meshgrid(x,y);
nP = xInt*yInt; % Total number of particles

% Create interpolation function
% Backward integration

dt = 575;
while dt <= 600

tEnd = 1;

tStart = tEnd + dt;

% tLength = 499;

% tStart = 600; % Integration start time
x % tEnd = tStart - tlLength;

% tend = 1; % Integration end time
tStepSize = 5e-06; % Step size

% Nt = tStart-tEnd-1;

Nt = tEnd-tStart-1; % Number of time steps
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xVect = X(1:end)'; % Inital x-coordinate vector

yVect = Y(1:end)'; % Initial y-coordinate vector

xCoord = zeros(nP,3); % Matrix to store new and old x coordinates
yCoord = xCoord; % Matrix to store new and old y coordinates

xCoord(:,3) = xVect; % x-coordinate at t =
yCoord(:,3) = yVect; % y-coordinate at t
xCoord(:,2) = xVect; % x-coordinate at t
yCoord(:,2) = yVect; % y-coordinate at t =

1]
]
~++ QOO

check = sqrt(xVect.”2+yVect.”2)>= 0.025;
s = sum(check);
if s >0
error('particles sided outside of domain')
end

LoadBar = waitbar(@, 'Calculating flow map');

for tStep=tStart:-1:tEnd

if tStep < 10

name = ['FFF-6-000' num2str(tStep)];
elseif tStep < 100

name = ['FFF-6-00' num2str(tStep)];
elseif tStep < 1000

name = ['FFF-6-0' num2str(tStep)];
else

name = ['FFF-6-" num2str(tStep)];
end

sol datao=dlmread(name, '',1,0);

% create interpolation function
x0=sol_datao(:,2);

yO=sol datao(:,3);
vx@=sol_datao(:,4);

vy@=sol _datao(:,5);
VIx0=scatteredInterpolant(xe,yo,vxe);
VIyo=scatteredInterpolant(x0,y0,vy0);

% interpolate new positions

vi_x = VIx@(xCoord(:,2),yCoord(:,2));
vi y = VIyo(xCoord(:,2),yCoord(:,2));

% Calculate x-coordinate at t = t + tstep
xCoord(:,1)=xCoord(:,2) + tStepSize*vi x;
% Calculate y-coordinate at t = t + tstep
yCoord(:,1)=yCoord(:,2) + tStepSize*vi_ y;

if tStep > tEnd
xCoord(:,2)=xCoord(:,1);
yCoord(:,2)=yCoord(:,1);
end
waitbar((tStart + 1 - tStep)/(tStart + 1 - tEnd))
clear x0 yo© z0 vx0 vyO vzO VIx0 VIyo0 VIzo0 sol_data® name m Zrel
end

188




run=1;
delete(loadBar)
namel=["flow_map-bt-' num2str(tStart) '-x-' num2str(run) '.txt'];

name2=['flow_map-bt-' num2str(tStart) '-y-' num2str(run) '.txt'];
save(namel, 'X', '-ascii’, '-double")
save(name2, 'Y', '-ascii’, '-double")

clear 1 h tstep tstart tend tcrit t namel name2 run

% Create flow map

flowMap=zeros(nP,2,2);

flowMap(:, :,1)=[xCoord(:,end) yCoord(:,end)];
flowMap(:,:,2)=[xCoord(:,1) yCoord(:,1)];

writematrix(flowMap, 'flowMap.csv')

FTLE v = zeros(nP,1); % Matrix to store FTLE values for each particle
tol = ©0.000001; % Reference tolerance

% Indexing and storing neighboring particles' coordinates
LoadBar = waitbar(@, 'Calculating FTLE');
for p = 1:nP

xSelect = flowMap(p,1,1);

ySelect = flowMap(p,2,1);

parNeighCoordl = zeros(4,2);
parNeighCoord2 = zeros(4,2);

disp(p);
pn = 1;
while pn <= 4

if pn == 1
x_1_ml = xSelect - gridResX_1;

