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Abstract

Electronic Health Records (EHRs) contain complex, multidimensional data,

making effective visualisation essential for clinicians, researchers, and policymak-

ers. This thesis investigates the challenges in EHR visualisation (EHR Vis) and

explores novel solutions to improve data interpretation and decision-making.

We begin with a systematic review of state-of-the-art EHR Vis techniques,

classifying existing methods, identifying limitations, and outlining opportunities

for innovation. Based on this foundation, we develop three novel visualisation

tools in collaboration with domain experts.

In Chapter 3, we present a letter-space visualisation tool to support the ex-

ploration of unstructured clinical text describing epilepsy patients in a structured

manner. In Chapter 4, we introduce a novel hybrid cartogram layout algorithm

that enhances the legibility, readability, and overall accuracy of EHR data vi-

sualised through Demers Cartogram. In Chapter 5, we describe a hierarchi-

cal visualisation technique designed to efficiently extract, organise, and present

event-based temporal data in long-term patient records.

A special chapter is presented in Chapter 6, where we present EnsembleDashVis,

a visualisation dashboard developed in collaboration with over 40 experts during

the COVID-19 pandemic. This project demonstrates the role of visualisation in

supporting large-scale, multidisciplinary emergency response efforts.

Through these contributions, this thesis advances the field of EHR Vis by

addressing critical usability challenges, proposing scalable solutions, and demon-

strating the value of visualisation in clinical and epidemiological contexts. We

conclude with a discussion on the broader implications of our findings and propose

future research directions to further enhance EHR Vis methodologies.
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Chapter 1

Introduction

“The greatest value of a picture is when it forces us to notice what

we never expected to see.”

– John W. Tukey, Mathematician (1915 - 2000)
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Figure 1.1: The map of England and Wales by John Adams in 1677. Figure reproduced
from Götzfried Antique Maps [348].

1.1 Data Visualisation

The history of Data Visualisation dates back to the 17th century, when John Adams

presented a survey of England and Wales with the measurement of boundary lines

and distances between towns using latitude, angle, and direction [2]. The use of the

combination of multiple elements such as points, lines, numbers, words, and symbols

on top of a coordinate system is often regarded as the enlightenment of the early days

Data Visualisation [22]. It was until the 19th century, when the common visual designs

such as the line chart, bar chart, pie chart, and area chart, were invented by William

Playfair in an attempt to replace boring tables of numerical data [1].

Modern Data Visualisation is capable of more than replacing statistical tables, and

is defined as “the use of computer-supported, interactive, visual representations of data

to amplify cognition” [13]. Over the past three decades, several subfields related to EHR

Vis have been proposed, as identified in our literature review presented in Chapter 2.

Key subfields include Information Visualisation, Visual Analytics, Text Visualisation,

and Geospatial Visualisation. The rest of this section briefly describes these related

subfields and examines their connection to the central topic of EHR Vis.
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Figure 1.2: The exports and imports to and from Denmark and Norway in England
between 1700 and 1780. Figure reproduced from Playfair [1].

1.1.1 Information Visualisation

Information Visualisation as a vibrant subfield, is defined by Stuart Card as “a set

of technologies that use visual computing to amplify human cognition with abstract

information.” [106]. Since abstract data has no inherent mapping to space, various

visual representations of abstract data are proposed:

Chord Diagram: A chord diagram is a representation of the relationships between

several categories of data. Each category is represented by a fragment of the outer circle,

and the relationships between the categories are represented by the chords. The size of

the chord is proportional to the number of items in the category. See Figure 1.3.

Treemap: A treemap is best used for the representation of hierarchical structures

in the data [7]. Many variants have since been proposed to emphasise different data

dimensions by adjusting the underlying layout algorithms [273], such as Nested Circles

[31] and Balanced Partitioning [227]. See Figure 1.4.
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Figure 1.3: Estimated 10-year migrant flows during 2000-10 between regions. Figure
reproduced from Abel [203].

Figure 1.4: An example of a treemap visualising London property transactions between
2000 and 2008. Figure reproduced from Slingsby et al. [69].

1.1.2 Visual Analytics

Visual Analytics (VA) is often regarded as an extension of the fields of Scientific and

Information Visualisation with technologies from other fields [35], thus the definition of

VA varies from field to field. In the scope of this thesis, we follow the definition of VA as

the combination of “automated analysis techniques with interactive visualisations for

an effective understanding, reasoning, and decision-making on the basis of very large
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and complex data sets.” [40].

As the amount of data being collected grows exponentially, we have entered an era

of information overloading. VA aims to address this problem by extracting reliable

knowledge from the massive heterogeneous data sets and communicating it to the user

in an appropriate and interactive way [58]. Throughout this thesis, we present our

research with novel interactive techniques to enable users to explore and comprehend

the data that is being rendered.

1.1.3 Text Visualisation

As another popular subfield of Information Visualisation, Text Visualisation focuses on

the representation of abstract text data and its relationships, to enable the discovery

of actionable insights [159]. The use of visualisation techniques enables the analysis of

massive text data that was previously difficult to perform, such as TransVis shown in

Figure 1.5. In Chapter 3, we discuss the visualisation of unstructured text data, in the

form of clinical letters, in detail.

1.1.4 Geospatial Visualisation

Geospatial Visualisation leverages geographic information to amplify legibility and

recognisability. Geographic information is not limited to the geographic locations of the

data, but can also include dimensions such as spatial distances, natural features (rivers

and mountains), landmarks, and any important information related to the visualisation

[295]. Here we describe some examples:

Cartograms: Cartograms are representations of geographical and abstract data

based on a value-by-area mapping combining statistical and geographical information

[66]. Each area is represented by a polygon such as a square (instead of the original

shape). Each area varies in size and/or colour depending on the data shown on the

map. See Figure 1.6 for an example. As an integral part of Chapter 4, we discuss

cartograms in detail there.

Choropleth Map: A choropleth map is the representation of area-based data on

a geospatial map [213]. Color is often used to encode values on a geographical area,

visualising patterns and variations. See Figure 1.7.
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Figure 1.5: TransVis facilitates the comparison of 38 translations of Othello over a span
of 244 years. Figure reproduced from Alharbi et al. [300].

Figure 1.6: An example of a Mosaic cartogram depicting the US election results in
2012. Figure reproduced from Cano et al. [146].

6



Figure 1.7: An example of a choropleth map depicting the output areas of Wales in
2016. Figure reproduced from McNabb et al. [213].

1.1.5 Electronic Health Records Visualisation

To the best of our knowledge, there is no consensus on the definition of Electronic

Health Records Visualisation (EHR Vis). In our state-of-the-art report described in

Chapter 2, we attempt to define EHR Vis as the visualisation of longitudinal collection

of comprehensive patient medical information, maintained and shared by healthcare

providers in machine-readable formats, and stored securely in an electronic system

[311]. EHR Vis combines multiple subfields described earlier in this chapter, as shown

in Figure 1.8, in order to facilitate visual analytics and present the outcomes to policy-

makers, clinicians, and patients.

As the core subject of this thesis, we break down EHR Vis into state-of-the-art

in Chapter 2, its combination with text visualisation in Chapter 3, and geospatial

visualisation in Chapter 4.

1.2 Challenges

In this thesis, we consider the following as the main challenges:

1. Diverse EHR Literature Sources: As literature is spread across conferences

and journals from different academic communities, it is challenging to understand

the landscape of EHR Vis. We spent over a year investigating related work and
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Figure 1.8: A Venn diagram illustrates the relationships between EHR Vis and other
subfields of Data Visualisation.

the result is an up-to-date survey of EHR Vis literature, presented in Chapter 2.

2. EHR Data Acquisition: The sensitive nature of EHR data poses challenges to

researchers. Access to data often requires a lengthy application process. During

the Ph.D. period, we attempted to apply for access to multiple EHR data sets

and kept a record of processing time, see Table D.1.

3. EHR Data Scalability: The size of an electronic healthcare data set is often

huge. The rate of data growth exceeds the capacity of algorithms and software

developed to visualise it [141]. In order to develop visual designs with a satis-

factory level of performance, we need to carefully perform preprocessing steps

to 1) minimise the data set size without losing valuable information, 2) improve

the interactivity of the visual designs to facilitate the mantra of “overview first,

details-on-demand”, furthermore 3) we employ state-of-the-art algorithms to en-

sure the performance of our visual designs when the data size grows.

4. EHR Data Diversity: Another challenge arises from the diversity of data

types present in EHR data sets. These data sets often include structured data,

such as numerical values and coded entries, alongside unstructured text, such

as physician notes or diagnostic reports. Handling such heterogeneous data is
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essential for creating effective visualisations, as different types of data require

different preprocessing and visualisation techniques.

5. EHR Vis Evaluation: The evaluation of the visual design is critical to the

success of EHR Vis. We need to carefully design the evaluation methods and

work closely with domain experts.

6. Others: Other challenges stemming from nonresearch aspects. During the

Ph.D. period, we witnessed the Covid-19 pandemic which severely disrupted our

progress. However, we managed to contribute to the fight against the pandemic

by developing EnsembleDashVis, as described in Chapter 6.

1.3 Research Methodology

The challenges outlined in Section 1.2 lay the groundwork for understanding the in-

herent complexities of visualising Electronic Health Records. These issues highlight

the limitations of traditional visualisation methods and the necessity for innovative

approaches. To address these challenges, we adopt the following research methodology.

We begin by conducting a literature survey to understand the current state-of-the-

art in EHR Vis. The survey also investigates and collects a list of open-access EHR

data sets available for our research. The outcome of the survey enables us to have a

clear overview of challenges and approaches that have already been investigated and

considered, and provides future directions for our research.

We then work closely with domain experts in EHR data analysis to understand

the needs of health data professionals. We design and develop empirical visual designs

to address the identified needs, as well as tackle unsolved problems and challenges

identified in the previous steps. The collaboration also enables us to have a deeper

interpretation of EHR data sets, thus formulating a more suitable and user-centric

visualisation solution. We also adopt an iterative development approach with expert

feedback, to ensure that our research responds to the needs of clinicians and beyond.

This thesis seeks to create visualisations that are not only theoretically sound but

practically effective in overcoming the specific challenges posed by EHR data.
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1.4 Contributions

This thesis makes significant contributions to the field of EHR Vis by addressing key

challenges described in Section 1.2 and introducing novel techniques that advance the

state-of-the-art. The contributions span multiple areas, ensuring a comprehensive ap-

proach to tackling the unique demands of EHR Vis.

• Diverse EHR Literature Sources: A comprehensive and up-to-date survey

[311] covering the field EHR Vis. The survey summarises and classifies 51 papers

based on six reoccurring research themes and the Unified Medical Language Sys-

tem (UMLS), an attempt to bridge multiple disciplinary including visualisation,

visual analytics, healthcare, biomedical science, and related disciplines.

• EHR Data Acquisition: A mini-survey [311] that curates 34 high-quality open

access EHR data sources and data sets, serving as a valuable starting point for

researchers entering the field.

• EHR Data Scalability: Novel techniques to address challenges in EHR data

scalability. We employ state-of-the-art techniques to improve the performance of

our visual designs and cope with the growth of EHR data. This is discussed in

both Chapter 4 and Chapter 5.

• EHR Data Diversity: We address the challenge of handling heterogeneous

EHR data by developing visual designs that can effectively visualise geospatial,

unstructured text and long time series data. We discuss the visualisation of

geospatial data in Chapter 4, unstructured text data in Chapter 3, long time

series data in Chapter 5 and simulation modelling data in Chapter 6.

• EHR Vis Evaluation: The exemplary collaborations with EHR domain ex-

perts. We use an iterative process of design, development, and evaluation, which

enables us to have a deeper understanding of the EHR data and the needs of

healthcare professionals and deliver a more suitable visualisation solution. We

combine qualitative and quantitative evaluation methods to assess the effective-

ness of our work, as discussed in Chapter 3, Chapter 4, and Chapter 5.

Collectively, these contributions showcase a holistic approach to EHR Vis, bridging

gaps in existing methods and offering tools that address the specific needs of EHR

analysis. By focusing on scalability, interactivity, and user relevance, the thesis provides
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a foundation for future innovations in this critical field.

1.5 Thesis Structure

The rest of this thesis incorporates the following structure: Chapter 2 presents a com-

prehensive survey of EHR Vis literature, including a mini-survey of 34 high-quality

open-access EHR data sources and data sets. Chapter 3 presents a novel letter-space

visualisation tool, developed through an iterative collaboration with EHR domain ex-

perts, to support the exploration of the unstructured clinical text in a structured man-

ner. We then present a novel hybrid cartogram layout algorithm in Chapter 4, which

incorporates topological elements into Demers cartograms. Through iterative collabo-

ration with EHR domain experts, the resulting algorithm enhances the legibility, read-

ability, and overall accuracy of EHR data visualised through Demers Cartogram.

Chapter 5 describes a novel and scalable visual design, Time Series Map, which

extracts events from long time series data and structures them into visual hierarchies.

We collaborate with health data experts to evaluate the effectiveness of the design

with two real-world data sets recorded by continuous glucose monitors. The evaluation

results show that the Time Series Map can effectively support flexible exploration of

long time series data, which is particularly beneficial for clinicians and researchers

needing to identify trends, anomalies, and key events within long time series data sets.

In Chapter 6, we present a special chapter that chronicles the design and devel-

opment journey of EnsembleDashVis, a visualisation dashboard specifically crafted to

support modellers in interpreting a simulation model utilised to forecast COVID-19

trends. The work took place amidst the exceptional circumstances of an unprecedented

pandemic, and involved a fully remote and cross-disciplinary collaboration with over

40 domain experts from many fields such as data science, epidemiology, mathematics,

public health, and many others.

In Chapter 7, we conclude the thesis and provide future directions in EHR Vis. We

provide all supplementary materials in Section 7.2.
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Chapter 2

EHR STAR: The State-Of-the-Art in

Interactive EHR Vis

Wang, Q., & Laramee, R. S. (2022). EHR STAR: The State-Of-the-Art in Interactive

EHR Vis. Computer Graphics Forum, 41(1), 69–105. https://doi.org/10.1111/cgf.14

424 [311]

“A wealth of information creates a poverty of attention.”

– Herbert A. Simon, Computer Scientist (1916 - 2001)

This chapter is based on the survey published in Computer Graphics Forum [311].

The content of this survey provides a solid foundation of visualisation knowledge as well

as sources of EHR data for the rest of this thesis. Through the survey, we have identified

the challenges and opportunities in the field of EHR Vis, and we have classified the

existing EHR Vis techniques, with a mini survey on open access EHR data sets. A list

of domain experts and potential collaborators was also identified through our intensive

literature review.
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2.1 Introduction and Motivation

We first germinated the idea of writing a state-of-the-art report (STAR) on EHR Vis

in 2019, as the quantity of EHR Vis literature has grown since the last highly-cited

survey published by Rind et al. in 2013 [126]. The landscape of EHR Vis has changed

dramatically since then, with new techniques (both Vis and NonVis) being introduced

and applied to solve EHR-related problems. The initial search showed that there was

never a consensus on the definition of an EHR, let alone EHR Vis. A new survey paper

would be a good opportunity for us to gain a comprehensive understanding of unsolved

problems and provide the community with an up-to-date overview of the state-of-the-

art in EHR Vis.

In this EHR STAR, we present literature reviews of papers related to EHR Vis from

multiple disciplines, including visualisation, visual analytics, healthcare, and biomedical

science. We attempt to define EHR Vis by combining the existing definitions and usage

in 213 related references, and systematically extracting essential information from 51

papers based on multiple criteria. We also discuss the challenges and opportunities of

EHR Vis, and provide a guide for future research. One major challenge is the access

to EHR data sets, we specifically include a mini-survey of 34 high-quality open access

EHR data sources in the STAR. Our contributions to the field include:

• An up-to-date overview of recent EHR Vis literature featuring a concise overview

of important terminology and recent research in the field, with 213 related refer-

ences and 19 tables.

• Novel classifications of 51 EHR Vis literature based on six reoccurring research

themes and the Unified Medical Language System (UMLS).

• A survey of 34 high-quality open access healthcare data sources and data sets.

• A STAR that appeals to researchers from visualisation, visual analytics, health-

care, biomedical science, and related disciplines.

• An overview of future challenges and open research directions in the field, for

both new researchers and experts.

We have also developed an online EHR STAR literature browser for readers: https://ehr.wangqiru.com.

It features all EHR papers and data sets along with several filtering and sorting options

based on author, year, technique, and search terms. We believe that it offers a valuable
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resource for those interested in this topic.

2.1.1 Survey Challenges

This section describes the challenges in the field of EHR Vis and in conducting a

survey of related literature. We face a number of challenges stemming from the related

literature search.

Diverse literature sources: As literature is spread across conferences and jour-

nals from different communities, researchers struggle to keep up with the latest pub-

lished work. This also increases the time and effort required to identify solved and

unsolved problems.

Multidisciplinary research themes: A well-defined classification and scope to

organise relevant literature is challenging due to multidisciplinary research themes. As

the complexity of research grows, cross-disciplinary collaborations are fostered, and

the literature on EHR Vis often spans multiple themes. Different combinations of

research expertise produce papers that may be difficult to classify. A typical EHR Vis

project might involve visualisation, Natural Language Processing (NLP), and Machine

Learning (ML).

Inconsistent Medical terminology: The choice of medical terminology standard

varies between authors, this increases the work required to classify literature and the

difficulty to provide a concise overview of recent research in the field. We address the

challenge directly by adopting a medical terminology standard, UMLS, in Section 2.2.2,

and presenting a list of standardised terminology and definitions used in the related

literature in Section 2.1.4.

We also face a number of challenges stemming from digital healthcare data.

Healthcare data acquisition: It is generally challenging to find open and ac-

cessible healthcare data sets for conducting research in the field, due to the sensitive

nature of the data [175]. There are a number of ways of acquiring electronic healthcare

data sets:

1. Cooperation with relevant health institutes: This can be the ideal

situation but not every researcher has the opportunity to work closely with

a relevant institute and obtain access to electronic healthcare data.
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2. Open Access data sets: There are a number of open access data sets

available online. In order to address this challenge directly, we classify and

describe them in Section 2.6. However, the challenge with such data sets

is that access may be restrictive. EHRs may be redacted and lack some

data dimensions that are important for EHR Vis research. Based on our

investigation, some data sets are old and outdated.

3. Proprietary data sets: A license to access proprietary data sets can be

expensive. We provide some example license costs in Section 2.6.5 where we

describe some proprietary data sets.

Data protection: Electronic healthcare data contains highly sensitive information

that requires extra precaution during analysis. Researchers and institutes must comply

with the laws and regulations such as HITECH [70] and GDPR [179]. This increases

the difficulty in data acquisition for research.

Data heterogeneity: Electronic healthcare data is heterogeneous, it may include

free text, scalar, ordinal, images and categorical attributes in one record [270].

Scalability: The size of an electronic healthcare data set is often huge. The rate

of data growth exceeds the capacity of algorithms and software developed to visualise

it [141].

High-dimensionality: Closely related to heterogeneity, healthcare data sets are

high-dimensional and complex [132, 201]. The ability to visualise large data sets with

many attributes effectively remains a challenging problem [141].

We address some of these challenges directly in this STAR in Section 2.6, which

includes a survey of open access electronic healthcare data sources. We also present

related future challenges in the field in Section 2.7.

2.1.2 Literature Search Methodology

We started our literature search primarily on papers from the following conferences and

journals:

• VIS: IEEE VIS conferences

• EuroVis: EuroVis conferences

• TVCG: We have carefully selected papers on EHR Vis from the IEEE Transac-
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Source (Visualisation Venues) Years No. of Papers

IEEE Transactions on Visualisation and Computer
Graphics

2009-2020 16

IEEE Workshop on Visual Analytics in Healthcare 2011, 2014, 2015, 2017 4

EGUK Computer Graphics & Visual Computing 2017, 2018 3

IEEE Workshop on Visualisation of Electronic Health
Records

2014 2

The Annual EuroVis Conference and Computer Graph-
ics Forum

2015, 2016, 2019 3

IEEE Conference on Visual Analytics Science and Tech-
nology

2006 1

IEEE Pacific Visualisation Symposium 2011 1

IEEE Computer Graphics and Applications 2015 1

Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications

2016 1

The Visual Computer 2021 1

Total 2006-2021 33

Source (NonVisualisation Venues) Years No. of Papers

ACM Human Factors in Computing Systems 2004, 2010, 2011 3

American Medical Informatics Association Annual Sym-
posium

1998 & 2011 2

Methods of Information in Medicine 2001 1

Conference on Advanced Visual Interfaces 2004 1

Journal of Universal Computer Science 2005 1

IEEE Transactions on Information Technology in
Biomedicine

2007 1

Information 2009 1

Ergonomics and Health Aspects of Work with Comput-
ers

2011 1

BMC Public Health 2012 1

Government Information Quarterly 2012 1

Computer Methods and Programs in Biomedicine 2013 1

Online Journal of Public Health Informatics 2016 1

Journal of the American Medical Informatics Associa-
tion

2018 1

Bioinformatics 2019 1

ACM Transactions on Computing for Healthcare 2020 1

Total 1998-2020 18

Table 2.1: Conferences and Journals (both Visualisation and NonVisualisation venues)
used for discovering literature and the number of papers found.

tions on Visualisation and Computer Graphics journal

• VAHC: Literature published in the IEEE Workshop on Visual Analytics in

Healthcare is also reviewed since VAHC primarily focuses on applying interactive

visualisation techniques for healthcare data

After the initial search and looking into the references, we found more literature

from venues listed in Table 2.1.
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Search Keywords Additional Keywords

Visualisation

electronic health record, electronic medical record, EHR, EMR

personal health record, population health record, PHR, PopHR

clinical decision support

healthcare, health care, clinical, medical

medicine, treatment, surgery, hospital

Table 2.2: Keyword combinations used for discovering EHR Vis literature.

We first conduct a breadth-first search. Table 2.2 shows the list of keyword combi-

nations we use for our breadth-first literature search. We use IEEE Xplore [341], The

ACM Digital Library [347], Google Scholar [337], Vispubdata [196], Semantic Scholar

[232], Mendeley [331] and Research Gate [359] as digital libraries and tools for search-

ing. Previous surveys serve as a good starting point for finding papers on topics of

interest. Cross-referencing the extensive Survey of Surveys by McNabb and Laramee

[198], we find another two related surveys on EHR Vis [126, 157].

Number of Electronic Health Records Visualised

UMLS Code UMLS Term Keywords 1 2 - 100 101 -

1,000

1,001 -

5,000

5,001 -

100,000

>100,000

C0003125 Anorexia

nervosa

[39]

C0004238 Atrial

fibrillation

[148]

C0007222 Cardiovascular

diseases

Cardiovascular

disease

[264]

C0009378 Colonoscopy Colonoscopy,

biopsy,

appendiceal-

orfice

[219]

C0010337 Care of

intensive care

unit patient

Critical care [30] [19]

[248]

[136] [231]

C0011847 Diabetes [79] [91]

C0011854 Diabetes

dellitus,

insulin-

dependent

Type 1

diabetes

[251] [265] [238]

C0014544 Epilepsy [298]

C0018802 Congestive

heart failure

[115]

table continued on next page . . .
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. . . continued

Number of Electronic Health Records Visualised

UMLS Code UMLS Term Keywords 1 2 - 100 101 -

1,000

1,001 -

5,000

5,001 -

100,000

>100,000

C0020179 Huntington

disease

Huntington’s

disease

[265]

C0020443 Hypercholesterolemia [238]

C0020538 Hypertensive

disease

Hypertensive [238]

C0021400 Influenza [103]

[125]

C0021711 Neonatal

intensive care

[134] [19]

[168]

C0023981 Longitudinal

Studies

Longitudinal

cohort study

[222]

C0024117 Chronic

obstructive

airway disease

Chronic

obstructive

pulmonary

disease

[210]

C0030567 Parkinson

disease

Parkinson’s

disease

[265]

C0030677 Patient care

management

[33] [136]

C0030704 Patient

transfer

[100]

C0031330 Pharmacology Pharma-

covigilance

[122]

C0031437 Phenotype [163]

[193]

[209]

C0032285 Pneumonia [103]

C0034065 Pulmonary

embolism

[30]

C0035242 Respiratory

tract diseases

Respiratory

diseases

[264]

C0038454 Cerebrovascular

accident

Stroke [171]

C0040034 Thrombocytopenia [71]

C0085207 Gestational

diabetes

Gestational

diabetes

mellitus

[148]

C0262926 Medical

history

[102] [248] [132] [45] [166]

[238]

C0441472 Clinical action [92]

table continued on next page . . .
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. . . continued

Number of Electronic Health Records Visualised

UMLS Code UMLS Term Keywords 1 2 - 100 101 -

1,000

1,001 -

5,000

5,001 -

100,000

>100,000

C0599880 Treatment

plan

[30]

[89]

[92]

[251]

[264]

C0600139 Prostate

carcinoma

Prostate

cancer

[224] [144]

[143]

C0679831 Patient history Patient’s

history

[11]

[48]

[189]

[144]

[143]

C0684249 Carcinoma of

lung

Lung cancer [128]

C0872379 Disease

subtype

Disease

subtyping

[209]

C1659543 Breast Density [151]

C2711227 Steatohepatitis Hepatic

Steatosis

[151]

C3242284 Population

health

[151] [202]

[201]

[218]

[241]

[113]

[177]

C5204342 Clinical history Patient clinical

history

[228] [148]

UMLS Code UMLS Term Keywords 1 2 - 100 101 -

1,000

1,001 -

5,000

5,001 -

100,000

>100,000

Number of Electronic Health Records Visualised

Table 2.3: UMLS table: Classification table of the reviewed literature. We extract
keywords used in each paper in order to retrieve the UMLS code and terminology via
the UMLS Browser [32]. Keywords are only indicated where they differ from the UMLS
term. Papers are grouped by UMLS Code on the y-axis and by the number of EHR
documents visualised on the x-axis. Green highlights context papers included in this
STAR.

We then conduct a depth-first search on the results obtained from the breadth-first

search. We review each paper to find other relevant research including:

• The previous related work section and its references.

• Mendeley’s [331] “related documents” functions.

• The “cited by” function provided by Google Scholar [337] and Semantic Scholar

[232] to discover forward-looking related papers.
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2.1.3 Survey Scope

In this section, we describe the scope of the survey. Due to the large volume of publi-

cations related to EHR Vis, we apply constraints to narrow down the list of literature.

We describe those constraints below in this section.

In Scope

In this STAR, we focus on EHR and PopHR Vis as defined in Section 2.1.4.

We include peer-reviewed literature focusing on real-world scenarios and empirical

applications of EHR Vis. We emphasise research with healthcare data collected through

clinical practice and that which provides clinical decision support.

Novel techniques are also included. We include Event Sequence Simplification

(ESS), a widely adopted technique to provide succinct visual layouts [122] hidden in

EHR data-related processes. We include papers on EHR Vis with geospatial visualisa-

tion, as a geographical dimension might be relevant in a PopHR data set. Geospatial

visualisation partially overlaps with this survey. We include research describing EHR

Vis with Natural Language Processing (NLP) techniques. Friedman and Hripcsak

recognise text visualisation with NLP as one of the most commonly used tools to ex-

tract information from EHR data and for studying clinical and research questions [14].

We also include papers describing EHR Vis systems developed with Machine Learning

(ML) and data mining techniques, as they have gained traction in their applications in

assisting clinical research [182].

