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Abstract 
 

Acoustic cavitation remains, to this day, a peculiar acoustofluidic phenomenon that has 

recently attained highly concentrated research traction, as many seek new passive solutions to 

intensify a variety of chemical processes. However, the ever-increasing severity of water crisis 

serves as the primary driver to expand on this research. It has been previously established that 

ultrasonically induced cavitation retains the ability to induce high yields of volatile hydroxyl 

𝑂𝐻. radicals within the working fluid domain through generating severe flow conditions upon 

their collapse. However, the underlying coupled behaviour of the acoustically induced flow 

behaviours and the acoustic cavitation remains prominently inconclusive. Therefore, the 

presented investigation revolves around numerically exploring multiphase flow behaviours 

observed in a horn-type reactor environment. This is performed by configuring a computational 

fluid dynamics (CFD) setup with a new cavitation model and a dynamic mesh model, 

generalizing the coupled flow behaviours observed under multiple horn tips of varying 

diameters, and establishing the relationship between the cavitating flow with the reactor 

performances observed. 

 

In that manner, the CFD setup was coupled with a newly derived cavitation model based on a 

series of derivations of the Rayleigh-Plesset equation that define the bubble radial development 

in terms of water tension and inertial growth. Empirical values that surfaced from the model 

were statistically optimized through a Design of Experiments approach, coupled with Monte 

Carlo simulations, to assess the influence of empirical model constants on the model’s 

performance by examining variations in amplitude and frequency responses. This was then 

coupled with a dynamic meshing model that defines the oscillating ultrasonic horn walls as 

uniformly and sinusoidally deforming. Upon comparatively assessing each model’s 

performance, it was ultimately revealed that Kirchhoff-based model generally underpredicts 

the acoustic cavitation structure experimentally observed under the horn tip. Based on the 

Finite Time Lyapunov Exponent (FTLE) results, key differences lied within the vortex shape 

and position proximally generated; the Kirchhoff-based model predicted an eccentric vortex 

that induced an impinging jet that facilitates a two-step collapse of the cavitation, as opposed 

to the single-step collapse typically observed. 

 

As the vortex was revealed to have a key role in the flow-cavitation coupling, a parametric 

analysis was conducted on a horn-type reactor domain considering multiple diameters, namely 

3, 6, 13, 16, and 19 mm, to further explore the extent of this coupling. It was uncovered that 

the acoustic cavity structure falls between two geometrical structures, namely, mushroom-like 

structure (MBS) and cone-like bubble structure (CBS), based on the actuated ultrasonic horn 

tip diameter. The cavity structure is molded into MBS by the presence of a symmetric 

locomotive vortex structure that extends up to 1.5 times the horn tip diameter. Meanwhile, CBS 

takes shape in the presence of an eccentric locomotive vortex that attains a size within 0.2–0.6 

times the horn tip diameter.  Upon time-averaging the flow, the stream-linked vortex produced 

in all cases was found to consistently create a stagnation plane at a distance two times the horn 

tip diameter (2D) from the horn tip. A one-dimensional mathematical formulation was derived 

and solved based on the Stuart streaming conservation of momentum and its respective 

definition of the acoustic force (𝐹⃗𝑎). This revealed that compound attenuation (𝛼) of the 

acoustic force decreases exponentially at a maximum rate of ≈ 1.70 with the doubling of 

Reynolds number (𝑅𝑒). However, an inverse trend was demonstrated, upon considering the 



influence of the diameter, by the dimensionless attenuation (𝛤), as it gradually increased by a 

factor of ≈ 1.28.  

 

Ultimately, the practical significance of this trend of acoustic attenuation induced by the 

presence of the cavitation structure was most pronounced after conducting yet another 

parametric investigation scrutinizing the reactor performance of horn-type reactors of the 

following sizes: 3 mm, 7 mm, 14 mm, 24 mm, 32 mm, and 40 mm. A numerical investigation 

of these cases highlighted that the vortex gradually becomes more viscous-dominant under 

larger horns, which, in turn, prevents it from creating the low-pressure nodes previously 

observed within the vicinity of smaller horns. As a result, this led to the shrinkage of the 

cavitation structure, and ultimately, creating a slowly oscillating thin flat attached cavitation 

structure. Due to the recurrence of this observation in cases of 24 mm, 32 mm, and 40 mm 

horns, it was concluded that such low frequency oscillations of such structures release more 

𝑂𝐻. radicals and create more activity zones. 
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 Introduction 
 

1.1 Background and Motivation 

 

Water scarcity is a crucial issue that continues to exacerbate annually as prominent scarcity 

indicators, such as the Falkenmark matrix [1] and the Kummu et al. approach [2], successfully 

identified; there is clear evidence of diminishing freshwater sources. As a form of adaptation, 

a multitude of nation-sponsored research and projects were initiated in order to address and 

adopt new solutions that suggest utilizing non-drinkable water as a new source of freshwater 

by running it through multiple filtration processes. A major example of such is desalination 

plants where saline water from nearby seas are driven into them to remove the salt and regulate 

the total dissolved solids reasonably to meet the set standard for safe drinking water [3,4]. 

Leading technologies of such type are reverse osmosis [5], nano-filtration [6], and 

electrodialysis [7]. On the other hand, thermal-based techniques are phase-transition 

technologies that mimic the natural water cycle in a way where the saline solution is heated to 

initiate its evaporation and later condensed into freshwater leaving the dissolved salts behind 

[4,8]. However, this technology does not provide a solution to the problem of water 

contamination, instead, it has expanded on this problem by introducing brine as a refuse that is 

rejected into natural freshwater sources. Brine typically is composed of many toxic chemical 

residuals, such as polyphosphates and cationic polymers [9,10] used in pre-treatment and post-

treatment stages. 

 

Wastewater commonly refers to the polluted water discharged from communal sources, 

regardless of their domestic or industrial origins. Often, wastewater retain recognizable 

physical and chemical anomalies that critically harm the environment if disposed improperly. 

Evaluation of water quality rely on terms like pH, temperature, total suspended solids (TSS), 

biological oxygen demand (BOD), and chemical oxygen demand (COD) as key indicators to 

the degree of water pollution [11-13]. These quantities tend to fall within a significant range 

depending on the types of contaminants present in the aqueous solution; those can be grouped 

as organic, non-organic [14], and biological pollutants [15]. For example, industrial wastewater 

has an average of the following chemical attributes: pH – 9.2, COD – 1098 mg/L, BOD – 215.0 

mg/L, TSS – 217.5 mg/L [13]. What these quantities indicate, in this case, is that the solution 

is basic and has large quantities of organic matter, both biologically reactive and non-

biologically reactive. In other words, bacteria and other microorganisms hold a dominant 

presence in industrial wastewater which reduce the overall quality of water when rejected back 

to natural water bodies. In return, this acts as a potential threat to existing organisms in those 

water bodies.  Therefore, many investigations have been allocated to finding novel solutions 

that could curb water pollution in an operationally efficient and cost-efficient way [16-18].  

 

Conventional wastewater treatment approaches are many; however, the plant procedures are 

one and the same. As such, all wastewater treatment plants maintain pre-treatment, primary, 

secondary, and tertiary treatment stages [19]. Nonetheless, the point of difference typically lies 

in the specific mechanical and chemical methods used at these stages. Examples of such 

processes are presented in Figure 1.1 below. 
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Figure 1.1: Groupings of existing mechanical, chemical, and biological treatment methods found commercially and in 

recent literature [20]. 

The selection of these methods is dependent on the nature of pollutants found in the wastewater 

effluent. Moreover, the selection process is constraint by its feasibility, efficiency, and 

operational costs [20-22]. In addition, the environmental impact and the generation of toxic by-

products are also accounted for in the selection. Plants treating industrial wastewater encounter 

many stubborn industrial pollutants that are extremely difficult to remove, such as 

perfluorooctane sulfonate (PFOS) [23], ammonium nitrogen [24], perfluorooctanoic acid 

(PFOA) [25], and diethylhexyl phthalate [26]. However, these materials are considered grey-

listed pollutants that pose as a potential risk to the environment but are not necessarily 

considered hazardous. On the other hand, black-listed pollutants are often referred to as bio-

refractory pollutants that not only are toxic but lead to bioaccumulation. Particularly, these 

kinds of pollutants have a higher chance of escaping treatment and being disposed of into the 

environment in which it will, eventually, lead to a large growing population of these pollutants 

in the environment [27]. Generally, this is mainly due to its persistence and resistive nature 

towards conventional biological treatment. Moreover, microorganisms, specifically bacteria, 

fall within that category, as some are classified as Gram-positive bacteria that have thick 

peptidoglycan cell wall making them resistive to mechanical and chemical stresses [28]. As 

exotic as such bacteria may seem, they are, in fact, quite common; bacteria E. Coli, L. 

Pneumophila, B. Subtilis, and E. Faecalis all fall under the Gram-positive bacteria category. 

Reasonably so, this gave a platform for researchers to investigate novel, reliable techniques 

that would best solve the problem of environment intoxication. 

 

One of the many techniques that have been, and remains consistently, investigated is cavitation. 

In simple terms, cavitation is a term first introduced by J. Thornycroft and S.W. Barnaby in 

1895 [29] to describe the phenomenon of bubble formation and collapse in a liquid body rapidly 

passing through hydraulic machinery, such as ship propellers and pumps. This phenomenon is 

typically initiated by a gradient in fluid pressure reducing the tensile strength holding the liquid 

molecules together and allowing a formation of an unstable ‘cavity’ between the molecules 

[30]. Cavitation is considered an unfavorable phenomenon in hydraulics because of the 

mechanical complications that can occur in the machine due to the bubble implosions. 

However, and ironically enough, this very phenomenon has attracted the attention of 

researchers in the environmental engineering field to, perhaps, employ this in a such a way that 

would tackle the water pollution problem generated by the bio-refractory pollutants. This is 

justified by the extreme mechanical and chemical conditions that the bubble implosions induce 
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in the liquid body, such as high local temperatures reaching 6000 K, and strong shockwaves 

producing a pressure of approximately 5500 bar at a jet velocity of 2000 m/s [31]. 

 

These bubbles can be generated both hydrodynamically and acoustically. Hydrodynamic 

cavitation, in other words, is the passive change in liquid pressure, such as a cross-sectional 

area change, in order to induce a drop below the vaporization pressure line [32]. On the other 

hand, acoustic cavitation is the production of an ultrasonic field, in the range of 20kHz and 

above, to create a pressure gradient. Under such circumstance, the cavitation bubbles will 

oscillate in and out of multiple expansion and compression acoustic cycles in which bubbles 

will grow and collapse based on the rate of dissolved gas mass transfer occurring at the interface 

between the bubbles and the liquid medium [33]. 

 

1.2 Wastewater Treatment Cavitation-based Methodologies 

 

Wastewater treatment has undergone multiple stages of technological evolution, however, that 

eventually settled at the use of adsorption, ultraviolet (UV) degradation, and membrane 

filtration [32]. Such techniques are now recognized as conventional treatments that not only 

prove to be energy inefficient but ineffective against persistent organic components. Currently, 

a typical wastewater treatment plant consists of multiple stages, namely the primary, secondary, 

and tertiary stages. As mentioned in the background, each commercialized method used at any 

of these stages have their limitations. For example, aeration units commercially make up the 

secondary stage of wastewater treatment plants and are composed of a large basin with multiple 

air diffuser units fixed at the bottom to provide oxygen to the mechanically filtered influent to 

induce a reaction between released oxygen molecules and any volatile contaminant 

compounds. The unit then vents out these contaminants from the water. A simplified sketch of 

the operation is shown in Figure 1.2. 

 

 
Figure 1.2: Schematic of a typical aerobic bioreactor utilizing aeration units at the bottom of the basin [34]. 

Despite that, with these units, bacteria and fungi still tend to escape with the filtered influent. 

In fact, around 80 - 6,900 CFU/m3 and 510 – 3,900 CFU/m3 worth of bacteria and fungi 

concentrations, respectively, are found in treated effluent [35]. Thus, recent explorations on 

alternative methods for wastewater treatments began gaining traction. Mainly, the usage of 

cavitation has been the primary field of investigation in alternative treatment plants. This could 

be owed to its volatile hydrodynamic nature as highlighted in previous sections. So, such 

cavitation units are referred to as hydrodynamic cavitation (HC) reactors. The literature divides 

these HC reactors into multiple categories depending on their geometries and types of flow. 

However, the five main forms of HC reactors are the venturi, orifice, vortex based, and rotating 

types.  
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1.2.1 Conventional Hydrodynamic Cavitation Reactors 

 

Cavitation reactors typically come in many different geometries; however, they all share the 

same core mechanism, i.e. initialize bulk cavitation nucleation and facilitate their collapse. 

These reactors, ranging from the common venturi-type reactors to vortex-based reactors, 

operate by manipulating the pressure field along the flow path whereby a series of low-pressure 

zones are established at one end, and a high-pressure zone is maintained at the other end [36]. 

However, the most recent type of cavitation reactors is rotational type reactors. As this type of 

reactor is considerably new and emerging, they mostly exist on lab scales in the literature. 

Generally, the reactor consists of a rotor and a stator that rotate against one another generating 

shear forces that then result in shear cavitation of the liquid flowing between the rotor and 

stator. One positive reported on such reactors is that they are usually capable of generating a 

suction force, through a pressure differential, into the reactor without the use of an external 

pump. This way the power consumption witnesses a relative decrease compared to other reactor 

types [31]. 

 

In the literature, there exists multiple geometrical variations of this basic operational concept. 

Such geometrical variations typically revolve around the distributions and shapes of 

indentations on the rotor and/or the stator. Table 1.1 summarizes recent novel developments of 

rotational cavitation reactors in terms of their geometries and operational capabilities.  
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Table 1.1: Tabulation of developments in hydrodynamic cavitation reactors. 

Reactor schematic Reference Geometric 

parameters  

Cavitation 

regime  

Pollutant  Operati

ng 

conditio

ns  

Conclusions 

 

Sezun et 

al. [37] 

Rotor-stator dia. 

= 50 mm. No. 

of CGUs = 12. 

CGU depth = 3 

mm. α = 8°. 

 

 

Periodic 

cavitation 

formation 

in rotor-

stator gap, 

rotor 

teeth, and 

rotor-

stator 

grooves. 

Paper mill 

sludge and 

pulp. 

V = 1L, 

t = 30 

mins, T 

< 30°, P 

= 400 

W. 

Decrease in 

CODt by 

53%. CODs 

increased by 

36%. 

 

Cerecedo 

et al. [38] 

No. of outer 

vanes = 4, No. 

of inner vanes = 

8. Vane radius = 

5 mm. 

Attached, 

unsteady, 

cloud 

cavitation 

is formed 

by water 

flowing 

across 

vanes. 

E. coli, E. 

faecalis of 

concentrat

ions = 102 

– 106 

CFU/ml. 

P = 650 

W 

High bubble 

collapse 

intensity and 

frequency. 

Significant 

reduction in 

concentration 

 

Badve et 

al. [39] 

No. of CGUs = 

204, CGU dia. = 

12 mm, CGU 

depth = 20 mm. 

Vortex 

cavitation 

due to 

high 

surface 

velocity of 

fluid 

creates 

low 

pressure 

fields 

Wastewat

er sludge 

with COD 

= 38,000 

mg/l 

V = 4L, 

T = 20-

25 °C, P 

= 1.1 

kW, 

2200 

rpm. 

COD decreased 

by 56%. 

 

Marsalek 

et al. [40] 

Rotor dia. = 160 

mm, No. of 

CGUs = 162. 

CGU dia. = 12 

mm, CGU depth 

= 20 mm. 

Cloud 

cavitation 

and vortex 

cavitation 

in CGUs 

and gap 

between 

rotor and 

stator. 

Cyanobact

eria 

V = 20-

250 L, P 

= 105-

265 kPa, 

4000-

5000 

rpm 

99% of 

cyanobacteria 

colonies were 

removed 

from 

wastewater 

with a single 

cycle lasting 

6 s. 

 

Kim et al. 

[41] 

Rotor and stator 

consisting of 32 

CGUs. 

Vortex, 

sheet, and 

shear 

cavitation 

took place 

at CGU, 

perimeter 

of CGU, 

and gap 

between 

rotor and 

stator. 

Waste 

activated 

sludge 

Flow 

rate = 

6.3 

L/min, P 

= 15 

kW. 

CODs 

increased by 

500%, 77.3% 

of 

contaminant 

particles were 

removed. 
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1.2.2 Unconventional Wastewater Treatment Cavitation Methods 

 

While there are many variations in the utilization of hydrodynamic cavitation in treatment, 

recent research trends have been emerging on the development of reactors that utilize both 

acoustic and hydrodynamic cavitation. This coupling was essentially seen to tackle prominent 

controllability issues that rose in hydrodynamic cavitation. Additionally, a rather favorable 

byproduct of the said cavitation coupling was substantially enhancing the overall treatment 

performance of the reactor, otherwise known as process intensification. Currently, such 

coupling is typically implemented on base reactor designs that resemble a typical Venturi tube 

due to its simplicity and modularity. Meanwhile, the additional component to the Venturi base 

reactor is an ultrasonic source, that is more commonly an ultrasonic sonotrode. Prime examples 

of this, for instance, are the reactor models designed by Wu et al. [42] and Johansson et al. [43] 

that generally consist of a converging-diverging tube configuration, aimed to induce 

hydrodynamic cavitation, and an ultrasonic transducer along the sides of the tube to facilitate 

the production of acoustic cavitation within the same region. The two reactor designs are 

summarized in Figure 1.3 below. 

 

 

 
Figure 1.3: Experimental setups of HAC reactors designed by (a) Wu et al. [42] and (b) Johansson et al. [43] 

 

1.3 Problem Statement 

 

Aeration is generally defined as a major segment of the secondary treatment process 

responsible for circulating air through the activated sludge to encourage microbial growth and 

degradation of organic matter. With conventional wastewater treatment plants consuming 

around 1% of the national electricity produced in European countries [44], in which Aeration 

is responsible for an approximate of 50-90% of the plant’s total energy consumption [45] as 

illustrated in Figure 1.4, implementation of hydrodynamic cavitation techniques in prototypes 

of wastewater treatment alternatives gained notable momentum in recent works of literature. 

However, as such techniques introduce more mechanical parts, it can be confidently speculated 

that the usage of such technology may increase maintenance costs deeming it an inefficient 

solution. Moreover, hydrodynamic cavitation, by nature, is typically governed by the reactor 

geometry that influences the pressure distribution along the water flow trajectory. As a result, 

this adds another barrier to performance optimization and tuning of such reactors. However, 

with further investigations seeking development of novel HAC reactors, this issue can be 

mitigated, as the usage of static geometries and, in turn, a more passive generation of cavitation, 
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acoustic cavitation can be introduced to potentially intensify this process while sustaining a 

reduced operational and maintenance costs. 

 

The implementation of ultrasound has become rather common in the past several decades in 

cases of hydrometallurgy leaching and fibre refining, however, challenges arise in upscaling, 

robustness, and energy efficiency of ultrasonic reactors [43]. As such, there seems to be a 

noticeable gap in the theoretical understanding in implementing acoustic cavitation as a form 

of wastewater treatment. Thus, further investigation is required to explore its potential as a 

catalyst of hydrodynamic cavitation in hydrodynamic-acoustic hybrid cavitation (HAC) 

generation techniques. Ultimately, the lack of knowledge on the nonlinear bubble dynamics of 

acoustically nucleated cavitation bubbles, such as their structural formations, their dissipation, 

and their region of influence, act as barriers to the optimization of the acoustic part of HAC. 

 

 

 
Figure 1.4: Power usage approximations for Polish wastewater treatment plants, 20-mgd nitrifying activated sludge [45]. 

 

1.4 Research Aims and Objectives 

 

The main aim of this thesis is to numerically explore the different cavitation flows and 

structures produced under an ultrasonic transducer, or horn, submerged in an aqueous solution. 

It aims to initially, and more essentially, demonstrate a series of prerequisite numerical 

modelling of such horn-type reactors in order to ensure the accurate capturing of the 

phenomenon. Afterwards, the presented thesis would then scrutinize the underexplored flow-

structure interactions between the bubbly structures and different acoustically streamed flow 

regimes formed under differently sized horn tip diameters. The presented thesis seeks to 

extrapolate and employ these observations in aims to justify aforementioned process 

intensifications and performance enhancers in HAC wastewater treatment methodologies. In 

that way, a well-rounded study that facilitates a strong platform for further development and 

optimization of HAC is presented. 
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As for the key objectives the thesis aims to address are as follows: 

• Construct and statistically optimize a Rayleigh-Plesset-based multiphase model that 

accurately predicts macroscale acoustic cavitation nucleation and behavioral dynamics in 

ultrasonic reactors operating within 20 – 40 kHz operational frequency range. 

• Explore the produced bubbly macrostructures under different ultrasonic horn tip sizes and 

evaluate any underlying bubble-flow interactions and couplings between the different 

cavitation macrostructure shapes and the accompanied proximal flow regimes. 

• Derive a generalized mathematical model that describes the proximal cavitating flow 

behavior to facilitate horn-type reactor optimization. 

• Correlate the shape and dynamic behavior of the bubbly macrostructures with the treatment 

performance in an aqueous solution. 

 

1.5 Thesis Overview 

 

The thesis comprises 9 chapters with the current chapter summarizing the motivation of the 

study, providing a general overview of conventional and unconventional wastewater treatment 

methods that implement cavitation as their primary mechanism, and stating the project’s aims, 

objectives, and novelty.  

 

Chapter 2 then follows with an elaborate discussion of the previous literature on the nucleation 

mechanism of cavitation-type bubbles, especially focusing on acoustically induced nucleation. 

Moreover, the chapter discusses previously implemented ultrasonic horn geometries, 

commonly explored operating conditions, and their impacts on resulting flow regimes and 

cavitation structures. Lastly, a detailed review of commonly practiced acoustic cavitation 

numerical modelling techniques is presented with a strong focus on defining key strengths and 

weaknesses found in such modelling habits. 

 

Chapter 3 then carries on with a detailed explanation of the numerical governance of the chosen 

mathematical models and an elaborate justification of the choice of models used to model and 

predict the cavitating flow produced within the considered horn-type reactor.  

 

Furthermore, Chapter 4 describes the mathematical derivation and statistical optimization of 

an additional model, based on the generalized Rayleigh-Plesset equation [46], that governs the 

multiphase flow by specifically predicting the lifecycle of each cavitation instance in ultrasonic 

reactors that operate within 20 – 24 kHz operational frequency range. The coupling of this 

model with other governing models, such as the turbulence and compressibility models, is 

demonstrated in this chapter as well to ultimately define and validate the multiphysics 

configuration for implementation in the explorations that follow afterwards. 

 

Moreover, Chapter 5 presents a comparative study that assesses the different flow fields 

generated with different dynamic motion modelling of the ultrasonic horn tip. This chapter 

highlights the underlying role of the horn’s periodic motion on the proximal flow behavior. 

 

Chapter 6 then follows to discuss the two-way coupling between the vortical flows generated 

and the attached acoustic cavitation about different sized horn tips in aims to reveal the 

underlying nonlinearity induced by the horn tip geometry, specifically its diameter, on the flow 

and cavitation development.  

 



27 

 

Afterwards, Chapter 7 demonstrates the derivation of a one-dimensional mathematical 

formulation that generalizes the proximal vortical flow typically observed under the horn tip.  

Ultimately, Chapter 8 ventures towards a more practical study that explores the influence of 

the dynamic behavior of the attached cavitation structure on the performance of wastewater 

treatment. As such, Chapter 9 summarizes the key findings of the works and suggests potential 

future work. 
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 Literature Review 
 

2.1 Fundamentals of Cavitation  

 

Cavitation is nothing more than an occurrence of a phase change where a simple kinetic theory 

[30] understanding of the gaseous state is a sufficient head start to delve into a discussion on 

cavitation nucleation. However, such discussions must be preceded with an elaborate 

explanation of the behaviour of the liquid state. The pure liquid enters a metastable state when 

the local pressure decreases past the saturation pressure threshold. Within this regime, the 

liquid can continue in a ‘stretched state’ without vaporizing, however, the metastable state 

ultimately becomes thermodynamically unstable upon a further pressure drop. This results in 

the spontaneous vapor bubble nucleation in the bulk liquid. This transition is characterized by 

the following criterion: 

 

(
𝜕𝑝

𝜕𝑉
)
𝑇
= 0 (2.1) 

 

which defines the spinodal limit where isothermal compressibility diverges. This provides 

valuable information on fluid metastability, especially for Equation of State (EoS) 

developments [47]. Specifically, this substantially defines different paths of nucleation a fluid 

can take. Moreover, in more practical flows, this pressure drop is often captured by the 

cavitation number: 

 

𝜎𝑐 =
𝑝∞ − 𝑝𝑣
1
2
𝜌𝑙𝑈2

 
(2.2) 

 

where 𝑝∞ is the reference pressure, 𝑝𝑣 is the vapor pressure, 𝜌𝑙 is the liquid density, and 𝑈 is 

the flow velocity. Typically, as 𝜎𝑐 goes to zero, the flow approaches the cavitation threshold. 

Once nucleation taken place, the subsequent bubble development dynamics is described by the 

Rayleigh-Plesset equation: 

  

𝑅
𝑑2𝑅

𝑑𝑡2
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(
𝑑𝑅

𝑑𝑡
)
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=
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𝜌𝑙

−
2𝜎0
𝜌𝑙𝑅

− 4
𝜇𝑙
𝜌𝑙𝑅

𝑑𝑅

𝑑𝑡
 (2.3) 

 

where 𝑅 is the instantaneous bubble radius, 𝜎0 is the surface tension, 𝜇𝑙 is the liquid’s dynamic 

viscosity, and 𝑡 is time. This equation expresses the balance between the inertial, pressure, 

viscous, and surface tension forces acting on the bubble’s interface. However, the governance 

of bubble growth and collapse dynamics is further discussed in Section 2.3. 

 

2.1.1 Cavitation Inception and Nucleation  

 

Generally, nucleation occurrences in a fluid are catalysed by many external parameters 

(discussed further in later sections) involving the liquid medium’s properties, such as its purity, 

dissolved gases, temperature, viscosity, and most importantly, the presence of nucleation sites. 

In such cases, any liquid imperfections can cause spontaneous nucleation and instability. 

Therefore, the liquid at such point is typically said to be in tension and the magnitude of said 

tension is the pressure gradient. 
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This analogy of tensile strength representing a liquid’s molecular forces has been first made by 

Harvey et al. [48], as the investigation uncovered the effect of pre-existing nano-sized gaseous 

nuclei on the development of cavitation. Moreover, Frenkel et al. [49] elaborates on this 

attribution and illustrates tensile strength of a pure liquid through a series of simple, yet 

informative calculations. The calculations consider two molecules at some distance r from each 

other. The intermolecular forces that exist between the two molecules are represented in Figure 

2.1 in terms of intermolecular potential energy plotted against their separation distance. The 

equilibrium state of the molecules at which it is still able to sustain some attractive force is at 

the energy minimum at r ≈ 2.64 Å; meanwhile, the water surface tension ruptures past that 

point as the liquid is no longer able to counteract the translational tensile force. Frenkel et al. 

[49] goes about quantifying the tensile strength through considerations of the liquid’s 

compressibility moduli, 𝜅, and a pressure 𝑝 expressed as follows: 

 

𝑝 =  −𝜅 (∆𝑉 𝑉0
⁄ ) 

 
(2.4) 

where ∆𝑉
𝑉0

 is the fractional volumetric expansion. In return, Frenkel et al. estimates pure water’s 

tensile strength ranges from −3 × 109 to −3 × 1010 kg/m s2. Experimentally, these numbers 

defy all practical measurements and thus deemed inaccurate. Although the simplistic model 

highlights its failure in predicting the tensile strength, many researchers have adopted the 

attribution and addressed the dilemma to describe the process of liquid rupture from a decrease 

in pressure below the vaporization pressure at constant liquid temperature [50, 51]. The process 

of liquid rupture is referred to as cavitation and is governed by the difference in pressure. 

 

 

 
Figure 2.1: A typical intermolecular potential graph of water dimer molecules where potential energy (kJ/mol) is plotted 

against the separation distance r (Å) [49]. 

The tensile strength of the liquid refers to its ability to resist formations of discontinuities, or 

nucleation, within its medium. ‘Weaknesses’ in the liquid medium typically refers to the 

presence of impurities. Therefore, these weaknesses are what describe nucleation sites, since 

they could be any of which: suspended rough particulates, contaminant gases, or crevices in 

the fluid container and act as initiation points [52]. However, depending on the form of 

weakness cavitation nucleation occurs at, nucleation is classified into two types: homogeneous 

nucleation and heterogeneous nucleation. Their differences can be summarized as visualized 

in Figure 2.2. In essence, the key differences the figure highlights are the mode of nucleation 
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and its progression. Homogeneous nucleation occurs in a pure liquid body under nucleation-

encouraging conditions, where both pressure and liquid density sharply fall. In that sense, new 

bubbles may appear. On the contrary, heterogenous nucleation occurs within a liquid body 

containing impurities, such as dissolved gases, that act as seeds for nucleation. Under such 

conditions, existing microbubbles grow out of these pockets and become larger with time. 

 

 
Figure 2.2: A visualization of the nature of development of homogeneous and heterogeneous nucleation in a body of pure 

liquid [50]. 

2.1.2 Homogeneous Nucleation 

 

Homogeneous nucleation is induced by the pre-existing impurities in the liquid body, possibly 

due to thermal motions within the medium, that are sufficient in size and considerably 

metastable to rupture and develop into macroscopic cavities [53]. According to many 

researchers [54, 55], most of the current developments in the homogeneous nucleation theory 

are based on Gibbs’ pioneering work in the field [56]. Gibbs’ work was aimed to lay the 

foundation of homogeneous nucleation by deriving an expression for the net energy required 

to form a bubble from pre-existing cavities WCR. This was done by assuming a pure liquid 

where the surface tension of the presumed bubble, otherwise termed as surface energy, is used 

to approximate the tensile strength of the liquid. Therefore, given that the bubble only contains 

vapor, the interior bubble pressure PB is safely assumed to be equivalent to the saturated vapor 

pressure PV. This is expressed by Eq. 2.5. 

 

𝑃𝐵 − 𝑃 = 𝑃𝑉 − 𝑃 = ∆𝑃𝐶 =
2𝜎0
𝑅𝐶

 (2.5) 

Where P is the local ambient pressure, 𝜎0(𝑥) is the planar surface tension of the bubble wall, 

and RC is the bubble radius. ΔPC is termed the tensile strength required to rupture the liquid 

and create a cavity. Accordingly, WCR was then formulated by taking into account the energy 

stored in the surface of the bubble and the energy applied to displace the liquid outward from 

the cavity. Thus, the net energy is equated as follows in Eq. 2.6. 

 

𝑊𝐶𝑅 = 4𝜋𝑅𝐶
2𝜎0 −

4

3
𝜋𝑅𝐶

3∆𝑃𝐶 =
4

3
𝜋𝑅𝐶

2𝜎0 (2.6) 

Since RC is practically difficult to approximate, Eq. 2.6 can then be re-written as follows: 
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𝑊𝐶𝑅 =
16𝜋𝜎0

3

3∆𝑃𝐶
2  (2.7) 

Following this, Gibbs then adopts a correlation between a given Gibbs number to WCR and the 

molecules’ kinetic energy kTC, where k is the Boltzmann’s constant and TC is the critical 

temperature at which nucleation occurs, to express the probability of nucleation occurrence 

given a specific volume and time. 

 

𝐺𝑏 =
𝑊𝐶𝑅

𝑘𝑇𝐶
 (2.8) 

 

 

2.1.3 Heterogeneous Nucleation 

 

This type of nucleation typically refers to nucleation emerging from surfaces in contact with 

the liquid medium. More specifically, it is when weaknesses in the bulk liquid occur at the 

boundary between the liquid and a solid surface in which a rupture in the liquid occurs. Such 

surfaces are not limited to container walls but also include rough contaminant particles. By 

definition, this type of nucleation is much more commonly present in practice compared to 

homogeneous nucleation. Examples of different modes of heterogeneous nucleation, based on 

the contact angle θ at the liquid/vapor/solid intersection, can exist in practice as shown in Fig. 

2.3. 

 

 
Figure 2.3: Cases of heterogeneous nucleation (A) nucleation at a plane hydrophobic surface (B) nucleation at a plane 

hydrophilic surface (C) nucleation at a conical cavity [30]. 

By recalling the expression of tensile strength, stated in Eq. 2.6, heterogeneous nucleation is 

generally defined with some minute variations. Considering Case A in Figure 2.3, the tensile 

strength is given as such: 
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∆𝑃𝐶 =
2𝜎0 sin 𝜃

𝑅𝐶
 (2.9) 

 

Ideally, a tensile strength of zero could be achieved when applying the limit as 𝜃 → 𝜋. 

Practically, this scenario is deemed impossible, however, many recent studies have shown that 

hydrophobic surfaces do in fact encourage heterogeneous nucleation due to the hefty reduction 

in tensile strength. For instance, Zhou et al. [57] investigated the heterogeneous development 

of nanobubbles on the surface of colloidal mineral particles. These mineral particles assume 

hydrophobic surfaces, and thus, nanobubbles are able to actively form and enhance general 

floatation performance of the particles, such as the attraction between the particles and 

increased particle aggregation. Similarly, Huang et al. [58] observed changes in the behaviour 

of heterogeneous nucleation as the surface hydrophobicity of gypsum was varied. The study 

concluded that higher surface hydrophobicity was a direct influence on enhanced surface-

induced nucleation where this phenomenon was attributed to low tensile strength and energy 

barrier. This conclusion has been supported by Lu et al. [59] by which the investigation 

revolved around visualizing this phenomenon. On the other hand, hydrophilic surfaces tend to 

do the exact opposite. Such surfaces induce an increased tensile strength and thus a larger 

energy barrier for heterogeneous nucleation to occur. As a matter of fact, the tensile strengths 

of such cases are comparable to that of homogeneous nucleation, since they share the same 

bubble maximum dimensions. However, this property has been studied and utilized in many 

investigations that attempt to explore nucleation inhibiting techniques. Guo et al. [60] witnesses 

the great extent of using a hydrophilic substance, known as PVA, as an anti-icing coating due 

to its nucleation inhibiting properties. 

 

All studies discussed, regardless of whether it was on hydrophobic or hydrophilic surfaces, 

infer that such nucleation scenarios occur on suspended particles. Thus, for heterogeneous 

nucleation occurring at a container wall, for example, it is typically initiated from an 

exemplified conical cavity found in said wall due to its irregular, rough nature. Figure 2.4 

visualizes the bubble development in the conical cavity. The bubble growth begins at the cavity 

vertex O and develops upwards. As the void proceeds to grow, 𝜃 is actively compared with the 

conical angle 𝛼 as an indicator for the bubble’s new geometrical configurations [59,60].  
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Figure 2.4:  Evolution of a bubble in a conical cavity [59]. 

 

2.2 Cavitation Bubble Dynamics 

 

Most investigative works on cavitation carry a recurring theme that typically infers the negative 

impacts of cavitation in a variety of hydraulic machinery, such as pumps and turbines [62]. In 

that sense, with the understanding of early bubble nucleation, it is crucial to further scrutinize 

the bubble’s development in the downstream medium to broaden the understanding of 

cavitation’s fluid dynamic behaviour in critical hydraulic systems. Moreover, similarly to the 

studies on nucleation, previous studies on bubble dynamics, and generally cavitation, classify 

vaporous cavitation on the basis of the mode of inducing a pressure change. These 

classifications are namely hydrodynamic cavitation and acoustic cavitation. 

 

2.2.1 Acoustic Cavitation 

 

However, despite all advancements in hydrodynamic cavitation passive control systems, a 

different mode of cavitation generation stands out owing to its active controllability. This type 

of cavitation is commonly known in literature as acoustic cavitation. Acoustic cavitation is a 

reproducible, complex phenomenon generated where the liquid’s surface tension is broken 

apart due to exposure to an ultrasonic field oscillating at a frequency that typically falls within 

the range of 20 kHz and above [30]. Under such circumstance, the cavitation bubbles generated 

oscillate within a series of cyclic expansions and compressions in which the bubbles grow and 

collapse based on the rate and direction of dissolved gas, or vapor, mass transfer occurring at 

the bubble interface with the liquid medium [63].  
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Figure 2.5: Acoustically generated bubble evolution at rarefaction and compression pressure wave phases [61]. 

This is illustrated in Figure 2.5 where a bubble embryo begins to oscillate and expand with 

each rarefaction peak until it reaches a critical resonant size. At this size, the bubble energy 

absorption is synchronized with the ultrasonic waves leading to its rapid growth. However, this 

fast growth rate induces major instabilities within the bubble leaving it unable to support itself. 

As a result, the bubble implodes during a compression trough followed by a series of 

shockwaves and hotspots capable of generating, local temperatures that reach 6000 K and 

localized pressures and velocities that reach 5500 bar and 2000 m/s, respectively [64]. 

Therefore, unlike the practical occurrences of hydrodynamic cavitation, where it is considered 

an unfavourable phenomenon due to the mechanical complications that follows it, acoustic 

cavitation is in fact employed as a controllable phenomenon that catalyses a variety of 

processes in a multitude of industries. Examples of such processes are viscosity reduction of 

crude oil [65], hydrogen production [66], tungsten extraction [43], and synthesis of 

polyethylene glycol (PEG) [67]. Hence, this creates a solid platform for many novel process 

intensification methodologies. However, the main obstacle faced is the parametric dependency 

of acoustic cavitation; and thus, developing a strong understanding of their sonochemical and 

physical activities would allow better control over the phenomenon. 

 

2.2.1.1 Acoustic Cavitation Structures 

 

In that regard, many studies have been conducted experimentally and numerically in an attempt 

to scrutinize the bubble dynamics witnessed during cavitation development. For instance, 

Tzanakis et al. [68] has investigated acoustic cavitation behaviour by varying multiple 

parameters: medium viscosity by changing the liquid medium and the oscillation amplitude by 

alternating the transducer power. Ultimately, the study’s key findings were on a macroscopic 

level in which the morphing of cavitation zone structures from one medium to another was 

examined; a conical cavitation zone occurs in water, a thick round layer occurs in glycerine, 

while ethanol observes ultrasonic degassing where bubbles are dispersed and actively oscillate 
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towards the free surface of the cuvette. These observations are universal as multiple studies 

have reported the same macrostructures.  

 

Similarly, studies have taken a deeper look into the liquid medium properties and its influence 

on the acoustic cavitation evolution. In a study conducted by Žnidarčič et al. [69], an 

experimental investigation takes place on the potential transfigurations of acoustic cavitation 

regions due to changes in the ultrasonic horn diameter and variations in liquid properties to 

analyse their degree of influence.  

 

The experimental setup used consisted of an ultrasonic horn emitter, with a small diameter of 

3 mm, submerged in a 50x50x50 mm cuvette filled with water with varying properties. 

Meanwhile, the emitter’s operating frequency is kept at 20 kHz. The control case consisted of 

a water medium with a temperature at 23°𝐶, dynamic viscosity of 0.000932 𝑃𝑎 𝑠, a liquid 

density of 998 𝑘𝑔/𝑚3, and a vaporization pressure of 2808 𝑃𝑎. The qualitative, and 

quantitative, results of the investigation first deduced that changes in liquid properties seem to 

have no significant effect on the cavitation life cycle corresponding to 1/4th of the horn driving 

frequency (5 kHz subharmonic frequency from the 20 kHz driving frequency). On another 

note, it was concluded that the instant in which attached cavities partly cover the full horn tip 

is comparable to the hydrodynamic ‘super-cavitation’. This hints at a possible shift in 

understanding of acoustic cavitation nucleation away from considering negative acoustic 

pressure fields being the direct cause of nucleation and towards accounting for the direct 

influence of the fast-moving horn surface on nucleation. 

 

On the other hand, studies, such as Altay et al. [70], investigate the influence of geometrical 

setups. More specifically, the study scrutinizes the effect of ultrasonic horn roughness on the 

acoustic cavitation bubble behaviour by varying the roughness between 100 nm to 1 μm. The 

investigation concluded that the overall bubble radius of the cavitation stream shrunk in size, 

as the roughness increased. Those bubbles with a diameter of 50 μm were targeted while those 

sized 10 μm showed no change. In turn, recorded temperatures dropped by 10 K with the 

increase in roughness, and this was attributed to the lower intensity generated by smaller 

bubbles. 

 

However, a parameter that has been recently considered for further studies is the dual/multi-

frequency ultrasound and its effect on ultrasonic cavitation. Multi-frequency ultrasound, 

referred to as high intensity focused ultrasound (HIFU), is generally known in the biomedical 

field for its employment potential as a non-invasive surgery modality. This can be attributed to 

the key observation witnessed by many biomedical explorations and that is its ability to 

exaggerate cavitation intensity. A study conducted by Suo et al. [71] have explored this 

phenomenon by observing the change in the inertial cavitation threshold due to the exposure 

to multi-frequency ultrasound. It has been concluded that multi-frequency ultrasound reduces 

this threshold and reduces the required power for cavitation production. This observation was 

mirrored by the changes in pressure and bubble radius induced when comparing single band of 

500 kHz and multi-band of 500 kHz + 1.5 MHz. 

 

Therefore, the increased cavitation intensity is due to the increase in bubble radius that is not 

facilitated in single-frequency ultrasound. In addition, the pressure fluctuation shows that 

bubble collapse occurs much more frequently, further supporting the intensity claim. Another 

study by Ye et al. [72] delves deeper into optimizing the frequency ratio and the phase 

difference of dual-frequency ultrasound. It has been found that with the increase of the 

frequency ratio, the maximum bubble radius, pressure, and bubble gas content decreases, and 
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thus the intensity decreases, due to an increase in the frequency ratio. Meanwhile, these 

cavitation parameters show no change towards a change in the phase difference. 

 

2.2.1.2 Single-Bubble Dynamics 

 

While studies performed on macroscale ultrasonic cavitation structures provide practical 

insight on acoustic cavitation performance under varying conditions, however, a noticeable gap 

in understanding the behaviour of acoustic bubbles at a microscale level remains. Thus, many 

studies attempt filling this knowledge gap by investigating single bubble and bubble-bubble 

dynamic behaviour at different positions and conditions.  

 

For instance, Liang et al. [73] investigated the influence of the ultrasonic horn’s distance from 

the bottom of the cuvette on the bubble-bubble interaction in the cavitation region under the 

ultrasonic horn. It has been observed that a nonlinear effect on bubble oscillation is caused by 

increased bubble density, and bubble radii induced by the decreasing distance. Generally, the 

increase in bubble radii is owned to the decrease in distance between smaller bubbles, thus, 

forcing them to merge. Moreover, Wu et al. [74] has decided to isolate the effect of near-wall 

positioning on a single bubble as shown in Figure 2.6 below. 

 

 
Figure 2.6: Microbubble evolution near a rigid wall in a medium of deionized water (initial radius = 20 µm, surface tension 

= 72.59 mM/m) [72]. 
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Fig. 2.6 shows a bubble of radius R = 20 μm near a rigid wall in a deionized water. It has been 

said that the bubble experiences two kinds of movements: (i) oscillation in place and that is 

due to the sound field’s primary Bjerknes force and (ii) small transverse movements towards 

the rigid wall due to the secondary Bjerknes force induced by the rigid wall. As the bubble 

inches towards the wall, its firstly assumed spherical shape turns elliptical. However, as the 

bubble achieves direct contact with the wall, the far bubble side away from the wall transforms 

into a high jet that strikes the rigid wall by penetrating the bubble. Afterwards, a rebound 

formation of the bubble can be seen marking the end of a single collapse cycle. Wu et al. [74] 

further investigates the influence of a decreased liquid surface tension on this bubble-wall 

dynamic. It has been found that with the decrease of surface tension, the bubble generally 

follows the same initial collapse cycle; however, it has been shown that the bubble experiences 

exaggerated surface depression and noticeable asymmetries, as it moves towards the wall. 

Moreover, the bubble bursts into smaller bubbles and later merge together instead during the 

second collapse cycle. This trend is clearly illustrated in Figure 2.7. 

 

 
Figure 2.7: Comparison of microbubble evolution in mediums of different surface tensions (a) 72.59 mN/m (b) 58.75 mN/m 

(c) 49.34 mN/m (d) 38.47 mN/m (e) 27.13 mN/m [72]. 
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Furthermore, attempted justification of the small bubble cluster has been shown in the works 

of Crum [75] in which it has been revealed that the splitting of small bubbles from the main 

cavity growth is due to the inertia induced by the rapid radial motion of the bubble that 

generates an air jet. Inertia and its major role in bubble evolution is further pronounced in 

Suslick et al.’s investigation [76] at which bubble radial oscillation becomes highly nonlinear. 

Essentially, the bubble experiences rapid cyclical growths and collapses with compression and 

rarefaction stages respectively. Particularly, this occurs due to strong compressions of gas and 

vapor present in the bubble that allows the bubble to rebound nonlinearly during rarefaction, 

which eventually leads to its runaway collapse. 

 

Generally, a reduced surface tension reduces the bubble’s ability to maintain its typical 

spherical shape. Another observation made in the study reiterates the direct relationship surface 

tension shares with the nucleation pressure threshold; therefore, the time interval between the 

first collapse cycle and the second collapse cycle of the bubble is shortened compared to the 

bubble collapse cycle in deionized water. 

 

As acoustic bubble near-wall dynamics show intriguing collapsing cycle behaviours, 

Yamamoto et al.’s numerical investigation [77] emphasizes the role walls have on acoustic 

bubbles’ growth behaviour as well. Specifically, the study simulates bubble growth dynamical 

changes due to a variation in the crevice geometry. The exploration suggests the bubble 

oscillation amplitude increases with the increase in the crevice depth. This, in turn, results in a 

new non-linear oscillation and a vigorous bubble growth. A similar effect is observed at larger 

contact angles, or larger crevice diameters. Typically, such phenomenon is seen as potential 

improvement in the sonochemical reaction induced by the ultrasonic field. 

 

Moving away from the wall, free surface acoustic bubble dynamics is yet another important 

field of exploration. An exclusive dynamic behaviour found in ultrasonically induced acoustic 

bubbles is a phenomenon known as the shielding effect. This was scrutinized by Ezzatneshan 

et al. [78] in which he introduces a computational methodology that employs the Lattice 

Bolztmann Method (LBM) coupled with the Multiple Relaxation Time (MRT) to visualize 

acoustic bubble cluster dynamics. A crucial observation made was one the collapse behaviour 

of the bubble cluster shown in Figure 2.8, where the collapse sequence of the cluster due to the 

ultrasonic horn’s pressure pulse begins at the top bubble. 
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Figure 2.8: Acoustically drive bubble cluster collapse at timesteps (a) ts = 10 (b) ts = 70 (c) ts = 110 (d) ts = 120 [76]. 

Interestingly, parallels can be drawn from both the top bubble’s symmetrical changes and a 

typical bubble’s near-wall collapse. The bubble’s imbalance in energy induces an initiation of 

collapse near the bubble cluster at the bottom layer of the top bubble. The kinetic energy is 

concentrated at the collapsing bubble top side which, in turn, flattens the top surface. This is 

known to result in a liquid jet that penetrates the bubble from the top and into the bubble core. 