[Rx,Cx] = find(abs(flowMap(:,1,1)-x 1 m1) < tol);
[Ry,Cy] = find(flowMap(:,2,1) == ySelect);

Rx_check = size(Rx);
if Rx_check(1,1) == ©
pn = pn + 1;

end

end

if pn ==
x_1_ml = xSelect + gridResX 1;

[Rx,Cx] = find(abs(flowMap(:,1,1)-x 1 m1) < tol);
[Ry,Cy] = find(flowMap(:,2,1) == ySelect);
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Rx_check = size(Rx);

if Rx_check(1,1) == ©

pn = pn + 1;
end
end
if pn ==
x_1_m1 = xSelect;

y_j ml = ySelect + gridResY_1;

[Rx,Cx] = find(flowMap(:,1,1) == xSelect);
[Ry,Cy] = find(abs(flowMap(:,2,1)-y j m1) < tol);

Ry_check = size(Ry);

i1f Ry_check(1,1) == ©

pn = pn + 1;
end
end
if pn == 4
x_1_ml = xSelect;

y_j ml = ySelect - gridResY_1;

[Rx,Cx] = find(flowMap(:,1,1) == xSelect);
[Ry,Cy] = find(abs(flowMap(:,2,1)-y_j ml) < tol);

Ry _check = size(Ry);

if Ry_check(1,1) == ©
pn = pn + 1;
end

end

rXs = size(Rx);
rYs = size(Ry);

if rXs(1,1) >= rYs (1,1)

sizeDiff = rXs(1,1) - rYs(1,1);

Ry = [Ry ; zeros(sizeDiff,1)];

for 1 = 1:rXs(1,1)

for j = 1:rXs(1,1)
if Ry(i,1) == Rx(j,1)

reqgXCoordLoc = Rx(j,1);
reqYCoordLoc = Ry(i,1);
disp( 'Match Found!")

% break

else
% disp( 'Match Not Yet Found.')
continue

end

end

190




end
end

if rYs(1,1) > rXs(1,1)
sizeDiff = rYs(1,1) - rXs(1,1);
Rx = [Rx ; zeros(sizeDiff,1)];
for i1 = 1:rYs(1,1)
for j = 1:r¥s(1,1)
if Rx(1,1) == Ry(j,1)
regXCoordlLoc = Rx(1,1);
reqYCoordLoc = Ry(j,1);
disp( 'Match Found!')

% break
else
% disp( 'Match Not Yet Found.')
continue
end
end
end
end
if pn < 5
parNeighCoordl(pn,1) = flowMap(regXCoordlLoc,1,1);
parNeighCoordl(pn,2) = flowMap(reqYCoordlLoc,2,1);
parNeighCoord2(pn,1) = flowMap(reqXCoordLoc,1,2);
parNeighCoord2(pn,2) = flowMap(reqYCoordlLoc,2,2);
end
if pn < 6
pn = pn + 1;
end
end

T=Nt*0.000001;
FTLE = calculate ftle(parNeighCoordi(1,1),parNeighCoord1(1,2),
parNeighCoord1(2,1) ...
, parNeighCoordl(2,2), parNeighCoord1(3,1), parNeighCoordil(3,2),
parNeighCoord1(4,1),
parNeighCoord1(4,2), parNeighCoord2(1,1), parNeighCoord2(1,2),
parNeighCoord2(2,1), parNeighCoord2(2,2), parNeighCoord2(3,1),
parNeighCoord2(3,2),
parNeighCoord2(4,1), parNeighCoord2(4,2), T); % Calculating FTLE

FTLE v(p,1) = FTLE; % Store FTLE in a vector
waitbar((p-1)/(nP-1));
end

delete(loadBar);

% Convert vector into matrix to store FTLE to its corresponding particle
coordinate

FTLE m = zeros(xInt,yInt);
r=1;
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for v = 1:yInt