We focus on papers published in the previous 10 years. We refer to these papers as

focus papers. Older papers such as LifeLines [8], LifeLines2 [11] and PatternFinder [45],

contribute significantly to the field, with mature implementations deployed in clinical

practises. We still include them as context papers and in the meta-data such as the

classification Table 2.3, without a detailed description. By considering the publication

year, we are able to investigate the fields that are less mature and provide more accurate

future research directions.

Out of Scope

We introduce the following criteria to constrain the scope of this STAR.
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Non peer-reviewed publications: We exclude papers that are not peer-reviewed.

EventFlow [110] is a state-of-the-art system for visualising event sequences and explor-

ing point and interval event patterns. Despite being influential in the field of EHR

Vis, the work is excluded due to the absence of a peer-review process. However, we

include a closely related paper by Monroe et al. [122] published in IEEE TVCG. We

also exclude posters.

Resource-oriented: We exclude papers focusing on the visualisation of related

resource-oriented EHR data. We define resource-oriented EHR data as the data that

focuses on the management of clinical practises, such as hospital bed occupancy rates

and inter/intra-hospital patient transfer times. These studies generally do not focus

on clinical decision support directly. We exclude SepVis [186] as its focus is on the

assessment of hospital performance based on the elapsed time between clinical activities

and delays in clinical processes. We also exclude RadStream [204] as it is focusing on

optimising the workflow in radiology departments. QualDash [258] is excluded due to

its focus on adaptive dashboards for hospital quality improvement.

Off-topic: We exclude papers that focus on the use of EHR in the study of disease

relations and pathogen outbreaks.

Basic visual designs: In order to focus on novel and interactive visualisation

techniques, we exclude papers that describe EHR Vis with very basic, static visual

designs such as a pie chart, line chart, bar chart or bubble chart. Including classic,

static visual designs does not advance state-of-the-art.

Off-the-shelf solutions: We exclude papers that use off-the-shelf solutions to

generate images. In general, they do not propose a novel visualisation technique. We

also exclude papers that demonstrate visual designs but do not provide a custom-built

solution.

2.1.4 Background and Terminology

Healthcare-related terminology is one of the challenges in the literature. We address

this challenge by studying some of the most popular terms used in the literature. Here

we provide and classify the terminology used in this STAR.
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Literature EHR EMR Other Terms Vis community Year

Plaisant et al. [11] Computerized patient

records

1998

Horn et al. [19] ✓ 2001

Bade et al. [30] 2004

Goren-Bar et al. [33] Time-oriented clinical

data

✓ 2004

Hinum et al. [39] Medical data 2005

Fails et al. [45] Personal medical his-

tory

✓ 2006

Bui et al. [48] ✓ 2007

Wang et al. [71] ✓ 2009

Rind et al. [79] Medical data 2010

Faiola and Newlon [89] 2011

Gotz et al. [91] ✓ 2011

Gschwandtner et al. [92] Patient record ✓ 2011

Wongsuphasawat et al. [100] ✓ 2011

Zhang et al. [102] ✓ 2011

Alonso and McCormick [103] Public health data 2012

Sopan et al. [113] Public health data 2012

Wongsuphasawat and Gotz [115] ✓ 2012

Monroe et al. [122] ✓ 2013

Ramı́rez-Ramı́rez et al. [125] Public health ✓ 2013

Borland et al. [128] Population health ✓ 2014

Gotz and Stavropoulos [132] ✓ 2014

Kamaleswaran et al. [134] ✓ 2014

Malik et al. [136] ✓ 2014

Bernard et al. [144] ✓ 2015

Bernard et al. [143] ✓ 2015

Federico et al. [148] ✓ 2015

Klemm et al. [151] Population health ✓ 2015

Glueck et al. [163] ✓ 2016

Jiang et al. [166] ✓ 2016

Kamaleswaran et al. [168] ✓ 2016

Loorak et al. [171] ✓ 2016

Ola and Sedig [177] 2016

Dabek et al. [189] ✓ 2017

Glueck et al. [193] ✓ 2017

Tong et al. [202] Public healthcare data ✓ 2017

Tong et al. [201] Public healthcare data ✓ 2017

Glueck et al. [209] ✓ 2018

Guo et al. [210] ✓ 2018

table continued on next page . . .
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. . . continued

Literature EHR EMR Other Terms Vis community Year

Tong et al. [218] Public healthcare data ✓ 2018

Trivedi et al. [219] 2018

Alemzadeh et al. [222] Longitudinal cohort

study

✓ 2019

Bernard et al. [224] ✓ 2019

Glicksberg et al. [228] 2019

Guo et al. [231] ✓ 2019

Kwon et al. [238] ✓ 2019

McNabb and Laramee [241] Population health data ✓ 2019

Sultanum et al. [248] ✓ 2019

Zhang et al. [251] ✓ 2019

Jin et al. [264] 2020

Kwon et al. [265] ✓ 2020

Wang et al. [298] ✓ 2021

Total unique papers: 51 25 10 16 40

Table 2.4: Terminology table: Terminology used in each focus and context paper
included in this STAR, order by year of publication. The x-axis indicates the termi-
nology used in each paper, and their subject category is described in Section 2.3. This
table indicates a mixture of terms is used throughout the literature. We clarify the
terminology in Section 2.1.4. Green highlights context papers.

EHR: To the best of our knowledge, there is no standard definition of an Electronic

Health Record (EHR) even since its inception in the 1960s [175]. Iakovidis defines EHR

as digitised healthcare information on individual patients that is accessible, secure and

highly usable for supporting the analysis of healthcare, education and research [10].

Gunter and Terry define EHR as, “A longitudinal collection of electronic health infor-

mation about individual patients and populations” [38, p.1]. The U.S. National Cancer

Institute defines EHR as, “An electronic (digital) collection of medical information

about a person that is stored on a computer” [342]. The U.S. Centers for Medicare

and Medicaid Services defines EHR as, “An electronic version of a patient’s medical

history, that is maintained by the provider over time, and may include all of the key

administrative clinical data relevant to that person’s care under a particular provider,

including demographics, progress notes, problems, medications, vital signs, past medical

history, immunisations, laboratory data and radiology reports” [349]. The World Health

Organisation (WHO) defines EHR as, “Health records residing in an electronic system

specifically designed for data collection, storage, and manipulation, and to provide safe
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access to complete data about patients” [199, p.16].

In this STAR we define EHR as a longitudinal collection of comprehensive patient

medical information in machine-readable formats, that is maintained and shared by

healthcare providers, and stored securely in an electronic system.

EMR: EHR and Electronic Medical Record (EMR) are sometimes used inter-

changeably to represent digitised health records used to improve quality of care and

estimate costs [102, 161, 192, 217]. Unlike EHR, an EMR is stored and used internally

without inter-organisation sharing [195]. For purposes of this STAR, we group EMR

terminology and literature into the EHR category.

PHR: To the best of our knowledge, a definition of Personal Health Record (PHR)

was first proposed in the early 2000s with Tang et al. [47] stating that a PHR differs

from an EHR by its accessibility. A PHR is managed by the data owner and is au-

thorised for sharing with healthcare providers when necessary [47]. The U.S. National

Cancer Institute defines PHR as, “A collection of information about a person’s health

that allows the person to manage and track his or her own health information” [343].

The NHS classifies a medical record as a PHR if it is secure, usable, and available online

whilst being managed by the person who the record represents [330].

PopHR: Population Health Record (PopHR) is first defined by Friedman and Par-

rish as, “A repository of statistics, measures, and indicators regarding the state of

and influences on the health of a defined population, in computer processable form,

stored and transmitted securely, and accessible by multiple authorised users” in 2010

[74, p.360]. A PopHR data set focuses on the health of a population, without storing

identifiable information on individual members of the population. We make a distinc-

tion between EHR and PopHR in this survey. The research focusing on PopHR is

summarised in Section 2.4.6.

EHR Vis: We consider the visualisation of EHR and PopHR for clinical decision

support, as a sub-field of information visualisation and visual analytics (EHR Vis).
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2.2 Literature Classification

This section describes our literature classification method. We derive classification

dimensions based on the following:

• Recurring multidisciplinary research themes derived from our literature search,

described in Section 2.2.1.

• The Unified Medical Language System (UMLS), introduced in Section 2.2.2, as

the medical terminology standard for classifying literature.

2.2.1 Multidisciplinary Research Themes

EHRs are often large-scale and may contain noisy data [206]. This means an automated

process can be implemented in order to achieve both efficiency and accuracy in the

preprocessing and visualisation stages. From the related literature, we have identified

several major research themes in processing and visualising EHRs. We provide a brief

description of these themes here and review the related literature in detail in Section 2.4.

• Machine Learning (ML)

• Natural Language Processing (NLP)

• Event Sequence Simplification (ESS)

• Geospatial Visualisation (GEO)

• Visual Analytics with Clustering

• Visual Analytics with Comparison

Table 2.8 shows an overview of our literature classification based on multidisci-

plinary research themes.

2.2.2 Adopting a Medical Terminology Standard

Gesulaga et al. identify one of the primary barriers to the adoption and deployment of

EHR Vis systems in a clinical environment as stemming from resistance from clinical

professionals due to the lack of expertise in computer systems including visualisation

[192]. By adopting a medical terminology standard, we hope to bridge the gap between

two communities, thus reaching a wider audience beyond information visualisation and
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visual analytics, and taking advantage of the extensive work invested into standardised

terminology development.

Figure 2.1: The various subdomains integrated in the UMLS Terminology. Figure
reproduced from Abel [32].

UMLS was introduced by the US National Library of Medicine in 2004. It incorpo-

rates a growing list of 2.5 million medical concepts and 12 million relations among these

concepts from multiple dictionaries in order to provide a terminology standardisation.

A schematic of the integrated dictionaries is shown in Figure 2.1. Dictionaries often use

different lexical items to describe identical or similar terms. An integrated standard

will make these resources interoperable, and machine-readable and help dismantle the

barrier to multidisciplinary research [32].

In order to classify each paper, we first extract their keywords to obtain their

corresponding code and terminology from the UMLS. Table 2.3 shows the overview

classification of research papers found in our literature search. The x-axis is mapped to

the number of EHRs visualised in the corresponding paper. The y-axis is mapped to the

corresponding UMLS Code and terminology found along with the keywords appearing

in each paper. We can observe from Table 2.3 the lack of convergence or consolidation

with respect to the health conditions addressed in the EHR Vis literature. This is most

likely due to the relative immaturity of the field. We also do not observe many research

groups working together in a wider team effort to tackle challenges in the field. And
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Year

Gotz et al.[91] 2011

Wongsuphasawat et al.[100] 2011

Alonso and McCormick[103] 2012

Sopan et al.[113] 2012

Wongsuphasawat and Gotz[115] 2012

Monroe et al.[122] 2013

Ramı́rez-Ramı́rez et al.[125] 2013

Borland et al.[128] 2014

Malik et al.[136] 2014

Bernard et al.[144] 2015

Bernard et al.[143] 2015

Federico et al.[148] 2015

4 3 4 2 3 3 2

Total unique papers: 12 | Total appearances: 21

Table 2.5: Focus papers: Y-axis, common Focus papers from previous survey papers,
ordered by the year of publication. X-axis, E○indicates an EHR focused survey and

P○indicates a PopHR focused survey. We can see that some of previously published
EHR Vis papers are common to multiple surveys.

finally, we can observe that not many papers are dealing with the really large EHR and

PopHR data sets with over 100,000 records.

2.3 Related Work

This section introduces related work with a special emphasis on previous related sur-

veys. Papers with a focus on visualisation or visual analytics of EHR data are described

in Section 2.3.1. We present previous PopHR survey papers in Section 2.3.2.

Our STAR differs from previous ones by including a novel, up-to-date overview

using a medical terminology standard described in Section 2.2.2, with 29 more recent

publications on EHR Vis. Table 2.5 - 2.7 clearly indicate both the overlap and diver-

gence between this STAR and previous surveys. In addition, we introduce a survey of

34 open healthcare data sources in Section 2.6 to address the challenge of healthcare

data access.
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]
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[2
0
0
]

R
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e
t
a
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Year

Plaisant et al.[11] 1998

Horn et al.[19] 2001

Bade et al.[30] 2004

Goren-Bar et al.[33] 2004

Hinum et al.[39] 2005

Fails et al.[45] 2006

Bui et al.[48] 2007

Wang et al.[71] 2009

Rind et al.[79] 2010

Faiola and Newlon[89] 2011

4 9 1 3 1 2

Total unique papers: 10 | Total appearances: 20

Table 2.6: Context papers: Y-axis, overlapping context papers from previous survey
papers, ordered by the year of publication. X-axis, E○indicates an EHR focused survey
and P○indicates a PopHR focused survey. We can observe that the 2013 survey by
Rind et al. [126] has some thematic overlap with this one.

2.3.1 Related Work with an EHR Focus

In this section, we divide related work with an EHR focus into two subcategories, related

work with an EHR Vis focus and related work without an EHR Vis focus but rather on

analysis. We also investigate both the overlap and divergence of the literature presented

here with previous surveys, as shown in Table 2.5 - 2.7 for focus papers, context papers,

and out of scope papers respectively.

Related Work with an EHR Vis Focus

The IEEE Workshop on Visual Analytics in Healthcare (VAHC) started in 2010 and

has been hosted six times at the IEEE VIS conference and four times at the Ameri-

can Medical Informatics Association (AMIA) Annual Symposium. EHR Vis has great

potential for influencing the clinical decision-making process and conducting research

on epidemiology [161]. The quantity of literature has grown since an early survey

published in 2013 by Rind et al. [126]. There are a number of older related surveys

published since then, we present them in this section.

Roque et al. compare six information visualisation systems designed for providing
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Year

Kosara and Miksch[21] B 2001

Atkinson and Unwin[24] OS 2002

Chittaro et al.[27] OT 2003

Brodbeck et al.[37] B 2005

Aigner and Miksch[42] B, OS 2006

Blanton et al.[43] OT 2006

Da Silva et al.[49] B, OS 2007

Guo[51] B, OT 2007

Hu et al.[52] B, OT 2007

Pieczkiewicz et al.[53] B 2007

Gao et al.[54] B, OS 2008

Hallett[55] B 2008

Heitgerd et al.[56] B 2008

Reinhardt et al.[59] B 2008

Yi et al.[63] OS 2008

Bashyam et al.[64] B, S 2009

Connors et al.[65] OT 2009

Wongsuphasawat and Shneiderman[72] OT 2009

Goldsmith et al.[75] B 2010

Klimov et al.[76] RO 2010

Kumasaka et al.[77] OT 2010

Naumova[78] OT 2010

Steenwijk et al.[81] S 2010

Willison[85] B, N, OS 2010

Driscoll et al.[88] B, OT 2011

Hripcsak et al.[93] B, OS 2011

Lewis et al.[96] B 2011

Maciejewski et al.[97] B, OT 2011

Gesteland et al.[104] OT 2012

Joshi and Szolovits[107] B, OS 2012

Livnat et al.[108] B, OT 2012

Mane et al.[109] B 2012

Perer and Sun[111] B, OS 2012

Stubbs et al.[114] B 2012

Rajwan et al.[124] B, OS 2013

Freifeld et al.[130] B, OS 2014

Gálvez et al.[131] B 2014

Simpao et al.[140] B 2014

Dunne et al.[147] B, OT 2015

Masoodian et al.[172] B, OT 2016

Caballero et al.[186] RO 2017

Abukhodair et al.[204] RO 2018

3 10 11 7 8 4 1 6

Total unique papers: 42 | Total appearances: 50

Table 2.7: Out of scope papers: Y-axis, out of scope papers from previous survey
papers, ordered by the year of publication, with the exclusion criteria described in
Section 2.1.3: (S) Scientific Visualization. (N) Not peer-reviewed. (RO) Resource-
oriented system. (OT) Off-topic. (B) Basic visual designs. (OS) Off-the-shelf solution.
X-axis, E○indicates an EHR-focused survey and P○indicates a PopHR-focused survey.
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overviews of EHR data [80]. Systems are classified based on the users, goals, and tasks.

Four of these systems are included in our survey as context papers (Table 2.6) and two

are excluded for reasons indicated in Table 2.7.

Rind et al. [126] review 14 information visualisation systems for exploring and

querying EHR documents, as shown in Table 5.2 in their work. The survey identi-

fies four major challenges in the field and highlights the potential that information

visualisation has in supporting medical tasks. Some 14 systems are compared by (1)

supported data types (categorical and numerical), (2) multivariate support, (3) subject

cardinality (support for one patient versus multiple patient records), and (4) supported

medical scenarios. Two systems are included in our survey as focus papers (Table 2.5),

nine are included as context papers (Table 2.6), and seven are papers considered out

of scope with reasoning indicated in Table 2.7.

Simpao et al. [140] discuss applications of visual analytics in healthcare since the

HITECH Act in 2009. The authors review eight visual analytics tools for EHR and cate-

gorise their application into different scenarios: (1) using mathematical and algorithmic-

based processing techniques such as text mining and NLP to derive insight from data,

(2) predefined data models to input EHR and output predictive risk assessment results

for stratifying patients, (3) enhancing EHR systems with more sophisticated rules-based

functions, (4) analysing continuous data streams in the nontraditional healthcare envi-

ronment, such as data transmitted from wearable monitors, (5) aimed at cost-cutting

and revenue-generating, such as automated billing and auditing, optimising resource

allocation. From these eight EHR Vis tools, one is included in our survey as a context

paper (Table 2.6), and seven are considered out of scope (Table 2.7).

West et al. [157] publish a systematic review of 18 papers, by highlighting crucial

metrics to evaluate EHR systems. Those metrics include (1) visualisation techniques

applied to utilise the screen space efficiently while preserving as much data as possible,

(2) interactive user options to identify abnormalities within the data, (3) visualisation

of the entire data set even if there are missing values or inaccurate data entries, (4)

visualisation of temporal data including event sequences and real-time data streams,

and (5) training time required for users and software. Some 13 EHR systems are

described in these 18 papers. We include four as focus papers (Table 2.5), three as
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context papers (Table 2.6) and exclude six papers (Table 2.7).

Onukwugha et al. [178] publish a survey of EHR Vis for cancer analysis. The

authors describe five cancer-related EHR Vis systems followed by two EHR systems

in detail with case studies visualising a prostate cancer archive and a health insurance

claim data set. The authors focus on EHR systems from three perspectives, (1) the

ability to identify and rectify errors in data, (2) visualisation techniques and interactive

options provided to support data analysis, and (3) cogent visualisations generated to

present findings to decision makers. From these seven EHR Vis systems, we include

four as focus papers (Table 2.5), one as a context paper (Table 2.6) and exclude two

papers (Table 2.7).

Gotz and Borland [164] discuss challenges and opportunities for the interactive visu-

alisation of EHR, with four EHR Vis systems reviewed in detail. The authors provide a

broad range of empirical applications incorporating EHR Vis, (1) Patient-centred point-

of-care applications that provide support for clinicians on communication and analysis

for a single patient. (2) Patient-facing applications, similar to patient-centred point-of-

care applications, provide patient-oriented support via techniques such as storytelling.

(3) Population management applications supporting institutional policymakers to al-

locate healthcare resources intelligently. (4) Health outcomes research that supports

discovery and insight that generalise across a population at large. We include two as

focus papers (Table 2.5) in our survey and exclude two papers (Table 2.7).

Rind et al. [200] publish a survey of EHR Vis with a focus on time-oriented data

sets. The authors identify technical challenges arising from the temporal dimension

of EHR data sets, as (1) the interpretation of discrete and continuous temporal di-

mensions, (2) the scalability from a single patient to a cohort of patients, and (3)

data-processing techniques to address uncertainties caused by data quality. Detailed

descriptions of four EHR systems are provided, we include two as focus papers (Ta-

ble 2.5) and two as context papers (Table 2.6).

Related Work with EHR Focus Outside the Visualisation Community

To date, we have not found any further related EHR Vis surveys beyond what we de-

scribe. However, we found other work related to EHR analysis outside the visualisation
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community with a focus on EHR data.

MIT Critical Data published a related book, Secondary Analysis of Electronic

Health Records [175]. The first chapter identifies the objective of secondary analy-

sis of EHR data as the utilisation of EHR data to provide evidence to inform best

practice in clinical care. EHR has comparative advantages in both cost-effectiveness

and feasibility. The second chapter reviews three open access EHR databases (as one

of them no longer provides open access, we only include two of these databases in Ta-

ble 2.17 in Section 2.6.5 as focus data sources) in detail with compact descriptions of

three additional databases with more restrictive access limitations (we exclude these

three databases, as two have discontinued and one no longer provides open access).

Chapter three introduces opportunities and challenges in the secondary analysis

of EHR. EHR creates novel opportunities for researchers and clinicians, large data

sets and queries provide evidence to support hypotheses. The authors identify that

scalability and data accessibility as two major challenges in the field, which overlap

with our findings in Section 2.7 and Table 2.18. Other identified challenges are data

protection, data interoperability, the cost of data infrastructure, and the varied quality

of research output. The rest of the book describes techniques in data preprocessing

and analysis with example studies conducted using EHR databases reviewed in chapter

two.

Shickel et al. [217] survey six ML-EHR systems developed with Deep Learning

techniques for predictive analytics using EHRs in detail. In addition, 25 systems are

included for comparison and discussion. These systems are divided into two categories

based on their applied machine learning techniques: Supervised and Unsupervised, as

shown in Figure 3 in Shickel et al. [217] survey. Another classification dimension is

derived from the target task and subtasks of previous EHR systems.

Koleck et al. [236] systematically review 27 systems that adopt NLP algorithms

for extracting structured data from free text EHRs. Table 3 in Koleck et al. [236]

shows the classification by clinical speciality. The survey scope is defined to include

symptom science research that focuses on the description, evaluation, or use of an

NLP algorithm or pipeline to process or analyse patient symptom terms. Reporting

demographic information is essential for NLP-EHR studies, as symptom experience is
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known to vary by common demographic factors. Reporting such information helps

avoid potential bias and improves the effectiveness of tailored interventions. Some 27

systems are evaluated, with eight critical indicators identified by the authors.

2.3.2 Related Work with a PopHR Focus

This section introduces related work with an emphasis on PopHR, which focuses on

the visualisation of the health of a population, rather than individuals.

Carroll et al. [129] publish a systematic review of 88 articles with a primary focus

on infectious disease, needs of public health users, or usability of information visual-

isations. Each article is reviewed and classified into the following six categories with

a focus on: (1) information needs and learning behaviour of public health profession-

als, (2) architecture of tools, (3) user preference with a focus on usability issues and

barriers to adoption of tools, (4) features of tools, (5) usability and evaluation and (6)

implementation and adoption. These categories are not mutually exclusive, in total 14

EHR systems are reviewed in detail, we include three (Table 2.5) as focus papers, none

as context papers, and exclude 11 with reasons indicated in Table 2.7.

Preim and Lawonn review the existing visual analytics solutions for supporting

Public Health (PH) [270] with structured data. The authors describe PH data sets as

heterogeneous and high-dimensional, often containing temporal and spatial dimensions,

therefore flexible visual analytics solutions will benefit the analysis process and provide

support for PH decision-making. The survey classifies these solutions based on com-

monly used visualisation and visual analytics techniques, as shown in Tables 4 and 5 in

their work. The survey then expands into three particular areas of PH, (1) analysis and

control of epidemics with 8 solutions, (2) visual analytics for epidemiological research

with 14 solutions, and (3) visual analytics of population-based cohort study data. We

include two (Table 2.5) as focus papers, none as context papers, and exclude six with

reasons indicated in Table 2.7.
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2.4 EHR Vis

This section describes 41 focus papers on EHR Vis found from our literature search. We

further categorise these papers based on six multidisciplinary research themes derived

from our investigation, as shown in Table 2.8. Each theme is described in this section

in detail. We also provide an interactive EHR STAR Browser containing all litera-

ture described in this section. Note that each paper description follows the guidelines

provided by Laramee ([95]).
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Plaisant et al. [11] 1998

Horn et al. [19] 2001

Bade et al. [30] 2004

Goren-Bar et al. [33] 2004

Hinum et al. [39] 2005

Fails et al. [45] 2006

Bui et al. [48] 2007

Wang et al. [71] 2009

Rind et al. [79] 2010

Faiola and Newlon [89] 2011

Gotz et al. [91] 2011

Gschwandtner et al. [92] 2011

Wongsuphasawat et al. [100] 2011

Zhang et al. [102] 2011

Alonso and McCormick [103] 2012

Sopan et al. [113] 2012

Wongsuphasawat and Gotz [115] 2012

Monroe et al. [122] 2013

Ramı́rez-Ramı́rez et al. [125] 2013

Borland et al. [128] 2014

Gotz and Stavropoulos [132] 2014

Kamaleswaran et al. [134] 2014

Malik et al. [136] 2014

Bernard et al. [144] 2015

Bernard et al. [143] 2015

Federico et al. [148] 2015

Klemm et al. [151] 2015

table continued on next page . . .
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. . . continued

Complementary Techniques
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Glueck et al. [163] 2016

Jiang et al. [166] 2016

Kamaleswaran et al. [168] 2016

Loorak et al. [171] 2016

Ola and Sedig [177] 2016

Dabek et al. [189] 2017

Glueck et al. [193] 2017

Tong et al. [202] 2017

Tong et al. [201] 2017

Glueck et al. [209] 2018

Guo et al. [210] 2018

Tong et al. [218] 2018

Trivedi et al. [219] 2018

Alemzadeh et al. [222] 2019

Bernard et al. [224] 2019

Glicksberg et al. [228] 2019

Guo et al. [231] 2019

Kwon et al. [238] 2019

McNabb and Laramee [241] 2019

Sultanum et al. [248] 2019

Zhang et al. [251] 2019

Jin et al. [264] 2020

Kwon et al. [265] 2020

Wang et al. [298] 2021

Total unique paper: 51 10 8 12 11 3 10 8

Table 2.8: Overview of EHR Vis techniques: Ordered by the publication year. The
x-axis is mapped to the re-occurring research themes we extracted from the literature.
Red highlights the primary theme, Grey highlights the secondary theme, and Green
highlights context papers.

2.4.1 Machine Learning

This section introduces the literature that combines Machine Learning (ML) and EHR

Vis. We follow the definition of ML by Alpaydin [73] as the process of optimising

the performance of a predefined model, based on example data or past experience.
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Literature ML Topics UMLS Term Year

Bernard et al.[144] Active LearningREPTree Prostate carcinoma 2015

Dabek et al.[189] Unspecified Patient history 2017

Guo et al.[210] Clustering Chronic obstructive airway disease 2019

Glueck et al.[209] Active Learning Phenotype
Disease subtype

2018

Trivedi et al.[219] Support Vector MachineBag-of-words Colonoscopy 2018

Guo et al.[231] Neural Networks Care of intensive care unit patient 2019

Kwon et al.[238] Recurrent Neural Networks Diabetes mellitus, insulin-dependent
Hypercholesterolemia
Hypertensive disease
Medical history

2019

Sultanum et al.[248] Active Learning Care of intensive care unit patient
Medical history

2019

Jin et al.[264] Recurrent Neural Networks Cardiovascular diseases
Respiratory tract diseases
Treatment plan

2020

Kwon et al.[265] Hidden Markov Models Diabetes mellitus, insulin-dependent
Huntington disease
Parkinson disease

2020

Table 2.9: An overview table of ML topics discussed in the literature described in
Section 2.4.1. Papers with ML as a secondary theme are highlighted in Green.