This occurrence was justified by concluding that the lower bubble behaves as a wall and 

prevents the top bubble’s symmetrical collapse. It seems that the acoustically induced energy 

imbalances predominantly effect the top layer of bubbles compared to the lower bubbles in the 

cluster. This is explained by suggesting a “shielding effect” induced by the top bubble layer 

collapse that prevents the pressure impulse from travelling to the lower bubble layers. 

 

Bubble-bubble interactions like are known to occur in deionized, clear water. This suggests the 

question on whether such interactions hold the same behaviour when the liquid medium is 

changed. This question is explored by Qin et al. [79] by investigating the effect of lipid deposits 

on the bubble surface on the commonly observed bubble-bubble interactions. It has been 

confirmed that the encapsulating shell applies restraining effects of radial bubble oscillations. 

This coating forces the bubbles into two modes of dynamic behaviour, namely compression 

and expansion dominated oscillations. It has been observed that changes in bubble radius 

during the compression cycle is larger than the compression phase of uncoated bubbles. This 

could be due to the rupture of the lipid shell that induces a radius-dependent shell elasticity. 

However, during the expansion phase, the shell elasticity and viscosity play a major role in 

controlling the bubble oscillation and bubble expansion ratios. For instance, a negative 
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relationship between the increase of the two properties and the oscillation is concluded; as the 

elasticity and viscosity increases, the bubble oscillation and expansion ratio decrease 

drastically. This phenomenon could be used as an active controller for acoustic bubble 

dynamics, in turn, making it useful for therapeutic and pharmaceutical applications. 

 

Cavitation and its hydrodynamic behaviours make it an intriguing phenomenon to investigate 

and to implement in many industrial processes. As its violent expansion and collapse dynamics 

are shown to be flexible and controllable throughout the previous sections, multiple studies 

took the initiative to find novel ways of utilizing cavitation as a catalyst for many processes. 

 

2.3 Numerical Cavitation Models 

 

Cavitation models have become a primary integration of many commercial CFD programs. It 

is for their ease of implementation and their ability to facilitate cavitation flow predictions. 

Typically, cavitation models are classified as either single-bubble or multi-bubble models. 

From their names, the categories describe the bubble density extent at which the models are 

able to simulate. 

2.3.1 Single-bubble Models 

 

For single bubble models, they generally follow a direct numerical simulation of bubbles. In 

other words, they directly solve the changes in the bubble interface in such a way that takes 

accounts for sources of asymmetry in the interface. Examples of such are high speed jets due 

to the presence of a gravitational force or a solid wall [80], high bubble viscous stresses during 

a near-wall collapse [74], and high energy dissipation due to the development of vortex rings  

[81]. 

The Front Tracking method [82] is one of the few models that previous works adopted to model 

the bubble interface. It simply places a set of discrete points at a bubble’s surface and updates 

them according to a kinematic condition expressed as: 

𝑑𝑥𝐼

𝑑𝑡
= 𝑢𝐼 (2.10) 

where 𝑥 is the position of the particle, t is the flow time, and u is the velocity vector in 𝑥, 𝑦, 

and 𝑧 direction. The key advantage of this method is its simplicity to implement and solve 

numerically. On the basis of this method, the Boundary Integral (BI) method and the free 

surface method merge to numerically model bubble interfaces based on a set of assumptions. 

The BI method assumes that the liquid flow is potential to directly solve the velocity of a 

Lagrangian set of points without discretizing the Navier-Stokes equation [83]. This model has 

been shown to successfully capture the bubble dynamics at near-wall conditions. One work 

that has considered a particle tracking model to assume spherical particles for cavitation 

bubbles was Altay et al. [70]. The investigation focused on deriving the effect of both the 

acoustic generator surface roughness and the acoustic field frequency on bubble cluster 

behavior, through single bubble numerical observations.  

Another method of modelling the bubble surface boundary condition is through a coupling 

between a modified Bernoulli equation and the wave equation. The wave equation is typically 

expressed as: 

𝑐2∇2𝜑 = 𝜑𝑡𝑡 
(2.11) 
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Where c is the speed of sound in the medium, and 𝜑 is the velocity of the fluid induced by the 

cavitation bubble. This way the compressibility of the fluid is modelled, however, with the 

assumptions that the speed of sound is constant and that the fluid is irrotational and inviscid. 

The Bernoulli equation is then modified to become inclusive of the pressure induced by bubbles 

𝑃,the acoustic field pressure 𝑃𝑠𝑡, and the far-field pressure 𝑃∞. In addition, to include the 

incompressibility, the equation is then re-written as: 

𝑃 = 𝑃𝑠𝑡 + 𝑃∞ − 𝜌∞𝜚𝜑 +
𝜌∞
2
|∇𝜑|2 (2.12) 

Where 𝜌∞ is the density of the fluid and 𝜚 is the material derivative of time t. In a study 

conducted by Xi et al. [84], this was used to define the bubbles’ interface and their motion 

when examining dynamics of multiple cavitation bubbles near a rigid wall.  

Lastly, some studies have been seen implementing a modified Keller-Miksis equation [85] 

describing the radial dynamics of the cavitation bubble; the bubble’s expansion and collapse 

based on its exposure to specific pressure gradients. The equation was employed in a study 

conducted by Kerboua et al. [86]. The study reported an energy analysis of an acoustic 

cavitation bubble as a form of identification of energy gain and loss sources. The literary work 

used the modified Keller-Miksis equation to express the bubble formation and deformation.  It 

appears that compressive work is a predominant source of energy gain while diffusive heat is 

the main form of energy loss, with the exception of acoustic oscillation at 35kHz where water 

condensation is the dominant source of energy loss. 

Based on the aforementioned modeling techniques, it can be safely concluded that most of the 

numerical studies of acoustic cavitation are mainly limited to the single acoustic cavitation 

bubble model. This tends to be the case due to the complexity of the models used for single 

bubble modelling that makes it computationally difficult to implement it for a multi-bubble 

analysis. 

 

2.3.2 Multi-bubble Models 

 

Consequently, in order to investigate multi-bubble parameters, such as bubble density, bubble-

bubble interaction, and bubble size distributions, researchers began adopting cavitation models 

developed on the basis of the Rayleigh-Plesset equation [46, 87]. This equation is formulated 

while assuming a constant spherical geometry for cavitation bubbles in an infinite body of 

incompressible liquid; bubble deformation is neglected.  

𝑅
𝑑2𝑅

𝑑𝑡2
+
3

2
(
𝑑𝑅

𝑑𝑡
)
2

=
𝑃𝑠𝑎𝑡 − 𝑃∞

𝜌𝑙
−
2𝜎

𝜌𝑙𝑅
− 4

𝜇𝑙
𝜌𝑙𝑅

𝑑𝑅

𝑑𝑡
 (2.13) 

 

While the Rayleigh-Plesset equation attempts to describe the bubble dynamics and evolution 

of a single spherical bubble, many pioneering works on developing multi-bubble models have 

sourced from this very equation. Typically, a set of governing equations is solved for each 

phase of the multiphase fluid. However, to account for the change in the vapor volume fraction, 

an additional transport equation is introduced based on the mathematical model presented in 

Frikha et al. [88]. Its general volume fraction expression is: 

𝜕𝛼𝑙𝑣
𝜕𝑡

+ 𝑑𝑖𝑣(𝛼𝑙𝑣𝒖) = 𝛼 (2.14) 
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where 𝑙 and 𝑣 are subscripts representing the liquid and the vapor phase, respectively. 𝛼 is the 

volume fraction, t is the time, and 𝒖 is the velocity vector. Moreover, the equation can be 

morphed into representing the mass fraction of each phase as follows: 

𝜕𝜌𝑙𝑣𝛼𝑙𝑣
𝜕𝑡

+ 𝑑𝑖𝑣(𝜌𝑙𝑣𝛼𝑙𝑣𝒖) = 𝑚̇
+ + 𝑚̇− (2.15) 

where 𝜌 is the density of the phase. The transport equation in Eq. 2.15 is expressed in terms of 

a new variable known as the mass transfer rate, or the mass transfer source term. It is written 

as 𝑚̇ where 𝑚̇+ represents the condensation process, or the bubble collapse, in which the liquid 

mass increases. Meanwhile, 𝑚̇− represents the evaporation process in which the liquid mass 

decreases when bubbles begin to grow. 

The first study to propose a homogeneous model based on Eqns. 2.13 and 2.15 was Kubota 

[89] in which the investigation presents a local homogeneous model derived from the nonlinear 

Rayleigh-Plesset equation. However, one of the proposed model’s weaknesses is its numerical 

instability. Therefore, many proceeding studies presented their own solutions to address the 

weakness. This was done through a series of simplifications and manipulations of the Rayleigh-

Plesset equation. For instance, Merkle et al. [90] presented a set of source terms independent 

of the bubble radius, instead, it tracks the change in the liquid density. Kunz et al. [91], on the 

other hand, present another set of source terms based on the Ginzburg-Landau potential. 

However, an issue that has been highlighted in the mentioned models is that they heavily 

depend on empirical constants. Hence, Schnerr and Sauer [92] suggested a transport-based 

cavitation model independent of many empirical constants, while keeping the bubble density 

as the only model constant. Moreover, the source terms of the model describe the dynamics of 

bubble growth and collapse through tracking changes in the bubble radius. Similarly, Zwart et 

al. [93] presented model source terms derived based on the manipulations of turbulence 

governing equations of the eddy viscosity and the mixture density. However, four model 

constants emerge in its source terms, namely the bubble radius, nucleation site volume fraction, 

evaporation constant, and condensation constant. The constants are intended to control the rate 

of growth and collapse of the bubbles in a validated and simple way. Following the same 

derivation logic of both Schnerr-Sauer and Zwart et al., Singhal et al. [94] implemented a ‘full 

cavitation model’ in which the model goes beyond tracking changes in the bubble radius and 

considers changes in the turbulent kinetic energy, the surface tension, and the non-condensable 

gas presence in the medium. 

 

The usage of a single-bubble model like the Rayleigh-Plesset equation is based on its physically 

grounded and computationally tractable means to describe bubble dynamics in practical flows 

(i.e. hydraulic machines and ultrasonic horn reactors). From such governing equation, the 

macroscopic vapor-liquid mass transfer source terms can be systematically derived and 

incorporated into a phase continuity equation. While multi-bubble population balance or 

Lattice Boltzmann Method (LBM) approaches do in fact grant higher fidelity and can resolve 

bubble size distributions and interactions, they are computationally more demanding. As such, 

a Rayleigh-Plesset-based model can facilitate a formulation that sufficiently governs the 

coupling of cavitation dynamics to macroscopic flow behaviour. Meanwhile, it can also 

implicitly capture multi-bubble effects through averaged, empirical parameters, such as the 

aforementioned model constants, ultimately providing a robust compromise between physical 

fidelity and computational efficiency. Table 2.1 below summarizes the aforementioned models, 

alongside other similar models, and their source terms. 
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Table 2.1 Common multi-bubble cavitation models and their mass transfer rate source terms. 

Model Name Source Terms 

Merkle et al. [90] 
𝑆𝑒𝑣𝑎𝑝. =

2𝐶𝑒𝑣𝑎𝑝.𝜌𝑙 𝑚𝑖𝑛{0, 𝑃∞ − 𝑃𝑣}𝛼𝑙
𝜌𝑙𝜌𝑣𝑢∞

2 𝑡∞
 

𝑆𝑐𝑜𝑛𝑑. = −
2𝐶𝑐𝑜𝑛𝑑. 𝑚𝑎𝑥{0, 𝑃∞ − 𝑃𝑣}(1 −𝛼𝑙)

𝜌𝑙𝑢∞
2 𝑡∞

 

Kunz et al. [91] 
𝑆𝑒𝑣𝑎𝑝. =

2𝐶𝑒𝑣𝑎𝑝.𝜌𝑙 𝑚𝑖𝑛{0, 𝑃∞ − 𝑃𝑣}

𝜌𝑙𝑢∞
2 𝑡∞

 

𝑆𝑐𝑜𝑛𝑑. = −
2𝐶𝑐𝑜𝑛𝑑.𝜌𝑣𝛼𝑙

2(1 −𝛼𝑙)
𝑡∞

 

Schnerr and Sauer [92] 

𝑆𝑒𝑣𝑎𝑝. =
𝜌𝑙𝜌𝑣
𝜌𝑚

3𝛼(1−𝛼)
𝑅

√
2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

𝑆𝑐𝑜𝑛𝑑. = −
𝜌𝑙𝜌𝑣
𝜌𝑚

3𝛼(1−𝛼)
𝑅

√
2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

Zwart et al. [93] 

𝑆𝑒𝑣𝑎𝑝. = 𝐶𝑒𝑣𝑎𝑝.
3𝛼𝑛𝑢𝑐(1−𝛼𝑣)𝜌𝑣

𝑅
√
2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

𝑆𝑐𝑜𝑛𝑑. = −𝐶𝑐𝑜𝑛𝑑.
3𝛼𝑛𝑢𝑐𝛼𝑣𝜌𝑣

𝑅
√
2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

Singhal et al. [94] 

𝑆𝑒𝑣𝑎𝑝. = 𝐶𝑒𝑣𝑎𝑝.
√𝑘

𝜎
𝜌𝑣𝜌𝑙√

2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
(1 −𝑓𝑣−𝑓𝑔) 

𝑆𝑐𝑜𝑛𝑑. = −𝐶𝑐𝑜𝑛𝑑.
√𝑘

𝜎
𝜌𝑣𝜌𝑙√

2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
𝑓𝑣 

Frobenious et al. [95] 

𝑆𝑒𝑣𝑎𝑝. = 𝐶𝑒𝑣𝑎𝑝.
𝑛0

1 + 4 3𝑛0𝜋𝑅
3

⁄
4𝜋𝑅2√

2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

𝑆𝑐𝑜𝑛𝑑. = −𝐶𝑐𝑜𝑛𝑑.
𝑛0

1 + 4 3𝑛0𝜋𝑅
3

⁄
4𝜋𝑅2√

2

3

|𝑃∞ − 𝑃𝑣|

𝜌𝑙
 

 

2.4 Ultrasonic Horn Tip Modelling 

 

2.4.1 Stuart Streaming Theory 

 

The Stuart streaming theory is an extension of the Rayleigh [96], Nyborg [97] and Westervelt 

[98] (RNW) streaming theory that establishes the quantification of acoustic streaming using 

the continuity equation and the Navier-Stokes equation as shown in Eq. 2.16 and Eq. 2.17,  

respectively: 

 
𝜕𝜌

𝜕𝑡
= −∇ ∙ (𝜌𝜈⃗) (2.16) 

𝜌 (
𝜕𝜈⃗

𝜕𝑡
+ 𝜈⃗ ∙ ∇𝜈⃗) = −∇𝑝 + 𝜇∇2𝜈⃗ + 𝐹⃗ (2.17) 

 

Where 𝜌 is the density, 𝜈⃗ is the velocity, t, is the time, 𝑝 is the pressure, 𝜇 is the viscosity, and 

F is the force per unit volume induced by streaming. This force term is expressed by Rayleigh 

as the Reynolds stress spatial variation [96] and can be written as: 
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𝐹 = −
𝜕(𝜌𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑖
 (2.18) 

 

Moreover, this force is typically calculated from the sound field attenuation with respect to the 

plane waves [99]: 

 

𝐹 = −
1

𝑐
∇𝐼 (2.19) 

 

In Eq. 2.23, c is the speed of sound and 𝐼 is the acoustic intensity. In an attempt to solve the 

continuity and the Navier-Stokes equations, Nyborg [97] implemented the successive 

approximations method to represent each of the excess pressure, excess density, and excess 

velocity at any point by expanding them into a series of terms, as such: 

 

𝑝1 = 𝑝1 + 𝑝2 + 𝑝3 +⋯ (2.20) 

𝜌1 = 𝜌1 + 𝜌2 + 𝜌3 +⋯ (2.21) 

𝜈⃗1 = 𝜈⃗1 + 𝜈⃗2 + 𝜈⃗3 +⋯ (2.22) 

 

Where the excess pressure is essentially 𝑝1 = (𝑝 − 𝑝0), the excess density is 𝜌1 = (𝜌 − 𝜌0), 
and the excess velocity is 𝜈⃗1 = (𝜈⃗ − 𝜈⃗0). Here, the excess value of each term is subtracted by 

its unperturbed value of the fluid property. The subscript 1 for each fluid property in Eqns. 

2.20-2.22 represent first order approximation of the property and are typically considered as 

the solutions of the wave equation. This is because they vary sinusoidally in time at a given 

frequency 𝜔, which in turn, represents the sound field produced. Moreover, the second order 

approximations are time-averaged property terms acting as correction terms added to their 

respective first order approximations. While this provides a reasonable approximation of the 

streaming properties, the RNW theory is only true for creeping motions or extremely slow fluid 

flow at Reynolds numbers 𝑅𝑒 < 1. The reason behind this is because the inertial terms 

presented in Eq. 2.17 were neglected in the approximation calculations. Since, this is 

inapplicable for generic streaming motions generated by ultrasonic horns, Stuart [100] has led 

a mathematical investigation to reintroduce the neglected inertia terms back into the equation 

of motion, as follows: 

 

𝜌(𝑣̅ ∙ ∇𝑣̅) = −∇𝑝̅ + 𝜇∇2𝑣̅ + 𝐹⃗ (2.23) 

 

However, key differences in the Stuart’s Navier-Stokes equation is the omitting of the transient 

term and replacing the vector terms with time-averaged terms (i.e. 𝑣̅ and 𝑝̅). As discussed 

earlier, the time-averaged terms simply are simply represented by the second-order 

approximations in the RNW theory. Thus, this equation of motion is made applicable for the 

estimation of acoustic streaming formed by concentrated high power acoustic beam in the form 

of inertially dominated turbulent jets.  

 

The imagery drawn about this high-power acoustic streaming is a narrow beam of sound with 

an acoustic power of 𝑊0 = 𝐼0𝐴0 at its inlet. This is graphically illustrated in Figure 2.9. In an 

ideal model, it is said that the energy entering this beam is equal to the energy exiting it.  
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Figure 2.9: Lighthill's assumption of the attenuated acoustic beam [101]. 

 

And since the intensity 𝐼 is defined as the rate of transport of energy per unit area 𝐴, this then 

is idealized as 𝐼𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. However, upon attenuating the acoustic beam, the acoustic 

power will then be expressed as: 

 

𝑊 = 𝑊0𝑒
−𝛽𝑋 (2.24) 

 

Here, 𝑋 is the distance from the sound source and the exponential value 𝑒−𝛽𝑋 is the damping 

term with respect to the beam’s spatial attenuation with 𝛽 as the attenuation coefficient. An 

acoustic momentum flow rate 𝐹𝑎 is defined, alongside the acoustic energy flow in Eq. 2.24, as: 

 

𝐹𝑎 =
𝑊

𝑐
=
𝑊0

𝑐
𝑒−𝛽𝑋 (2.25) 

 

Where the acoustic momentum flow rate is similarly attenuated with respect to the distance 

from the source 𝑋. Furthermore, the law of conservation of momentum can be applied to obtain: 

 

𝐹ℎ/𝑎 =
𝑊0

𝑐
−
𝑊0

𝑐
𝑒−𝛽𝑋 =

𝑊0

𝑐
(1 − 𝑒−𝛽𝑋) (2.26) 

 

In which acoustic streaming momentum appears as the hydrodynamic momentum which is 

represented by 𝐹ℎ. The momentum’s spatial rate of decay is then expressed as: 

 

𝐹𝐿 =
𝑑𝐹𝑎
𝑑𝑋

=
𝛽

𝑐
𝑊0𝑒

−𝛽𝑋 =
𝛽

𝑐
𝑊 (2.27) 

 

Here, 𝐹𝐿 is considered to be the net force per unit length that induces this streaming. The 

kinematic momentum of this acoustic beam is then represented in the equation below: 

 

𝐾 = 𝜌0𝐹ℎ = 𝜌0
𝑊0

𝑐
(1 − 𝑒−𝛽𝑋) (2.28) 

 

In the case of turbulent jetting, the attenuation coefficient is extremely high leading to the 

exponential term 𝑒−𝛽𝑋 approach zero at a short distance 𝑋. This makes the hydrodynamic 
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momentum delivered equal to 
𝑊0

𝑐
. Regardless of that, it has been concluded by Schlichting 

[101] that the turbulent jet mean flow retains strong similarity to the laminar jet when taking a  

constant eddy viscosity that equates to: 

 

𝜇𝑡 = 0.016(𝐾)
1/2 (2.29) 

 

With Eqs. 2.28 and 2.29, one can now describe the change in turbulent viscosity along the 

sound beam. Finally, to define the velocity profile of the turbulent jet presumably generated by 

the acoustic streaming, a Gaussian distribution is assumed as follows: 

 

𝑣 = (
2𝐾

𝜌2𝜋𝑆2
)
1/2

𝑒[−(𝑟 𝑆⁄ )] (2.30) 

 

In Eq. 2.30, 𝑟 is the radius of the beam’s axis and S represents the width of the jet. Now, with 

this boundary defining model, it circumvents the numerically complex problem of modelling 

streaming and heat generation caused by the oscillation of a high-power ultrasonic horn. 

However, if the aim of a given study is to numerically explore the Multiphysics problem of 

acoustic cavitation formation and motion, then the model would be deemed inapplicable due 

to the highly nonlinear nature of the problem induced by the bubbles’ reduction of the acoustic 

field’s speed of sound and the attenuation from their scattering. Moreover, the model fails to 

consider the Bjerken forces applied by the acoustic field on the bubbles due to sound 

absorption. Thus, for a multiphase problem as such, alternative boundary conditions have been 

considered instead. 

 

2.4.2 Pressure Determination Modelling 

 

Instead of defining the ultrasonic horn tip as a velocity-inlet boundary condition, some studies 

have considered implementing a pressure-based boundary condition instead. This was done 

with the consideration of the pressure expansion-compression waves propagating within the 

medium and governing the wave equation [102, 103]. So, the thought process of deriving the 

pressure boundary condition is through solving for the wave equation stated in Eq. 2.31 and 

applying a thermal boundary condition to solve the equation. 

 

∇(
1

𝜌
∇𝑃(𝑋, 𝑡)) −

1

𝜌𝑐2
𝜕2𝑃(𝑋, 𝑡)

𝜕𝑡2
= 0 (2.31) 

 

With the harmonic pulsation induced by the horn and the domain boundaries generally being 

set at a pressure equating to zero, the pressure field is then defined as harmonically fluctuating, 

respectively. As such, the general solution to the Helmholtz equation (Eq. 2.31) is: 

 

𝑃(𝑋, 𝑡) = 𝑝(𝑋)𝑒𝑖𝜔𝑡 (2.32) 

 

And substituting Eq. 2.32 into Eq. 2.31 will result in: 

 

∇(
1

𝜌
∇𝑃(𝑋, 𝑡)) −

𝜔2

𝜌𝑐2
𝑃(𝑋) = 0 (2.33) 
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With the above equation, many things can be inferred, such as the pressure distribution is 

dependent on the transducer frequency, fluid density, and speed of sound. In addition, the 

reliance on the density and the sound speed indirectly correlates to being dependent on 

temperature, as both fluid parameters are influenced by it. Therefore, potential thermal effects 

must be taken into consideration. The pressure magnitude of the horn tip face pressure is 

computed from the ultrasonic horn’s acoustic intensity expression: 

 

𝐼𝑈𝑆 =
𝑃𝑈𝑆
𝐴𝐻

=
𝑃𝑡𝑜𝑡𝑎𝑙

2

2𝜌𝑐
 (2.34) 

 

In which 𝑃𝑈𝑆 is the power input of the ultrasonic horn, A is the horn area, and 𝑃𝑡𝑜𝑡𝑎𝑙 is the 

pressure wave amplitude. By computing 𝑃𝑡𝑜𝑡𝑎𝑙, one can calculate the required pressure value 

set at the horn tip face by capturing its sinusoidal temporal variation: 

 

𝑃 = 𝑃𝑡𝑜𝑡𝑎𝑙 sin(𝜔𝑡) (2.35) 

 

This boundary condition surely defines the horn tip more accurately than the boundary 

definition the velocity-inlet presents. This is because acoustic pressures from high-power 

ultrasonic transducers are easily adapted into the numerical boundary condition. However, 

another limitation appears with this kind of boundary condition and that is its inability to 

capture influence of wall movement on the formation and development of cavitation in the 

proximal region. Therefore, more recent studies have begun scrutinizing dynamic mesh models 

instead. 

 

2.5 Horn Tip Vibration Modelling 

When it comes to adopting moving wall boundary condition, some studies went with a simpler 

solution to assign a sinusoidal motion to the horn tip, while others have gone the extra mile to 

adopt a sinusoidal model inspired by the achievable mode shapes of the piezoelectric element, 

and thus the horn tip, during its oscillation at 20 kHz. For the simple model, the equation 

defined is simply based on a sine function multiplied by the maximum amplitude achieved by 

the horn at a specific power input. Eq. 2.36 demonstrates its general expression. 

 

𝑣𝑢(𝑡) = 𝜉𝑚𝑎𝑥2𝜋𝑓 cos(2𝜋𝑓𝑡) (2.36) 

 

Where 𝑣𝑢(𝑡) is the displacement of the nodes from its neutral position, 𝜉𝑚𝑎𝑥 is the maximum 

displacement of the node, and 𝑓 is the oscillation frequency. However, some studies, like 

Rahimi et al. [104], suggest that the mode shapes experienced by the piezoelectric ceramic 

integrated in the transducer is completely transmitted to the ultrasonic horn tip. It has been 

inferred that the symmetrical, longitudinal vibrational modes of a circular piezoelectric disk 

are the most prominent [105]. Specifically, the mode shape indicating a maximum 

displacement at the horn tip centre is what has been commonly observed at approximately 20 

kHz and thus has been considered as the base of the following vibration model derivation.  

 

Before beginning with the derivation, a few assumptions were made prior to reduce the 

complexity of the mathematical model. These assumptions were made based on Kirchhoff’s 

bending theory for circular thin plates [106]. The assumptions made are the following, and are 

illustrated in Figures 2.10a and 2.10b: 

 

- The plate material is linearly elastic and obeys Hooke’s law. 
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- Elastic deformation of plate is characterized by Modulus of Elasticity and Poisson’s 

ratio. 

- Horn tip vibrates due to a load applied on top of radiating surface perpendicular to 

circular cross-section. 

- Straight lines normal to middle plane before bending remain straight and normal to 

said plane during deformation based on the hypothesis of straight normals [107]. 

 
Figure 2.10: (a) A schematic of a segment of a circular piezoelectric disk displaying the stresses and shear forces acting on 

the segment in the cylindrical coordinates, (b) A top-view schematic of the segment illustrating a balance in the moments 

acting on the segment illustrating a balance in the moments acting on the segment [104]. 

 

Kirchoff’s bending theory allows the assumption of normality of lateral sides of circular plate 

by simply rotating about neutral axes, thus: 

 

𝑢𝑧 = −𝑧
𝑑𝜉

𝑟
, 𝑢𝑧 = 𝑢𝑧(𝑟) (2.37) 

 

Where 𝑢𝑧 is the displacement of some point at a distance z from the middle surface, 𝜀 is a small 

displacement of circular plate in z direction. Normal strains (elongation) of edges in the 

direction of coordinate axes can then be: 

 

𝜀𝑟 =
𝑑𝑢𝑧

𝑑𝑟
= −𝑧

𝑑2𝜉

𝑑𝑟2
 (2.38) 
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𝜀𝜑 =
(𝑟 + 𝑢𝑧)𝑑𝜑 − 𝑟𝑑𝜑

𝑟𝑑𝜑
= −

𝑧

𝑟

𝑑𝜉

𝑑𝑟
 (2.39) 

 

where 𝜉 is the specific displacement component. Moreover, assuming that the shear strain in 

r𝜑 plane is negligible, we can move to finding the normal stresses in that plane using Hooke’s 

law. 

 

𝜎𝑟 =
𝐸

1 − 𝑣2
(𝜀𝑟 + 𝑣𝜀𝜑) =

𝐸𝑧

1 − 𝑣2
(
𝑑2𝜉

𝑑𝑟2
+
𝑣

𝑟

𝑑𝜉

𝑑𝑟
) (2.40) 

𝜎𝜑 =
𝐸

1 − 𝑣2
(𝜀𝜑 + 𝑣𝜀𝑟) =

𝐸𝑧

1 − 𝑣2
(
1

𝑟

𝑑𝜉

𝑑𝑟
+ 𝑣

𝑑2𝜉

𝑑𝑟2
) (2.41) 

 

Where 𝑣 is the poisson’s ratio, 𝜎𝑟 and 𝜎𝜑 are the normal stresses in r and 𝜑 directions, 𝐸 is the 

Young’s modulus. Now, deriving the moment equations acting along the circumferential 

section: 

 

𝑀𝑟 = ∫ 𝜎𝑟𝑧𝑑𝑧
𝑙/2

−𝑙/2

=
𝐸𝑙2

12(1 − 𝑣2)
(
𝑑2𝜉

𝑑𝑟2
+
𝑣

𝑟

𝑑𝜉

𝑑𝑟
) (2.42) 

𝑀𝜑 = ∫ 𝜎𝜑𝑧𝑑𝑧
𝑙/2

−𝑙/2

= −
𝐸𝑙2

12(1 − 𝑣)
(
1

𝑟

𝑑𝜉

𝑑𝑟
+ 𝑣

𝑑2𝜉

𝑑𝑟2
) (2.43) 

 

Where 
𝐸𝑙2

12(1−𝑣)
 is flexural rigidity, and 𝑙 is thickness of circular plate. The shearing force per 

unit length of the cylindrical section is defined as: 

 

𝑄𝑟 =
1

2𝜋𝑟
∫ ∫ 𝑞𝑟𝑑𝑟𝑑𝜑

𝑟

0

2𝜋

0

 (2.44) 

 

where 𝑞 is intensity of load as a function of 𝑟. Summing up the moments of the element: 

 

(𝑀𝑟 +
𝑑𝑀𝑟

𝑑𝑟
𝑑𝑟) (𝑟 + 𝑑𝑟)𝑑𝜑 −𝑀𝑟𝑟𝑑𝜑 −𝑀𝜑𝑑𝑟𝑑𝜑 + 𝑄𝑟𝑟𝑑𝑟𝑑𝜑 = 0 

 

(2.45) 

Neglecting small quantities of higher order differential terms: 

 

𝑀𝑟 +
𝑑𝑀𝑟

𝑑𝑟
𝑑𝑟 − 𝑀𝜑 + 𝑄𝑟 = 0 

 

(2.46) 

where 𝑀𝑟 and 𝑀𝜑 are the radial and hoop moment per unit length, respectively. Finally, 

substituting previous definitions of moments and shear strain: 

 

𝑑3𝜉

𝑑𝑟3
+
1

𝑟

𝑑2𝜉

𝑑𝑟2
−
1

𝑟2
𝑑𝜉

𝑑𝑟
=
𝑄𝑟
𝐷

 (2.47) 

 

In the case of acoustic radiation, 𝑄𝑟 represents the equivalent radiating forces per unit length 

for peak-to-peak displacements: 
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𝑄𝑟 =
𝐹𝑣𝑖𝑏
2𝜋𝑟

 (2.48) 

 

Integrating three times to get the displacement equation: 

 

𝜉 =
𝐹𝑣𝑖𝑏
8𝜋𝐷

(𝑟2 𝑙𝑛 𝑟2 − 𝑟2) + 𝐶1
𝑟2

4
+ 𝐶2 𝑙𝑛 𝑟 + 𝐶3 

 

(2.49) 

To get the three constants, apply three boundary conditions: 

 

𝜉(𝑟 = 0) = 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒) 
 

(2.50) 

𝐶2 = 0 
 

(2.51) 

𝑑𝜉(𝑟 = 𝑅)

𝑑𝑟
= 0 

 

(2.52) 

𝐶1 =
𝐹𝑣𝑖𝑏
4𝜋𝐷

(1 − 2 ln𝑅) (2.53) 

𝜉(𝑟 = 𝑅) = 0 

 
(2.54) 

𝐶3 =
𝐹𝑣𝑖𝑏𝑅

2

16𝜋𝐷
 (2.55) 

 

By direct replacement of the three constants into Eq. 2.49, the simplified equation then 

becomes: 

 

𝜉 =
𝐹𝑣𝑖𝑏𝑅

2

16𝜋𝐷
(1 − (

𝑟

𝑅
)
2

− 2(
𝑟

𝑅
)
2

𝑙𝑛 (
𝑟

𝑅
)) (2.56) 

 

Given that the motion is sinusoidal, Eq. 2.56 can then be written as: 

 

𝜉 = 𝜉𝑚𝑎𝑥 (1 − (
𝑟

𝑅
)
2

− 2(
𝑟

𝑅
)
2

𝑙𝑛 (
𝑟

𝑅
)) 𝑠𝑖𝑛(2𝜋𝑓𝑡) 

 

(2.57) 

Such model represents a rather realistic micro-scale boundary condition that attempts to 

account for the potential variation in the proximal flow field under the horn tip with the change 

of shape of the horn tip surface. A basic schematic of what the displacement boundary condition 

translates to in the physical domain can be observed in Figure 2.11. 
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Figure 2.11: Schematic of the deformation of the horn tip surface with respect to mode shape 1 of the piezoelectric ceramic 

[104]. 

 

While the derivation has been validated and holds true in multiple studies, numerical setups 

with that apply the simple sinusoidal model have also witnessed a strong agreement between 

their numerical results and their respective experimental results [108-110]. 
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 Establishment of the Base Numerical Model 
 

3.1 Introduction 

 

The following chapter delves into the theory and implementation of different numerical models 

considered for the foundational numerical configuration carried throughout different segments 

of the investigation. Detailed descriptions of different governing equations and their working 

principles are elaborated on throughout this chapter. Ultimately, this chapter provides reason 

for the selection of each model involved in the CFD Multiphysics system that is developed in 

ANSYS FLUENT 23R2. Essentially, the governing equations solved within the simulation 

compute turbulence, the compressibility of the two phases of water liquid and vapor, and the 

mass transfers between them. However, as a primary part of the investigation objectives of the 

presented project is to further the development of the numerical modelling of cavitation, it is 

important to note that models discussed here are implementations of pre-existing governing 

equations in ANSYS FLUENT that were utilized to configure the base numerical setup. As 

such, the methodology discussed in this chapter lays out the foundation of the CFD model used 

to describe, build on the models, and ultimately capture key attributes of the multiphase flow 

in an ultrasonically irradiated domain. The newly derived physics model, specifically, the 

cavitation model is discussed later in-depth in Chapter 4. 

 

3.2 Turbulence Modelling 

Generally, the essence of implementing a turbulence model sources from the existence of the 

acoustofluidic byproduct known as acoustic streaming, as discussed previously in Chapter 2. 

Such phenomenon instigates a time-averaged turbulent flow within the radiation column under 

the ultrasonic horn. This, in turn, both initializes and governs many other physical phenomena, 

primarily acoustic cavitation. Therefore, modeling turbulence becomes a necessity to 

accurately capture the flow field, both proximal and far, from the radiating source. 

Typically, there exist many turbulence models previously derived and commonly used in a 

multitude of modeling applications. Simply put, they are more commonly categorized as 

Reynolds Averaged Navier-Stokes (RANS) [111]. It is true that there are other complex and 

computationally intensive models, such as the Detached Eddy Simulation (DES) and Large 

Eddy Simulations (LES) [111]. However, such models provide marginal benefit of modelling 

key time-averaged flow phenomena observed in a typical horn-type reactor. Therefore, these 

models were not considered.  

Instead, with the shear stress transport (SST) k − 𝜔 model [112], turbulence was approximated. 

This RANS turbulence model was set based on its ability to accurately capture proximal flow 

near the horn wall [109]. Such flow is crucial, as the horn tip acts as the source of flow agitation 

in the domain and the hub of cavitation nucleation. As such, the model was deemed fit to 

capture the expected turbulent flow within the proximity of the horn. The two additional 

equations introduced by the turbulence model solve for the turbulent kinetic energy 𝑘 and the 

specific rate of turbulence energy dissipation 𝜔 as follows: 

 

𝑑(𝜌𝑘)

𝑑𝑡
= 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔𝑘 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
] (3.1) 

𝑑(𝜌𝑤)

𝑑𝑡
=
𝛾

𝜈𝑡
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜌𝜔2 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 (3.2) 
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The 𝜌 term represents the density, 𝑡 represents time, 𝜏𝑖𝑗 is the shear stress between cells 𝑖 and 

𝑗, 𝜇 is the molecular viscosity, μt is the turbulent viscosity, 𝜈𝑡 is the eddy viscosity, 𝜔 is the 

specific dissipation rate, 𝑘 is the specific turbulent energy. model constants are given as: 𝛽∗ = 

0.09, 𝛽 = 0.075, 𝜎𝑘  = 0.85, 𝜎𝜔 = 0.5, 𝑘 = 0.41, γ= 
𝛽

𝛽∗
− 𝜎𝑤

𝑘2

√𝛽∗
,. Meanwhile, the 𝐹 term 

represents a rational function designed to produce binary values (0,1). This function is 

expressed as follows: 

 

𝐹 = tanh (arg1
4) (3.3) 

 

in which, 

 

arg1 = min [max (
√𝑘

0.09𝜔𝑦
;
500𝜈𝑡
𝑦2𝜔

) ;
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2
] (3.4) 

 

where 𝑦 is the distance to the closest wall and 𝐶𝐷𝑘𝜔 is the postive part of the cross-diffusion 

term in Eq. 3.2. This is expressed as: 

 

𝐶𝐷𝑘𝜔 = max(2𝜌𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) (3.5) 

 

With such function integration, the governing equations of both 𝑘 and 𝜔 transfigure between 

Wilcox’s standard 𝑘 − 𝜔 model [113] and the standard 𝑘 − 𝜖 model [114] based on the 

proximity of flow to the wall, or in the current case, the horn surface and container walls. As 

such, the model implements the prediction effectiveness of 𝑘 − 𝜔 for near-wall flows and the 

𝑘 − 𝜖 for far-field flows. 

 

3.3 Compressibility Modelling 

 

Regarding the liquid phase compressibility, the Tait equation of state [115] was used to define 

a nonlinear isotropic relationship between water density and pressure, considering that 

cavitation is generally an isothermal, thus barotropic, process. The nonlinear density-pressure 

relationship is defined as follows: 

 

𝑝(𝜌) = 𝑎 + 𝑏𝑛 (3.6) 

𝑝(𝜌) = (𝑝∞ + 𝐵)(
𝜌

𝜌∞
)
𝑛

− 𝐵𝑀 (3.7) 

 

In Eq. 3.6, p is the absolute pressure, a and b are coefficients derived from an assumption 

stating linear proportionality of the bulk modulus 𝐵𝑀 and the pressure. In Eq. 3.7, 𝑝∞ is the 

atmospheric pressure, 𝜌 and 𝜌∞ are the liquid density and the atmospheric density respectively, 

and 𝑛 is the density exponent. Moreover, a rearranged expression is implemented in the form 

of Eq. 3.8. 
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(
𝜌

𝜌∞
)
𝑛

=
𝐵𝑀 + 𝑛(𝑝(𝜌) − 𝑝0)

𝐵𝑀
 (3.8) 

 

Here, the bulk modulus relates to the effect a pressure gradient has in inducing a relative change 

in density. In fact, the bulk modulus is defined as the inverse of the compressibility 𝛽 

expression shown in Eq. 3.9. 

 

𝛽 = −
1

𝑉
(
𝜕𝑉

𝜕𝑝
) (3.9) 

 

Hence, the speed of sound is in the compressible liquid phase is then defined as: 

𝑐 =  √
𝐵𝑀

𝜌⁄  (3.10) 

 

Meanwhile, as vapor phase compressibility sources from the bubble’s spherically symmetrical 

collapses, the ideal gas law was set to govern the compressibility of vapor structures during 

cavitation. This was implemented by assigning the following density-pressure relationship to 

the vapor phase: 

 

𝜌 =  
𝑝

𝑅𝑇
 (3.11) 

 

In which R is the specific gas constant and 𝑇 being the liquid temperature. Furthermore, the 

speed of sound of an ideal gas is then expressed as: 

 

𝑐 =  √𝛾𝑅𝑇 = √
𝑐𝑝𝑅𝑇

𝑐𝑣
= √

𝑐𝑝𝑅𝑇

𝑐𝑝 − 𝑅
=  √

𝑐𝑝

𝑐𝑝 − 𝑅
×
𝑝

𝜌
 (3.12) 

 

In Eq. 3.12, 𝑐𝑝 and 𝑐𝑣 are specific heat capacities at constant pressure and volume respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 Modelling the mass transfer at acoustically generated bubble 

interface using Rayleigh–Plesset equation second-order derivatives 
 

4.1 Introduction 

 

As it was previously discussed in Chapter 3, modeling acoustic cavitation in a typical horn-

type reactor requires a strong coupling between multiple physical models to tackle this 

Multiphysics flow problem. In this chapter, cavitation modelling, along with its mathematical 

and theoretical backgrounds, is thoroughly explained, in Sections 4.2 and 4.3, in aims to 

identify the shortcomings of popular cavitation models. Moreover, the derivation of a new 

cavitation model is demonstrated and later validated against previously published experimental 

work. The following investigation is dissected as follows: (i) In Sections 4.4 and 4.5, a thorough 

explanation of the methodology is presented including a complete mathematical derivation of 

the modified ZGB model. (ii) Section 4.6 demonstrates the procedure of the four statistical 

analysis techniques utilized in the study. (iii) Section 4.7 illustrates the numerical comparative 

analysis results and validates them against experimental findings. (iv) Lastly, Section 4.8 

summarizes conclusions drawn out from the respective results. 

 

4.2 Conventional Cavitation Numerical Methods  

 

Many studies have been conducted on acoustic bubble dynamics to experimentally scrutinize 

the bubble dynamics witnessed during acoustic cavitation development [116-118]. For 

instance, Tzanakis et al.[68] has investigated acoustic cavitation behavior by varying multiple 

parameters: viscosity by changing the liquid medium and the oscillation amplitude by 

alternating the transducer power. Ultimately, the study’s key findings were on a macroscopic 

level in which morphing of cavitation zone structures from one medium to another was 

examined; a conical cavitation zone occurs in water, a thick round layer occurs in glycerin, 

while ethanol observes ultrasonic degassing where bubbles disperse and actively oscillate 

towards the free surface of the cuvette. Similarly, Jiang et al.[73] investigated the influence of 

the ultrasonic horn’s distance from the bottom of the cuvette on the acoustic cavitation structure 

produced and their interaction with one another. It has been observed that the nonlinearity of 

bubble oscillation is caused by increased bubble density and bubble radii induced by the 

decreasing distance. Despite its insightfulness, experimental work can be costly, and thus 

limiting; therefore, recent studies developed an interest in numerical cavitation modelling 

techniques. 

Generally, numerical explorations on the dynamics of acoustic cavitation essentially rely on a 

single assumption that states that the cavitation bubble retains its spherical form throughout its 

lifecycle. However, some studies utilized a different approach in an attempt to achieve a 

substantially realistic model. Hence, single-bubble cavitation models were employed to capture 

the dynamics and geometrical transformations of a single cavitation bubble. Common models 

as such applied in the literature were the particle tracking model [119], the coupled modified 

Bernoulli-Wave equation [84], and the Keller-Miksis model [120]. Many numerical 

investigations were successful in observing multiple acoustic bubble dynamic features at a 

microscopic scale, such as Altay et al. [121] and Ye et al. [84] where both scrutinized the 

bubble-surface interactions and the effect of surface features, such as wall roughness, on bubble 

evolution. Moreover, Kerboua et al. [86] reported an energy analysis of an acoustic cavitation 

bubble to identify energy gain and loss sources using the aforementioned approach. While this 
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approach successfully demonstrates non-spherical bubble oscillations, it is computationally 

expensive to scale these models for multi-bubble cavitation modelling. Therefore, multi-bubble 

modelling typically refers to the spherical bubble assumption for easier computational 

adaptations. 

Multi-bubble oscillations have been modelled by the Rayleigh-Plesset equation [46, 87], the 

Gilmore equation[122], and the Keller-Miksis equation [123]. Despite their assumption, the 

models consider the effects of pressure and temperature enabling them to predict hydrodynamic 

phenomena witnessed in experiments, such as non-linear bubble oscillations, stability of 

bubble oscillations, and the bifurcation of bubble oscillation modes [124-126]. Furthermore, 

the Rayleigh-Plesset model appears to be relatively the most favorable model, as it considers 

the influence of liquid surface tension, viscosity, and nucleation inertia on bubble evolution. In 

fact, most commercially available models, namely the Kunz et al. [91], Schnerr-Sauer [92], 

and Zwart-Gerber-Belamri (ZGB) [93] models, are derived and implemented based on a 

simplified Rayleigh-Plesset model. Generally, these models define a pair of source terms 

resembling mass transfer rate per unit volume occurring at the bubble interface during both 

condensing and evaporating conditions. Moreover, these models have undergone thorough 

validations against hydrodynamic experiments in which rapid changes to driving pressure are 

unlikely to occur; thus, implementing these models may not qualify as accurate representations 

of acoustic cavitation. 

Previous experimental studies have explored the effect of liquid properties and geometrical 

variations on acoustic cavitation evolution to pinpoint any underlying dependencies that 

acoustic cavitation may have with other parameters [126, 127]. A prime example was a study 

conducted by Žnidarčič et al. [128] that investigates potential transfigurations of acoustic 

cavitation regions due to changes in the ultrasonic horn diameter and variations in air 

saturation, viscosity, surface tension, and temperature of the medium. Qualitative and 

quantitative results conclude that the liquid properties have no significant effects on acoustic 

bubble oscillation; however, they suggest rapid horn surface vibrations play a major role in 

nucleation leading to an “acoustic supercavitation”. Typically, this reiterates the distinct 

features acoustic cavitation compared to traditional hydrodynamic cavitation: fast propagation 

of pressure within microseconds timeframe, bubbles may attain an extended lifetime before 

collapse, and bubble oscillation acoustic impendence’s influence on driving pressure. 

 

4.3 Previous Modifications of Cavitation Models 

 

Typically, modifications of cavitation equations to fit case-specific models are common in 

literature [129, 130], whether it was through changing model constants or introducing new 

terms. For the case of acoustic cavitation, Znidarcic et al. [109] adopts this approach by 

modifying the Schnerr-Sauer model by reintroducing Rayleigh-Plesset’s inertia term into the 

derived source terms to improve acoustic cavitation prediction accuracy. Afterwards, a series 

of validations was conducted with the new source terms. Moreover, the choice of using the 

original Schnerr-Sauer model as a base model was justified by stating that the model was the 

most competent in predicting micro-scale vapor structures that follow the driving frequency of 

the horn, 20 kHz. Furthermore, Znidaricic et al. further elaborate that their model constants 

showed marginal influence on calculation results based on a performed sensitivity analysis and 

hence kept as is. However, their comparative analysis illustrated a noticeable discrepancy 

between numerical and experimental results; acoustic pressure peaks are overestimated by an 

average of 1.08 bar, in addition to the overprediction of cavitation volume. Furthermore, it is 
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also arguable that the assumption of constant bubble density may lead to some modelling 

inaccuracies, since it varies with acoustic intensity and ultrasonic frequency [131].  