FTLE m(:,v) = FTLE v(r:r+xInt-1,1);

r = r + xInt;
end

% Plot FTLE wrt x and y

contourf(X,Y,FTLE_m)
colorbar

xlabel('x")

ylabel('y")

title('FTLE contour plot')

contName = ['FTLE_' num2str(dt)

saveas(gcf, contName);
dt = dt + 1;

end
toc

calculate_ftle.m

Ltif]s

function out=calculate_ftle(x_inlj_e, y _1inlj 6, x_iplj 0, y_iplj 6, x_ijnl_eo,

y ijnl o,...

x ijpl o6, y ijpl 0, x in1j T, y inlj T, x iplj T, y ip1j T, x ijnl T,

y ijnl_ T, x_ijpl T, y_ijpl T, T)

A1l = (x _iplj T - x inlj T)/(x _iplj © - x inlj @),
Al12 = (x ijpl T - x ijn1 T)/(y_ijpl © - y ijnl @),
A21 = (y_1ip1j T - y_inl1j T)/(x_iplj 6 - x_inlj_0);
A22 = (y_ijpl T - y ijnl_T)/(y_1ijpl 6 - y _1ijnl 0);
A = [Al11l A12;A21 A22];

B = A'*A;

disp(A);

delta = max(eig(B));
out = -log(delta)/(2*T);
end
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APPENDIX E: Vortex Analysis MATLAB Code

The fluctuation of the vortex size observed under different horn tips in Chapter 6 was measured
by initially assuming that the proximal toroidal vortex behaves like a Rankine vortex, where
the vortex core is imagined as a cylinder embodying a solid-body rotation. Thus, the radius of
this cylinder ry is interpreted as the vortex core size. As such, the vortex size is highlighted by
the length of the line joining two local tangential velocity maxima passing through a zero-
velocity point representing the vortex centre. To illustrate this, Fig. Al plots the tangential
velocity distribution within the vortex along the radial coordinate.

Vv

A

Figure Al: Tangential velocity distribution within the Rankine vortex against the radial coordinate.

With that said, the MATLAB code below was written to take in the tangential velocity from
the velocity field exported from ANSYS FLUENT, plot its distribution in the subdomain
proximal to the horn tip, and detect any distribution patterns resembling the one illustrated in
Fig. Al. Afterwards, the diameter of the toroidal vortex is evaluated by seeking two directional
changes in the slope of the linear line of the tangential distribution plot and measuring the
distance between these two points.

clear
clc
close all

cd 'C:\Users\basel\OneDrive\Documents\DPhil Work\Publications\Ultrasonic Horn
Model ling\Updated WorkR\FTLE Toolkit\Velocity_ files\l6mm\Corrected TxtFiles 1'
files = dir;

filesCell = struct2cell(files);

fileNames = filesCell(1,3:602);

[R_fN, C_fN] = size(fileNames);
vortexCenterMat = zeros(C_fN,2);
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hornDia = 0.019;

for 1 = 1:C_fN
f = readtable(fileNames{1,1});
xCoord = f{:,2};
yCoord = f{:,3};

u=f{:,4};

v = f{:,5);

f=fh

vortexRegion = f;

vortexRegion = f((f(:,2) >= -0.01) & (f(:,2) <= 0.00149513), :);

vortexRegion = vortexRegion((vortexRegion(:,3) >= 0.00025) &
(vortexRegion(:,3) <= 0.0131167), :);
vortexRegion(:,6) = sqrt((vortexRegion(:,4).72) + (vortexRegion(:,5).72));

[R_vMat, C_vMat] = size(vortexRegion);

for j = 1:R_vMat
vortexCenterVel = min(vortexRegion(:,6));
[R_vC, C_vC] = find(vortexRegion(:,6) == vortexCenterVel);

LeftVectRow = R_vC - 1;
rightVectRow = R_vC + 1;

if leftVectRow ~= 0 & rightVectRow ~= 0 & leftVectRow <= R_vMat &
rightVectRow <= R_vMat
1f vortexRegion(leftVectRow,5) > @ & vortexRegion(rightVectRow,5)

