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Abstract

This study investigates the dynamics of two-qubit systems in open quantum
environments, with a focus on the influence of exceptional points (EPs) and
phase angle on entanglement dynamics. Two-qubit systems are pivotal in quan-
tum information science, as they are the simplest system that reveals quantum
entanglement, a crucial resource for quantum computing and communication.
The research explores the effects of coupling, spontaneous emission, and environ-
ment on two-qubit states, specifically the X-states, within the framework of the
Gorini-Kossakowski-Sudarshan—Lindblad (GKSL) or Lindblad master equation.

EPs are unique to non-Hermitian systems. They affect the system’s dynamics
significantly when the system approaches EP. Analytical and numerical analyses
reveal that third-order EPs occur at specific parameters for two-qubit system,
leading to critical changes in eigenvalues and eigenvectors of the Liouvillian su-
peroperator. The study demonstrates that EPs can enhance or suppress entan-
glement. The concurrence, a quantitative measure of entanglement, peaks around
the EPs under certain initial conditions.

Furthermore, the impact of phase angle, 6, that parameterizes the relative
phase of maximally entangled states is analyzed. For initial states labeled as
pw(0,p) in this thesis, the phase angle significantly influences concurrence evolu-
tion, enabling tunability of entanglement dynamics. In contrast, for other class
of initial states labeled as pg (6, p), concurrence exhibits phase invariance, ensur-
ing stability across the variations in 6. Besides this, the analysis shows that the
maximum concurrence occurs around EP for some states, the phase angle can
also be tuned to increase the concurrence for some initial states. These findings
highlight the importance of both EPs and phase angle in optimizing entanglement
generation and control.

This research offers valuable insights into the interplay between non-Hermitian
physics and quantum entanglement, paving the way for advancements in quantum
technologies. The outcomes provide possible practical implications in the field of
quantum computation.
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Chapter 1

Introduction

Quantum mechanics has reshaped our understanding of the physical world by re-
vealing phenomena that defy classical intuition. Central to this field are quantum
bits, or qubits, which form the basic units of quantum information. The study of
qubits and their interactions has become essential due to their potential applica-
tions in quantum computing, and quantum communication [1], as well as quantum
sensing [2]. This thesis explores the dynamics of one-qubit and two-qubit systems
in open quantum environments, with a specific focus on the effect of exceptional
point (EP), which play a crucial role in shaping system behavior at its vicinity.

1.1 Background and context

Research into open quantum systems has gained prominence due to its signifi-
cance in developing robust quantum technologies. These systems interact with
external environments, leading to energy dissipation and loss of coherence [3]. To
model such interactions, the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
[4, 5] or Lindblad master equation [6] has emerged as a widely accepted frame-
work. Meanwhile, the concept of EPs, originating from non-Hermitian physics
[7-9], has opened new direction for studying quantum systems. EPs occur when
eigenvalues and eigenvectors of a system coalesce, resulting in profound changes
in system dynamics at its vicinity [10]. These properties have sparked interest
in enhancing quantum sensing, photonics, optics and topological energy transfer
[11-17].

1.2 Current state of knowledge

The current state of research reveals promising yet incomplete knowledge. For
one-qubit systems, EPs have been extensively studied, with theoretical and ex-
perimental investigations highlighting their role in quantum sensing and state
control [11-17]. In two-qubit systems, research is still ongoing, with experimental
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20 CHAPTER 1. INTRODUCTION

validation [18, 19]. Theoretical models suggest that EPs can influence entangle-
ment dynamics, though they do not always enhance entanglement due to complex
system-environment interactions. Physicists are also actively exploring higher-
order EPs [14, 20-22] and their connection to entanglement dynamics [23, 24],
emphasizing the need for more comprehensive analytical and experimental stud-
ies.

1.3 Research questions

This thesis seeks to address the following questions:
1. How do EPs and initial states influence the dynamics of two-qubit systems?
2. Can EPs be used to enhance entanglement in coupled qubit systems?

3. How does phase angle of initial bell’s state affect the entanglement dynamics
of the system?

1.4 Methodology

The research adopts a mixed-method approach involving eigensystem analysis and
numerical simulations. For eigensystem analysis, we will explore the behavior of
the system base on eigenvalues and eigenvectors of the system. We will also use
computational approach to analytic solution to obtain entanglement dynamics
using concurrence [25, 26] as a measure. These multi-faceted approach ensures a
comprehensive understanding of how system dynamics evolve.

1.5 Research aim and contributions

The primary aim of this thesis is to explore how EPs shape the behavior of open
quantum systems, particularly in two-qubit configurations. One of the key contri-
butions is an in-depth exploration of entanglement behavior near to or away from
EPs. Additionally, exploring the impact of phase angle on entanglement behavior
will help bridge the gap in existing research on this topic. The research will also
provide a method for tuning system parameters to achieve desired outcomes. The
last contribution will be expanding knowledge on EPs in two-qubit systems and
their technological applications.

1.6 Thesis organization

The thesis is structured in the following way. In chapter 2, we introduce the
basic knowledge such as quantum state of qubit and density matrix. we also
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introduce the dynamic of one-qubit in open quantum system. Furthermore, we
utilize the eigensystem analysis to understand the system dynamics. In chapter 3,
we introduce the idea of EP. We also focus on mathematical formulations of EP
and system dynamics.

In chapter 4, we introduce the dynamic of two-qubit system and analyze the
eigensystem and its EPs. We also introduce the concurrence and the initial state
used in the research. In chapter 5, we present numerical findings and analyzes
entanglement behavior. In chapter 6, we summarize findings, highlights contribu-
tions, and suggests future research directions.
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Part I
One-Qubit
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Chapter 2

One-qubit in open quantum
system

In computing, a bit represents a logical state of either ‘true’ or ‘false’, typically
denoted as ‘1’ for ‘true’ and ‘0’ for ‘false’. At the classical level, the state of a bit
is always definite, regardless of whether we observe it or not. Conversely, at the
quantum level, a bit’s state is in a superposition of both states until it is observed,
and such a bit is referred to as a ‘qubit’ [1].

One application of qubits is in the field of quantum computing. In 1994,
American mathematician Peter Shor developed an algorithm based on qubits to
factorize integers, known as Shor’s algorithm [27]. Shor’s algorithm provides strong
evidence of super-polynomial speedup compared to classical algorithms, which
could be extremely useful if quantum computers are realized in the future [27].

Another application of qubits is in the field of cryptography. In classical com-
munication, when two parties are exchanging information, a third party can in-
tercept the data without the original parties being aware. However, due to the
quantum nature of qubits, any attempt by a third party to intercept the informa-
tion will disturb the quantum state of the qubits, alerting the two parties to the
eavesdropping attempt [28, 29].

The discussion of a two-level system coupled with an environment was initiated
by Israel Senitzky in 1963 [30]. In his paper, Senitzky formulated the problem by
considering the two-level system as undergoing Brownian motion when interacting
with its environment [30]. Consequently, he derived the Langevin equation using
Pauli spin matrices [30]. Senitzky later extended the theory by considering a
more general type of two-level system and incorporating the effects of a thermal
reservoir [31].

Between 1976 and 1978, Vittorio Gorini, Andrzej Kossakowski, George Sudar-
shan [4, 5], and Goran Lindblad [6] developed the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) equation, also referred to as the Lindblad master equation or
quantum master equation, by assuming the Markovian traits of the quantum sys-
tem. This breakthrough provided a robust framework applicable to dissipative
two-level systems.

25



26 CHAPTER 2. ONE-QUBIT IN OPEN QUANTUM SYSTEM

2.1 Quantum properties of qubit

A pure state of a qubit is typically defined as

) =al0) +51), (2.1)

where o, 8 € C and |a|? + |8|> = 1. Here, |0) and |1) denote the states ‘0’ and ‘1,
respectively. These states can be expressed in matrix form as

m>:<a) and |U::CD. (2.2)

A mixed state of a qubit is defined as a statistical ensemble of pure states. The
density matrix is typically used to describe a mixed state of a qubit given by

P11 P12
= , 2.3
P <P21 P22> (2:3)
where p is a Hermitian positive semi-definite matrix with normalization pi1+pgs =
1. For a pure state, p must satisfy tr(p?) = 1, while for a mixed state, tr(p*) < 1.

There is an elegant way to visualize a qubit in both pure and mixed states.
The density matrix for a qubit can be expressed as

I+7F

; (2.4)

p
Here, 7= (x,y, 2) and & = (01, 09, 03) with 01, 09, 03 being Pauli matrices. For a
pure state, || = 1, while for a mixed state, |7] < 1. This representation is known
as Bloch sphere [32].

2.2 GKSL equation

A system consisting of a qubit coupled with a zero-Kelvin environment and in-
teracting with an electromagnetic field is mathematically described by the optical
Bloch equation [33].