The current investigation attempts to contribute to improving existing cavitation models’ 

accuracy in predicting acoustic cavitation by adopting Znidaricic et al.’s approach of 

introducing the inertial term from the Rayleigh-Plesset equation to the Schnerr-Sauer model, 

but instead, using the ZGB model as the base model. This is because the ZGB model is 

numerically stable and easier to implement, since its continuity equation is casted in volumetric 

form while retaining its conservativeness without the need for an additional transport 

equation[93]. In addition, during any cavitation model modifications, empirical constants often 

pose as a major challenge for researchers due to their ambiguous physical nature. For instance, 

in the case of using the ZGB model as a base model, constants emerging like bubble density, 

bubble radius, and nucleation site volume fraction can potentially affect acoustic cavitation 

prediction. Despite the important roles of these constants in characterization of acoustic 

cavitations, most past studies have not considered the sensitivity of these constants to the 

pressure fluctuation amplitude and frequency associated with acoustic cavitation. Thus, this 

study aims to obtain an optimal combination of these model constants to achieve the desired 

acoustic pressure and frequency oscillation objectives. The study employs a Design of 

Experiments methodology consisting of a full factorial design matrix and response surface 

methodology (RSM) coupled with the desirability method and Monte Carlo simulations to 

establish a complete statistical understanding of model constants’ significance and underlying 

interactions. To the best of the authors’ knowledge, the methodological framework adopted in 

this study is unique and the framework provides new perspectives into the numerical 

characterizations of acoustic cavitation. 

 

4.4 Cavitation Model Derivations 

 

4.4.1 ZGB Cavitation Model 

 

4.4.1.1  Governing Conservation Equations 

Here, the ZGB model is taken as the base model, as mentioned earlier. Initially, the multiphase 

model is governed by a set of conservation equations; the conservation of mass for each phase 

α, shown in Eq. 4.1, and the conservation of momentum for the homogeneous mixture where 

no interphase slip is assumed, shown in Eq. 4.2. 

𝜕(𝑟𝛼𝜌𝛼)

𝜕𝑡
+
𝜕(𝑟𝛼𝜌𝛼𝑢𝑖)

𝜕𝑥𝑖
= 𝑆̇𝛼 (4.1) 

𝜕(𝜌
𝑚
𝑢𝑖)

𝜕𝑡
+
𝜕(𝜌

𝑚
𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜌

𝑚
𝑟𝛼𝑔𝑖 +

𝜕(𝜏𝑖𝑗)

𝜕𝑥𝑗
 (4.2) 

𝑃 stands for the pressure, and 𝑟𝛼, 𝜌𝛼, and 𝑆𝛼 represent the volume fraction, density, and mass 

generation rate of phase 𝛼 respectively. Subscript m simply indicates the mixture phase 

observed. Meanwhile, 𝑢𝑖, 𝑔𝑖, and 𝜏𝑖𝑗 are the Cartesian velocity components, gravitational 

acceleration, and the shear stress exerted on the bubble-liquid spherical interface in the 𝑖 and 𝑗 
directions, otherwise known as the Stokes’ law stress tensor [132]. 
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One of the model’s assumptions when solving for conservation equations is that mass transfer 

only occurs at the interphase. In other words, the mass transfers of dissolved gases into and out 

of the bubble are vector quantities that are equal but opposite in direction. Another assumption 

states that the homogeneous mixture is composed of N number of phases in which the addition 

of their volume fractions equates to unity representing the mixture. Working on the basis of the 

two assumptions, Eq. 4.1 and 4.2 form a system of N+4 equations with N+4 unknowns. The 

system of equations is presented as a summation of continuity equations simplified as follows: 

∑
1

𝜌
𝛼

(
𝜕(𝑟𝛼𝜌𝛼)

𝜕𝑡
+
𝜕(𝑟𝛼𝜌𝛼𝑢𝑖)

𝜕𝑥𝑖
− 𝑆̇𝛼) = 0

𝑁

𝛼=1

 (4.3) 

If the said multiphase model was to be implemented in a system of incompressible phases, Eq. 

4.3 is then further rearranged reduced, while assuming incompressibility, to an equation as 

such: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 𝑆̇𝑙𝑣 (

1

𝜌
𝑣

−
1

𝜌
𝑙

) (4.4) 

Of course, as cavitation typically revolves around alternating phase changes between liquid 

and vapor, their source terms, referring to the mass transfer rates, adopt the following 

relationship: 

𝑆̇𝑙𝑣 =  𝑆̇𝑣 = −𝑆̇𝑙 (4.5) 

However, in the case of observing turbulent flow, Eq. 4.4 then denotes mean velocities from 

the Reynolds decomposition. Moreover, the Reynolds Stress term makes an appearance in the 

momentum conservation equations. In such case, a viscous model must be chosen and 

coupled with the multiphase model which will be later discussed in Section 4.5.2. 

 

4.4.1.2 The derivation of the original source terms 

 

With the continuity equation defined, the source terms are then derived from the six-term 

Rayleigh-Plesset equation. 

 

𝑅
𝑑2𝑅

𝑑𝑡2
+
3

2
(
𝑑𝑅

𝑑𝑡
)
2

+
2𝜎

𝜌𝑙𝑅
−
4𝜇

𝜌𝑙𝑅

𝑑𝑅

𝑑𝑡
=
𝑝𝑣(𝑇∞) − 𝑝∞

𝜌𝑙
+
𝑝𝑔0

𝜌𝑙
(
𝑅0
𝑅
)
3𝛾

 (4.6) 

Starting from the left-hand side, the first two terms represent the second and first order 

derivatives for the rate of change of the bubble radius 𝑅. The third term refers to the partial 

contribution of surface tension 𝜎 at the bubble interface where it acts radially inwards against 

bubble growth. Afterwards, the fourth term considers the contribution of the medium’s 

dynamic viscosity µ on the rate bubble growth and collapse alike. However, one may notice 

the inverse relationship between both surface tension and dynamic viscosity have with bubble 

radius 𝑅; the importance of this relationship is its suggestion that the terms do not carry much 

significance for fully developed bubbles with large radii. As for the term containing the 

pressure difference between the temperature-dependent vaporization pressure and the liquid 

ambient pressure, it presents the foundational understanding of bubble evolution. This is 
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because it quantifies the pressure threshold required for cavitation bubble nucleation. Lastly, 

the final term describes the effect of non-condensable gas partial pressure 𝑝g0 in the bubble as 

it grows from its initial radius 𝑅0 to 𝑅. 

In the original ZGB model, Eq. 4.6 is reduced by a series of assumptions including neglecting 

the effects of the second-order inertia term, surface tension, dynamic viscosity, and non-

condensable gas, where a simplified expression is then yielded as shown in Eq. 4.7. 

3

2
(
𝑑𝑅

𝑑𝑡
)
2

=
𝑝
𝑣
(𝑇∞) − 𝑝∞

𝜌
𝑙

 (4.7) 

Such assumptions are generally found appropriate by Sauer [133] for hydrodynamic cavitation 

operating in a water medium at room temperature. Moreover, the acceleration term is typically 

insignificant in cases of macroscopic hydrodynamic cavitation, as bubble evolution 

acceleration occurs within the window of 10-4 s and becomes further insignificant with the 

increase of the pressure gradient between the bubble and the medium. Thus, with a bit of 

rearranging, the first-order derivative becomes the equation’s subject directly relating it to the 

bubble evolution driving term. 

𝑑𝑅

𝑑𝑡
= √

2

3

𝑝
𝑣
(𝑇∞) − 𝑝∞

𝜌
𝑙

 (4.8) 

Before deducing the general form of the source terms, the rate of change of mass and the vapor 

volume fraction expressions of an assumed single spherical bubble are defined in Eq. 4.9 and 

4.10 respectively. 

𝑑𝑚

𝑑𝑡
= 𝐴𝑠𝑝ℎ𝑒𝑟𝑒𝜌𝑣

𝑑𝑅

𝑑𝑡
= 4𝜋𝑅2𝜌

𝑣
√
2

3

𝑝
𝑣
(𝑇∞) − 𝑝∞

𝜌
𝑙

 (4.9) 

𝑟𝑣 = 𝑉𝑠𝑝ℎ𝑒𝑟𝑒𝑁𝑏𝑢𝑏𝑏𝑙𝑒 =
4

3
𝜋𝑅3𝑁𝑏𝑢𝑏𝑏𝑙𝑒 (4.10) 

Where 𝑁bubble in Eq. 4.10 represents the number of bubbles per unit volume. Finally, a general 

form for the total interphase mass transfer rate per unit volume is: 

𝑆𝑙𝑣̇ = 𝐹𝑁𝑏𝑢𝑏𝑏𝑙𝑒
𝑑𝑚

𝑑𝑡
= 𝐹

3𝑟𝑣𝜌𝑣

𝑅
√
2

3

±|𝑝
𝑣
(𝑇∞) − 𝑝∞|

𝜌
𝑙

 (4.11) 

F is an added empirical multiplier [136]. Moreover, the pressure gradient alternates in sign 

depending on the type of mass transfer process, i.e., evaporation or condensation. In the 

expression’s current form, it assumes no interaction between cavitation bubbles and thus it is 

only accurate and numerically stable during the bubble’s condensation process due to its small 

size; it is inaccurate to adopt for the evaporation process. Therefore, an inversely proportional 

relationship is introduced between the vapor volume fraction and the nucleation site density; 

as the vapor volume fraction increases, the nucleation site density decreases respectively. For 

this reason, a variable 𝑟 is introduced in which 𝑟 = 𝑟𝑛𝑢𝑐(1 − 𝑟𝑣) during evaporation and 𝑟 = 𝑟𝑣 

during condensation. Thus, Eq. 4.11 then transforms to: 
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𝑆𝑙𝑣̇ = 𝐹
3𝑟𝜌

𝑣

𝑅
√
2

3

±|𝑝
𝑣
(𝑇∞) − 𝑝∞|

𝜌
𝑙

 (4.12) 

4.4.1.3 The Derivation of the Modified Source Terms 

Similar to the derivation logic carried out in deducing the source terms of the original ZGB 

model, the derivation starts off by reducing Eq. 4.6 to three terms instead of two: the driving 

term, the velocity term, and the additional acceleration term, otherwise known as the inertial 

term. This simplification has been discussed by Znidarcic et al.[109] in which it has been found 

that most of the fluid parameters, hypothesized to have an effect on the attached cavity 

oscillation frequency and the cavitation maximum volume, do not have any notable impact on 

the two cavitation properties. For instance, the mean frequency and the maximum volume 

negligibly shift from 5058 Hz and 8.97 mm3 to 5085 Hz and 8.58 mm3 respectively when 50% 

saturation of dissolved gas is added into the water medium. Moreover, a frequency and volume 

of 5095 Hz and 8.95 mm3 when water’s surface tension is increased with the addition of Sodium 

Dodecyl Sulphate (SDS). Finally, when changing the medium from water to Ethylene Glycol 

(C2H6O2) to decrease viscosity, the frequency increases to 5074 Hz and the volume drops to 

8.63 mm3. It can easily be noted that the surface tension has the greatest impact on the mean 

cavitation oscillation frequency, while the presence of dissolved gases has the most influence 

over the maximum cavitation volume. Despite that, those changes remain considerably small 

and thus negligible. 

In this regard, the time step of the numerical simulation will have to fall below 𝑡𝑠 < 10-4 s (a 

time step 𝑡𝑠 = 5 x 10-6 s is selected, more on that can be found in Section 4.5.2) to capture the 

inertial effect on acoustic cavitation development [109]. Thus, the simplified Rayleigh-Plesset 

equation then becomes: 

𝑅
𝑑2𝑅

𝑑𝑡2
+
3

2
(
𝑑𝑅

𝑑𝑡
)
2

=
𝑝𝑣 − 𝑝∞
𝜌𝑙

 (4.13) 

Given that there are two derivative terms of bubble radius, the source term derivations require 

an additional step before proceeding with the traditional derivation procedure witnessed in the 

original model. It is worth noting that, with this model derivation, the interpretation of 𝑅 

changes; 𝑅𝐵 here is interpreted as a constant reference radius characterizing the interfacial area 

density, and not the instantaneous physical bubble size. This way, its derivatives represent the 

growth and acceleration rates of the representative interface obtained from local pressure 

gradients and vapor volume fraction and evaluated at the constant scale 𝑅𝐵. This makes 𝑑2𝑅/𝑑𝑡2 

an “effective inertia” of the phase interface only. Hence, the additional step is rearranging Eq. 

4.13 to create a general solution for this acceleration term: 

𝑑2𝑅𝐵

𝑑𝑡2
=
𝑝
𝑣
− 𝑝

∞

𝜌
𝑙
𝑅𝐵

−
3

2𝑅
(
𝑑𝑅𝐵

𝑑𝑡
)
2

 (4.14) 

Given the two unknowns of Eq. 4.14, a differential equation is expressed to define the velocity 

term based on its previous value and its acceleration term as shown below: 

𝑑𝑅𝐵

𝑑𝑡
(𝑡) =

𝑑𝑅𝐵

𝑑𝑡
(𝑡 − 1) +

𝑑2𝑅𝐵

𝑑𝑡2
(𝑡) × 𝑡𝑠 (4.15) 
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The Cauchy boundary conditions for 
𝑑𝑅𝐵

𝑑𝑡
(𝑡) and 

𝑑2𝑅𝐵

𝑑𝑡2
(𝑡) are set in a way where both equate 

to 0 at t = 0. As flow time progresses and becomes t = t1, Eq. 4.15 then expresses the new 

velocity in terms of the previous velocity and the acceleration. Lastly, in similarity with the 

original source term derivations, the bubble evolution velocity equation in Eq. 4.15 can then 

be replaced in the general source term expression suggested in Eq. 4.11. 

  

𝑆𝑙𝑣̇ = 𝐹
3𝑟𝜌

𝑣

𝑅𝐵

𝑑𝑅𝐵

𝑑𝑡
(𝑡) (4.16) 

Where the evaporation and condensation source terms can be defined as: 

𝑆𝑙𝑣̇ = {
𝐹𝑣𝑎𝑝

3𝑟𝑛𝑢𝑐(1 − 𝑟𝑣)𝜌𝑣

𝑅
×
𝑑𝑅𝐵

𝑑𝑡
(𝑡) , 𝑖𝑓 𝑃 < 𝑃𝑣

𝐹𝑐𝑜𝑛𝑑
3𝑟𝑣𝜌𝑣

𝑅𝐵
×
𝑑𝑅𝐵

𝑑𝑡
(𝑡) , 𝑖𝑓 𝑃 > 𝑃𝑣

 (4.17) 

Following the same procedure, Eq. 4.14 and Eq. 4.15 shall be looped and reiterated after each 

time step tn = tn-1 + ts to calculate the new acceleration term, velocity term, and then the source 

terms, in that order. 

 

4.5 Numerical simulation setup and modelling 

 

4.5.1 Cuvette and ultrasonic horn geometry 

The numerical setup used in this study is an imitation of the simple experimental setup shown 

in the investigation conducted by Znidarcic et al. [109]. The setup consists of an ultrasonic 

horn, a tapered metal rod containing a piezo-ceramic element to excite longitudinal waves, that 

is 175 mm long with its 3 mm diameter tip submerged 1 cm deep into a 50x50x50 mm 

rectangular cuvette. The sonotrode is operated at its maximum power of 70 W where the tip 

oscillates with an amplitude of 164 µm. Its output signal fed into the horn by the power 

generator has a nominal frequency of 20 kHz and an uncertainty of ± 500 Hz. The significance 

of this setup is in its simplicity, and thus the setup translation into a numerical model is made 

much easier. Therefore, the numerical setup follows a two-dimensional fluid domain with a 

rectangular model of the ultrasonic horn tip submerged 20 mm down the cuvette for considered 

planar calculations. As for the hydrophone, a numerical monitor point 7 mm away from the 

horn is coded into the fluid domain for pressure data collection. The 2D axisymmetric geometry 

is illustrated in Figure 4.1a with the red dot representing the monitor point placement. 

 

4.5.2 Setting of boundary conditions 

The cuvette boundaries are categorized into two groups: rigid static wall and free surface. As 

the name suggests, the static wall boundary condition simply defines a non-moving wall with 

the addition of the no-slip condition where the velocity boundary layer is described by a zero-

velocity at the boundary wall. As for the free surface boundary condition, it instates the top 

surface of the fluid domain as a surface experiencing zero parallel shear stress that defines the 

homogeneous interface between water and atmospheric air. Numerically, this is interpreted as 

a pressure outlet boundary condition with a gauge pressure of 0 Pa and an operating pressure 
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of 1 atm. Moreover, as a setup assumption, boundary conditions related to modelling a 

gravitational field were not considered for the simulation. 

As for the ultrasonic horn, its rigid walls are designed to oscillate at a frequency of 20 kHz, 

thus making it a “moving wall” to present a moving boundary problem Essentially, the nodes 

that lie along the horn walls and tip are temporally oscillated to accommodate for the 

boundaries’ motion. In this study, dynamic meshing is chosen as the preferred modelling 

method for this, since the validity of the method has been verified in previous works of 

literature [134]. Therefore, using dynamic meshing, a User-Defined Function (UDF) is written 

in C language to define the sinusoidal motion of all three horn boundaries to set an oscillating 

motion corresponding to 20 kHz and an amplitude of 164 μm reached by the horn. The UDF 

assigns the transient velocity function stated in Eq. 4.18 to the horn boundaries. 

 

𝑣 = 𝐴𝜔 cos𝜔𝑡 (4.18) 

Where v is the axial velocity, 𝐴 is the amplitude, 𝜔 is the angular velocity, and 𝑡 refers to the 

flow time of the simulation. The general working principle of dynamic meshing here is to move 

the discretized boundary’s nodes sinusoidally stated in Eq. 4.18. However, the technique 

considered in this study to simulate the mesh motion is a joint method of spring-based 

smoothing [135] and local remeshing. The working principle behind the spring-based method 

is assuming that each edge between any two nodes is a series of interconnected springs. 

Accordingly, Hooke’s law [136] is used to calculate the force transmitted due to a displacement 

found at a neighboring boundary node using Eq. 4.19 [135]. 

 

Figure 4.1: (a) A dimensioned schematic (in mm) of the axisymmetric calculation domain 

representing the 50 x 50 mm cuvette where the rectangular cut from the top surface represents the 

vibrating ultrasonic horn of 𝜙ℎ = 3, and the red dot represents the pressure monitor point 7 mm 

away from the horn tip. (b) A representation of the structured mesh used for domain discretization. 
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𝐹𝑖 =∑ 𝑘𝑖𝑗(∆𝑥𝑗 − ∆𝑥𝑖)

𝑛𝑖

𝑗

 (4.19) 

In which 𝑖 and 𝑗 subscripts represent two neighboring nodes, and thus 𝐹𝑖 is the net force, 𝑛𝑖 is 

the number of nodes connecting to node 𝑖, 𝑘𝑖𝑗 is the spring constant of the springs at the edge 

between nodes 𝑖 and 𝑗. Moreover, the 𝑘𝑖𝑗  is presented as: 

𝑘𝑖𝑗 =
𝐹𝑖

√|𝑥𝑖 − 𝑥𝑗|

 
(4.20) 

Using Eq. 4.19 and the assumption of force equilibrium at the observed node, an iterative 

equation is deduced, as shown in Eq. 4.21, that is then solved using the Jacobi iterative method 

until convergence to obtain the final position using Eq. 4.22. 

∆𝑥𝑗
𝑛+1 =

∑ 𝑘𝑖𝑗∆𝑥𝑗
𝑛𝑛𝑖

𝑗

∑ 𝑘𝑖𝑗
𝑛𝑖
𝑗

 (4.21) 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + ∆𝑥𝑖
𝑛,𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 (4.22) 

Where n and n+1 represent the positions at the current and the next timestep, respectively. This 

method is then coupled with the smoothing remeshing method to account for potentially large 

displacements in the dynamic mesh that can lead to numerical instability and convergence 

problems. The method sets a criterion that it follows to classify the aspect ratio and skewness 

of each cell during the mesh evaluation that takes place before finalizing the mesh motion 

[135].  

Meanwhile, a full coupling between the pressure and velocity solvers was selected based on 

convergence optimization considerations. As for the selection of spatial discretization schemes, 

a second-order upwind scheme was used to discretize density, momentum, turbulent kinetic 

energy, and energy transport equations. Meanwhile, a first-order upwind scheme was chosen 

for volume fraction and the specific dissipation rate equations. The pressure interpolation 

scheme used in the current setup is the Pressure Staggering Option (PRESTO!). Lastly, the 

transient formulation adopted in the setup was a first order implicit scheme. Moreover, in 

accordance with the inertial term added to the cavitation model to account for its influence on 

acoustic cavitation evolution, the time step size chosen for the transient calculation is 5 μs with 

600 timesteps and a maximum of 40 iterations per time step. This way, the simulation captures 

approximately 1.5 times the period of the expected acoustic cavitation life cycle. Furthermore, 

the convergence criteria set for the governing equations were 10-4, with the exception of the 

energy equation where 10-8 was used instead. 
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4.5.3 Geometry grid independence test 

 

With the aforementioned setup settings in the previous sections, an iterative calculation was 

performed with six grids. Illustrated in Figure 4.2 is a graph showing the gradual mesh 

refinement and its effect on the maximum pressure detected by the assigned monitor point. It 

can be clearly seen that the maximum acoustic pressure attained drops drastically as the mesh 

is refined up to 40,000 elements in which the effect of the grid is no longer significant after 

that point. The percentage change in the maximum pressure is highlighted in Table 4.1. 

Therefore, the mesh pertaining to 40,000 cells, with a 0.25 x 0.25 mm cell size is then chosen 

for the study with a cell size, as shown in Figure 4.1b. 

 

Table 4.1: Grid independence test percentage change in pressure readings per increase in number of elements. 

Meshing Elements (-) Maximum Pressure (Pa) Percentage Change (%) 

2,053 474,736.84 - 

9,459 463,976.61 2.27 

21,793 414,152.05 10.74 

38,623 347,017.54 16.21 

60,299 336,257.31 3.10 

86,971 329,941.52 1.88 

 

 

 

Figure 4.2: Grid independence test comparing the number of mesh elements with the maximum 

pressure recorded by the monitor point shown in Figure 4.1a. 
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4.6 Statistical design of experiments 

 

4.6.1 Full factorial design 

 

Observing the new bubble growth and collapse mass transfer equations shown in Eq.4.17, one 

can notice that it contains a set of four constants that are yet to be defined. Specifically, the 

constants are the evaporation, condensation, bubble radius, and nucleation site volume fraction 

constants. Given that these constants are originally empirically derived, as noted in Section 

4.4.1, there is no analytical justification for setting their values. Therefore, in this study, a 

statistical approach, known as Design of Experiments, is adopted to establish an understanding 

of each constant’s statistical significance on the cavitation model’s performance in predicting 

acoustic cavitation. Particularly, the full factorial approach is employed to identify the effects 

of multiple parameters on the maximum acoustic pressure and oscillation frequency responses 

[137]. In this investigation, a four-factor, two-level (24) full factorial design is implemented, as 

shown in Table 4.2. 

 

Table 4.2: 24 Full Factorial Design Setup. 

Numeric Factors Factor Label 
Lower Level Higher Level 

-1 +1 

Evaporation Constant, Fv A 10 50 

Condensation Constant, Fc B 0.01 0.1 

Bubble Radius, R (m) C 15 x 10-6 25 x 10-6 

Nucleation Site Volume Fraction, rnuc D 5 x 10-4 15 x 10-4 

 

The lower and higher levels of factors Fv, Fc, and rnuc were chosen on the basis of values that 

previous studies in literature have investigated when scrutinizing the effect of the ZGB model 

constants on their simulation results in which they go about selecting their set values by 

incrementing each model constant value about its original value [138-140]. As for factor R, the 

levels were chosen based on the qualitative observation made in Znidarcic et al.’s experiment 

[109] and quantitative observation in the bubble radius probability distribution in Reuter et al.’s 

investigation [141]. In retrospect, the aforementioned studies have revealed that the variations 

in any of the coefficients in the ZGB model tend to have a linear effect on the cavitation 

predictive performance. This could be due to the coefficients representing ‘gain’ parameters, 

as shown in Eq. 4.7. As such, it could be assumed that a 24 factorial design is sufficient to 

scrutinize crucial parametric interactions, such as two-way and three-way interactions, that 

influence the predictive performance of the cavitation model. Moreover, the range of values 

presented in Table 4.2 is selected in such a way that it provides a reasonable, but sufficient, 

‘distance’ between them to capture the factors’ ‘true effects’ on the response values. 
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Table 4.3: 24 Full Factorial Design Matrix. 

  Basic Design   

Run A B C D Treatment Combination 

1 -1 -1 -1 -1 1 

2 1 -1 -1 -1 a 

3 -1 1 -1 -1 b 

4 1 1 -1 -1 ab 

5 -1 -1 1 -1 c 

6 1 -1 1 -1 ac 

7 -1 1 1 -1 bc 

8 1 1 1 -1 abc 

9 -1 -1 -1 1 d 

10 1 -1 -1 1 ad 

11 -1 1 -1 1 bd 

12 1 1 -1 1 abd 

13 -1 -1 1 1 cd 

14 1 -1 1 1 acd 

15 -1 1 1 1 bcd 

16 1 1 1 1 abcd 

 

Table 4.3 above tabulates a design matrix of all 16 possible combinations of the four factors 

that are then replaced in the new cavitation model equations and used in the numerical 

simulation to obtain their response values for a comparative analysis. 

 

4.6.2 Response surface methodology 

 

The response surface methodology, generally, is the proceeding step after developing a full-

factorial design matrix and obtaining each treatment’s response. The said methodology 

provides a platform for a comparative analysis of the responses collected and attempts to draw 

hidden statistical trends. One way of doing so is by developing a regression model; a general 

expression, derived from response data collected, that attempts to generalize the degree of 

effect each factor has on the response model. In this study, this was done by employing Minitab 

21 [142] in which it generated main effect, interaction effect, and response surface plots as a 

qualitative demonstration of conclusive trends drawn out of the dataset.  

To take into account both main effects, two-way interaction effects, and three-way interaction 

effects, a second order polynomial model multiple regression model is generated for each 

response term, i.e. maximum pressure and oscillation frequency, using the following equation: 
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𝑌 = 𝛽𝑜 +∑𝛽𝑖𝑋𝑖

2

𝑖=1

+∑𝛽𝑖𝑖𝑋𝑖
2

2

𝑖=1

+∑𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑛

𝑖=1

+ 𝜀 (4.23) 

where Y is the response, I and j are factor indexes, and thus 𝑋𝑖 and 𝑋𝑗 are coded values of the 

factors. Meanwhile, 𝛽𝑜, 𝛽𝑖 , 𝛽𝑖𝑖 , and 𝛽𝑖𝑗  are the intercept, linear, quadratic and interaction 

coefficients respectively. Lastly, ε represents the experimental error. Moreover, to optimize the 

obtained regression model, a stepwise regression analysis was conducted. Particularly, a 

backward-elimination method was chosen to examine the statistical significance of each 

variable in the regression model. This is performed by observing the change in variance by 

removing each predictor to the model one step at a time. As a result, unnecessary terms and 

interactions are eliminated from the model accordingly. 

 

4.6.3 Response optimization and desirability 

 

After finalizing the regression model, an optimal combination of evaporation constant, 

condensation constant, bubble radius, and nucleation site volume fraction values can be found 

through the desirability optimization approach [143]. This approach, among many other 

methods, stands out due to its simplicity and flexibility in designating different weightings and 

importance level to each factor. Furthermore, this approach takes an input of optimization 

objectives that can be either to maximize, minimize, or obtain a specific target value for the 

response. Thus, depending on the given objective, the approach utilizes different desirability 

functions. Moreover, the selected function then transforms the estimated response, Yi into a 

dimensionless value known as desirability, di (Yi). With that in mind, the desirability of each 

response is calculated by the following objective-specific equations accordingly. 

 

𝑑𝑖(𝑌𝑖) =

{
 
 

 
 

 0,               𝑌𝑖 < 𝑙𝑖

(
𝑌𝑖 − 𝑙𝑖

𝑡𝑖 − 𝑙𝑖
)
𝑠

, 𝑙𝑖 < 𝑌
𝑖
< 𝑡𝑖

(
𝑌𝑖 − 𝑢𝑖

𝑡𝑖 − 𝑢𝑖
)
𝑡

, 𝑡𝑖 < 𝑌
𝑖
< 𝑢𝑖

0,               𝑌𝑖 > 𝑢𝑖

 (4.24) 

In Eq. 4.24, the subscript 𝑖 indicates the response iteration, and thus 𝑙𝑖 and 𝑢𝑖  represent the 

lower limit and the upper limit of the response. Moreover, 𝑡𝑖 is the target response value. 

Meanwhile, s and t are the weightings of the response that dictate the shape of the desirability 

function. Generally, the weights vary from 0.1 to 10 in which weights less than 1 indicate low 

emphasis on the response, while weights greater than 1 indicate otherwise. The desirability 

value 𝑑𝑖(𝑌𝑖) obtained is then fed into another dimensionless function known as the overall 

desirability function, 𝐷, where 0 ≤ 𝐷 ≤1. 

 

𝐷 = (∏𝑑𝑖(𝑌𝑖)
𝑛

𝑛

𝑖=1

)

1/𝑛

 (4.25) 

The variable n in Eq. 4.25 represents the number of responses. As for the interpretation of Eq. 

4.25, a high value of 𝐷 simply indicates a more desirable function, hence, revealing the optimal 

solution. Ultimately, the main goal of the desirability approach is to maximize 𝐷; therefore, 
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the optimum factor values of the four model constants are indicated by the value of the desired 

function 𝑑𝑖(𝑌𝑖) they achieve, that then maximizes 𝐷 accordingly. 

  

4.6.4 Monte Carlo simulation 

 

 With the regression and optimization procedure completed, the analysis is taken further to 

provide a complete statistical overview of the influence of the model constants on the acoustic 

cavitation modelling performance. In other words, insight on the influence of randomness 

present in the model constants’ values on the response values is limited. Therefore, a sensitivity 

analysis was used to fill this knowledge gap and validate the optimized model constants chosen. 

More specifically, the Monte Carlo method was employed to quantify the degree of influence 

random errors have on the input-dependent outcome of a regression model resembling the 

physical process of acoustic cavitation. This method follows an iterative process that simulates 

a real experiment being run several times to observe any changes in the distribution of the 

outcome. In the case of acoustic cavitation modelling, the investigative interest emphasizes the 

impact of variability in the already optimized governing factors, i.e., evaporation and 

condensation constants, bubble radius, and nucleation site volume fraction, on the maximum 

acoustic pressure and its oscillation frequency. In this study, MATLAB code was created to 

conduct the Monte Carlo simulation by using MATLAB’s random number generator (RNG) 

to create random variations in each factor within the range of ± 10%. Furthermore, as a mode 

of controlling the variation due to MATLAB RNG, seeding is used to lead the RNG towards 

producing a predictable sequence of random numbers affiliated to the random errors being 

investigated. Shown in Figures 4.3a and 4.3b are two plots illustrating variations in the standard 

deviation of the maximum acoustic pressure and oscillation frequency respectively, as the 

sample size is increased. 

As both graphs show that the standard deviation of both samples fluctuate minimally and 

converge at approximately 7,000 iterations, this sample size is then reasonably chosen to be 

used for this study. 

 

 

 

Figure 4.3: The standard deviation of (a) maximum acoustic pressure (b) oscillation frequency plotted against the number of 

iterations executed by the Monte Carlo simulation. 
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4.7 Simulation Results and Statistical Analysis 

 

4.7.1 Original model acoustic cavitation prediction  

 

Initially, as means to assess the true acoustic cavitation performance of the original ZGB 

model, the numerical calculations were performed with the original model and qualitatively 

and quantitatively compared to Znidarcic et al.’s experimental results [109]. Figure 4.4 below 

presents a comparative illustration between the numerically generated contour plots and the 

high-speed camera pictures taken of cyclic cavity structures formed. As Znidarcic et al. [109] 

explains, the experimental results generally display a single large ‘mushroom-shaped’ cavity 

covering the ultrasonic horn tip and is undergoing periodic expansion-collapse cycles. This 

observation is reiterated by Tzanakis et al. [68] and justified by the usage of water as the 

cavitation medium. However, the mushroom structure is only retained during the expansion 

phase and later transforms into a conical shape during the structure’s shrinkage. Moreover, a 

stream of micro bubbles emerges during the large cavity development. In addition, these clouds 

of micro bubbles are then released downstream into the medium and oscillate at their own sub-

harmonic frequency. 

 

Figure 4.4: Comparative illustration of instantaneous cavitation structures observed experimentally [109] and predicted by 

the original ZGB model numerical setup at coinciding time steps. 

Meanwhile, numerical results obtained highlight multiple structural and periodic differences in 

the cavity. Firstly, a parallel can be drawn during the first stages of development where large 

cavity structure begins to engulf the horn tip; the mushroom-like shape is visible during t = 0 
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– 20 μs. However, at t = 40 μs, the cavity structure diverges from the experimental observation, 

as it adopts a conical phase instead. As mentioned earlier, this typically suggests that the cavity 

structure is entering its shrinking phase; however, it begins to expand again from t = 80 – 100 

μs before it shrinks again at t = 120 μs. At later time steps, a repeated structural pattern can be 

seen when compared to the structure found at t = 0 – 40 μs. This simply marks the end of a 

single expansion-collapse cycle and the beginning of a new cycle at t = 140 μs. On the other 

hand, a single cycle is experimentally shown to take place at t =180 μs and generally illustrating 

a longer cycle period. Figure 4.5 plots the static pressure at the monitor against flowtime, where 

it shows the variations in pressure due to acoustic cavitation evolution. 

 

Figure 4.5: Static pressure fluctuation predicted by the Original ZGB model plotted against flowtime at the monitor point. 

Given that the pressure peaks do not occur the end of each cycle indicates that the cavitation 

structure does not entirely collapse at the end of the cycle, instead, it shrinks while retaining its 

shape. Therefore, this indicates that the large cavity structure is oscillating at its own 

subharmonic frequency. In other words, the complete collapse of the structure takes place every 

4.54 periodic cycles or within approximately 1176 kHz. Another major difference Figure 4.5 

highlights is the inability of the original ZGB model to capture micro-scale bubble collapse. 

This is noted by the minimal oscillations that occur between each pressure peak. Thus, 

cavitation model modifications are justified to tune the pressure oscillation and its frequency 

to that of the experimental acoustic cavitation. 

 

4.7.2 Response surface optimization results 

 

In this section, the model constants of the modified ZGB model, namely the evaporation and 

condensation constants, bubble radius, and nucleation site volume fraction, undergo a series of 

statistical analysis with the analysis of variance (ANOVA) being the principal model analysis.  
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The statistical significance of the four factors considered including two-way and three-way 

interactions were assessed on the basis of their resultant F-statistic and p-values for each 

response, i.e., maximum pressure and oscillating frequency, as shown in Table 4.4. In this case, 

a backward elimination stepwise regression analysis was applied to sieve the model from 

unnecessary predictors, in return, to improve out-of-sample accuracy by yielding a sample size 

larger than the number of variables. Mainly, the statistical criterion adopted to rule a factor’s 

significance is the 95% confidence level in which the p-values shall be less than <0.05 for a 

factor, or an interaction, to qualify as significant [137]. In addition, the larger the F-statistic for 

a source, the safer the assumption of significance. 

  

Table 4.4: ANOVA of Maximum Pressure and Oscillation Frequency Responses for Backward-Stepwise Regression. 

 Maximum Pressure, Pmax  Oscillation Frequency, F  

Source DF Adj SS 

Adj 

MS 

F-

Value 

P-

Value VIF 

 

Adj SS Adj MS 

F-

Value 

P-

Value VIF 

Model 10 28.9907 2.8991 9.87 0.010   12199231 1524904 6.88 0.010  

 Linear 4 17.7244 4.4311 15.09 0.005   8260133 2065033 9.32 0.006  

    A 1 8.9559 8.9559 30.50 0.003 1.00  1604795 1604795 7.24 0.031 1.00 

    B 1 0.4114 0.4114 1.40 0.290 1.00  1578202 1578202 7.12 0.032 1.00 

    C 1 4.3356 4.3356 14.77 0.012 1.00  2454988 2454988 11.07 0.013 1.00 

    D 1 4.0214 4.0214 13.70 0.014 1.00  2622149 2622149 11.83 0.011 1.00 

 2-Way Interactions 5 7.8155 1.5631 5.32 0.045   3003661 1001220 4.52 0.046 1.00 

    A x B             

    A x C 1 0.1590 0.1590 0.54 0.495 1.00       

    A x D 1 1.3090 1.3090 4.46 0.088 1.00       

    B x C 1 2.5385 2.5385 8.65 0.032 1.00  901997 901997 4.07 0.083 1.00 

    B x D 1 2.2963 2.2963 7.82 0.038 1.00  1312170 1312170 5.92 0.045 1.00 

    C x D 1 1.5127 1.5127 5.15 0.072 1.00  789494 789494 3.56 0.101 1.00 

3-Way Interactions 1 3.4508 3.4508 11.75 0.019   935437 935437 4.22 0.079  

    A x B x C             

    A x C x D 1 3.4508 3.4508 11.75 0.019 1.00         

    B x C x D  1     1.00  935437 935437 4.22 0.079 1.00 

Error 5 1.4682 0.2936       1551754 221679    

Total 15 30.4589         13750985      

 

Table 4.4 tabulates values of sum of square (SS), mean square (MS), F-statistic, and p-statistic 

for the reduced models of maximum pressure and oscillation frequency. Both SS and MS 

represent a measure of variation from the mean indicating variation attribution to a specific 

factor. Thus, this reiterates the degree of significance a factor has over the response. As a result, 

a cubic multivariant regression model is fitted for the maximum pressure response while a 

quadratic multivariant regression model has been found appropriate to model the oscillation 

frequency response where both are statistically significant at a 95% confidence level. 

Furthermore, to evaluate the goodness of fit of experimental data into the resultant models, the 

coefficient of determination, R2, is used as a statistical indicator for the evaluation. Typically, 

a value of 0 means that experimental data do not fit the regression line, while a value of 1 

indicates otherwise. In the current case, an inference of a strong correlation between 

experimental and predicted can be safely assumed given that R2 values were 0.9518 and 0.8872 

for the maximum pressure and oscillation frequency respectively. Moreover, the adjusted R2 

values for pressure and frequency show a high value, yet lower than the non-adjusted R2, of 
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0.8554 and 0.7582 respectively. This is justified as the adjusted R2 is corrected to identify the 

degree of variance in the response explained by the input variables. As such, the indicator 

provides a more realistic evaluation of goodness-of-fit rather than an optimistic one. However, 

this noticeable difference may be an indicator that introducing additional terms to the model 

does not necessarily improve its reliability, let alone its accuracy, by a significant value. 

Despite that, one may question the reliability of the regression models due to the usage of a 

stepwise regression method which typically results in errors, mainly overfitting led by 

multicollinearity. However, the Variance Inflation Factor (VIF) for all factors appear to be 

equal to = 1. A value of 1 suggests that there is no correlation between the predictor variables. 

Meanwhile, a value between 1 < VIF < 5 shows moderate correlation but can often be 

neglected. However, in the case of a value great than > 5, this infers severe correlation between 

the predictor variables making the p-values generated unreliable. 

 

 

Figure 4.6: Main effect of the four model constants on the response values of pressure peak (Pa) and pressure oscillation 

frequency (Hz). 

 

4.7.2.1 Analysis of regression predictors’ effects on maximum pressure 

 

As per the ANOVA presented in Table 4.4, most of the factors, main effects and interaction 

effects, are included in the maximum pressure regression model, with the exception of the 

evaporation-condensation constant (AB) two-way interactions and the evaporation-

condensation-bubble (ABC) radius three-way interaction effects. However, while the 

mentioned interactions were removed due to their complete failure to meets the F-test and P-

test, B main effect, evaporation-nucleation site volume fraction (AD), evaporation-bubble 

radius (AC), and bubble radius-nucleation site volume fraction (CD) two-way interaction 

effects were included regardless of their inability to meet the same criterion. These exceptions 

were made on the basis of examining both main effect plots and their respective interaction 

plots to avoid making any immature interpretations. 
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Initially, the condensation constant (B) main effect, as per the p-value, appears to be 

insignificant; meanwhile, its interactions with bubble radius (C) and nucleation sit volume 

fraction (D) are significant. This is graphically demonstrated in both Figures 4.6 and 4.8 

respectively. By observing the main effects alone, Figure 4.6 highlights the change in the 

maximum pressure peak by changing each variable one at a time while keeping the remaining 

variables at their lower values as default. The figure reiterates that the evaporation constant (A) 

has the highest influence relative to the other constants given that the pressure value changes 

from 5.1 bar to 6.5 bar as the constant is increased from 10 to 50. Meanwhile, B shows its 

insignificance by demonstrating a small change in pressure from 5.9 to 5.6 bar when decreased 

from 0.1 to 0.01. Here, this statistical anomaly is further examined by deducing the type of 

interaction that exists at BC and BD. In this case, there exists a significant antagonistic effect 

shown in Figure 4.7 for both interactions where any change along either of the factors leads to 

an interaction in the opposite direction. Graphically, this is highlighted by assigning a light 

green color to represent the highest achievable value for the maximum pressure peak while 

dark green represents the lowest value achieved. Moreover, a with twisted surface plots due to 

its edges’ opposing directions. Furthermore, an inference that B is a main effect in the current 

case is misleading, as it does not show an independent effect, instead of a conditional effect. In 

other words, the coefficient of B is interpreted as the effect of B when A = 0 where in this case, 

it is insignificant. Thus, it can be inferred that B may carry larger significance for other values 

of A, as decomposed by Figure 4.7.  

 

Therefore, to interpret the influence of the condensation constant on the maximum peak, BC 

and BD are observed. Pressure peak generally intensifies as bubble radius is reduced; however, 

this effect is more pronounced with the increase of the condensation constant. From a 

mathematical perspective, the decrease in bubble radius reduces the emphasis of both bubble 

growth and collapse mass transfers. However, when coupled with an increase in the 

condensation gain coefficient, this effect is compensated for at the collapse mass transfer. In 

physical terms, bubbles are limited to grow to a smaller size and pushed to collapse at a higher 

rate. 

 

On the other hand, the remaining factors A, C, and D retain their main effect status in the 

model, according to the p-test. This is due to the statistical insignificance of AC, AD, and CD 

carry. However, as Table 4.4 shows, a three-way interaction ABC is statistically significant 

inferring that the two-way interactions do exist physically; however, they vary across a third 

continuous factor, i.e., AC vary significantly along factor D. 

 

In Figure 4.6, main effects A and D are shown to have positive independent effects on the 

pressure peak while C shares a negative relationship with the pressure peak. Moreover, A 

shows the most influence on the pressure. The interaction effects of AC, AD, and CD are shown 

in Figure 4.7. Surprisingly, interaction AC does not show that the bubble radius C shares the 

same effect it had on the condensation constant B. Instead, it appears to only highlight the main 

effects of both A and C. Meanwhile, interaction AD emphasizes its significance where 

maximum pressure is achieved with the increase of both nucleation site volume fraction and 

the evaporation constant. Physically, this translates to intense cumulative collapses in regions 

of high bubble density. Lastly, the CD interaction demonstrates its negative interaction in 

which an increase in nucleation site volume fraction and a decrease in bubble radius leads to a 

maximum pressure peak. In this case, both mass transfer directions experience an inflated 

effect, hence, leading to a more intense collapse. 
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Figure 4.7: Surface and contour plots showing two-way interaction effects between the four model constants on the response 

values of pressure peak (Pa). The constants’ interactions are (a) Condensation - Evaporation (b) Bubble Radius – Evaporation 

(c) Nucleation Volume Fraction – Evaporation (d)Bubble Radius – Condensation (e) Nucleation Volume Fraction – 

Condensation (f) Nucleation Volume Fraction – Bubble Radius. 

4.7.2.2 Analysis of regression predictors’ effect on oscillation frequency 

 

Unlike the maximum pressure regression model, all factors A, B, C, and D can be interpreted 

as main effects on the frequency response. The evaporation constant A appears to have a 

negative relationship where any increase leads to a decrease in the oscillation frequency. On 

the other hand, an increase in the condensation constant, bubble radius, and nucleation site 

volume fraction lead to an increase in frequency. Figure 4.8 further points out that both main 

effects C and D share the status of being the most impactful effects on the frequency response. 
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An analysis of the interaction terms in both Table 4.4 and Figure 4.8 shows that BD shows 

most significance compared to BC and CD. As Table 4.3 suggested and Figure 4.8 supports, 

interactions AB, AC, and AD are completely neglected in the regression model. Specifically, 

this emphasizes that the evaporation constant (A) has no noticeable effect on the frequency 

responses when any of B, C, or D are changed, and it is indicated by the parallel edges of 

surface plots. 

An additional dissimilarity in the interactions’ behavior from pressure peak responses is that 

there are no significant three-way interaction effects; interaction BCD is shown to be 

insignificant in Table 4.3. This way, BD is the only interaction that qualifies to remain in the 

model, while BC and CD are not required, as they are unable to justify the significance of any 

three-way interaction. The frequency regression model is then a quadratic model with one 

second-order term, as opposed to the cubic regression model obtained for the maximum 

pressure response. 
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Figure 4.8: Surface and contour plots showing two-way interaction effects between the four model constants on the response 

values of oscillation frequency (Hz). (a) Condensation - Evaporation (b) Bubble Radius – Evaporation (c) Nucleation 

Volume Fraction – Evaporation (d)Bubble Radius – Condensation (e) Nucleation Volume Fraction – Condensation (f) 

Nucleation Volume Fraction – Bubble Radius. 
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4.7.2.3 Regression model optimization 

 

The regression models obtained only show a cubic and a quadratic relationship that the model 

constants statistically maintain with the pressure fluctuation peak and its oscillation frequency, 

respectively. However, in this study, the main objective is to tune the modified cavitation model 

to enhance its acoustic cavitation predictions. Thus, the optimization criteria set, as presented 

in Table 4.5, is dissected to acceptable ranges of model constants’ lower and upper limits, their 

weightages, and their importance. The selected targets for both pressure and frequency 

responses are 3.62 bar and 5058 Hz, respectively`, as they represent the values obtained 

experimentally by Znidarcic et al. [109]. Moreover, both targets are given the same weight and 

high importance, indicated by the set value of 1, to the multiple response optimization method. 