< 0
vortexCenterMat(i,1) = vortexRegion(R_v(C(1,1),2);
vortexCenterMat(i,2) = vortexRegion(R_v(C(1,1),3);
break
elseif j == R _vMat
continue
else
vortexRegion(R vC,:) = [];
[R_vMat, C_vMat] = size(vortexRegion);
continue
end
else
vortexRegion(R vC,:) = [];
[R_vMat, C_vMat] = size(vortexRegion);
end
end
end

[R_vCM, C_vCM] = size(vortexCenterMat);
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figure

scatter(vortexCenterMat(:,1), vortexCenterMat(:,2))
figure

plot([1:R_vCM], vortexCenterMat(:,1));

figure

plot([1:R_vCM], vortexCenterMat(:,2));

Y1 = fft(vortexCenterMat(:,1));
Y2 = fft(vortexCenterMat(:,2));

L = R_vCM;
Fs = 1/5e-06;

figure

P2 = abs(Y1/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

plot(fs,P1, "LineWidth",2)

title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")

ylabel("[P1(f)]")

figure

P2 = abs(Y2/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

plot(fs,P1, "LineWidth",2)

title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")

ylabel("[P1(f)]")

[R_cM, C_cM] = size(vortexCenterMat);
recircLengthVect = zeros(R_cM,1);
vortexPlot = f;

figure
hold on
for x = 1:R_cM
selectedY = vortexCenterMat(x,2);
selectedRows = find(vortexPlot(:,3) == selectedY);
[R_SR, C_sR] = size(selectedRows);
radialVelVect = zeros(R_sR,1);
xCoordVect = zeros(R _sR,1);

for y = 1:R_sR
radialVelVect(y,1) = vortexPlot(selectedRows(y,1),5);
xCoordVect(y,1) = vortexPlot(selectedRows(y,1),2);
end
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plot(xCoordVect. /hornDia, radialVelVect)

gradVect = gradient(radialVelVect);
[R_gV, C_gV] = size(gradVect);
for z = 1:R_gV
if z < R_gV
if gradVect(z + 1) < 0 && gradVect(z) > ©
pointl = xCoordVect(z,1);
elseif gradVect(z) < @ & gradVect(z + 1) > 0
point2 = xCoordVect(z+1,1);
else
continue
end
else
break
end
end

recircLength = abs(point2 - pointl);
recircLengthVect(x,1) = recirclLength;

end
hold off

[R_rLV, C_rLV] = size(recircLengthVect);

figure
plot([1:R _rLV], recircLengthVect./hornDia)

Y3 = fft(recircLengthVect);
L =R rLv;

Fs = 1/5e-66;

fs = Fs/L*(0:(L/2));

figure

P2 = abs(Y3/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

plot(fs,P1, "LineWidth",2)

title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")

ylabel("[P1(f)]")

recircLengthMax = abs(max(recircLengthVect))/hornDia;
recircLengthMin = abs(min(recircLengthVect))/hornDia;
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APPENDIX F: Newman BAND Python Code

The Newman BAND subroutine was used to solve a system of three partial differential
equations, namely Eqgs. 7.30 — 7.32, that emerged from our attempt in linearizing Eq. 7.26
through the use of trial solutions, as discussed in Chapter 7.

from scipy.sparse import coo_matrix
from scipy.sparse.linalg import spsolve
from numpy import *

from pylab import *

import math

# N is number of unknowns
# NJ is number of mesh points

# non-dimensional axial acceleration, f, is c1
# non-dimnesional axial velocity, theta, is c2
# non-dimensional acoustic attenuation, Dp, is c3

saveOn = True # saving generated data in .csv file
N =3
NI = 1000

# Set convergence tolerance and max number of iterations

tol = le-10

itmax = 100

# Constants for the problem

L =2

f = 20e03 # oscillation freq. (Hz)

c L = 1500 # speed of sound (m/s) in water

c v =477.5 # spead of sound (m/s) in vapor

alphaC L = 4/4 # 1D volume fraction of Liquid in domain (speed of sound)