The outcomes from the process are either predictive to provide guidance on the future

or descriptive to acquire knowledge from the existing data. The application of ML

techniques such as deep learning [215], neural networks [238], support vector machines

[250, 225] and topic models [225], have evolved recently to increase automation of

processing EHR archives. From examining Table 2.8, we can observe that incorporating

ML into EHR Vis is a relatively new trend and not very mature. Also, we believe that

EHR Vis could benefit more with the help of ML techniques. Table 2.9 presents an

overview of the EHR literature in this subsection indicating which ML techniques are

used. We can observe that active learning is a recurring theme in the visualisation

literature.

Bernard et al. contribute a visual active learning system [143] extending their prior

work [144]. The system enables physicians to evaluate the well-being status of prostate

cancer patients by exploiting the patient’s history as recorded in their respective EHRs.

The phrase visual active learning system refers to a system that uses an active learning

approach which requires physicians for feedback and corrections during the training of

the model. The resulting visualisation enables quick identification of possible diagnoses

of individual patient’s symptoms.

Dabek et al. propose a timeline-based framework for aggregating and summarising
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EHRs [189]. The main challenge they address is the heterogeneous nature of EHR

data sources. The framework implements a patient timeline that conveys temporal

events with nodes. Each node contains a textual summary generated automatically

via machine learning. A separate panel is presented with a sunburst chart visualising

patient diagnoses and a horizon chart visualising lab test results.

Glueck et al. present PhenoLines, a visual analysis tool for the interpretation of

disease subtypes that exploits the application of topic modelling applied to clinical

data [209]. Based on the Human Phenotype Ontology (HPO) extracting and mapping

method introduced in the prior work [163, 193], PhenoLines aims to support the filter-

ing, comparison, simplification and interpretation of temporal evolution of phenotype

probabilities within and between disease subtypes. Topic modelling is used to mine

cross-sectional patient’s comorbidity data from high dimensional EHRs. PhenoLines

enables interactive analysis of the derived topic models, by encoding them in sunburst

charts, as shown in Figure 2.2.

Figure 2.2: PhenoLines [209] includes (A) A settings panel for interactive functions such
as sort, filter and aggregate, (B) A detail panel renders the phenotype in the selected
topic with juxtaposed timeline charts, (C) The topics panel provides an overview of all
topics extracted, and (D) A search panel. Figure reproduced from Glueck et al. Glueck
et al. [209].

Kwon et al. [238] first present RetainEx, a recurrent neural networks (RNN) ap-

proach that develops interactivity and interpretability for prediction tasks and incor-

porates the temporal dimension in patient history data. As the RNN uses a black-box

approach, it is difficult to couple the predictions to a particular attribute used during

training. The authors then introduce RetainVis, an interactive visual analytics tool

for assisting the user in understanding the process of prediction. Histogram, scatter-

plot, matrix and glyph designs are used to present influential attributes leading to the
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Literature NLP Approaches UMLS Term Year

Zhang et al.[102] Unspecified Medical history 2011

Jiang et al.[166] Named Entity Recognition Medical history 2016

Glueck et al.[193] Natural Language Queries Phenotype 2017

Trivedi et al.[219] Automated Retrieval Console
cTAKES

Colonoscopy 2018

Sultanum et al.[248] cTAKES Care of intensive care unit patient
Medical history

2019

Wang et al.[166] Natural Language Queries Epilepsy 2021

Table 2.10: An overview table of NLP approaches adopted by the literature described
in Section 2.4.2. Papers with NLP as a secondary theme are highlighted in Green.

prediction.

Jin et al. [264] introduce CarePre, an intelligent system that converts EHR data

from a cohort of patients into sequences of events, and leverages machine learning

techniques for the prediction of a patient’s risk level during diagnosis. The system

then recommends the most influential treatment plans. Based on the available EHR

data, CarePre is also able to predict the likelihood of an outbreak for a set of potential

diseases selected by the user. The MIMIC data set [167] is used for thorough evaluations

with seven physicians including two case studies. We include this open access data set

in Table 2.17.

Kwon et al. [265] present DPVis, a multiple views visual analytics system that

focuses on visual disease progression analysis in order to develop fully interpretable

and interactive visualisations. Hidden Markov models (HMMs) are trained to infer the

most probable state sequences based on the user-chosen attributes. DPVis incorpo-

rates multiple interactive visual designs including matrix, chord diagram and parallel

beeswarm plots to support the exploration of disease progression and discover associa-

tions between patterns and variables.

2.4.2 Natural Language Processing

This section introduces EHR Vis papers incorporating Natural Language Processing

(NLP) as a complementary technique. We follow the definition of NLP from Liddy

as, ”a theoretically motivated range of computational techniques for analysing and rep-

resenting naturally occurring texts at one or more levels of linguistic analysis for the

purpose of achieving human-like language processing for a range of tasks or applica-
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tions” [29]. As an active area of research, NLP has evolved since its inception in the

1940s.

As one of the most widely used analytical techniques in healthcare, NLP is capable

of transforming unstructured text into a structured and machine-readable format [236].

Clinicians have very diverse ways of documenting patient records. This may require

appropriate modifiers to capture words, phrases and their relationships in EHRs [248].

Table 2.10 shows a summary of the NLP techniques used in the EHR Vis literature. It

is evident that incorporating NLP techniques is still in its early stages and has much

room to grow.

Zhang et al. develop AnamneVis in order to capture a complete picture of a patient’s

medical history [102]. AnamneVis incorporates NLP algorithms to extract structured

medical information from unstructured data sources such as doctor-patient dialogs and

medical reports. The International Classification of Diseases (ICD) is the medical

standard for mapping diseases and symptoms. The Five Ws concept [127] is adopted

for mapping the relations between extracted information. A sunburst diagram is used

to visualise the data in two layouts, (1) a hierarchy-centric layout for the hierarchy

information representing diagnosed ICD codes, and (2) a patient-centric layout for the

past diagnoses and procedures taken. In addition, a Sankey diagram is used to illustrate

the past medical diagnostic flow of the patient.

Trivedi et al. introduce NLPReViz, a visual analytic and visualisation tool that uses

Support Vector Machine for training NLP models in real-time [219]. Users are able to

train, review and revise trained NLP models by rectifying the binary results from the

previous execution. Re-trained models are used for the next execution and provide a

more accurate result. We classify NLPReVis as NLP, since it uses a combination of

NLP and ML, but with more of a focus on NLP, this is reflected in Table 2.8.

Sultanum et al. present Doccurate, a system embodying a curation-based approach

that automatically extracts relevant information from large clinical text data sets, to

provide an accurate and sufficient overview for a patient [248]. After interviewing

six domain experts, the authors conclude that preserving the original text in clinical

notes is crucial for the visualisation of EHRs. Doccurate provides automation in data

processing and customisation for visualisation while preserving the link to the original
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data.

2.4.3 Event Sequence Simplification

This section includes EHR Vis literature with a focus on Event Sequence Simplification

(ESS). We follow the definition of ESS as any technique used for reducing the visual

complexity of event sequences in aggregated display overviews [123, 173]. EHRs by

nature are temporal events unfolding successively, ESS enables events to be trimmed

down to their core elements, improving both data-processing and visualisation of EHRs.

The technique is adopted by EHR Vis systems such as LifeLines [8] and EventFlow [122].

Table 2.11 provides a summary of event types appearing in this sub-section. Events

associated with hospitals are a recurring theme.

Wongsuphasawat et al. [100] introduce LifeFlow for providing an interactive visual

overview of event sequence data. Following the approach used in LifeLines2 [71], the

authors introduce an aggregation method that groups events into a tree-based hierar-

chical data structure. Nodes of the same type are rendered as a colour-coded event bar,

the height of an event bar is proportional to the number of records, and the gap be-

tween event bars represents the average time between events. Although the case study

of LifeFlow focuses on the analysis of patient transfers between hospital departments,

we still include the paper for its aggregation method. We believe the technique is also

applicable to EHRs.

Wongsuphasawat et al. [115] introduce Outflow, a visualisation of temporal event

sequence data. Outflow uses a different approach that visualises the aggregation results

using a graph-based representation, which simplifies the comparison of alternative paths

with the same state. Both papers are supported by user studies.

Monroe et al. introduce a technique to simplify temporal event sequence data

[122], following their previous work called EventFlow [110]. EventFlow transforms

temporal events into an aggregated display to identify hidden trends in the data, this

is particularly useful for EHRs as the scalability and the dimensionality of EHRs grow,

the visual complexity also increases. An example is shown in Figure 2.3. The authors

propose user-driven simplification, achieved via filtering-based selection: (1) filtering

by record which allows the user to remove records through querying or clicking, (2)
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filtering by category which hides the selected categories and aggregates visual elements

into fewer and larger displays, (3) filtering by time enables the user to define a time

frame to reduce visual density, (4) filtering by attributes which enables the user to

define threshold values. However, filtering-based simplification removes events from

the original data. Transformation-based simplification is introduced to preserve the

logical relations between events: (1) interval event merging is used to remove gaps

or overlap between events, (2) category merging enables categories to be combined to

reduce visual elements without removing events, (3) marker event insertion allowing

the user to collapse multiple events into a single one.

Figure 2.3: EventFlow [122] visualising the original Long-Acting β-Agonists data set
on the left, and the simplified data set on the right. The number of visual elements is
reduced from 2,700 to 492. Figure reproduced from Monroe et al. [122].

Gotz and Stavropoulos [132] introduce DecisionFlow for visualising large numbers

(thousands) of high-dimensional temporal event sequence data. Instead of visualising

the entire data set from the beginning, DecisionFlow allows the user to construct a query

with multiple constraints to retrieve the initial data. The result is then aggregated to

generate milestones and visualised for further analysis and interactions. The user is

able to set and modify milestones interactively to achieve filtering and selection.

Malik et al. present CoCo [136], a visual analytics tool for comparing groups (co-

horts) of temporal event sequence data. Inspired by EventFlow [122] and Outflow [115],

CoCo enables users to explore statistics about the underlying data set as they interact

with the simplified temporal event sequences. CoCo offers a combination of user-driven

and automated methods to enable comparisons of cohort events. The authors evaluate

the work [152] with two case studies.
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Literature Event Types UMLS Term Year

Wongsuphasawat et al.[100] Hospital discharge and transfer
flows

Patient transfer 2011

Wongsuphasawat and Gotz[115] Congestive heart failure Congestive heart failure 2012

Monroe et al.[122] Prescriptions Pharmacology 2013

Gotz and Stavropoulos[132] Diagnoses, lab tests, and medica-
tions

Medical history 2014

Malik et al.[152] Respiratory and radiation 2015

Loorak et al.[171] Stroke Cerebrovascular accident 2016

Guo et al.[210] Diagnoses, procedures, hospital
admission and discharge

Chronic obstructive air-
way disease

2018

Bernard et al.[224] Biological indicator for prostate
cancer

Prostate carcinoma 2019

Guo et al.[231] Hospital admission and discharge,
death, prescriptions, infusions,
lab tests

Care of intensive care unit
patient

2019

Jin et al.[264] Hospital admission, prescriptions,
diagnoses, treatments

Cardiovascular diseases
Respiratory tract diseases
Treatment plan

2020

Table 2.11: An overview table of event types in the literature described in Section 2.4.3.
Papers with ESS as a secondary theme are highlighted in Green.

Loorak et al. [171] present TimeSpan, a visualisation tool designed to explore the

temporal aspects of the stroke treatment process. The authors collaborate with a team

of domain experts to derive and classify a list of basic tasks in the domain of stroke

care analysis. Temporal events are visualised using a parallel coordinates with stacked

bar charts extended with the Bertin-style matrices [12], and are aligned based on their

positive effect on the patient. A unique evaluation with a focus group session is also

presented.

Guo et al. describe EventThread [210], a visualisation system for revealing the

evolution of patterns across stages in event sequence data. EventThread uses Term

Frequency - Inverse Document Frequency (TF-IDF) [4], a common technique used

to measure the importance of text segments in a document, to capture the primary

sequential pattern in the data. Events are then grouped into threads by similarity,

with interactive options provided to facilitate further analysis. Guo et al. introduce

EventThread 2 [231] to improve the system’s ability to handle the temporal dimension

by adopting neural network models. Both work involve collaborations with medical

experts and case studies with EHR data.

Bernard et al. propose a technique for visualising post-operative prostate cancer,

that segments patient histories based on time and then aggregates the results by therapy

states and biological conditions [224]. Instead of treating patient histories as event
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sequences, the segmented results are presented using a static dashboard, with extensive

use of colours and glyphs for encoding variables, in order to visualise longitudinal

changes in patient histories. The segmentation of patient histories is done by using a

sliding window approach to traverse the data set. Evaluation is performed with groups

of both expert and nonexpert users.

2.4.4 Visual Analytics and Comparison

Figure 2.4: PhenoStacks [193] includes (A) The summary panel conveying phenotype
patterns across patient cohorts in a sunburst chart, (B) The layout view enables the
user to select phenotypes by collapsing, filtering, and clustering, (C) The list view shows
the phenotype names with a sorting function, (D) The observations Plot visualises the
actual and inferred phenotype observations in a matrix, and enables the user to explore
and identify potential patterns, and (E) The search panel supports natural language
queries for searching phenotypes. Figure reproduced from Glueck et al. [193].

This section describes research on visual analytics combined with analytical compar-

ison of EHRs. We follow the three categories of comparative visual designs by Gleicher

et al. [90], juxtaposition, superposition, and explicit encodings. Table 2.12 summarises

the types of comparison techniques used in the EHR Vis literature. Juxtaposition, the

simplest, is the most common choice by a wide margin.

Gschwandtner et al. present CareCruiser [92], an enhanced visual analysis system

to explore the result of each applied clinical action and identifies sub-optimal treatment

choices. CareCruiser supports the visualisation of (1) hierarchical data which includes

the structure of treatment plans and sub-plans, (2) temporal data referring to the

execution sequence of treatment plans and sub-plans, and the patient’s condition over

time, (3) qualitative data which represents relevant characteristics of treatment plans

and sub-plans. Aligning, filtering and focus+context are provided for investigation of
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Gschwandtner et al.[92] Clinical action
Treatment plan

2011

Borland et al.[128] Carcinoma of lung 2015

Bernard et al.[143] Prostate carcinoma
Patient History

2015

Federico et al.[148] Atrial fibrillation
Gestational diabetes
Clinical history

2015

Glueck et al.[163] Phenotype 2016

Loorak et al.[171] Cerebrovascular accident 2016

Glueck et al.[193] Phenotype 2017

Glueck et al.[209] Phenotype 2018

Glicksberg et al.[228] Clinical history 2019

Zhang et al.[251] Diabetes mellitus, insulin-dependent
Treatment plan

2019

Wang et al.[298] Epilepsy 2021

Table 2.12: An overview table of comparative designs adopted by the literature de-
scribed in Section 2.4.4. The x-axis is mapped to the comparative design categorisation
by Gleicher et al. [90]. Papers with Comparison as a secondary theme are highlighted
in Green.

the patient’s condition and responses to treatments, as well as the comparison between

multiple patients.

Borland et al. [128] describe radial coordinates, a visualisation technique based on

parallel coordinates, a scatterplot, and a chord diagram. The technique allows more

efficient utilisation of the space by representing each variable using an axis, arranged

radially around a scatterplot. Chords are used to represent relationships between vari-

ables. The design supports the comparison of high and low prevalence values across all

dimensions in the data. The radial style parallel coordinates visual design is applied to

NHS data from the UK.

Bernard et al. present an interactive visualisation system for identifying, cate-

gorising, and analysing EHRs of cohorts of prostate cancer patients [143]. The system

supports the visualisation of multiple patients with (1) an overview that supports direct

selection of patients, (2) dynamic queries against attributes to achieve filtering, and (3)

a history panel that stores previous cohorts that can be retrieved easily for comparison.

The system also offers a guided analysis of correlations between patients in the cohort.

Federico et al. introduce Gnaeus, a guideline-based knowledge-assisted visual ana-
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lytics system for EHRs [148]. Gnaeus utilises computer-interpretable clinical guidelines

(CIGs), which are generated based on evidence-based clinical practice guidelines, to

assist the analysis of EHR data. Selected parameters from the raw data are placed

in parallel with clinical actions executed to visualise the outcome, with related CIGs

on the side to provide recommendations. The system enables the user to compare

administered treatment with evidence-based best practises.

Glueck et al. introduce PhenoBlocks, a visual analytics tool that supports the

comparison of phenotypes between patients [163]. PhenoBlocks introduces a differential

hierarchy comparison algorithm for analysing phenotypes pairwise between patients and

uses a customised sunburst radial hierarchy layout [18] for visualising the results.

Glueck et al. present PhenoStacks, a visualisation system to support the compari-

son of cross-sectional phenotype within and between patient cohorts [193]. The system

adopts glyphs of Human Phenotype Ontology (HPO) developed in the prior work Phe-

noBlocks [163] and supports sorting and filtering by phenotype or patient attributes.

Search is powered with natural language queries (See Figure 2.4). To reduce visual re-

dundancy, the authors propose a topology simplification algorithm, a greedy depth-first

approach, for eliminating duplicates in phenotype data sets.

Zhang et al. describe IDMVis [251], a temporal event sequence visualisation sys-

tem developed for Type 1 diabetes treatment decision support. They provide a new

method of hierarchical task abstraction for clinicians. Inspired by Temporal Folding, a

technique for visualising temporal event sequences [190], the authors propose a visual

technique of dual sentinel event alignment and time scaling to further enhance the visu-

alisation for a large number of temporal event sequences. In addition to the single-event

alignment that enables the alignment of trend lines based on a single designated event,

the technique enables the alignment of trend lines between two user-chosen events with

zooming.

Wang et al. present LetterVis, a visualisation tool to support the analysis of

clinic letters through five customised visual layouts with support from natural lan-

guage queries [298]. A letter-space layout is derived from the physical layout of text

on A4-size letters used by clinicians, exploiting the implicit knowledge of the clinicians

who compose the letters. This layout is used to depict the query results in (1) the
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Literature Clustering Dimensions UMLS Term Year

Gotz et al.[91] Medical decisions Diabetes 2011

Kamaleswaran et al.[134] Temporal Neonatal intensive care 2014

Kamaleswaran et al.[168]
Respiratory physiologic signals
Temporal

Neonatal intensive care 2016

Table 2.13: An overview table of clustering dimensions used in the literature described
in Section 2.4.5.

global view that shows all the letters loaded in one superimposed letter-space, (2) a

thumbnail view for individual letters, and (3) a focus view for the original content

with query results highlighted. (4) A co-occurrence matrix is included for visualising

antiepileptic drug (AED) co-prescriptions. In the (5) drug chain view, where each AED

is represented by a block in the chain, provides a visual representation of prescription

progression.

2.4.5 Visual Analytics with Clustering and Others

This section describes papers that use hierarchical clustering algorithms for EHR ana-

lytics. According to the survey by Xu and Wunschll [41], hierarchical clustering algo-

rithms are widely used in the information visualisation discipline. This conforms with

our findings that all papers included in this section (Table 2.13) adopt hierarchical clus-

tering algorithms to produce homogeneous subgroups based on similarities. EHRVis

may benefit from applying other clustering techniques (e.g. Vector Quantisation and

Estimation via Mixture Densities) to assist in analysis.

Gotz et al. introduce DICON [91], a visualisation tool that supports the exploration

of similarity in cohorts of patients. Clusters are represented by dynamic icons and are

generated using similarity and cluster analysis algorithms. The cluster refinement stage

requires user guidance to evaluate cluster quality and apply refinements. Users can drag

and drop, merge and split an individual patient or a cluster to refine clustering results.

Kamaleswaran et al. use a tri-event heatmap representation for displaying high-

frequency complex data [134], neonatal spells, collected in neonatal intensive care units.

Their clustering includes a temporal factor and a nonlinear similarity metric. The

authors apply both density estimation and logarithmic clustering to normalize and

discretise the nonparametric distribution during data preprocessing. The resulting
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visualisation supports the exploration of the frequency, duration, and severity of spells.

Kamaleswaran et al. introduce a visualisation technique called a Temporal Inten-

sity Map (TIM) [168], a customised heatmap with the y-axis representing the critical

distance interval determined by a density estimation function. The focus is on the

visual analysis of event streams that reveal important information about the frequency

and duration of streaming events derived from real-time event stream algorithms. The

authors further introduce a dashboard visual analysis system, PhysioEx, formed by a

TIM, a sequence graph, a linear graph, and a streams graph for analysing neonatal

data and predicting the physiological behaviours of newborns.

Glicksberg et al. describe PatientExploreR [228], an interactive interface that fa-

cilitates the visualisation and querying of EHRs. By incorporating the Observational

Medical Outcomes Partnership (OMOP) common data model introduced by the Ob-

servational Health Data Sciences and Informatics [274], PatientExploreR’s advanced

querying function allows physicians to search, filter, and compare patients with com-

binations of items from multiple medical terminology standards such as the UMLS

described in Section 2.2.2. When a patient is selected, an interactive timeline presents

all clinical events with the ability to expand the details, along with basic visual designs.

We include this paper for the advanced querying support coupled with the integration

of OMOP common data model.

2.4.6 PopHR Vis and Geospatial Visualisation

This section describes research on EHR Vis with a geospatial focus. Table 2.14 sum-

marises the geospatial landscape coupled by this sub-section of literature. PopHR Vis

papers are also included in this section. Alonso and McCormick describe Epidemiolog-

ical Parameter Investigation from Population Observations Interface (EPIPOI), which

automatically extracts three parameters describing trends, seasonality and anomalies,

and a time series from large epidemiological data sets [103]. These three dimensions

can be visualised using maps combined with time series data to reveal spatial pat-

terns. EPIPOI additionally supports wavelet analysis to reveal sinusoidal patterns of a

time series with different frequencies, and Fourier Series to identify biologically relevant

descriptors of seasonality.
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Literature Geospatial Regions UMLS Term Year

Alonso and McCormick[103] Brazil PneumoniaInfluenza 2012

Sopan et al.[113] US Population health 2012

Ramı́rez-Ramı́rez et al.[125] Ontario, Canada Influenza 2013

Klemm et al.[151] Germany
Steatohepatitis
Breast Density
Population health

2013

Jiang et al.[166] Indiana, US Medical history 2016

Ola and Sedig[177] Global Population health 2016

Tong et al.[202] England, UK Population health 2017

Tong et al.[201] England, UK Population health 2017

Tong et al.[218] England, UK Population health 2018

Alemzadeh et al.[222] Germany Longitudinal studies 2019

McNabb and Laramee[241]
US
UK
Ireland

Population health 2019

Table 2.14: An overview table of geospatial regions covered in the literature described
in Section 2.4.6.

Sopan et al. introduce the Community Health Map [113] that interactively visu-

alises public healthcare data sets using a multivariate choropleth map. Selection enables

users to visualise multiple data sets gathered from Hospital Referral Regions and ad-

ministrative counties in the U.S. Filtering of income, poverty rate, age, and education

level are supported to enable the comparison of different socioeconomic classes.

Ramı́rez-Ramı́rez et al. introduce SIMID [125], a surveillance and spatio-temporal

visualisation tool for infectious diseases. Based on the existing data, SIMID simulates

the spread of infectious diseases using interactive animated maps. With customisable

input parameters such as vaccination rate and mortality rate, SIMID is able to generate

different mitigation strategies with variation and uncertainty that reflect the random-

ness in disease outbreak progression.

Jiang et al. introduce Health-Terrain [166] to support the visual exploration of

large healthcare data sets. Based on UMLS described in Section 2.2.2, the authors

extract related terms from unstructured clinical notes via NLP. The authors propose a

spatial texture-based approach to integrate geospace with other dimensions, which con-

sists of (1) constructing random noise patterns with colour variations to map different

attributes, and (2) colour-coding the offset contours of geographical regions to map the

temporal dimension. The authors propose a visual design called a Spiral Theme Plot
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based on ThemeRiver [17] and spiral pattern [23], to help physicians discover patterns

and trends in events. Health-Terrain is included in this section since it is a combination

of geospatial visualisation and NLP with the main focus on the former.

Klemm et al. [151] propose the 3D Regression Heat Map, a novel 3D visual en-

coding that offers an overview of a hepatic steatosis data set (a subset of the SHIP

data set included in Table 2.17). The resulting 3D heat map enables the exploration

of relationships between several user-defined independent features and a user-defined

target disease. Each 3D heat map slice can be projected onto a 2D space for further

analysis. The approach enables experts to verify their disease-specific hypotheses and

derive new ones.

Ola and Sedig [177] present a geospatial visual design for studying large healthcare

data sets. The design combines several visualisation techniques to support the explo-

ration of the relationships between age group, risk, and cause of death at multiple levels

of granularity.

Tong et al. present a hybrid visual layout called a cartographic treemap, to vi-

sualise high-dimensional healthcare data collected by the National Healthcare Service

(NHS) in the U.K. [202]. By combining the space-filling advantages of treemaps for the

display of hierarchical, multivariate data together with geospatial information, carto-

graphic treemaps support exploration, analysis, and comparison of complex population

healthcare data from Public Health England. They further extend the work by adding

a time variate, enabling the visualisation of the temporal evolution trends hidden in

EHR data [201].

Tong et al. extend their previous work with a cartographic layout algorithm that

generates cartograms with topological features using NHS’s population healthcare data

[218]. The proposed algorithm preserves the nearby node’s topological features to

increase the recognisability and reduce layout errors.

VIVID is a web-based framework proposed by Alemzadeh et al. [222] to support

the handling of the missing values in cohort study data. The framework includes

various visual designs to enable the user to explore the missing values (stacked bar

chart and matrix) build imputation models (bean plot and bee swarm plot) and generate

predictions for the missing values (chord diagram and parallel coordinates).
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McNabb and Laramee present a glyph placement algorithm to support multivariate

geospatial visualisation of a Public Health England data set [241]. The authors iden-

tify four major challenges for representing geospatial data on existing choropleths: (1)

Size perceivability: sizes of glyphs and areas on a map are not easily perceivable. (2)

Visualisation of multivariate geospatial data: geospatial designs such as choropleths,

cartograms, symbol maps, etc. generally fail to depict multivariate data. (3) Occlusion:

glyphs on a map often overlap and are over-plotted. (4) Glyph placement: existing so-

lutions to address occlusion often de-couple glyphs from their original geospatial regions

they are intended to represent. The authors address these challenges by introducing a

scale-aware map that supports dynamic modification to the level of detail shown via

zooming and custom scaling options. The algorithm produces a map that is enhanced

with glyphs that are dynamic, scale-aware, and coupled to their geospatial contexts.

2.5 Evaluation

Evaluation of EHR and PopHR visual designs is very difficult due to their complex

visual interfaces. An EHR Vis system is often characterised according to target user

requirements. The resulting visual designs may not seem useful to evaluators [68].

Furthermore, an isolated evaluative process is hardly sufficient to assess an EHR Vis

system. Grounded evaluation [57], where visualisation designers work closely with EHR

experts to 1) understand pre-design context, 2) conduct iterative prototyping and re-

finement, and 3) conduct late-stage acceptance testing, might be a solution to address

the evaluation problem. We observe that grounded evaluation is being practised in

many projects (especially from the visualisation community) included in this STAR.

In this section, we summarise the evaluation techniques adopted by each paper.

The result is summarised in Table 2.15.