 

Table 4.5: Optimization Criteria for Pressure and Frequency Responses 

  Limits   

Response Goal Lower Target Upper Weight Importance 

Freq. / Hz Target 4109.090 5058.00 5563.80 1 1 

Max Pres. / Bar Target 3.482 3.62 4.07 1 1 

 

Figure 4.9 and Table 4.6 summarize the selection process of model’s optimal values by 

utilizing the desirability approach. The solutions obtained for each of the evaporation constant, 

condensation constant, bubble radius, and nucleation site volume fraction were through an 

input set in Minitab. The interpretation process of the optimal results was simply off their 

desirability values; those solutions with highest desirability are often chosen as the optimal 

solution. Thus, Table 4.5 shows the uncoded optimal settings as follows: Factor A = 17.35988, 

Factor B = 0.1, Factor C = 25 x 10-6 m, and Factor D = 5 x 10-4. This setting has achieved 

responses of 3.62 bar and 4928.73 Hz for pressure and frequency respectively. The maximum 

desirability achieved by the solution was 88.092%. 

 

Table 4.6: Optimal Solution Achieved by Multiple Response Optimization 

Factors 

Coded  

Setting 

Uncoded  

Setting 

 
  

95% CI 95% PI 

Freq. 

Fit 

Max 

Pres. 

Fit 

Composite 

Desirability Press. Freq. Press. Freq. 

A -0.632006 17.35988 

4128.73 3.62 0.880920 
(2.599, 
4.641) 

(3322, 
4935) 

(2.893, 
5.347) 

(3754, 
5504) 

B 1 0.1 

C 1 25 x 10-6 

D -1 5 x 10-4 

 

Figure 4.9 below illustrates the consideration of optimized values for each factor by comparing 

their desirability values and adjusting their settings accordingly. The vertical red lines running 

through each column represent the optimal level at which the factor is set in to achieve 

maximum desirability. Perhaps, the factor with the most volatile effect in both the responses is 
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the evaporation constant. This is highlighted by the visible kink in the desirability graph of the 

factor; any increase in the evaporation factor will skew both pressure and frequency responses 

away from 3.62 bar and 5058 Hz target values respectively. Meanwhile, the remaining factors 

were comfortably set at either low or high value ends signified by their linear desirability 

relationship. 

 

Figure 4.9: Desirability and main factor effect plots for pressure and frequency responses highlighting the optimal settings 

for highest desirability. 

 

4.7.2.4 Monte Carlo sensitivity analysis 

 

While it is true that the desirability approach resulted in two optimized regression models, 

insight on the induced scatter on the response values due to uncertainty in the governing model 

constants is lacking. With the ANOVA study revealing the extent of control the empirical 

constants have over the model’s predictive performance of acoustic cavitation properties, 

exploring the sensitivity of results to any variation in the empirical constants become crucial. 

Therefore, a series of Monte Carlo simulations is implemented to identify the random input of 

model constants that contribute the most to the random scatter of pressure and frequency 

response values. This approach was setup and performed in a MATLAB environment. The 

number of iterations used for the simulations is 7000 iterations, as suggested by Figures 4.3a 

and 4.3b. The simulations were setup by setting the two regression models as the simulation 

objectives and assuming a ± 10% randomness in each model constant to study the response 

sensitivity to input uncertainty. The uncertainty value is assumed based on the range of values 

commonly used in literature [138-140]. This way, a uniform distribution was deliberately 

chosen for the model constants’ values, as the true probabilistic distribution of their values is 

not available. The aim of the analysis is to perform a non-informative sensitivity assessment 

that would identify dominant parameters affecting the collapse pressure and cavitation lifecycle 

frequency. 
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Table 4.7 summarizes important statistical properties the response variables showed during the 

Monte Carlo simulations. One of the parameters highlighted is the mean for both responses. 

Interestingly, the mean values demonstrate a strong agreement with the deterministic values 

achieved during optimization. The maximum pressure is of particular interest, as its standard 

deviation indicate that response values are retain low variance and are closely distributed 

around about the mean. Meanwhile, this cannot be said about the oscillation frequency 

response, since its standard deviation shows relatively larger variance. Nevertheless, the near-

zero skewness values highlight that the random response variables are not skewed to either side 

of the mean. Moreover, kurtosis values of less than < 3 show that the response values examine 

a platykurtic distribution, which typically describes a distribution with a lower likelihood of 

achieving response mean values compared to a normal distribution. While this is statistically 

true, kurtosis values are also considerably close to 3, and hence, ultimately, it is more 

reasonable to consider the response values well-modelled with a normal distribution. This is 

reiterated in the corresponding histograms shown in Figure 4.10. 

 

Table 4.7: Statistical Properties of Random Response Variables 

Response Name Unit Mean St. Deviation Skewness Kurtosis Min. Max. 

Maximum Pressure Bar 3.5941 0.096111 -0.069492 2.693 3.295 3.883 

Oscillation Frequency Hz 4193.0288 115.285 0.084987 2.631 3864.2 4545.8 

 

A sensitivity analysis is then performed to find reason for the obscure trends presented in the 

Monte Carlo simulation and to identify the factor with the greatest influence on the response 

output. Figure 4.11 draws a sensitivity plot that shows percent contributions of each random 

input factor to the uncertainty of random output responses. For instance, Figure 4.11a considers 

the maximum pressure response in which it uncovers that randomness in all four factors 

generally share equal responsibility for the scatter in the pressure response. The condensation 

Figure 4.10: Histograms of output random responses of (a) Maximum pressure (b) Oscillation frequency considering a ± 10% 

uncertainty in all four model constants. 
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constant seems to have the most influence. This can reasonably be attributed to the fact that 

cavitation collapse intensity equally depends on the cavitation region and bubble size, and the 

rate of their collapse that generates the spike in pressure. On the other hand, this trend is not 

reiterated in the Oscillation Frequency sensitivity plot. Figure 4.11b highlights that the main 

contributors to output randomness are the nucleation site volume fraction, bubble radius, and 

condensation constant. Meanwhile, the evaporation constant contributes only 8% of frequency 

response randomness. Interestingly, this occurrence can be attributed to the dependence of the 

oscillation frequency primarily to the rate of cavitation collapse. 

 
Figure 4.11: Desirability and main factor effect plots for pressure and frequency responses highlighting the optimal settings 

for highest desirability. 

 
Table 4.8: Correlation Coefficient Matrix between Input Factors and Response Values. 

Response Name Evap. Cond. Bubb. Rad. Nuc. Site Vol. Frac. 

Maximum Pressure 0.4980 0.5568 0.5065 0.4162 

Oscillation Frequency 0.1525 0.5302 0.5439 0.6248 

 

Moreover, Table 4.8 provides the correlation matrix between input factors and output 

responses. Generally, a correlation coefficient equal to one defines a perfectly correlated 

relationship between the input and output; however, a zero represents the lack of a statistical 

correlation. In that sense, the matrix reiterates the information shown in Figure 4.11 by showing 

that correlation coefficients for nucleation site volume fraction are lowest for maximum 

pressure response and lowest for the oscillation frequency. 
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4.7.2.5 Numerical validation of the modified ZGB model with the response surface optimized 

parameters 

 

With the completion and optimization of the modified ZGB cavitation model, the model has to 

undergo validation against physical experiments to ensure that the statistically obtained model, 

with its optimized model constants, does in fact achieve the predicted acoustic cavitation 

performance. The reader is referred to Appendix A for the source code of the optimized 

cavitation model. In this section, the new model was implemented into the ANSYS FLUENT 

numerical setup described in Section 4.4 and prepared for validation against Znidarcic et al. 

[109] Case A experiment setup. The new model’s performance in acoustic cavitation modelling 

is assessed based on its ability to predict acoustic cavitation structures and pressure oscillations 

of amplitude and frequency agreeable to that measured during the experiment. 

 

 

 
Figure 4.12: Comparative illustration of instantaneous cavitation structures observed experimentally [109] and predicted by 

the modified ZGB model numerical setup at coinciding time steps. 
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Figure 4.12 shows snapped grey-scaled pictures of acoustic cavitations structures observed 

experimentally with vapor volume fraction contour plots. When comparing Figure 4.12 to 

Figure 4.4, a clear contrast in the cavitation structure and its evolution becomes noticeable. 

Firstly, the contour plots, in Figure 4.12, show an underprediction in the early mushroom-

shaped cavitation region, and instead, it predicts a thick flat sheet of cavitation engulfing the 

horn tip at t = 0 – 80 μs. However, it predicts the late conical shaped attached cavitation 

transformation shown at t = 100 – 140 μs followed by its collapse at t = 160 – 180 μs. In 

addition, the model no longer assumes complete symmetry of cavitation region and is able to 

predict the existing asymmetries of attached cavitation. Perhaps, this can be linked to the 

decrease in the model’s evaporation constant which in turn limited the rate of cavitation growth. 

Interestingly, with the new model, the simulation could predict the presence of downstream 

cloud cavitation micro-structures under the horn tip throughout the entire expansion-collapse 

cycle. As illustrated, cloud cavitation shows an inverse relationship with attached cavitation. 

As the attached cavitation enters its expansion phase, cloud cavitation slowly begins to 

collapse. Meanwhile, it begins to regrow during the attached cavitation collapse phase 

eventually leading to complete detachment. Ultimately, the new model qualitatively shows 

excellent performance in modelling acoustic cavitation. 

However, to assess the new model quantitively, Figure 4.13 plots the pressure fluctuation 

captured in both the experiment and the simulation. As illustrated, there is a strong agreement 

between the simulation and the experiment, as the new model is now capable of capturing 

microscale acoustic bubbles, frequent, small oscillations can be seen between one peak and the 

other. Furthermore, the pressure peaks resemble attached cavitation collapse marking the end 

of each expansion-collapse cycle. These peaks appear to be overlapping pressure peaks 

observed in the experiment at times, while mostly appearing slightly delayed. Moreover, 

another model prediction inaccuracy can be seen at time t = 2.49 s where the pressure peak is 

underpredicted. By looking at the proceeding peaks, it is clearly shown that they are 

Figure 4.13: Comparative illustration of instantaneous cavitation structures observed 

experimentally [109] and predicted by the modified ZGB model numerical setup at 

coinciding time steps. 
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overpredicted instead. This phenomenon can be attributed to a mode of cavitation described by 

Qin et al. [79] as inertial cavitation where the cavitation in a single cycle does not collapse at 

its critical size, instead, it grows to a new critical size before it violently collapses. A 

comparative summary of pressure fluctuation predictions is provided in Figure 4.14 where both 

the maximum pressure attained, and the mean oscillation frequency of both the simulations and 

the experiment are plotted. 

 

Figure 4.14: Bar diagrams of experimentally measured and numerically predicted, using both the original and modified 

ZGB cavitation model, maximum pressure amplitude and mean oscillation frequency. 

The figure further emphasizes the strong agreement between the modified ZGB model’s results 

and the experimental results. While the experiment attains a maximum pressure of 3.54 bar and 

a mean subharmonic frequency of 5058 Hz, the modified ZGB model achieves a maximum 

pressure and a mean frequency of 3.48 bar and 4894.56 Hz respectively. As for the original 

model, the figure quantifies its inaccurate predictions of acoustic cavitation where it assumes 

0.70 bar and 1176.47 Hz for the pressure peak and the mean oscillation frequency respectively. 

Lastly, the values generated by the modified ZGB model validates the predicted values 

provided by the response optimization of the pressure and frequency regression models. The 

response optimization concluded that with the suggested model constants, the modified ZGB 

model will output 3.62 bar and 4128.72 Hz. As predicted, the modified ZGB model generated 

values considerably close to the statistically predicted values with the pressure response being 

closer than the frequency response. Perhaps, this could be attributed to the omitting of many 

two-way and three-way interaction terms which, in turn, resulted in the neglection of important 

terms and in an oversimplified model. However, the values remain satisfactory and show a 

similar correct trend. 
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4.8 Conclusion 
 

In the presented investigation, inaccuracies of current cavitation models, specifically the ZGB 

model, in predicting acoustically induced attached cavitation. Results from Znidarcic et al.’s 

experimental investigation [109] were used to evaluate the numerical results achieved by the 

original ZGB cavitation model implemented in a numerical setup that captured the 

experimental setup used. The model was incapable of accurately capturing primary features 

that included attached cavity structural formations, downstream cloud cavitation regions, 

pressure pulse amplitudes and cavity oscillation frequency. To resolve these problems, 

mathematical manipulations suggested by Znidarcic et al. [109] were applied on the original 

ZGB model. Furthermore, a statistical Design of Experiment approach, coupled with the Monte 

Carlo method, was adopted to scrutinize and optimize the model constants to improve the 

model’s acoustic cavitation prediction performance. The optimized model constants were later 

validated against the experimental results. The following conclusions were drawn from the 

study: 

 

• The stepwise regression uncovered that all four model constants are in fact significant 

to both maximum pressure and oscillation frequency responses. However, the 

condensation constant did not appear statistically significant for the pressure response, 

but it later showed hierarchal importance due to its two-way interaction significance. 

• Response optimization, using the desirability approach, of the two regression models 

suggested that model constants of 17.35988, 0.1, 25 x 10-6 m, and 5 x 10-4 for the 

evaporation constant, condensation constant, bubble radius, and nucleation sit volume 

fraction, respectively, will achieve a maximum pressure value of 3.62 bar and an 

oscillation frequency of 4128.73 Hz. The optimization desirability d = 0.88 attained is 

considered satisfactory. 

• Investigative Monte Carlo simulations on the optimized regression models summarized 

the sensitivity of each model from a 10% random variation in the four model constants. 

It illustrated that the pressure response was approximately equally influenced by any 

randomness present in all four model constants. Meanwhile, the frequency response 

scatter was mainly affected by uncertainty in the nucleation site volume fraction 

constant showing 34% correlation. The condensation constant and the bubble radius 

equally contributed 29% to the frequency response randomness, while the evaporation 

constant had a minimal contribution of 8%. 

• Validation of the modified ZGB model showed that with the statistically optimized 

model constants, the cavitation model predicted 3.48 bar and 4894.56 Hz for the 

pressure peak and mean oscillation frequency, respectively. These values showed 

strong agreement with the experimental values and further emphasized the accuracy of 

the statistical model optimization. Nevertheless, it is crucial to acknowledge that the 

model was only developed and optimized for reactor configurations operating within 

the 20 kHz range, therefore, additional validation is required to assess its performance 

in higher operation frequency ranges. 

 

The next stage of the project consists of developing a numerical model of the hydrodynamic 

reactor for a series of setup validations. This is then followed by a modified numerical model 

of the reactor where an ultrasonic horn is introduced, and the acoustic cavitation model is 

implemented. 
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 Influence of Toroidal Vortex Dynamics on Acoustic Cavitation 

Development under Different Ultrasonic Horn Tip Vibration 

Modes 

 

5.1 Introduction 

 

With the validation of the complete numerical configuration and model of the horn-type 

reactor, this chapter delves into what was extensively discussed in Chapter 2, as many 

investigators have attempted to strategize improving the horn’s sonochemical efficiency 

through a series of parametric analyses that explore underlying relationships between cavitation 

development, sonication media, operational conditions, and transducer geometries [144-146]. 

With further reading of literature, however, it has been notably interesting that each 

investigation conducted has implemented its own transducer operating conditions, such as 

input power, horn tip diameter, and tip amplitude.  Moreover, it has been revealed that there is 

noticeable inconsistency in the numerical modelling of ultrasonic horn’s vibration, where some 

studies consider the entire horn structure to oscillate at a frequency of 20 kHz and above, while 

others assume an isolated oscillation performed by the horn tip surface submerged in the fluid. 

It has been noted that the choice of vibration model varies vastly with the ultrasonic horn 

geometry, specifically, the horn tip diameter. A sample of recent studies has been tabulated and 

categorized in Table 5.1 to summarize this trend. 

 

Table 5.1: Ultrasonic transducer operating conditions previously used in experimental studies to explore developed 

cavitation behaviors. 

Authors 
Size 

Category 

Input Power, 

W 

Horn Tip Amplitude, 

μm 

Horn Tip Diameter, 

mm 

Žnidarčič et al. 

[128] 

Small 

Horns 

7 – 70 68 – 212 3 

Kozmus et al. 

[144] - 135 – 270 3 – 4.8 

Petkovsek et al. 

[147] 150 – 300 130 – 270 4.8 

Patil et al. [148] Mid-

ranged 

Horns 

100 - 13 

Fattahi et al. 

[149] 24.7 – 87.15 - 13 

Tzanakis et al 

[68] 

Large 

Horns 78 – 230 8.5 – 17 40 

 

Typically, this myriad of horn properties is primarily driven by the cavitation performance 

required for a specific ultrasonic-assisted task, such as process intensifications and rheological 

manipulations [150, 151]. In terms of acoustic cavitation, its performance is both qualified and 

quantified by assessing the cavity structures produced at the horn’s proximity and the 

pressure/volume fluctuations generated, respectively. Many studies have adopted the route of 

numerical methodologies, as they can facilitate the instantaneous capturing of such data. A 

thought-provoking trend noticeable in previous studies is that those considering a small tip 

diameter tend to assume a uniform sinusoidal vibration model for the oscillating tip ‘wall’ [128, 

152]. Meanwhile, studies considering notably larger diameters lean towards adopting a 



87 

 

classical thin-plate vibration theory to model the sinusoidal motion [104, 148]. The simple 

uniform sinusoidal motion is typically modelled as a smoothly cyclical variance based on the 

sine function. On the other hand, those that adopt the classical elasticity equations generally 

attempt to simplify their boundary value problem by essentially implementing the Gurtin-

Murdoch theory [153]. Moreover, this has been extrapolated to simplify the boundary problem 

using Kirchhoff’s plate theory [154]. 

This begs the question, what is the reason behind this modelling habit, why has it been 

subliminally deemed that the uniform vibration model is unfit for larger tip diameters, and why 

has the thin-plate vibration models not been adopted in smaller diameters? 

Therefore, a numerical investigation has been commenced to compare the performances of two 

recurring mathematical vibration modelling methods in the literature, namely the ‘uniform 

sinusoidal vibration model’ and the ‘Kirchhoff-based vibration model’. With the use of a 

validated numerical setup of acoustic cavitation, the two vibration models were implemented 

as horn wall boundary conditions in that setup through the use of user-defined functions 

(UDFs) that define the special cases of dynamic meshing. Moreover, as a way to further 

examine the potentially underlying relationship between the vibration model performance and 

the horn tip diameter, the study takes into consideration two horn diameters, a 3 mm and a 12 

mm horn tip diameter. The methodology implemented for this investigation carried forward 

from the previously discussed numerical configuration in Chapters 3 and 4. 

 

5.2 Horn Tip Vibration Models 

 

In this study, the two horn tip vibration models described in Chapter 2.5 were implemented for 

a comparative numerical analysis on the same validated domain created in Chapter 4.5. The 

general mode of implementation of the two models was simply through drafting and compiling 

a user defined function (UDF) source code and importing it into ANSYS Fluent 23R2 [54] as 

a moving wall boundary condition assigned to the horn tip boundary. However, the type of 

boundary condition slightly differs between the two vibration models. 

 

To reiterate, the simple sinusoidal motion simply defines the sinusoidal movement of the entire 

boundary wall by moving its nodes, as defined in Eq. 2.36, which translates to a uniform motion 

of all the nodes along the horn tip boundary in both of negative and positive displacements. 

Therefore, the UDF enforces an automated dynamic meshing of the proximal grid elements to 

ensure that no extreme defeaturing, such as drastic increase and drop in skewness and aspect 

ratio of the elements respectively, occurs during the movement of the horn tip. 

 

On the other hand, the Kirchhoff-based vibration model is slightly different. As stated in Eq. 

2.57, each segment of the horn tip boundary experiences a different magnitude of force, and 

thus displacement. Therefore, the programming logic adopted here is to assign a unique 

displacement value for each of the nodes lying about the horn tip, where the maximum 

displacement is assigned to the node at the horn’s axis and zero displacement at the horn’s 

maximum radius. Nevertheless, the displacement direction of all nodes remains unified. 

 

With that said, both vibration models adopted consider the same displacement amplitude of 

164 𝜇𝑚. The full source codes can be found in Appendix B and Appendix C for the simple 

sinusoidal vibration model and the Kirchhoff-based vibration model, respectively. 

 

 



88 

 

5.3 Analysis Methodology and Results Discussion 

 

5.3.1 Front Fourier Transform Analysis of the 3 mm Horn Tip 

 

We began the investigation by closely monitoring the pressure and vapor volume signals 

recorded by the monitor point and within the fluid domain, respectively. This way, a 

quantitative distinction between key quasiperiodic features of both signals is drawn out. 

 

Figure 5.1: Vapor volume signals (left) and pressure signals (right) resulting from uniform and Kirchhoff model-coupled 

3mm horn tip boundaries. Red boxes highlight a signal segment showing the frequency offset between the two predicted 

signals. 

Figure 5.1 illustrates pressure and vapor volume signals obtained from numerical models of 

the 3 mm tip implementing both uniform and Kirchhoff-based models. Here, the numerical 

model coupled with the uniform model has been validated in a previous study [110] and taken 

as the correct solution, and the reader is referred to Section 4 for the validation encompassing 

this model. There exists a significant difference in the predicting powers of the uniform and 

the Kirchhoff-coupled numerical models. The implementation of the Kirchhoff model has led 

to a severe underprediction of both the pressure and vapor volume amplitudes. Mean lines were 

drawn to emphasize this difference in which the differences in the vapor volume and the 

pressure signal means are 2.38457 × 10−10 𝑚3 and 445.32 Pa, respectively. However, to give 

meaning to these values, it is crucial to acknowledge the meaning of the amplitudes. A pressure 

peak suggests a major collapse in the cavity’s structure, while a vapor volume peak suggests 

maximum growth in this cavity structure, which generally occurs before its sudden collapse 

[155,156]. Cavitation does not appear to expand with the Kirchhoff model in comparison with 

the cavitation produced under the uniform model. Therefore, this justifies why the pressure 

spike produced by the collapse is not equivalent to the uniform model. 

 

To derive further insight, a Front Fourier Transform (FFT) was performed on the two signals 

produced by each of the vibration models to accurately isolate and quantify the low 

characteristic frequencies of the signals, which is illustrated in Figure 5.2. Initially, the figure 

highlights the frequencies of the decomposed pressure and volume signals, where multiple 

spikes can be observed. Each spike refers to a frequency found in the signal that are 

categorically either low or high frequencies. In the present analysis, the high frequencies are 

considered as sub-oscillation frequencies that represent the frequent minor collapses of 

cavitation during its growth stage. Thus, only the low frequencies are sought out to extract the 

main oscillation frequency. Figures 5.2a and 5.2b highlight the lowest frequencies of the 
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respective vapor volume signals where the signal obtained from the uniform vibration model 

is 4991.68 Hz. However, the Kirchhoff model presents a rather unorthodox trend where there 

exist two distinct low oscillation frequencies, 3660.57 Hz and 7986.69 Hz. To sieve the 

frequencies into a single characteristic frequency, FFT has been performed on the pressure 

signals to identify the shared low frequency. As Figs. 4c and 4d demonstrate, the same low 

frequency of 4991.68 Hz has been obtained in the uniform model’s pressure signal; moreover, 

the frequency of 7986.92 Hz has been captured which validates the same frequency obtained 

in the model’s vapor volume signal. 

 

Building on the established fact that the Kirchhoff model underpredicts the amplitudes of both 

pressure and vapor volume, it seems that there is an inverse trend regarding the frequency of 

their oscillation. As such, the Kirchhoff model overpredicts the cavitation cycle frequency 

hinting at a series of short-lived cavities under the horn. It can only be suspected that the plate 

mode shape-inspired vibration model, represented by Eq. 2.57, has an underlying influence on 

the flow structures around the tip that may cause this fast-paced disintegration of the cavities 

under the horn. Therefore, a qualitative analysis may provide supplementary insight on the said 

flow structures. Going back to Figure 5.1, one can notice a few recurring trends between the 

uniform and Kirchhoff model signals, such as offset peaks and, surprisingly, occasional 

overlapping peaks. These trends can be found in the sample highlighted in the red box.  

 

 

Figure 5.2: FFT plots of pressure and vapor volume signals obtained from the two numerical simulations where (a) 

represents the vapor volume signal (uniform model) (b) vapor volume (Kirchhoff model) (c) pressure signal (uniform model) 

and (d) pressure signal (Kirchhoff model). 
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5.3.2 Finite Time Lyapunov Exponent Lagrangian Analysis 

 

The finite time Lyapunov exponent fields were calculated on MATLAB, which can be found 

in Appendix D, to materialize hyperbolic manifolds of particle trajectories 𝒙(𝑡) to define the 

resulting proximal Lagrangian coherent structures (LCS) induced by the oscillatory motion of 

the ultrasonic horn in the fluid domain [157]. This was performed by importing velocity fields 

𝒖 calculated in ANSYS Fluent into MATLAB for a sequence of integrations that result in the 

creation of the particle flow map Φ0
𝑇, and the eventual mapping of the FTLE contours. The 

computational steps involved in calculating FTLE typically start with the creation of a grid of 

particles, 𝑋0 ⊂ ℝ
𝑛, is initialized over a selected subdomain from the primary fluid domain 

created in section 2.1. The particles are then integrated along the flow from an initial time 0 s 

to a final time T, in which Φ0
𝑇 is then defined as: 

 

Φ0
𝑇: ℝ𝑛 →ℝ𝑛, 𝑥(0)  ⟼ 𝑥(0) + ∫ 𝒖(𝑥(𝜏), 𝜏)𝑑𝜏

𝑇

0

 (5.1) 

 

Here, 𝜏 is the instantaneous integration time. The next step is to differentiate the Jacobian flow 

map to compute the Cauchy-Green deformation tensor defined as follows: 

 

∆= (𝐷Φ0
𝑇)𝑇𝑟𝐷Φ0

𝑇 (5.2) 

 

In this equation, the transpose operation is denoted with 𝑇𝑟 to not confuse with the final time 

𝑇. Lastly, the eigenvalue 𝜆 is calculated and filtered to obtain its largest value 𝜆𝑚𝑎𝑥. The 

maximum eigenvalue is then used as input to obtain the respective FTLE field as such: 

 

𝜎(Φ0
𝑇; 𝑥0) =

1

|𝑇|
log√𝜆𝑚𝑎𝑥(Δ(𝑥0)) (5.3) 

 

In the given exploration, the subdomain selected for the Lagrangian analysis is a 5 × 5 mm 

region under the horn where a grid of particles with a grid spacing of ∆𝑥 = 25 𝜇𝑚 is initialized 

into the subdomain, as shown in Figure 5.3. The particle advections were computed using a 

fixed timestep equivalent to 5 𝜇𝑠 and the fourth order Runge-Kutta scheme. 
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Figure 5.3: A dimensioned sketch of the chosen subdomain (left) and particle grid (right) showing that the size of the 

selected subdomain and its respective particle grid is 5 x 5 mm. 

To analyse vectors and contours of the flow velocity, Finite-Time Lyapunov Exponent (FTLE) 

has been used to compute the backward integration of these flows at their instantaneous flow 

times to examine Lagrangian Coherent Structures (LCS) and resolve the spatial locations of 

temporal vortex boundaries. The grid resolution implemented for the FTLE was 25 µm. By 

matching the diagrams, in Figures 5.4 and 5.5, corresponding to the pressure peaks and troughs 

observed in Figure 5.1, the difference between the two models in the cavity structural 

development becomes obvious. 

 

Essentially, this difference is highlighted in the cavity growth and collapse cycles predicted by 

both models. In Figures 5.4b and Fig 5.5a, the difference in the collapse cycles is introduced 

as a single-stage collapse predicted by the uniform-based model against a two-staged collapse 

in the Kirchhoff-based model at t = 0.00193 s. In each of Figures 5.4b, 5.4c, and 5.4e, a 

complete collapse of the attached cavity and a departure of a smaller cavity downstream of the 

tip is shown as the collapse mechanism of a uniformly vibrating tip, as opposed to the 

Kirchhoff-based vibration, where a small cavity remains situated on the side of the tip during 

the collapse phase of the center cavity. However, this collapse mechanism is only observed in 

Figures 5.4a, 5.4c and 5.4f. Meanwhile, in Figures 10d and 10e, while they also demonstrate a 

collapse phase, a different collapse mechanism appears at t = 0.002085 s and t = 0.002135 s. 

Here, the collapse is shown as the collapse of the side cavity with the support of the attached 

center cavity instead. As a preliminary observation, this collapse phase was interpreted as a 

two-stage collapse mechanism, where in the first stage, the side cavity could plausibly be 

inhibiting the pressure pulse generated by the center cavity collapse, in turn, inducing an 

underpredicted pressure peak at the monitor point. Meanwhile, the smaller side cavity collapses 

correspond to the smaller pressure pulses that remain within the range of 53.1484 kPa and 

56.1832 kPa. The second stage collapse could just be the underlying reason behind the 

increased pressure and vapor signal frequency predicted by the Kirchhoff model. 
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Moreover, the vector plots highlight the dynamic flow behaviours corresponding to cavitation 

development. Generally, it can be drawn out that the vortices, whether produced by the uniform 

or the Kirchhoff sinusoidal horn oscillation, react the same way to cavitation growth and 

collapse. During cavity growth, Karman vortex structures are maintained within the horn’s 

proximity due to low pressures within the region; however, with the cavity’s collapse, vortex 

breakdown is seen to occur by the shockwaves induced by the said collapse [158]. While this 

behaviour is shared between the two models, many differences exist in their vortices’ 

positioning and length. Firstly, the uniform vibration of the horn appears to be inducing a 

circular vortex that shifts from the tip downstream to the tip side; on the other hand, the 

Kirchhoff model consistently predicts an elliptical vortex in the same position downstream of 

the tip. 

 

With the FTLE contours, the boundaries of those vortices are highlighted as continuous ridges 

that gradually extend downstream of the tip. The ridges appear primarily parallel with the 

horn’s centerline. Moreover, thin stretching examined at the tip of the ridges can be interpreted 

as an inertia-dominant turbulent jet that sources from the tip, as described by Lighthill [159] 

and Trujillo et al. [160]. With this definition, it can extend the observation and relate it to the 

thin ridges at the tip, coincident with the cavitation zones, and as such, it is interpreted as a 

secondary jet impinging the cavitating zone. Its temporal development can be seen with each 

collapse phase, where its presence becomes more prominent. Since the jet is present in both 

vibration models, it can be associated with the primary collapse mechanism of their respective 

cavitation zones. However, the primary difference is outlined as the angle at which the 

impinging jet penetrates the cavity. In the case of uniform vibration, the jet enters almost 

parallel to the tip, while the jet cuts through the zone diagonally with the Kirchhoff-based 

model. Interestingly, this could be linked back to the collapse mechanisms discussed earlier. 

As the uniform model induces a secondary jet in the horizontal direction, the jet penetrates 

through the attached cavities and detaches a smaller cavity downstream. Meanwhile, with the 

diagonal entry of the jet in the Kirchhoff model, the center cavity is attacked first, splitting it 

into two smaller side cavities. This jet’s angle of attack appears to pulsate within a tight range 

between 28° −  31° with the cavitation’s development cycle. Based on that, it could be 

ultimately said that spatial non-uniformity of displacement, such as the suggested by Kirchoff’s 

model, has a negligible effect in this regime due to the dominance of axial motion and low 

radial gradients. This is due to the high acoustic energy concentration in smaller tip diameters 

that facilitate this dominant axial flow, which is captured by the uniform model’s near-rigid 

behaviour. 
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Figure 5.4: Diagram of a 5 x 5 mm region in proximity of the horn (Uniform Model) illustrating the vector and contour plots 

of flow direction and vapor volume fraction on the left and FTLE on the right where (a-f) represent flow times at t = 

0.00193, 0.00198, 0.00203, 0.002085, 0.00218, and 0.002135 s, respectively. 
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Figure 5.5: Diagram of a 5 x 10 mm region in proximity of the horn (Kirchhoff Model) illustrating the vector and contour 

plots of flow direction and vapor volume fraction on the left and FTLE on the right where (a-f) represent flow times at t = 

0.00193, 0.00198, 0. 00203, 0.002085, 0.00218, and 0.002135 s, respectively. 
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5.3.3 Front Fourier Transform Analysis of the 12 mm Horn Tip 

 

Evidently, the Kirchhoff vibration model significantly diverges from experimental 

observations when applied to a small horn tip of 3 mm. However, this contradicts the 

observations made in previous studies that utilize this vibration model and obtain comparable 

results to those obtained experimentally. Therefore, the same numerical setups were used, with 

a 12 mm horn tip, to observe the degree of skewness of results obtained by either model. The 

choice of a 12 mm horn tip diameter was inspired by the dimensions of many horn models used 

in the literature, such as the horn investigated by Rahimi et al. [104]. Like Figures 5.1, Fig. 5.6 

below compares the raw pressure and vapor volume signals obtained when implementing both 

models. 
 

 

Figure 5.6: Vapor volume signals (left) and pressure signals (right) resulting from uniform and Kirchhoff model-coupled 

3mm horn tip boundaries. 

The Kirchhoff model displays drastic improvement in its performance and illustrates relatively 

comparable results with the Uniform model’s output. While it is true that the amplitudes are 

still underpredicted in the Kirchhoff model, its signal frequency almost matches the uniform 

model’s signal frequency. Here, the Kirchhoff model and uniform model output signals 

oscillate at a frequency of 1996.67 Hz and 1663.89 Hz, respectively. This slight phase shift 

suggests that the cavitation produced by the Kirchhoff-based vibration induces early onset 

collapse. This could be due to the fixation of the side edges of the horn tip where minimal 

cavitation is formed. In addition, the shape adopted by the vibrating wall may be agitating the 

center cavity inducing its early collapse. 
 

To further visualize the mismatch between the amplitudes and frequencies, a set of consecutive 

timesteps was selected about the red box highlighted in Figures 5.6. The flowtimes chosen are 

0.00043, 0.00049, 0.000535, 0.000585, 0.000635, and 0.000695 s highlighting instances of 

peak differences and overlap achieved by the two vibration models. Therefore, vector plots 

drawing flow structures and contour plots outlining the generated vapor volume fraction and 

FTLE were generated for the respective flowtimes and presented in Figures 5.7 and 5.8. For 

the uniform model, it is shown that the peak mushroom-shaped cavity growth alongside its 

following collapse has been captured within this 0.265 ms timeframe. Generally, the main 

cavity structure’s shape retains its mushroom shape, as it shrinks symmetrically during the 

early stages of its collapse phase. However, what is interesting is that soon after, the main 

cavity is punctured in its center by an impinging jet inducing the same phenomenon observed 
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in the 3 mm horn tip condition, where two side cavities are created. This instant can be observed 

at t = 0.000695 s. Looking at the corresponding FTLE plots of each timestep, it can be drawn 

out that the location and the entrance angle of the impinging jet remain the same compared to 

the 3 mm horn tip condition. Thus, this could justify the similarity in the collapse structure of 

the cavity. Furthermore, judging by the direction of the vectors and their particle stretching 

drawn by the FTLE, the main player for the formation of this jet in this manner could be the 

vertical motion of the horn tip vertices on both sides. The small vortical structures generated at 

those sides could be the reason behind this flow formation in those respective tip regions. 

However, a primary difference between the 3 mm and the 12 mm horn tip is the contraction of 

the recirculation zone in the region under the horn tip, as it became more localized near the 

cavity structure. This could be due to the large size of the main cavity zone inducing a more 

localized recirculation due to the pressure gradient resulting from it. Additionally, based on the 

vortex tracking method conducted by Rahimi et al. [104], it seems that the Kirchhoff-based 

model underestimates the size of the secondary counter-rotating vortices on the side of the horn 

tip.  
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Figure 5.7: Diagram of a 9.5 x 19 mm region in proximity of the horn (Uniform Model) illustrating the vector and contour 

plots of flow direction and vapor volume fraction on the left and FTLE on the right where (a-e) represent flow times at t = 

0.00043, 0.00049, 0.000535, 0.000585, 0.000635, and 0.000695 s, respectively. 

As for the Kirchhoff model, there are clear differences between the 3 mm and the 12 mm horn 

tip conditions. Firstly, the phase cycle of the cavity structure seems to overlap with the phase 

cycle of the cavity present in the uniform model. In other words, both cavity structures appear 

to have peaked in growth at t = 0.00043 s and are experiencing shrinkage, and eventual 

collapse, during the chosen timeframe. This indicates that the two models’ predictions are 

relatively in-phase. Moreover, the cavity structures generated share the same mushroom-like 

shape as observed in the uniform model. This generation of this structure is confirmed by the 

experimental observations made by Rahimi et al. [104]. However, parallels can still be seen in 

the mid and late sections of the collapse cycle. It still appears that the Kirchhoff model predicts 

a two-step collapse cycle where a complete collapse of the cavity structure occurs at t = 

0.000535 s to 0.000585 s and is later followed by a brief growth and eventually followed by 
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shedding of the main cavity. Judging by the vector and FTLE plots, the impinging jet here does 

not appear to attack at an inclined angle, but instead, is shown to be horizontal along the surface 

of the tip. Perhaps, this could be the justification for the disappearance of the prominent 

collapse phase where two smaller cavities appear on the side. Moreover, this change in jet angle 

is accompanied by the appearance of a small vortical structure at the horn tip vertices as well 

confirming its major association with the impinging jet direction. The large vortex that used to 

appear about the horn axis downstream of the horn tip in the 3 mm case has shrunk. A similar 

observation was made by Rahimi et al. [104] and Tzanakis et al. [68]. Perhaps, its absence 

plays yet another role in the direction of the impinging jet. Moreover, it can be strongly 

suggested that the acoustic field generated in larger tip diameters are relatively insensitive to 

the radial displacement distribution, as reflected by the vector and FTLE profiles. 
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Figure 5.8: Diagram of a 9.5 x 19 mm region in proximity of the horn (Kirchhoff Model) illustrating the vector and contour 

plots of flow direction and vapor volume fraction on the left and FTLE on the right where (a-e) represent flow times at t = 

0.00043, 0.00049, 0. 000535, 0.000585, 0.000635, and 0.000695 s, respectively. 

5.4 Conclusion 

 

In summary, the study concludes that the Kirchhoff-based vibration model leads to significant 

underprediction of cavitation growth and collapse in which it has been associated with low-

pressure peaks and higher cycle frequencies. Moreover, the study delved deeper to find the 

induced differences in flow behavior within the proximity of the tip and the attached cavitation 

by visualizing LCS using FTLE. As it turned out, an impinging jet is formed near the tip with 

both vibration models, however, it is important emphasize that the development direction of 

the jet is rather distinct. The Kirchhoff-based model manipulates the proximal flow in which 

the jet develops diagonally to the tip surface and penetrates the center cavity inducing its 

collapse and subsequent splitting into two smaller cavities near the tip edges. These also end 
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up collapsing upon reaching the following pressure peak. Meanwhile, the uniform vibration 

model shows the jet impinging the entire cavity horizontally forcing the attached structure into 

a complete collapse. It could be argued that the reason behind the different jet formations could 

be related to the position and eccentricity of the Karman vortex formed downstream of the tip. 

With the Kirchhoff model, the vortex is primarily positioned under the horn while the uniform 

model has its vortex appearing on its side. Interestingly, all these differences begin to dissolve 

with the increase of the tip diameter. Perhaps, it is a strong indication that the influence of the 

first mode shape of the horn tip’s vibration gradually loses significance with larger surface 

areas. The finding of this underlying relationship between the vibration model and the diameter 

highlights the significance of the choice of the model when defining the vibration of the horn 

tip, as it strongly manipulates the cavitation collapse mechanisms. Generally, a new window 

for acoustic cavitation controllability may accompany this discovery that may offer new 

approaches to location-specific surface processing. In retrospect, the uniform vibration model 

appears to be more suitable universally in modelling ultrasonic horns of small tip diameters, 

while the Kirchhoff-based vibration model performs better in larger tip diameters, as it captures 

the influence of displacement’s radial distribution on radial flow velocity and pressure 

distribution. 
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 Analyzing the influence of toroidal vortex development on 

acoustic multi-bubble macrostructures under different ultrasonic 

horn tip diameters 

 

6.1 Introduction 

 

In this chapter, deeper scrutiny of the flow dynamics instigated by the irradiation of ultrasonic 

acoustic waves within an aqueous domain is conducted based on the aforementioned 

observations on the toroidal vortex made in Chapter 5. Here, a numerical study was conducted 

on a two-dimensional horn-type reactor domain in aims to explore the different acoustically 

driven flow types induced by varying horn tip diameters of horns oscillating at 20 kHz in an 

aqueous solution. The diameters that were considered in the said exploration were 3, 6, 13, 16, 

and 19 mm. 

 

Notably, with such investigations on different horn geometries and operating conditions, many 

observations have surfaced on the resemblance of the cavity structures formed under the horn, 

namely, streamers, clusters, CBS, and MBS [161-163]. It has been reported that governance of 

the aforementioned cavity structures is strongly influenced by multiple factors, be it working 

fluid properties or horn geometry. It was widely accepted that a higher vaporization pressure, 

for instance, would result in an encouraging fluidic environment that facilitates the formations 

of cavitation. However, Žnidarčič et al. [128] delved further into different liquid properties, 

namely liquid temperature, surface tension, and viscosity. While it has been reported that none 

of the properties had any substantial role in the cavitation formation dynamics, it has been 

established that surface tension and viscosity relatively share a notable effect on the cavity’s 

collapse intensity. In particular, the main cavity collapse demonstrated a potential cushioning 

effect with higher viscosity. Similar observations were made by Tzanakis et al. [68], where 

they added that the damping effect induced by the viscosity led to an increase in the bubble 

oscillation period. However, unlike Žnidarčič et al. [109, 128], significant differences in the 

cavity structure and its respective dynamics were observed. It has been suggested that a primary 

reason behind this is the attenuation of acoustic energy due to high viscosity. The different 

cavity structures witnessed in the investigation were categorized as either conical or spherical. 

In the case of the low surface tension fluid (ethanol), it was noted that no continuous structure 

was formed. 

 

In more recent studies, similar qualitative observations were made on the cavity structure; 

however, these were all found in aqueous media [164, 165]. As a matter of fact, these were the 

qualitative conclusions of studies scrutinizing different horn tip diameters. For instance, 

Moussatov et al. [166] considered three tip diameters of 20, 80 and 120 mm, in which bubble 

clusters were shown to self-arrange into the stable cone-like macrostructure. Upon examining 

the macrostructure under the three tips at a constant acoustic intensity of 𝐼 =  8.2
𝑊

𝑐𝑚2  , it is 

concluded that the increase in the diameter results in a more prominently localized cone-like 

structure under the horn tip. Other studies have found that the said structure can also be attained 

with intermediate horn diameters, typically within the range of 10-12 mm [161, 167, 168]. 

However, any further decrease in the horn diameter transfigures this cavity structure into a 

mushroom-like attached cavity, namely acoustic supercavitation [128, 116]. In an attempt to 

establish an understanding behind the different structures, some studies have initially tried to 

identify the flow field dynamics. Previous studies suggested that this may be due to the 
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direction reversal of the Bjerknes force [169-171] that is induced by the formulated high 

pressure proximal regions near the horn axis. This unfolds into a series of repulsive and 

attractive bubble regions that in turn shape the cone. On a more recent note, Biasiori-Poulanges 

et al. [161] have utilized high-speed X-RAY imaging to precisely visualize the proximal flow 

field and understand its role in the formation of the conical structure. Here, the investigation 

concluded that the conical shape formation is simply due to a multi-stage cavitation 

development sequence in which it begins with the splitting of single bubbles into ‘daughter’ 

bubbles forming clouds that later merge down the horn tip center. Complementing this stage, 

radial pressure at the center then molds the clouds into what is known as CBS. 

 

While the aforementioned studies have successfully been able to justify the development of 

such structures, the sudden geometry-induced transformation from CBS to MBS with the 

decrease of the horn tip diameter has had limited scrutiny in literature. Ma et al. [164] hinted 

at the fragility of CBS in highly turbulent flows induced in smaller diameters, while other 

studies have added, based on their consistent observations of proximal toroidal vortices, that 

their formations within the vicinity of the cavity may play a role in the cavity’s dynamics [104, 

172]. However, the role of the flow manipulations induced by these vortices has not been 

explored and remains unclear. Therefore, the presented study is a numerical exploration of the 

origin of the toroidal vortex and its development in aims to uncover any underlying 

relationships with the cavity’s development and structure. The investigative methodology is a 

computational fluid dynamic (CFD) assessment of cavitation development and its proximal 

flow field that considers five horn tip diameters that are typically categorized in literature as 

small-diameter and large-diameter ultrasonic horns. As such, this is to capture any behavioral 

changes by the proximal vortex upon changing the horn’s diameter. In addition, this study aims 

to uncover a more elaborate understanding of the nonlinear variation in the cavity 

macrostructures’ shape and the proximal toroidal vortex’s locomotion and size. 

 

 

6.2 Ultrasonic Computational Modelling 

 

The presented study adopts a numerical methodology that facilitates two stages of the 

investigation: a structural modal analysis of considered ultrasonic transducers to assess the 

adopted mode shape during a 20 kHz oscillation, and a computational fluid dynamics (CFD) 

analysis to define the proximal flow generated by the chosen myriad of horn diameters. Each 

segment of the methodology describes the geometries considered, and the equations that govern 

the physics of the solid and fluid domains. 

6.2.1 Modal Analysis Setup 

 

6.2.1.1 Establishing ultrasonic transducer domains and defining boundary conditions 

 

As it has been established by the previous literature, the horn diameter appears to play a crucial 

role in defining the cavity structure generated underneath its tip. Initially, this can be taken as 

an indicator of a possible change in the longitudinal vibration mode shape the horn tip 

experiences with an increase in its diameter. However, to scrutinize this and be able to rule out 

such change, two transducer geometries were generated based on dimensional extractions from 

physical transducer models found in published literature [173, 173, 174]. It is of extreme 

importance to replicate the geometries to an exact scale to ensure that the acoustic energy 

transmission throughout the transducer body is replicated as well [175]. Therefore, the two 
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geometries constructed, illustrated and dimensioned in Figure 6.1, were assigned Ti-6Al-4V as 

the material. Table 6.1 tabulates the respective isotropic elastic material properties. 

 

Table 6.1: Ti-6Al-4V material properties describing its isotropic elasticity. 

Material 
Temperature, 

◦C 
Young’s Modulus, Pa Poisson’s Ratio Bulk Modulus, Pa 

Shear Modulus, 

Pa 

Ti-6Al-4V 20 1.07 × 1011 0.323 1.0075 × 1011 4.0438 × 1010 

 

Furthermore, the geometries were discretized using a structured mesh. The modal analysis 

deals with free vibration characteristics, as such, no external loads were applied. The horn 

geometries were left free to oscillate in their unconstrained state. The modal analysis 

considered is in fact a linear dynamics analysis, in which the general equation of motion is 

taken into consideration. This was solved using ANSYS Modal as the finite element solver. 

Moreover, the damping effects have been ignored for simplicity, and thus, they have been 

zeroed out in the equation of motion. Lastly, these reconsiderations of the equation of motion 

result in the definition of a free and undamped system that is expressed in Eq. 6.1 below. 

 

[𝑀]{𝑢̈} + [𝐾]{𝑢} = {0} (6.1) 

Here, 𝑀 is the mass matrix, 𝑢̈ is the vector of acceleration, 𝐾 is the global stiffness matrix, and 

𝑢 is the displacement vector. The equation was solved for its eigenvalues and eigenvectors that 

correspond to the mode shapes of the geometries. These mode shapes were used to assess the 

influence of the horn geometry, specifically the diameter, on the longitudinal vibration mode. 