Hatano used a simplified version of the system by focusing solely on the oscil-
lating electric field and disregarding the magnetic field [34]. This simplification is
described by the GKSL equation, given by

dp 1 1

o = —iH pl+lo-poy — 5010-p—Spoio), (2.5)

where the density matrix is

a(t) m*(t)
p(t) = (m(t) b(t) ) . (2.6)
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Here, v denotes the spontaneous emission rate of the qubit. The Hamiltonian of

the system is given by
_(—0/2 d
ne (). o

where d represents the electric field strength, and 0 represents the detuning. The
equation (2.5) leads to a set of equations given by

d‘;gt) —b(t) — idm(t) + idm* (2), (2.8)
%(;) — b(t) + idm(t) — idm* (2), (29)
dm(t) . . v
— =~ ida(t) + idb(t) — (5 + i8)m(t), (2.10)
— o =ida(t) — idb(t) + (— + i6)m’ (1), (2.11)

These equations have a similar structure to the optical Bloch equation except
disregarding the magnetic field. As a result, the Rabi frequency €2 is replaced by
the electric field strength d. We obtain a matrix differential equation by vectorizing
the density matrix as shown below,

a(t)
. a(t) m* (t) vectorization - b(t)
p= (m(t) o) ) P | m) (2.12)
m*(t)
Thus, we have
a(t) 0 v —id id a(t)
dlbt) | | 0 —y id —id b(t)
@ | mty | = | —id id —2-is o m(t) |- (2.13)
m*(t) id —id 0 —3 410/ \m*(t)
This leads to the following equation.
dp
— = Lp, 2.14
where
0 ¥ —id id
1 0 —v vd —id
L= —id id  —3 —1d 0 (2.15)
id  —id 0 —3 +id

We can further simplify the equation by absorbing ~ into the time, ¢, which is
equivalent to letting v = 1. In Hatano’s paper [34], rather than reducing the
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variable v, he reduced the detuning §, thereby limiting the possibility of achieving
0 = 0. Therefore, we now have

0 1 —id id
0 -1 id —id

E=1"ia ia —5—i6 0 (2.16)
id —id 0 —14ib

Given the initial state of the system’s density matrix, the time evolution of density
matrix given in equation (2.14) can be computed and represented by a parametric
curve 7 in Bloch sphere given in equation (2.4).

2.3 Eigensystem
To understand the dynamics of the system, we analyze the eigensystem of the

matrix £. The characteristic polynomial of £ is given by f(A) = det(L — IA),
where

FA) = A*+2A° + £A2(5 + 16d* 4 46%) + iA(l + 46” + 8d%). (2.17)

The eigenvalues are given by the root of the characteristic polynomial. Solving
f(A) =0, we have

Ay =0, (2.18)
2
AQZ_(§+U+S)7 (2.19)
2 2mi/3 —2mi/3
Ay =— §+u-e +s-e : (2.20)
2 —27i/3 2mi/3
Ay =— §+u-e +s5-€ : (2.21)
where
u=\/q+\p*+ ¢ (2.22)
s=\a— VP +& (2.23)
and
1 1
= +4d® — — 2.24
p=g (i -g5), 229
1 1
= (& -2+ — ). 2.25
0= (-2t 55) (225)
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For A; = 0, we can solve for its corresponding eigenvector,

aq
a=|n (2.26)
m;
Since (£ — IA;)v; = 0 and A; = 0, we have
0 1 —ud d ay 0
Se o e 0 | e o 220
id —id 0 —34i6) \m} 0
Using Gaussian elimination, we obtain
ay; =Ny, (2.28)
2
1 :%) (2.29)
my = — %(25 +4), (2.30)
m] = — %(25 —1). (2.31)

where Ny is a normalization constant. Since eigenvalue A; = 0 corresponds to
equilibrium point of the system, its eigenvector must satisfy the trace condition
of density matrix, tr(p) = 1, or (v1)eo + (v1)11 = 1. This gives

CAd® + 407 +1

NN=——-— 2.32
P8+ 482+ 17 (2:32)
and v takes a simpler form
462 4+ 4d* + 1
1 4d?
U = ————— . 2.
DT RE a1 | —2d(26 +1) (2.33)
—2d(26 — i)

We can express the equilibrium state in terms of Bloch sphere components, Zeq,
Yeq and 2¢q given by

8do
xeq__8d2+452+]_7 (234)
4d
yeq__8d2+452+17 (235)
1
(46% + 1). (2.36)

4T 82 + 462 + 1
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Next, we solve (L — IA;)vx, = 0 for corresponding eigenvectors, vy, where k =
2,3,4. Using a similar notation to v given by equation (2.26), we can solve for
the components of v;. They are

ar, =2d(1 + 2A,) Ny, (

bp = — 2d(1 + 2A;) Ny, (2.38
(
(

mi =(1+ Ap)[20 — i(1 + 2A,)] Ny

Then, we have

2d(1 + 2Ay)
—2d(1 + 2A)
(14 Ap)[20 +i(1 + 2A4)]
(14 Ap)[20 — (1 + 2A4)]

5, = N, (2.41)

for £ = 2,3,4. For the sake of completeness, we can also find out the left eigen-
vectors. By solving eigenvector equations £, = 0 and (LT — Ay = 0 for
J =2,3,4, the left eigenvectors are given by

J
—4dA3[20 + (1 + 2A%)

J

1
= (2.42)
0
and
(14 2A%)[40% 4 (1 + 2A%)?]
I e 2A;%[452 + (14 2A%)7] (2.43)
[

YT —4dAi[28 —i(1+200)] |
]

where j = 2,3,4. Applying biorthogonal condition of left and right eigenvectors,
given by ﬁ}ﬁk = 0j;, where { is matrix transpose conjugate. The normalizing
coefficient N}, can be computed as

1
CAdAR((2A + 1)2(4A, + 3) — 482)

Ny (2.44)

Computing the system’s dynamics does not necessitate the use of both left and
right eigenvectors. The left eigenvectors are included primarily to provide a com-
plete mathematical formulation.

In the biorthogonal formalism, the sets of right and left generalized eigenvectors
are constructed such that they satisfy the biorthogonal relation ﬁ}ﬁk = 0;;. Here,
the left eigenvectors ; form the dual basis to the right eigenvectors j. This
relation ensures that each #; acts as a linear functional that extracts the coefficient
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of its corresponding vj,. Such a construction guarantees completeness and provides
a natural projection mechanism in the non-Hermitian matrices [35].

By analyzing the eigensystem of the matrix, we will later demonstrate that the
system can be categorized into four cases, they are the overdamped, underdamped
and critically damped region at a second-order EP and third-order EP.
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Chapter 3

Exceptional points for one-qubit

Research on the EP in non-Hermitian quantum mechanics began approximately
two decades ago when it challenged the traditional assumption that a Hamiltonian
must be Hermitian to have real eigenvalues. However, studies demonstrated that
an operator does not need to be Hermitian to exhibit real eigenvalues; operators
that are P7T-symmetric can also have real, positive-definite eigenvalues [36]. The
research also showed that P7T-symmetry can break, causing some real eigenvalues
to split into complex pairs [36]. This point of symmetry breaking is now known
as the EP.

The rigorous analysis on EP in an open quantum system was studied in 1997
and 1998 [37, 38]. To properly describe the open quantum system in terms of
state vector, effective Hamiltonian, usually non-Hermitian, must be used to de-
scribe the system. The dissipative nature of the open quantum system arise from
the complex eigenvalues of effective Hamiltonian, where imaginary part of the
eigenvalues signifies the decay channel and real part represents the oscillatory be-
havior of the system [38]. An EP occurs when two complex conjugate eigenvalues
and their corresponding eigenvectors coalesce, indicating a phase transition in the
open quantum system [38].

Between 2006 and 2024, the EP exhibited by the Liouvillian superoperator
in the GKSL equation began to attract significant attention [34, 39-43]. This
interest is primarily due to the fact that the effective Hamiltonian approach for
describing open quantum systems does not account for quantum jumps [44]. Just
like effective non-Hermitian Hamiltonian, the Liouvillian superoperator has com-
plex eigenvalues, where the real part represents decay channels and the imaginary
part represents the oscillatory behavior of the system [45]. We can denote the
EPs described by the effective Hamiltonian as HEP, and those described by the
Liouvillian superoperator as LEP.

The study of EP has become increasingly popular among physicists because of
its broad applications in the sensor industry. One such application is in frequency
and energy splitting detection by sensors. Research indicates that the sensitivity
of a sensor can be enhanced by operating it at its EP [46]. Following this dis-
covery, physicists developed a general theory for sensor enhancement at EPs [47].
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Since around 2015, numerous studies have been conducted on sensor enhancement
technologies utilizing EP [11-17].

Another application of EPs is in optics and photonics. A study by Miri and
Alu demonstrates the potential to achieve a variety of exotic optical functional-
ities associated with EP by manipulating dissipation and amplification within a
nanophotonic system [48]. These functionalities include ultrasensitive measure-
ments, control over the modal content of multimode lasers, and adiabatic control
of topological energy transfer for mode and polarization conversion [48]. Addi-
tionally, research on EPs helps confirm the feasibility of realizing non-Hermitian
light transport [49]. This finding could contribute to the development of a new
generation of free-space optical communication devices [49].

3.1 Theory of exceptional point

A Hermitian matrix is always diagonalizable. However, not all diagonalizable
matrices are Hermitian. For instance, a unitary matrix, which is not necessar-
ily Hermitian, can also be diagonalizable. A diagonalizable matrix, A, can be
transformed into a diagonal matrix, D, through a change of basis

D= (Aol AOZ) : (3.1)

where A\, Ay are eigenvalues of matrix A. In any system, degeneracy occurs when
two or more eigenvalues coalesce. In a Hermitian system, degeneracy arises when
the matrix can be diagonalized as

A= (3 g) | (3.2)

In this case, the eigenvectors remain orthogonal despite the coalescence of eigenval-
ues. However, a special type of degeneracy exists in non-Hermitian systems, where
diagonalization is not possible. Instead, the matrix can at most be transformed
into a Jordan block form [50, 51|, given by

B- (3 i) | (3.3)

The parameters leading to this form of degeneracy are known as EP. At an EP,
two or more eigenvalues, along with their corresponding eigenvectors, coalesce. For
non-Hermitian system where two eigenvectors coalesce at the EP, a generalized
eigenvector 7V [50, 52] must be introduced to replace the missing eigenvector
through a generalized eigenvalue equation

(A= X)W =7, (3.4)
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where ¥ is an eigenvector of A. When p eigenvalues coalesce at an EP, it is called a
pth-order EP. The generalized eigenvectors are computed using a set of equations
known as the Jordan chain [50], given by

72 —(A — A)T™ Y, (3.5)
7Y =(A = AT,

7 =(A - X)W, (3.7)

where 7,701, ..., 7= ™= are the generalized eigenvectors of matrix A.