¢ = alphaC L*c L + (1 - alphaC L)*c v # domain speed of sound

la = c/f # wavelength (m)
A = 164e-06 # oscillation amp. (m)
= 2*pi*f # angular velocity (rad/s)
v = A*w # axial oscillation velocity (m/s)
D = 3e-3 # horn tip dia. (m)
g = 9.81 # gravitational acceleration (m/s"2)
rho L = 998.3 # water density (kRg/m”"3)
rho_ v = 0.0173 # vapor density (kg/m”3)
mu_L = 0.0010003 # water dynamic viscosity (Pa.s)
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mu_v
alph
rho

dens
mu

= 1.34e-05
al =4/4

= alpha L*rho L + (1 - alpha _L)*rho_ v
ity

alpha L*mu_L + (1 - alpha_L)*mu_v

dynamic viscoisty

B co
R _co
C _co
G_co
atte

# R
ac =

0.05*10

rho*v*D/mu

n = 2/B_con*(sin(pi*D/(2*la)))**2
n -2*299,52*D

nuation

n
n

= 10
le-04

# dC2 = dC

# Ma
XX =
h:

kes the mesh
Linspace(o,L,NJ)
L/(NJ-1)

# INITIAL GUESSES

def

initguess():
cold = ones([N,NJ])
cold[o,:]= o
cold[1,:]= o
cold[2,:]= 0

return cold

# FILLMAT

def fillmat(cold):

# first column is equation
# second column is position
# third column 1is species

# initialize matrices

sma = zeros([N,NJ,N])
smb = zeros([N,NJ,N])
smd = zeros([N,NJ,N])
smg = zeros([N,NJ])

# fill matrices

smb[o,:,1] = -1
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# 1D volume fraction of liquid in domain

# domain

# domain

# slope correction factor
# reynolds number
# constant
# non-dimensional acoustic




smb[1,:,0] = -1/R _con
smb[2,:,2] = 1

smdf[o,:,0] = 1
smd[1,:,0] = (cold[1,:] + dC)
smd[1,:,2] = -1

for L in range(NJ):
# smg[1,l] = -G_con*C_con*exp(-2.*G_con*(L/NJ)*L)
smg[1,l] = -G_con*C_con*exp(-G_con*(L/NJ)*L)

# Boundary condition 1

smp
sme

smf

zeros([N,N])
zeros([N,N])
zeros([N,1])

# smp[o,1] =
sme[0,0] = 1
smp[1,0] = 1
# sme[1,1] = 1
smp[2,2] = 1

# smf[1] -0.05

# Insert (sme smp smf) into (smb smd smg)

smb[:,0,:] = smp[:,:]
smd[:,0,:] = sme[:,:]
smg[:,0] = transpose(smf)

# Boundary condition 2

smp
sme

smf

zeros([N,N])
zeros([N,N])
zeros([N,1])

smp[O,1] = -1
sme[0,0] = 1
smp[1,0] = 1
sme[2,1] = 1
smf[2] = -1

# smf[o] = 100

# Insert (sme smp smf) into (smb smd smg)
smb[:,NJ-1,:] = smp[:,:]

smd[:,NJ-1,:] = sme[:,:]
smg[:,NI-1] = transpose(smf)
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# print(smg)
return sma, smb, smd, smg

# ABDGXY

def abdgxy(sma, smb, smd, smg):
sma = transpose(sma, (0, 2, 1))

smb = transpose(smb, (0, 2, 1))

smd = transpose(smd, (0, 2, 1))

A = sma-h/2.0*smb

B = -2.0*sma+h**2*smd

D = sma+h/2.0*smb

G = h**2*smg

B[:,:,0] = h*smd[:,:,0]-1.5*%smb[:,:,0]
D[:,:,0] = 2.0*smb[:,:,0]

G[:,0]=h*smg[:,0]
X = -0.5*%smb[:,:,0]

Al:,:,NI-1]=-2.0*smb[:,:,NJ-1]
B[:,:,NJ-1]=h*smd[:, :,NJ-1]+1.5*%smb[:, :,NJ-1]
G[:,NJ-1]=h*smg[:,NI-1]

=0.5*smb[:,:,NJ-1]

ABD = concatenate((A, B, D), axis=1)