1. Domain expert feedback (30 papers, 59%) is the most popular evaluation

technique used. This approach aims to understand the current health-related

work practice or assess the value of the newly developed tool [121]. While the

technique is commonly used in the reviewed literature, we observe a trend of

increasing involvement of domain experts since the year 2018, where domain ex-
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perts participate in multiple stages of the software development life cycle, such as

planning, requirement analysis, and testing [219, 224, 248, 264]. Close involve-

ment informs the development process and enables rapid feature development

and innovation.

2. Interview (26 papers, 51%): Where a set of guided questions along with open-

ended questions are provided and answered usually in person, including both

expert and novice users. Interviews can be performed multiple times throughout

the software development life cycle. We observe an increase in the adoption of

interviews since 2014. Interviewees usually respond in depth during interviewing

sessions [163, 169, 193, 219, 224, 264] and provide personal interpretations beyond

interaction and usability aspects [165].

3. Case study (17 papers, 33%): A case study often provides the most in-depth

evaluation result, as the participants are usually placed in a real-world situation

after the provided training [238]. This enables the target audience to generate

in-depth feedback based on their experience. We notice a long time period from

about 2011-2018, where case studies do not generally appear in this literature.

The reason for this could come from the author’s side or the reviewer’s side.

4. Controlled user study (8 papers, 16%) is a type of usability study, where

a set of predefined tasks are performed by participants with a certain level of

expertise (or novice participants after training) in a controlled environment. They

may benefit from a large number of participants [45, 72, 91, 136, 224]. We observe

a decrease in popularity since 2014. Isenberg et al. suggest a controlled user study

is typically time-consuming and resource-intensive to design, conduct and analyse

[121]. Controlled user studies are difficult to design for complex systems.
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Plaisant et al. [11] 1998

Horn et al. [19] 2 2001

Bade et al. [30] 2004

Goren-Bar et al. [33] 2004

Hinum et al. [39] 2005

Fails et al. [45] 8 2006

Bui et al. [48] 2007

Wang et al. [71] 2 2009

Rind et al. [79] 2010

Faiola and Newlon [89] 16 2011

Gotz et al. [91] 2 2011

Gschwandtner et al. [92] 4 1 2011

Wongsuphasawat et al. [100] 1 2 10 2011

Zhang et al. [102] 6 2011

Alonso and McCormick [103] 2012

Sopan et al. [113] 3 2012

Wongsuphasawat and Gotz [115] 3 2012

Monroe et al. [122] 2013

Ramı́rez-Ramı́rez et al. [125] 2013

Borland et al. [128] 2014

Gotz and Stavropoulos [132] 12 2014

Kamaleswaran et al. [134] 2014

Malik et al. [136] 4 10 2014

Bernard et al. [144] 2015

Bernard et al. [143] 6 2015

Federico et al. [148] 5 2015

Klemm et al. [151] 3 3 2 2015

Glueck et al. [163] 2 2 2016

Jiang et al. [166] 2016

Kamaleswaran et al. [168] 4 4 2016

Loorak et al. [171] 5 5 2016

Ola and Sedig [177] 2016

Dabek et al. [189] 2017

Glueck et al. [193] 4 6 2017

Tong et al. [202] 4 1 2017

Tong et al. [201] 2 1 2017

Glueck et al. [209] 2 4 2018

Guo et al. [210] 1 1 3 2018

Tong et al. [218] 1 2018

Trivedi et al. [219] 9 9 9 2018

Alemzadeh et al. [222] 2019

Bernard et al. [224] 10 14 14 2019

Glicksberg et al. [228] 2019

Guo et al. [231] 3 3 2 2019

Kwon et al. [238] 2 1 2019

McNabb and Laramee [241] 3 2019

Sultanum et al. [248] 6 12 6 2019

Zhang et al. [251] 6 6 2019

Jin et al. [264] 2 7 2 2020

Kwon et al. [265] 9 9 1 2020

Wang et al. [298] 2 3 3 2021

Total unique papers: 51 30 26 17 8

Table 2.15: Evaluation table: An
overview of evaluation techniques used in
the literature, ordered by the popularity
on the x-axis and the publication year on
the y-axis. The x-axis represents the eval-
uation style with the number of partici-
pants shown in the individual cells. in-
dicates an undisclosed number of partic-
ipants. Green highlights context papers.
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2.6 Open Access Healthcare Data

Finding open access EHR data is very time-consuming and sometimes challenging be-

cause VIS researchers are not often involved in EHR data collection and curation. This

is usually performed by healthcare organisations. As a response to the challenges stem-

ming from healthcare data visualisation, we present a collection of open heath data

sets, and our methodology for searching for open healthcare data sets, along with as-

sociated challenges, a carefully-defined scope and classification in this section. The

result is a useful overview of healthcare data sources, with a curated list of publicly

accessible healthcare data sets. The entire collection of data sources is accessible via

our interactive EHR STAR Browser, available at https://ehr.wangqiru.com. We hope

this section provides a helpful jump-start for potential researchers to develop visual

healthcare data systems and form collaborations.

2.6.1 Healthcare Data Challenges

In this section, we discuss some major challenges faced in EHR data.

The accessibility of EHR data is one of the main barriers to researchers in general

[175]. We face several challenges searching for related data, which requires a consider-

able amount of time to search for. User registration and verification required by some

data providers increase manual labor. EHR data is more special due to its sensitive

nature, and also comes in unstructured forms, e.g. clinic letters and hospital discharge

letters. Converting the data into a structured form may lose valuable insight. Further-

more, an anonymisation process is usually applied to EHR data by the respective data

governance group.

Data quality is critical to EHR research, as much data is entered and computed

manually, it is likely to contain incomplete and erroneous values. A special case is

identified by Shneiderman and Plaisant [247] where a patient record was reported as

being admitted 14 times but discharged only twice by a hospital. Verifying data quality

requires a significant amount of time and effort. EHRs were not originally created with

supporting research in mind [175]. Over time, the secondary use of EHR data in

supporting healthcare research is emerging and widely accepted worldwide, this in turn
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Search Keyword Combinations

open, free, public

electronic health record, electronic medical record, EHR, EMR

data, data set, database
personal health record, population health record, PHR, PopHR

healthcare, health care, clinical, medical

medicine, treatment, surgery, hospital

Table 2.16: Keyword combinations used for discovering relevant healthcare data.

improves the quality control measures for collecting them [235].

Data interoperability is challenging, given there is no standard definition of an EHR,

healthcare providers often develop their own format to support the clinical workflow

[187]. The lack of standardised terminologies, such as the UMLS, also contributes to

this challenge.

These challenges remain unsolved. We see recent efforts in addressing these chal-

lenges, such as building a freely accessible EHR database [16, 167] and improving data

validation and interoperability [67].

2.6.2 Healthcare Data Search Methodology

We focus on healthcare data sets that are openly accessible from a reputable data

provider such as a nonprofit organisation, scientific research, or an initiative that pro-

vides trustworthy health-related sources. We start by examining data sources men-

tioned in the related literature we found. Our search results are shown in Table 2.17. We

check for conference associated events such as the annual IEEE Visualisation Contest

dating back to 2004 [34], VAST challenges [207] and National NLP Clinical Challenges

(n2c2) [246] for relevant data. We also use keyword combinations listed in Table 2.16

with data search engines [336, 335] and well-known government data portals [367, 321,

360, 362] to expand our results. We present 34 related healthcare data sets found in

Table 2.17.

2.6.3 Healthcare Data Scope

The EHR data survey scope includes data sets that (1) offer free and open access to

external researchers, (2) have greater than 500 records and 5 attributes in each record,

(3) are published by credible providers, (4) have derived publications in peer-reviewed

journals and (5) are archived in English for accessibility. To verify the eligibility, we
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examine each data set, or the most popular data sets if multiple data sets are provided

as a collection or catalogue. We refer to these as focus data sources.

Context Data and Out of Scope Healthcare Data Sources

During our search, we found some candidates that fulfill some but not all criteria. We

still include them as context data sources in our data source overview Table 2.17.

We generally exclude data sets that require an access fee, with the exception of some

candidates as context data sources. We generally exclude data sets that are accessible

solely via project collaborations. We generally exclude data sets that are not archived

in English. However, we do include some as context data sources (if they are high

quality) in Table 2.17 for interested readers, and describe them in Section 2.6.5.

We exclude data sets that are not directly related to EHR. Here are some noteworthy

examples.

Health IT Dashboard [363] provides data sets on the adoption, utilisation, and

performance of information technology in healthcare facilities sponsored by the US gov-

ernment, these data sets are excluded. The VAST Challenge 2010 Mini Challenge

3 [84] provides a data set on genetic sequences for tracing the mutations of the Drafa

virus. Each sequence of single molecules is coded as a single alphabet, therefore the

data set does not contain any actual EHR information and is excluded. The VAST

Challenge 2011 Mini Challenge 1 [98] provides data containing posts collected

from social media platforms for the identification of an epidemic outbreak, these data

sets are excluded due to the lack of an EHR dimension.

2.6.4 Healthcare Data Sources Classification

We present a description of data sources in this section. Table 2.17 displays an overview

of data sources we found.

Based on the focus data source and context data source introduced above, we classify

data sources into three categories:

A specialised source refers to data sets focusing on a single speciality or area of

specialisation. The Human Mortality Database [361] provides multiple data sets specif-

ically on all-cause mortality from over 50 countries or regions, therefore we classify it
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Access Specialised Collection Catalogue

Open Access

The Scottish COVID-19 Response ConsortiumC [256]
COVID-19 DashboardC [278, 277, 257]
Project Tycho† [220]
VAST Challenge 2010 Mini 2[83]
Human Mortality DatabaseC [361]

City Health Dashboard [230]
Public Health England [332]
NHS England [325]
Big Cities Health Coalition [327]
Global Health Data ExchangeC [156]
OpenDataNI [362]
Data.gov.ukC [360]
NHS Scotland Open Data [329]
Public Health Wales [368]
UCI Machine Learning Repository [191]

COVID-19 Open Research Data set ChallengeC [263]
re3dataC [356]
Maelstrom Catalogue [358]
European Data PortalC [367]
HealthData.govC [338]
Data.govC [321]
FAIRsharingC [333]

Verification Protocol
MIMIC-III [167]
National NLP Clinical Challenges [246]

Health Data Research Innovation Gateway‡ C [249]
SAIL Databank¶ [67]
PhysioNet‡ [16]
Study of Health in Pomerania †† [20]

Fee and Verification Protocol

SEER Program ‡ [344]
UK Biobank[323]
LifeLines BiobankC [322]
TRAILS ‡‡ [366]
GIANTT †† [334]
Rotterdam Study¶ [326]

Table 2.17: Data source table: Data sources ordered by the year of establishment.
See the detailed description of focus data sources in Section 2.6.5. Green highlights
context data sources. CContains COVID-19 data. †Registration required for open
access. ‡Partially open access. ‡‡Free access for project collaborators, paid access for
noncollaborators. ¶Free access for project collaborators, no access for noncollaborators.
††Data is not archived in English.

as a specialised focus data source.

A collection source provides access to multiple data sets from different specialities,

such as the UCI Machine Learning Repository [191], which provides data on breast

cancer, diabetes, hepatitis, and other diseases.

A catalogue source does not host data on its own website but provides links to other

webpages, The Registry of Research Data Repositories (r3data) [356] is a catalogue

source that hosts over 2,000 scientific data sets, each comes with a comprehensive

description and a link pointing to its homepage.

2.6.5 Open Access Healthcare Data Sources

Based on the classification, we briefly describe each open access healthcare data source

in their corresponding section. We describe each data source using the Five Ws [127]:

• Who the data provider is

• When the data was collected and published

• Where the data was collected

• Why the data was collected

• What the data contains

Specialised Healthcare Data Sources

This section describes focus data sources that focus on a single health-related speciality.

Human Mortality Database began as a collaborative project in 2000 [361],
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involving research teams in the Department of Demography at the University of Cal-

ifornia, Berkeley, USA, and the Max Planck Institute for Demographic Research in

Rostock, Germany. The database provides open access to detailed mortality and pop-

ulation data for over 50 countries and regions to promote relevant research. Depending

on the geographical location, data archives may span over a century.

VAST Challenge 2010 Mini 2 [83], as a part of the IEEE Conference on Visual

Analytics Science and Technology (VAST), provides open access to data such as hospital

admittance and death records in several cities involved in a major fictitious epidemic

outbreak in 2009.

Project Tycho was launched by the University of Pittsburgh in 2013 [220], in-

corporating a collection of death rate data from infectious diseases and their historical

spread between 1888 - 2014. The initial archive focused on the history of diseases

throughout the US. It has now expanded to include over 360 data sets on 92 infectious

diseases at a global level in a standard format.

The COVID-19 Dashboard is an online interactive dashboard developed by the

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [278,

277, 257], as a real-time visualisation for the number of COVID-19 cases, deaths and

recovery rates around the world. The raw data is available for open access.

The Scottish COVID-19 Response Consortium (SCRC) is founded by the

University of Glasgow, the consortium includes a group of epidemiologists, mathemati-

cians, and computer scientists for developing new models to help inform the control of

COVID-19 in Scotland. It offers open access to COVID-19 related data provided by 15

healthboard areas of NHS Scotland [254].

Collection Healthcare Data Sources

This section describes focus data sources that provide access to multiple data sets from

different specialities.

UCI Machine Learning Repository was created by David Aha and fellow grad-

uate students at the University of California Irvine in 1987, as a collection of databases,

domain theories, and data generators that are used by the machine learning commu-

nity for the empirical analysis of machine learning algorithms. The repository contains
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over 110 health-related data sets, including subjects such as breast cancer, diabetes,

epilepsy, and more.

The National Health Service (NHS) of the United Kingdom provides open access

to various healthcare data collected through its operation, the data is made accessible

via different portals including Public Health Wales (established in 1999)[368], NHS

Scotland Open Data (2009)[329], The Government Digital Service (2011)[360],

OpenDataNI (2012)[362], Public Health England (2017)[332] and NHS England

(2017)[325]. Example data sets hosted on these portals include mortality rates from

cancer, liver, cardiovascular diseases, and more.

Big Cities Health Coalition [327] is a forum founded in 2014, that serves as a

platform for the leaders of 14 largest metropolitan health departments in the US, to

exchange strategies and jointly address challenges related to promoting and protecting

the health and safety of the people they serve. The forum provides open access to data

including mortality from various causes, maternal and child health, HIV etc., covering

over 62 million people from 2010-2016.

Global Health Data Exchange [156] operated by the Institute for Health Metrics

and Evaluation, provides a catalog of global health and demographic data. It currently

hosts over 12 billion population health records collected from 195 countries. The mission

of the exchange is to serve as a critical resource for informed policymaking. The

exchange supports searching and filtering data by over 350 diseases, injuries, and risk

factors.

Catalogue Healthcare Data Sources

This section describes catalogue data sources that do not host data on their website

but provide links to other data sources.

FAIRsharing [333] started in 2007 as a community-driven registry providing de-

scriptions of standards, databases, and data policies. Data sets can be published on

FAIRsharing to increase visibility and foster collaboration. The registry not only hosts

a catalogue of health-related databases, but also provides access to proven standards

and data policies to reduce the potential for unnecessary reinventions.

The U.S. Government’s Open Data [321] and HealthData.gov [338] started
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offering links to data sets in 2011, to ensure compliance with relevant Open Data Policy

and to promote research and innovation. Public entities ranging from federal agencies

to local government departments collected over 200,000 data sets, including popular

healthcare data on cancer, diabetes, and hypertension.

The European Data Portal [367] was established in 2012 aiming to serve as

a point of access to public data published by institutions, agencies, and other bodies

across European countries. Over 10,000 health-related data sets including HIV-related,

norovirus, and cancer are available.

Maelstrom Catalogue [358] is a catalogue of epidemiological research founded

by McGill University in 2012. The catalogue later expanded to include population

health studies, to promote collaborative research. It currently hosts links to over 200

well-known research projects.

re3data [356] is funded by the German Research Foundation in 2012, as a global

registry of over 2,000 research data repositories from multiple academic disciplines.

It aims to provide permanent storage and access to healthcare data for the scientific

community.

The COVID-19 Open Research Data set Challenge [263] is a challenge

launched in 2020 by the Allen Institute for Artificial Intelligence on Kaggle, an on-

line community of data scientists. The challenge offers over 59,000 academic journals

for free, in order to attract researchers and develop novel solutions to study the ongoing

evolution of COVID-19. Some 1,300 novel solutions have been submitted and many

are accompanied by open access anonymised patient data, as a part of the submission

requirements.

Context Healthcare Data Sources

A context healthcare data source refers to a data source that does not fulfill all criteria

listed in Section 2.6.3, but we include and describe some high quality sources here for

interested readers.

UK Biobank [323] recruited 500,000 participants aged between 40-69 years in the

U.K. from 2006 - 2010, with extensive physical measurements and blood, urine and

saliva samples collected in conjunction with wearable monitors and online assessments

61



of personal well-being. Researchers are obliged to return their results and findings to

benefit the research community. We include the UK Biobank as a context data only

as it charges a one time access fee of £2,100 (reduced to £600 for researchers from

developing countries or students).

LifeLines Biobank [60, 322] archives 167,000 participants including all age groups

in the Netherlands. The research collects physical and physiological measurements such

as blood pressure, skin autofluorescence, and biomaterials such as blood and urine, from

participants, along with regular online questionnaires on stress and quality of life. We

include LifeLines Biobank as a context data source only as it charges a one-time access

fee of approximately €7,800.

Tracking Adolescents’ Individual Lives Survey (TRAILS) [366] is an ongo-

ing research project that studies the psychological, social, and physical development of

over 2,500 adolescents in the Netherlands since the year 2000. The research is conducted

in the form of questionnaires and interviews on topics such as cognitive functioning,

academic performance, tests on fitness conditions, and physical measurements such as

baroreflex sensitivity. We include TRAILS as a context data source only as it charges

a one-time access fee of over €3,000, however, the fee is waived if a collaboration is

formed with the TRAILS research group.

Rotterdam Study [326] is another well-known population-based study ongoing

in Ommoord, Rotterdam since 1990, with a focus on the risk factors of cardiovascular,

neurological, ophthalmological, and endocrine diseases in the elderly aged 55 years and

over. Three cohorts (1990, 2000, 2006) included 14,926 participants and resulted in

over 2,000 scientific articles. We include the study as a context data source only as it

charges an access fee and the access is only granted to collaborations formed with the

study’s principal investigators.

Secure Anonymised Information Linkage (SAIL) Databank [67] was estab-

lished in the UK in 2006. It allows external researchers to access billions of EHRs on

data sets such as outpatient, critical care, and primary GP care in the UK. Access to

additional restricted data sets such as bowel screening, breast test, and cervical screen-

ing in Wales is granted with additional approval from data providers. We include this

noteworthy SAIL Databank as a context data source as the access is granted via project
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collaboration only.

Study of Health in Pomerania (SHIP) [20, 99] started after the German reuni-

fication in the 1990s, as a population-based epidemiological study. The study includes

7,008 women and men aged 20 - 79 years, with a wide range of medical data being

collected. We include SHIP as a context data source due to its lack of accessibility

since the study is primarily archived in German.

Groningen Initiative to Analyze Type 2 Diabetes Treatment (GIANTT)

[334] is a project aimed at the quality of care for people with type 2 diabetes in

Groningen, the Netherlands since 2004. The primary data source is from local gen-

eral practises. We include GIANTT as a context data source only due to its restricted

accessibility since the study is in Dutch. GIANTT also charges an access fee.

2.7 Future Research Challenges and Discussion

In this section, potential future research directions are derived from the discussion

of the challenges reported in the literature. Future work and challenges are often

discussed at the end of each research paper. Table 2.18 summarises a list of the top

10 most popular future challenges we extract from the reviewed literature, ordered by

their popularity. We observe that the top future challenges are to tackle scalability as

data size grows, conduct additional in-depth and effective evaluations and improve the

efficiency in screen space utilisation. Another popular challenge is the interoperability

between different EHR Vis systems, which can be potentially addressed by adopting

a common terminology standard such as the UMLS. Finally, the ability to increase

system usability while simultaneously introducing advanced interactive user options is

a popular future research direction.
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Plaisant et al.[11] 1998

Horn et al.[19] 2001

Bade et al.[30] 2004

Goren-Bar et al.[33] 2004

Hinum et al.[39] 2005

Fails et al.[45] 2006

Bui et al.[48] 2007

Wang et al.[71] 2009

Rind et al.[79] 2010

Faiola and Newlon[89] 2011

Gotz et al.[91] 2011

Gschwandtner et al.[92] 2011

Wongsuphasawat et al.[100] 2011

Zhang et al.[102] 2011

Alonso and McCormick[103] 2012

Sopan et al.[113] 2012

Wongsuphasawat and Gotz[115] 2012

Monroe et al.[122] 2013

Ramı́rez-Ramı́rez et al.[125] 2013

Borland et al.[128] 2014

Gotz and Stavropoulos[132] 2014

Kamaleswaran et al.[134] 2014

Malik et al.[136] 2014

Bernard et al.[144] 2015

Bernard et al.[143] 2015

Federico et al.[148] 2015

Klemm et al.[151] 2015

Glueck et al.[163] 2016

Jiang et al.[166] 2016

Kamaleswaran et al.[168] 2016

table continued on next page . . .
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. . . continued
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Loorak et al.[171] 2016

Ola and Sedig[177] 2016

Dabek et al.[189] 2017

Glueck et al.[193] 2017

Tong et al.[202] 2017

Tong et al.[201] 2017

Glueck et al.[209] 2018

Guo et al.[210] 2018

Tong et al.[218] 2018

Trivedi et al.[219] 2018

Alemzadeh et al.[222] 2019

Bernard et al.[224] 2019

Glicksberg et al.[228] 2019

Guo et al.[231] 2019

Kwon et al.[238] 2019

McNabb and Laramee[241] 2019

Sultanum et al.[248] 2019

Zhang et al.[251] 2019

Jin et al.[264] 2020

Kwon et al.[265] 2020

Wang et al.[298] 2021

Total unique papers: 51 24 15 12 10 13 9 7 7 4 4

Table 2.18: Challenge table: A summary of future challenges identified in the liter-
ature, ordered by the publication year on the x-axis and the frequency on the y-axis.
Green highlights context papers. We use 1-2 words to represent these challenges in the
table header, and describe them in detail in Section 2.7.

Scalability (22 papers, 45%) and data dimensionality (7 papers, 14%) are

reported as a future challenge 28 times in total. As the result of data growth exceeds the

capacity of existing EHR Vis systems [46]. Apart from the handing of high-dimensional
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and multivariate EHR data, maintaining the system availability in a real-world scenario

where multiple users are accessing the system concurrently, is a trending future research

direction [113]. From the table, we can see this has been a persistent theme.

While scalability is a challenge for all visualisation systems, we make note of how

the following challenges are inherent to EHR Vis.

In-depth evaluation (14 papers, 29%) and validation including quantitative

studies, qualitative studies, and validation are reported 14 times as the second most

popular future research direction. An in-depth evaluation and validation help to reveal

the weakness and potential improvements for the system. We examine and describe

the evaluation techniques adopted by the literature in Section 2.5. Some 14 papers

report the lack of evaluation or an insufficient number of participants in their studies.

The recruitment of qualified participants is challenging, these participants often do not

have the time to complete lengthy and thorough evaluations. The table of challenges

indicates this is a prominent theme in recent years.

Limited screen space (12 papers, 24%) constrains the content visualised and

reduces the effectiveness of an EHR system [228]. As the probability of using multiple

views increases in EHR Vis systems, we categorise this challenge as a domain-specific

one. Features with less significance are often hidden to make space for others [224].

This may result in over-simplification and missing potential insights [122]. This is

highly related to the challenge of visual aggregation and clustering (4 papers, 8%)

of multiple patients and requires more advanced interaction (9 papers, 18%) tech-

niques to explore and navigate the data, especially the temporal dimension. Section 2.7

indicates that interaction is a popular future challenge in earlier years.

Data interoperability (10 papers, 20%) between EHR Vis systems and institu-

tions continues to lag [175] and is reported 10 times as a future challenge. This increases

the difficulty for researchers to incorporate data from heterogeneous sources in varying

formats [177]. Although Table 2.3 indicates that some papers focus on the same UMLS

terms, these EHR Vis systems are built specifically for their given data sets and do

not offer interoperability. This is a very EHR-specific challenge that can be potentially

addressed by promoting collaboration between different research groups on the same

topics and adopting a common terminology standard such as the UMLS. Section 2.7
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indicates limited screen space and data interoperability as re-occurring challenges over

the last 10 years.

System usability (12 papers, 24%) and human factors are reported by 11 papers

as a future challenge direction. Low usability often results in a longer learning curve

that requires more training time for users [71, 169]. This in turn may increase the

occurrence of human errors. Due to the domain expertise required, it is difficult to

conduct a full usability test on EHR Vis systems.

Data quality and uncertainty (7 papers, 14%) is another challenge reported in

7 papers. Data often contain missing or incorrect values, this requires further investi-

gation during data collection and preprocessing [178].

Open data access (4 papers, 8%) is reported 3 times, as the authors of most

papers we review are collaborating with domain experts or institutions. However,

access to high quality data still remains a big challenge for many researchers [175]. We

attempt to address this challenge here in Section 2.6. Even though the sensitive nature

of EHR data requires special permission, open data access and accessibility are not

mentioned more often in the literature. This is likely due to the collaborations formed

between visualisation and medical experts: in Section 2.5, we find 59% of the papers

choose to collaborate with medical experts, who also provide EHR data for visualisation

researchers.
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Plaisant et al.[11] 1998

Horn et al.[19] 2001

Bade et al.[30] 2004

Goren-Bar et al.[33] 2004

Hinum et al.[39] 2005

Fails et al.[45] 2006

Bui et al.[48] 2007

Wang et al.[71] 2009

Rind et al.[79] 2010

Faiola and Newlon[89] 2011

Gotz et al.[91] 2011

Gschwandtner et al.[92] 2011

Wongsuphasawat et al.[100] 2011

table continued on next page . . .
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. . . continued
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Zhang et al.[102] 2011

Alonso and McCormick[103] 2012

Sopan et al.[113] 2012

Wongsuphasawat and Gotz[115] 2012

Monroe et al.[122] 2013

Ramı́rez-Ramı́rez et al.[125] 2013

Borland et al.[128] 2014

Gotz and Stavropoulos[132] 2014

Kamaleswaran et al.[134] 2014

Malik et al.[136] 2014

Bernard et al.[144] 2015

Bernard et al.[143] 2015

Federico et al.[148] 2015

Klemm et al.[151] 2015

Glueck et al.[163] 2016

Jiang et al.[166] 2016

Kamaleswaran et al.[168] 2016

Loorak et al.[171] 2016

Ola and Sedig[177] 2016

Dabek et al.[189] 2017

Glueck et al.[193] 2017

Tong et al.[202] 2017

Tong et al.[201] 2017

Glueck et al.[209] 2018

Guo et al.[210] 2018

Tong et al.[218] 2018

Trivedi et al.[219] 2018

Alemzadeh et al.[222] 2019

Bernard et al.[224] 2019

Glicksberg et al.[228] 2019

Guo et al.[231] 2019

Kwon et al.[238] 2019

McNabb and Laramee[241] 2019

Sultanum et al.[248] 2019

Zhang et al.[251] 2019

Jin et al.[264] 2020

Kwon et al.[265] 2020

Wang et al.[298] 2021

Total unique paper: 51 4 4 3 3 4 3 25 6 8 3 8 4 4 3 3 30 2 6 11 4 6

Table 2.19: Visualisation techniques applied in the literature. We follow the classifica-
tion of visualisation techniques by Keim[26], and categorise bar chart, line chart and
pie chart as standard 2d display. Green highlights context papers. indicates the

technique is applied in the literature. indicates a customised variant of the technique

is applied in the literature.