3.2 Exceptional points of the system

Previously, we have expressed the eigenvectors of Lindblad operator in terms of
their corresponding eigenvalues. Specifically, ¥, 3, Uy in equation (2.41), share a
common structure as functions of the eigenvalues. We observed that when two or
more of the eigenvalues Ay, A3, A4 coalesce, the eigenvectors vy, U3, U4 also coalesce.

As stated in Reference [34], there exist second- and third-order EPs for L.
These EPs can be determined by equating A3z and A4, which translates to solving
the equation p® + ¢ = 0. To make the analysis simpler, we define

d

= —. 3.8
=5 (3.8)
Solving p? + ¢? = 0 results in the following expression,
1 1
oy = = : 3.9
* 2\/87744—207}2:&8\/772(772— 1)3 -1 (3.9

We can visualize the parameter space by plotting ¢ against n when the matrix L is
at an EP. Figure 3.1 illustrates the relationship between § and 7 in the parameter
space.

At a second-order EP, the vectors v3 and v coincide, as depicted along the red
curves in Figure 3.1 [34]. For third-order EPs, the vectors ¥, U3, and v, precisely
converge at 0 = #3 and n = 1 [34] as shown in Figure 3.1. Both second and
third-order EPs signify a state of critical damping. In the shaded region of Figure
3.1, where p® +¢? < 0, all eigenvalues are real, indicating that the system is in the
overdamped region. Conversely, in the unshaded region, where p® + ¢ > 0, A,
and A, are real, while A3 and A4 take the form A3 = A +iw and Ay = X\ —iw, with
A and w being real numbers. This configuration characterizes an underdamped
system.

To understand how eigenvalues change within the parameter space of § versus
7, we can visualize A by fixing the detuning §. For example, by fixing 6 = 0.05, we
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Figure 3.1: Parameter space 6 vs n

can plot the real and imaginary parts of A vs § as shown in Figure 3.2. Alongside
the real and complex eigenvalues of the graph, we observe two eigenvalues con-
verging at the approximate values of n = 1.49467 and n = 1.80429, representing
second-order EPs and resulting in the matrix £ being non-diagonalizable. Graph-
ically, it is evident that in the underdamped region, A; and Ay are real numbers,
and Az and A4 are complex conjugates, while all eigenvalues are real numbers in
the overdamped region.

We use blue and green curves in the underdamped region to avoid ambiguity
and make it easier to distinguish the pairing of real and imaginary parts of the
eigenvalues. This is because in the underdamped region the real and imaginary
parts are separated. In contrast, the overdamped region does not have this issue
as the imaginary part of all eigenvalues is zero.

3.3 (Generalized eigenvectors

At a second-order EP, two eigenvalues and eigenvectors coalesce, only three sets
of eigenvalues, A, Ay, A3 and their corresponding eigenvectors, vy, v, U3 for the
Lindblad superoperator £ can be identified. The eigenvalues at second-order EPs
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Figure 3.2: (a) Re(A) vs. nand (b) Im(A) vs. 7. Lines with the same style in both
plots correspond to the real and imaginary parts of the same complex eigenvalue.
The parameter ¢ is fixed at 0.05.
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are given by

A =0, (3.10)
Azz-—(§-+2u>, (3.11)
Agz—(%—u), (3.12)

where
w= (3.13)

and

1 1
¢=c (52 —2d* + %) : (3.14)

Mathematically, these eigenvectors are considered a special type of generalized
eigenvectors. In the case of a non-diagonalizable matrix £ at a second-order EP,
there exists four generalized eigenvectors v1, v, U3, U4 that satisfies the following
equation

(£ — AT)T =0, (3.15)
(£ — AoI )i =0, (3.16)
(£ — AyI)T =0, (3.17)
(L — Ay )Ty =Ty (3.18)

The corresponding left generalized eigenvectors, obtained from the adjoint matrix
LT, satisfy

(LT — As D, =0, (3.19)
(LY — A3T)ity =0, (3.20)
(LY — 31y, =0, (3.21)
(LY — A31)iis =iy, (3.22)

Here, the ordering of the left eigenvectors ; is deliberately chosen so that the
biorthogonality condition, ﬁ}ﬁk = 0, is satisfied. The complete expression for left
and right generalized eigenvectors for second-order EP can be found in Appendix
Al

Following the similar pattern, at a third-order EP, three eigenvalues and eigen-
vectors coalesce. The eigenvalues at third-order EP are given by

Ay =0, (3.23)
P (3.24)
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Consequently, there exists four generalized eigenvector o, v, U3, U4 that satisfies
the following equation

(£ — A D)T, =0, (3.25)
(L — AoI)T, =0, (3.26)
(L — AoI)Ty =, (3.27)
(L — Ao 1)Uy =05 (3.28)

To complete the analysis, the left generalized eigenvectors can be solved by fol-
lowing

(LY — A3D)i, =0, (3.29)
(LY — A3T)i, =0, (3.30)
(LY — A3T)iis =iy, (3.31)
(LT — AT iy =ils. (3.32)

Again, the ordering of the left eigenvectors u; is deliberately chosen so that the
biorthogonality condition ﬁ;ﬁk = 0;), is satisfied. The complete expression for left

and right generalized eigenvectors for second-order EP can be found in Appendix
A2

3.4 Dynamics of the system

In this section, we will discuss the dynamics of overdamped, underdamped, and
critically damped systems. Since we have a detuning parameter, J, it simplifies
our analysis to fix its value at § = 0.05, where the second-order EPs occur at
n = 1.495 and n = 1.804 (cf. Figure 3.1). For the initial condition, the system
will start in the state |1), where x(0) = y(0) = 0 and 2(0) = —1.

In the case of the underdamped system, we set n = 1 to tackle underdamped
region before second-order EP at n = 1.495. Figure 3.3(a) shows the components of
the Bloch sphere over time for the underdamped system. Although the system is in
the underdamped regime, the oscillation is not prominent. This is because 7, which
is proportional to the electric field parameter d shown in equation (3.8), governs
the frequency of oscillation. From Figure 3.2(b), we observe that the imaginary
parts of the eigenvalues A3 and A4 are small and remain nearly constant close to
0.05, the time period is around 7' & 1/0.05 ~ 20 for n < 1.495, where n = 1.495
is second-order EP acting as boundary between underdamped and overdamped
region. As a result, the oscillations in the system are small. Additionally, the
purity of the system, denoted by r, approaches an equilibrium value close to 1,
indicating that the system approaches a pure state at equilibrium.

Figure 3.3(b) illustrates the underdamped regime when 1 = 10, which falls
within the range of n > 1.804, where np = 1.804 is another second-order EP acting
as boundary between overdamped and underdamped region. As shown in Figure
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Figure 3.3: Graphs showing the Bloch components z(t), y(t), z(t), and r(t), rep-
resented by the red, green, blue, and black curves, respectively by fixing § = 0.05
and a few 7. (a) n = 1. System is in underdamp region for n < 1.495. (b) n = 10.
System is in underdamp region for n > 1.804. (c¢) n = 50. System is in underdamp
region for n > 1.804.
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Figure 3.4: Graph of equilibrium point, Zeq(n), Yeq(7); Zeq(), eq(n) vs n with fix
parameter of 6 = 0.05.

3.2(b), the imaginary part of the eigenvalues A3 and A4 increases as 7 increases,
making the oscillations more pronounced compared to when n = 1. Additionally,
the equilibrium value of the system’s purity is lower than in the case where n = 1.

As we increase n further to 50, the frequency of oscillations continues to rise,
and the system’s equilibrium purity approaches zero, as seen in Figure 3.3(c). This
shows how the electric field strength d, proportional to 7, determines the equilib-
rium state. Figure 3.4 clearly demonstrates that as the electric field dominates,
the equilibrium point of the Bloch components approaches zero. This indicates
that a stronger electric field leads to a more mixed state, as also reflected in Figure
3.4.

At n = 1.495,1.804, the system reaches the critical damped region, also known
as second-order EP. Similar to classical harmonic oscillator, the damping of the
system is just enough to stop the oscillation as shown in Figure 3.5(a) and 3.5(c).
We can see that the oscillating trait vanishes, each component of Bloch sphere
goes to equilibrium quickly. Similarly, overdamped system occur when 1.495 <
n < 1.804, shown in Figure 3.5(b), with n = 1.6. For third-order EP, three
cigenvalues and eigenvectors coalesce at 7 = 1 and 6 = 1/64/3. The dynamics is
shown in Figure 3.6.

3.5 Discussion

We begin by noting that the one-qubit system under study exhibits two types of
EPs, second-order EPs and a third-order EP. In regions where d < 1, the sys-
tem can traverse two second-order EPs by tuning electric field. This is illustrated
in Figure 3.1, where the system effectively undergoes two dynamical phase tran-
sitions. In contrast, when & > 1, the system does not encounter any EPs and
maintains persistent oscillatory behavior throughout its evolution. Additionally,
at the third-order EP § = 1, the system passes through a single third-order EP,
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also depicted in Figure 3.1.