Figure 6.1: Dimensioned solid domains of the two ultrasonic horns considered (in mm) with (a) a horn tip 

diameter of 3 mm 11, 34 and (b) a horn tip diameter of 20 mm 35. 
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6.2.2 Computational Fluid Dynamics Domain 

 

6.2.2.1 Creation of the Calculation Domain 

 

In the investigation presented in this chapter, the numerical setup previously constructed in 

Chapters 4 and utilized in Chapter 5, is implemented here as well. This generalized domain has 

been further extrapolated in the presented study to consider a range of horn diameters; the 

values of 𝜙ℎ chosen are 3 mm, 6 mm, 13 mm, 16 mm, and 19 mm. The axisymmetric condition 

defined in the CFD solver essentially solves the flow equations for the domain slice then 

implicitly rotates the 2D plane around the axis of symmetry to account for the full volume. 

 

6.2.2.2 Extended Numerical Setup Validation 

 

Given that the study investigates larger tip diameters compared to Chapters 4 and 5, extensions 

in the flow time and number of timesteps may be required to ensure that the numerical setup is 

still able to capture slower cavitation cycle in larger tip diameters. Therefore, the simulation 

was run for double the flow time specified to ensure that all cavitation behaviors are well-

captured within the 3 ms timeframe. The pressure signal was extracted, as shown in Figure 6.2, 

and the near-subharmonic frequency of the cavitation cycle was obtained in aims to compare 

it with the previously obtained 5990 Hz oscillation frequency. From Figures 4.13 and 6.3, it 

seems that the signal and its frequency of oscillation obtained closely resemble the previous 

signal obtained. This ensures that using a longer flow time for all considered horn tip diameters 

will still guarantee capturing the two-phase flow behaviour. 

 

 

 
Figure 6.2: Time evolution of pressure signal obtained from a monitor point positioned next to the 3 mm horn tip running for  

12 ms. 
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Figure 6.3: Frequency response plot of the pressure signal obtained in Fig. 3.5. 

 

 

6.3 Analysis Methodology and Results Discussion 

 

6.3.1 Modal Analysis of Ultrasonic Transducers and Categorizing their Mode Shapes 

 

In the presented modal analysis, two reasonably distinct ultrasonic transducer models were 

selected in order to extract any potentially underlying structural changes to the horn tip 

oscillation at their expected oscillation frequency. It has been assumed that the two transducers 

are comprised of a Titanium alloy (Ti-6Al-4V), as the material is found to be rather common 

in the production of physical ultrasonic transducer models [176-178]. Highlighted in Figure 

6.4 are shared observations made in the two transducers of first mode shape occurring at distinct 

frequencies. While it is easily observed that the two mode shapes exist in both transducer 

models, their general trends attributed to each mode are also the same. Interestingly, the 

longitudinal mode shape (Mode Shape 1) occurs within a tight frequency range around 20 kHz. 

Moreover, the longitudinal mode shape in both transducers is seen to experience very similar, 

if not exact, shape transfiguration, where the horn tip is seen to extend uniformly forward. This 

emphasizes that despite the geometry distinction, the mode shape maintains its behavior with 

both small and large diameters. 
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6.3.2 Analysis of Cavity Structural Behaviour under Different Horn Tip Diameters 

 

Upon establishing the consistent mode shape during the transducer’s longitudinal vibration, the 

horn tip was numerically programmed to oscillate accordingly by introducing Eq. 2.36 in UDF 

form to govern its oscillation throughout the CFD simulations. Multiple diameters have been 

examined in aims to track the potential differences in development of acoustic cavitation. 

Figures 6.5 through 6.9 illustrate the cavity development and its structural formations during a 

single cycle consisting of its growth and collapse stages. 

With the 3 mm horn tip, a clear set of sub-cycles of minor growths and collapses make up the 

single lifecycle of the attached cavity is initially observed. At its first few moments, from 𝑡0 to 

𝑡0 + 6∆𝑇, the attached cavity structure emerges in the form of a thin sheet about the horn tip, 

starting from the center of the tip, which later is seen to transfigure into an inverse mushroom 

upon reaching its growth climax, at 𝑡0 + 16∆𝑇. However, with its cycle’s progression, the 

structure begins to gradually shrink radially and flatten against the horn tip until it bursts from 

its center, splitting it into two small-sized clouds. These clouds take position on the sides of the 

horn tip, where they are lastly seen to be unable to sustain their shape leading to their eventual 

collapse. On a similar note, this observation has also been found in the case of the 6 mm horn 

tip diameter, as shown in Figure 6.6. However, two notable differences lie at the attached center 

of the cavity. The first divergence in the 3 mm trend is apparent during the early onset 

cavitation, where the cavity is seen to gradually take form on the sides of the horn, unlike the 

3 mm horn tip where the cavity began at the center. This can be clearly observed during the 

early stages of growth from 𝑡0 + 4∆𝑇 till 𝑡0 + 22∆𝑇. 

 

 

 

 

 

Figure 6.4: Longitudinal mode shapes and their respective frequencies observed in (a) the transducer geometry with a 3 mm 

tip diameter and (b) the transducer geometry with a 20 mm tip diameter. The red lines highlight the shape and position of 

the transducer edges prior to deformation. 
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Figure 6.5: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of 

acoustic cavitation under a 3 mm horn tip diameter. Surface streamline and vector plots were also highlighted in the contour 

plots to visualize the proximal flow behaviour and direction. 
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Figure 6.6: A series of vapor volume fraction contour plots that demonstrate a 

single cycle of the growth and collapse of acoustic cavitation under a 6 mm horn 

tip diameter. Surface streamline and vector plots were also highlighted in the 

contour plots to visualize the proximal flow behaviour and direction. 
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With the progression of its growth, highlighted at times 𝑡0 + 24∆𝑇 to 𝑡0 + 34∆𝑇, the two 

cavities expand radially towards one another until they merge completely forming one 

continuous MBS cavity. However, this in turn creates a minute condensation region that 

situates a buffer zone between the horn tip and the cavity center. In other words, this kink in 

the cavity center appears to slightly levitate and detach the cavity structure from the horn tip; 

however, this small condensation remains rather static and does not develop any further. 

Nevertheless, this structural deformation eventually alleviates and is backfilled by vapor, as 

shown at time 𝑡0 + 56∆𝑇. From this point onwards, the cavity’s collapse stage commences by 

closely following the collapse mechanism observed in the 3 mm case in Figure 6.5. Essentially, 

the cavity’s collapse is observed as an initial radial shrinkage until the small circular-like cavity 

is pushed against the horn tip, where it is seen to split into two smaller cavities positioned on 

the horn tip sides. Lastly, these cavities eventually collapse marking the end of the cavitation 

lifecycle. Interestingly, it seems that horn tips industrially categorized as ‘small horn tips’ share 

very similar cavitation growth-collapse structural progression. These aforementioned 

observations made on the two horn tip diameters are in full agreement with observations and 

conclusions made in previous studies on small horn tips, where CBS is hardly pronounced 

throughout the lifecycle [147, 179]. However, it has been argued that CBS is rather a common 

cavitation structural formation under horn tips with considerably larger diameters. Thus, Figure 

6.7 demonstrates the cavity structures predicted under a 13 mm horn tip. 

 

The cavitation formation observed under the 13 mm horn tip essentially maintains the same 

point of growth, in which an attached sheet of cavitation is seen to collectively form about the 

tip’s center. However, shortly after, the cavity begins to take shape by centralizing and 

expanding axially from the tip. This can be clearly observed from 𝑡0 + 10∆𝑇 to 𝑡0 + 22∆𝑇. 

Interestingly, the first significant deviation in the previously noted cavitation development 

trend is observed, where the centrally concentrated cavity experiences a wave of temporary 

shrinkage; generally, the center cavity gradually dissipates, as minor nucleation sites are 

initialized along the tip’s surface. It is important to note that in the following growth cycle 

instances, from 𝑡0 + 42∆𝑇 to 𝑡0 + 54∆𝑇, highlights a struggle in the regrowth of the center 

cavity. More specifically, the cavity does not reattain the equivalent saturation of the center 

bubble region previously observed at early stages of the lifecycle. Instead, cavitation clouds 

established in proximity to each attached cavity site were dragged towards the center region 

and molded into CBS. This, in turn, marks the second deviation in the aforementioned small 

horn cavitation trends. This cavity development sequence aligns with conclusions made by 

previous studies on large horns [165, 180]. 
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Figure 6.7: A series of vapor volume fraction contour plots that 

demonstrate a single cycle of the growth and collapse of 

acoustic cavitation under a 13 mm horn tip diameter. Surface 

streamline and vector plots were also highlighted in the contour 

plots to visualize the proximal flow behavior and direction. 
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Figure 6.8: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of acoustic cavitation 

under a 16 mm horn tip diameter. Surface streamline and vector plots were also highlighted in the contour plots to visualize the proximal 

flow behavior and direction. 
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Parallel observations and recurring nucleation themes are examined with larger horn tip 

diameters. Upon observing the cavitation dynamics under the 16 mm horn tip, it can be safely 

said that the cavitation dynamics maintain the same relative growth mechanism in terms of 

cavitation centralization and CBS adaptation. However, the collapse mechanism under the 

governance of such large horn tip is instead dissimilar. The contours illustrated in Figure 6.8 

stretching from 𝑡0 + 160∆𝑇 to 𝑡0 + 196∆𝑇 demonstrate an alternate initialization and 

proceeding of the collapse cycle. Initially, the conical cavity structure is seen to stretch axially 

leading to the narrowing of its body’s midsection. This is seen to continue until the attached 

section is thinned out completely and the stretching cavity head is ‘pinched off’. Furthermore, 

the detached cavity experiences a post-detachment deformity from its top side as it is launched 

towards the downstream vortex, eventually leading to its collapse. Notably, based on 

qualitative inspection, this collapse can be analogous to the collapse of a near-wall cavity. 

Knowing that the vortex pressure distribution is highest at its ends, it could perhaps be assumed 

that vortex region acts as a wall. Thus, the detached cavity is seen to be impinged by a jet 

through its center. Meanwhile, shortly after this instance, the attached sheet cavity follows with 

its own collapse. 

 

With the last case of a 19 mm horn tip diameter, Figure 6.9 presents that neither the cavitation 

growth nor collapse mechanisms witnessed any significant divergence from what has been 

observed in the 16 mm case. However, a minute difference has been noted to exist in the 

pinched cavity; the cavity head is seen to have a plunged top, rather than the parabolic top 

demonstrated in the 16 mm case. As it has been observed, these transformations of the cavity 

structure have had an eventual significant impact on the growth and collapse mechanism. 

Typically, this could be a solid indicator to an underlying change in the cavitation-induced 

extremities in the proximal flow properties, i.e. transmission of the pressure shockwave upon 

collapse. It is understood that collapse intensity is crucial for many process-intensification 

ultrasonic methodologies [181], and thus to better understand the significance of each cavity 

structure, a proper quantification of the frequency of cavity collapse and the resultant pressure 

peaks that follow becomes important to assess the extent of their respective cavitation collapse 

intensities. 
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Figure 6.9: A series of vapor volume fraction contour plots that demonstrate a single cycle of the growth and collapse of acoustic cavitation under a 16 mm horn tip diameter. Surface streamline 

and vector plots were also highlighted in the contour plots to visualize the proximal flow behavior and direction. 
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6.3.3 Quantifying Cavitation-induced Proximal Flow Conditions 

 

The quantification of these flow attributes has been numerically performed by tracing pressure 

variations at the monitor point highlighted in Figure 6.2 and by quantifying the vapor volume 

generated under each horn tip. The vapor volume was calculated by cycling through the meshed 

domain and summing the products of the vapor volume fraction and the respective mesh cell 

volume. Figure 6.10 below illustrates the constructed pressure and volume signals obtained 

from each horn tip geometry. 

 

Figure 6.10: Comparative plots of pressure signals (top) and vapor volume signals (bottom) for different horn tip diameters. 

Initial observations of the two graphs show that the pressure and volume peaks incrementally 

increase with the increase of the horn tip diameter, while keeping the horn oscillation 

amplitude, oscillation frequency, and aqueous environment constant. However, this is no new 

behavior and rather much expected; the increase in the horn tip diameter facilitates further 

cavitation growth by increasing the number of nucleation sites, which can be seen by the large 

vapor volume peaks.  
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Moreover, with the expansion of the cavitation region, its proceeding collapse would then 

naturally be of higher intensity, thus, this is reflected as larger pressure peaks. With the 

consideration of the previously observed cavity structures, this increase in cavitation collapse 

intensity can also be justified by the collapse mechanism. As it seems, MBS tends to produce 

a less intense pressure shockwave compared to cases with CBS. Recalling the cavity structures 

present during the collapse sequences illustrated in Figures 6.5 – 6.9, it has been observed that 

the collapse of MBS induces a sub-cavity positioned at the sides of the horn tip. It could be 

suggested that the pressure wave induced by the collapse of the center cavity is dampened by 

those temporary side cavities. Perhaps, this potentially can be analogous to the shielding effect 

discussed in [182, 183]. This is because during the cases of CBS, these side cavities no longer 

govern the collapse of the center cavity, as the collapse mechanism detaches the center cavity 

from the horn surface. Therefore, this facilitates the radial traveling of the pressure shockwave 

without experiencing any of the said damping effects. 

Figure 6.11: FFT plots of the vapor volume signals obtained from (a) 3 mm (b) 6 mm (c) 13 mm (d) 16 mm and (e) 19 mm 

horn tips. 
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Evidently, another key difference illustrated between the different diameters is the gradual 

change of phase and frequency induced by the increase in diameter, as shown in Figure 6.11. 

It appears that the structural integrity of MBS is rather unstable and thus, it is seen that the 

growth-collapse cycle occurs quite frequently. Meanwhile, the CBS that appears under the 13 

mm, 16 mm, and 19 mm horn tips demonstrates a longer lifecycle, where the structure grows 

gradually but rather steadily. Previous studies have argued that small horns tend to experience 

highly aggressive and turbulent flows proximal to the horn tip [152, 184]. Therefore, it would 

be reasonable to suggest that the cavity structures found under small horns are frequently 

broken down due to high turbulence. 

 

6.3.4 Analysis of the Toroidal Vortex Lifecycle 

 

To garner further insight on the source of this turbulence and its flow attributes, initial 

qualitative observations must be made to develop a preliminary idea of the type of flow 

proximal to the horn tip. Referring back to Figures 6.5 – 6.9, a recurring theme can be deduced 

and that there always exists a strong presence of some toroidal vortex within the vicinity of the 

horn tips. Interestingly, this vortex tends to morph and experience a series of transfigurations 

in its eccentricity and size depending on the horn tip size. After examining the progression of 

the toroidal vortex in each of the horn tip cases, two general vortex development trends were 

extracted and summarized in Figure 6.12 below. 

 

Figure 6.12: A schematic diagram of the fluid subdomain within the vicinity of the horn tip showing the progression of the 

toroidal vortex in cases of (a) small horn tip diameters, namely 3, 6 mm and 13 mm and (b) large horn tip diameters, such as 

16 and 19 mm. The red arrow in both diagrams highlights the trajectory of the vortex. 

 

In the case of small horn tip diameters, it has been observed that the toroidal vortex maintains 

a consistent behavior. Generally, the toroidal vortex starts as an attached minute recirculation 

zone on the horn wall due to the ramming oscillatory motion of the horn tip in the aqueous 

medium. This recirculation then begins to gradually expand in size and march downstream 

towards the horn tip axis of symmetry. The vortex finally settles at the horn tip axis and reaches 

its maximum size threshold, before beginning abruptly dissipating at the end of the cavitation 

collapse phase. On the other hand, the vortex found under larger horn tips behaves quite 

differently. Essentially, the vortex initialization still sources from the recirculation zone 

induced by the horn tip motion; however, with the expansion of the vortex, it is seen to stay in 

place instead. This recirculation then generates a short-lived vortex rotating counterclockwise. 

With its gradual dissipation, a new vortex emerges closer to the horn tip axes, where it is seen 
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to grow. Though, an important feature to note is that the initial side recirculation remains 

present during the growth of the secondary vortex near the horn axis. 

Upon establishing the general fact that the toroidal vortex has a dynamic behavior of expanding 

and relocating, the vortex center and the vortex size were tracked against dimensionless time, 

as demonstrated in the MATLAB code in Appendix E, to draw signals that highlight the vortex 

trajectory, vortex dimensionless length, and frequency of motion. These signals have been 

compiled and presented in Figures 6.13 and 6.14 below. The normalized vortex diameter has 

been evaluated by taking the recirculation length (𝜙𝑣), measured by the distance between two 

inflection points of high radial velocity along the axial direction, and normalizing it against the 

respective horn tip diameter (𝜙ℎ) of the evaluated case. 

 
Figure 6.13: Plots of transient signals of vortex center cylindrical coordinates and normalized vortex diameter drawn for 

cases (a) 3 mm horn tip and (b) 6 mm horn tip. The frequencies of each of the complex signals were extracted through 

implementations of FFT. 

 

At first glance, a few obvious trends can be immediately spotted, for instance, both the vortex 

movement, in the radial and axial direction, and its expansion-contraction cycle decrease in 

frequency with increasing horn diameters. Furthermore, an increasingly apparent jitter appears 

in the motion and development of the vortex with the increase in size of the horn tip. These 

observations are qualitatively represented by the surface streamlines in Figures 6.5 – 6.9, where 

the vortices formed in proximity to small horn tips appear rather steady in their growth. In other 

words, the trajectory of their development does not involve any form of sub-expansionary-

contractionary cycles, instead, the vortex continues to expand in size and move downstream in 

position until it settles at its final location before dissipating and marking the end of its 

lifecycle. Interestingly, vortices of small horn tips tend to frequently march in the axial 

direction downstream of the horn relative to the radial direction. With the 3 mm horn tip, the 

vortex center moves in the axial direction at a frequency of 5.67 kHz, compared to the 4.67 

kHz locomotion frequency in the radial direction. Similarly, the vortices under the 6 mm horn 
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tip are shown to march axially at a frequency of 2.33 kHz compared to the 2.00 kHz radially. 

However, the reversal of this trend occurs upon enlarging the horn tips. This transition is 

marked by the 13 mm horn tip, where surprisingly, the vortex moves in both directions at the 

same exact frequency of 1.33 kHz. However, moving forward, the 16 mm and the 19 mm horn 

tips demonstrate a bias towards the radial direction where their oscillation maintained a 

frequency of 1.67 kHz and 2.33 kHz, respectively. Interestingly, the effect of this directional 

preference is seen to govern the growth of the vortex.  

It is rather intriguing to observe that the vortices under the small horn tips are significantly 

larger than those formed under large horn tips. Under the 3 mm and 6 mm tips, the vortices can 

reach a size ranging from 1.0 to 1.5 times the tip diameter. However, with larger tips, the 

vortices maximum lengths become limited to a range between 0.3 to 0.6 times their respective 

tip diameters. Recalling that these values of vortex diameters represent the vortices’ axial 

expansion, it is then understood that the decreasing trend observed can indicate a change in the 

vortices’ eccentricity. As a matter of fact, the streamlines in Figures 6.5 – 6.9 do indicate 

changing vortex morphology. It is rather intriguing to observe that the vortices respective to 

the small horn tips appear rather symmetrical and do not present any significant asymmetry or 

eccentricity during their lifecycle. Meanwhile, the vortices present under larger horn tips 

demonstrate more volatility in shapeshifting. Initially, these vortices form symmetrically and 

share a circular shape, however, with their progression, the vortices are seen to fidget and 

stretch radially in parallel to the horn tip surface, as they relocate underneath the tip surface. 

Finally, the vortex is then observed to stretch in the axial direction [172, 185]. A potential 

explanation of this categorized vortex behaviour is its strong attribution to the presence and 

sustenance of the negative pressure gradient under the horn tip. With larger horn tips, the 

attached cavity appears flatter and appears to sustain the instantaneous negative pressure 

gradient for longer periods of time. The flow motion dynamic composed of a ‘push’ by the 

ultrasonic horn and a ‘pull’ by the negative pressure gradient field, sustains the presence of the 

vortex and positions it at the horn axis, where the pressure nodes are most prominent. 
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6.3.5 Uncovering the Influence of the Toroidal Vortex Morphology on Cavitation Growth 

 

Based on the previous observations made in Section 3.2, the difference between MBS and CBS 

is the diameter of the cavity’s base and the axial length of the cavity’s downstream reach. 

Essentially, MBS is described as having a small length-to-diameter ratio while CBS is vice 

versa. Therefore, the maximum growth of the cavities observed can be generalized by the 

drawing presented in Figure 6.15. 

Figure 6.14: Plots of transient signals of vortex center cylindrical coordinates and normalized vortex diameter 

drawn for cases (a) 13 mm horn tip (b) 16 mm horn tip and (c) 19 mm horn tip. The frequencies of each of the 

complex signals were extracted through implementations of FFT. 
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Figure 6.15: A generalized schematic of the common bubble macrostructure observed under the horn tips illustrating key 

geometrical features, namely the axial length of reach, l, and diameter of attached cavity’s base, 𝜙𝑏. 

 

Thus, in an attempt to align the trends observed by the cavitation and vortex structures under 

small and large horn tips, the maximum vortex and cavitation sizes have been extracted for 

each horn tip geometry to assess the existence of an underlying trend between the vortex and 

the cavitation sizes. This was performed by extracting a series of vortex diameter and cavitation 

volume maxima under each horn tip and plotting the trends, as shown in Figure 6.16. 

 

 
Figure 6.16: Bar graphs and trendlines highlighting the change in the maximum normalized vortex diameter and maximum 

vapor volume for each respective horn tip size. 
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From what it seems, the vortex diameter maintains an inversely proportional relationship with 

the vapor volume produced under the horn tip. To reiterate previously mentioned conclusions, 

the increase of the horn tip diameter induces a gradual, linear-like decrease in the vortex size. 

Moreover, this increase in horn tip size leads to an increased vapor-filled volume under the 

horn tip. In reference to the aforementioned bubble structures, namely MBS and CBS, in 

Section 6.1, it can be categorically said that the large symmetrical vortex structures mold the 

cavity structure into this mushroom-like bubble structure. Perhaps, the equidistant extension of 

the vortex structure in the radial and axial directions exerts significant axial pressure on the 

bubble structure, limiting its growth in the axial direction and depressing it against the horn tip 

surface. However, the bubble structure takes form by expanding radially instead. In retrospect 

to Section 6.1, these observations of cavitation structure transitions were observed in prior 

works, where such transitions were initialized by the medium content and its temperature under 

the same horn tip diameter [173]. With the presented study, the underlying role of the horn tip 

diameter in assisting this transition is uncovered upon increasing the diameter while keeping 

remaining control variables constant. This strongly indicates that the diameter plays a role in 

the acoustic energy distribution about the radiating surface area, which ultimately manipulates 

the pressure distribution and flow structures in proximity to the horn. 

When moving from 3 mm to 13 mm, the trend begins to noticeably differ. In Figure 6.16, it is 

highlighted that the vapor structure increases in volume upon a drastic drop in the vortex size. 

This is also reflected in Figure 6.7, in which the vortex seems to examine its first dynamic in 

eccentricity. The vortex initially appears symmetrical when forming itself on the side, however, 

it becomes progressively eccentric in the radial direction as it progresses in front of the horn 

tip. During that stage, the cavitation structure appears to struggle to grow outward and remains 

flattened against the tip surface. However, the vortex changes the direction of its eccentricity 

shifting it from eccentrically radial to axial. Upon that occurrence, the pressure exerted on the 

cavity structure is gradually released, and the cavity center is allowed to grow axially. 

Interestingly, this growth formation appears to take a cone-shape, as discussed earlier. This 

may be due to the radial pressure exerted on the cavity structure molding it the bubble structure 

into a cone. In similar fashion, the same vortex-cavitation structural dynamic is observed in the 

16 mm and the 19 mm horn tips. This is also reflected in the trendlines in Figure 6.16, in which 

vapor volume proceeds to increase, while vortex size continues to decrease. However, away 

from qualitative deduction, Figure 6.17 quantifies the dimensions of the cavity structures 

indicated in Figure 6.15, at their maximum instances, observed under each horn tip and tracks 

the change in dimensions with respect to the size of the vortex. 
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Figure 6.17: Diagrams of fitted lines along datapoints plotted for (a) normalized structure length and (b) normalized 

structural base diameter against the normalized vortex diameter. Each point represents the dimension of the maximum 

cavity structure obtained under its respective horn tip size. The normalization was performed using varying 𝜙ℎ. The points 

represent a decreasing horn tip from left to right. 

Interestingly, it appears that the vortex structure affects the cavity structure very distinctly. The 

influence of the vortex size on the base diameter and the length of the bubble structure is rather 

different. Looking at the structure length, based on the fittings of the datapoints, it seems that 

the increase in the vortex size, with respect to the respective horn size, has a parabolic effect 

on the cavity’s length. Furthermore, the normalized structure length seems to be rather 

equivalent approximately equating to 𝐿𝐶 𝜙ℎ⁄ = 0.53 at 𝜙𝑉 𝜙ℎ⁄ = {
0.22, 𝜙ℎ = 19 𝑚𝑚
1.43, 𝜙ℎ = 3 𝑚𝑚

. 

However, based on the observations made in the previous sections, this increase in in the length 

when 𝜙𝑉 𝜙ℎ⁄ = 0.22 can be interpreted as it being due to the decrease in the vortex’s 

eccentricity in the axial direction and expanding in the radial direction instead. This coincides 

with the observations made for the case of 𝜙𝑉 𝜙ℎ⁄ = 1.43, thus, highlighting the role of the 

vortices’ eccentricity in influencing the cavity’s axial length. Moving forward, the decrease in 

the vortex size seems to lead to a temporary drop in the vortex length, before it rises again. 

However, looking at the influence of the vortex diameter on the base diameter of the attached 

cavity, a distinctly different trend is observed. It seems that the increase in the vortex size 

induces a general growth in the cavity base diameter. Similar to the previous analysis, the radial 

eccentricity here seems to play its role in controlling the base diameter, as well. Interestingly, 

the parabolic trend previously observed does not carry forward when examining the base 

diameter, despite similar eccentricities for the small and large vortices. However, upon 

factoring in the horn tip diameter, things become much clearer. In supplement to the qualitative 

observations made, the vortices present at large tip diameters are relatively smaller, and thus 

their radial eccentricity is considered local to the center of the horn tip. As such, the radial 

pressure applied by the vortex is seen to strongly contain the cavity structure within the horn 

tip center. On the other hand, smaller horn tips, i.e. 3 mm and 6 mm, are seen to experience 

relatively larger vortices, in which their radial eccentric structure expands beyond the horn tip, 

approximately 1.0 to 1.5 times the horn tip size for the 6 mm and 3 mm horn tips, respectively. 

Therefore, the radial pressure is no longer localized and is seen to spread the cavity against the 

entire horn tip surface. To examine the overall effect of the vortex on the cavity structure, Table 

6.2 summarizes the vortex and cavity structure dimensions and evaluates the resultant aspect 

ratio (AR) of the cavity structure found under each horn tip calculated as follows. This 

highlights that MBS is essentially a lumped cone-like structure with a small AR. 
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𝐴𝑅 =  
𝐿𝑐
𝜙𝐵
⁄  (6.2) 

The insight provided by this term is the decreasing trend increase in symmetricity of the cavity 

structure with the increase of the horn tip diameter. 

Table 6.2: Summary of the vortex and cavity structural dimensions with respect to the horn tip diameter. 

𝜙ℎ , 𝑚𝑚 𝜙𝑉
𝜙ℎ
⁄  

𝜙𝐵
𝜙ℎ
⁄  

𝐿𝑐
𝜙ℎ
⁄  𝜙𝑉, mm 𝜙𝐵, mm 𝐿𝐶 , mm 𝐴𝑅 

3 1.44 0.82 0.52 4.31 2.50 1.56 0.62 

6 1.03 0.87 0.37 6.20 5.20 2.20 0.42 

13 0.58 0.64 0.37 7.49 8.30 4.80 0.58 

16 0.43 0.55 0.46 6.95 8.90 7.33 0.82 

19 0.26 0.58 0.53 5.03 11.00 10.00 0.91 

 

6.3.6 Examining the Governance of the Toroidal Vortex on Cavitation Collapse 

 

It has been established that the vortex structure has a significant potential role in governing the 

growth of the cavity structure under the horn tip in ways that set specific limits in its growth 

direction and extension. However, the role of the vortex in the cavity’s collapse remains 

ambiguous. Based on the shared conclusions of many previous studies, the collapse of the 

cavitation structure generated under the horn tip is typically initialized by a dent induced by 

the formation of an impinging jet. However, the source and formation of this jet is yet unknown. 

It can be speculated that due to the nature of the vortex and its consistent proximal position 

near the horn tip surface, the vortex may play a role in redirecting flow. Therefore, a set of 

vector plots to track the flow field is shown in Figure 6.18. 

Figure 6.18 illustrates a couple of frames for each horn tip size, where the frames in the left 

column represent the instance at which cavitation reaches a maximum in the growth-collapse 

cycle. Meanwhile, the right column shows a set of frames that shows the instance at which the 

collapse cycle first commences. The focus here is to highlight the vortex structure in each of 

the cycle scenarios under each horn tip. At maximum growth, the vortices appear to contour 

around the attached cavity creating a dent into the vortex structure. In other words, the flow 

directed by the vortex curves around the borders of the cavity. This observation is found to be 

consistent in all cavity formations found under every horn tip. However, during the initiation 

of the cavity collapse phase, the vortex is simultaneously seen to redirect flow through the 

vapor zone and impinging the cavity structure. It is crucial to note that the cavitation’s structural 

scattering in larger horn tip groups, such as 13 mm and above, may be due to the designated 

displacement shape of the horn tip. Recalling that the horn tip motion was defined as a 

uniformly displacing sinusoidal motion for all cases, this eliminates any potentially significant 

effects from the neglected flexural motion on the acoustic energy distribution. In turn, its 

influence on the radial behaviour of the cavitation structure is not captured. Additionally, 

judging from the velocity contour plots, the consistent congregation of these counter-rotating 
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vortices about the horn axis appears to be due to the axial acoustic streaming flow (discussed 

further in Section 7) and its resultant radial pressure gradient driving the flow inward. This is 

facilitated by the axisymmetric geometry of the horn tip, as any off-axis vortex would be 

unstable and decay, while the central vortex pair is self-sustained by the streaming field. 
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Figure 6.18: Vector and streamline plots at instances of maximum cavity growth (left column) and cavity collapse 

(right column) for each of (a) 3 mm (b) 6 mm (c) 13 mm (d) 16 mm (e) and 19 mm. 
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This divergence and impingement flow behavior of the liquid phase can perhaps be justified 

by a potential compressibility effect of the vapor phase. However, in attempts to justify this 

flow behavior, an analogous method taken from coaxial flow analyses has been adopted here. 

More specifically, the momentum ratio (MR) has been calculated to evaluate the vortex-

directed flow’s ability to impinge the cavity structure. MR here is defined as [186]: 

𝑀𝑅 = 
𝜌𝑣𝑎𝑝𝑜𝑟𝑈𝑎,𝑣𝑎𝑝𝑜𝑟

2

𝜌𝑙𝑖𝑞𝑢𝑖𝑑𝑈𝑎,𝑙𝑖𝑞𝑢𝑖𝑑
2 (6.3) 

Where 𝜌𝑣𝑎𝑝𝑜𝑟 and 𝜌𝑙𝑖𝑞𝑢𝑖𝑑 are the water vapor and water liquid phase densities, respectively. 

𝑈𝑎,𝑣𝑎𝑝𝑜𝑟 and 𝑈𝑎,𝑙𝑖𝑞𝑢𝑖𝑑 here are the axial velocities for the vapor and liquid phase, respectively. 

The extraction of these velocity values was performed by identifying the first point of contact 

between the two phases, namely the liquid and vapor, and extracting the axial component of 

velocity for each phase. With these values, MR is then calculated and plotted against horn tip 

diameter to observe the trendlines in Figure 6.19. The trendlines observed for both the 

diverging and impinging jet instances demonstrate similar trends; however, each with a 

different meaning. The diverging line refers to the scenario in which the vortex is seen to curve 

or ‘diverge’ around the cavity structure, while the impinging line refers to the scenario in which 

the vortex flow penetrates the cavity structure. The decreasing diverging trendline, with the 

increase of the horn tip diameter, indicates that the cavity structure’s ability in diverting the 

vortex-directed jet drops. Relatively, the decreasing trend of the impinging line dictates that 

the vortex-directed jet increases in strength. 

As such, the momentum ratio highlights a possible explanation of the role of the vortex in 

redirecting flow into the cavity structure, in which it initializes the collapse phase of the cavity. 

It is crucial to note that the vortex expansion-contraction frequencies highlighted in Figures 

6.13 and 6.14 almost always tend to fall close within the subharmonic frequency range of the 

cavitation pressure and volume signals provided in Figure 6.10. This could in fact be a solid 

indicator for the strong underlying correlation the vortex development has with the cavitation 

structural development. However, while it is typically known that correlation does not 

automatically mean causation, however, the vortex has been seen to hold a share in governing 

the collapse mechanism of the acoustic cavity. 

 

 

Figure 6.19: Momentum ratio trendlines for cases of diverging and impinging water liquid jet flows. 
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6.4 Conclusion 

 

The present study has demonstrated a thorough numerical investigation that scrutinized the role 

of the typically observed toroidal vortex in governing the cavitation structure produced under 

the ultrasonic horn tip. Multiple horn tip diameters, categorically labelled as small and large 

horn tips, have been explored to identify the role and behaviour of the vortex in molding the 

cavity. This was inspired by the recurring observations made in previous studies where small 

horn tips tend to establish a mushroom-like bubble structure while larger horn tips facilitate the 

growth of a cone-like bubble structure. Thus, it was of great interest to observe whether the 

toroidal vortex has any involvement in this phenomenon. 

 

This chapter delved into the origin of the toroidal vortex by conducting a modal analysis of the 

horn tip and identifying the mode shape at the typical vibration frequency of 20 kHz. Moreover, 

the parametric analysis conducted has identified the general vortex structural progression 

trends under small and large horn tips. It has been observed that the vortex tends to initialize at 

the side of the horn as a recirculation zone induced by the horn tip vibration, where it later 

enlarges and marches around the horn tip and toward the horn tip axis. The primary differences 

in the vortex behaviour in small and large horn tips fell within the vortex size and eccentricity. 

Under small horn tips, the toroidal vortex tends to be symmetrical and significantly large with 

respect to the horn tip size. Meanwhile, large horn tips witness toroidal vortices that undergo 

two stages of eccentricity changes, starting with eccentricity in the radial direction followed by 

eccentricity in the axial direction. 

 

It has been determined that these structural behaviours govern the cavity structure's shape, 

growth, and collapse. The MBS adopted by cavities under small horn tips is partially due to the 

vortex's occupation of the axial space downstream of the cavity. Thus, the cavity's axial 

expansion is limited, and instead, the cavity is seen to extend radially covering the horn tip 

surface. Meanwhile, CBS observed under large horn tips is plausibly molded by the eccentric 

vortex present within its vicinity. Based on the orientation of the vortex eccentricity, the cavity 

structural growth is limited accordingly. Upon having the vortex take up a radially eccentric 

stance, the cavity structure is seen strongly depressed against the horn tip surface limited from 

growing outwards. However, with the gradual axial shift in vortex position and eccentricity, 

the cavity clouds are pushed and pinched toward the horn axis forming the commonly 

witnessed cone-like structure. 

 

Moreover, the collapse of the cavity structure, both MBS and CBS, is shown to be governed 

by the impinging jet directed by the proximal toroidal vortex. An attempt to justify the instance 

of impingement was conducted by evaluating the momentum ratio between the vapor and water 

liquid momentum. Once the vapor structure is seen to lose momentum and the vortex gaining 

momentum, the impingement becomes successful agitating the cavity structure and initializing 

its collapse. 
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 Time-averaged Early Stagnation Point Formations during 

Transient Acoustic Cavitation 
 

7.1 Introduction 

 

The aforementioned CFD results have highlighted that the sonoreactor geometry plays a major 

role in inhibiting or enhancing sonochemical reactions, which is essentially in line with a 

multitude of pervious observations [187-189]. Thus, in the previous CFD studies, the 

underlying influence of the horn tip surface area on the inertial bubble self-organizing capacity 

during the transient state of the reactor was scrutinized [190]. Generally, the role of the 

proximal toroidal vortex, a product of a developing acoustic streaming, on the inertial 

cavitation development was hypothesized. As observed, one of the key observations made was 

the dimensional variation of the cluster’s shape; the aspect ratio (AR) approaches unity with 

larger diameters, as the dimensionless vortex length shortens, with the increase of the horn tip 

diameter (D). While this is rather an eye-catching trend, it is crucial to note that these 

instantaneous readings have been recorded at transient cavitation growth amplitudes and may 

not precisely reflect the reality of the trend. 

 

Therefore, as part of a deeper scrutiny of the phenomenon, we have attempted time-averaging 

the flow. To our surprise, however, we found that the extent at which the stream-linked vortex 

produced under all reactor cases reached their respective stagnation plane at a distance of 2D 

away from the horn tip. We have therefore, in addition to reporting our own results, attempted 

what we hope to be a numerical justification of the observed phenomenon through a 

mathematical formulation based on the Stuart streaming conservation of momentum and its 

respective definition of the acoustic force (𝐹𝑎⃗⃗ ⃗⃗ ). What follows is a comparison between a 

parametric one-dimensional iterative calculation and the two-dimensional computational fluid 

dynamics (CFD) simulation conducted in our aforementioned work. We are keen to 

hypothesize that there exists a two-way coupling between the time-averaged bubble cluster 

shape and the said distance of stagnation. More specifically, the one-dimensional model will 

facilitate the unravelling of the underlying role of effective cavitation-based attenuation on the 

acoustic wave propagation that may justify the halting of axial flow and the development of 

the stagnation plane. This investigation would, in turn, provide further insight on the flow 

mechanism and transportation of inertial cavity bubbles, which are commonly known to play 

a vital role in facilitating ultrasonic-assisted process intensification [191-193]. 

 

7.2 Streaming Modelling and Flow Dynamics 

 

The inherent nonlinear behaviour a fluid adopts, upon the imposition of an ultrasonic field, has 

been enriched with decades of research. This scrutiny of the underlying two-way coupling 

between acoustics and hydrodynamics has led to the definition of a well-developed area of 

acoustofluidics known as acoustic streaming. Essentially, the term refers to the steady Stokes 

drift component upon decomposing the fluid’s reaction to some periodic stimulation. In simple 

terms, it is the establishment of a steady-state vortical jet, or ’stream’, accompanying the 

ultrasonic wave propagation to some point of stagnation [194]. With the extensive scrutiny 

acoustic streaming underwent, many authors have made key contributions to stitch up a string 

of governing equations that, in turn, provides a complete general solution of the flow problem. 

Rayleigh [195], for instance, has made an attempt on this multi-physics flow problem by 

resolving the second-order average velocity produced by the proximal behaviour of the fluid 
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near a plate. Adhering to that, both Nyborg [196] and Westervelt [197] highlighted a multitude 

of cases where Rayleigh’s base interpretation of streaming holds true. Essentially, it has been 

highlighted that this type of streaming is typically observed in standing wave systems with 

wavelength-scale channels (L/𝜆 ≈ 1) [198]. However, the nature of the said Rayleigh-Nyborg-

Westervelt (RNW) streaming theory is its negligence of fluid inertia effects and thus making 

this theory exclusively applicable to slow flows, otherwise known as ’creeping motion’ [199-

201]. It is known that this kind of streaming is only observed in reactors with significantly low 

acoustic power sources falling within micro-watts [202]. In aims to capture the streaming’s 

large Reynolds asymptotic behaviour, Lighthill [203] established the Reynolds stress approach 

by linking the flow turbulence with acoustic perturbations defining what is known now as 

’Stuart streaming’. 

 

Practically speaking, Stuart streaming is more commonly found in industrial applications of 

sonochemical reactors, as such systems operate at relatively high acoustic power. The nature 

of this streaming is justified as a steady flow that is induced by the attenuation of transverse 

acoustic waves in the present fluid domain [202, 204]. While streaming is a ubiquitous 

acoustofluidic phenomenon, the nature of the fluid can influence the strength of the presence 

of acoustic streaming. Primarily, a strong damping effect of acoustic streaming was clearly 

observed in inhomogeneous fluids due the presence of a density gradient caused by a solute 

concentration field [194, 205]. Such damping can also occur in homogeneous fluids, however, 

it would require specifically shaped confinements, or channels, for this to occur [206]. 

Nevertheless, the acoustic attenuation that drives this streaming sources from all composites of 

the fluid domain; it can be the compound absorption property of a multi-phase fluid domain, 

for instance. More specifically, the bubbly phase generated as a byproduct of the ultrasonic 

source’s periodic stimulation has been shown to be a primary contributor to the acoustic 

attenuation.  

 

Given that these resonating bubbles heavily influence both density and compressibility of the 

domain, the viscous losses are deemed negligible. Therefore, this implied variation in the speed 

of sound then induces the reflection, absorption, and scattering of the acoustic energy away 

from the initial sound beam directed from the ultrasonic source [207]. Surely, the present 

quantity of resonating bubbles within the vicinity of the sound beam is a decisive factor on the 

degree of its attenuation; however, the question that arises is, what are the factors that then 

influence the concentration of bubbles about an ultrasonic transducer? Well, the concentrations 

of bubble cluster formation positively follow an increasing trend in acoustic power. 

Interestingly, this is based on an established sonochemical fact agreed upon by many, as it has 

been observed that sonochemiluminiscence (SCL) decreases with the increase in input power 

[188, 208, 209]. This tends to indicate that there exists a decrease in sonochemical active region 

volumes [171]. It has been noted that the bubble cluster formations tend to adopt specific shapes 

at instantaneous times, such as MBS, volcano-like bubble structures (VBS), and more 

commonly CBS [161]. Biasiori-Poulanges et al. [161], in their investigation, have scrutinized 

the transient cavity generated under a 12 mm horn-type reactor in aims to visualize and identify 

the mechanism responsible for the commonly observed CBS.  

 

It has been previously understood that there exists an interaction between neighbouring bubbles 

where one applies a force, known as the Bjerknes force, on another. Considering that two 

neighbouring bubbles exist in a strong acoustic field, it can be said that the pressure gradient 

field is the source of the Bjerknes forces acting from the first bubble on the second bubble. 

This force can be quantified as 𝐹1,2 = −𝑉2∇𝑃. It has been deduced that primary and secondary 

Bjerknes forces play a role the self-organizing ’streamers’ and ’acoustic Lichtenberg figures’ 
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[166, 170] at anti-nodal regions [169, 210], and thus it has been analogized to the bubble 

behaviour during transient cavitation. Conclusions on its step mechanism were that (i) existing 

single bubbles oscillate at amplitudes overcoming their interface repelling force, (ii) single 

bubbles then deform and merge with one another to form a cloud, (iii) and lastly the cloud is 

molded into the cone shape due to the radial pressure distribution along the horn tip. 

 

7.3 One-dimensional Mathematical Formulation 

 

This section focuses on translating the fluid problem tackled in Chapter 6 to a one-dimensional 

problem by considering the proximal flow induced by the horn vibration, as shown in Figure 

7.1. The developing flow, attributed to the transient cavitation state, was observed to 

consistently flow towards some stagnation point, z = 0, positioned at l = 2D and proceed to 

outwardly flow in the radial direction with axial symmetry to form the proximal toroidal 

vortices. However, we reiterate that this observation has been made upon time-averaging the 

flow for each geometrical case. Thus, it is desired to unfold this trend by focusing on 

developing a one-dimensional formulation to track the variation in the axial flow. Essentially, 

this formulation isolates axial flow dynamics and its variation with acoustic forcing sourcing 

from the radiating surface, while neglecting azimuthal and radial flow instabilities. As such, 

any radial flow variations, sourcing from the previously acknowledge counter-rotating vortices 

are assumed negligible. Upon eliminating the transient term, we utilize definitions of continuity 

and conservation of momentum for a steady flow with the aforementioned fluid mixture 

properties. We have also safely assumed a no-slip boundary at the horn tip based on many 

observations made on the radial profile [171, 201]. Lastly, the flat profile nature of the axial 

velocity was approximated for our case for mathematical modelling convenience [184]. 

 

 
Figure 7.1: A schematic of the axisymmetric flow configuration, with respect to the cylindrical coordinate system, observed 

in all considered horn diameter cases. (a) An overview of the time-averaged flow during transient cavitation highlighting the 

developing acoustic streaming and the stagnation plane encountered. (b) A detailed picture of the flow profile in proximity 

to the horn tip of diameter D and the position of the stagnation plane at a distance l from the horn tip surface. 
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The flow field and pressure distribution governing equations are then laid out as the continuity 
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conservation of r-momentum 
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and conservation of z-momentum 
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𝜕𝜈𝑧
𝜕𝑟
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𝜕2𝜈𝑧
𝜕𝑧2

] + 𝜌𝑚𝑔⃗ + 𝐹𝑎⃗⃗ ⃗⃗  (7.3) 

The 𝜃-momentum equation has been neglected due to the initial two-dimensional assumption 

of the domain. Here, 𝑣𝑧 is the flow velocity in the z-direction, 𝜌𝑚 and 𝜇𝑚 are the fluid mixture 

density and the fluid mixture dynamic viscosity. The z-momentum equation shows two 

additional force terms, namely the gravitational force 𝜌𝑚𝑔⃗ and the acoustic force 𝐹𝑎⃗⃗ ⃗⃗ . For this 

problem, however, we neglect the role of the gravitational force on the flow and only consider 

the propagating acoustic force in the axial domain. Based on  Lighthill [211], the  acoustic 

force, in the case of a downstream moving plane wave, is defined as 

 

𝐹⃗𝑎 = −
𝜕𝜌𝜈2

𝜕𝑧
 (7.4) 

With the expression of acoustic intensity, I, and establishing the relationship between spatial 

variation of I and streaming, I is then represented as 

 

𝐼 = 𝜌 𝑐𝜈2  =  𝐼0𝑒
−2𝛼𝑧 (7.5) 

where 𝜌 is the fluid density, 𝑐 is the speed of sound, 𝑣 is the flow velocity, and 𝛼 is the 

compound attenuation of the acoustic wave. One can then translate 𝐹𝑎⃗⃗ ⃗⃗  in terms of 𝐼 where 

 

𝐹𝑎⃗⃗ ⃗⃗  =  −
1

𝑐

𝑑𝐼

𝑑𝑧
=
2𝛼

𝑐
𝐼0𝑒

−2𝛼𝑧 (7.6) 

in which 

 

𝐼0  =
𝑃𝑎,0
2

2𝜌𝑐
 (7.7) 

 

𝑃𝑎,0 here is the acoustic pressure at the horn tip surface. Like many acoustic properties in the 

fluid domain, 𝑃0 experiences adverse attenuation as the plane wave progresses away from the 

horn tip. Its spatial distribution has been modeled by Yasui et al. [118] about the axis of 

symmetry such that 
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𝑃𝑎(𝑧)  = 𝜌𝑐𝜈𝑧,0 |2𝛽 sin
𝜋 

𝜆
(√𝑧2  +  (

𝐷

2
)
2

 −  𝑧)| (7.8) 

Upon taking 𝑃𝑎 at z = 0 and replacing in equation 6.6, 𝐹𝑎⃗⃗ ⃗⃗   finally becomes 

 

𝐹𝑎⃗⃗ ⃗⃗  =  4𝛽𝛼𝜌𝜈𝑢,𝑅𝑀𝑆
2 𝑠𝑖𝑛2

𝐷𝜋

2𝜆
𝑒−2𝛼𝑧 (7.9) 

where 𝑣𝑢,𝑅𝑀𝑆 is the time-averaged flow velocity, 𝐷 is the horn tip diameter, and 𝜆 is the 

acoustic wavelength. Taking note of 𝛽, it is essentially defined as an under-relaxation term, 

introduced by Yasui et al. [118], to correct the attenuation of the acoustic wave. This factor 

was inspired by a comparative study investigating the variation in local bubble radii under an 

acoustic horn. In our case, however, we have obtained a set of 𝛽 values through a fitting 

algorithm, implementing least squares, to satisfy the curve-fitting criterion that ensures the 

predicted boundary conditions from the two-dimensional CFD simulation are met. Essentially, 

the criterion was obtained by conducting a validation simulation comparing the numerical 

results we obtained of a horn reactor of D = 10 mm to the pressure model Yasui et al. [118] 

obtained. The small resultant percentage error was then extracted and implemented as a 

benchmark for fittings of the curves of the remaining diameters. 