BC1 = concatenate((B[:,:,0] , D[:,:,0] , X), axis=1)

BC2 = concatenate((Y , A[:,:,NI-1] , B[:,:,NI-1]), axis=1)
ABD[:,:,0] = BC1

ABD[:,:,NJ-1] = BC2

# print(G)

return ABD, G

# BAND
def band(ABD, G):

BMrow = reshape(arange(1,N*NJ+1), (NJ,N))
BMrow = BMrow[:, :, newaxis]

BMrow = transpose(BMrow, (1, 2, ©))

BMrow = BMrow[:,[@ for 1 in range(3*N)], :]

= arange(1,3*N+1)
= d[newaxis, :]
repeat(a,N,9)
= al:,:,newaxis]
= repeat(a,NJ,2)

Q Q Q Q Q
]
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arange (@, (N)*(NJ-3)+N,N)
hstack((b[©], b, b[len(b)-1]))
b[newaxis, newaxis, : ]
repeat(b,N,0)

repeat(b,3*N, 1)

S oo oG
1]

BMcol = a + b

BMcol = BMcol - 1

BMrow = BMrow - 1

BMrow = ravel (BMrow)

BMcol = ravel (BMcol)

ABD = ravel (ABD)

BigMat = coo_matrix((ABD, (BMrow, BMcol)), shape=(N*NJ, N*NJ)).tocsc()
BigG = transpose(G)

BigG = ravel (BigG)

# print BigMat.todense()
delc = spsolve(BigMat, BigG)
return delc

# MAIN PROGRAM
cold = initguess()
it = 1

did = False

for it in range(1,itmax):

sma, smb, smd, smg = fillmat(cold)
ABD, G = abdgxy(sma, smb, smd, smg)

delc = band(ABD, G)
delc = delc.reshape((NJ, N))
delc = transpose(delc)

error = cold - delc

maxerror = amax(abs(error))

print (it, ', ', maxerror)

cold = delc

if maxerror < tol:
did = True
print ('Converged in ' +str(it)+
break

iterations. ')

if not did:
print ('The program did not converge.')

# Plots

fig, (axl,ax2,ax3) = plt.subplots(3,1,figsize=(6, 6))
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fig.subplots_adjust(left=0.15)

params = {'mathtext.default’': ‘'regular' }
rcParams . update(params)

XS = XX
cl = cold[o,:]
c2 = cold[1,:]
c3 = cold[2,:]

axl.plot(xs,c1,'-"', color="black', markeredgecolor="'k")
# axl.legend([ '$C_{1G$'], Loc="center right')
axl.set_ylabel ('d8/d{’', lLoc="top", rotation='horizontal")
ax2.plot(xs,c2,'-"', color="black', markeredgecolor="'k")
# ax2.legend(['$C_{1}$'],loc="center right’)
ax2.set_ylabel('8', Loc="top", rotation='horizontal')
ax3.plot(xs,c3,'-"', color="black', markeredgecolor='R")
# ax3.legend(['$C_{1}$'],loc="center right’)

ax3.set _ylabel('Dp', Loc="top", rotation="horizontal')

ax1.tick_params(axis="'both', direction='in', bottom=True, top=True, left=True,
right=True)
ax2.tick_params(axis="'both', direction="in', bottom=True, top=True, left=True,
right=True)

print(R_con)
show()

diaSave = math.trunc(D*1000)
# print(diaSave)

if saveOn:

saver = [xs, c1, c2, c3]

diaSave = f"{diaSave:04d}"

savetxt('C:/Users/basel/Documents/DPhil Work/Publications/Horn Tip
Concavity/MATLAB/Python Newman/data_exports/' + str(diaSave) + '.csv', saver,
delimiter=","
else:

pass
# saver = zip(*saver)

close('all")
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APPENDIX G: Regular Perturbation of Small Re

To simplify the regular perturbation solution, the exponential term in Eq. 7.34 has been
substituted with Taylor series expansion, assuming a truncation error of order 0(3), such that