Unlike many previous studies on EPs, the dynamical phase transitions observed
here are relatively subtle, see Figure 3.5 and 3.6. This is primarily because the EPs
in our system emerge at lower values of the parameter n, which corresponds to the
external electric field strength. At low electric field strength, oscillatory behavior
is inherently suppressed. As a result, the exotic features commonly associated with
EPs in other works [11-17], such as abrupt transitions or dramatic enhancements
are less pronounced in our setup.
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Figure 3.5: Graphs showing the Bloch components z(t), y(t), z(¢), and r(t), rep-
resented by the red, green, blue, and black curves, respectively by fixing § = 0.05
and n varied. (a) n = 1.495. System is at second-order EP. (b) n = 1.6. System
is in overdamping region. (c¢) n = 1.804. System is at another second-order EP.
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Figure 3.6: Graph of Bloch components, x(t), y(t), z(t), r(t) vs time, ¢. The system
is at third-order EP with parameters 6 = 1/6v/3 and n = 1.
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Chapter 4

Two-qubit in open quantum
system

Aside from the one-qubit case, EPs also play a significant role in two-qubit open
quantum systems. Recent developments in quantum sensing have extended into
the two-qubit regime, offering new insights into EP-engineered quantum effects.
These effects can be harnessed in applications involving non-Hermitian quantum
devices [53]. Moreover, studies have demonstrated that multiqubit sensing at
EPs is feasible through a Floquet driving scheme that induces effective multibody
Ising-type interactions [54]. This approach can be experimentally implemented
using trapped ions or superconducting qubits [54].

Beyond quantum sensing, theoretical progress has also been made in under-
standing EPs in two-qubit open quantum systems. A specific type of EP, known
as a hidden EP, has been identified through the insertion of a counting field into
the Lindbladian. It has been shown that such hidden EPs are experimentally ac-
cessible using platforms like superconducting qubits, Rydberg atoms, and trapped
ions [55]. Additionally, recent work has shown that the fastest relaxation to the
steady state takes place on so-called LEP manifolds, which are associated with
the transition to an effective Zeno regime [56].

4.1 Entanglement dynamics in two-qubit system

In realistic two-qubit systems, entanglement between the qubits inevitably de-
grades due to interactions with the surrounding environment. Overcoming this
challenge is essential for building practical quantum computers. The dynamics
of entanglement in two-qubit systems have been extensively studied by physicists
since the late 20th century and early 21st century [57-69].

Research has shown that for all two-qubit Werner states in a zero-Kelvin en-
vironment, the system’s concurrence, a measure of entanglement, decays to zero
in finite time [70, 71]. This phenomenon is known as entanglement sudden death
(ESD). However, the study proposed a method to extend the time before ESD

47



48 CHAPTER 4. TWO-QUBIT IN OPEN QUANTUM SYSTEM

occurs by applying specific local operations to the initial state [70].

Further investigation by Ali et al. [72] found that all initial, non-interacting
two qubits X-states experience ESD in a thermal reservoir, while some X-states
may avoid ESD in a zero-Kelvin environment. The study also demonstrated that,
similar to the zero-Kelvin case, ESD in a thermal reservoir can be delayed by
applying appropriate local operations to the initial state [72]. Another study
by An, Wang, and Luo [73] examined two interacting qubits within a common
environment. Their research highlights the dual role of the environment in influ-
encing qubits entanglement. The first role involves the degradation of entangle-
ment due to coherent dipole-dipole interactions [73]. Conversely, the second role
demonstrates that the environment can also create stable entanglement in qubits
prepared initially in a separable state [73].

Chakraborty and Sarma [24] conducted one of the first studies on entanglement
near EPs in 2017. Their findings showed that delaying ESD is possible near EPs in
binary and ternary mechanical PT-symmetric systems. Kumar et al. [74] further
explored this area, revealing that a system with a specific type of time-periodic
Hamiltonian could cause a non-entangled state evolves into a maximally entangled
state at an EP. Similarly, Li et al. [23] demonstrated that entanglement generation
speeds up near EPs in two coupled driven non-Hermitian qubits. These studies
suggest that EPs could significantly influence entanglement dynamics.

Another aspect of two-qubit open quantum systems is the limited research
involving initial maximally entangled states with phase angle. The only notable
study utilizing phase angle in a two-qubit open quantum system was conducted by
Daryanoosh et al. on optical cavities and two-level atoms [75]. Exploring the role
of phase angle in maximally entangled states convexly combine with maximally
mixed state, known as Werner state [76-78], will also be a key focus of this research.
Moreover, Du et al. [79] demonstrated that the quantum mechanical phase of a
maximally entangled state can be experimentally observed. In addition, studies
by Liu et al. [80] and Jiang et al. [81] have shown that the Werner state can
be experimentally prepared in the laboratory. These findings further support the
exploratory value of the theoretical investigation presented in this research.

4.2 Two-qubit Coupling

We consider a system where two qubits, namely qubit A and B, coupled with
coupling strength € have the same Hamiltonian. Figure 4.1 depicts the system.
The spontaneous emission rate of qubit A and B are 4 and 7y respectively. The
deliberate choice of unequal decay rates is motivated by the fact that EPs in this
system emerge from the disparity between v4 and g [82]. As we will demonstrate
later, increasing the difference between these decay rates leads to more pronounced
effects on the system’s entanglement dynamics.

Using interaction picture, the evolution of the system is described by the fol-
lowing quantum master equation [83]
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Figure 4.1: Two-qubit system

d :
d_f = —i(Heap — pHYy) + 1807 pof} + a0 pot, (4.1)
where
1 1
Hog = Qo0 + 020B) - §i7Aaf0fl - 52’730505 (4.2)

o4 and 0P are defined by

ol =I®oy (4.3)
and

ol =0 ®1, (4.4)

where o4 = %(01 +i03), 0; for i = 1,2,3 are the Pauli matrices. It can be shown
that if we initiate the system as an X-state, where pg is given by

a 0 0 A
=1 w0 (4.5
ho 0 0 dp
then the system will evolve into an X-state as
a(t) 0 0  h*(t)
o= [T 8 o "o w0
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Therefore, we can vectorize the p into g as

a(t)
b(t)
a(t) 0 0  h*(t) c(t)
. 0 b(t) m* (t) 0 vectorization - d(t)
=l 0 mt) o) o = ) (4.7)
h(t) 0 0 d(t) m*(t)
h(t)
h*(t)
Rewriting the master equation in terms of the Liouville operator, we have
dp
— =Lp. 4.8
where L is
0 v+r ~v—~k 0 0 0 0 O
0 —v—=k 0 vy—k =210 20 0 0
0 0 —v+Kk v+r 22 -2 0 0
110 0 0 —2y 0 0 0 0
E=510 —2a 20 0 —y 0 0 0 (4.9)
0 20  —2Q 0 0 - 0 0
0 0 0 0 0 0O — 0
0 0 0 0 0 0 0 —v
The v and k are defined by
Y =74+78 (4.10)
and
K=" —"7A- (4.11)

Similar to the one-qubit case, we can simplify the analysis of the two-qubit system
by reducing a variable while preserving its overall dynamics. In this thesis, we
choose to normalize v to the time scale by setting v = 1. Normalizing €2 could
also be beneficial since it naturally serves as a time scale for the dynamics, as
discussed in Reference [84].

Additionally, we introduce a variable used by Han et al. [83] to facilitate the
analysis of EPs, it is given by

s (4.12)
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4.3 Eigensystem

Similar to one-qubit, the dynamics of the system can be analyzed in terms of the
eigenvalues and eigenvectors of Liouvillian superoperator £. The eigenvalues of £
are given by

Ay =0, (4.13)
Ay = —1, (4.14)
As :A4:A5:A6:—%, (4.15)
Ar = —% - %m\/?n?, (4.16)
Ag = —% + %ﬁﬂ (4.17)

The right eigenvectors are listed in Appendix C.1. For completeness, we will also
work out the left eigenvectors. Mathematically, they must be biorthogonal to each
other.

The structure of the eigensystem for two qubits are slightly different from one-
qubit system. The system exhibits only third-order EP without exhibiting second-
order EP. Third-order EP occurs when n = £1, the system is underdamped when
In| > 1 and overdamped when || < 1, if we allow 1 to be negative.

At the EP, the generalized eigenvectors must be used to describe the system
properly. When n = +1, the left and right generalized eigenvectors are given by
Appendix C.2.

4.4 Concurrence

Consider two qubits, labeled A and B, described by a density matrix p. The
system is considered separable (not entangled) if p can be expressed as [76]

p=> wip!®pl. (4.18)
J

Since determining entanglement directly from this definition can be challenging,
the degree of entanglement between the two qubits can be quantified using the
concurrence C' [25, 26], defined as

C = maX(O, )\1 - )\2 - )\3 - )\4), (419)

where A1, A2, Az, Ay (With Ay > Xy > A3 > \y) are the eigenvalues of /\/pp/p
arranged in descending order, and p is defined by

p = (02 ®09)p (09 ® 09). (4.20)
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The calculation of concurrence simplifies significantly for the X-state as shown in
equation (4.6). The concurrence for this state is computed as

C' = max(0, C1, Cy), (4.21)
where

Cy = 2(|m| — Vad), (4.22)

Cy = 2(]h| — Vbe). (4.23)

The concurrence ranges from 0, indicating a non-entangled state, to 1, denoting a
maximally entangled state. For this analysis, we consider specific initial conditions
that mix maximally entangled, |®(6)) and |¥(6)), and maximally mixed states,
1/4, convexly,

pa(0.9) = p[WONEO)] + (1-p) . (4.21)
pal0,p) = p|2(ONR(6)] + (1~ p) . (1.25)

The maximally entangled states, |¥(6)) and |®(6)) [75, 79], are defined as
D(0)) = (U(0) & 1) |, (4.26)
w(6)) = (U(O) @ 1) 9.), (4.27)

where

©.) = —5(100) + [11)), (4.28)
W,) = —=(|01) + [10)). (4.29)

V2

Here, U is a unitary transformation applied on first qubit, defined as

U(6) = (é 6?9) | (4.30)

We will call 8 as phase angle, which takes values in the range 0 to 27. The study
by Du et al. [79] demonstrates that states of the form given in equations (4.26)
and (4.27) can be experimentally observed. Furthermore, combining this with the
study by Liu et al. [80] and Jiang et al. [81], which shows that the Werner state can
be experimentally prepared, suggests that states of the form of equations (4.24)
and (4.25) can also be realized in the laboratory.