 
𝜈𝑟  =  0  𝑎𝑡 𝑧 =  0 (7.10) 

𝜕𝜈𝑟
𝜕𝑧

= 0 
𝑎𝑡 𝑧 = 0 

(7.11) 

𝜕𝜈𝑟
𝜕𝑧

= 0 
𝑎𝑡 𝑧 = 𝑙 

(7.12) 

𝜈𝑧 = −𝜈𝑢,𝑅𝑀𝑆 𝑎𝑡 𝑧 = 𝑙 (7.13) 

𝑃 =  𝑃0  𝑎𝑡 𝑧 = 0, 𝑟 = 0 (7.14) 

 

Equations 7.10, 7.11, and 7.12 arise based on observations made in our CFD study, which will 

be discussed later in section 4 of this chapter, on the extensions of the induced vortical 

structures during the transient state of the reactor. The stagnation point predicted by our CFD 

model has revealed that the velocity radial flow profile converges to 0, with respect to the axial 

coordinate, before accelerating in the radial direction. Interestingly, a strong analogy can be 

drawn out from the assumed uniformity of the boundary conditions constraining the reactor 

system to the porous plate system established by Chapman & Bauer [212]. As such, we have 

adopted the following proven relationship where 

 

 
𝑣𝑟 = 𝑟𝜙(𝑧) (7.15) 

Upon replacing this definition in Eq. 7.1, the following definition of 𝜈𝑧 is obtained 
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𝜕𝑣𝑧
𝜕𝑧

= −2𝜙(𝑧) (7.16) 

in which 

 

𝑣𝑧 = −2∫ 𝜙(𝑧)𝑑𝑧
𝑧

0

 (7.17) 

This way, we have isolated 𝜈𝑧 's definition to be only in terms of z. Ultimately, this transforms 

our boundary conditions to 

 

 

 
𝜕𝜈𝑧
𝜕𝑧

=  0  
𝑎𝑡 𝑧 =  0 

(7.18) 

𝜕2𝜈𝑧
𝜕𝑧2

= 0 
𝑎𝑡 𝑧 = 0 

(7.19) 

𝜕2𝜈𝑧
𝜕𝑧2

= 0 
𝑎𝑡 𝑧 = 𝑙 

(7.20) 

𝜈𝑧 = −𝜈𝑢,𝑅𝑀𝑆 𝑎𝑡 𝑧 = 𝑙 (7.21) 

Furthermore, as our intended model is one-dimensional in the axial direction, Eq. 7.3 is 

nondimensionalized using the following dimensionless quantities 

 

𝜃 =  
𝜈𝑧

𝜈𝑢,𝑅𝑀𝑆
  (7.22) 

𝜁 =
𝑧

𝐷
 (7.23) 

𝑅𝑒 =
𝜌𝜈𝑢,𝑅𝑀𝑆𝐷

𝜇𝑚
 (7.24) 

Equation 7.3 then becomes 

 

𝜃
𝜕𝜃

𝜕𝜁
−

𝜇𝑚
𝜌𝑚𝜈𝑢,𝑅𝑀𝑆𝐷

𝑑2𝜃

𝑑𝜁2
= −

1

𝜌𝑚𝜈𝑢,𝑅𝑀𝑆
2

𝜕𝑝

𝜕𝜁
+  4𝛽𝛼𝐷𝑠𝑖𝑛2 (

𝜋𝐷

2𝜆
) 𝑒−2𝛼𝐷𝜁  (7.25) 

or 

 

𝜃𝜃′ −
1

𝑅𝑒
𝜃′′ = 𝐷𝑃 + Γ𝐶𝑒

Γ𝜁  (7.26) 

Notably, the process of deriving the nondimensional momentum equation has resulted in the 

surfacing of three additional nondimensional numbers that are 
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𝐷𝑃  =  −
1

𝜌𝑚𝜈𝑢,𝑅𝑀𝑆
2

𝜕𝑝

𝜕𝜁
 (7.27) 

Γ =  −2𝛼𝐷 (7.28) 

and 

𝐶 =  2𝛽𝑠𝑖𝑛2 (
𝜋𝐷

2𝜆
) (7.29) 

These dimensionless numbers were taken as model constants governed by fluid mixture 

properties. Firstly, Piercy & Lamb [213] have suggested that the first-order differential term 
𝜕𝑝

𝜕𝑧
 

is insignificant, as any observed pressure variation in the system is essentially radiation 

pressure driven by 𝐹𝑎⃗⃗ ⃗⃗ . Thus, the nondimensional pressure 𝐷𝑃 here is considered a negligible, 

yet potentially corrective, constant. Similarly, C resembles an under-relaxation factor for a 

given D. Based on the nature of the function when taking its limit at lim
𝐷→0.016

𝐶(𝐷) =  𝐶𝑚𝑖𝑛 , 𝐹𝑎⃗⃗ ⃗⃗  

experiences reduced amplification with the increase of D. Lastly, Γ consists of two terms, 𝛼 

being the compound attenuation coefficient [214] and D. As such, it is defined as the 

dimensionless compound attenuation. 

 

The solution of Eqns. 7.18 to 7.26 provides the complete analytical solution of the present flow 

problem. However, the approach we have taken to obtain the exact solution is a more iterative 

approach, in which we solved Eqn. 7.26 numerically with a finite-differencing method where 

we created a system of coupled differential equations of an order no greater than one by 

modifying Eq. 7.26 as such. That is, we define the coupled system starting with a new 

dimensionless partial differential equation of some function 𝑓(𝜁) 
 
𝑓(𝜁)  = 𝜃′(𝜁) (7.30) 

such that Eqn. 7.26 becomes 

 

𝜃𝑓 −  
1

𝑅𝑒
𝑓′ =  𝐷𝑃  − Γ𝐶𝑒

−Γ𝜁  (7.31) 

Additionally, recalling that 𝐷𝑃 is a constant, 

 
𝐷𝑃
𝜁 
=  0 (7.32) 

Meanwhile, 𝑅𝑒, Γ, and 𝐶 are varied parametrically from case to case. The three equations were 

then linearized about a trial solution to, ultimately, implement the numerical method designed 

by Newmann [215]. This facilitates iterative computation of the trial solution until the solution 

finally meets the residual criterion of 10−10. It is noteworthy to state that convergence has been 

achieved within 7-50 steps depending on the initial guess used upon initialization. The 

implementation of this subroutine can be found in Appendix F. 
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7.4 Results and Discussion 

 

7.4.1 Two-dimensional Flow Approximation 

 

Building upon the previous study's observations [190], we considered the following 

geometrical variation in horn-type reactors, tabulated in Table 7.1, to assess their overall 

acoustic and cavitation performances during their transient states. We have fixed the power 

input, operational frequency, and oscillation amplitude at 49 W, 20 kHz, and 164 μ𝑚, 

respectively, for all cases to isolate the influence of the horn tip diameter on the flow. To draw 

out this comparison, we performed the transient CFD calculation on all cases to monitor and 

extract instantaneous velocities at every discretized point along the horn axis. This was 

followed by computing the RMS velocity at each mesh point of the axis to, ultimately, 

normalize it against 𝜈𝑢,𝑅𝑀𝑆. These normalized velocity values were then plotted against the 

normalized axial length 𝜁, as it is illustrated in Figure 7.2a. Here, it becomes clear that there 

exists an unusual flow trajectory, where the agitated flow eventually reaches some point of 

stagnation 𝜁 =  2 along the axis. Recalling that D sustains a relationship with the acoustic 

power density 𝑃𝐷 such that 

 

𝑃𝐷 =
𝑃

𝑉
=

𝑃

1
4
π𝐷2𝐻

 (7.33) 

This strikingly highlights that regardless of the size of the volume of influence 𝑉 the acoustic 

power transmission reaches, the stagnation plane remains positioned at a distance 2D. It is 

arguable that the usage of an unsteady RANS model, like SST 𝑘 − 𝜔, might facilitate this trend 

by averaging out the turbulent acoustic streaming structures and increasing the rate of decay of 

the acoustic pressure wave. However, the consistency of this trend under different horn 

diameters highlights that the effect of the turbulence model is not as pronounced. Ultimately, 

the only impact the change in D, or 𝑃𝐷, had on flow is the rate of exponential decay the flow 

experiences as it approaches the said stagnation. In an attempt to garner deeper insight to this 

trend, we monitored the averaged variation in the RMS vapor volume fraction 𝛼𝑣 along the 

same axial distance to identify any coupled effect, if any, of the vapor structure on the point of 

stagnation, as shown in Figure 7.2b. Interestingly, and as highlighted by the two instances of 

inset plots, it was revealed that the vapor structure has no definitive influence on the stagnation 

point either. The two distinct vapor structure profiles are highlighted in Figure 7.3, where MBS 

is prominent under the 3 and 6 mm horn tips, while CBS takes shape under the 13 and 16 mm 

horn tips. However, upon examining the vapor structures' axial extension, we were able to 

capture the endpoints of cavitation dissipation for each case, as numbered from (1) - (4). It was 

revealed that these endpoints unanimously coincide with the velocity decay curves' kinks 

towards 𝜃 =  0 for all cases. Such observation reinforced the extent of attenuation the inertial 

bubbles have on this acoustic force-driven flow. Therefore, we have decided to further 

scrutinize the vapor-induced attenuation role in influencing the time-averaged flow through a 

one-dimensional approximation of the axial flow. 
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Table 7.1: Tabulation of time-averaged velocity, vapor volume fraction for each of the marked points in figure 22 and the 

power density of each horn geometry. 

Marked Points D (mm) 𝜃∗ (-) 𝛼𝑣
∗  (-) 𝑃𝐷 (𝑊/𝑐𝑚3) 

1 3 -0.0434 0.00087 64.785 

2 6 -0.0539 0.00065 16.196 

3 13 -0.0779 0.00079 3.45 

4 16 -0.0881 0.00079 2.278 

*extracted values at respective marked points highlighted in Figure 7.2.  
 

 

 
Figure 7.2: (a) Variation of normalized RMS velocity plotted against the downstream axial distance normalized with respect 

to the horn tip diameter of the respective geometrical case (D = 3, 6, 13, and 16 mm). The inset plot highlights the observed 

stagnation. (b) Variation of RMS vapor volume fraction along the horn axis, with an inset plot showing the convergence of 

𝛼𝑣 to 0 at the stagnation point for all cases. Points (1) - (4) highlight the points at which 𝛼𝑣 first reaches 0 for cases D = 3 - 

16 mm, respectively. 𝜁 is the dimensionless z-position normalized with respect to the tip diameter D for each case. 
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Figure 7.3: Comparative plots illustrating time-averaged bubble cluster structure radial profiles, dimensioned based on 

their normalized radial and axial position under horn tips of diameters D = 3, 6, 13, and 16 mm. Here, the axial position z is 

normalized against the maximum height H reached by the profile formed under D = 16 mm, while the radial position r is 

normalized against the horn tip radius R. 

 

7.4.2 One-dimensional Axial Flow Interpretations 

 

7.4.2.1 Complete Numerical Simulation 

 

Equations 7.30 – 7.32 were solved by constraining the system with their respective boundary 

conditions from Eqns. 7.18 – 7.21. Moreover, the initialization of the one-dimensional iterative 

calculation consists of inputting the desired acoustic and domain phase properties, in addition 

to a set of initial guesses for the equations' unknowns, namely 
𝑑𝜃

𝑑𝜁
, 𝜃, and 𝐷𝑃. Meanwhile, Re 

and C were kept as model constants governed by the given flow properties induced in each 

case; they are computed as per the D of the considered case. As for Γ, while in practice 

Γ(𝛼, 𝐷)  =  −2𝛼𝐷,  we have manually controlled its variation from case to case through 

artificially varying 𝛼. This is to observe its contribution to the flow behaviour, especially to the 

stagnation point position, within our numerical region. However, to obtain 𝛼 of each case, we 

have utilized the least squares fitting method to essentially optimize the dimensionless 

attenuation coefficient ensuring a satisfactory fitting of the one-dimensional calculated flow to 

the numerically-extracted trends shown in Figure 7.4. Technically, we have fixed 𝜃 =  0 as a 

boundary condition at 𝜁 =  2 while keeping the boundary at 𝜁 =  0 free-floating to maintain 

its dependency on the attenuation coefficient.  

 

In that sense, as the one-dimensional model neglects the plausible effects of bubble-bubble 

interactions and flows in the radial direction and thus 𝛼 here may carry underpredicted values 

that are underpredicted the amplified scattering and attenuation effects induced by bubbles 

radially positioned about the horn axis. Moreover, various mesh sizes were tested to extrapolate 

the calculation towards the horn tip boundary. Based on that, we have settled on a discretization 

composed of 1,000 points. Considering the fact that all our horn-type reactor geometries induce 
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largely turbulent flows, such mesh size was required to capture the boundary layer phenomenon 

at 𝜁 =  𝑙. Mathematically, this is justified by the diminishing effect of the highest-order term 

due to the high Re. 

 

 
Figure 7.4: Comparative plot between the variation of normalized RMS velocity against the normalized downstream axial 

predicted by the CFD computation and the one-dimensional (PDE) calculation for various horn reactor cases, D = 3, 6, 13, 

and 16 mm. 𝜁 is the dimensionless z-position normalized with respect to the tip diameter D for each case. 

 

As demonstrated in Figure 7.4, we performed a validation comparing the trends predicted by 

the one-dimensional steady flow model and the two-dimensional time-averaged transient CFD 

model. While the predicted one-dimensional trends do in fact come across as reasonably 

satisfactory, it seems, however, that there is a noticeable discrepancy in the 𝜃 magnitudes. This 

can be potentially justified by the one-dimensional model's dismissal of any small, yet 

noticeable, transient, or more specifically turbulent, components of the acoustically-driven 

flow [216]. Moreover, this justification is complicit with the results presented in the numerical 

exploration conducted by Dentry et al. [217], where they observed that a turbulent-dominant 

jet tends to lead to a marginally faster streaming decay. However, as the curves' slopes are, 

nevertheless, well-captured within the region 0. 75 < 𝜁 <  2, we speculate that the steady 

component here does in fact play a major role in the overall axial flow examined under the 

horn. 
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Figure 7.5: A series of comparative plots, produced by the one-dimensional iterative calculation, summarizing the predicted 

trends of (a) the normalized RMS flow deceleration, (b) the normalized RMS flow velocity, and (c) the dimensionless 

pressure gradient plotted against the downstream axial distance normalized with respect to the horn tip diameter of the 

respective geometrical case (D = 3, 6, 13, and 16 mm). The two inset plots highlight regions of interest and clarify the 

variation of 
𝑑𝜃

𝑑𝜁
 and 𝐷𝑃 values. 𝜁 is the dimensionless z-position normalized with respect to the tip diameter D for each case. 

 
Table 7.2: Tabulation of values of artificially fitted model coefficients (C, β, α, and Γ) for each horn tip diameter D and its 

respective 𝑅𝑒𝐵. 

D (mm) 𝑅𝑒𝐵  (-) 𝐷𝑃 (-) C (-) 𝛽 (-) 𝛼 (𝑚−1) 𝛼 (𝑑𝐵/𝑐𝑚) |Γ| (-) 

3   61 692    0.0284 0.0158 2.0000 299.52 0.495   1.797  

6   123 381   0.0041 0.0014 0.0435 246.92 0.479  2.963  

13   267 326    0.001 0.0003 0.0018 145.4 0.433  3.780   

16   329 106    0.0003 0.0001 0.0003 138.33 0.428 4.427 
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Observing the predicted flow behaviours in Figures 7.5a and 7.5b, it becomes clear that the 

flow decelerates much faster towards the 𝜃 =  0 stagnation point with larger horn diameters. 

This is perhaps due to the amplified 'push' effect of the steady component of flow on the 

acoustic wave in relation to the growing Re. Figure 7.5a has highlighted this trend, however, it 

unveils an interesting trend in the initial flow acceleration at the horn surfaces. It initially 

appeared that with the doubling of the horn diameter from 3 mm to 6 mm, 
𝑑𝜃

𝑑𝜁
 increases by a 

factor of 1.5. However, upon further doubling the diameter, 
𝑑𝜃

𝑑𝜁
 was amplified by a rather 

noticeably reduced factor of 1.24. the further increase in diameter would still induce a 

heightened acceleration by the same factor of approximately 1.24, despite the diameter increase 

being a factor of 1.23. Moreover, the inset plot in Figure 7.5a magnifies the junction of 

deceleration curves where it amplifies the 3 mm horn flow deceleration as an anomaly due to 

its relatively exaggerated gradual decline towards the stagnation point. We speculate that the 

formulation of this junction may be due to the attached cavitation axial extension, this is further 

discussed in detail in section 7.5 of this chapter. However, the deceleration trends of the 

remaining tip diameters all show similar decelerating trends with a joint intersection at 𝜁 =
 1.46. 

 

Furthermore, when it came to scrutinizing these trends with respect to the model coefficients, 

we were able to uncover potential correlations with what has been observed in the flow velocity 

and deceleration. As per the tabulated data in Table 7.2, we noticed that the effects of the 

dimensionless pressure gradient 𝐷𝑃 becomes more and more insignificant with the increase of 

D. Judging by the flow type induced under each horn tip, this could be potentially due to 

significantly increased turbulence of the acoustically-driven flow. Thus, recalling the 

conclusive suggestion made by Piercy & Lamb [213], this leads us to believe that the 

observation aligns with their justification. However, what is rather eye-catching, is the sharp 

shrinkage of 𝐷𝑃 upon initially doubling the diameter, which is later followed by a more 

continuous and gradual decrease of 𝐷𝑃 's influence on flow.  

 

It is hypothesized that, perhaps, there exists an underlying non-linearity in the influence of 

turbulent flow properties on the acoustic wave behaviour. This was based on conclusions drawn 

from Miller & Comings [218], in which they illustrated the amplification of the static pressure's 

insignificance on the axial flow due to the large disparity between longitudinal mean 

momentum and static pressure. Thus, we have taken their case as an analogy to our case of 

acoustically-driven flow.  On another note, coefficients related to the governance of the 

acoustic force, namely C, 𝛽, and 𝛼, demonstrate inverse proportionality to the increase in Re. 

It is unsurprising to see that both C and 𝛽 share the same effect due to their coupled nature 

shown in Eq. 7.29. Here, 𝛽 primarily plays the role of under-relaxing the amplification effect 

of C on the force. Physically, this indicates a reduction in strong interference effects, that is 

typically experienced by the axial pressure during acoustic radiation from a cylindrical piston, 

governed by the Rayleigh Length [207].  

 

As for 𝛼, its trend can be attributed to the observations previously made in our study, where 

we recorded a decrease in the active cavitation zones proximal to the horn tip, as the inertial 

bubbles self-assemble into a CBS [190]. The values obtained for 𝛼 do in fact align with 

observations made by Feuillade [219], however, a slight underprediction is noticeable. What is 

interesting, though, is the opposing Γ trend, despite its direct correlation with 𝛼. As clearly 

shown, Γ marches upward by an increment of approximately unity with the doubling of D. This 

eventually highlights the possible role of the factor 2D that arose during 

nondimensionalization, as it introduces direct proportionality of the horn tip diameter to the 
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attenuation induced by the multiphase medium downstream. Acknowledging the high Re with 

larger D, we are led to believe that the flow becomes inertia-dominated, therefore, minimizing 

the losses due the mixture viscosity.  We have thus interpreted 2D as a corrective term for 

attenuation and defined Γ as a corrected dimensionless attenuation coefficient. 

 

7.4.2.2 Small Re Number Asymptotic Behaviour 

 

Thus far, our investigation demonstrated a strong focus on practical cases of horn-type reactors, 

where 'fast-streaming' dominated our flow observations. As we have scrutinized the trends of 

compound attenuation effects of the fluid composition on the acoustically-driven flow, it would 

of great importance to explore the nature of attenuation during 'creeping motion'. Typically, 

'near-field' flow behaviour becomes the primary focus during such flows, and such proximal 

flow is seen to form when the Rayleigh length is 
𝐷

𝜆
≥  1. Taking the unity of  

𝐷

𝜆
 is then reflected 

in the value of C as it also converges to unity. With that said, Eq. 7.26 then becomes 

 

𝜃𝜃′ −
1

𝑅𝑒
𝜃′′ = 𝐷𝑃 − Γ𝑒

−Γ𝜁  (7.34) 

We then solved this expression analytically through a regular perturbation procedure, that 

considers a small parameter 𝜖 =  𝑅𝑒 ≪  1, using the following coefficient expansions: 

 
𝜃(𝜁)  = 𝜃0  + 𝜃1𝑅𝑒 + 𝜃2𝑅𝑒

2  +  𝑂(𝑅𝑒3) (7.35) 

𝜃′(𝜁)  = 𝜃0
′  + 𝜃1

′  𝑅𝑒 + 𝜃2
′  𝑅𝑒2  +  𝑂(𝑅𝑒3) (7.36) 

𝜃′′(𝜁)  = 𝜃0
′′  + 𝜃1

′′𝑅𝑒 + 𝜃2
′′𝑅𝑒2  +  𝑂(𝑅𝑒3) (7.37) 

𝐷𝑃  =  𝐷𝑃,0  +  𝐷𝑃,1𝑅𝑒 + 𝐷𝑃,2𝑅𝑒
2  +  𝑂(𝑅𝑒3) (7.38) 

Γ = Γ0  + Γ1𝑅𝑒 + Γ2𝑅𝑒
2  +  𝑂(𝑅𝑒3) (7.39) 

We went with applying the aforementioned boundary conditions in section 7.3, with the 

exception of the boundary condition in Eq. 7.11. Instead, we have replaced that boundary 

condition with another that constrains the flow at 𝜁 =  0 to ensure that 𝜃 =  0. This way, we 

reach the following small Re approximations below. Their derivations are demonstrated in 

Appendix G. 

 

𝜃 =  −
1

4
𝜁2  +  (−

1

20
𝜁2  −  0.057709𝜁3  −  0.008489𝜁4  +

1

160
𝜁5)𝑅𝑒 

+ (0.141961𝜁2  −  0.0689317𝜁3  −  0.014967𝜁4  +
1

400
𝜁5  +  0.0024106𝜁6  

+  0.0003032𝜁7  −
1

5120
𝜁8) 𝑅𝑒2 

(7.40) 
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𝜃′ =  −
1

2
𝜁 + (−

1

10
𝜁 −  0.173127𝜁2 −  0.033958𝜁3 +

1

32
𝜁4)𝑅𝑒

+ (0.283922𝜁 −  0.206795𝜁2  −  0.059869𝜁3  +
1

80
𝜁4  +  0.0144634𝜁5  

+ 0.00212242𝜁6  −
1

640
𝜁7)𝑅𝑒2 

(7.41) 

𝜃′′  =  −
1

2
+ (−

1

10
−  0.311847𝜁 −  0.087073𝜁2  +

1

8
𝜁3)𝑅𝑒  

+  (0.283922 −  0.4135901𝜁 −  0.179609𝜁2   +
1

20
𝜁3  +  0.072137𝜁4

+  0.0127345𝜁5  −
7

640
𝜁6) 

(7.42) 

𝐷𝑃  =
1

2
−  0.767250𝑅𝑒 −  0.641065𝑅𝑒2 (7.43) 

Γ =  −0.579026Re −  0.357143Re2 (7.44) 
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Table 7.3: Tabulation of time-averaged flow profile, cavitation axial region, and bulk Reynolds number of each horn 

geometry. 

   Re = 0.25  Re = 0.5 Re = 0.75 Re = 1.0 
     𝜁 (-) 𝜃 (-) 𝜃′ (-) 𝜃 (-) 𝜃′ (-) 𝜃 (-)   𝜃′ (-)  𝜃 (-)   𝜃′ (-) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 -0.0026 -0.0513 -0.0024 -0.0493 -0.0022 -0.044 -0.0017 -0.0355 
0.2 -0.0103 -0.1038 -0.01 -0.1016 -0.009 -0.0933 -0.0074 -0.0791 
0.3 -0.0234 -0.1575 -0.0299 -0.1569 -0.021 -0.1481 -0.0178 -0.1312 
0.4 -0.0418 -0.2124 -0.0414 -0.2153 -0.0388 -0.2084 -0.0339 -0.1919 
0.5 -0.0659 -0.2686 -0.066 -0.2768 -0.0629 -0.2744 -0.0565 -0.2615 
0.6 -0.0956 -0.326 -0.0969 -0.3414 -0.0939 -0.3460 -0.0865 -0.3398 
0.7 -0.1311 -0.3846 -0.1344 -0.4089 -0.1323 -0.4229 -0.1247 -0.4265 
0.8 -0.1726 -0.4442 -0.1788 -0.4791 -0.1786 -0.5048 -0.1721 -0.5212 
0.9 -0.2200 -0.5048 -0.2303 -0.5519 -0.2334 -0.5913 -0.2292 -0.623 
1.0 -0.2735 -0.5662 -0.2892 -0.6267 -0.297 -0.6817 -0.2969 -0.7311 
1.1 -0.3333 -0.6282 -0.3557 -0.7033 -0.3698 -0.7753 -0.3756 -0.8442 
1.2 -0.3992 -0.6907 -0.4299 -0.7811 -0.4521 -0.8712 -0.4658 -0.9611 
1.3 -0.4714 -0.7534 -0.5119 -0.8595 -0.5441 -0.9684 -0.5679 -1.0800 
1.4 -0.5499 -0.816 -0.6018 -0.9379 -0.6458 -1.0657 -0.6818 -1.1992 
1.5 -0.6346 -0.8784 -0.6995 -1.0157 -0.7572 -1.1618 -0.8077 -1.3168 
1.6 -0.7255 -0.9402 -0.8049 -1.092 -0.8781 -1.2555 -0.9451 -1.4306 
1.7 -0.8226 -1.0011 -0.9178 -1.1661 -1.0081 -1.3453 -1.0936 -1.5384 
1.8 -0.9257 -1.0607 -1.038 -1.2372 -1.1469 -1.4297 -1.252 -1.638 
1.9 -0.9883 -1.1187 -1.1651 -1.3045 -1.2938 -1.5073 -1.4208 -1.7272 
2.0 -1.0000 -1.1748 -1.2987 -1.367 -1.4481 -1.5767 -1.5975 -1.8038 

        𝐷𝑝  =  0.2681 𝐷𝑝  =  −0.0439 𝐷𝑃  =  −0.4360 𝐷𝑃  =  −0.9083 
        |Γ|  =  0.1671 |Γ|  =  0.3788 |Γ|  =  0.6352  |Γ|  =  0.9362 

 

Considering the following small increments of Re = 0.25, 0.5, 0.75, and 1.0, we tabulate each 

coefficient at each Re to track their trends and visualize the corresponding flow behaviours, as 

shown in Table 7.3. The overall trends are quite consistent with each increase in Re; we observe 

that the |𝜃| and |𝜃′| increase upon approaching the horn tip in all cases of Re. However, 

interestingly, we have noticed the surfacing of an underlying non-linearity within the field 

proximal to the horn tip surface. It initially becomes prominent at Re = 0.5 in which the velocity 

values begin to slightly overshoot at 1.8 ≤  𝜁 ≤  2.0. Moreover, this trend minutely develops, 

in which it begins to be expand downstream, such that at Re = 0.75 onwards, the region 

becomes constraint within 1.7 ≤ 𝜁 ≤  2.0. This could be analogous to the variation in the axial 

velocity profile between a low and a high acoustic frequency setting[217]. However, soon 

enough, with the progression of Re, this discrepancy surfaces as a probable accuracy limitation 

of the small perturbation assumption of Re. On the other hand, 𝐷𝑃 and Γ here demonstrate 

direct proportionality with Re. It is speculated the gradual rise of Γ is an indicator of an 

expanding cavitation region within the proximal axial direction, and thus an increase in 

attenuation is to be expected. However, to compare its value marching trend with the trend 

observed in Table 7.2, we have taken into account the proportionality of increase in value of Γ 

with Re in both the laminar and turbulent regimes. Here, we observe that in the previously 

explored turbulent regime, Γ presented a slow decay in the factor increase upon doubling Re. 

For instance, the factor rise of Γ from Re = 61,692 to Re = 123,381 demonstrates an increase 
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by a factor of ≈  1.65. However, the further doubling of Re has led to an increase by a factor 

of ≈ 1.26 instead. This trend does not exist in the laminar regime, as we consistently witness 

doubling in Γ upon doubling Re. The rise of 𝐷𝑃, however, hints at the presence of some 

nonlinear trend when compared to its progression in larger Re, as shown in Table 7.2. However, 

this requires further scrutiny to validate this trend. 

 

7.4.3 Bubble Cluster Shape-driven Acoustic Attenuation 

 

Nevertheless, it has been interestingly observed that the general trends of both 𝛼 and Γ remain 

true to the exact solution in both laminar and turbulent regimes, where 𝛼 is seen to decrease, 

while Γ increases, with the increase in turbulence of the flow regime. While this points in the 

direction of a proper explanation to the constant location of the observed stagnation point, 

however, the justification remains inconclusive. Specifically, it is not yet understood as to why 

the acoustically-driven flow is strongly attenuated with the presence of MBS compared to the 

cases with the presence of CBS. Therefore, in an attempt to scrutinize this relationship, we took 

the initial step to delve deeper into justifying the bubble structure arrangements. By 

acknowledging the horn-proximal flow features, specifically its vorticity, it can be suggested 

that the arrangement of bubbles can be induced by nature of the flow recirculation. Related 

studies conducted by Stommel [220], Toobey et al. [221], Manton [222], and Maxey [223] all 

explore the gravitational settling of heavy particles within vortex flows. All of Stommel [220], 

Toobey et al. [221], and Manton [222] have explored the entrapment of assumingly small 

spherical particles in two-dimensional, incompressible cellular flows. Maxey [223], however, 

has further defined the importance of accounting the compound effect induced by particle 

inertia and virtual mass on the gravitational settling of these spherical particles. In situations of 

coherent vortical structures, Tio et al. [224] and Ganan-Calvo and Lasheras [225] have 

investigated the long-term evolution of particle dynamics. Based on a four-parameter, and later 

five-parameter, dynamical system they have developed by accounting for the effects of particle 

size, turbulent intensity, vorticity distribution, and gravity, they were able to categorize the 

suspension mechanisms of particles of different densities. Effectively, a particle-path function 

was defined as 

 
𝜙 ≡ Ψ(𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) (7.45) 

to represent a stream function Ψ evaluated at a given instantaneous particle position 

(𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) along its respective trajectory. From that, they have further derived a rate of change 

of Φ as follows 

 
dΦ

𝑑𝑡
 =

𝜕Ψ

𝜕𝑥
|
𝑃

𝑑𝑥𝑝

𝑑𝑡
+
𝜕Ψ

𝜕𝑦
|
𝑃

𝑑𝑦𝑝

𝑑𝑡
 =  𝑢𝑦 𝑉𝑥  −  𝑢𝑥  𝑉𝑦  (7.46) 

However, in the case of buoyant particles, such as bubbles, it has been well-established that 

bubbles released in rotational flow fields tend to be entrapped by a series of equilibrium points, 

if their rise speed in still fluid Q is below a given threshold based on an observation made by 

Maxey [223] when investigating Langmuir cellular flow fields. Upon exceeding the threshold 

value of Q, bubbles may escape this 'captivity' and to rise and accumulate along asymptotic 

paths. As such, this observation was later modeled and confirmed by Tio et al. [224] by 

numerically showing the instantaneous locations of a grid of bubbles that entered and escaped 

captivity of the vortex and highlighting their accumulated suspension points above the vortex. 

Aside from the primary and secondary Bjerknes forces, it can be argued that the buoyant nature 
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of bubbles can be a primary factor that governs their accumulation and formation into the 

variety of bubble structures witnessed under the acoustic horn. While this grants us a good 

indicator of the underlying role the proximal vortex has on the bubble structure, this 

justification may not be applicable for our numerical results, as the modified ZGB model does 

not model vapor as particulates but more as local nucleation governed by the local pressure 

gradient. As such, we have dissected the time-averaged flow behaviours observed in each case 

that are categorically attributed to the vortex presence and its core position. 

 

 
Figure 7.6: Time-averaged axisymmetric contour and vector plots of (up) vapor volume fraction and (down) axial velocity 

for flows driven by (a) the 3 mm horn tip and (b) the 6 mm horn tip. The red vertical line outlines the horn tip and the red 

asterisk marks the vortex core center. 

As shown in Figure 7.6 and Figure 7.7, contours and vector plots of the time-averaged flow 

field were extracted for the aforementioned horn-type reactor cases of D = 3, 6, 13, and 16 mm 

horn tips. Upon initial observation, a primary vortex consistently positioned ≈ 0.5 mm above 

the horn tip edge appears in all horn-type reactors. However, a secondary vortex surfaces under 

the larger horn tips, namely the 13 and 16 mm horn tips, positioning itself relatively closer to 

the horn axis. Categorically, cases with bubble structures resembling MBS sustain the primary 

vortex only, while cases with CBS are seen to sustain both the primary and secondary vortices. 

It is crucial, however, to note that both primary and secondary vortices were only observed to 

shift radially but never axially. with the increase of the horn tip diameter. Perhaps, this may 

only emphasize the locality of the vortices effect on the bubble structures and its negligible 

effects on the freestream flow. Another general trend observed, regardless of the diameter size 

and the bubble structural shape, is the flow behavior from within the bubble structure itself. 

Upon axially examining the progression of the bubble structure, a velocity gradient is revealed. 

Specifically, the velocity at the tip surface unanimously starts at 𝜈𝑅𝑀𝑆, however, it begins to 

gradually decrease to a minimum velocity. Interestingly, the initialization of the velocity 

recovery phase coincides with the interface of the cavitation structure. While the phenomenon 
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itself has been observed across all reactor geometries, a deeper qualitative observation would 

reveal that the extent of this velocity gradient varies from one reactor to the other. Looking at 

the axial velocity contour plots about the horn axis, one can qualitatively note an offset distance 

following the negative velocity gradient from the horn tip surface, where maximum velocity is 

achieved, till the instance where the lowest velocity. When comparing this offset distance and 

marking it on the vapor volume fraction contour plots, we find that this marks the bubble 

structures' core length. 

 

 
Figure 7.7: Time-averaged axisymmetric contour and vector plots of (up) vapor volume fraction and (down) axial velocity 

for flows driven by (a) the 13 mm horn tip and (b) the 16 mm horn tip. The red vertical line outlines the horn tip and the red 

asterisk marks the vortex core center. 

 

To quantitatively scrutinize this, Figure 7.8 plots the velocity gradients achieved about the axes 

of all four horn reactors. By nondimensionalizing the z-axis with respect to the diameter of the 

respective horn reactor, the offset distance appears to shrink with the increase of D. From 

Figure 7.8, the offset distances are measured at 0.27, 0.20, 0.12, and 0.11 for cases of D = 3, 6, 

13, and 16 mm, respectively. In retrospect, however, this offset distance increases instead from 

0.81 mm, 1.2 mm, 1.56 mm to 1.76 mm for the aforementioned diameters, respectively. 

Nevertheless, by taking scaling into account, we notice that the core size increase is rather 

insignificant compared to the increase in size of the horn reactor. Furthermore, another 

interesting trend in the curves drawn in Figure 7.8 was the hump that occurs marking a 

maximum change in velocity before reaching a steady-state velocity value downstream of the 

horn. The insights provided by this hump lies in its midpoint, as it highlights the velocity 

gradient and recovery marking the axial length of the bubble structure from the horn tip. 

Surprisingly, the maxima reached at each hump is very consistent, as it equates to ≈ 0.1 ms−1. 

Moreover, with nondimensionalizing its axial length, we do notice the significant recession in 

the bubble structure extension when put into perspective with the tip diameter of the horn 
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reactor. Once again, this does not necessarily indicate that the cavity itself is shrinking, as it 

shown that the contrary is true in Figures 7.6 and 7.7. However, all this begs the question as to 

whether this variation in the velocity gradient is indicative of the bubble distribution within the 

bubble structure under the horn.  

 

Therefore, Figure 7.9 has been plotted to illustrate the progression of the bubble population 

within each of the bubble structures generated under all considered horn reactors. The bubble 

population was calculated within mesh cell 𝑛 by multiplying the volume of the cell 𝑉𝐶 by the 

interpolated vapor volume fraction occupying cell 𝑛 and dividing it by the volume of the 

bubble, given that the implemented modified ZGB model assumes a constant equivalent bubble 

radius R. One of the prominent trends one may notice is the linearity and nonlinearity of the 

bubble distribution within MBS and CBS, respectively. The nonlinearity witnessed within CBS 

closely resembles an exponential distribution. Moreover, judging by their slopes, it seems that 

CBS tends to experience a sharp drop in bubble population density within the structure's center 

and the interface, meanwhile, MBS seems to relatively sustain the bubble population density 

throughout most of its structure. Generally, it can be said that any increase in the horn tip 

diameter tends to increase the rate of decay of bubble population about both structure types. 

Interestingly, however, this is compensated for by a drastic increase in the bubble population 

near the horn tip. This may indicate the growth in the bubble structure core size and density, 

with CBS cores being much denser. However, despite that, all bubble structures' interfaces 

seem to sustain the same amount of bubbles of approximately 𝑛𝐵 = 7,573. As it has been 

mentioned that the interface marker, based on the velocity gradient plot in Figure 7.8 is rather 

equivalent in all cases, it can be speculated that there exists some form relationship between 

the velocity gradient and the bubble density. Perhaps, it can be boiled down to a possible 

generation of similar pressure fields at the interface regions that governs the presence of 

bubbles. With this explanation, it can be suggested that the different rates of bubble population 

decay is due to the different pressure fields induced by the position of the primary vortex. As 

aforementioned in Figures 7.6 and 7.7, the primary vortex core consistently positions itself 

about the corner of the horn tip edge, and thus, the vortex position is only up-scaled radially 

with the increase of D. Ultimately, the vortex core is found to be positioned further away from 

the bubble structure axis leading to a relatively high pressure field about the axis.  

 

In retrospect, this may be a potential justification for the attenuation trend captured by the exact 

solution of the one-dimensional mathematical formulation of the acoustically-driven axial 

flow. It seems that a more linear bubble population distribution throughout the bubbly structure 

has the tendency to increase the acoustic attenuation of flow, as opposed to a more biased 

bubble distribution towards the near-horn region demonstrated by the CBS found under the 13 

and 16 mm horn reactors. 
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Figure 7.8: Axial velocity gradients about the horn axis plotted against the dimensionless axial coordinate for cases of D =  

3, 6, 13, and 16 mm. 𝜁 is the dimensionless z-position normalized with respect to the tip diameter D for each case. 

 

 

 

 
Figure 7.9: Number of bubbles 𝑛𝐵  plotted against the dimensionless axial coordinate along the horn axis for cases of D = 

3, 6, 13, and 16 mm. 𝜁 is the dimensionless z-position normalized with respect to the tip diameter D for each case. 
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7.5 Conclusion 

 

This chapter presented a numerical study that delves deeper into understanding the averaged 

flow behavior under each of the horn tips considered in order to establish a better idea on the 

steady-state two-way coupling between the toroidal vortex and the cavity structure. Upon time-

averaging the flow, an early stagnation point was revealed at a point 2D away from the horn 

tip with a diameter D. 

 

A 2D axisymmetric simulation was conducted to predict the flow about the horn's axis of 

multiple horn-type reactor geometries, D = 3, 6, 13, and 16 mm. With respect to that, we have 

tracked the trends of dimensionless quantities, such as the dimensionless velocity 𝜃, to 

highlight demonstrate its convergence to 0 at a non-dimensional axial distance of 𝜁 =  2𝐷. We 

numerically obtained the exact solution of a non-dimensional conservation of momentum 

equation governing the flow in the axial direction. This involved resolving newly emerged 

dimensionless model coefficients, such as the dimensionless absorption coefficient 𝛼 and the 

under-relaxation factor C. These factors were artificially fitted into the equation based on the 

least square fitting method that aims to match the curves computed from the CFD calculation.  

An odd trend was demonstrated by the coupled absorption coefficients, 𝛼 and Γ.  

 

We witnessed a steady drop in 𝛼 with the increase of the horn tip diameter, or Re, while Γ was 

seen to steadily increase instead. We hypothesize that this factor's gradual prominence sources 

from the fact the flow is inertia-dominated, as the flow becomes more turbulent with larger D. 

Upon comparing between the behavior of Γ in a laminar regime and a turbulent regime, we 

observed that Γ sustains direct proportionality with Re in which a double in the value of Re, in 

turn, induces a double in the value of Γ. On the contrary, this was not observed in turbulent 

regimes, as Γ's increase gradually decays with the increase in Re. Based on these accounts, we 

are keen to hypothesize that the attenuation factor 2D does not only attribute attenuation to the 

flow regime, but it also sustains an underlying link to the cloud bubble structure and self-

organization. 

 

While most cases of horn-type reactors operate under the ‘fast streaming’ category, the 

nondimensionalized equation obtained provides a level of controllability of proximal flow 

about the horn through manipulation of the empirical constants of both 𝛼 and 𝛽. Despite that, 

it is still crucial to conduct a set of experiments to validate the observed trends and strengthen 

confidence in the proposed scaling law. 
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 The Two-way Coupling between Acoustically Generated Vortical 

Flows and Bubbly Activity Zone Dispersion 
 

8.1 Introduction 

 

In Chapters 5, 6 and 7, the acoustically generated vortical-type flows were introduced as 

phenomena specific to horn-type reactors. Chapter 6 has scrutinized the source of their 

formations and their development to ultimately describe the generated vortical flow’s lifecycle. 

Moreover, Chapter 7 takes on the underlying effect of the presence of such vortical structures, 

and that is the establishment of a scalable stagnation plane with respect to the horn tip diameter. 

The mutual theme in these two chapters, however, is the underlying influence between the 

attached bubbly structures along the horn tip on the attenuation of the acoustic flow. It was 

made clear that different cavitation structures have different attenuation capabilities and 

mechanisms that alter the propagation of the acoustic wave throughout the medium. This can 

potentially have a significant impact on the performance of the reactor. Therefore, in this 

chapter, further scrutiny of the acoustofluidic mechanism of this attenuation takes place in aims 

to provide the missing link to justify the nonlinear variety in performance, and more 

specifically, reactivity of horn-type reactors. 

 

The fundamental mechanism of the resultant reactivity of a horn-type reactor has been 

extensively discussed, in Chapter 2, where the collective collapse of acoustic bubbles produces 

local pressure and temperature conditions that satisfy the formation of hydroxyl (𝑂𝐻 ∙), 
hydrogen (𝐻 ∙) and hydroperoxyl (𝐻𝑂2 ∙) radicals in a given water medium. The presence of 

these volatile radicals then creates active zones that react with compounds and substrates within 

their vicinity. As such, it has been agreed that there exists an underlying correlation between 

the concentration of free radicals and the dispersion of bubble populations within the domain 

[149]. Therefore, many studies have explored horn-type reactor optimization based on the 

premise of ‘taming’ the formation of bubbles within the system [149, 209, 226]. Several 

investigations have noted the influence of a multitude of deterministic parameters that impact 

the formation of cavitation bubbles, such as acoustic power, oscillation frequency, domain 

temperature, and even the geometry of the ultrasonic horn, specifically the tip diameter. For 

instance, Hatanak et al. [227] and Kojima et al. [226] investigated the underlying dependency 

of sonochemical efficiency on the acoustic power. Both have observed nonlinearity in the 

efficiency trends with the linear increase in acoustic power that starts off as quenching and 

ultimately ends as extinguishing. Both studies have suggested that this trend could potentially 

be due to the increase in active bubble population per unit volume. 

 

This nonlinear behaviour was further carried forward in the observations made by Viciconte et 

al. [228], however, conclusions made here diverge away from the aforementioned suggestion 

on the bubble population. In this exploration, the authors have scrutinized the reactivity of 

multiple ultrasonic horns of different tip diameters. Essentially, horns of larger tip diameters 

appear to produce larger concentrations of the fluorescent product 7𝑂𝐻𝐶, and ultimately, 

achieving a higher chemical efficiency, defined as: 

 

𝜂𝑐ℎ𝑒𝑚 =
𝐶7𝑂𝐻𝐶 × 𝐵𝐷𝐸𝑂𝐻

Δ𝑢
  (8.1) 

where 𝐶7𝑂𝐻𝐶  is the concentration of this fluorescent product, which is assumed to be an indicator 

to the concentration 𝑂𝐻 radicals, 𝐵𝐷𝐸𝑂𝐻 is the bond dissociation energy, and Δ𝑢 is the internal 
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energy absorbed by the reactor. However, the nonlinearity finally surfaces in the vapor volume 

trends. While generally, an increase in the horn tip diameter from 3 mm to 40 mm does in fact 

increase the vapor volume produced, however, an inflection point emerges at the 14 mm 

diameter in which there is a noticeable drop in the vapor volume in comparison to the 7 mm 

tip before increasing along with the diameter to 40 mm. This leaves sufficient room to assume 

that the present differences in the cavitation structure and dynamics have an underlying impact 

on the reaction rate of the reactors. Viciconte et al. [228], along with Rivas et al. [229] and 

Ashokkumar [230], have reached the same conclusion suggesting that smaller dispersed 

bubbles induce a dissipation of higher energy density upon their collapse in comparison to 

larger bubbles. In turn, this leads to a higher production of radicals. Given that larger tip 

diameters sustain the presence of such small bubbles, this phenomenon is then reflected in the 

increasing 𝜂𝑐ℎ𝑒𝑚 with the increase of the tip diameter. 

 

As it appears, there is a lot of speculation on the reason behind the nonlinear performance 

trends that are seen to converge towards the role of the cavitation structure. Based on the 

previous investigations in Chapters 6 and 7, we understand that the proximal vortical flow field 

about the horn tip maintains some governing role over the cavitation structure structural 

characteristics. This then provides us with a strong foundation to scrutinize the interplay 

between proximal vortex characteristics and the cavitation structural and flow dynamics. 