More advanced visual designs: Table 2.19 shows an overview of visualisation

techniques applied in all papers included in this STAR. We observe that standard 2D
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displays and glyphs are the most popular techniques among 21 techniques found across

all EHR Vis systems. This implies that using advanced visual techniques to mitigate

scalability challenges brought by EHR data dimensionality, remains understudied.

2.8 Conclusions

In this STAR, we present an up-to-date overview of research papers, with an in-depth

investigation of 99 in the field of EHR and PopHR Visualisation and Visual Analytics.

We investigate some of the most commonly used terminologies in the field and categorise

the literature based on six re-occurring research themes. Our STAR differs from the

eight related surveys, by including 29 more recent publications, as well as a novel

classification that utilises UMLS, as a means to improve the understanding of recent

development in research and foster potential interdisciplinary collaborations. We then

investigate the evaluation techniques adopted by the literature. Furthermore, we invest

over two months in investigating a collection of 34 high-quality open access data sets,

which aims to serve as a starting point for potential researchers. Lastly, our interactive

EHR STAR Browser enables the reader to easily navigate through all literature and

data sources collected in this STAR.

By providing a comprehensive survey of the state-of-the-art in EHR Vis, including

the classification of literature and identification of multidisciplinary themes, the chapter

establishes key challenges and opportunities within the field. These insights guide the

development of novel visualisation techniques and evaluation methods in the following

chapters. Specifically, the categorisation of research themes and the analysis of EHR

data types, such as text data explored in Chapter 3, geospatial in Chapter 4, and long

time series visualisations in Chapter 5.
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Chapter 3

LetterVis: a Letter-space View of Clinic

Letters

Wang, Q., Laramee, R. S., Lacey, A., & Pickrell, W. O. (2021). LetterVis: A letter-

space view of clinic letters. The Visual Computer, 37(9–11), 2643–2656. https://doi.

org/10.1007/s00371-021-02171-w [298]

“Visualisation gives you answers to questions you didn’t know

you had.”

– Ben Shneiderman, the Father of Treemap (1947 - present)
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This chapter is based on the publication in The Visual Computer [298]. The in-

spiration for this work stems from the need to understand the content of clinic letters,

which are the primary means of communication between healthcare professionals across

different departments. The void of visualisation tools for clinic letters, identified in our

survey presented in Chapter 2, motivated us to develop LetterVis, a visualisation tool

that offers a letter-space view of clinic letters.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Data Description . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Application Design Methodology . . . . . . . . . . . . 78

3.4.1 Informing the Initial Design . . . . . . . . . . . . . . . 78

3.4.2 Informing Further Software Iterations . . . . . . . . . 79

3.4.3 User Requirements and Design Goals . . . . . . . . . . 79

3.4.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 LetterVis for Visualisation of EHR Letters . . . . . . 81

3.5.1 Initial Prototype . . . . . . . . . . . . . . . . . . . . . 82

3.5.2 Three Levels of Letter Abstraction . . . . . . . . . . . 84

3.5.3 Advanced Visual Filtering and Selection . . . . . . . . 86

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.2 Domain Expert Feedback . . . . . . . . . . . . . . . . 94

3.6.3 Domain Expert Review . . . . . . . . . . . . . . . . . 96

3.7 Limitations and Future Work . . . . . . . . . . . . . . 98

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.9.1 List of Expert Sessions . . . . . . . . . . . . . . . . . . 100

3.9.2 List of Interview Questions . . . . . . . . . . . . . . . 100

72



3.1 Introduction

Having a comprehensive understanding of the EHR Vis field, we begin to develop our

first EHR Vis system.

Routinely collected Electronic Health Records (EHR) such as clinic letters contain

important information such as demographics, past and present prescriptions and previ-

ous check-ups, all of which are valuable in answering clinical research questions. These

letters are often stored in a free-text format by clinicians with different writing styles,

thus making the extraction of critical information for further analysis a time-consuming

and error-prone process. Even with the assistance of machine learning and modern sta-

tistical methods, effectiveness remains limited, let alone the challenges associated with

transparency, replicability and ethics [282].

Visual analytics (VA) and visualisation often involve real-time human observation

and intervention. VA has great potential to support clinical decision-making and inform

further research under close scrutiny to ensure both quality and transparency. Interac-

tive visual designs can efficiently reduce visual clutter to cope with the exploding data

volumes, supporting quantitative as well as qualitative analysis in an interpretable and

explainable manner [280]. We propose LetterVis, an interactive letter-space visuali-

sation tool specifically designed to enable efficient exploration and analysis of clinic

letters. By letter-space, we mean the standard coordinate system used by clinicians to

write clinic letters, e.g. A4 space. See Section 3.5 for more details. Our collaboration

with domain experts informs a novel design that utilises the information-rich clinic let-

ters to assist in hypothesis generation and verification, via the human visual perceptual

system. We focus on epilepsy in our case studies, but our tool can be easily generalised

to support all content in the form of letters.

3.1.1 Motivation

The motivation behind our study is to help EHR researchers explore and analyse AED

(antiepileptic drug) co-prescriptions in unstructured EHR letter data to identify pattern

patterns and outliers, and also to provide an overview, filtering and selection, and

analysis options. From our interviews with healthcare data analyst experts, they report
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that their recent adoption of advanced visual designs and VA for analysis of AED co-

prescriptions yields promising outcomes. However, they point out that usability is an

obstacle to furthering the analysis of AED co-prescriptions, as they often encounter a

steep learning curve. This in turn may result in more human errors.

3.1.2 Contribution

The development of LetterVis represents a significant contribution to the field of EHR

Vis, specifically addressing the challenges associated with unstructured clinical text.

Unlike traditional approaches that rely on static displays or simple keyword searches,

LetterVis provides a dynamic, multilevel abstraction framework that allows users to

explore clinical letters interactively. Existing methods, as detailed in Chapter 2, often

lack the ability to balance granularity with an overarching view of the data set, making

it difficult to extract actionable insights from fragmented and text-heavy data.

Our contributions include:

• A novel letter-space visualisation tool that leverages natural language processing

(NLP) techniques to support the exploration of unstructured clinical text in a

structured manner,

• Novel and customised visual designs to identify and verify patterns and outliers

in a cohort of patients,

• Dynamic analysis and comparison of antiepileptic drug (AED) co-prescriptions

through multiple coordinated visual layouts,

• Three replicable case studies to demonstrate LetterVis’ ability to support hy-

pothesis verification.

Additionally, the iterative design process, conducted in collaboration with EHR do-

main experts, ensures that the tool meets the practical needs of its users. LetterVis not

only enhances the accessibility and usability of textual clinical data but also establishes

a foundation for integrating text-based insights into broader healthcare visualisation

systems, as explored in subsequent chapters of this thesis.
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3.2 Related Work

The specific related work to ours falls into the subcategories: EHR Vis and Natural

Language Processing, and Advanced Query Interfaces. Our work advances state-of-

the-art in EHR Vis and Advanced Query Interfaces (not NLP). We simply use some

NLP preprocessing to enhance visualisation. Based on the comprehensive survey de-

scribed in Chapter 2, we quickly narrow down the scope of related work to the following

publications.

Bernard et al. [145] build a visual-interactive system that enables physicians to

train models for prostate cancer identification. Glueck et al. present a trilogy of visual

analysis tools for phenotype comparison: PhenoBlocks [163] with a novel differential

hierarchy comparison algorithm accompanied by a customised sunburst radial hierarchy

layout, PhenoStacks [193] with a novel topology simplification algorithm to eliminate

duplicates, and incorporates natural language queries for searching, and PhenoLines

[209] adds the support for the visualisation of the temporal evolution of phenotypes.

Machine Learning (ML) literature shows an emerging trend in the field of EHR Vis.

Kwon et al. [238] apply recurrent neural networks (RNN) to produce predictions based

on the temporal dimension in EHRs. Jin et al. [264] leverage machine learning tech-

niques to assist the preprocessing and visualisation of EHR data. RegressionExplorer

[226] provides an interactive visual interface for clinical biostatisticians to verify and

improve their models through visualisations. The black box nature of these approaches

impedes the justification of clinical decisions suggested by the models [282]. Our ap-

proach on the other hand, provides a transparent process to lower the explanatory

burden. Also, the focus of our work is not ML.

Natural Language Processing (NLP) is defined by Liddy as “a theoretically moti-

vated range of computational techniques to analyse and represent naturally occurring

texts at one or more levels of linguistic analysis for the purpose of achieving human-like

language processing for a range of tasks or applications” [29]. NLP plays a significant

role in the visualisation and visual analytics of EHR data archived as free text. EHR-

NLP approaches usually include the use of existing tools, customised classification

algorithms, and curation-based extraction [236].

Through our domain expert partners, we learn that GATE, an open source text
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analysis tool that supports text mining of biomedical documents via natural language

processing (NLP), developed by Cunningham et al. [120], is one of the most popular

choices when it comes to EHR data preprocessing. GATE is capable of extracting

structured information from unstructured free text, e.g. clinician’s notes and discharge

letters. However, it lacks interactive visualisation features to assist advanced analysis.

Zhang et al. incorporate NLP algorithms in their AnamneVis [102] to extract struc-

tured medical information from doctor-patient dialogs and medical reports to assist in

the visualisation of patient medical history. Trivedi et al. [219] introduce NLPReViz

which interactively trains NLP models to classify information extracted from clinical

records. Sultanum et al. present Doccurate [248] which provides an accurate and suffi-

cient overview for individual patients based on user-supplied extraction rules. The focus

of our work is not NLP itself, but rather extracting a structured visual representation

of the data hidden inside letters with the help of NLP.

Stubbs et al. introduce Sim•TwentyFive [114], an intuitive visual querying interface

for decision support in psychiatric intensive care units. The system is specifically

designed to work with small screen devices.

Event Sequence Simplification (ESS) is one of the popular techniques used to sup-

port the visualisation of high-dimensional temporal event sequence data [8]. Previous

work focuses on the aggregation of events in EHR data while preserving potential in-

sight [123, 137] and utilises various visual designs to provide a clear overview [100]

or a simplified comparison of multiple patients [45, 116]. In DecisionFlow [132], users

construct multiconstraint queries to prepare EHR data for further analysis.

Different healthcare facilities adopt different medical terminology standards, such

as ICD-10 [340], Read Codes [357], SNOMED-CT [339], and the UMLS we have in-

vestigated in star-subsubsec:Adopting a Medical Terminology Standard. Glicksberg

et al. describe PatientExploreR [228], an interactive querying interface that enables

physicians to quickly search and filter EHRs collected from multiple sources written in

varying medical terminology standards.

The key difference between our work and previous work is the introduction, devel-

opment, and evaluation of letter-space, and its application to clinic letters. We work

closely with health data analysts to curate a specific list of extraction rules for pro-
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cessing epilepsy-related EHRs. To facilitate the analysis of the result, we incorporate

interactive visual designs along with an advanced query interface that is compatible

with Apache Lucene [149], a text search engine library that is known for its flexible

and efficient search algorithms. The library came to our attention after one of our

expert health data analyst partners’ recommendations.

3.3 Data Description

Our data includes 200 clinic letters written by neurology-specialist clinicians and pro-

vided by our healthcare data analyst expert partners in Word format. Each letter

represents a single patient visit to a neurologist. A typical letter contains identifiable

information including patient name, age, gender, address, NHS number, AED prescrip-

tions (past and present), symptoms, diagnosis, and other health-related information.

Due to the sensitive nature of EHR data, the letters are manually anonymised by

clinicians with patient identifiable information as well as other potentially identifiable

information manually replaced with similar but fictional text.

We first extracted all text from Word files, the length of letters varied from 28-133

lines with an average of 98 characters per line. We then preprocessed the letters using

NLP with a list of curated extraction rules provided by domain experts to extract

12 text data categories. Our extraction rules started with numerical data as a proof

of concept. This was then expanded to include antiepileptic prescription information

based on our health data analysts’ feedback. We also extracted metadata for these

categories, such as the position and length of the matching text. The extracted data

was then used to generate visualisations matching the data samples’ position in the

original letters.

In later iterations of the software development, we received a list of 26 generic

antiepileptic drug (AED) names together with 24 equivalent trade names from our

domain expert partners for the purpose of exploring patterns in drug co-prescriptions

and effective combinations. Each AED colour was assigned from the colormap shown

in Figure 3.3A. We develop the matrix view (Section 3.5.3) and drug chain view (Sec-

tion 3.5.3) based on this list and the user requirements in Section 3.4, with an additional
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Category Description Items Extracted

Phone Phone numbers 38

Postcode Postcode 352

Date Date in various formats 728

Time Time in various formats 723

Hospital & NHS Number A unique 10-digit number 79

Date of Birth Patient’s date of birth 202

Age Patient’s age 141

Measurement Patient’s measurements, eg. weight and height 20

Drug Name of medicines 884

Dosage Dosage of medicines 765

Frequency Frequency of medicines 315

Other Other potentially interesting numerical values 1,442

Table 3.1: 12 text data categories extracted from our collection of letters, with a brief
description and the total number of items extracted for each category.

pre-defined colour legend for each AED shown in Figure 3.3C.

3.4 Application Design Methodology

We describe our collaboration with three health data analyst experts in this section.

We collaborate closely with a consultant neurologist (E1) from the UK National

Health Service (NHS), and a lecturer in Natural Language Processing who is also a

senior health informatics research analyst in epilepsy-related research (E2) from a UK

University. We also interview a health data scientist (E3) from a UK University Medical

School during the initial design stage. Data for this application is provided by E1 and

E2, described in Section 3.3. See Table 3.4 for a list of interview and feedback sessions.

Throughout the entire development process, we also exchanged over 30 emails with E1

and E2 to discuss the design and implementation of LetterVis.

3.4.1 Informing the Initial Design

Our initial design was informed by interviewing three health data analyst experts in

EHR analysis. We follow the guidance of Hogan et al. [165] and constructed a set of

interview questions involving 14 structured, semi-structured and open-ended questions.

See Section 3.9.2. These questions were carefully crafted to ensure comprehensive

exploration of the topic, with many being open-ended to encourage participants to

share detailed insights and elaborate on their experiences. The open-ended nature of

these questions was instrumental in gathering nuanced information, fostering a deeper
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understanding of the domain. All interviews were audio recorded for post-analysis with

consent, ensuring that no valuable insights were missed.

We then analysed the domain requirements to guide the development.

3.4.2 Informing Further Software Iterations

Over the course of development spanning over 12 months, we consulted E1 and E2

for feedback. E3 did not participate in the development as her specialisation in injury

prevention is not related to the letters on epilepsy that we worked on. We presented

intermediate visualisation prototypes to E1 and E2 in four separate feedback sessions.

Each session lasted around 65 minutes and was recorded for post-analysis. We describe

this feedback in detail in Section 3.6.2.

Our work can be easily extended and generalised to support other areas where

letters are used systematically for communication, either currently or historically, for

example, in the legal profession.

3.4.3 User Requirements and Design Goals

LetterVis was developed in collaboration with three health data analyst experts in clinic

letter analysis. The following requirements are gathered from interviews and feedback

sessions:

R1 An interactive tool that facilitates the exploration of EHR free text data,

R2 Software that supports the identification of patterns and outliers with respect to

AED co-prescriptions in clinic letters,

R3 A design that supports the identification and exploration of AED co-prescriptions,

R4 An interface that supports analysing several clinic letters simultaneously,

R5 Support for cross-referencing and linking visual representations with original let-

ters,

R6 A tool that is compatible with experts’ existing analytical workflow by supporting

EHRs in JSON format.

Throughout the development process, we identified additional requirements from

feedback:

R7 A query interface that is compatible with Apache Lucene syntax,
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R8 An interface that conveys AED prescription evolution.

3.4.4 Tasks

Brehmer and Munzner’s multilevel typology of visualisation tasks [118] provides guid-

ance on classifying and describing our visualisation tasks.

Figure 3.1: The multilevel typology of abstract visualisation tasks by Brehmer and
Munzner. Figure reproduced from Brehmer and Munzner [118].

Based on the topology, we derive six main tasks to meet the requirements above

[118]:

T1 Present an overview of important text data with abstraction of user-chosen data-

of-interest, that enables the user to explore, identify and compare patterns and

outliers (R1, R2, R4). [present → explore → identify/compare]

T2 A coordinated visual interface that presents multiple levels of abstracted views

to support the exploration of letters and identification of patterns and outliers

(R1, R2). [present → explore → identify]

T3 A combination of customised visual designs for visualising AED co-prescriptions

and prescription progression, the interface enables the user to lookup and com-

pare different letters and select, arrange, change and filter based on AED co-

prescriptions (R3, R4, R5, R8). [lookup→ compare→ select/arrange/change/-

filter]

T4 Develop a visual query interface that is compatible with Apache Lucene syntax

to support the existing analytical workflow which enables the user to identify

outliers (R6, R7). [identify]
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T5 Provide a range of interactive user options and their combinations, including

filtering and selection, to support tasks T1, T2 and T3. [select/filter]

T6 Provide a history of queries that supports the retrospective analysis through undo

and redo functions. [record]

Our design follows the Visual Information-Seeking Mantra,“overview first, zoom and

filter, then details on demand” [9], as a starting point. Shneiderman further proposes

three essential tasks: Relate to view relationships between items, History to keep a list

of actions performed and provide undo and redo functions, Extract to enable extraction

of sub-collections. We believe the tasks established above are generic in most free text

analysis projects, therefore our work can be extended to support other domains.

3.5 LetterVis for Visualisation of EHR Letters

Valuable patient information is recorded and exchanged in the form of clinic letters to

deliver quality patient care. Although letter text is usually described as unstructured,

our basic hypothesis and motivation is based on the implicit knowledge and hence

structure hidden in letters. For example, postcodes do not appear at random positions

in the letters. Their position is consistently in the top-left in letter-space. We believe

that the position of numerical data in letter-space can provide important clues about

the context hidden inside the unstructured text, likewise for drugs and prescriptions

(For example, see Figure 3.5). Another reason we focus on letter-space is because this

is the space that clinicians and EHR analysts operate in and are used to. Any of the

unfamiliar visual designs that we develop can be linked back to the familiar letter-space

to facilitate interpretation by the analysts and/or clinicians that write them in the first

place. This is crucial for any interdisciplinary project. Also, position of data on a page

is important because it can reveal outliers (R2, T1). The order in which drugs appear

is not random. The choice and order of prescriptions reflect important medical and

pharmaceutical expertise held by clinicians (For example, see Figure 3.4). Our visual

approaches extract this information and leverage it to facilitate the exploration and

analysis of clinic letters.

We construct a letter-space by deriving the width (x-axis) from the clinic letters.
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Figure 3.2: An illustration of the colour legend for 12 numerical categories. Clicking on
categories will render the corresponding centroids and individual samples in the global,
thumbnail and focus views as context (in greyscale). Each data category is followed by
the number of matches found in the uploaded letters.

The width is the average length of text, approximately 98 characters, derived from

the full collection of letter bodies. We then use the standard letter aspect ratio to

calculate the height (y-axis) for depicting a letter-space in all three letter abstraction

views described in Section 3.5.2.

Our letter-space approach facilitates the real-time exploration of clinic letters,

streamlining and enhancing the decision-making process. Designed to align with clini-

cians’ existing analytical workflows, this approach is intuitive and minimises cognitive

load. In this section, we provide a detailed description of the five customised visual

interfaces we propose. Additionally, we introduce features that support visual queries

and sorting options, further improving usability and efficiency.

3.5.1 Initial Prototype

An initial prototype was developed after the first round of interviews with our domain

expert partners. The prototype included some basic features to visualise numerical

data categories extracted from the clinic letters and a colour legend to represent the

data categories. These features were later refined and expanded based on feedback

from our domain expert partners.

Visualisation of Numerical Values

In the first few iterations of LetterVis, we focused on visualising numerical data as

proof of concept.

Specifically, we focused on both the type of numerical data and its position in
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Figure 3.3: This figure shows an overview of LetterVis. We also provide a detailed de-
scription of visual designs and elements in their respective sections. (A) shows the user
options for searching, rendering, and sorting (Section 3.5.3). (B) illustrates the matrix
view based on AED co-occurrences in the data set, user-chosen cells are highlighted
with a sequence number, which corresponds to their position in the history of queries
(Section 3.5.3). (C) The drug chain layout returned by the queries, user-chosen AEDs
are shown in colour (Section 3.5.3). (D) depicts an overview of all super-imposed letters
and their search result centroids in the data set (Section 3.5.2). (E) shows individual
thumbnails of letters with local search result centroids joined by edges (Section 3.5.2).
(F) contains a detailed view of the letter in focus, lines without data-of-interest are
collapsed by default (Section 3.5.2).

letter-space. We extracted and classified all numerical values (Figure 3.3A left) using

customised NLP extraction rules based on regular expression, and visualised the distri-

bution of values to depict clusters in letter-space. As we anticipated, extraction rules

constantly evolve during our collaborative development lifecycle to meet new require-

ments proposed by our domain experts.

We decided to use regular expressions for their flexibility to quickly prototype and

refine our software. The numerical categories were used to support analytical tasks in all

case studies in Section 3.6.1. We chose this approach as a starting point to demonstrate
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out idea to the experts in order to get feedback and inform future software features.

One limitation of this categorisation of data quickly identified by our domain expert

partners was the ability to query data by keyword, which is essential to their analytical

workflow.

Color Legend Interaction

We use Colorgorical [194] to create a discriminable and aesthetically guided colormap

to represent the 12 data categories extracted. The legend is shown in Figure 3.2 and

Figure 3.3A left. Any legend component can be clicked or dragged to the search bar to

initiate a category search. Clicking on a legend item toggles the rendering (in-focus)

of the corresponding category and individual samples in all three abstraction views, as

shown in Figure 3.5. Figure 3.3A bottom shows a colour legend for AEDs. On-mouse-

over displays the AED name. This part of the interface can be hidden if the user would

like to reduce the complexity of the interface.

3.5.2 Three Levels of Letter Abstraction

We provide three different views to represent the abstraction of letters from a top-down

perspective. The first level enables exploration at the cohort level for global analysis

(Figure 3.3D). The second level represents the abstraction of each individual letter

by juxtaposition for closer observation (Figure 3.3E). The third level links detailed

visual elements with the original letter (Figure 3.3F). This approach enables the user

to explore the letters at different levels to identify patterns and outliers in a cohort of

patients. All views are linked and coordinated, supported by interactive user options.

Visual Elements in the Global and Thumbnail Views

In the global and thumbnail views, we introduce three visual elements:

• Centroid: represents the arithmetic mean position of each text data category

(numerical, AED and search term-based) in letter-space

• Individual sample: represents an individual text data sample in letter-space

• Edge: connects a centroid to its individual samples in the same data category
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Global View

The global view (Figure 3.3D) is the first and highest level of abstraction that shows

all search term samples in letter-space and their corresponding category centroids ex-

tracted from the data set in one superimposed letter (T1). This superposition approach

enables the comparison of search terms in all of the letters simultaneously, which is oth-

erwise difficult or even impossible through juxtaposition or explicit alignment. Using

juxtaposition or explicit alignment to obtain an overview or make comparisons is in-

effective in this case. Clicking on a centroid triggers the rendering of edges to the

corresponding individual search term samples (Figure 3.5). For example, Figure 3.5

top left shows the centroids of each data category listed in the colour legend in the

global view of letter-space (left). The greyscale points are rendered as context. They

are the positions of the original search data samples in letter space. Selecting a single

search dimension, e.g., Drugs, causes edges to be rendered from the search data dimen-

sion centroid to individual samples (Figure 3.5 bottom left). We render edges because

they convey the area covered by a category of values in letter space. Also, search term

samples located further from the centroid often have a higher chance of depicting out-

liers. A convex hull could have been used, however, it does not show the variation

and density of the original search term samples. Clicking on an individual sample in

the global view shows the corresponding letter in the focus view (T2). On-mouse-over

details are provided for every visual element.

Thumbnail View

As the second level of abstraction (T1, T2), each thumbnail juxtaposed in the thumb-

nail view (Figure 3.3E) represents an individual letter. Similarly to the global view, a

user clicks on a centroid to show each connection to individual samples of the query.

Clicking on the title shows the corresponding letter in the focus view.

On-mouse-over information shows the original data for every visual element.

Focus View

The focus view is the third level of abstraction (T2) that shows a summarised version

of letters (Figure 3.3F). Individual samples are highlighted. Lines with no text data of
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interest are collapsed by default and can be expanded interactively via clicking on any

arrow glyph. At any stage, clicking on the ‘View Document’ button brings the original

letter, with all individual samples highlighted, into focus. An example is shown in

Figure 3.6.

3.5.3 Advanced Visual Filtering and Selection

LetterVis facilities data exploration via a visual querying interface combined with ren-

dering and sorting options. We also color-mapped visual elements and provide further

interaction via colour legends.

Matrix View

We include a co-occurrence matrix specifically for visualising AED co-prescriptions, as a

special requirement requested by our domain expert partners to support the exploration

of common and unusual AED co-prescriptions (T3). Co-occurring AEDs appear as

colour-coded cells where a row and a column intersect in the matrix view (Figure 3.3B).

We extract AEDs in real-time. By exploring common and unusual AED co-prescriptions

visually, they can potentially reduce the number of trials needed for finding optimal

AED co-prescriptions for patients. The matrix view (Figure 3.3B) is automatically

rendered when letters are loaded. Popular co-prescriptions are trivially observed when

the matrix view is sorted by co-occurrence frequency. Co-prescriptions with a higher

frequency are also rendered in more distinct colours than others. Hovering over a cell

initiates an arrow from the y-axis to the x-axis connecting the corresponding pair of

AEDs and also highlighting both AEDs (T5). See Figure 3.3B.

Drug Chain View

The matrix view only indicates the co-occurrence of pairwise drugs. When a query

involves multiple AEDs, the drug chain view (Figure 3.3C) is rendered. In the drug

chain view, blocks representing multiple AEDs are linked in order of appearance in the

corresponding letter. This view aims to provide a visual representation of prescription

progression and may unveil unique insight into epilepsy progression as well(T3). User-

chosen AEDs are shown in colour (focus), while the remaining AEDs are rendered as
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Figure 3.4: Illustrations of letter alignment in the drug chain view. A) The initial
layout of the drug chain view. B) Letters are aligned via clicking on a base AED,
Lamotrigine, highlighted with a red border in the first letter. Letters without the AED
are shown in context with reduced opacity. C) Letters are sorted by alignment, with
context letters being shifted to the end of the queue. Hovering over any block will
display a tooltip containing the letter title and AED name. D) All AEDs are put in
focus mode (in color) via a toggle. Chains are then sorted by the number of AEDs.
E) Ethosuximide, a rare prescription in the data set, is selected as the base AED for
alignment. F) Chains are sorted by gender, with a horizontal grey bar as the separator.
The same subset of letters is used in this figure.

context. Chains can be interactively aligned between letters and sorted as shown in

Figure 3.4 (T5). Unusual chains immediately stand out. In Figure 3.4B, a user selects
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Example Query Result

epilepsy letters contain ‘epilepsy’

epilepsy AND seizure letters contain both ‘epilepsy’ and ‘seizure’

epilepsy OR seizure letters contain either ‘epilepsy’ or ‘seizure’

epilepsy NOT seizure letters contain ‘epilepsy’ but no ‘seizure’

( epilepsy OR seizure) AND DRUG letters contain either ‘epilepsy’ or ‘seizure’, and all AEDs from the drug list

epilepsy AND seizure NOT DOB letters contain both ‘epilepsy’ and ‘seizure’, but no ‘Date of Birth’

Table 3.2: Boolean operators AND ,OR and NOT are supported with ( and ) for
grouping. Categories are in all capitals and can be used in the query to highlight all
items belonging to the category. The colour legend in Figure 3.3A left shows the list
of available categories.