Next, we determine the eigenvalues of both py(6,p) and pe(6,p). Notably,
these matrices share the same eigenvalues, which are given by (1 — p)/4 and (1 +
3p)/4. Since the properties of a density matrix require its eigenvalues to be non-
negative, this imposes the constraint —1/3 < p < 1. Within this range, the
interval —1/3 < p < 1/3 corresponds to a separable (not entangled) state, while
1/3 < p < 1 corresponds to an entangled state. In this study, we focus on two
extreme cases, p = 1/3, which represents a separable state, and p = 1, which
corresponds to a maximally entangled state.



Chapter 5

Analysis on two-qubit

We need to investigate how the phase angle 6 of the initial state would affect
the evolution from 6§ = 0 to § = 27 at a step of /2. Numerically, we can
show that the maximum concurrence always occurs at k = =+1 if we start the
system disentangled as shown in Figure 5.1. Since a system with negative « is
equivalent to one with positive k£ and negative 1 shown in equation (4.12), we
will adopt the latter convention for our research. Mathematically, the structure

of concurrence consists of the terms cosh(x/ 1— 77%25/2) and sinh<\/1 - 7]%75/2).

For overdamping where |n| < 1, larger x causes the terms to blow up faster.
Therefore, the concurrence reaches higher maximum compared to concurrence with
smaller k. For underdamping where |n| > 1, higher s implies higher frequency
of oscillation. Therefore, reaching the maxima of the concurrence requires lesser
time than concurrence with smaller x. Since reaching maximum requires lesser
time, the decay of higher x system will not be severed compared to smaller k at
initial stage of evolution. We will use kK = 1 as our parameter for the rest of the
research.

5.1 Initial state: py(f,p) for p=1/3 and p=1

We start with the initial state of pg(6,1/3) = |¥(0)X¥(0)|/3 + I/6 where the
initial concurrence is C'(0) = 0. When 6 = 0, we have the contour graph of
concurrence, C' vs t and 1 shown in Figure 5.2(a). We can see that the structure
of concurrence is symmetrical with respect to n = 0. The maximum concurrence
occur when 1 = £0.94, which is approximately 0.06 away from nearest third-order
EP of the system. The entanglement generation stopped when |n| > 4.45.

When the § = /2, we have the contour graph of concurrence, C' vs ¢ and
n shown in Figure 5.2(b). The symmetrical properties of the contour graph is
broken, the entanglement generations are more likely when 1 < 0. The maximum
concurrence occur when 7 = —1.31, which is approximately 0.31 away from third-
order EP n = —1. The entanglement generation stopped when n > 2.05. For
0 = , the contour graph returned to the structure of # = 0. For § = 37/2, the
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Figure 5.1: Contour graphs of concurrence, C' vs ¢t and « for initial state of pg (6 =
0,p =1/3). (a) Graph for n = 0.5. (b) Graph for n = 2.

structure of contour graph is the same as the reflection of # = 7/2 on n = 0.

Theoretically, the concurrence of the system will evolve under the C(t) given
in equation (4.22). The reason is that the initial state of hg = 0 implies h(t) = 0,
causing C5(t) to be always negative. This can be seen by considering the element
h(t) from equations (4.8) and (4.9), we arrive to following first order differential
equation

d A
—h(t) = —=h(t). 1
Dty = —2n) (5.1
Thus, hy = 0 implies h(t) = 0 from equation (5.1). On the other hand, the
terms of Cy(t), which are |m| and vad, will affects the state of entanglement of
the system, where m(t), a(t) and d(t) can be solved readily and are given by

n(3n + sin(f)) — (nsin(0) + 3) cosh(%\/ 1-— 772/1t>

a(t) = — S0E = 1) e 2 (5.2)
+d(t) + 1,
d(t) :%e_t, (5.3)
—3n + sin(f) + n(—nsin(f) + 3) cosh(%\/ 1-— nsz) .
m(t) = — ie”2 (5.4)
6(n* —1)
+ 16_% cos(0),
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Figure 5.2: Contour graphs of concurrence, C' vs t and 7 for initial state of
pw(0,p =1/3). The red lines indicates || = 1, the EPs. (a) Graph for # = 0 and
¢ = 7, maximum concurrence occurred at |n| = 0.94 away from EPs. (b) Graph
for § = 7/2, maximum concurrence occurred at n = —1.31 away from EP. The
graph of 6 = 37/2 is the reflection of the graph for 6 = w/2 with respect to n = 0.
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Figure 5.3: Graph of Concurrence, C' vs t for initial state of pg (0 = 7/2,p = 1/3),
where n = —5.
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Figure 5.4: Contour graphs of concurrence, C' vs t and 7 for initial state of
pw(0,p = 1) with rotating variable of (a) # = 0,7, (b) § = w/2. The red lines
indicates || = 1, the EPs. The graph of § = 37/2 is the reflection of graph of
6 = 7/2 with respect to n = 0.

and the concurrence C(t) is given by

C(t) = Ci(t) = [m(t)] — Va(t)d(t)

The system is entangled when |m| > v/ad and untangled when |m| < Vad.
From C(t), we can see that for |n| < 1, which is overdamping, the concurrence

is governed by the decaying terms on sinh (t\/ 1—n?/ 2) and cosh (t\/ 1—n?/ 2).

When |n| > 1, the concurrence is governed by the oscillating terms sin (t\ /n? —1/ 2)

(5.5)

and cos (t\/772 -1/ 2). However, the oscillating feature is not apparent according

to Figure 5.2. This can be explained by Figure 5.3 which shows Cy(t) and Csy(t)
function for § = w/2 at n = —5, where the oscillatory feature of C(¢) is most of
the time negative, hence does not contribute to concurrence.

We now investigate the system with the initial state of py (0,p = 1) =
|W(0))W(0)| where the initial concurrence is C'(0) = 1. When the 6 = 0, we
have the contour graph of concurrence, C' vs t and 1 shown in Figure 5.4(a). We
can see that the structure of concurrence is symmetrical with respect to n = 0.
The oscillating feature in underdamping region is not apparent for 6 = 0.

We can see that the concurrence start to have oscillating behavior when 6 =
7/2 in the underdamped region, || > 1, shown in Figure 5.4(b). The symmetry of
the contour graph is broken for opposite sign of 7. The second maxima for n < 0
is much larger than n > 0 as shown in Figure 5.5(b). When 0 = 7/2, for n > 0 in
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Figure 5.5: Graph of concurrence, C' vs t for initial state of py (0 = 7/2,p = 1),
where (a) n = —0.5 showing ESD immediately followed by entanglement gener-
ation and (b) n = £5 showing second maxima for n = —5 is much larger than
n=>5.
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overdamped region, the concurrence decay slowly into zero, without any second
entanglement generation. For —1 < 7 < 0 in overdamped region, there will be an
entanglement sudden death and followed by immediate entanglement generation
shown in Figure 5.5(a). For § = 7, the contour graph returned to the structure of
0 = 0. For § = 37/2, the structure of contour graph is the same as the reflection
of 0 =x/2 onn=0.

Next, we investigate the analytic solution of concurrence for the system with
initial state of pg(0,p = 1) = |¥(0)¥(0)|. The concurrence of the system is also
given by C(t), which is similar to previous cases, because of h(t) = 0. The C(t)
can be separated into two parts, |m| and vad. However, the element vad is zero
since the element d(t) of the system is always zero. Therefore, the concurrence
only depends on the magnitude of complex function m(t), given by

—n — psin(@) + n(npsin(f) + 1) cosh(% 1— 7]2f-@t> L
m(t) = — 0E = 1) ie”2 (5.6)

1 ¢
+ §pe’E cos(0).