Similar to the methodology followed in the aforementioned explorations, the investigative 

methodology is an extrapolation of the CFD configuration described in the previous chapters 

to facilitate the assessment of the cavitation structure and its accompanied proximal velocity 

and pressure fields under horn geometries summarized in Table 8.1. This parametric analysis 

is inspired by Viciconte et al.’s experimental work [228] and initialized by a collaboration with 

the authors to further scrutinize their observed trends. 

 

8.2 Ultrasonic Horn Geometries and Reactor Configurations 

 

The range of reactor geometries and operating configurations considered in the presented 

exploration in this Chapter are fundamentally based on the experimental setup implemented in 

Viciconte et al. [228] in which a 200 mL aqueous solution is ultrasonically irradiated by 

titanium probes, of varying diameters tabulated in Table 8.1, submerged 25 mm into the 

domain. These probes are excited by a Hielscher ultrasonic transducer UP400S that operates at 

an oscillation frequency of 24 kHz and sustains a maximum power of 400 W. With this 

configuration, controllability of the oscillation amplitude is facilitated through the power 

regulation of the device, represented as percentage powers with respect to the maximum power. 

Experimentally, this percentage is translated to a metric amplitude and a calorimetric power. 

Furthermore, an immersed thermocouple in the solution, specifically positioned at the corner 

of the cylindrical container, to monitor the solution temperature without interfering with the 

ultrasonic multiphase flow field and wave propagation. Lastly, the electric power extracted by 

the ultrasonic transducer was recorded using a socket-type multimeter. Numerically, on the 

other hand, this experimental setup was replicated by exactly implementing the same domain 

created and utilized in Chapter 6, with the oscillation amplitude being governed by a UDF 

implementing Eq. 2.36. It is important to note that the experimental study scrutinized only 𝜙𝐷= 

3, 7, 14, and 40 mm. However, based on the aforementioned nonlinearity observed between 

the 14 mm and the 40 mm horn tips, we have interpolated two additional configurations, 

namely the 24 mm and the 32 mm horn tips to deeply explore and characterize this inflection. 

Figure 8.1 illustrates the fitted trendlines obtained based on the configurations implemented 

experimentally to define the interpolation scheme. 
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Table 8.1: Different ultrasonic horn reactor configurations and operating conditions. The bold text refers to the interpolated 

operating horn reactor geometries and their respective oscillating parameters. 

𝜙𝐷 (𝜇𝑚) 𝐴𝑛𝑜𝑚 (%) 𝐴𝑟  (𝜇𝑚)  ±2.35 𝜙𝐷 (𝜇𝑚) 𝐴𝑛𝑜𝑚 (%) 𝐴𝑟  (𝜇𝑚)  ±2.35 

3 

30 23.54 

24 

30 14.70 
50 25.89 50 26.48 
70 47.08 70 30.52 
90 62.38 90 41.09 

100 64.74 100 41.87 

7 

30 - 

32 

30 9.13 
50 36.39 50 16.76 
70 50.47 70 18.83 
90 64.55 90 25.37 

100 64.08 100 25.65 

14 

30 19.95 

40 

30 2.35 
50 29.34 50 2.35 
70 39.91 70 4.70 
90 53.99 90 5.88 

100 55.16 100 5.88 
 

 

 
Figure 8.1: Fitted trend lines plotting the variation of horn tip displacement amplitude 𝐴𝑟 (in 𝜇𝑚) with respect to the horn 

tip diameter 𝜙𝐷 (in mm) operating at different power level conditions. 

 



153 

 

A second-order line fitting scheme was used to facilitate the interpolation of the acoustic 

configurations of horn diameters between 14 mm and 40 mm. For the case of 𝐴𝑛𝑜𝑚 = 30%, it 

is understood that there is relatively limited number of data points, this single-point absence is 

due to the lack of experimental measurements at that operating condition. Nevertheless, the 

same polynomial fit was applied uniformly to all cases to maintain a consistent interpolation 

methodology across different power levels and to ensure comparability of trends. Despite this 

being a limitation of the presented dataset, the fitting still provides reasonable interpolation 

within the measured range, while avoiding introducing additional bias through the use of 

different fitting methods. 

 

Moreover, a secondary consistent trend noticeable in Figure 8.1 is the slight increase in the 

displacement amplitude of the 7 mm horn tip at all power levels alike. Given a constant power 

level, this hike could be the interplay between impedance matching, resonant frequency tuning 

and radiation damping. At this intermediate diameter, an impedance match between the horn 

and the liquid was established and thus allowing for efficient energy transfer and maximum 

displacement. Meanwhile, at the small tip diameter, a poor impedance matching might have 

limited achieving displacement amplitude. On a similar note, the increased radiation resistance 

and modal redistribution with larger tip diameters led to a continuous reduction in their 

displacement amplitude. 

 

8.3 Results and Discussion 

 

8.3.1 Attached Cavitation Macrostructural Dynamics 

 

Building on what was previously observed in Chapters 6 and 7, the observed time-averaged 

radial profiles sustained by the attached cavitation macrostructures overlap with the 

aforementioned trends, shown in Figure 7.3, by similarly demonstrating the same transition 

from MBS to CBS when moving from small horn tip diameters to larger diameters. However, 

observations of this trend begin to gradually diverge when reducing the power input into the 

ultrasonic transducer. Essentially, MBS found in smaller diameters remain present even at 

lower acoustic powers, however, they do shrink in size. However, upon climbing towards the 

14 mm horn tip, the attached macrostructure begins to flatten instead, merely resembling a 

layered cushion placed on the larger horn tips. With further increasing the diameter from 14 

mm to 40 mm, this cushion proceeds to become incrementally thinner.  

 

Nevertheless, the cavitation structure shape here is merely a shallow comparison between the 

cavitation performance of the horn-type reactors and do not reveal much about their influence 

on the reactor’s reaction rate. Instead, we speculate that perhaps the size of the cavitation and 

its oscillating frequency may reveal underlying correlations between the structure and the 

reactor chemical performance, as they may act as indicators to the extent of active zone 

presence within the domain. The typical lifecycle of an acoustic cavitation bubble disclosed in 

Chapter 2.2.1 summarizes the expansion of micronuclei through rectification diffusion or even 

coalescence with one another due to secondary Bjerknes forces, followed by reaching their 

resonance size that eventually leads to their collapse. This mechanism then disperses smaller 

active bubbles that undergo the same process [231]. By taking inspiration of this well-

established mechanism, we attempted to draw analogous themes from the single-bubble 

lifecycle with the attached cavitation cluster. It was assumed that the bubble cluster attached to 

the horn tip is a single, continuous cavitation body – more like a large single bubble with an 

interface defined by its outermost layer that maintains a vapor volume fraction equal to 0.1. To 

mirror the dynamic behaviour of a bubble, we equivalently translated the cavitation structure 
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attached to the horn tip of diameter 𝐷 into a single spherical bubble structure with a constant 

equivalent radius 𝑅𝑒𝑞 that retains the same vapor volume 𝑉𝐵, as shown in Figure 8.2. 

 

 
Figure 8.2: The translation procedure of the attached cavitation macrostructure on a horn tip surface of diameter D to an 

equivalent single spherical bubble of constant equivalent radius 𝑅𝑒𝑞 and vapor volume 𝑉𝐵. 

 

 

Moreover, the dynamic oscillation, and specifically the resonance, of this equivalent bubble is 

assessed by adopting the previously established bubble natural frequency generalized model 

by Brennen et al. [30]. To derive the said model, Brennen et al. [30] started by neglecting both 

the thermal and compressibility effects and decomposing 𝑝∞ in the Rayleigh-Plesset equation, 

stated in Eq. 2.3, into a mean value 𝑝̅∞ and a small perturbation of the pressure amplitude 𝑝 

with a radian frequency 𝜔, such that 

 
𝑝∞ = 𝑝̅∞ + 𝑅𝑒{𝑝̃𝑒𝑗𝜔𝑡} (8.2) 

the bubble linear dynamic response becomes 

 
𝑅 = 𝑅𝐸[1 + 𝑅𝑒{𝜑𝑒𝑗𝜔𝑡}] (8.3) 

where 𝑅𝐸 is the equilibrium bubble radius sustained at 𝑝̅∞ and  𝜑 is the bubble radius response 

in the form of a complex number. This way, 𝑅𝑒|𝜑| is simply the oscillation amplitude of the 

bubble radius. Moreover, 𝜑 phase represents the difference between 𝑝∞ and 𝑅. In that regard, 

by replacing Eqns. 8.2 and 8.3 into Eq. 2.3, an expression that defines the bubble radius 

frequency is formulated as follows 

 

𝜔2 − 𝑗𝜔
4𝜈𝑙

𝑅𝐸
2 +

1

𝜌𝑙𝑅𝐸
2 [
2𝑆

𝑅𝐸
− 3𝑘𝑝𝐺𝐸] =

𝑝

𝜌𝑙𝑅𝐸
2𝜑

 (8.4) 

where 

 

𝑝𝐺𝐸 = 𝑝̅∞ − 𝑝𝑣 +
2𝑆

𝑅𝐸
=
3𝑚𝐺𝑇𝐵𝐾𝐺

4𝜋𝑅𝐸
3  (8.5) 

For a given perturbed pressure amplitude 𝑝, the maximum amplitude response appears to occur 

at a frequency 𝜔𝑃, which can be evaluated by the minimum radius value in the left-hand side 

(LHS) of Eq. 8.4. This, in turn, gives us the following 
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𝜔𝑃 = [
(3𝑘𝑝𝐺𝐸 −

2𝑆
𝑅𝐸
)

𝜌𝑙𝑅𝐸
2 −

8𝜈𝑙
2

𝑅𝐸
4 ]

1
2

 (8.6) 

With this equation, and assuming negligible damping of the bubble radius oscillation induced 

by viscous effects, one can ultimately obtain an expression for the natural frequency of the 

bubble 

 

𝜔𝑁 = [
1

𝜌𝑙𝑅𝐸
2 {3𝑘(𝑝̅∞ − 𝑝𝑣) + 2(3𝑘 − 1)

𝑆

𝑅𝐸
}]

1
2

 (8.7) 

where S is the liquid surface tension and k is a constant equal to 1 in our case, assuming that 

the bubble oscillation is an isothermal process. Here, it becomes noticeable that the natural 

frequency 𝜔𝑁 becomes solely dependent on the pressure gradient (𝑝̅∞ − 𝑝𝑣). More popularly, 

Minnaert [277] reduced this equation to 

 

𝜔𝑁 =
3.26

𝑅𝐸
 (8.8) 

given that the single bubble is present in an aqueous domain at atmospheric conditions. In that 

regard, we have utilized the said equivalencies and frequency definitions on the acoustic 

cavitation structures observed in the stated cases in Table 8.1. Specifically, we started with 

extracting the monitored vapor volume signal and implementing FFT on each of them to obtain 

the underlying oscillation frequency, assuming that this represents the resonance frequency of 

the macrostructure. This assumption sources from the natural frequency definition in Eq. 8.7 

in which it expresses that bubble resonance occurs when zero viscous damping is assumed on 

the bubble radius. Likewise, the modified ZGB cavitation model derived in Chapter 4 is based 

on a simplified Rayleigh-Plesset equation, expressed in Eq. 4.13, that neglects the influence of 

viscosity on the bubble radius progression. Following that, the vapor signals and their 

respective FFT are summarized in Figures 8.3 – 8.7. 
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Figure 8.3: Vapor volume signals and their respective frequency response plots for all cases of 𝐴𝑛𝑜𝑚 = 30% where (a) - (e) 

represent the 3 mm case to 40 mm case. 

 

 

 

 

 
Figure 8.4: Vapor volume signals and their respective frequency response plots for all cases of 𝐴𝑛𝑜𝑚 = 50% where (a) - (e) 

represent the 3 mm case to 40 mm case. 
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Figure 8.5: Vapor volume signals and their respective frequency response plots for all cases of 𝐴𝑛𝑜𝑚 = 70% where (a) - (e) 

represent the 3 mm case to 40 mm case. 

 

 
Figure 8.6: Vapor volume signals and their respective frequency response plots for all cases of 𝐴𝑛𝑜𝑚 = 90% where (a) - (e) 

represent the 3 mm case to 40 mm case. 
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Figure 8.7: Vapor volume signals and their respective frequency response plots for all cases of 𝐴𝑛𝑜𝑚 = 100% where (a) - 

(e) represent the 3 mm case to 40 mm case. 

 

Furthermore, by calculating the RMS of the vapor volume signal, we can then evaluate the 

time-averaged equivalent radius of each case by utilizing the following volume equation of the 

sphere. 

 

𝑉𝐵 =
4

3
𝜋𝑅𝑒𝑞

3  (8.9) 

With both frequency and radius data obtained, data points were plotted alongside the Minnaert 

resonance curve to compare the potential overlap or translation of the data points obtained from 

the established Minnaert resonance curve. These datapoints were categorized based on the horn 

tip diameter they were generated under. Therefore, based on Eq. 8.8, we have fitted a curve 

similar to the Minnaert resonance curve along each category of points to illustrate the 

differences. This comparison is highlighted in Figure 8.8 below. Generally, it is shown that 

with the increase of the horn tip diameter, the curve translates upward deeming that the 

cavitation structures generated are ultimately larger in size and oscillate at increasing 

bandwidths. Interestingly, the 3 mm tip diameter almost overlaps with the Minnaert resonance 

curve suggesting that the structure under such horn tip acts as a bubble at atmospheric 

conditions. 
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Figure 8.8: Comparative plot showing the resonance frequency of each cavitation macrostructure obtained under each horn 

tip diameter. 

Furthermore, another interesting trend revealed is the nonlinearity that occurs past the 14 mm 

horn tip. With the increase of the tip diameter from 14 to 40 mm, the curve begins to translate 

downwards instead indicating lower oscillation frequencies, however, with larger cavitation 

structures. Essentially, the large cavitation structures observed under the 14 mm to the 40 mm 

horn tips are not due to their axial extensions but their flat spreading along a larger surface area 

of the horn tip. Therefore, vapor within their respective domains occupy more volume. These 

trends were in fact obtained numerically for each case, however, to ensure confidence in these 

trends, we have extracted experimental data and plotted them alongside the numerical results, 

as shown in Figure 8.9. Given that the numerical setup used is the same setup validated in 

Sections 4, 5 and 6, this plot acts as an extended validation and reinforces the capability of this 

configuration to comparatively capture the experimentally observed oscillatory behaviours of 

generated cavitation structures. While additional quantitative comparisons could further enrich 

the validation, the comparative plot here focuses on demonstrating the model’s ability to 

reproduce the frequency scaling behaviour with respect to the horn tip geometry, which is the 

physical phenomenon of interest. Ultimately, this provides sufficient ground to assess the 

reactors’ performance from a purely hydrodynamic perspective. 
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Figure 8.9: Validation plot comparing the numerical results with the experimental results by showing the resonance 

frequency of each cavitation macrostructure obtained under each horn tip diameter. 

 

Here, a small discrepancy between the numerical and the experimental results can be seen 

highlighting the numerical simulation’s relatively small underprediction of the frequency 

trends. Nevertheless, the fitted lines generally precisely capture matching trends and dynamic 

behaviours of all bubbly structures. The fitted trendline translations were plotted using the 

following generalized function of the Minnaert resonance expression 

 

𝜔𝑛 =
𝑎

𝑅𝑒𝑞
+ 𝑏 (8.10) 

where 𝑎 and 𝑏 are fitting coefficients, where 𝑎 = 3.26 and 𝑏 = 0 for Minnaert resonance 

equation. As mentioned earlier, this is generally obtained by solving the natural frequency 

equation expressed in Eq. 8.7 by assuming atmospheric conditions. This way, it can be said 

that the manipulation of these coefficients for the different trendlines indicate a possible shift 

in the value of the pressure gradient in Eq. 8.7 away from atmospheric conditions. To prove 

this, we have attempted to replot the fitted trendlines using Eq. 8.7 to quantify the exact change 

in the pressure gradient term, as shown in Figure 8.10.  
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Figure 8.10: Comparison between trendlines fitted using the generalized Minnaert equation and the natural frequency 

equation. 

 

With trial and error, the pressure gradient values were chosen to fit as closely as possible to the 

fitted lines. These pressure gradient values were then recorded for each diameter, as illustrated 

in Figure 8.11, and plotted against the inlet Reynolds number of each horn tip. What was rather 

eye-catching is the remerging of the said nonlinearity in the pressure gradient values as well. 

Initially, the pressure gradient seems to increase drastically with the increase in the horn tip 

diameter from 3 mm to 14 mm. Afterwards, the inflection point becomes apparent with short 

stepdown in the pressure gradient when moving from a 14 mm to a 24 mm horn tip, until it 

ultimately, and rather surprisingly, reaches a value almost equivalent to the value observed at 

3 mm horn tip. Another interesting point is the overlap of this nonlinearity with the nonlinearity 

observed in progression of the Reynolds number. This could be a potential indicator towards 

the role of the flow field on the generation of these pressure gradient values. Recalling that 

Δ𝑃 = 𝑝∞ − 𝑝𝑣,  where 𝑝𝑣 is a constant material property referring to the vaporization pressure, 

this typically means that it is 𝑝∞ that governs the value of Δ𝑃. Essentially, Brennen et al. [30]  

defines this term as the ambient pressure of the container a single bubble is settled in. However, 

it is obvious that perhaps this definition does not exactly apply for the case of acoustic 

cavitation. Instead, it was found that 𝑝∞ here is defined as the RMS pressure of the domain. 

Therefore, 𝑝∞ will be referred as 𝑝𝑅𝑀𝑆 from this point onwards. As such the questions that rise 

from these observations are as follows: (i) what are the factors that govern the value of 𝑝𝑅𝑀𝑆? 

(ii) to what extent is the influence of cavitation’s presence on 𝑝𝑅𝑀𝑆? (iii) If so, what governs 

the structural dynamics of the cavitation structure? The following sections will answer the 

raised questions. 
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Figure 8.11: The generated pressure gradient by different inlet Reynolds number under different horn tips. 

 

8.3.2 Proximal Acoustic Multiphase Flow Field 

 

As preliminary measures taken to answer the stated queries, we started by isolating this 

section’s scrutiny to the triangular inflection region observed in Figure 8.11 formed by the 14 

mm, 24 mm, and the 32 mm points. This is to shine light on the underlying factors that play a 

role in the establishment of this nonlinear region. Based on the exploration in Chapter 7, it has 

been understood that the acoustic wave tends to experience attenuation due to a multitude of 

factors, such as the material property of the fluid domain, the presence of impurities, and in our 

case, the presence of homogenous phases within the continuous domain. We have already 

concluded that the larger the axial presence of cavitation is the more refracted, and eventually 

attenuated, the acoustic wave will be. While the conclusion was consistent with our 

observations in multiple cases, however, it fails to justify the present nonlinearity here. It is 

crucial to note that the investigation conducted in Chapter 7 was a mere change of diameter 

while keeping all horn operating conditions constant, i.e. the oscillation amplitude was kept 

constant for horn tips considered, while not necessarily physically possible. In the present case, 

on the other hand, the oscillation amplitude changes from one tip diameter to another, since the 

parameters are based on an experimental setup. Furthermore, the selection of the oscillation 

amplitude varies with respect to the power level set for the ultrasonic transducer. As such, the 

cavitation flow fields were analysed in both amplitude variation directions. 
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8.3.2.1 Flow Field Variations with Tip Diameter Changes 

 

For the first case, we have scrutinized the flow fields of the three diameters during their 

operation at 30% power. In a similar fashion conducted in Chapter 7, the flow field parameters 

for each case were time-averaged, as shown in Figure 8.12. Going by the shape of the cavitation 

structure, it seems as though the macrostructure sustains this sheet-like structure about the horn 

tips, only that it appears to get thinner with larger horn tip diameters. This becomes clearer in 

Figure 8.13, where the position of the hump starts off the furthest at around 𝜁 = 0.25 for the 

14 mm case and begins to recede until 𝜁 = 0.1 for the 32 mm case. This attribution between 

the 𝑔𝑟𝑎𝑑 𝜈𝑧 hump location and the cavitation axial extension was proven in Chapter 7. The 

slight resemblance of a cone-like structure with the cavitation’s axial extension under the 14 

mm tip clearly defines itself as the turning point for the cavitation structure towards a flatter 

structure with larger horn tips.  

 

Making preliminary judgements, based on the variation in the operating conditions of the 

considered horn tips, the appearance of these flatter structures might be due to the fact that the 

same percentage acoustic energy is being distributed over a larger surface area, ultimately, 

forcing the horn tip into a smaller amplitude oscillation. In other words, the amount of acoustic 

energy transferred to the fluid domain is gradually decreasing with increase in the diameter, as 

previously discussed by Viciconte et al. [228]. This also is reflected in the axial velocity 

contour plots, in which a gradual deceleration in the acoustically excited flow is demonstrated 

when moving from the 14 mm horn towards the 32 mm horn, which may justify the hump size 

variation observed in Figure 8.13. However, what is rather eye catching is the pressure 

distribution about the horn tip; it appears as though the high-pressure interface perfectly 

overlaps the attached cavitation structure wavy interface. This perhaps can be taken as a hint 

towards uncovering the correlation between the two. 

 

Recalling the attenuation trends computed using the one-dimensional model in Chapter 7, it is 

understood that attenuation of the acoustic wave is in fact governed by the cavitation, however, 

it is not governed by its overall size but by its bubble density. With larger horns, we have 

observed, both here and in the previous chapter, that the cavitation structure is generally larger, 

whether it adopts a sheet-like structure or a cone-like structure. Nevertheless, the attenuation 

was proven to be greatest under the smaller horn tip diameters, i.e. 3 mm and 6 mm tips. We 

have suggested then that this is probably due to the bubble density and distribution within the 

macrostructure. This suggestion is shown to apply in the present case as well, judging by the 

trends plotted in Figure 8.14, which were obtained by following the same methodology 

discussed in Section 7.4.3. A general overview of the trends will reveal that the rate of decay 

of the bubble population within the structures increases significantly under larger tip diameters, 

which, in turn, further highlights the shortened axial extension of the cavitation structure. 

Moreover, the bubble density, specifically within the structure’s core, seem to sharply drop at 

the 32 mm case, while it was quite comparable between the 14 mm and 24 mm cases. In 

reference to the pressure distribution observed in Figure 8.12, the acoustic pressure wave 

transverses further downstream when faced with a smaller bubble population, and in turn, the 

ultrasonic radiation has more influence over the domain. This could be a plausible explanation 

to the noted variation in 𝑝𝑅𝑀𝑆 from one case to another, however, it is important to see if these 

observations hold true in the remaining power levels before making any ultimatums. 
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Figure 8.12: Axisymmetric contour-vector plots of the time-averaged (top) vapor volume fraction (center) axial velocity and (bottom) pressure of the proximal flow about (a) a 14 mm tip (b) a 

24 mm tip and (c) a 32 mm tip all operating at 30% power. The red vertical lines represent the horn tip, and the red asterisks label the vortex centers. 
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Figure 8.13: Axial velocity gradients about the horn axis plotted against the dimensionless axial coordinate for cases of D =  

14, 24, and 32 mm. ζ is the dimensionless z-position normalized with respect to the tip diameter D for each case. 

 

 
Figure 8.14: Number of bubbles 𝑛𝐵   plotted against the dimensionless axial coordinate along the horn axis for cases of D = 

14, 24, and 32 mm. ζ is the dimensionless z-position normalized with respect to the tip diameter D for each case. 
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8.3.2.2 Flow Field Variations with Power Level Changes 

 

In this subsection, we have taken the 14 mm horn tip and scrutinized all its power levels to 

explore the potential impact the increase in amplitude with the same diameter has on the 

proximal flow field. At first glance, we can immediately observe that the cavitation structure 

gradually grows in size and morph into a closer shape resembling CBS. This axial growth 

downstream is highlighted in both Figure 8.15 and Figure 8.16. In Figure 8.16, specifically, the 

axial extension can be quantified by the shift in the maximum point of the hump. Interestingly, 

the structural extensions of cavitation seem comparable enough in such a way that one can 

categorize them in the following groups: (i) low power range (ii) mid-power range and (iii) 

high power range. At 30% power, the axial extension reaches 0.25D, while the structure’s axial 

extension reaches at about 0.45D at both 50% and 70% power. Lastly, at 90% and 100%, the 

axial extension ultimately reaches 0.75D. Moreover, the axial flow seems to drastically 

accelerate with the increase of power, which is justified due to the proportional increase in 

acoustic energy density distributed about the same horn tip surface area, moreover, this induces 

a higher energy concentration being transmitted into the fluid domain through the radiation 

column created under the acoustic horn. Using Eq. 7.33, we tabulated the acoustic intensity 𝐼𝐴 

and the acoustic power density 𝑃𝐷 trends for each power level, as shown in Table 8.2. 

 
Table 8.2: Acoustic horn oscillation conditions and acoustic energy concentration parameters for the 14 mm horn tip at 

each power level. 

𝜙𝐷 (𝜇𝑚) 𝐴𝑛𝑜𝑚 (%) 𝐴𝑟  (𝜇𝑚)  ±2.35 P (W) 𝐼𝐴 (𝑊/𝑚𝑚2) 𝑃𝐷 (𝑊/𝑚𝑚3)  

14 

30 19.95 120 0.21 0.009  
50 29.34 200 0.35 0.015  
70 39.91 280 0.53 0.021  
90 53.99 360 0.81 0.024  

100 55.16 400 0.90 0.030  
 

It is expected to observe that the trends of both 𝐼𝐴 and 𝑃𝐷 are collinear in nature and increasing 

with the increase in the power input 𝑃, as it shows that the increase acoustic energy 

concentration on the surface of the horn tip will eventually dissipate to the fluid radiation 

column under the horn tip. One may notice that the energy density within the fluid column is 

substantially less than the acoustic energy density about the surface area of the horn tip, 

however, this trend surely complies with the simple fact that the energy is being distributed 

over a larger volume, and thus the energy concentration is spread thin. 

 

Despite that, the flow field particularly demonstrates a significant change in its behaviour 

within the system through the change in the pressure distribution about the horn tip. Essentially, 

the once curvy pressure interface appears to smoothen out with a power level increase from 

30% to 70%. As what was discussed earlier, this new pressure interface falls in-line with the 

smoothened cavitation interface, as well. This gradual transfiguration from a sheet-like 

structure to CBS is also reflected in the bubble distribution, plotted in Figure 8.17, based on 

the yet another deduction made in Chapter 7 stating that CBS tends to sustain a highly nonlinear 

bubble distribution. This is particularly observed for 70%, 90%, and 100% power. Furthermore, 

and as one can already predict, a higher power level induces a higher bubble density within the 

macrostructure. However, it now becomes of great significance to understand the governing 

factors of the bubble distribution and population. Conclusions drawn previously suggesting 

that the bubble distribution is a consistent indicator to the cavitation macrostructure’s shape 

provides a solid platform to build on in our current case; the question ultimately boils down to, 

what governs the bubble structure shape? 
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Figure 8.15: Axisymmetric contour-vector plots of the time-averaged (top) vapor volume fraction (center) axial velocity and (bottom) pressure of the proximal flow about a 14 mm tip operating 

at (a)-(e) 30% - 100% power, respectively The red vertical lines represent the horn tip, and the red asterisks label the vortex centers. 
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Figure 8.16: Axial velocity gradients about the horn axis plotted against the dimensionless axial coordinate for the horn tip 

D = 14 mm operating at different power levels. ζ is the dimensionless z-position normalized with respect to the tip diameter 

D. 

 

 
Figure 8.17: Number of bubbles 𝑛𝐵 plotted against the dimensionless axial coordinate along the horn axis for the horn tip D 

= 14 mm operating at different power levels. ζ is the dimensionless z-position normalized with respect to the tip diameter D. 
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8.3.3 Vortical Structural Behaviours 

 

In both Chapters 5 and 6, we have established that there exists a generative locomotive toroidal 

vortex produced by the periodic motion of the horn as a recirculation zone on both its sides, 

initially. These then reposition themselves downstream along the horn axis forming a couple 

of counter-rotating vortices. In Chapter 6, specifically, we have placed major focus vortex-

bubble interaction and ultimately concluded that the vortex has some hand in governing the 

lifecycle of the transient cavitation structure through flow manipulations and ultimately 

forming an impinging jet that breaks down the continuous structure. As we are currently 

scrutinizing the steady structure of cavitation, the role of the time-averaged vortices in the 

manipulation of the cavitation structure remains unknown. In Figure 8.12, this primary counter-

rotating vortex seems to be actively present under all three horn tips, of course with different 

sizes, eccentricities, and lengths. Moreover, the aforementioned side recirculation is also 

present in the steady domain. However, what was rather interesting was the formations of new 

secondary vortices along the tip surface of the larger horn tips. Noticing the overlap between 

the scattering of these vortices, the pressure distribution, and the flatter appearance of the 

cavitation structure hint at a potential coupled effect between them all. In aims to look further 

into the change in the vortex property and position with respect to its correlative occurrence 

with different cavitation structures, Figure 8.18 zooms into the recurring primary vortex and 

plots the respective pressure distribution and the flow curl within the chosen confined 

subdomain for the same cases shown in Figure 8.12. 

 

The purpose of this figure is to shine light on what was hinted at in Figure 8.12, and that is the 

variation in the pressure distribution and interface is being governed by the presence of the 

vortex. One can notice from the previous figure, and the current figure below, that the vortex 

centre appears as though it is initially positioned at low pressure node in the 14 mm case, 

however, this immediately begins to gradually change with the increase of the tip diameter. 

Moreover, upon plotting the curl of the velocity vector field, the vector field within the 

confinement of the vortex core comes across as initially very rotational, however, its vorticity 

begins to dissipate with the increase in the tip diameter hinting at a possible weakening of the 

vortex. Usually, when a vortex core loses its vorticity, it starts to slow down leading it to shift 

from its inertial-dominated behaviour to a more viscous-dominated behaviour. At this point, 

its circulation begins to significantly dissipate, and its vorticity is seen to diffuse. However, to 

quantify this effect and precisely judge the transformation of the primary vortex under scrutiny, 

the vortex Reynolds number has been computed for each case through the following expression 

 

𝑅𝑒𝑉 =
Γ

𝜈
 (8.11) 

where Γ is the circulation around the vortex confined region, which is evaluated by 

 

Γ =  ∮𝑣⃗
𝐶

∙ 𝑑𝑠 =  ∬𝜔𝑧
𝑆

𝑑𝐴 (8.12) 

Here, Γ is defined in two ways, the first being the line integral of the velocity field 𝑣⃗ over a 

closed curve 𝐶, where 𝑑𝑠 = 𝑣⃗ 𝑑𝑡. Moreover, this is equivalent to the double integration of the 

angular momentum in the z-direction over a closed surface 𝑆. Provided the curl in Figure 8.18, 

𝜔𝑧 can directly be computed using the following relationship 
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𝜔𝑧 =
1

2
∇ × 𝑣 (8.13) 

Ultimately, this way, we can use the second definition of Γ to interpret the value of circulation 

and replace it in Eq. 8.11 to obtain 𝑅𝑒𝑉. The vortex Reynolds number for each case in Figure 

8.18 are 32.6, 14.6, and 4.57 for the 14 mm, 24 mm, and the 32 mm tips, respectively. The 

obvious trend is that the viscous effects gradually overcome the inertial effects on the vortex 

causing its vorticity to dissipate much faster. This in turn justifies the pressure change in the 

low-pressure node at which the vortex centres lie in, since the insufficient sustenance of vortex 

rotation prevents the creation of a low-pressure node proximal to the horn tip. As a result, this 

may be the reason behind the flattening of the cavitation structure; the proximal pressure field 

is insufficiently low to encourage any further nucleation downstream of the horn tip. 

 

On the other hand, however, a change in the power input into the 14 mm horn tip resulted in 

what was already observed in Figure 8.15. In Figure 8.19, the incremental increases in the 

power level were generally observed to facilitate larger steady high-pressure zones proximal 

to the horn tip, however, no significant change to the vortex position was observed at all. 

Instead, the vortex was seen sustaining its high vorticity and minimizing its viscous dissipation, 

almost acting like an ideal vortex. Interestingly as well, the vortex core seems to consistently 

appear at a low-pressure node, which appears to partially facilitate the axial extension of the 

cavitation structure observed in Figure 8.15. This is of course a compound effect of a more 

inertia-dominated vortex behaviour and a higher amplitude of oscillation of the acoustic wave 

that generated these low-pressure nodes. This observation is supported by the computed values 

of 𝑅𝑒𝑉 for each power level where it was found that 𝑅𝑒𝑉 = 32.60, 611.17, 549.67, 782.00, and 

941.14 for power levels 30% through 100%, respectively. As it was concluded that the 

cavitation structural shape influences the propagation of the acoustic wave throughout the 

domain, it leads us to think that the said variation in the vortex structural behaviour does in fact 

have moulding capabilities over the cavitation structure through manipulations of the pressure 

field. As such, this ultimately controls the equivalent radius obtained for each case. Moreover, 

manipulations of the size and shape of the cavitation structure then allow for the control of the 

extent of attenuation of the acoustic wave that, in turn, influence the value of 𝑝𝑅𝑀𝑆. Therefore, 

this directly influences the observed variation in the resonance frequency of the 

macrostructure’s oscillation. 
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Figure 8.18: Axisymmetric contour-vector plots of the time-averaged (top) curl and (bottom) pressure of the proximal flow about the closest vortex to the horn axis of the (a) 14 mm tip (b) 24 

mm tip and (c) 32 mm tip cases all operating at 30% power. 
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Figure 8.19: Axisymmetric contour-vector plots of the time-averaged (top) curl and (bottom) pressure of the proximal flow about the closest vortex to the horn axis of  the 14 mm tip operating 

at (a) – (e) 30% to 100% power respectively. 
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8.3.4 Bubble Dispersion and Active Zone Creation 

 

Moving slightly downstream from the horn tip and the attached cavitation, we experimentally 

uncover yet another major difference in the transversion of acoustic cavitation bubbles, 

summarized in Figure 8.20. As it appears that the vapor far-field comprises of relatively smaller 

bubbles in comparison to the bubbles agglomerated within the attached cavitation 

macrostructure, the presented numerical configuration is unable to capture the vapor nucleation 

in the downstream region. Specifically, this inaccuracy sources from the implemented 

cavitation model, where it assumes that the nucleating bubbles typically attain a constant 

equivalent radius of 25 × 10−3 m. As such, anything smaller is averaged out and neglected. 

Essentially, the difference observed was that with smaller horns, 3 mm and 7 mm tips, the far-

field cavitation bubbles appear as nanoscale bubbles that independently transverse downstream 

without any traces of coalescence. However, upon observing the far-field under larger horns, 

14 mm and 40 mm tips, we observe that these bubbles begin to decelerate in their downstream 

motion, as shown specifically under the 14 mm horn, and instead begin to coalesce and 

agglomerate in place, as shown under the 40 mm horn.  

 

 

Figure 8.20: Sequential high-speed frames of instantaneous transient cavitation under (a) 3 mm horn tip operating at 100% 

power, (b) 7 mm horn tip operating at 100% power, (c) 14 mm horn tip operating at 30%, and (d) 40 mm horn tip operating 

at 70% power [228]. 

 

Additionally, an interesting attribute that was observed lies within these bubbles’ oscillations, 

as their oscillation frequency appear in line with that of their respective macrostructure’s 

oscillation. Therefore, we are keen to hypothesize that there exists an underlying interaction, 

or at least a correlation, between the macrostructure and the far-field vapor. As we have already 

established, the toroidal vortex tends to be more turbulent and ideal with smaller horn tips, 

while it is more viscous-dominant with larger tips. Considering that the vortex found under 

smaller tips tend to sustain their high-speed recirculation, it could probably be said the observed 

bubbles transverse along the established path by the vortex downstream of the horn tip. As for 

larger horns, the vortex tends to viscous dominant resulting in a slower, more dissipative 
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recirculation. Therefore, these nanobubbles appear rather stationary, which facilitates their 

agglomeration and coalescence. Furthermore, if we were to draw parallels between the 

observed far-field bubble motion and the bubble distribution streamlines discussed in Chapter 

7, one can further highlight the potentially bigger role the vortex has over the far-field 

behaviour of these bubbles. It was essentially discussed that buoyant particles, i.e. cavitation 

bubbles, tend to follow path lines established by the proximal vortex [221-223]. However, these 

types of particles end up getting entrapped at equilibrium points within the vortex if their rise 

speed does not exceed a given threshold Q empirically defined by the vortical flow field [223]. 

In a previous study scrutinizing Stuart vortices, these bubbles were seen accumulating at 

equilibrium points in such a way that remarkably resembles a ’cat’s eye’, ultimately matching 

the shape of the Stuart vortex [224]. The three main equilibrium points are highlighted in Figure 

8.21. 

 

 

 
Figure 8.21: A boundary streamline of a Stuart vortex, or ‘cat’s eye’, showing the typical path of a buoyant particle takes 

within the vortex. Points labelled 1, 2, and 3 represent the equilibrium points observed by Tio et al. [224].  

 

This comes across as potentially analogous to what we observed in the far-field of the 40 mm 

case. The agglomerations of bubbles formed, represented by the darkened clusters, downstream 

of the horn tip may just be stable equilibrium points at which bubble coalescence and 

agglomeration is strongly encouraged. Additionally, this falls in line with the position of the 

vortex resolved in the numerical simulation in Figures 8.18 and 8.19, where the primary vortex 

falls within approximately 2-3 mm axially away from the tip. This can then justify the 

distributions of vapor zones areas under the different horn tips observed by Viciconte et al. 

[228], as summarized in Figure 8.22. Given that Viciconte et al. [228] have observed a more 

polydisperse stationary vapor regions in the far-field under the more chemically efficient horn-

type reactor, i.e. 40 mm case, it can be added that the additional low frequency oscillation of 

these agglomerates may further facilitate the production of OH radicals and enhance the 

treatment of water pollutants. 
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Figure 8.22: Sequential processing of high-speed frames to extract the histogram distribution of far-field vapor regions 

areas under the (a) 7 mm tip operating at 100% power, (b) 14 mm tip operating at 30%, and (c) 40 mm tip operating at 70% 

power [228]. 

 

8.4 Conclusion 

 

This chapter presented both a numerical study that explores the structural dynamics of the 

attached cavitation macrostructure and its relationship with production of hydroxyl radicals. 

Through leveraging previously observed multiphase flow dynamics, this chapter generally 

provided a practical perspective of the primary role of acoustically induced proximal flow in 

governing the overall performance and reactivity of the horn-type reactor. Based on 

experimental observations made by Viciconte et al. [228], it was initially detected that the 

production of radicals had achieved the highest yield under the 40 mm horn tip, although the 

attached cavitation structure was the thinnest, in comparison to the structures observed under 

smaller horns, and had no axial presence downstream of the domain. 

 

As a means to scrutinize this behaviour, the same two-dimensional axisymmetric numerical 

setup configured in Chapters 6 and 7, was utilized to conduct a parametric analysis considering 
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multiple horn tip sizes, namely 3-, 7-, 14-, 24-, 32-, and 40-mm horn tips operating at five 

different power levels, 30%, 50%, 70%, 90%, and 100% power. As such, a two-way analysis 

examining the performance variation of the horn-type reactor with respect to both the tip 

diameter and the oscillation amplitude. By considering the attached cavitation macrostructure 

as one continuous bubbly body, we have assumed equivalency between the attached structure 

and the structure of a perfectly spherical bubble. Well-established structural models and 

attributes of a spherical bubble were assumed applicable to the observed macrostructures, 

specifically, the bubble oscillation models were implemented to describe the oscillation of the 

macrostructure within each design point.  

 

Generally, the macrostructures observed appeared to be rather in-line with what was observed 

previously in Chapters 6 and 7; small horn tips facilitate MBS while larger horn tips produce 

CBS. However, with the change in the horn’s amplitude, it was noted that both MBS and CBS 

tend to initially adopt a sheet-like structure at low power levels but eventually achieve their 

respective fully developed structures at higher power levels. Moreover, by following the 

generalized bubble resonance model and the Minnaert resonance model, we have observed that 

small MBS oscillates at a much higher bandwidth when compared to the larger CBS observed 

under larger horn tips. Justifications of this trend sourced from the vortical flows predicted by 

the numerical simulations. It appeared as though the vortex gradually becomes viscous 

dominated, as its core’s vorticity dissipates at higher rates. This loss of rotation in the vortex 

core leads to the inability of generating a low-pressure node at the vortex location, and thus, 

preventing the attached cavity from further nucleating and expanding downstream from the 

horn tip. As it is noted that the oscillation frequency is governed by the pressure gradient within 

the domain, the shrinking in the cavitation structure decreased the attenuation of the acoustic 

wave propagation, ultimately, facilitating the proportional decrease in the resonance frequency 

of the cavitation structure. As a result, correlation conclusions can be drawn suggesting that 

low frequency oscillations of the sheet-like structure, in addition to the stationary polydisperse 

vapor regions, can facilitate larger yields of hydroxyl radicals and create more activity regions 

throughout the domain. 
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 Conclusions and Future Works 
 

The presented thesis had dedicated aims and objectives to precisely define the working 

principle of horn-type ultrasonic reactors and to generalize the flow field produced under those 

types of reactors. Following these investigative targets, the thesis has presented a series of 

sequential numerical studies that aimed to tackle the research objectives stated in Section 1.4 

as follows: (1) build and experimentally validate a complete numerical configuration coupled 

with a new cavitation model to accurately predict acoustically generated cavitation structures, 

(2) explore different horn oscillation modelling techniques and their influence on flow field, 

(3) identify key flow attributes and properties of the acoustically induced multiphase flow 

proximal to the horn, (4) generalize the time-averaged multiphase flow, and (5) investigate the 

two-way interactions between the cavitation macrostructure produced and the proximal flow 

field about the horn tip. In that manner, a set of key conclusions were drawn for each stage of 

the investigation. 

9.1 Conclusions 

 

Initially, a multi-bubble cavitation model was derived on the assumptions that the multiphase 

domain is a continuous homogenous mixture between the water liquid and the water vapor 

phases.  

 

• As such, the new model was derived from the Rayleigh-Plesset equation through a 

ZGB-inspired simplification of the equation. However, deviating away from the ZGB 

model’s derivation, the new model accounts for inertial effects on the development of 

the bubble interface. This resulted in a mathematical expression the development of the 

bubble interface based on four empirical constants, namely the equivalent bubble 

radius, the nucleation site volume fraction, the vaporization constant, and the 

condensation constant.  

• Based on a stepwise regression and response optimization, through the desirability 

approach, achieved a set of optimized values, 25 × 10−6 m, 5 × 10−4, 17.35988, and 

0.1, for each aforementioned constant, respectively.  

• The optimized model was successfully validated against previous experimental results 

of a 3 mm horn-type reactor operating at 20 kHz and set at a 164 𝜇𝑚 oscillation 

amplitude. 

This directly addresses Objective 1, establishing a validated numerical foundation capable of 

predicting cavitation structure formation and behaviour under ultrasonic excitation. Carrying 

forward with the new model, and as a final step for configuring the full numerical model, a 

comparative exploration was conducted to draw parallels between the uniform and the 

Kirchhoff-based vibration models used to oscillate the horn geometry in the domain. The basis 

of the comparison lied within the different flow features induced under each model, and this 

was studied by visualizing the LCS using FTLE.  

• It appeared that the Kirchhoff-based model led to significant underprediction of 

cavitation growths and collapses in which it has been associated with low-pressure 

peaks and higher cycle frequencies.  
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• This was justified by the model’s facilitation of the formation of a diagonally impinging 

jet that penetrates the centre of the cavitation macrostructure leading to its two-step 

collapse.  

• It was argued that this jet formation is governed by the instantaneous position and 

eccentricity of the toroidal vortex downstream of the horn, as the vortex is primarily 

positioned under the horn under the Kirchhoff-based vibration, while the uniform 

model has its vortex offset to the horn’s side.  

• The vortex-cavitation interaction is reflected in the frequency response of both the 

pressure and vapor volume signals; the collapse of the cavitation structure is observed 

to occur at a frequency of 7966.69 Hz under the Kirchhoff-based model, while it occurs 

at 4991.68 Hz frequency under the uniform model.  

• This doubling in magnitude of oscillation frequency is a strong indicator that this is due 

to the two-step collapse that occurs under the Kirchhoff-based vibration. Interestingly 

however, all these differences begin to dissolve with the increase of the tip diameter. 

Perhaps, it is a strong indication that the influence of the first mode shape of the horn 

tip’s vibration gradually loses significance with larger surface areas. 

This fulfils Objective 2 by demonstrating how the choice of horn oscillation modelling 

influences cavitation morphology and dynamics. As the underlying significance of the vortex-

cavitation interaction was revealed, a numerical parametric analysis followed that scrutinized 

the general vortex structural progression trends under a set of small and large horn tips 

comprised of 3-, 6-, 13-, 16-, and 19-mm horns. The primary differences in the vortex 

behaviour in small and large horn tips fell within the vortex size and eccentricity.  

 

• Under small horn tips, the toroidal vortex tends to be symmetrical and significantly 

large with respect to the horn tip size. Meanwhile, large horn tips witness toroidal 

vortices that undergo two stages of eccentricity changes, starting with eccentricity in 

the radial direction followed by eccentricity in the axial direction.  

• Regarding the vortex-cavitation interaction, the first indicator of potential correlation 

was the equivalency of the vortex expansion–contraction frequency and the cavity's 

sub-harmonic frequency. It has been found that the cavity structure is molded into MBS 

by the presence of a symmetric locomotive vortex structure that extends up to 1.5 times 

the horn tip diameter. Meanwhile, CBS is observed to take shape in the presence of an 

eccentric locomotive vortex that attains a size within 0.2–0.6 times the horn tip 

diameter.  

• The significance of the vortex size and position is also observed in the cavity's collapse, 

as the vortex appears to govern the ability of the cavity impinging jet to initialize the 

collapse phase. An attempt to justify the instance of impingement was conducted by 

evaluating the momentum ratio between the vapor and water liquid momentum. Once 

the vapor structure is seen to lose momentum and the vortex gaining momentum, the 

impingement becomes successful agitating the cavity structure and initializing its 

collapse. 

This addresses Objective 3 by identifying vortex topology, eccentricity evolution, and 

frequency coupling as key flow attributes governing cavitation structure behaviour. It was 

clearly shown that the vortex size in the time domain tends to oscillate rather rapidly and behave 

distinctly from one horn-type reactor to the other. Therefore, this acted as an obstacle to the 
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acoustic flow generalization that this investigation intended to achieve in aims of building a 

foundation for optimization. As such, a follow-up numerical study was conducted to obtain the 

time-averaged behaviour of the vortices observed.  

• This ultimately demonstrated the emerging early stagnation point that consistently 

positions itself at a distance of two times the ultrasonic horn tip diameter 2D, regardless 

of the tip size. Referring back to the established vortex-cavitation coupling, cavitation 

attenuation was scrutinized by mathematically modeling the time-averaged axial flow 

during the cavitation transient state and solving the flow using Newman's subroutine.  