Lamotrigine to specify it as the base AED. All remaining chains are then aligned by

the first appearance of the base AED. Chains with no matching AED are rendered as

context. See Figure 3.4E.

Advanced Visual Queries

LetterVis supports a subset of Apache Lucene [149] syntax, namely boolean operators

and grouping. The incorporated boolean operators provide users with the flexibility

to include or exclude keywords from the result. The colour legend is then updated to

include random colours assigned to each keyword in the query history, an example is

shown in Figure 3.7. The implementation aims to provide the visual means for the user

to query and filter letters (T4). A query can be constructed in multiple ways:

• Clicking on cells in the matrix view will execute a query formed as ‘AED on the

y-axis AND AED on the x-axis’

• The user can drag categories from the colour legend to the search bar

• Under ‘Click and Search’ mode, the user can select any centroid from the global

view to populate the search bar

We store a list of user-specified search queries to support undo and redo functions

(T6. See Figure 3.3A right). The user can use the checkbox located in front of each

query to toggle the visibility of the corresponding query and its results.

Rendering Options

We provide three rendering options for all three visual elements (T5), centroid, individ-

ual sample and edge in both the global and thumbnail views. Focus shows the data in

colour (see the user-chosen centroid and its individual samples in Figure 3.5), Context
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shows the data in greyscale (see context centroids and individual samples in Figure 3.5)

and Hide removes the data samples and edges. In the drug chain view (Section 3.5.3),

an option is provided to highlight the data in context.

Figure 3.5: An illustration of centroid exploration in the global and thumbnail views.
The top shows the default search and rendering when loading 30 letters. By default, the
global view searches and renders 12 text data categories in focus and renders individual
data samples in greyscale, a classical focus+context approach. A thumbnail view is
presented with identical default rendering options for individual letters. The bottom
shows the edges connecting the user-chosen (focus) centroid, DRUG, and individual
samples in both views. Other centroids and individual samples are rendered as context.
Edges can also be hidden as an option.

Sorting Options

We provide 11 options to sort individual letters in the thumbnail view and the abstrac-

tion of AEDs in the drug chain view (T5). Sorting letters by a user-chosen dimension
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gives users the control they need to find patterns and outliers quickly. For example,

outliers will stand out with long edges in the global view and thumbnail views. In

addition, cells in the matrix view can be sorted alphabetically or by co-occurrence. We

demonstrate the benefit of having a wide selection of sorting options in our case studies

in Section 3.6.

3.6 Evaluation

Our evaluation comprises of three case studies, described in detail in Section 3.6.1 and

feedback from domain experts in Section 3.6.2. Section 3.6.3 includes reviews written

by two health data analysts.

3.6.1 Case Studies

Each case study is motivated based on the discussions with domain experts in EHR

analysis. The first case study aims to identify commonly and rarely co-prescribed AED

combinations. The second case study tests the ability to find patient outliers. The third

case study explores the relationship between pregnancy and AEDs. All case studies are

based on 200 anonymised clinic letters described in Section 3.3.

Case Study 1 - Identifying Common and Unusual AED Co-prescriptions

Clinicians are generally confident in prescribing the most suitable first drug, however,

co-prescribing a second drug is always challenging. Visualising the common and un-

usual co-prescriptions may help the clinician with the decision and potentially reduce

unnecessary co-prescription trials needed on patients.

After loading all letters, a matrix view is automatically generated with 18 AEDs,

shown in Figure 3.3B. The matrix by default is sorted alphabetically by AED co-

occurrence. We then sort the matrix view by frequency on both axes from top-left to

bottom-right. We immediately observe the top two AED co-occurrences near the cluster

at the upper-left corner, Levetiracetam-Lamotrigine (Figure 3.3B1, 45 co-occurrences)

and Levetiracetam-Sodium Valproate (Figure 3.3B2, 37 co-occurrences). We select

these two pairs of AEDs and obtain 51 letters. This effectively filters the data with the
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Figure 3.6: A screenshot of one letter’s original view, with personally identifiable in-
formation redacted. Search query terms are highlighted in their corresponding colours,
as described in Section 3.5.2.

following query: (Levetiracetam AND Lamotrigine) OR (Levetiracetam AND Sodium

Valproate). Figure 3.3D and E show the corresponding AEDs in the global and thumb-

nail views. Centroids representing each AED are connected by an edge if they are

connected by an AND operator in the query.

We then sort the letters by total edge length, the sum of distances between edges

in each letter. In the thumbnail view, we observe that the centroids are more sparsely

placed in letters such as letter-022 and 054 than their peers. According to domain

experts, this often indicates that AEDs appearing in them are not co-prescriptions

but previous medications or new recommendations. Centroids in letters such as letter-

073, 133 and 174, are closely co-located, which often represents co-prescriptions. We

manually inspect these letters in the focus view. The finding confirms these hypotheses.

Case Study 2 - 5 Different Ways to Find Outliers

In this case study, we examine LetterVis’ ability to identify letter outliers. A letter

with abnormal patterns often carries valuable information that requires the analysts’
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attention. An outlier may also indicate an error.

In Figure 3.4B, we select Sodium Valproate, due to its popularity in co-prescriptions,

in the first letter to align the drug chain view. This sets it as the base AED for align-

ment. All remaining letters are then aligned by the first appearance of the base AED.

Letters without the AED are rendered as context. See Figure 3.4B and Figure 3.4E.

We then sort the letters by alignment for further filtering in Figure 3.4C. (1) We are

able to identify one outlier immediately, letter-127, as it is the only chain ending with

Sodium Valproate. We inspect letter-127 in its focus view (Figure 3.3F) which indi-

cates Sodium Valproate was recently prescribed. According to E1, “this is abnormal

as Sodium Valproate is ususally the first or second AED for epilepsy patients.” We

expand the focus view to show the entire letter (Figure 3.6). We discover that multiple

AEDs have been prescribed to the female patient with no clear benefit.

We then sort the letters by the number of AEDs (Figure 3.4D) in them and explore

letters on both sides of the sort spectrum. (2) Letter-007 and 096 mention only two

AEDs, we observe that the patients in the aforementioned letters are suspected cases

awaiting further diagnosis. Whereas letter-074 (19 AEDs) and 131 (21 AEDs) represent

confirmed patients with a history of epilepsy of more than 15 years.

Ethosuximide, shown in light blue in Figure 3.4D, has significantly fewer appear-

ances than others. (3) We align the drug chain view by Ethosuximide (Figure 3.4E),

and discover that it is only co-prescribed to three patients (letter-060, 074, and 131)

that are on Levetiracetam with Lamotrigine or Sodium Valproate. We view these three

letters in the focus view and identify vomiting as an adverse effect caused by Ethosux-

imide for the patient in letter-074. The other two patients experience no benefit from

Ethosuximide.

When chains are sorted by gender (Figure 3.4F), (4) we find letter-073, the only

male patient (24 years old with over 23 years of history of epilepsy) in the cohort that

has been prescribed Phenytoin. The patient is also the only male to receive Lacosamide.

Individual samples in the global view can also be used for finding outliers.(5) We

explore two outlier patients (see red arrow in Figure 3.3D). While both patients pre-

scribe Lamotrigine, the patient in letter-186 (top-left corner) is tapering it off as it has

no clear benefit in containing seizures. In contrast, the patient in letter-104 (top-right
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corner) is building up the dose as a replacement for Carbamazepine.

Case Study 3 - AEDs and Pregnancy

In this case study, we evaluated LetterVis’ ability to identify and explore AEDs pre-

scribed to patients with planned or ongoing pregnancies. The prevention of adverse

effects of AED is an important research topic. By using LetterVis’ advanced visual

interface, the user can combine any keywords to study their associations and reveal

insightful patterns. The case study is inspired by research on the effects of AED in

pregnancy [212], the research indicates that in-utero exposure to Sodium Valproate

is likely to negatively affect a child’s cognitive ability, while Lamotrigine and Carba-

mazepine have little or no impact.

We first construct the query ‘(pregnant OR pregnancy) AND DRUG’ to filter out

182 letters. The query highlights both pregnant and pregnancy with all 50 AED names

supplied by our domain expert partners. We then apply sorting by gender to obtain the

thumbnail view shown in Figure 3.7. Two letters include two male patients describing

their own births, we exclude these two. We classify the resulting 16 letters into five

categories as shown in Table 3.3. All patients in categories 1, 2, and 5 were informed of

the teratogenicity (the property or capability of producing congenital malformations.)

of AEDs which may result in birth defects.

Letter-011 indicates a high-risk case, a 52-year-old patient who suffered four seizures

in eight months is planning pregnancy. In this special case, a higher than usual dose

of Folic Acid is prescribed to help prevent birth defects. In letter-060, the physician

proposed multiple AED co-prescriptions to gradually replace Sodium Valproate, in

order to prepare the patient for pregnancy. In letter-144, Sodium Valproate is showing

a remarkable effect in reducing frequency of seizures for the patient. Because she did

not have a planned pregnancy, the physician decided to increase the dose.

Letter-093 contains a special case where a female is suspected to suffer from nonepilep-

tic psychogenic seizures, hence common AEDs such as Levetiracetam, Lamotrigine, and

Sodium Valproate were never prescribed.

During the process, we also discover two identical letters (letter-103 and 107) using

different pseudo names, this is likely due to human error during the manual anonymi-
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Figure 3.7: We execute the query ‘(pregnant OR pregnancy) AND DRUG’ and sort
letters by gender to focus on pregnancy. The thumbnail view shows two male patients
separated from the rest by a grey bar. High-risk cases discovered in Case Study 3 are
highlighted with a red line.

sation process. Please see the accompanying video for a demonstration of these case

studies.

3.6.2 Domain Expert Feedback

We regularly demonstrate LetterVis to our domain expert partners (E1 and E2) to

guide the development and present intermediate results. We also provide a live version

available online for them to explore. We provide excerpts of their feedback below. In

general, our collaboration process adheres to the Visual Information-Seeking Mantra

[9]: 1) we demonstrated the global view that shows an overview of the data to experts,

94



1. Pregnancy Planned 2. No Pregnancy Planned 3. Pregnancy Completed 4. Irrelevant Case 5. Special Case

letter-11 letter-20 letter-72 letter-115 letter-93

letter-60 letter-21 letter-87 letter-131

letter-81 letter-144 letter-127

letter-103 letter-151

letter-107 letter-176

Total: 5 5 3 2 1

Table 3.3: The resulting letters after searching and filtering based on pregnancy and
AED. Letters are classified into five categories: 1) Patients with pregnancy planned
or potentially planned. 2) Patients with no pregnancy planned. 3) Patients with
pregnancy completed. 4) Letters containing keywords ‘pregnancy’ and ‘pregnant’ but
are irrelevant to the patient’s condition, such as describing the patient’s own birth. 5)
A special case is described in detail in Case Study 3 - AEDs and Pregnancy. Green
highlights letters with Sodium Valproate prescribed.

2) they then requested to zoom and filter the outliers found in the global view. This

is fulfilled by the thumbnail view, 3) eventually details were demanded to verify any

findings from previous stages, through both the focus view and chain view.

During our first demonstration of LetterVis with E2, we demonstrated the coordi-

nation between the global, thumbnail, and focus views, the expert immediately com-

mented, “That’s interesting, if you can spot pregnancy and certain drugs are in close

proximity, you immediately want to read that letter because something is not right. I

can see it’s been really useful” (R2). E2 pointed out that the limitation of our simple

numerical approach is that the user is unable to query for words. The expert was also

particularly interested in seeing a view that’s specifically tailored for visualising AEDs,

with the ability to use syntax-based search queries to improve the exploration of items

of interest (R4). We implement his recommendation, Apache Lucene, into our next

version (R7, T5).

In our second feedback meeting with E1 and E2, immediately after the feature

introduction, both experts were able to picture a use case for identifying outliers by

using deviated centroids in the global and thumbnail views, E2 stated that, “If you are

able to see centroids representing AEDs in one letter deviated far more than the global

trend, we don’t trust this letter, we might need to investigate the prescriptions in that

particular letter” (R2). Both experts were keen on visualising AED co-prescriptions,

and the demonstration spent 30 minutes discussing this topic. E1 pointed out that,

“One useful use case I can imagine is to visualise combinations of AEDs for different

patients and even how often one AED is mentioned together with another. It’s really

hard to conduct clinical trials for more than one AED, clinicians usually know what the
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best first AED is, but not the second. Designing a trial for that is nearly impossible”

(R8). E2 further elaborated that, “Some patients on multiple AEDs might have mul-

tiple seizures per week, but when they are given only one AED, their seizure frequency

might be reduced to one per week. One existing tool we are using still relies on the

command line to operate, so this dashboard-like visualisation tool can be really helpful”.

We introduce the matrix (Figure 3.3B) and drug chain view (Figure 3.3C and Fig-

ure 3.4) for visualising AED co-prescriptions and prescription evolutions (T2). We

demonstrated these two visual designs to E1 and E2 during our third and fourth feed-

back sessions. E2 commented that, “This is definitely useful, the way we are currently

doing is really laborious, we have to go through the patient’s EHRs and sequentially look

at what AEDs were given at each visit. The drug chain view is looking at the problem

we need to solve” (R8). When the drug chain view was sorted by the number of AEDs

and aligned the chains by a rare AED, E1 was immediately able to identify an outlier

patient that is on an unusual AED co-prescription, “Pregabalin and Retigabine are a

very strange combination, I never thought of searching for that, I’m definitely going to

look at that patient”.

We demonstrate LetterVis and the case studies in a supplementary video: https:

//youtu.be/jSVzhCjLi U.

3.6.3 Domain Expert Review

The following written feedback was provided directly by the experts (E1 and E2).

“LetterVis presents a novel way to visualise trends and potential outliers across sets

of clinic letters. Unstructured texts have not traditionally been used as a data source

for analysis in healthcare, as the data is not available in a readily parseable format such

as structured data. Recent advances in the field of Natural Language Processing have

yielded NLP methods to extract structured data from clinical prose [153], where more

traditional analyses can take place. LetterVis employs NLP and data visualisation

techniques to help isolate and communicate important trends to the user.

“Many clinical decisions can be improved by the analyses that LetterVis offers. For

example, there is limited evidence on the best antiepileptic drug (AED) combination to

use for patients with severe epilepsy [139]. The co-occurrence matrix can visualise AED

96

https://youtu.be/jSVzhCjLi_U
https://youtu.be/jSVzhCjLi_U


combinations across a range of frequencies to potentially identify the most common

and/or stable AED combinations. Less frequently used combinations can also be easily

identified. A limitation of the co-occurrence matrix is addressed in the drug chain view

– namely the ability to visualise patients who are prescribed more than two AEDs,

and it is immediately clear which patients may be problematic based on the number of

different AEDs appearing in the chain.

“By loading AEDs vs side effects into the co-occurrence matrix it is possible to view

associations between AED and side effects. The thumbnail view adds more granularity

to this analysis by presenting the proximity of side effects to the AED in question.

In 2018 the Medicines & Healthcare products Regulation Agency strengthened their

position on the avoidance of valproate to be used in women and girls, especially during

pregnancy [214]. Therefore, it is important to determine the likelihood that letters that

mention pregnancy and valproate fall into categories around the education of valproate

in pregnancy, or if valproate is still used during pregnancy. The thumbnail view is

an ideal tool to hone in on letters that may show the latter case because currently

prescribed AEDs are usually found at the beginning of the letter, where pregnancies

will be mentioned later in the document.

“Some future work might include the integration of medical ontologies to rapidly

build code lists of interest that can be used in the already highly configurable Lucene-

based query capabilities. Given that context is very important when using search

terms, i.e. negation or hypothetical discussions around AED side effects, adopting

more advanced NLP techniques or integrating with existing technology such as GATE

[120] or cTAKEs [364] would help increase user confidence in any trends presented to

them. LetterVis could potentially expand to present entire timelines for individual

patients and not be restricted to analyses within one letter. For example, the chain

view could be used to align newly diagnosed patients and their first AED to determine

popular first-line drugs, and how they change over time, or to monitor side effects and

frequency of seizures when a new AED is detected in subsequent letters.

“LetterVis is well positioned to take advantage of the emergence of unstructured

data being used for healthcare research, and its methods will offer clinicians the vital

tools they need to see the big picture across potentially millions of clinic letters.”
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3.7 Limitations and Future Work

Our work is currently limited by data set size, with larger data sets from an NHS

Healthboard pending approval. This expansion will allow us to address scalability

issues, as the current browser-based implementation depends on local computational

power, which slows performance with larger data sets. A cloud-based solution could

mitigate this, but privacy and security challenges inherent to EHR data pose significant

hurdles.

The current rule-based NLP approach, developed with domain experts, is effective

but limited. Incorporating advanced NLP techniques could improve extraction accuracy

and automate processes, such as analysing AED side effects and interactions. This

would reduce reliance on manual querying and enhance usability for broader clinical

applications.

While the modular design of LetterVis supports epilepsy-specific research, addi-

tional modules can be easily added for other medical domains. Expanding display

space for simultaneous rendering of views could also improve usability and efficiency.

Currently, the drug chain view only shows AED sequences, not co-prescriptions,

which still require human verification. Future NLP improvements may help in this

area, but will not eliminate the need for manual validation (R3, R5, T3).

We will explore the use of multiple colormaps and their effects on users with colour

vision deficiencies. The choice of colormaps was heavily influenced by input from do-

main expert partners, who provided valuable guidance based on their professional ex-

perience and visualisation needs. However, these experts did not have colour vision

deficiencies, which may have limited their awareness of accessibility issues related to

colour perception. While the colormaps were selected to maximise clarity and align with

the specific tasks required for clinical text analysis, this design decision inadvertently

prioritised domain-specific preferences over broader accessibility considerations.

3.8 Conclusions

In this chapter, we present a novel visualisation tool, LetterVis, to support the analysis

of clinic letters through advanced interactive visual designs and queries. The work aims
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to support EHR researchers to explore free-text EHR data and address their research

hypotheses in a transparent and explainable manner. The strength of this work is the

novel concept of letter-space and how it is applied to a real-world problem. Through

our collaboration with three domain experts, we identify and address a selection of

important tasks via customised letter-space designs and interactive user options. We

incorporate NLP techniques to preprocess clinic letters with a list of extraction rules

curated together with our domain expert partners. We then develop an advanced vi-

sual query interface that includes five customised visual designs to support the analysis

of EHR free text data. We demonstrate LetterVis with three empirical use cases in-

spired by real-world scenarios. In-depth evaluations are also conducted with domain

experts. Its reliance on predefined data categories and the need for significant user

familiarity with the tool may limit its accessibility to nonexpert users. Additionally,

while the visualisations provide detailed insights, the complexity of the interface and

potential cognitive overload from high-dimensional data may require further refinement

to enhance usability. Future iterations could focus on simplifying interactions and in-

tegrating more automated analytical features to further broaden its applicability and

impact.

LetterVis serves as a foundational example of how visualisation can transform un-

structured clinical data into actionable insights, setting the stage for the broader themes

explored in the thesis. Its focus on clinical letters highlights the challenges of working

with textual data in EHRs, such as extracting meaning from fragmented, context-rich

narratives. This chapter directly connects to later chapters by addressing the broader

problem of representing heterogeneous and complex healthcare data. For instance,

the principles of abstraction and interactivity in LetterVis are also leveraged in the

geospatial and time series visualisations introduced in subsequent chapters. By tack-

ling text-based data early on, the thesis builds a cohesive narrative that demonstrates

how visualisation methods can adapt to diverse EHR challenges while maintaining a

user-centred approach throughout.
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3.9 Appendix

3.9.1 List of Expert Sessions

Session Date

Expert 3 Initial Interview (in person) 7 June 2019

Expert 1 & 2 Initial Interview (in person) 29 June 2019

Expert 2 Feedback (virtual) 7 April 2020

Expert 1 & 2 Feedback (virtual) 9 July 2020

Table 3.4: Summary of domain expert sessions (both interviews and feedback), con-
ducted in person and virtually due to the COVID-19 pandemic restrictions.

3.9.2 List of Interview Questions

1. What is your background, including education and previous occupations?

2. Please provide a brief description of your current occupation.

3. What area does your research cover?

4. What are your research objectives?

5. What are your sources of data?

6. Do you have any hypotheses?

7. What general types of data set are common in your research (e.g. numerical

data, text documents, images, etc.)?

8. On average, what is the size of data set do you generally work with? (e.g. 5,000

rows of CSV, 3,000 images, etc.)

9. What methods do you use to analyse the data (e.g. statistical, excel, document

analysis tools, etc.)?

10. What methods or tools do you use to get the “bigger picture” (or an overview)

of your collections of data?

11. What are the areas of improvement you’d like to see in the tools you use for your

research(s) (e.g. data processing speed, interactive functions, user-friendliness

etc.)?

12. What do you consider to be your biggest challenge in terms of answering research

questions?

13. If you could find out anything in your research(s), what would that be?

14. What are your unsolved research problems?
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Chapter 4

Demers Cartogram with Rivers

Wang, Q., Xu, K., & Laramee, R. S. (2024). Demers cartogram with rivers. Visual

Informatics. https://doi.org/10.1016/j.visinf.2024.09.003

“The single biggest threat to the credibility of a presentation is

cherry-picked data.”

– Edward R. Tufte, the Father of Information Design (1942 - present)
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The chapter is based on the publication Demers Cartogram with Rivers in Visual

Informatics [319]. By extending the Demers Cartogram, we introduce a hybrid car-

togram layout algorithm that incorporates dynamic topological features, such as rivers,

to improve legibility, readability, and overall accuracy of the information presented in

Demers Cartogram. The idea is inspired by previous research [202, 218] identified in

our survey in Chapter 2.
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4.1 Introduction

Cartograms are representations of geographical and abstract data based on a value-

by-area mapping combining statistical and geographical information [66, 94]. Vari-

ous styles of cartograms have been proposed and implemented for applications such

as urban planning [211, 287], natural hazard forecasting [243, 269], conservation and

environmental planning [208, 244], political and social demographics [205, 284], and

decision-making for public health [259, 294].

Among the four types of cartogram categorised in a survey by Nusrat and Kobourov

(See Section 4.2 for definitions of contiguous, noncontiguous, rectangular, and Dorling),

a trade-off is made between types of accuracy (See Table 4.2). For this project, we focus

on noncontiguous cartograms like Demers cartograms because they facilitate statistical

comparison between regions, they can make good use of screen space, and comparison

of regions is useful when studying Electronic Health Records (EHR) data. Demers

cartograms offer the advantage in cases where the data is not directly correlated to

region sizes. In other words, Demers cartograms are useful when a data dimension is

not describing the geography of the region it represents but is tied to something else,

for example, the health of its population. In addition, the comparison of magnitudes

becomes an area estimation task, which is effective for numeric data encoding [138]. See

Nickel et al. for a more complete description of the advantages that Demers cartograms

offer. One of the drawbacks of Demers cartograms is that they may become more

difficult to read when a region becomes displaced from its geospatial origin through

the node layout process. The layout of these more abstract shapes may simultaneously

reduce the map’s legibility and increase error. See Tong et al. for a more detailed expla-

nation. Building on Demers cartograms [25], we introduce and develop novel features,

such as rivers, with the aim of improving readability and geographical accuracy without

sacrificing statistical accuracy. Standard Demers cartograms are composed of square

nodes that represent geographic enumeration units. As such, this can reduce their

legibility. We implement a new hybrid cartographic layout algorithm that combines

rivers with the placement of nodes representing geographic enumeration units, in this

case a Clinical Commissioning Group (CCG). We hypothesise that the introduction of

rivers improves the overall legibility of a cartogram. By legibility we mean readability
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and the ability to interpret the cartogram. To assess this hypothesis, we designed an

experimental setup where participants engaged in correspondence and location tasks

as part of a user study. To reduce error and make efficient use of screen space, the

algorithm also updates the position of rivers to accommodate the node layout. We

then apply the algorithm to a real-world case study using EHR data to evaluate the

result. We present a user study that demonstrates its effectiveness.

Our contributions include:

• A new variant of Demers cartograms that incorporates rivers to improve read-

ability and recognisability, as shown in Figure 4.7

• A novel hybrid layout algorithm that combines node positions with features such

as rivers, as described in Figure 4.2 and Algorithm 1

• A user study evaluation (Section 4.5) of the technique with an application to

EHRs.

The results of the user study indicate that rivers can improve the legibility of

cartograms. One of the major challenges involved is developing a layout algorithm that

handles different shapes. In other words, the hybrid layout algorithm is novel because

it handles different types of elements: square node representing regions and polylines

representing rivers. Another challenge we overcome in developing the algorithm is to

resolve stalemate situations where nodes become congested due to constraints imposed

by rivers, while ensuring error minimisation.

4.2 Related Work

This section introduces the characteristics of various cartogram styles, describes rel-

evant applications of cartograms, and provides a brief overview of some real-world

implementations of cartogram-based visualisations.

Definitions:

While we focus on rectangular cartogram variants, we start with brief definitions of

contiguous and noncontiguous cartograms: Contiguous cartograms preserve topology,

maintain connectivity with their adjacent neighbours, but are also subject to distortion
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Literature Cartogram Type(s) Geographic Region(s) Number of Nodes Year

Warf and Winsberg Dorling US 3,142 2008

Sun and Li Dorling, Mosaic, neighbour-preserving US, China 34 - 49 2010

Cruz Dorling, Noncontiguous, neighbour-preserving Portugal 2,882 2017

Tong et al. Demers England 209 2018

Gao et al. Dorling China 34 2020

Nusrat et al. Contiguous, Dorling US 49 2020

Nickel et al. Noncontiguous, Demers US, Netherlands, World 49 - 342 2022

Table 4.1: Related work with noncontiguous cartogram-based visualisations. Car-
togram type is the type of cartogram used. Geographic region is the geographic
region depicted by the cartogram. Number of nodes is the number of nodes (repre-
senting geographic enumeration units) depicted in the cartogram.

in shape. Noncontiguous cartograms sacrifice topological connectivity with neighbours

to enable expansion or reduction in size while maintaining their polygonal shape [66].

Nusrat and Kobourov define and summarise three major accuracy dimensions for

cartograms: statistical, geographical, and topological. Each cartogram design may

make various types of accuracy trade-offs between dimensions. We provide a comparison

of these trade-offs as introduced by Nusrat and Kobourov in Table 4.2. In addition, we

include the Demers as it is the focus of our work.

Dorling cartograms, as a variant of noncontiguous cartograms, generally do not

preserve geography and topology. A Dorling cartogram is statistically accurate, regions

are represented by circles and the data dimensions of interest are represented by the

circle area [87]. In a Demers cartogram, a variant of Dorling, squares are used instead

to capture a certain level of topology, as described by Cano et al. in their related work

section. Dorling cartograms are unable to maintain topological accuracy as circles

are often repositioned to remove overlap. Here we focus on Demers cartograms as we

use squares to depict regions. This style of cartogram offers the advantages that the

comparisons between regions are intuitive and screen space utilisation is more efficient.