The concurrence of the system is then given by

ncosh (iy/1 —n2kt) +1 .
C(t) = <277+1 ) et (5.7)

and

ncosh (iy/1 —n2kt) —1
Oft) = <2 o > s, (5.8)

N+

for § = 7/2 and 6 = 37/2 respectively. For § = 0 and 6 = 7, the concurrence is
given by

4n? sinh* G\/ 1- 772/{75)

(> — 1)

C(t) =11+ e 3. (5.9)

5.2 Initial state: pg(0,p) for p=1/3 and p =1

We start the system with initial state pe(6,p = 1/3) = |®(0)XP(0)| /3 + 1/6,
where initial concurrence is C'(0) = 0. As we can see from Figure 5.6(a), the
structure of concurrence is symmetrical with respect to n = 0. The symmetrical
property of concurrence’s structure can be deduced directly from exact equation
of concurrence given by

o) = orr) = 21 S’ (G —Pt) g o0 /a®)d(t),  (5.10)

In? — 1|
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Figure 5.6: Contour graphs of concurrence, C' vs t and 7. The red lines indicates
In| = 1, the EPs. Graph (a) represents initial state pg(6,p = 1/3), where max-
imum concurrence occur at || = 0.8 away from EPs and (b) represents initial
state pe(0,p = 1) for 0 < 0 < 27.

where

n? — COSh(%\/l — n2ﬁt> .
a(t) =— o e 2 +d(t)+1, (5.11)

d(t) :%e_t. (5.12)
The maximum concurrence occur when |n| = 0.80, which is approximately 0.20
away from third-order EPs || = 1. The entanglement generation stopped when
In| > 2.52. Another surprising properties for this system is that the structure of
the concurrence is independent to the phase angle 6, which is in contrary to the
system with initial state of py (0, p = 1/3). The phase angle of the system is also
reflected in the equation of concurrence given by equation (5.10).
Theoretically, the phase invariance of concurrence can be understood by consid-
ering each element of X-state. For the system with initial state of pe(6,p = 1/3),
the only element that depends on variable 6 is

1 .
h(t) = 66_%_10. (5.13)
However, the magnitude, |h(t)| does not depends on 6 implying that the concur-
rence of the system does not depends on 6. For this system, the concurrence only
depends on C(t), given by equation (5.10), which is responsible for entanglement
generation.
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Figure 5.7: Graph of concurrence, C}, Cy vs t for initial state of pg (6, p = 1) where
(a) n = 1.5 showing ESD immediately followed by entanglement generation and
(b) n = 4 showing ESD only.
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Next, we investigate the system with initial state of pe (6, p = 1) = |®(0)}P(0)|
where the initial concurrence is C'(0) = 1. As we can see from Figure 5.6(b),
the structure of concurrence is symmetrical with respect to n = 0. This prop-
erty is reflected by the following concurrence function of this system C(t) =
max(0, Cy(t), Ca(t)) given by equation (4.21) where

:2|7]| sinh®(34/1 — n2kt) o

Ci(t) T 5o \/alhd), (5.14)
Cyft) =e5 - \/(a(t) Fd(t) - 1) + Smh?(is e
and
2 —cosh( /1 —n2kt
aft) = — n<22_ 1 ! >eé L d(t) + 1, (5.16)
d(t) —%e_t. (5.17)

Similar to previous system where initial state is pg(#, p = 1/3), this system is also
phase invariance, reflected by equations (5.14) and (5.15). We can see from Figure
5.6(b), the sudden death followed by immediate entanglement generation occur in
the range of |n| < 2.08, reflected by Figure 5.7(a).
Similarly, the phase invariance of concurrence is because the only element that
depends on variable @ is
|

h(t) = e 2

: (5.18)

However, the magnitude, |h(t)| does not depends on 6 implying that the concur-
rence of the system does not depends on #. For this system, the concurrence
depends on both C}(t) and Cy(t) for |n| < 2.08. The concurrence before sudden
death is governed by Cy(t) given in equation (5.14) and followed by immediate en-
tanglement generation which is governed by C(t) given in equation (5.15) which
can be seen by Figure 5.7(a). For concurrence outside of || < 2.08, the system
only undergoes sudden death shown in Figure 5.7(b). Therefore, the concurrence
depends only on Cy(t).

5.3 Discussion

We begin by discussing the role of EPs in the system. A clear transition in
entanglement dynamics from an overdamped to an underdamped regime across
the EPs can be distinctly observed when the system is initialized in the pure state
py(0 = m/2,p = 1) shown in Figure 5.4(b). For other initial states, this transition
is less apparent. This is because either the amplitude of oscillations is significantly
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suppressed, or the oscillatory behavior manifests in regions where the concurrence
components C and C5 are negative, as illustrated in Figure 5.3. These findings
support the interpretation of EPs as boundaries of dynamical phase transitions |7,
38].

Furthermore, the emergence of EPs is fundamentally linked to the disparity
between the decay rates v4 and g [82]. Physically, this imbalance breaks the
symmetry between the two qubits, and when combined with coupling, it gives rise
to the exotic dynamics characteristic of EPs.

Next, we turn to the role of the phase angle #. The concurrence of the initial
state, py(6,p), depends on the phase angle @, where it has not been explicitly
addressed in prior research. This feature is significant because experimentally
prepared states [79], such as py (6, p), may be influenced by their intrinsic phase
angle, leading to different outcomes despite appearing to be identical.

In the context of quantum computing, this dependency is particularly impor-
tant. The amplitude of concurrence oscillations can be adjusted through the phase
angle of the initial state py(6,p = 1) (cf. Figure 5.4), allowing for control over the
desired quantum computing outcomes.

For py(0,p = 1/3) (cf. Figure 5.2), EPs serve as a rough approximation for
achieving higher concurrence. However, the maximum concurrence often occurs
away from EPs; |n| = 1, specifically at n = £0.94 for = 0,7 and n = —1.31,1.31
for @ = 7/2,3m1/2 respectively. Despite the maximum concurrence does not align
precisely with the system’s EPs, the EPs still provide a useful guideline for gener-
ating more entangled two-qubit states, benefiting quantum computing processes.
Furthermore, by tuning the phase angle, the maximum concurrence can be shifted
towards either the positive or negative part of 7, enhancing the overall concur-
rence and providing greater flexibility in quantum state preparation for specific
applications.

The concurrence of the initial state pe(6,p) is phase invariance (cf. Figure
5.6), which is significant for the stability of quantum computing applications.
This independence ensures that the same results can be achieved without the
need to account for variations in the phase angle of pg(6,p). The downside of
phase invariance is that it provides limited tunability compared to the state that
depends on phase angle.

For the initial state pe(0,p = 1/3) (cf. Figure 5.6(a)), the maximum concur-
rence occurs at |n| = 0.80 for all 6, which is away from EPs || = 1. Similar to
the case of py(0,p = 1/3) (cf. Figure 5.6(b)), EPs still provide a useful guideline
for generating more entangled two-qubit states. However, the key differences lie
in the symmetrical nature of the concurrence with respect to the sign of n for
pa(0,p = 1/3) and its independence from the phase angle. As a result, the maxi-
mum concurrence cannot be further increased by varying the phase angle, unlike
pu(0,p=1/3).

Up to this point, it might seem that if we initiate the state with zero con-
currence, C'(0) = 0, the maximum concurrence will occur around EPs. However,
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Figure 5.8: Contour graphs of concurrence, C' vs t and 7 for initial state of p(0) =
1/2(|10X10| + |01)01]). The red lines indicates || = 1, the EPs. Maximum
concurrence occur around |n| = 1.82

this is not universally true. Figure 5.8 shows contour graph of concurrence for
initial state of p(0) = 1/2(]10)(10| + |01)(01|), the maximum concurrence occur at
In| = 1.82. These values are significantly farther from the EPs at |n| = 1 compared
to the systems with initial states of pg (6, p = 1/3) and pe(6,p = 1/3). This high-
lights the crucial role of the initial state in shaping the entanglement dynamics,
as also emphasized in Reference [82].

5.4 Markovian limit

Everything discussed so far has been derived under the Markovian approximation
in the study of open quantum systems. This assumption is generally valid when
the interaction between the system and its environment is weak and memoryless
[3]. However, this poses limitations when attempting to describe more realistic
physical systems, where stronger coupling or memory effects cannot be neglected.
This raises new questions: Will the phase angle applied to the initial quantum state
exhibit novel or exotic features in entanglement dynamics beyond the Markovian
regime? Will the role and position of EPs persist, shift, or even vanish when
non-Markovian dynamics are considered?

Several studies have recently begun to address these questions, particularly
regarding EPs. For instance, EPs have been shown to exist within non-Markovian
open quantum systems, with experimental evidence obtained by tuning a mea-
surable quantity called the effective decay rate of a qubit [85]. The same work
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highlights a compelling interplay between non-Markovianity, the Quantum Zeno
effect, and non-Hermitian dynamics. On the computational side, recent advances
have enabled the exploration of EPs in non-Markovian systems using exact nu-
merical methods, such as the pseudomode equation of motion (PMEOM) and
hierarchical equations of motion (HEOM) [86].

These developments point to a promising and largely untapped research fron-
tier. While this thesis has focused on the Markovian regime, future investigations
could extend the analysis to non-Markovian systems to uncover richer entangle-
ment behavior and potentially novel forms of EPs. This direction may not only
clarify the robustness of phase control in realistic environments but also inform
experimental designs for quantum information protocols under strong system-
environment coupling.



Chapter 6

Conclusion

6.1 Summary of findings

This thesis investigated the dynamics of one- and two-qubit systems in open quan-
tum environment, focusing on the role of EPs on the entanglement dynamics. The
study addressed critical questions about how EPs affect two-qubit system dynam-
ics, and the impact of phase changes in the initial state on entanglement structure.

The research began by introducing the dynamics of a one-qubit open quan-
tum system using the GKSL equation. The concept of EPs was explored through
changes in eigenvalues and eigenvectors, with generalized eigenvectors derived for
second- and third-order EPs to capture system behavior at these points. A param-
eter space diagram was constructed to visualize EP occurrence and its connection
to overdamped, underdamped and critically damped region.

The study was then extended to a coupled two-qubit system, incorporating
phase angle in the initial state. We deliberately normalize v by setting v = 1 and
choose k = 1 to maximize the effect on concurrence. The initial states represented
by py (0, p) demonstrated entanglement dynamics dependent on phase angle. For
pw(0,p = 1), the amplitude of oscillating concurrence was maximal at § = 7/2
and 0 = 37/2, and minimal at § = 0 and 6 = 7.

In contrast, for pg(0,p = 1/3), the oscillatory behavior was significantly re-
duced. In this case, the maximum concurrence occurrs at n = £0.94, away from
EPs, |n| = 1, when # = 0. As the phase angle 6 deviated from 0, the symmetric
structure of concurrence breaks, causing the maximum concurrence to shift and
increase towards the negative part of n. Similarly, when 6 increases beyond 7, the
maximum concurrence shifts and increases towards positive part of 7.