• During fast streaming, acoustic force attenuation decreases exponentially at a 

maximum rate of ≈ 1.70 with the doubling of 𝑅𝑒 ⁠. However, an inverse trend was 

demonstrated by the dimensionless attenuation Γ = −2𝛼𝐷 ⁠, as it increased by a factor 

of ≈ 1.28⁠. Similarly, Γ exponentially increased with the doubling of 𝑅𝑒 during slow 

streaming suggesting direct proportionality between Γ and 𝑅𝑒 ⁠. This emphasized the 

underlying role of the term 2D in amplifying attenuation induced by morphing 

structures of inertial bubble clusters.  

• Moreover, tracking the bubble population along the horn axis revealed that mushroom-

like structures formed under small horn tips have a linear bubble distribution, while 

cone-like structures under larger tips maintained an exponential distribution. This may 

suggest that a linear distribution may enhance attenuation and justify the 

aforementioned trends. 

This directly responds to Objective 4 by providing a scalable, geometry-independent flow 

feature useful for modelling and design. Lastly, insights on the vortex significance on the intra-

structural bubble distribution and acoustic wave attenuation provided a strong platform to 

properly assess the reactivity performance of the horn-type reactor.  

 

• Experimentally, a trend has been identified demonstrating that the production of 

radicals had achieved the highest yield under the 40 mm horn tip, although the attached 

cavitation structure was the thinnest, in comparison to the structures observed under 

smaller horns, and had no axial presence downstream of the domain.  

• A parametric analysis considering multiple horn tip sizes, namely 3-, 7-, 14-, 24-, 32-, 

and 40-mm horn tips operating at five different power levels, 30%, 50%, 70%, 90%, 

and 100% power was conducted. By considering the attached cavitation macrostructure 

as one continuous bubbly body, we have assumed equivalency between the attached 

structure and the structure of a perfectly spherical bubble.  

• Generally, by following the generalized bubble resonance model and the Minnaert 

resonance model, we have observed that small MBS oscillates at a much higher 

bandwidth when compared to the larger CBS observed under larger horn tips. The 

vortex gradually becomes viscous dominated, which appeared to drop its vorticity. As 

a result, the slow-down in the vortex core rotation induced a high-pressure node, instead 

of the typical low-pressure node observed in smaller horn tips, ultimately, preventing 

the attached cavity from further nucleating and expanding downstream from the horn 

tip. Moreover, this induced shrinking in the cavitation structure decreased the 

attenuation of the acoustic wave and decreased the resonance frequency of the 

cavitation structure.  
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• As a result, this suggests that the sheet-like polydisperse cavitation structure can 

achieve resonance at a much lower frequency, ultimately, leading to the facilitation of 

a larger amount of activity zones and higher radical concentrations. 

This addresses Objective 5 by linking cavitation–vortex coupling to functional performance 

metrics such as the reactor reaction rate. 

 

9.2 Contributions to Literature and Future Works 

 

With that study, the investigation achieves all research aims and objectives that primarily 

revolve around numerically modelling acoustically induced multiphase flow in horn-type 

reactors in hopes to provide a deeper understanding of the generalized working principle of 

horn-type reactors and to build a solid foundation for optimization of these reactors depending 

on the usage intended. Prominent contributions to literature made from the aforementioned 

series of investigations are as follows: 

 

• A new homogenous mixture cavitation model was developed and optimized 

specifically for capturing bubble cluster inertia-dominant development in an 

ultrasonically irradiated environment. 

• The two-way coupled nature of the horn-tip proximal toroidal vortex and the attached 

acoustic cavitation is identified and generalized in horn-type reactors operating at the 

low-to-mid range bandwidth.  

• Under different horn geometries, the initial role of the acoustic attenuation induced by 

the preliminary attached cavity was revealed to facilitate acoustic streaming that births 

the proximal toroidal vortex. In turn, the vortex’ ability to ‘mold’ the attached cavitation 

structure during its proceeding growth stages was demonstrated. 

• This revealed a resultant dynamic attenuation of ultrasonic wave propagation 

throughout the medium that effectively controls the chemical performance of the horn-

type reactor. 

• Ultimately, a set of control parameters, responsible for dictating the reaction rate of the 

horn-type reactor, was defined and compiled.  

The series of studies have advanced the fundamental understanding of the proximal vortical 

flow, its lifecycle, and its governing significance of the number of chemically active sites 

created throughout the domain. This, however, hints at the next research steps that should 

follow this extended investigation. 

 

• Firstly, it would be great to carry out a deeper optimization of the new cavitation model 

through testing and examining the performance of each empirical constant in cases of 

different flow conditions and high bandwidths of ultrasonic radiation, such as 

frequencies of 1 MHz and above. This would refine the modularity of the model and 

enhance its prediction of bubble dynamics nonlinearities that may arise in cases of high 

frequencies. Possibly, this may facilitate the usage of the model as a predictive tool in 

biomedical applications. However, the proposed extension should be viewed as a long-

term development direction, as new numerical modelling challenges arise within that 

frequency range. Specifically, complexities such as nonlinear acoustic propagation, 

strong viscous and thermal attenuation and overall higher computational costs would 

require to be addressed as prerequisites. 
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• Similarly, to better generalize the flow about a wider range of horn-type reactors, a 

further optimization study must be conducted to adjust the relaxation factors set in the 

one-dimensional mathematical model. This would then facilitate another study that 

explores a wider range of operation conditions and bandwidths of the horn reactors, 

such as 1 MHz and above, that are typically exclusively used in the medical field in a 

variety of treatment procedures. 

• Moreover, recalling that the numerical model is configured to only capture fluid 

dynamic behaviors within the horn-type reactors’ domains, it would be of great 

improvement to the accuracy of the numerical model to couple the current setup with a 

chemical model that would capture the radical formations and dissipation that occurs 

within the acoustically nucleated bubbles. This way, a more concise relationship 

between the acoustic flow features and the reactor performance can be established and 

assessed, respectively. 
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APPENDIX A: Modified Cavitation Model Source Code 
 

As discussed in Chapter 4, the new cavitation model derivation was essentially inspired by the 

ZGB interpretation of the relationship between the equivalent bubble radius, the vapor volume 

fraction, and the nucleation site volume fraction. The source code below summarizes the 

optimized implementation of the derived cavitation model into ANSYS FLUENT as a 

multiphase homogeneous mixture model. 

 
#include <udf.h> 
#include <stdio.h> 
#include <math.h> 
 
//Modified Zwart et al. Cavitation Model 
 
#define F_vap (17.35988) //Vaporization Constant 
#define F_cond (0.1) // Condensation Constant 
 
#define dt (0.000005) //Time Step Size 
 
#define r (25.*pow(10,-6)) //Bubble Radius Constant 
#define r_nuc (5.*pow(10,-4)) //Nucleation Volume Fraction 
 
#define rhoV (C_R(c,vap)) //Vapor Density 
 
DEFINE_LINEARIZED_MASS_TRANSFER(zwart_mod,c,t,from_index,from_species_index, 
to_index, to_species_index, d_mdot_d_vof_from,d_mdot_d_vof_to) 
{ 
 
//Definitions 
real m_dot; 
real m_source; 
 
real ts = N_TIME; //Current Time Step 
real final_ts = 500; //Final Time Step 
 
real p_vap = 2808; //Vapor Pressure 
 
real p_op = RP_Get_Real ("operating-pressure"); //Operating Pressure 
real press = C_P(c, t) + p_op; //Absolute Pressure 
real dp = p_vap-press; //Pressure Difference 
real dp0 = ABS(dp); //Absolute Value 
// dp0 = MAX(dp0, 1e-4); 
 
Thread *liq = THREAD_SUB_THREAD(t, from_index); 
Thread *vap = THREAD_SUB_THREAD(t, to_index); 
 
real rhoL = C_R(c,liq); //Liquid Density 
real rl = C_VOF(c,liq); //Liquid Volume Fraction 
real rv = C_VOF(c,vap); //Vapor Volume Fraction 
real r_rho_lv = 1./rhoV - 1./rhoL; 
 
//Growth Rate and Acceleration at t = 0 
real dr_2 = dp0/(rhoL*r); 
real dr = dr_2*dt; 
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real source = sqrt(2./3.*dp0/C_R(c,liq)); 
m_dot = 0.; 
m_source = 0.0; 
 
C_UDMI (c,t,0) = dp0/(rhoL*r); 
C_UDMI (c,t,1) = dr_2*dt; 
 
//Source Terms at Remaining Time Steps 
if (dp > 0){ 
m_dot = F_vap*(3.*r_nuc*(1.-C_VOF(c,vap))/r)*rhoV*C_UDMI (c,t,1); 
m_source = m_dot * rl; 
*d_mdot_d_vof_from  = m_dot; 
*d_mdot_d_vof_to    = -m_dot; 
} else { 
m_dot = -F_cond*(3.*C_VOF(c,vap)*rhoV/r)*C_UDMI (c,t,1); 
m_source = m_dot * rv; 
*d_mdot_d_vof_from = m_dot; 
*d_mdot_d_vof_to = -m_dot; 
} 
C_UDMI (c,t,0) = dp0/(rhoL*r) - (3./(2.*r))*pow(C_UDMI (c,t,1),2); 
C_UDMI (c,t,1) = C_UDMI (c,t,1) + (C_UDMI (c,t,0)*dt); 
 
/*  ++++++++++ ds/dp term ++++++++++++++   */ 
if(NNULLP(THREAD_STORAGE(t, SV_MT_DS_DP))) 
C_STORAGE_R(c,t,SV_MT_DS_DP) = ABS(r_rho_lv*m_source/(2*dp0)); 
 
return m_source; 
} 
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APPENDIX B: Uniform Vibration Model Source Code 
 

In Chapter 5, the equation of the uniform sinusoidal vibration of the ultrasonic horn boundaries 

is translated as a ANSYS FLUENT-compatible boundary condition. This custom boundary 

condition is fed as a ‘rigid boundary’ dynamic meshing algorithm, as it allows ANSYS 

FLUENT to automatically accommodate for any excessively deformed mesh cells caused by 

the motion of the horn walls. 

 

#include <udf.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

DEFINE_CG_MOTION(uniformVib, dt, vel, omega, time, dtime)  

{  

Thread *t; /*is the pointer to the structure that stores*/  

real A= 164*pow(10,-6); /* Assign amplitude*/  

real H= 20000; /* Assign frequency*/  

real ω = 2. * M_PI * H; /*Calculate the omega*/  

real v = A*ω*sin(ω*time); /*Calculate velocity*/  

/* reset velocities . The linear and angular velocities are returned to FLUENT 

by overwriting the  

arrays vel and omega, respectively*/  

NV_S (vel, =, 0.0);  

NV_S (omega, =, 0.0);  

/* obtain the thread pointer for which this motion is defines */  

t = DT_THREAD(dt);  

/* compute velocity */  

v = A*ω*cos(ω*time);  

vel[1] = v;  

} 
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APPENDIX C: Kirchhoff-based Vibration Model Source Code 
 

In a different implementation manner to that shown for the uniform vibration model in Chapter 

5, the Kirchhoff-based vibration equation is described by the DEFINE_GRID_MOTION 

ANSYS FLUENT-specific macro that typically defines the motion of mesh nodes along the 

selected boundary. In the source code below, the nodes were selected and displaced with time 

according to Eq. 2.61. However, similar to the uniform vibration source code, the boundary 

condition is introduced as a ‘rigid boundary’ dynamic meshing algorithm, to facilitate the 

remeshing of the excessively deformed mesh cells during the defined deformation of the 

boundary. 

 

#include <udf.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

DEFINE_GRID_MOTION(kirchVib,domain,dt,time,dtime) 

{ 

Thread *tf = DT_THREAD(dt); 

face_t f; 

Node *v; 

real NV_VEC(omega), NV_VEC(axis), NV_VEC(dx); 

real NV_VEC(origin), NV_VEC(rvec); 

real r, disp; 

real R = 0.0015; 

real dis_max= 164*pow(10,-6); 

real h = 20000;  

real delta = 0.000001; 

real w = 2. * M_PI * h; int n; 

 

real axis_multi = -1;  

real NV_VEC(axis_neutral); 

 

SET_DEFORMING_THREAD_FLAG(THREAD_T0(tf)); //set pointer to reference point at 

adjacent cell zone 

NV_D(axis, =, 1.0, 0.0, 0.0); 

NV_D(axis_neutral, =, 0.0, 0.0, 0.0); 

 

begin_f_loop(f,tf) 

{ 

f_node_loop(f,tf,n) 

{ 

v = F_NODE(f,tf,n); 

if (NODE_POS_NEED_UPDATE (v) && NODE_Y(v) >= 0) //update node only if the node 

has not been previously updated 

{ 

NODE_POS_UPDATED(v); //label current node as updated 

r = (NODE_Y(v))/R; //non-dimensionalize the poisiton 
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Message ("Node Number = %f\n", NODE_Y(v)); 

disp = dis_max*(1-pow((r),2)+2*pow((r),2)*log(r+delta/R))*sin(w*time); 

NODE_X(v) = disp; 

Message ("Node Coord (x) = %f\n", NODE_X(v)); 

} 

} 

} 

end_f_loop(f,tf); 

} 
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APPENDIX D: Finite Time Lyapunov Exponent MATLAB Code 
 

The Finite Time Lyapunov Exponent procedure summarized by Eqs. 5.2 – 5.3 in Chapter 5 

was applied and solved in a step-by-step process coded on MATLAB. The object-oriented 

program simply consists of two files, the main code, otherwise known here as FTLE.m, and 

the FTLE calculation function, labelled as calculate_ftle.m that is called by FTLE.m. The 

program simply discretizes a subdomain, extracted from the CFD domain, with a clutter of 

particles of a specific resolution. Afterwards, these particles are advected across the subdomain 

with an imported velocity field from the CFD simulation. Ultimately, by calling 

calculate_ftle.m, Eq. 5.3 is solved to obtain the FTLE across the subdomain. 

 

FTLE.m 
 
clc 
clear 
tic 
 
% Creating the grid of particles 
 
xBound = [-0.005 0]; 
yBound = [0 0.005]; 
 
gridResX = 2.5e-05; 
gridResY = 2.5e-05; 
 
xInt = floor((xBound(2) - xBound(1))/gridResX)+1; 
yInt = floor((yBound(2) - yBound(1))/gridResY)+1; 
 
x = linspace(xBound(1), xBound(2), xInt); 
y = linspace(yBound(1), yBound(2), yInt); 
 
gridResX_1 = x(2)-x(1); 
gridResY_1 = y(2)- y(1); 
 
[X,Y] = meshgrid(x,y); 
 
nP = xInt*yInt; % Total number of particles 
 
% Create interpolation function 
% Backward integration 
 
dt = 575; 
 
while dt <= 600 
 
    tEnd = 1; 
    tStart = tEnd + dt; 
    % tLength = 499; 
    % tStart = 600; % Integration start time 
    % %     tEnd = tStart - tLength; 
    % tEnd = 1; % Integration end time 
    tStepSize = 5e-06; % Step size 
    % Nt = tStart-tEnd-1; 
    Nt = tEnd-tStart-1; % Number of time steps 
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    xVect = X(1:end)'; % Inital x-coordinate vector 
    yVect = Y(1:end)'; % Initial y-coordinate vector 
 
    xCoord = zeros(nP,3); % Matrix to store new and old x coordinates 
    yCoord = xCoord; % Matrix to store new and old y coordinates 
 
    xCoord(:,3) = xVect; % x-coordinate at t = 0 
    yCoord(:,3) = yVect; % y-coordinate at t = 0 
    xCoord(:,2) = xVect; % x-coordinate at t = t-1 
    yCoord(:,2) = yVect; % y-coordinate at t = t-1 
 
    check = sqrt(xVect.^2+yVect.^2)>= 0.025; 
    s = sum(check); 
    if s > 0 
        error('particles sided outside of domain') 
    end 
 
    loadBar = waitbar(0, 'Calculating flow map'); 
 
    for tStep=tStart:-1:tEnd 
        if tStep < 10 
            name = ['FFF-6-000' num2str(tStep)]; 
        elseif tStep < 100 
            name = ['FFF-6-00' num2str(tStep)]; 
        elseif tStep < 1000 
            name = ['FFF-6-0' num2str(tStep)]; 
        else 
            name = ['FFF-6-' num2str(tStep)]; 
        end 
 
        sol_data0=dlmread(name,'',1,0); 
 
        % create interpolation function 
        x0=sol_data0(:,2); 
        y0=sol_data0(:,3); 
        vx0=sol_data0(:,4); 
        vy0=sol_data0(:,5); 
        VIx0=scatteredInterpolant(x0,y0,vx0); 
        VIy0=scatteredInterpolant(x0,y0,vy0); 
 
        % interpolate new positions 
        vi_x = VIx0(xCoord(:,2),yCoord(:,2)); 
        vi_y = VIy0(xCoord(:,2),yCoord(:,2)); 

  % Calculate x-coordinate at t = t + tstep 
        xCoord(:,1)=xCoord(:,2) + tStepSize*vi_x;  

  % Calculate y-coordinate at t = t + tstep 
        yCoord(:,1)=yCoord(:,2) + tStepSize*vi_y;  
 
        if tStep > tEnd 
            xCoord(:,2)=xCoord(:,1); 
            yCoord(:,2)=yCoord(:,1); 
        end 
        waitbar((tStart + 1 - tStep)/(tStart + 1 - tEnd)) 
        clear x0 y0 z0 vx0 vy0 vz0 VIx0 VIy0 VIz0 sol_data0 name m Zrel 
    end 
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    run=1; 
    delete(loadBar) 
    name1=['flow_map-bt-' num2str(tStart) '-x-' num2str(run) '.txt']; 
    name2=['flow_map-bt-' num2str(tStart) '-y-' num2str(run) '.txt']; 
    save(name1,'X','-ascii','-double') 
    save(name2,'Y','-ascii','-double') 
    clear i h tstep tstart tend tcrit t name1 name2 run 
 
    % Create flow map 
    flowMap=zeros(nP,2,2); 
    flowMap(:,:,1)=[xCoord(:,end) yCoord(:,end)]; 
    flowMap(:,:,2)=[xCoord(:,1) yCoord(:,1)]; 
 
    writematrix(flowMap,'flowMap.csv') 
 
    FTLE_v = zeros(nP,1); % Matrix to store FTLE values for each particle 
    tol = 0.000001; % Reference tolerance 
 
    % Indexing and storing neighboring particles' coordinates 
 
    loadBar = waitbar(0, 'Calculating FTLE'); 
 
    for p = 1:nP 
 
        xSelect = flowMap(p,1,1); 
        ySelect = flowMap(p,2,1); 
        parNeighCoord1 = zeros(4,2); 
        parNeighCoord2 = zeros(4,2); 
 
        disp(p); 
 
        pn = 1; 
 
        while pn <= 4 
 
            if pn == 1 
                x_i_m1 = xSelect - gridResX_1; 
 
                [Rx,Cx] = find(abs(flowMap(:,1,1)-x_i_m1) < tol); 
                [Ry,Cy] = find(flowMap(:,2,1) == ySelect); 
 
                Rx_check = size(Rx); 
 
                if Rx_check(1,1) == 0 
                    pn = pn + 1; 
                end 
 
            end 
 
            if pn == 2 
                x_i_m1 = xSelect + gridResX_1; 
 
                [Rx,Cx] = find(abs(flowMap(:,1,1)-x_i_m1) < tol); 
                [Ry,Cy] = find(flowMap(:,2,1) == ySelect); 
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                Rx_check = size(Rx); 
 
                if Rx_check(1,1) == 0 
                    pn = pn + 1; 
                end 
 
            end 
 
            if pn == 3 
                x_i_m1 = xSelect; 
                y_j_m1 = ySelect + gridResY_1; 
 
                [Rx,Cx] = find(flowMap(:,1,1) == xSelect); 
                [Ry,Cy] = find(abs(flowMap(:,2,1)-y_j_m1) < tol); 
 
                Ry_check = size(Ry); 
 
                if Ry_check(1,1) == 0 
                    pn = pn + 1; 
                end 
 
            end 
 
            if pn == 4 
                x_i_m1 = xSelect; 
                y_j_m1 = ySelect - gridResY_1; 
 
                [Rx,Cx] = find(flowMap(:,1,1) == xSelect); 
                [Ry,Cy] = find(abs(flowMap(:,2,1)-y_j_m1) < tol); 
 
                Ry_check = size(Ry); 
 
                if Ry_check(1,1) == 0 
                    pn = pn + 1; 
                end 
 
            end 
 
            rXs = size(Rx); 
            rYs = size(Ry); 
 
            if rXs(1,1) >= rYs (1,1) 
                sizeDiff = rXs(1,1) - rYs(1,1); 
                Ry = [Ry ; zeros(sizeDiff,1)]; 
                for i = 1:rXs(1,1) 
                    for j = 1:rXs(1,1) 
                        if Ry(i,1) == Rx(j,1) 
                            reqXCoordLoc = Rx(j,1); 
                            reqYCoordLoc = Ry(i,1); 
                            disp('Match Found!') 
                            %                 break 
                        else 
                            %                 disp('Match Not Yet Found.') 
                            continue 
                        end 
                    end 
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                end 
            end 
 
            if rYs(1,1) > rXs(1,1) 
                sizeDiff = rYs(1,1) - rXs(1,1); 
                Rx = [Rx ; zeros(sizeDiff,1)]; 
                for i = 1:rYs(1,1) 
                    for j = 1:rYs(1,1) 
                        if Rx(i,1) == Ry(j,1) 
                            reqXCoordLoc = Rx(i,1); 
                            reqYCoordLoc = Ry(j,1); 
                            disp('Match Found!') 
                            %                 break 
                        else 
                            %                 disp('Match Not Yet Found.') 
                            continue 
                        end 
                    end 
                end 
            end 
 
            if pn < 5 
                parNeighCoord1(pn,1) = flowMap(reqXCoordLoc,1,1); 
                parNeighCoord1(pn,2) = flowMap(reqYCoordLoc,2,1); 
 
                parNeighCoord2(pn,1) = flowMap(reqXCoordLoc,1,2); 
                parNeighCoord2(pn,2) = flowMap(reqYCoordLoc,2,2); 
            end 
 
            if pn < 6 
                pn = pn + 1; 
            end 
 
        end 
        T=Nt*0.000001; 
        FTLE = calculate_ftle(parNeighCoord1(1,1),parNeighCoord1(1,2), 
parNeighCoord1(2,1) ... 
            , parNeighCoord1(2,2), parNeighCoord1(3,1), parNeighCoord1(3,2), 
parNeighCoord1(4,1), ... 
            parNeighCoord1(4,2), parNeighCoord2(1,1), parNeighCoord2(1,2), ... 
            parNeighCoord2(2,1), parNeighCoord2(2,2), parNeighCoord2(3,1), 
parNeighCoord2(3,2), ... 
            parNeighCoord2(4,1), parNeighCoord2(4,2), T); % Calculating FTLE 
 
        FTLE_v(p,1) = FTLE; % Store FTLE in a vector 
        waitbar((p-1)/(nP-1)); 
    end 
 
    delete(loadBar); 
 
    % Convert vector into matrix to store FTLE to its corresponding particle 
coordinate 
 
    FTLE_m = zeros(xInt,yInt); 
    r = 1; 
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    for v = 1:yInt 
        FTLE_m(:,v) = FTLE_v(r:r+xInt-1,1); 
        r = r + xInt; 
    end 
 
    % Plot FTLE wrt x and y 
 
    contourf(X,Y,FTLE_m) 
    colorbar 
    xlabel('x') 
    ylabel('y') 
    title('FTLE contour plot') 
 
    contName = ['FTLE_' num2str(dt) '.tif']; 
    saveas(gcf, contName); 
 
    dt = dt + 1; 
 
end 
toc 

 

 

calculate_ftle.m 
 
function out=calculate_ftle(x_in1j_0, y_in1j_0, x_ip1j_0, y_ip1j_0, x_ijn1_0, 
y_ijn1_0,... 
    x_ijp1_0, y_ijp1_0, x_in1j_T, y_in1j_T, x_ip1j_T, y_ip1j_T, x_ijn1_T, 
y_ijn1_T, x_ijp1_T, y_ijp1_T, T) 
 
A11 = (x_ip1j_T - x_in1j_T)/(x_ip1j_0 - x_in1j_0); 
A12 = (x_ijp1_T - x_ijn1_T)/(y_ijp1_0 - y_ijn1_0); 
A21 = (y_ip1j_T - y_in1j_T)/(x_ip1j_0 - x_in1j_0); 
A22 = (y_ijp1_T - y_ijn1_T)/(y_ijp1_0 - y_ijn1_0); 
 
A = [A11 A12;A21 A22]; 
B = A'*A; 
disp(A); 
 
delta = max(eig(B)); 
out = -log(delta)/(2*T); 
end 
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APPENDIX E: Vortex Analysis MATLAB Code 
 

The fluctuation of the vortex size observed under different horn tips in Chapter 6 was measured 

by initially assuming that the proximal toroidal vortex behaves like a Rankine vortex, where 

the vortex core is imagined as a cylinder embodying a solid-body rotation. Thus, the radius of 

this cylinder 𝑟0 is interpreted as the vortex core size. As such, the vortex size is highlighted by 

the length of the line joining two local tangential velocity maxima passing through a zero-

velocity point representing the vortex centre. To illustrate this, Fig. A1 plots the tangential 

velocity distribution within the vortex along the radial coordinate. 

 

 
Figure A1: Tangential velocity distribution within the Rankine vortex against the radial coordinate. 

With that said, the MATLAB code below was written to take in the tangential velocity from 

the velocity field exported from ANSYS FLUENT, plot its distribution in the subdomain 

proximal to the horn tip, and detect any distribution patterns resembling the one illustrated in 

Fig. A1. Afterwards, the diameter of the toroidal vortex is evaluated by seeking two directional 

changes in the slope of the linear line of the tangential distribution plot and measuring the 

distance between these two points. 

 

 

clear 

clc 

close all 

 

cd 'C:\Users\basel\OneDrive\Documents\DPhil Work\Publications\Ultrasonic Horn 

Modelling\Updated Work\FTLE Toolkit\Velocity_files\16mm\Corrected TxtFiles 1' 

files = dir; 

filesCell = struct2cell(files); 

fileNames = filesCell(1,3:602); 

 

[R_fN, C_fN] = size(fileNames); 

vortexCenterMat = zeros(C_fN,2); 
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hornDia = 0.019; 

 

for i = 1:C_fN 

    f = readtable(fileNames{1,i}); 

    xCoord = f{:,2}; 

    yCoord = f{:,3}; 

    u = f{:,4}; 

    v = f{:,5};     

    f = f{:,:}; 

    vortexRegion = f; 

    vortexRegion = f((f(:,2) >= -0.01) & (f(:,2) <= 0.00149513), :); 

    vortexRegion = vortexRegion((vortexRegion(:,3) >= 0.00025) & 

(vortexRegion(:,3) <= 0.0131167), :); 

    vortexRegion(:,6) = sqrt((vortexRegion(:,4).^2) + (vortexRegion(:,5).^2)); 

     

    [R_vMat, C_vMat] = size(vortexRegion); 

     

    for j = 1:R_vMat 

        vortexCenterVel = min(vortexRegion(:,6)); 

        [R_vC, C_vC] = find(vortexRegion(:,6) == vortexCenterVel); 

         

        leftVectRow = R_vC - 1; 

        rightVectRow = R_vC + 1; 

         

        if leftVectRow ~= 0 & rightVectRow ~= 0 & leftVectRow <= R_vMat & 

rightVectRow <= R_vMat 

            if vortexRegion(leftVectRow,5) > 0 & vortexRegion(rightVectRow,5) 

< 0 

                vortexCenterMat(i,1) = vortexRegion(R_vC(1,1),2); 

                vortexCenterMat(i,2) = vortexRegion(R_vC(1,1),3); 

                break 

            elseif j == R_vMat 

                continue 

            else 

                vortexRegion(R_vC,:) = []; 

                [R_vMat, C_vMat] = size(vortexRegion); 

                continue 

            end 

        else 

            vortexRegion(R_vC,:) = []; 

            [R_vMat, C_vMat] = size(vortexRegion); 

        end 

         

    end 

     

end 

 

[R_vCM, C_vCM] = size(vortexCenterMat); 
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figure 

scatter(vortexCenterMat(:,1), vortexCenterMat(:,2)) 

figure 

plot([1:R_vCM], vortexCenterMat(:,1)); 

figure 

plot([1:R_vCM], vortexCenterMat(:,2)); 

 

Y1 = fft(vortexCenterMat(:,1)); 

Y2 = fft(vortexCenterMat(:,2)); 

L = R_vCM; 

Fs = 1/5e-06; 

fs = Fs/L*(0:(L/2)); 

 

figure 

P2 = abs(Y1/L); 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

plot(fs,P1,"LineWidth",2)  

title("Single-Sided Amplitude Spectrum of X(t)") 

xlabel("f (Hz)") 

ylabel("|P1(f)|") 

 

figure 

P2 = abs(Y2/L); 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

plot(fs,P1,"LineWidth",2)  

title("Single-Sided Amplitude Spectrum of X(t)") 

xlabel("f (Hz)") 

ylabel("|P1(f)|") 

 

[R_cM, C_cM] = size(vortexCenterMat); 

recircLengthVect = zeros(R_cM,1); 

vortexPlot = f; 

 

figure 

hold on 

for x = 1:R_cM 

    selectedY = vortexCenterMat(x,2); 

    selectedRows = find(vortexPlot(:,3) == selectedY); 

    [R_sR, C_sR] = size(selectedRows); 

    radialVelVect = zeros(R_sR,1); 

    xCoordVect = zeros(R_sR,1); 

     

    for y = 1:R_sR 

        radialVelVect(y,1) = vortexPlot(selectedRows(y,1),5); 

        xCoordVect(y,1) = vortexPlot(selectedRows(y,1),2); 

    end 
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    plot(xCoordVect./hornDia, radialVelVect) 

     

    gradVect = gradient(radialVelVect); 

    [R_gV, C_gV] = size(gradVect); 

    for z = 1:R_gV 

        if z < R_gV 

            if gradVect(z + 1) < 0 && gradVect(z) > 0 

                point1 = xCoordVect(z,1); 

            elseif gradVect(z) < 0 && gradVect(z + 1) > 0 

                point2 = xCoordVect(z+1,1); 

            else 

                continue 

            end 

        else 

            break 

        end 

    end 

     

    recircLength = abs(point2 - point1); 

    recircLengthVect(x,1) = recircLength; 

     

end 

hold off 

 

[R_rLV, C_rLV] = size(recircLengthVect); 

 

figure 

plot([1:R_rLV], recircLengthVect./hornDia) 

 

Y3 = fft(recircLengthVect); 

L = R_rLV; 

Fs = 1/5e-06; 

fs = Fs/L*(0:(L/2)); 

 

figure 

P2 = abs(Y3/L); 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

plot(fs,P1,"LineWidth",2)  

title("Single-Sided Amplitude Spectrum of X(t)") 

xlabel("f (Hz)") 

ylabel("|P1(f)|") 

 

recircLengthMax = abs(max(recircLengthVect))/hornDia; 

recircLengthMin = abs(min(recircLengthVect))/hornDia; 
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APPENDIX F: Newman BAND Python Code 
 

The Newman BAND subroutine was used to solve a system of three partial differential 

equations, namely Eqs. 7.30 – 7.32, that emerged from our attempt in linearizing Eq. 7.26 

through the use of trial solutions, as discussed in Chapter 7. 

 

from scipy.sparse import coo_matrix 

from scipy.sparse.linalg import spsolve 

from numpy import * 

from pylab import * 

import math 

 

# N is number of unknowns 

# NJ is number of mesh points 

 

# non-dimensional axial acceleration, f, is c1 

# non-dimnesional axial velocity, theta, is c2 

# non-dimensional acoustic attenuation, Dp, is c3 

 

saveOn = True    # saving generated data in .csv file 

 

N = 3 

NJ = 1000 

 

# Set convergence tolerance and max number of iterations 

tol = 1e-10 

itmax = 100 

 

# Constants for the problem 

L = 2 

f = 20e03           # oscillation freq. (Hz) 

c_l = 1500          # speed of sound (m/s) in water 

c_v = 477.5         # spead of sound (m/s) in  vapor 

alphaC_l = 4/4      # 1D volume fraction of liquid in domain (speed of sound) 

c = alphaC_l*c_l + (1 - alphaC_l)*c_v  # domain speed of sound  

la = c/f            # wavelength (m) 

A = 164e-06         # oscillation amp. (m) 

w = 2*pi*f          # angular velocity (rad/s) 

v = A*w           # axial oscillation velocity (m/s) 

 

D = 3e-3           # horn tip dia. (m) 

g = 9.81            # gravitational acceleration (m/s^2) 

 

rho_l = 998.3        # water density (kg/m^3) 

rho_v = 0.0173       # vapor density (kg/m^3) 

mu_l = 0.0010003     # water dynamic viscosity (Pa.s) 
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mu_v = 1.34e-05      # vapor dyanmic viscosity (Pa.s) 

alpha_l = 4/4        # 1D volume fraction of liquid in domain 

rho = alpha_l*rho_l + (1 - alpha_l)*rho_v                       # domain 

density 

mu = alpha_l*mu_l + (1 - alpha_l)*mu_v                          # domain 

dynamic viscoisty 

 

B_con = 0.05*10                             # slope correction factor 

R_con = rho*v*D/mu                        # reynolds number 

C_con = 2/B_con*(sin(pi*D/(2*la)))**2     # constant 

G_con = -2*299.52*D                       # non-dimensional acoustic 

attenuation 

 

# R = 10 

dC = 1e-04 

# dC2 = dC 

 

# Makes the mesh 

xx = linspace(0,L,NJ) 

h = L/(NJ-1) 

 

# INITIAL GUESSES 

 

def initguess(): 

    cold = ones([N,NJ]) 

    cold[0,:]= 0 

    cold[1,:]= 0 

    cold[2,:]= 0 

 

    return cold 

 

# FILLMAT 

 

def fillmat(cold): 

    # first column is equation 

    # second column is position 

    # third column is species 

 

    # initialize matrices 

     

    sma = zeros([N,NJ,N]) 

    smb = zeros([N,NJ,N]) 

    smd = zeros([N,NJ,N]) 

    smg = zeros([N,NJ]) 

 

    # fill matrices 

 

    smb[0,:,1] = -1 
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    smb[1,:,0] = -1/R_con 

    smb[2,:,2] = 1 

 

    smd[0,:,0] = 1 

    smd[1,:,0] = (cold[1,:] + dC) 

    smd[1,:,2] = -1 

 

    for l in range(NJ): 

        # smg[1,l] = -G_con*C_con*exp(-2.*G_con*(L/NJ)*l) 

        smg[1,l] = -G_con*C_con*exp(-G_con*(L/NJ)*l) 

 

    # Boundary condition 1 

 

    smp = zeros([N,N]) 

    sme = zeros([N,N]) 

    smf = zeros([N,1]) 

 

    # smp[0,1] = -1 

    sme[0,0] = 1 

    smp[1,0] = 1 

    # sme[1,1] = 1 

    smp[2,2] = 1 

    # smf[1] = -0.05 

 

    # Insert (sme smp smf) into (smb smd smg) 

 

    smb[:,0,:] = smp[:,:] 

    smd[:,0,:] = sme[:,:] 

    smg[:,0] = transpose(smf) 

 

    # Boundary condition 2 

 

    smp = zeros([N,N]) 

    sme = zeros([N,N]) 

    smf = zeros([N,1]) 

 

    smp[0,1] = -1 

    sme[0,0] = 1 

    smp[1,0] = 1 

    sme[2,1] = 1 

    smf[2] = -1 

    # smf[0] = 100 

 

    # Insert (sme smp smf) into (smb smd smg) 

 

    smb[:,NJ-1,:] = smp[:,:] 

    smd[:,NJ-1,:] = sme[:,:] 

    smg[:,NJ-1] = transpose(smf) 
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    # print(smg) 

    return sma, smb, smd, smg 

 

# ABDGXY 

 

def abdgxy(sma, smb, smd, smg): 

    sma = transpose(sma, (0, 2, 1)) 

    smb = transpose(smb, (0, 2, 1)) 

    smd = transpose(smd, (0, 2, 1)) 

 

    A = sma-h/2.0*smb 

    B = -2.0*sma+h**2*smd 

    D = sma+h/2.0*smb 

    G = h**2*smg 

 

    B[:,:,0] = h*smd[:,:,0]-1.5*smb[:,:,0] 

    D[:,:,0] = 2.0*smb[:,:,0] 

    G[:,0]=h*smg[:,0] 

    X = -0.5*smb[:,:,0] 

 

    A[:,:,NJ-1]=-2.0*smb[:,:,NJ-1] 

    B[:,:,NJ-1]=h*smd[:,:,NJ-1]+1.5*smb[:,:,NJ-1] 

    G[:,NJ-1]=h*smg[:,NJ-1] 

    Y=0.5*smb[:,:,NJ-1] 

 

    ABD = concatenate((A, B, D), axis=1) 

    BC1 = concatenate((B[:,:,0] , D[:,:,0] , X), axis=1) 

    BC2 = concatenate((Y , A[:,:,NJ-1] , B[:,:,NJ-1]), axis=1) 

    ABD[:,:,0] = BC1 

    ABD[:,:,NJ-1] = BC2 

    # print(G) 

    return ABD, G 

 

# BAND 

 

def band(ABD, G): 

 

    BMrow = reshape(arange(1,N*NJ+1), (NJ,N)) 

    BMrow = BMrow[:, :, newaxis] 

    BMrow = transpose(BMrow, (1, 2, 0)) 

    BMrow = BMrow[:,[0 for i in range(3*N)],:] 

 

    a = arange(1,3*N+1) 

    a = a[newaxis,:] 

    a = repeat(a,N,0) 

    a = a[:,:,newaxis] 

    a = repeat(a,NJ,2) 



201 

 

 

    b = arange(0,(N)*(NJ-3)+N,N) 

    b = hstack((b[0], b, b[len(b)-1])) 

    b = b[newaxis,newaxis,:] 

    b = repeat(b,N,0) 

    b = repeat(b,3*N,1) 

 

    BMcol = a + b 

    BMcol = BMcol - 1 

    BMrow = BMrow - 1 

    BMrow = ravel(BMrow) 

    BMcol = ravel(BMcol) 

    ABD = ravel(ABD) 

    BigMat = coo_matrix((ABD, (BMrow, BMcol)), shape=(N*NJ, N*NJ)).tocsc() 

    BigG = transpose(G) 

    BigG = ravel(BigG) 

    # print BigMat.todense() 

    delc = spsolve(BigMat, BigG) 

    return delc 

 

# MAIN PROGRAM 

 

cold = initguess() 

it = 1 

did = False 

 

for it in range(1,itmax): 

 

    sma, smb, smd, smg = fillmat(cold) 

    ABD, G = abdgxy(sma, smb, smd, smg) 

    delc = band(ABD, G) 

    delc = delc.reshape((NJ, N)) 

    delc = transpose(delc) 

    error = cold - delc 

    maxerror = amax(abs(error)) 

    print (it, ', ', maxerror) 

    cold = delc 

    if maxerror < tol: 

        did = True 

        print ('Converged in ' +str(it)+ ' iterations.') 

        break 

 

if not did: 

    print ('The program did not converge.') 

 

# Plots 

 

fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(6, 6)) 
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fig.subplots_adjust(left=0.15) 

 

params = {'mathtext.default': 'regular' } 

rcParams.update(params) 

 

xs = xx 

c1 = cold[0,:] 

c2 = cold[1,:] 

c3 = cold[2,:] 

ax1.plot(xs,c1,'-', color='black', markeredgecolor='k') 

# ax1.legend(['$C_{1G$'],loc='center right') 

ax1.set_ylabel('dθ/dζ', loc="top", rotation='horizontal') 

ax2.plot(xs,c2,'-', color='black', markeredgecolor='k') 

# ax2.legend(['$C_{1}$'],loc='center right') 

ax2.set_ylabel('θ', loc="top", rotation='horizontal') 

ax3.plot(xs,c3,'-', color='black', markeredgecolor='k') 

# ax3.legend(['$C_{1}$'],loc='center right') 

ax3.set_ylabel('Dp', loc="top", rotation='horizontal') 

 

ax1.tick_params(axis='both', direction='in', bottom=True, top=True, left=True, 

right=True) 

ax2.tick_params(axis='both', direction='in', bottom=True, top=True, left=True, 

right=True) 

 

print(R_con) 

show() 

 

diaSave = math.trunc(D*1000) 

# print(diaSave) 

 

if saveOn: 

    saver = [xs, c1, c2, c3] 

    diaSave = f"{diaSave:04d}" 

    savetxt('C:/Users/basel/Documents/DPhil Work/Publications/Horn Tip 

Concavity/MATLAB/Python_Newman/data_exports/' + str(diaSave) + '.csv', saver, 

delimiter=",") 

else: 

    pass 

# saver = zip(*saver) 

close('all') 
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APPENDIX G: Regular Perturbation of Small Re 
 

To simplify the regular perturbation solution, the exponential term in Eq. 7.34 has been 

substituted with Taylor series expansion, assuming a truncation error of order 𝑂(3), such that 

 

𝑒−Γ𝜁  =  1 − Γ𝜁 +
Γ2𝜁2

2
 +  𝑂(3) (A1) 

As such, the force term then becomes: 

 

Γ𝑒−Γζ = Γ(1 − Γζ +
Γ2ζ2

2
) (A2) 

By substituting this, alongside equation 7.39, the force term then becomes: 

 

Γe−Γζ  =  (Γ0Re + Γ1Re
2  + Γ2Re

3) (1 −  (Γ0  + Γ1Re + Γ2Re
2)ζ +

1

2
(Γ0  + Γ1Re + Γ2Re

2)2ζ2)

=  (Γ0Re + Γ1Re
2  + Γ2Re

3) (1 − Γ0ζ − Γ1ζRe − Γ2ζRe
2  +

1

2
Γ0
2ζ2  +  

1

2
Γ0Γ1ζ

2Re 

+
1

2
Γ0Γ2ζ

2Re2  +
1

2
Γ0Γ1ζ

2Re +
1

2
Γ1
2ζ2Re2  +

1

2
Γ1Γ2ζ

2Re3  +
1

2
Γ0Γ2ζ

2Re2  

+
1

2
Γ1Γ2ζ

2Re3  +
1

2
Γ2
2ζ2Re4)

= Γ0Re − Γ0
2ζRe −  2Γ0Γ1ζRe

2  +
1

2
Γ0
3ζ2Re +

3

2
Γ0
2Γ1ζ

2Re2  + Γ1Re
2  +  O(Re3) 

(A3) 

Moreover, to obtain the complete equation, equations 7.35 – 7.39 are substituted into 

equation 7.34, which then formulates: 
−θ0

′′  +  (θ0θ0
′  − θ1

′′)Re +  (θ0θ1
′  + θ1θ0

′  − θ2
′′)Re2  +  O(Re3)

=  DP,0  +  DP,1Re + DP,2Re
2  − Γ0Re + Γ0

2ζRe − Γ0
3ζRe −

1

2
Γ0
3ζ2Re − Γ1Re

2  

+  2Γ0Γ1ζRe
2  −

3

2
Γ0
2Γ1ζ

2Re2  +  O(Re3) 

(A4) 

 

Upon grouping up the orders of Re, in aims to resolve all terms of each of equations 7.35 – 

7.39, we obtain for 𝑂(1): 
 
θ0
′′  =  −DP,0 (A5) 

𝑂(𝑅𝑒) 

𝜃1
′′  =  −𝐷𝑃,1  + Γ0  − Γ0

2𝜁 +
1

2
Γ0
3𝜁2  + 𝜃0𝜃0

′  (A6) 

𝑂(𝑅𝑒2) 

θ2
′′ = −𝐷𝑃,2 + Γ1 − 2Γ0Γ1ζ +

3

2
Γ0
2Γ1ζ

2 + θ1θ0
′ + θ0θ1

′  (A7) 
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Furthermore, the resolved boundary conditions, as mentioned in section 7.3, translate to the 

following: 

 
θ′(0) = 0 = θ0

′ (0) + θ1
′ (0)Re + θ2

′ (0)Re2 (A8) 

where θ0
′ (0) = θ1

′ (0) = θ2
′ (0) = 0  

 
θ(0) = 0 = θ0(0) + θ1(0)Re + θ2(0)Re

2 (A9) 

θ0(0) = θ1(0) = θ2(0) = 0. 

 
θ′′(2) = 0 = θ0

′′(2) + θ1
′′(2)Re + θ2

′′(2)Re2 (A10) 

θ0
′′(2) = θ1

′′(2) = θ2
′′(2) = 0, and 

 
θ(2) = −1 = θ0(2) + θ1(2)Re + θ2(2)Re

2 (A11) 

in which 𝜃0(2)  =  −1 while 𝜃1 (2)  = 𝜃2 (2)  =  0. With that said, the boundary conditions 

were then applied to equations A5 - A7 where applicable to ultimately obtain the values of each 

term in 𝐷𝑃 and Γ and the expressions of each term in 𝜃, 𝜃′, and 𝜃′′. From 𝑂(1), we deduce 

that: 

 

𝐷𝑃,0  =
1

2
 (A12) 

𝜃0
′′ = −

1

2
 (A13) 

𝜃0
′  = −

1

2
𝜁 (A14) 

𝜃0  = −
1

4
𝜁2 (A15) 

 

And from 𝑂(𝑅𝑒): 
 
𝐷𝑃,1  = −0.767250 (A16) 

Γ1 = −0.579026 (A17) 

𝜃1
′′ = 0.767250 −  0.579026 −  0.335271𝜁 −  0.097065𝜁2  +

1

8
𝜁3 (A18) 

𝜃1
′  = 0.767250𝜁 −  0.579026𝜁 −  0.167636𝜁2  −  0.032355𝜁3  +

1

32
𝜁4 (A19) 

𝜃1 = 0.383625𝜁2  −  0.289513𝜁2  −  0.055925𝜁3  −  0.008088𝜁4  +
1

160
𝜁5 (A20) 

 

and, lastly, from 𝑂(𝑅𝑒2): 
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𝐷𝑃,2  = −0.641065 (A21) 

Γ2 = −0.641065 (A22) 

𝜃2
′′ = 0.641065 −  0.357143 −  0.413590𝜁 −  0.179609𝜁2  +

1

20
𝜁3 +  0.072137𝜁4  

+  0.0127345𝜁5  −
7

640
𝜁6 

(A23) 

𝜃2
′  = 0.641065𝜁 −  0.357143𝜁 −  0.206795𝜁2  −  0.059869𝜁3  +

1

80
𝜁4 +  0.0144634𝜁5  

+  0.00212242𝜁6  −
1

640
𝜁7 

(A24) 

𝜃2 = 0.3205325𝜁2  −  0.1785715𝜁2  −  0.0689317𝜁3  −  0.014967𝜁4  +
1

400
𝜁5 +  0.0024106𝜁6  

+  0.0003032𝜁7  −
1

5120
𝜁8 

(A25) 

 

These were then replaced back into the perturbation expansions stated in 7.35 – 7.39 to give 

the final approximations of each term, as shown in 7.40 – 7.44. 
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