This is important in our use case scenario involving EHRs. Demers cartograms, where

regions are represented by squares, often have the advantage of preserving a higher

level of topology at the cost of geographical accuracy [25].

Rectangular cartograms are contiguous and do not preserve geographical accuracy

[3, 36]. Depending on the variant, a rectangular cartogram may trade-off between

statistical and topological accuracy.

Mosaic cartograms usually use square or hexagonal tiles to depict regions, and
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are contiguous and sacrifice statistical accuracy to preserve some level of geographical

accuracy [146]. Some variants are able to preserve topological accuracy as well.

Peer-reviewed Applications:

There has been a substantial amount of research done in this area, here we review

some of the important work that has inspired our work. Warf and Winsberg [62] use a

Dorling cartogram to represent religious diversity in the US. Sun and Li [82] depict 1996

US election data and 2005 Chinese population data using Dorling, Mosaic, and contigu-

ous cartograms. Gao et al. [259] present a Dorling cartogram to illustrate COVID-19

infections in China. Tong et al. [218] use a Demers cartogram to visualise health-related

data by CCG regions in England, the work introduces a novel technique to remove the

overlap of squares based on topological features, aiming to improve both geographical

and topological accuracy. Nusrat et al. [268] investigate the memorability of contiguous

and Dorling cartograms using multiple data sets that include demographic, agriculture,

and retail data in the US. See Table 4.1 for a list of literature that adopts cartograms

for visualisation with corresponding geographical regions and node counts.

Our work extends the algorithm described by Tong et al. which incorporates a static

topological feature into Demers cartograms. Our work enhances that of Tong et al. in

multiple ways. First, we introduce multiple features (rivers) into the layout, as opposed

to a single river. Second, we make topological features dynamic and further improve

legibility and geographical accuracy. By the term dynamic, we mean that the position

of the rivers is updated as part of the layout algorithm. In previous work, the river

is static and serves merely as a boundary. To illustrate this more clearly, we refer to

Accuracy

Cartogram Variant Statistical Geographical Topological Contiguity

Contiguous Variable Variable Accurate Yes

Noncontiguous Accurate Shape is accurate Inaccurate No

Rectangular Variable Shape is inaccurate Variable Yes

Dorling Accurate Inaccurate Variable No

Demers Accurate Inaccurate Variable No

Table 4.2: Trade-off between dimensions. Dimension sacrificed in order to improve
target dimension’s accuracy.
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the video demonstration published by Tong et al. Because the behaviour of the layout

algorithm is dynamic, a video is more appropriate to convey the motivation of dynamic

features of interest. We can observe the cartographic layout algorithm at 1:30 and 2:40

of the video by Tong et al. During the update process, we can clearly observe nodes

cross the River Thames as the size expands. As the size of all the nodes expands, some

nodes are pushed south to make more use of screen space. If we want to make the

most efficient use of screen space, we need to translate the River Thames further south

during the layout process to prevent nodes from crossing it. This is one of the main

motivations for introducing dynamic rivers. By introducing river translations, our

implementation prevents nodes from crossing rivers, thereby improving screen space

efficiency and cartogram legibility. For comparison, see our video demonstration at

https://youtu.be/PRNEF3J1hl0 (from 0:28 to 0:32 and from 1:49 to 1:56).

Third, we improve the algorithm to resolve stalemates. Finally, the way we evaluate

the cartograms is also different. Tong et al. count river crossings to evaluate error (a

statistical metric). Here our focus is on readability, and thus we include a user study.

Cartograms in Media:

Cartograms are an engaging visual representation and therefore they are a popular

choice of representation in covering various topics by the media. The Washington Post

uses cartograms to visualise the US overseas economic assistance, in arms sales (Mosaic)

[158], the 2016 US Election (contiguous) [162], and the Brexit Referendum (Mosaic)

[181]. National Geographic uses contiguous and Mosaic cartograms to analyse the 2016

US Election results [174], the same topic is also covered by the Financial Times with

a Dorling cartogram [180]. Cruz adapts a Dorling cartogram with both contiguous

and noncontiguous cartograms to represent the gender pay gap in Portugal. Sandberg

reports the 2018 US midterm Election with a Mosaic cartogram, the same approach is

used to cover the 2020 US Election by the New York Times [276] and Bloomberg [266].

One of the disadvantages of Dorling and Demers cartograms is legibility. The

layout algorithms may displace regions far from their original position and make the

maps more difficult to interpret. Nickel et al. present a method to compute stable De-

mers cartograms with multiple constraints to maintain adjacencies with no overlapping

nodes.
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Figure 4.1: A map of 135 CCGs in England as of 2020, obtained from the Open
Geography Portalx [352] with EPSG:4326 (WGS84 - World Geodetic System) as the
Coordinate Reference System (CRS).

In this chapter, we introduce a new type of topological feature, a river, as a con-

straint to compute the final layout, with the aim of improving the interpretation, read-

ability, and accuracy of this class of cartograms.

4.3 Data Description

Processing heterogeneous data can be challenging, especially when an EHR data set

is involved, because the data comes from multiple sources [311]. The first step is to

obtain both geospatial boundaries and EHR data. The second step is to preprocess the

EHR data to remove empty and erroneous values. The final step is to transform the

data into a suitable format for cartograms. Geospatial boundaries, or shapefiles, were

obtained from the sources described here.

4.3.1 Choropleth Shapefile

Clinical Commissioning Groups (CCGs) are the primary administrative and geographic

unit of the National Health Service (NHS) in the UK [350]. The number of CCGs

changes over time due to NHS reorganisation. The most up-to-date shapefile is available
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relation (2263653);>>;

// River Great Ouse: 2798097

// River Trent: 2863468

out skel;

Listing 4.1: The query that downloads the shapefile of River Thames from
OpenStreetMap via the Overpass Turbo API.

Shapefile Original GeoJSON TopoJSON

Rivers 2.0 MB (GeoJSON) 1.4 MB -

NHS CCGs 46.6 MB (.shp, Esri vector shapefile) 140.2 MB -

Merged - - 16.3 MB

Table 4.3: The file size is reduced by 88.5% from the original size.

from the Open Geography Portalx [352]. We decided to use the CCG shapefile from

2020 at the time of writing, due to the absence of published public EHR data based on

the latest CCG reorganisations that took place in 2021 and 2022.

4.3.2 River Shapefiles

We used OpenStreetMap [353] as our data source to obtain shapefiles for the River

Thames, the Trent River, and the Great Ouse River in England. These rivers were

chosen as they are well-known rivers, pass through regions with dense populations,

and provide informative geographical and topological cues. Although including smaller

rivers is technically feasible, it may not increase the legibility of the cartogram. This

is an open question for future work.

We first obtain a relation ID by searching for a river, e.g. River Thames, on

OpenStreetMap. The relation ID is used to construct a query (see Listing 4.1) that

enables the user to download the entire river shapefile using Overpass Turbo [354].

After acquiring the shapefiles, we used QGIS [355] to manually adjust the projec-

tions and convert them into GeoJSON files. Finally, mapshaper [324] is used to merge

and convert the GeoJSON files into a TopoJSON file [365]. TopoJSON eliminates re-

dundant coordinates in the data, improving the rendering speed of our implementation.

See Table 4.3 for the preprocessing result.

We describe the one-time preprocessing steps in more detail in Section 4.8.1.
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4.3.3 EHR Data

We obtained the Clinical Commissioning Group Outcomes Indicator Set (CCG OIS)

from NHS Digital [351]. The OIS is a set of indicators that are used to measure the

quality of care and the associated health outcomes in the NHS. Each CCG has a unique

ONS code, which is used to link the CCG shapefile with the statistical data.

• Under 75 mortality: cardiovascular disease, respiratory disease, liver disease, and

cancer

• Emergency hospital admission: stroke, alcohol-specific admission and readmis-

sion, coronary heart disease, re-admissions within 30 days of discharge, children

with lower respiratory tract infections

For all data sets, a spreadsheet including the following is provided:

• Reporting period: Calendar year of registration

• Period of coverage: Start and end date or reporting period

• Breakdown: Organisation type

• ONS code: UK Office for National Statistics CCG code

• Level: CCG Code

• Level description: CCG Name

• Gender

• Indicator value: Directly standardised mortality rate

• CI lower: lower 95% confidence interval

• CI upper: upper 95% confidence interval

• Denominator: The count of registered patients

• Numerator: Number of deaths

4.4 Demers Cartogram with Rivers

Algorithm 1 and Figure 4.2 provide an overview of the hybrid cartogram layout process

that includes rivers.
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Figure 4.2: An overview of our hybrid layout algorithm incorporating rivers. See also
Algorithm 1 in Section 4.4 for more detail. See Figure 4.4 for the logic of processing a
stalemate. For illustration purposes, we show the rendered views alongside the logical
views representing the actual computation, and use the same size for all squares for
clarity.

4.4.1 Initialisation with Rivers

We first load and (optionally) render the CCG geospatial boundaries. For each CCG

we compute the centroid and represent it using a square node, n, with the initial

size, s =1 pixel. We then load the river shapefiles and render the rivers. Since the

vertices of the river in the shapefiles are not in sequential order, we first render the

starting vertex, followed by the next nearest vertex. We do not need the original river

resolution to incorporate them into cartograms. We reduce their resolution to match

that of the cartogram nodes in order to facilitate node-river intersection tests. This

rendering approach enables us to adjust the river resolution as shown in Figure 4.3.

We further apply simplification by removing vertices that are too close to each other.

The initialisation procedure is a one-time process that can be saved for reuse.

4.4.2 Node Layout and Overlap Removal

We first apply the Fast Node Overlap Removal (FNOR) algorithm that solves the Vari-

able Placement with Separation Constraints (VPSC) problem [44] in order to remove
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Figure 4.3: The resolution of rivers can be dynamically adjusted by the user. (A)
shows River Thames at its original resolution with 10,170 edges. (B) shows the river at
a reduced resolution of 49 edges. We further smooth the river by removing 19 vertices
in dense areas, as shown in (C). The reduced resolution preserves the majority of River
Thames’ original shape and improves the performance of our river intersection tests.

the overlap between square nodes. We chose FNOR over other node overlap removal

algorithms because FNOR is able to minimise spread and movement of nodes while

maintaining a good level of global shape preservation [252]. Initialise with a pixel size

of unity, we gradually increase the node size by one unit at a time to ensure smooth

transitions. An increase in s can cause the nodes to overlap. During overlap removal, we

compute node trajectories (See Algorithm 2) and translate nodes to their new position.

Nodes that cross a river, denoted nnxr, are translated back to their previous position.

If a node oscillates across a river, we identify this as a stalemate. One iteration of the

layout ends when 1) no node overlap is present; AND 2) no nodes cross a river. We

then increase s by one unit and repeat the algorithm until the average cartographic

error, ϵc, a measure set by the user, reaches its maximum value ϵcmax . The gradual size

increase process provides stability to the layout, as can be seen in the accompanying

video.
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Algorithm 1 Procedure to adjust river positions, remove node overlap and pre-
vent nodes from crossing rivers.

Global variables:
L← a list of n representing regions with the following properties:

L.cross← the number of n in L that crosses a river

s← the initial size of all nodes
ϵc ← the average cartographic error of all nodes
ϵcmax ← the maximum cartographic error of all nodes
w ← the maximum number of iterations indicating a stalemate

Local variables:
n← a node is an object with the following properties:

n.x,n.y, or n(x, y)← the x and y coordinates of n
n.cross← the number of times that n crosses a river
np ← the previous position of n
nt ← the translated position of n

1: procedure UpdateLayout
2: s← 1
3: while ϵc < ϵcmax do
4: L.cross← 1 ▷ Trigger the while loop
5: while L.cross > 0 do
6: L.cross← 0
7: L← RemoveOverlap (L)
8: TranslateRiver(L)
9: L.cross← TranslateNode(L)
10: end while
11: s++
12: end while
13: end procedure

4.4.3 River Intersection Testing

The logic for translating the position of a node is detailed in Algorithm 2. When a

node’s position changes, we test if the node’s trajectory intersects any segment of a

river. See Algorithm 3. A bounding box intersection test can be performed between

the edge defined by the node translation and the river edges to reduce the number of

edge intersection tests required. Using the intersection test, we identify all nodes that

cross the river as a result of the initial FNOR algorithm. We label these nodes, nnxr.
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Algorithm 2 Procedure to translate node positions.
Input:
L← a list of n representing regions

Output:
ϵt ← the number of nodes crossing the river in the input

Global variables:
w ← the maximum number of iterations indicating a stalemate

Local variables:
n← a node is an object with the following properties:

n.x,n.y, or n(x, y)← the x and y coordinates of n
n.cross← the number of times that n crosses a river
np ← the previous position of n
nt ← the translated position of n

1: procedure TranslateNode(L)
2: ϵt ← 0
3: for each n ∈ L do
4: if n(x, y) ̸= nt(x, y) then
5: n(x, y)← nt(x, y)
6: if TestIntersection(nnt) = True then
7: n.cross++
8: ϵt ++
9: if n.cross < w then

10: ▷ Translate back to previous position
11: n(x, y)← np(x, y)
12: else
13: ProcessStalemate(n,nt)
14: n.cross← 0 ▷ Reset counter
15: end if
16: end if
17: end if
18: end for
19: return ϵt
20: end procedure

4.4.4 Translating Rivers

For all nodes nnxr that cross a river, r, we compute an average vector vavg used to

translate r. Whenever a node, n, crosses a river, we store a vector −−→nnt that points

in the direction of the translation. We then use a heuristic to translate r using the
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Algorithm 3 Procedure to test if a node’s translation path, nnt intersects a
river.
Input:
nnt ← the node’s translation path
r ← a river feature

Output:
Returns True if the node crosses a river.

Local variables:
bn, be ← the bounding boxes for nnt and e
e← an edge of r

1: procedure TestIntersection(nnt, r)
2: for each e ∈ r do
3: bn ← GetBoundingBox (nnt)
4: be ← GetBoundingBox (e)
5: if bn intersect be = True then
6: return nnt intersect e
7: end if
8: end for
9: return False
10: end procedure

average vector of node intersection

vavg =

ϵt∑
i=1

−−−→ninit

ϵt

, where ϵt is the number of nodes intersecting the river. This step intends to create

space for the next iteration of node translation without crossing a river. The detailed

procedure for translating rivers is provided by Algorithm 4.

When a river, r, is translated by vavg, this can trigger a scenario where nodes are

crossed by a translated river, denoted nrxn. As a heuristic, we also translate these

nodes by vavg. The reasoning behind this is that vavg indicates which direction the

river needs to be translated to create space for the nodes that are too crowded together.

In practice, vavg is multiplied by a scaling factor ∝ vavg. Thus, we can influence how

far r is translated in each iteration of the layout algorithm. We can use this to ensure

smooth transitions between iterations.
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Algorithm 4 Procedure to translate rivers.
Input:
L← a list of n representing regions

Local variables:
R← a list of r representing river features
n← a node is an object with the following properties:

n.x,n.y, or n(x, y)← the x and y coordinates of n
np ← the previous position of n
nt ← the translated position of n

ϵt ← the number of nodes intersecting r

1: procedure TranslateRiver(L)
2: for each r ∈ R do
3: ϵt ← 0
4:

−→vr ← (0, 0) ▷ Hold the sum of vectors −−→nnt

5: for each n ∈ L do
6: if n(x, y) ̸= nt(x, y) then
7: if TestIntersection(nnt, r) = True then
8:

−→vr ← −→vr +−−→nnt

9: ϵt ++
10: end if
11: end if
12: end for
13: Translate river r by the average vector

−→vr
ϵt

14: end for
15: end procedure

4.4.5 Process Stalemates

As the FNOR always attempts to produce an optimal node layout where node distribu-

tion and translation are minimised, a node’s translation path can repeatedly intersect

a river due to congestion, creating a stalemate situation, as shown in Figure 4.5. If a

node is translated between two positions, n and nt, for w iterations (a user-adjustable

parameter), we introduce a heuristic solution: constructing a corridor to alleviate con-

gestion. A corridor, c, is a rectangle with a width of cw and a length of cl, formed by

deriving two edges ep1 and ep2 such that ep1 ∥ ep2 ∥ ntnc (See Figure 4.6C and D).

All nodes enclosed by c are then translated by −−→ntn to alleviate the congestion (See

Figure 4.6E). The procedure for constructing corridors is provided by Algorithm 5.
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Algorithm 5 Procedure to derive a corridor to resolve stalemates. We use an
SVG canvas, where the point of origin (0,0) is located at the top left corner,
with the x-axis extending to the right and the y-axis extending downwards (See
Figure 4.5).

Input:
n← the node used to derive the corridor

Global variables:
cl ← the length of a corridor
cw ← the width of a corridor

Local variables:
c← the corridor
nc ← the point extending −−→ntn such that |ntnc| = cl
ep1 , ep2 ← the edges parallel to ntnc

corridor ← a rectangle formed by ep1 and ep2

1: procedure ProcessStalemate(n)
2: n(x, y)← np(x, y)
3: nc ← DerivePoint(−−→ntn, cl)
4: ep1 ← DeriveParallelEdge(−−→ntnc,

cw
2
)

5: ep2 ← DeriveParallelEdge(−−→ntnc, − cw
2
)

6: c←

[
ep1 .start ep1 .end

ep2 .start ep2 .end

]
7: for each nin inside c do
8:

−−−−−→nin nint =
−−→ntn

9: nin(x, y)← nint(x, y)
10: end for
11: end procedure

Figure 4.4: A flowchart illustration of stalemate processing. See Section 4.4.5, Fig-
ure 4.5, and refer to our video demonstration (from 1:27 to 1:46) for details.
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Figure 4.5: A stalemate: when a node’s translation path −−→nnt (iteration 1) intersects
a river w times. The node is translated back to its previous position (iteration 2). A
stalemate can occur when the area is congested and the node cannot translate to a new
position without intersecting a river.

4.4.6 Terminating the Algorithm

The algorithm terminates when ϵc reaches ϵcmax , the error tolerance set by the user.

We adopt the maximum cartographic error from Alam et al., namely:

ϵcmax = max
n∈L

|ni − nit |
max{ni,nit}

where ni and nit are the initial and translated regions in the cartogram, L represent

the list of regions, and ϵcmax is a normalised value that we express as a percentage. For

a detailed derivation of the formula, refer to the work by Alam et al. Because the

algorithm processes node-river intersections, we can measure a novel kind of error,

namely, topological error ϵt. We maintain ϵt = 0, however, we can count how many

nodes would have crossed a river if we did not test for this and simply let nodes cross

rivers. We express ϵt in the normalised range ϵt ∈ [0, 1], where ϵtmax is the case where

all nodes cross a river.
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Figure 4.6: A stalemate occurs when a node’s translation path −−→nnt intersects a river
for w times, as shown in (A). To address this, we derive a corridor (orange rectangle
in (E)) based on n and nt. All nodes within the corridor are translated based on −−→ntn,
such that −−→nnt =

−−−−−→ninnint . For clarity in the illustration, we place nodes sparsely in this
figure.

When the algorithm terminates, the node layout is considered optimal where no

nodes have crossed or crossed a river (denoted ϵt = 0 and ϵc < ϵcmax). Every node

remains on the same side of the river as its centroid.

4.4.7 User Options

Figure 4.7 presents an overview of the application, including user options. The user

can adjust the following parameters:

Rendering Visibility:

The rendering visibility of various elements, including the choropleth shapefile,

rivers, nodes, and node centroids, can be toggled on and off.

Node Mapping:

Both size and colour of the nodes can be mapped to different EHR attributes or
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set to uniform.

Overlap Removal Speed:

The overlap removal process can be observed step by step, or the algorithm can be

run automatically.

Maximum Cartographic Error:

The user can adjust the maximum cartographic error, ϵcmax , which is used to ter-

minate the algorithm.

River Translation:

The behaviour of rivers during the process can also be adjusted by the user: 1)

Enable river crossing: this option allows nodes to cross rivers. Nodes cannot cross

rivers by default; 2) Disable river translation: this option disables the translation of

rivers, rivers are translated by default. Both options are useful for generating different

layouts and to observe the behaviour of the hybrid layout algorithm.

Corridor Length:

The user can define the length of a corridor that is used to resolve stalemate situa-

tions. A longer corridor length allows more nodes to translate during a stalemate. The

default corridor length is three times the max node size.

River Thickness and Resolution:

Increasing the thickness of rivers may improve the recognisability of the cartogram.

Similarly, increasing the resolution of rivers, at the expense of the speed of node-river

intersection test, may produce a layout with higher legibility.

4.5 User Evaluation

We conduct a user study to evaluate the effectiveness of our approach. The evaluation is

designed to test the hypothesis that the introduction of rivers can improve the legibility

and recognisability of cartograms. We chose this type of evaluation because legibility is

a human-centred characteristic. Many different types of statistical error metrics have

been evaluated in previous work [176], however, our focus is more user-centric in nature.
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Figure 4.7: A screenshot of the user interface. User options are provided to adjust
the terminating conditions (size and error), colour mapping, and visibility of nodes
and rivers. Other options include the ability to control the overlap removal behaviour:
rivers can be static or dynamic. See Section 4.4.7 for more on user options. In this
figure, ϵcmax = 1.875%, and an ϵt of 9.631% is eliminated.

4.5.1 Study Hypothesis

Our work builds on the results of the previous study [218], which demonstrated that

the incorporation of topological characteristics in cartograms improves recognisability.

Unlike the earlier approach, which uses static topological features, our method intro-

duces dynamic topological features. Thus, we hypothesise that the introduction of

rivers improves cartogram legibility and recognisability, specifically:

H1: The presence of rivers in cartograms will improve participants’ ability to cor-

rectly locate the target CCG as measured by accuracy.

H2: The presence of rivers in cartograms will decrease response times when iden-

tifying the target CCG.

We tested these hypotheses using location tasks, in which participants matched

a target CCG from a standard choropleth (left) to its counterpart in a cartogram

generated using our approach (right). See Figure 4.8.

4.5.2 User Study Variables

In this section, we discuss the variables of our user study.

Independent Variables
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River presence: whether rivers are displayed, their presence impacts the interpre-

tation of the cartogram.

Node river crossing: whether nodes are allowed to cross rivers, this affects the final

layout of the cartogram.

Dependent Variables

Accuracy: Given a CCG location in the choropleth on the left, we asked the par-

ticipant to locate the corresponding node in the cartogram. Accuracy as the primary

dependent variable is measured by the percentage of correctly identified target CCGs

out of total attempts.

Response time: Another dependent variable is the time it takes the participants to

complete each task.

Control Variables

Choice of Colormap: We use D3’s built-in interpolateRdYlGn (red-yellow-green)

colormap to depict the data in our cartograms.

Target CCG Communication: We inform the participant about the target CCG

they need to find. The target CCG blinks (between its original colour and black) every

2 seconds to ensure visibility.

4.5.3 User Study Design

In this section we describe the user study participants, data sets, and the experimental

procedure. To test our hypothesis that the inclusion of rivers improves the legibility

and recognisability of Demers cartograms, we designed a user study to evaluate the

impact of river presence and node river crossing on participants’ performance in iden-

tifying CCGs. This study is particularly relevant to EHR visualization, as accurate

and efficient interpretation of geospatial health data (e.g., CCG-level health outcomes)

is critical for clinicians and policymakers to make informed decisions. We employed a

within-subjects design, where each participant completed all tasks under all four com-

binations of the two independent variables. The study was approved by the University

of Nottingham’s Research Ethics Committee (Ref: 2021-2022-001).
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Participants

We recruited 24 participants.

• Gender: 10 females and 14 males

• Age Group: 18-24 (16), 25-29 (8)

• Education: 1 Ph.D., 11 Master’s, 8 Bachelor’s, 4 Others

Participants with colour deficiency were not recruited to ensure accurate interpre-

tation of colour-coded elements in the visualisation. This criterion was established to

maintain consistency in evaluating the effectiveness of the proposed visualisations and

avoid potential biases caused by difficulties in distinguishing colours.

Data sets

We used the following EHR data sets from NHS Digital [351] for our evaluation:

• Population

• Under 75 mortality from cardiovascular disease

• Emergency admissions for alcohol-related liver disease

• Alcohol-specific admission and readmission

See Section 4.3.3 for a detailed description of the data sets.

A choropleth map displaying 135 CCGs was rendered on the left side of the screen,

while a cartogram-based view was rendered on the right. In both views, the colour

was assigned to the percentage of the condition in the data set. See Figure 4.8 for an

example.

Procedure

Due to pandemic restrictions, the user study was designed to be conducted online.

Participants used their own retail hardware, devices with small screens were not rec-

ommended due to the large size of the rendered cartograms. We provided detailed

instructions to use a screen resolution of 1920x1080 pixels and to complete the study

in a distraction-free environment to mitigate variability. However, differences in device

hardware and internet connectivity may have introduced minor variability, which we

discuss in Section 4.6.
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Figure 4.8: A sample location task for participants. The left shows the choropleth
map, and the right shows the corresponding cartogram. Both images show the three
longest rivers in England, with the size and colour of nodes representing the prevalence
of the selected disease. The target CCG blinks on the choropleth (shown in black), and
participants are asked to identify this CCG on the cartogram. In this figure, ϵcmax =
1.875% , and an ϵt of 6.667% is eliminated.

The user study included four parts:

P1 Training Session: The participants were instructed to complete a training

session, available in both text and video formats (available at https://tinyurl.com/

demerscartogram). The session introduced key concepts such as choropleths and

cartograms used in the tasks. It also provided a demonstration of the tasks, guidance

on navigating the user interface, and a brief overview of the data sets used in the study.

P2 Practice Session: The participants were then given three practice tasks to

familiarise themselves with the user study design. A sample task was shown in Fig-

ure 4.8, and accessible at https://ghr.wangqiru.com/#/P1 and included in the online

materials available at https://osf.io/q39w7 and https://github.com/thevisgroup/D

emers-Cartogram-with-Rivers. The practice tasks were identical to the actual tasks,

accompanied by instructions provided before the actual tasks commence. These tasks

ensured that participants understood how to interact with the visualisation and have

a similar level of familiarity with the interface. The results from these practice tasks

were not included in the final analysis. In the instructional video, a demonstration of

three sample tasks was also included.

P3 Main Session: The participants were instructed to complete 16 location
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tasks that involve 4 target CCGs: E38000243, NHS Nottingham and Nottinghamshire,

E38000136, NHS Oxfordshire, E38000242, NHS Northamptonshire, and E38000244,

NHS South East London. The 4 CCGs were carefully selected to avoid extreme cases

such as very large or very small areas, highly distinct or barely distinguishable colours,

and locations near map edges, to avoid potential biases. All participants completed

the same set of tasks, each presented under four different conditions, to enable within-

subject comparison while avoiding repetition of task content. Each task required the

participant to identify a target CCG on the choropleth map (left) and locate its cor-

responding representation in the cartogram (right). The 16 tasks were presented in a

fixed block order, grouped by condition shown in Table 4.5. Each block corresponded

to one combination of river presence and node river crossing ability, with 4 tasks per

block using different CCG locations. This fixed order was chosen to standardise the

test sequence across participants while varying the content to mitigate task-specific

learning effects.

Accuracy and response time were recorded.

P4 Post-Study Session: The participants were asked to complete a questionnaire

that consists of 5-Point Likert scale questionnaire, as shown in Section 4.8.2.