For the initial state pg(6,p), the concurrence exhibits phase invariance and
retains a symmetric structure around n = 0. For pg(6,p = 1/3), the maximum
concurrence is also observed at n = +0.80, away from the EPs at |n| = 1. How-
ever, for pg(0,p = 1), the concurrence features entanglement sudden death (ESD)
followed by immediate entanglement regeneration within the region |n| < 2.08.
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6.2 Future research directions

Building on these findings, several avenues for future research emerge. First,
experimental validation of the theoretical models developed in this thesis is crucial.
Such experimental studies would not only confirm the theoretical insights but also
provide a more nuanced understanding of the role of EPs and phase angle in
quantum dynamics.

Secondly, an exploration of the impact of environmental factors, such as noise
and thermal fluctuations, on the stability of entanglement near EPs, could yield
valuable insights for the development of resilient quantum technologies. Addi-
tionally, further investigation into the influence of phase angle and EP on entan-
glement dynamics, especially in multi-qubit systems, may reveal new strategies
for optimizing quantum computing application. Extending this line of inquiry to
non-Markovian systems, which are characterized by memory effects, could also
enhance our understanding of long-term entanglement behavior.

Finally, applying these findings to emerging quantum technologies, such as
quantum sensors, quantum communication, and quantum information, represents
a crucial step towards bridging the gap between theoretical research and practical
applications. By addressing these avenues, future research can build on the foun-
dational work of this thesis, driving advancements in quantum mechanics and its
technological applications.
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Appendix A

Generalized eigenvectors for
one-qubit

A.1 Second-order exceptional points

For second-order EP, two eigenvalues and eigenvectors coalesce. One more gen-
eralized eigenvector is needed to complete the eigenspace. The right generalized
eigenvectors, v, U, U3, U4 can be solved by following eigenvector equation and Jor-
dan chain.

N N N /N
o
|
=
no
~
N N N N
SL
[\
I
=
N TN N TN
e

S I N R
S— N N N

where the eigenvalues are given by equations (3.10) to (3.11). Solving the right
generalized eigenvector, we have

4d? +46% + 1
L 1 Ad?
NP AR 11 | —2d20+) | (A-5)
—2d(26 — )
2d(2A5 + 1)
L —2d(2A5 + 1)
B =N A )25 4028 + 1)) | (A.6)
(Ay+1)(26 — i(2A5 + 1))
2d(2A3 + 1)
L —2d(2A3 + 1)
U =N | A )25+ 0205 + 1)) | (A7)

(As +1)(20 — i(2A5 + 1))
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0
. N 0
ST TN, (2620 + 1) | A9

20 +i(2A3 + 1)?

where
N, = ! (A.9)
2T 4dA (205 + 1)2(40, + 3) — 402)° '
203 +1
N3 = . A10
P T 8dA3(462 4 (205 + 1)3) (A.10)
The left generalized eigenvectors can be solved by following
(LT — A 1)id, =0, (A.11)
(LT — AST)idy =0, (A.12)
(LY — A3D)ii, =0, (A.13)
(LY — A31)ids =iy, (A.14)

The unconventional naming order is for the sake of getting biorthogonal system.
The corresponding left generalized eigenvectors, namely w1, ws, iy, Uiz are given by

1
. 1
0
(14 A2)(462 + (2A2 + 1)?)
q (1—A2)(40% + (282 +1)%)
Y2 _4dA (26 —i(205 + 1)) | (A-16)
—4dA5(26 + i(2A2 + 1))
(14 A3)(46% + (2A5 + 1)?)
L (1= A5)(46% + (205 +1)%)
YT _4dAy (20 —i(205+ 1)) | (A-17)
—4dA3(26 + i(2A5 + 1))
1
iy = iy + Al
s = 3157 & (2hy + 177 (e ) (A.18)
where
(2A5 + 1)4(2A2 — 1) — 166*
— 4 2 _ 4
i | e+ (2OAS +1) - 168" | (A.19)

0
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—80%(4A5 4+ 8A3 + TAZ + 4A5 + 1)
L | —88%(—4A3 +8A3 + 9N +4A5 + 1)
iy = 16d5AZ((205 + 1)? + 2i6) ' (A-20)

16d0A3((2A3 + 1)% — 2i0)

It can be easily verified that left and right generalized eigenvectors, v, and @; form
a biorthogonal system such that ﬁ;ﬁk = Ojk.

A.2 Third-order exceptional points

For third-order EP, three eigenvalues and eigenvectors coalesce. Two more gener-
alized eigenvectors are needed to complete the eigenspace. The right eigenvalue
equation and Jordan chain are given by

(£ — A T)o, =0, (A.21)
(£ — Ao) T =0, (A.22)
(L — AoD) Ty =0, (A.23)
(L — AoD)T, =1, (A.24)

where the eigenvalues are given by equations (3.23) and (3.24). The generalized
eigenvectors, U1, U, U3, U4 are given by

30
1 2

B=5 VA1 3iv3) | (A.25)
V2(—1+ 3iV/3)
—2
3 2
= v2_ive | (A.26)
V2 +iv6
0
9 0
Us =55 VIG—iv3) | (A.27)
V2(3 +iV/3)
2
81 —2
Ut =158 V(T +ivE) | (A.28)
V2(7 —iV3)
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The eigenvalue equation and Jordan chain for left generalized eigenvectors are
given by

(LY — A3D)i, =0, (A.29)
(LT — A3, =0, (A.30)
(LY — A1)y =iy, (A.31)
(LT — AST)ily =ils. (A.32)

The corresponding left generalized eigenvectors, namely 1, iy, Uz, Uy are given by

1
T (A.33)
Uy = ol .
0
1
L, 4 5
V2 -6
-3
2| -7
4iv/6
0
L1 20
V2 —iv6

It can be easily verified that the left and right generalized eigenvectors, v;, and
u; form a biorthogonal system such that ﬁ;ﬁk = 0.



Appendix B

Analytic solution for one-qubit

B.1 Underdamped

The system exhibits underdamped behavior when p® +¢? > 0. This underdamped
characteristic can be demonstrated by the following argument. When p? + ¢? > 0,
u and s become real numbers, implying that A3 and A4 are complex numbers
while Ay remains a real number. In the context of matrix differential equations,
complex eigenvalues always indicate oscillatory behavior in the system. We define
these eigenvalues in terms of their real and imaginary parts as

Ay =\ —iw, (B.2)

where |\| represents the decay rate and |w| represents the angular frequency of
the system. A\ and w take the form

)\:——+%(u—s) (B.3)
and
w=——(u—s). (B.4)

Next, we need to solve for the quantum state in underdamped region. The solution
can be written as

plt) = 01 + fe" 0 + (fs + igs)e™ ™05 + (f3 — igs)e™ ), (B.5)

where fo, f3,93 € R and vy, ¥y, U3, Uy are given by equations (2.33) and (2.41). For
p(t) to adhere to the conditions of a density matrix, the coefficients must take
the form of (f3 + ig3) and (f3 — ig3). In addition to the representation using a
density matrix, quantum states can also be expressed on a Bloch sphere through
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components for z(t), y(t), and z(t).

x(t) = 2Re[m(t)] (B.6)
y(t) = 2Im[m(t)] (B.7)
2(t) = 2a(t) — 1 (B.8)

Expressing in term of components of Bloch sphere x(t), y(¢) and z(t) and absorbing
NQ, N3, N4 into f2, (f3 + igg), (fg — ig3), we have

2(t) =2 + 4f20(1 + Ay)et?t — 85e™ (g3(1 + A) + faw) sin wt (B.9)
+ 80eM(f3(1 4+ A) — gaw) cos wt,
Y(t) =ye + 2fo(1 + Ag)(1 + 2A5)el?! (B.10)

—4eM(gs((1 4 2A)(1 + A) — 2w?) + faw(3 + 4A)) sinwt
+4eM(f3((1+2A) (1 + A) — 2w?) — gsw(3 + 4A)) cos wt,

2(t) =z + 4fod(1 + 205)eM?" — 8deM (gs(1 4 2A) 4 2 fsw) sin wt (B.11)
+ 8deM(f5(1 + 2A) — 2g5w) cos wt.