FZZZ

e =1-T¢ + + 0(3) (A1)

As such, the force term then becomes:

272
Te~T% = r<1 —-TZ+ F; ) (A2)

By substituting this, alongside equation 7.39, the force term then becomes:
I 2 3 2 1 21272
T'e = ([LRe + T Re* +LRe?*)(1 — (I, + [ Re + ILRe*)T +E(F° + I Re + [Re*)*C
1 1
= (T,Re + I Re? + FZRe3)<1 — o7 —TiZRe —T;IRe* +-T30 + SToli{Re
1 1 1 1 1
+ 5oL Re? + 5 TN Re + 5 TP7Re? + - MLTRe? + 5 [oT;{?Re” (A3)
1 1
+5NLTRe + EI‘ZZZZRe‘*)
1 3
=ToRe —I[§TRe — 2[ [y{Re* +-T§TRe +-T3Ti0°Re” +TiRe® + O(Re?)

Moreover, to obtain the complete equation, equations 7.35 — 7.39 are substituted into

equation 7.34, which then formulates:
—07 + (8,8, — 0/)Re + (8,0, + 0,0, — 0))Re? + O(Re?)

1
= Dpy + DpiRe + Dp,Re? — T Re +I¢{Re — I[3{Re —EI‘S'ZZRe — I Re? (A4)

3
+ 2I,T;{Re? —zrgrlzzRez + O(Re®)

Upon grouping up the orders of Re, in aims to resolve all terms of each of equations 7.35 —
7.39, we obtain for 0(1):

86 = —Dpo "
O(Re)
1
6 = —Dpy +To —T§T +5T50% + 6065 )
O(Re?)
3
07 = —Dpp + 1 — 2010 + S TETLE% + 6,85 + 6,6} "
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Furthermore, the resolved boundary conditions, as mentioned in section 7.3, translate to the

following:

0'(0) = 0 = 0}(0) + 0, (0)Re + 8, (0)Re?
where 0;(0) = 07(0) =65(0) =0

8(0) = 0 = 8,(0) + 6,(0)Re + 8, (0)Re?
8,(0) = 8,(0) = 6,(0) = 0.

0”(2) = 0 = 6(2) + 6/ (2)Re + 0 (2)Re?
0r(2) = 8/ (2) = 65(2) = 0, and

8(2) = —1 = 8,(2) + 8,(2)Re + 0,(2)Re?

(A8)

(A9)

(A10)

(All)

in which 6,(2) = —1 while 6; (2) =6, (2) = 0. With that said, the boundary conditions
were then applied to equations A5 - A7 where applicable to ultimately obtain the values of each
term in Dp and I' and the expressions of each term in 8, ', and 8. From 0(1), we deduce

that:
Dp o -3
" 1
90 —_ _E
, 1
0o = _Ef
1
0y = _Z(Z

And from O(Re):

DP,]. = _0767250

I, = —0.579026
1
6} = 0767250 — 0579026 — 0.335271 — 0.097065{ +¢°

154

6] =0.767250{ — 0.579026¢ — 0.167636* — 0.032355¢% + =

1
6 = 0.383625¢” — 0.289513¢> — 0.055925(° — 0.008088(* +

5
60<~

and, lastly, from O(Re?):
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(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)




Dp, = —0.641065 (A21)

I, = —0.641065 (A22)

1
63 = 0.641065 — 0.357143 — 0.413590{ — 0.179609(? +%(3 + 0.072137¢*

(A23)
+ 0.0127345(5 —lqﬁ
' 640
1
0, =0.641065¢ — 0.357143( — 0.206795(% — 0.059869¢% + —¢* + 0.0144634°
80
(A24)
+ 0.002122427° —LH
‘ 640
1
6, = 0.3205325¢% — 0.1785715¢% — 0.0689317(° — 0.014967¢* + (" + 0.0024106(°
(A25)
7 _ 8
+0.0003032¢7 - =7

These were then replaced back into the perturbation expansions stated in 7.35 — 7.39 to give
the final approximations of each term, as shown in 7.40 — 7.44.
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