Applying initial condition, xg, 39, 29 at t = 0, we have

f2 :8d5(()\ _ 3\2)2 +w?) (—d(20Ay + Ax((2A + 1)* + 4w?)) (B.12)
+ 26A2((A+1)* + w?)),

f3= 16d0((\ —1/\2)2 +w?) (2d6Ay + dAx(2As + 1) (4N — 2A5 + 1) (B.13)
—20Az(Ay +1)(2X — A 4 1)),

93 ! (—2d5Ay(N — As) (B.14)

T 16d0w((N — Ag)? + w?)
+ Az(20(A 4+ 1) (Ag + 1) (A — Ag) — 25(Ag + 1)w?)
— dAZ (20 + 1)((2X + 1)(A — Ap) — 2w?)).

where Ax denotes the difference between the equilibrium state z, and initial state
o, Ax = x, — o and similarly for Ay and Az and z., y., z. are given by equa-
tion (2.34)

B.2 Overdamped

On the other hand, the system exhibits overdamped behavior when p? + ¢% < 0.
This overdamped characteristic can be explained as follows. When p* + ¢?> < 0, u
and s become complex conjugate to each other, implying that Ay, A3 and A4 are
real numbers. This suggests that the damping effect dominates, suppressing any
oscillatory behavior in the system. Next, the GKSL equation in equation (2.14) is
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a type of matrix differential equation that can be solved readily. In overdamping
region, the solution is

ﬁ(t) = 771 + f26A2t172 + f3€A3t173 + f4€A4t774, (B15)

where fo, f3, fs € R and vy, U, U5, Uy are given by equations (2.33) and (2.41).
f2, f3, f4+ must be real because the violation of the condition for a density matrix

would occur if fi, fo, and f3 were complex. Therefore, we can explicitly compute
x(t),y(t) and z(t). We have

4
2(t) =zc + Y AfN;O(1+ Ay)e’, (B.16)
§=2
4
y(t) =ye + Y 2fN;(1+ Aj)(1+ 2A;)eM", (B.17)
§=2
4
2(t) =zo + > AfiNd(1 + 2A;)e", (B.18)
j=2

We label initial state as zo = x(0) and etc whereas, Ax denotes the difference
between the equilibrium state z. and initial state x¢, Ax = x., — x¢ and similarly
for Ay and Az. Using initial condition by assuming ¢ = 0, we are able to solve for

fa, f3 and f; as

1
S = Ny Ry = Ma) Ay — A dATAs + 1)2As+ 1) (B.19)
+ 20Az(As + 1)(Ay + 1) — 2d6Ay),
1
13 =N, (A — Ag) (A — Ay) (dAz(2Ay + 1)(2A4 + 1) (B.20)
— 20A2(Az + 1)(Ag + 1) + 2d0Ay),
Ja : (dAz(2A2 +1)(2A3 + 1) (B.21)

T 8AON, (A — Ag)(As — Ay)

B.3 Second-order exceptional points

Let’s explore the analytical solution for the quantum state specifically at the
second-order EP. The solution is given by

ﬁ(t) :171 + fgeAQtUQ + f36A3t173 + f4€A3t(t173 + ?74)7 (BQQ)
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where f, f3, f4+ € R and vy, U, U3, Uy are generalized eigenvector defined in equa-
tions (A.5) to (A.8). We can explicitly compute z(t), y(t) and z(t). We have

T(t) =¢ + 4f26(Ag + 1) Noe™ + 45(Ag + 1) Nae™* (f5 + fat) (B.23)
4 Agt
BT EACA
Y(t) =ye + 2f2(Ag + 1)(2A5 + 1) NoeP2' + 2f,(2A5 + 1) Nyelst (B.24)
+2(A3 4+ 1)(2A3 + 1) N3e™ (3 + fat),
2(t) =ze + 4fod(20g + 1) Noe™2' 4 4d(2A5 + 1) N3e™'(f5 + fut). (B.25)
Applying initial condition, we have
_ 1 2 2
o A A3)2(25AZ(A3 +1)2 — d(26Ay + Az(2A5 +1)?)),  (B.26)
1
= d(2Ay + 1)(26Ay + Az (2A5 + 1)? B.2
— 20Az(Ag + 1)(Ag + 2A5(A5 + 1) + 1)),
1
fa (2d5 Ay + dAz(2Ay + 1)(2A5 + 1) (B.28)

T 8d6N5(Ay — A)
— 20Az(Ay + 1) (A5 + 1)).

B.4 Third-order exceptional points

Ultimately, we can resolve the equation for the scenario involving a third-order
EP, and the solution is given by

t?
p(t) =0, + foe Aot 4 f3€A2t(tU2 + v2 ) + f4 eAQt( 5 — Uy + tﬁ(l) + _’é )), (B.29)

where fs, f3, f4 € R and vy, 0, U3, U4 are generalized eigenvectors defined in equa-
tions (A.25) to (A.28). We can explicitly compute z(t), y(t) and z(t). We have

x(t) =z + %(4][2 +4f3(t+9) + fa(2t 4 36t + 189))6*%, (B.30)

y() =ve — \/—(4f2 +Afs(t+3) + fa(2t(t +6) — 27))e 3, (B.31)

2(t) =2, + 312( 12y — 125t — 3f4(2t* — 27))e” (B.32)
Applying initial condition, we have

fo= ( V2Az — V6AY + 10Az2), (B.33)

—E(\/éAy — 3Az), (B.34)

fi=— %(\/ﬁAx +V6Ay — 2A2). (B.35)



Appendix C

Generalized eigenvectors for

two-qubit

C.1 Eigensystem

Similar to one-qubit, the dynamics of the system lies in the eigensystem of Liouvil-
lian superoperator L. The eigenvalues of £ are the same, given by equations (4.13)
to (4.17). For completeness, we also work out both the right and left eigenvectors.
Mathematically, they must be biorthogonal to each other. The corresponding right

eigenvectors for the system are

1 1
0 -1
0 -1
. |0 . 1
1= |y y U2 = 0
0 0
0 0
0 0
—2n
n
n
S 0 S
U = N i , U7 = Ny
—1
0
0

_— o OO oo oo o

—2K
KR — 2A7 -1
K —I— 2A7 —I— 1
0
K
—inK
0
0
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0
0
0
7= |
) 0
0
1
0
7278:]\]8

,Us = N5

OO R PR OO OoOo

—2K
K — 2A8 -1
K —f- 2A8 —f- ]_
0
MK
—inK
0
0
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whereas the left eigenvectors are

1

where

OO OO ===
O o oo+ O oo

K2
(14 &+ 2A%)?
2r(1 + Kk +2A%)
—ink(1 + K + 2A3)
ink(1+ Kk + 2A%)
0
0

1
N5 257

Ng =

—_— O OO o o oo

1

{
SO OO O o oo
1

0
2K
(14 K+ 2A%)?
2k(1 4+ K+ 2A%)
—ink(1 + K + 2A%)
ink(1 4+ K + 2A3)
0
0

2(=1+7n2)’

1

OO = FE OO OO

N pr—
"7+ £+ 2073 — 262(3 + K + 6A7)

1

Ng = .
T (1 + K+ 2Ms) — 12k2(3 + K + 6Ag)

2n
—i

=3
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(C.4)

C.2 Exceptional points of two-qubit system

The structure of the eigensystem for two-qubit system are slightly different from
one-qubit system. For system with jump and without jump, they exhibit only
third-order EP without exhibiting second-order EP. Third-order EP occurs when
1 = %1, the system is in underdamped when n > 1,7 < —1 and overdamped when
—1 < n < 1, if we allow 7 to be negative.

At the EP, the generalized eigenvectors must be used to describe the system
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properly. When 1 = £1, the right generalized eigenvectors are

F2a3k
+1 +(—2Ns + a3k)
+1 :|:(2N6 + 0631%)
o . 1 0
) 103K
—il0i3K
0 0
0 0
+(—8Ng — 2a9k?)
:|:(4N6 - 2063KZ + 062H2)
+(4Ns + 2a3k + azk?)
L 0
k2 (ay + ia)
K2 (ay — i)
0
0

F2

UGZN(S

, (C.10)

and left generalized eigenvectors are

0 0
+1 +(—2 + Bsk)
+1 :|:<2 + ﬁg/ﬁ)
N :]:2 N 1 :]:253:%

s lE= T | (C.11)
1 i@g/ﬁ
0 0
0 0

+(4 — 283k + B2k7)
+(4 + 263k + [ar?)
L1 (8 + 2212)
K2 (B — if2) ’
#2(B1 + i)
0
0

(C.12)

where the following condition is a must to achieve biorthogonality, ﬁ;ﬁk = 0j,

(C.13)

(C.14)

(C.15)



80 APPENDIX C. GENERALIZED EIGENVECTORS FOR TWO-QUBIT



Appendix D

Analytic solution for two-qubit

D.1 Solution of initial state: py(6,p)

For initial state of py(6,p), the solution of density matrix components are

1

d(t) = — Z(P —1)e™,
" n(n + psin(f)) — (npsin(d) + 1) cosh(%, /1 — 772,@,5) p
a(t) = — e .
Fdt) + 1,
b0 V1 —=n%(npsin(f) + 1) sinh(%\/l — 7}21175) .
- 2(n* — 1) <

+ 50— alt) - d(0),

V1= 2(ypsin(6) + 1) sinh(%ﬂmf)

elf) =~ 207 — 1) o
+ (L= alt) - d(o),
” —n — psin(f) + n(npsin(f) + 1) cosh(%\/l — 772%25) o,
e 2(n? — 1) o

The components of concurrence can be computed as

Ci(t) =2(lm(t)| — Va(t)d(?)),
Ou(t) = — 24/b(1)c(b).

81

(D.4)
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It follows that the concurrence of the system is

C(t) = max(Cy(t), Ca(t), 0) = C1(2). (D.9)

D.2 Solution of initial state: pe(0,p)

For initial state of pg (6, p), the solution of density matrix components are

d(t) Zi(p +1e ™, (D.10)
a(t) = — "o COShng%_\/ﬁm) ez +d(t)+1, (D.11)
b(t) = \/1—777%211(1:2(%{)1—777%) e + %(1 —alt) — d(1)), (D.12)
c(t) = — ﬂs;?:g(%\l/)m@ e+ %(1 —a(t)—d(t),  (D.13)
m(t) = — Smhzg‘{ﬁ“)e—é, (D.14)
h(t) :%pe—éﬂ‘@. (D.15)

The components of concurrence is given by

¢y =2l GV =Pt a(t)d(t),

e 2—2 D.16
n* =1 (D-16)
. inh?(1./1 — n2kt
Co(t) =pe=5 — \/(a(t) L) — 12+ (372 — ) (D.17)
It follows that the concurrence of the system is
C(t) = max(Cy(t), Ca(t),0). (D.18)

When p > 1/3, the concurrence of the system makes use of both C(t) and Cy(t).
For p < 1/3, the concurrence of the system only uses C(t) to describe the system.
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