4.5.4 User Study Analysis

This section reports the results of the user study evaluating the effects of river presence

and node river crossing ability on task accuracy and response time. We conducted a

two-way repeated-measures experiment with two within-subjects factors: river presence

(present vs. absent) and node river crossing (allowed vs. disallowed). Participants

completed location tasks under different conditions and their accuracy and response

times were analysed. The results indicate that river presence significantly improves

accuracy, while response times are influenced by an interaction between river presence

and node river crossing ability.

Data Cleaning and Preprocessing

Our study recruited 24 participants, each assigned to complete 16 location tasks, re-

sulting in a total of 384 responses. To improve data reliability, responses with extreme
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Original Results Outliers Removed

Count 384 346

Mean 13,830.05 8,578.26

Median 7,944 7,521

Range 1,783 - 177,423 1,783 - 24,420

IQR 7,918 6,086

Table 4.4: The table compares various statistical measures of response times in millisec-
onds (ms), showing the original values versus those after removing outliers. Outliers
were defined as values above Q3 (12,839 ms) + 1.5 × IQR (24,716 ms).

Condition 1 Condition 2 Condition 3 Condition 4

River Presence T T F F

Node River Crossing F T F T

Total Responses 91 84 83 88

Currect Responses 58 50 40 36

Accuracy (%) 63.74 59.52 48.19 40.91

Mean Response Time (ms) 7686.38 9176.75 8657.90 8854.15

Table 4.5: The table presents the accuracy and mean response times (in milliseconds)
of four different conditions, after removing outliers.

response times were removed using an upper-bound threshold based on the interquartile

range (IQR). Response times greater than the upper quartile plus 1.5 times the IQR

were excluded as outliers (n = 38), resulting in 346 valid responses. These responses

were assumed to reflect lapses in participant attention or technical delays. See Table 4.4

for a comparison of statistical measures before and after outlier removal.

Accuracy Analysis

Table 4.5 shows the accuracy measured by the number of correct CCGs chosen by the

participants. Conditions without rivers (Conditions 3 and 4) exhibited lower accuracy

(48.19% and 40.91%, respectively) compared to those with rivers (63.74% and 59.52%).

Accuracy data were analysed using a binomial generalised linear mixed model

(GLMM), with river presence and node river crossing ability as fixed effects and a

random intercept for each participant.

The model revealed a significant main effect of river presence (OR = 2.124, p =

0.015), indicating that the odds of a correct response were significantly higher when

rivers were present. However, this effect should be interpreted with caution due to the

fixed block order and repeated use of CCG targets, which may have introduced order-
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related confounds. No significant effects were found for node river crossing ability

(OR = 1.344, p = 0.339) or for the interaction between the two factors (OR = 0.889,

p = 0.789). The random intercept term for participants showed negligible variance,

indicating no between-subject variability in accuracy, likely due to the standardised

task design. Nevertheless, we retained the random intercept to respect the repeated-

measures structure of the study design and to avoid anti-conservative inference.

Overdispersion was assessed by computing the Pearson chi-squared statistic divided

by the residual degrees of freedom. The dispersion parameter (χ2 = 346.000, df = 342,

Φ̂ = 1.012) indicates no evidence of overdispersion and consistency with binomial model

assumptions.

Response Time Analysis

Response time data were analysed using a linear mixed-effects model (LMM) to account

for within-subject variance, with a random intercept for each participant.

There was no significant main effect of river presence (β = 374.841, p = 0.554) or

node river crossing ability (β = −180.561, p = 0.776). The interaction term between

river presence and node river crossing ability showed a trend toward significance (β =

–1, 449.290, p = 0.105), suggesting a potential interaction pattern where node river

crossing ability reduces response time when rivers are present, a pattern consistent

with previous findings, although the interaction did not reach statistical significance in

the current sample. As block order and task content were not counterbalanced, this

observed trend may also be partially influenced by order or fatigue effects.

Although none of the fixed effects reached conventional significance levels, we also

fitted a model using log-transformed response times to account for the right-skewed

distribution. The transformed model revealed no significant interaction between river

presence and node river crossing ability (β = –0.138, p = 0.173), consistent with the

original analysis. Main effects were not statistically significant. Residual diagnostics

were then conducted on the transformed model. The histogram of residuals showed an

approximately symmetric, bell-shaped distribution, and the Q–Q plot indicated that

the residuals closely followed the theoretical normal distribution. This indicates that

the primary finding is robust to distributional assumptions.
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Figure 4.9: The stacked bar chart shows the user study participant responses of Likert
Scale questions.

Likert Scale Analysis

Figure 4.9 shows the results of the following Likert Scale questions:

(A) 87.50% of participants agree that including rivers is useful.

(B) 83.33% of participants agree that rivers increase the legibility of a cartogram.

(C) 95.83% of participants agree that including rivers makes cartograms easier to

understand.

(D) 62.50% of participants agree that including rivers makes CCGs easier to locate.

(E) 87.50% of participants agree that including rivers adds value to the standard

cartogram.

The responses indicate a strong subjective preference for cartograms with rivers,

aligning with the objective accuracy improvements observed in the study. The fact

that nearly all participants agreed that rivers made cartograms easier to understand

(95.83%) and improved overall readability (83.33%) is consistent with the accuracy

findings, where the presence of rivers significantly increased the number of correctly

identified CCGs.

However, a discrepancy arises when comparing Likert scale responses with response

time results. While most participants (87.50%) agreed that rivers added value to the

cartogram, the response time analysis suggests that their benefit was conditional on
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node river crossing ability, and rivers alone do not universally speed up decision-making,

instead, their impact depends on how the layout allows users to process spatial infor-

mation. The 62.50% agreement that rivers helped locate specific CCGs suggests that

while they improve overall comprehension, their influence on precise localisation is

somewhat weaker. This aligns with the finding that accuracy improvements were clear,

but response times were not universally reduced.

Together, the statistical and subjective results demonstrate that rivers enhance

cartogram legibility, particularly in flexible layouts, while accuracy benefits appear

more robust across conditions.

In summary, H1 is partially supported by the data, the presence of rivers moder-

ately improved participants’ accuracy in identifying the correct CCG. H2 is partially

supported by the data, while no significant main effect of river presence on response

time was found, a significant interaction between river presence and node river crossing

ability indicated that the benefit of rivers for efficiency was conditional on node river

crossing ability. This suggests that rivers can enhance decision-making speed, but only

in less constrained spatial configurations.

Discussion

The result of our study provides support for our primary hypothesis that rivers enhance

cartogram legibility and recognisability. The presence of rivers significantly increased

participants’ accuracy in correctly identifying the target CCGs, with participants being

more than twice as likely to respond correctly when rivers were present (OR = 2.124,

p = 0.015). Conditions where rivers were present resulted in higher accuracy rates

(63.74% and 59.52%) compared to conditions without rivers (48.19% and 40.91%).

The presence of rivers improved task accuracy, suggesting that the inclusion of

familiar geographical features may have supported users in identifying correct CCGs.

By contrast, neither node’s ability to cross rivers nor its interaction with river presence

significantly affected accuracy. This outcome implies that restricting layout flexibility

did not affect the participants’ ability to identify target regions.

Response time analysis revealed more nuanced effects. Response times were the

lowest when rivers were present and nodes were not allowed to cross rivers (condition 1:
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7,686.38 ms). This pattern was supported by the interaction effect in the mixed-effects

model, which showed a trend towards faster responses when rivers were present and

nodes cannot cross rivers (β = −1449.290, p = 0.105), though the effect did not reach

statistical significance. In contrast, when nodes are allowed to cross rivers, the presence

of rivers slightly increased response times, potentially due to increased cognitive load

associated with interpreting a more visually complex layout.

Taken together, these results partially support the second hypothesis. The pres-

ence of rivers did not universally accelerate task completion, but their contribution to

efficiency was conditional on node river crossing ability.

Finally, the subjective responses captured in the Likert-scale questions reinforce

the quantitative results. Participants overwhelmingly agreed that rivers improved car-

togram legibility and readability. However, only 62.50% felt that rivers made it easier

to locate specific CCGs, which may reflect the subtle or conditional nature of their

influence on response time.

4.6 Limitations and Future Work

This section discusses the limitations of our approach and potential directions for future

research. Given the novelty of integrating topological features into Demers cartograms,

there are several areas for improvement and extension.

4.6.1 Experimental Design Confounds

A limitation of the study design is that the four task blocks (conditions) were presented

in the same fixed order for all participants, and each block reused the same four target

CCGs. This introduces potential confounds due to order effects (e.g., fatigue or learn-

ing) and repeated content exposure. For example, the significant accuracy advantage

observed in river-present conditions may partially reflect their earlier presentation in

the task sequence. Without counterbalancing, it is not possible to disentangle these

effects. Future studies should randomise both block order and CCG assignment to

control for such confounds.
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Figure 4.10: Due to colour and relative location, we believe the CCGs in the black
circle are easier to locate.

4.6.2 Colormap choice

The first limitation is the colormap that we use to depict the data in our cartograms.

We use D3’s built-in interpolateRdYlGn colormap, a diverging colour scheme of red,

yellow, and green. While effective in many cases, alternative colormaps may offer better

differentiation between high and low values. Future research should investigate different

colormap options and their impact on interpretability, including testing perceptually

uniform colormaps and those optimised for colour deficiencies. In the user study, we

carefully avoid extreme values where the location or colour of the CCG makes it easier

to locate the target. See Figure 4.10 for an example. We plan to explore the impact of

different colormaps on the legibility of cartograms in future work.

4.6.3 Overlap removal algorithm choice

Another limitation is the algorithm (FNOR) we use. A future enhancement would

involve designing an overlap removal algorithm that inherently incorporates topological
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constraints, potentially reducing computational complexity and ensuring more efficient

layouts. Currently, the runtime of our layout algorithm is approximately 30 milliseconds

for each iteration. When the quantity of nodes and features increases, generating the

optimal layout demands several hundred iterations.

4.6.4 Generalisability

Future work also includes generalisations and extensions of the algorithm, e.g., the use

of other features in the cartogram layout such as additional rivers, major highways,

lakes, and coastlines, etc. We also consider whether increasing the length of the rivers

as the size of the nodes increases would be a useful option. We would like to explore the

case of river-river intersections (or confluence) and test the approach on more diverse

geographic regions, such as North America and Europe, to assess its generalisability

beyond the UK. We also considered the idea of deforming the rivers as part of the

layout algorithm, however, this idea is open to future work.

4.6.5 Improved User Study

The user study was conducted in an online environment due to pandemic restrictions,

leading to variations in screen sizes, hardware specifications, and internet connections.

Future studies should be conducted in controlled settings to ensure consistency in dis-

play quality and user interaction. Future studies should also randomize task order or

use a counterbalanced design. It is important to acknowledge that our layout algorithm

itself was not explicitly evaluated as part of this study. Future studies could introduce

direct evaluation metrics for the layout algorithm. For example, these could include

user comparisons of different algorithm-generated layouts for the same data set.

4.7 Conclusions

The work presented in this chapter advances the field of spatial visualisation in the

context of EHR Vis by refining the Demers Cartogram with a novel river-preserving

technique. We first propose a new algorithm to generate cartograms with rivers, and

then present a prototype to support the exploration of cartograms with rivers. The pro-

132



posed approach enhances the interpretability of spatial health trends while preserving

critical geographical features, ensuring that users, including healthcare professionals

and policymakers, can make informed decisions based on geographically coherent rep-

resentations of patient data. Through a user-centred evaluation, we demonstrated that

the presence of rivers enhances cartogram legibility and recognisability. The results

indicate that users were more accurate in identifying regions when rivers were present,

but the lack of counterbalancing in task block order means this finding should be in-

terpreted with caution. Response time improvements also depended on river crossing

ability of the node, suggesting a trade-off between cognitive load and spatial clarity.

Subjective responses from participants further corroborated these findings, with strong

agreement that rivers enhanced the usefulness, legibility, and clarity of cartograms. Fu-

ture work should explore additional constraints, optimise computational performance,

and conduct further validation studies in controlled environments with more partici-

pants.

This work aligns with and contributes to the broader “EHR Vis” framework by

emphasising the importance of geospatial context in EHR analysis. While Chapter 3

focuses on structuring and abstracting unstructured text-based EHR data into mean-

ingful representations, this chapter demonstrates how structured geospatial data can

be made more comprehensible through visual representations to support EHR analysis

and decision-making.

4.8 Appendix

4.8.1 Preprocessing Shapefiles

Shapefiles from different sources are likely to be incompatible. In our case, the NHS

CCG shapefile is incompatible with the river shapefiles. The major reason for the in-

compatibility is the coordinate reference system (CRS). The CRS of the CCG shapefile

is EPSG:27700 (OSGB36 - British National Grid). The CRS of the river shapefiles is

EPSG:4326 (WGS84 - World Geodetic System). Here, we provide some preprocessing

steps using QGIS (version: 3.26.0-Buenos Aires) [355] to handle the incompatibility

and reduce the shapefile size to improve performance.
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Import Shapefiles into QGIS

We first load all three river shapefiles into QGIS Figure 4.11, followed by the CCG

shapefile Figure 4.12.

Figure 4.11: QGIS interface, with River Trent, River Great Ouse, and River Thames
(from top to bottom) imported.
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Figure 4.12: QGIS interface, with all NHS CCGs imported.
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Export Shapefiles in GeoJSON and Unify the Coordinate Reference

System (CRS)

Figure 4.13: QGIS interface, showing the unified CRS (OSGB36) for both layers.

We then use QGIS to unify the CRS, and export both layers in GeoJSON format. See

Figure 4.14 and Figure 4.15. The unified layer is shown in Figure 4.13.
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Figure 4.14: QGIS interface, exporting all rivers using the OSGB36 CRS in GeoJSON.
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Figure 4.15: QGIS interface, exporting all NHS CCGs using the OSGB36 CRS in
GeoJSON.

Merge Shapefiles and Reduce File Size

We then merge two layers into one, and export it in the TopoJSON format using

Mapshaper [324]. Mapshaper also supports the simplification of GeoJSON shapefiles.

See Figure 4.16.
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Figure 4.16: Mapshaper interface, merging all rivers with NHS CCGs into one layer,
and export the merged layer in TopoJSON.

4.8.2 List of Likert Scale Questions

1. Including rivers in a cartogram is useful.

2. Including rivers increases the legibility of a cartogram.

3. Including rivers makes cartograms easier to understand.

4. Including rivers makes Clinical Commissioning Groups (CCGs) easier to locate

on a cartogram.

5. Including rivers adds value to a standard cartogram.

Each of the five questions uses a 5-point Likert scale, where participants express

their level of agreement with a statement about the role of rivers in cartograms, ranging

from 1 (strongly disagree) to 5 (strongly agree).

139



140



Chapter 5

Time Series Map

Wang, Q., Bartolomeo, S. D., Dunne, C., Laramee, R. S., Litchfield, I., Weber, P., &

Xu, K. (2024). Time Series Maps: Hierarchical Visualisation of Blood Glucose Time

Series Data.

“Knowledge and information are invisible. They have no natural

form. It is up to the conveyor of the information and knowledge to

provide shape, substance, and organisation.”

– Donald A. Norman, the Scholar of User-Centred Design (1935 - present)

The chapter is based on our manuscript submitted to EuroVis 2025. In the previous

chapter, we describe LetterVis, which explores the visualisation of unstructured text

data. During LetterVis’ research and EHR Star’s presentation at EuroVis, we met

health data experts interested in collaborating on visualising time series data, another

commonly used structure for collecting EHR data. The need for a novel visual design

that is both interactive and scalable to handle long time series data, inspired this

chapter. The data sets we used in this chapter were all identified by our survey in

Chapter 2.
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Figure 5.1: An overview of Time Series Maps to visualise blood glucose data. The
hierarchical Time Series Map view on the left offers an overview of all the events, while
the day-oriented view on the right provides a detailed view of the trends in blood
glucose readings. The details-on-demand view at the bottom enables users to explore
individual events and their corresponding blood glucose readings. In this figure, 8
months worth of data is rendered, which includes 68,000 events.

5.1 Introduction

The increasing prevalence of diabetes worldwide, coupled with the advancement in

continuous glucose monitoring systems (CGM), has led to an exponential growth in

the measurement of blood glucose readings [317]. This challenging data provides an

invaluable opportunity to understand the nuanced relationship between behaviour and

blood glucose fluctuations. Yet, the ability to effectively leverage this wealth of data is

inherently dependent on our capacity to visualise and interpret it meaningfully.

Traditional methods for visualising time series data often rely on a linear mapping

of the data over time on an axis [313]. While this approach is intuitive, it offers

limited scalability, becoming unwieldy and challenging to explore when faced with data

spanning over longer periods of time, e.g. days or months [313]. This constraint can

pose barriers to our understanding of trends and patterns over longer periods [229]. It

may hinder our ability to provide comprehensive and personalised care to individual
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patients.

Event-based visualisation has been explored as an approach to visualise time series

data. However, current event sequence visualisation designs face their own challenges.

These techniques often struggle to manage a large number of events [101, 133], limiting

the depth of insight that can be uncovered. Additionally, existing designs typically focus

on categorical data [210, 231, 292, 264], overlooking the richness of continuous data such

as blood glucose levels. Furthermore, these techniques often adopt generic approaches

that may fail to capture the individual’s unique glycaemic responses, diminishing the

visualization’s application for personalised care of patients with diabetes.

5.1.1 Terminology

In the context of this study, it is essential to delineate two types of data: time series

and event-based.

Time series data is often regarded as a collection of observations recorded at regular

intervals [119]. This type of data is crucial for analysing trends, patterns, or even

forecasting future occurrences by examining the sequence of discrete data points over

time.

On the other hand, event-based data consists of distinct observations of various

types that are collected over time and organised in a sequence according to the particu-

lar entity to which the event is relevant [304]. Unlike time series data, which is marked

by its regularity in time intervals, event-based data is characterised by its ability to

capture sporadic, significant occurrences that provide insight into the dynamics of the

observed entities.

5.1.2 Contributions

The Time Series Map is a novel hierarchical approach to time series data that combines

advantages from both time series and event sequence visualisation. This hierarchical

approach is carefully crafted to manage large-scale time series and event sequence data,

offering a comprehensive overview and starting point for exploration and analysis. We

then incorporate a case study to demonstrate the potential of our approach using two

real-world CGM data sets. We develop and evaluate our approach with health data
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experts to assess its effectiveness in gaining overviews of the data.

Our contributions include:

• A novel hierarchical visual design we call Time Series Map that offers an overview

of time series data applicable to longer, arbitrary lengths of time,

• A general approach to identifying and extracting Event of Interest (EoI) from

time series data,

• A scalable design to event-based visualisation that can handle a large number of

events,

• Findings from usage scenarios and expert interviews in the diabetes treatment

domain that demonstrate the utility of Time Series Maps for analysing blood

glucose data.

The rest of this paper is organised as follows. Section 5.2 discusses related work in

time series and event-based visualisation. Section 5.3 details our approach to extract

events automatically from long time series data. Section 5.4 presents our approach to

visualising time series data using Time Series Maps. Section 5.5 describes case studies

designed to evaluate our work, and feedback provided by health data experts through

interviews. We then discuss limitations and future work in Section 5.6 and conclude

the paper in Section 5.7.

5.2 Related Work

We begin related work with surveys on time-oriented data visualisation [86, 197, 223,

311, 304, 316]. We then present related research work that aligns with our focus.

To date, we have not found any related work that specifically focuses on providing

overviews of long time series data. There is, however, research from multiple areas that

focuses on the visualisation of time series data in general, which we consider here. We

present prior work in these areas in the following sections.

5.2.1 Event Sequence Visualisation

Event sequence visualisation focuses on a type of temporal data consisting of a series of

incidents that unfold over time [311]. Visualisation techniques are essential for reducing

145



Work Visual Representation No. of Events Rendered (n) Subject of Data (UMLS Code)

Monroe et al. [122] Scatterplot, Node-link n < 3,000 Pharmacology (C0031330)

Gotz et al. [132] Scatterplot, Node-link n < 50 Medical history (C0262926)

Malik et al. [152] Glyphs, Timeline nc < 100 Care of intensive care unit patient
(C0010337)
Patient care management (C0030677)

Perer et al. [154] Bubble chart, Sankey
diagram

nc < 100 Disease progression(C0242656)

Kwon et al. [170] Glyphs, Histogram,
Node-link

n < 1,000 Patient timeline (C1705821)

Guo et al. [210] Glyphs, Histogram,
Node-link

n < 1,000 Chronic obstructive airway disease
(C0024117)

Guo et al. [231] Hierarchy-based,
Timeline-based

nc < 500 Care of intensive care unit patient
(C0010337)

Zhang et al. [251] Glyphs, Timeline-
based, Violin plot

n ≈ 200 Diabetes mellitus, insulin-dependent
(C0011854)

Gotz et al. [261] Chart-based,
Hierarchy-based,
Timeline-based

n ≈ 6,000 Opioid-related disorders (C0027412)

Jin et al. [264] Node-link n < 100 Cardiovascular diseases (C0007222)
Respiratory tract diseases (C0035242)

Di Bartolomeo et al. [290] Sankey-based,
Timeline-based

n ≈ 4,000 Diabetes mellitus, insulin-dependent
(C0011854)

Jin et al. [292] Glyphs, Matrices,
Node-link

nc < 200 Pneumonia (C0032285)

Guo et al. [303] Bar Charts, His-
tograms, Node-link

n < 500 Care of intensive care unit patient
(C0010337)

Magallanes et al. [308] Histogram, Matrix,
Stacked Bars, Tree

nc < 1,500 Atrial Fibrillation (C0004238)

Time Series Maps Treemap, Line Charts,
Histogram

n > 68,000 Blood glucose management (C1638311)

Table 5.1: The table presents a list of event sequence visualisation research with the
scope of EHR published over the last decade. We categorise the papers based on their
Visual Representation, Number of Events Rendered, and Subject of Data (UMLS Code),
where nc denotes the number of groups and clusters rendered.
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the visual complexity of events and to facilitate the identification of patterns and trends.

Here, we focus on the visualisation of event sequences in the context of EHR. In

Table 5.1, we adopt the taxonomy of event sequence visualisation by Guo et al. [304],

and categorise the previous work using Visual Representation (visualisation techniques

used to render event sequences) and Data Scale (data granularity). In addition, we

also include a Subject of Data column to utilise the Unified Medical Language System

(UMLS) [32] to provide a brief description of the application in each work. Our work

also renders a data set with 68,000 events collected over 8 months easily.

Compared to the work listed in Table 5.1, our work focuses on the visualisation of

sequence collections of long diabetes data sets, featuring a hierarchy-based visual repre-

sentation as an overview. It incorporates linked chart-based and timeline-based views

to support user interactions and detail-on-demand views. Our approach is designed to

be scalable and capable of accommodating significantly larger data sets, n > 68, 000.

5.2.2 Co-occurrence Pattern Visualisation

Events extracted from time series data at different locations form a co-occurrence pat-

tern, which can be visualised to explore temporal relationships between events occurring

at two or more locations [240]. Visualisation of co-occurrence patterns is a well-studied

area, with research focusing on the visualisation of co-occurrence patterns in the con-

text of human mobility [183, 237, 312], which often establishes an association between

spatial and temporal aspects of the data, such as GeoChron [314] that presents spatial-

temporal patterns from large-scale time series data. Often, the focus of these works

is pattern recognition and event extraction before establishing temporal relationships

between events, which is not the central theme of our work. Our work is focused on

providing an overview of long-time series data as a starting point for exploration.

5.2.3 Clustering and Classification

Utilising machine learning techniques has become a popular approach to expedite the

processes of clustering and classifying time series data, in order to address the scalability

challenges intrinsic to manual processing.

Ali et al. [223] classified clustering techniques applied to time series data into three
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categories: whole time series clustering, subsequence clustering, and temporal proximity

and value clustering. While we did not incorporate a machine learning algorithm,

our approach is similar to subsequence clustering, which leverages a sliding window

to extract and classify events from the time series data based on the event categories

described in Section 5.3.

5.2.4 Visualisation of Blood Glucose Data

IDMVis [251] is a novel visualisation tool designed to enhance clinical decision-making

in Type 1 diabetes management. It addresses the challenge of visually integrating di-

verse data sets, such as manual logs and medical device data, into a cohesive visual

representation. IDMVis includes features such as the folding and aligning of records

around key events, dynamic timeline scaling, and statistical summarisation. A quali-

tative evaluation was conducted with six clinicians, underscoring IDMVis’ potential to

transform data interpretation and decision-making processes through advanced visual-

isation techniques. We use data from this paper in our evaluation.

Di Bartolomeo et al. [290] present Sequence Braiding, a novel visualisation tech-

nique for the overview analysis of temporal event sequences and attributes, motivated

by blood glucose data visualisation. The technique uses a layered directed acyclic

network, aligning temporal events and attribute groups simultaneously. The paper’s

central focus is on the development of an N-layer network layout algorithm, empha-

sising rank assignment and intersection reduction for optimal sequence alignment. A

case study on type 1 diabetes treatment is used to demonstrate the technique’s appli-

cation, highlighting its effectiveness in assisting users to quickly understand patterns

and trends in complex temporal event sequence data.

Marjorie [315] is a visual analytics tool tailored for Type 1 diabetes, enhancing data

analysis in clinical consultations. It employs modified horizon graphs for blood glucose

visualisation, and integrates hierarchical clustering to present insulin and carbohydrate

data. Marjorie features semantic zooming for detailed data exploration and utilises dy-

namic time warping to identify specific glucose patterns. Marjorie is validated through

feedback from the diabetologist and a real patient data case study, offering critical

insights for effective diabetes management, focusing on clear data interpretation and
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pattern recognition in clinical settings. We also use the data featured in this paper as

part of our evaluation, as well as validation through feedback from health data experts.

Our work resembles the above work, as we focus on the visualisation of blood

glucose data. However, our work differs in that we offer a novel hierarchy-based visual

representation as an overview, enabling users to explore the entire data set by starting

with common patterns and outliers highlighted in the overview. We also adopt different

approaches to identify, search for, and extract events that merit attention within the

data.

5.3 Event Specification and Extraction

Rather than focus on the entire time series data, we start our focus with EoI. EoIs

will change depending on the application. In our case, we focus on blood glucose EoIs.

However, the EoIs we identify and the process we describe are very generic and will

apply to any time series data, as can be seen in Figure 5.2.

We begin with the event specification, where we interview a health data expert to

identify EoIs and event categories. Second, we transition the expert’s natural language

specification to a technical specification more amenable to automatic EoI search and

identification. Third, we describe an automatic approach to extracting EoIs from time

series data. We then propose a visual hierarchy to represent those categories and their

events, which are then used to generate overviews using a Time Series Map. The choice

of colormaps is then described. Finally, we describe how we link the event overviews to

their respective day-oriented views, and how we enable exploration with multiple-linked

views and details on-demand.

5.3.1 Natural Language Event Specification

As patients with type 1 diabetes require regular insulin injections or an insulin pump

to manage their blood glucose levels, a CGM is often used to continuously monitor

the patient’s blood glucose levels throughout the day. Through an interview with a

health data expert, we obtained a list of important event categories initially expressed

in natural language. Some events are especially noteworthy, as they serve as indicators
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Figure 5.2: Six shape-based event categories reflecting blood glucose levels that may
require attention. Category (A) depicts a monotonic sharp rise, while Category (B)
illustrates a nonmonotonic sharp rise. Categories (C) and (D) represent monotonic and
nonmonotonic sharp falls, respectively. Category (E) is characterised by a bell curve.
Category (F) depicts a reverse bell curve.

of blood glucose levels that may require attention. We initially divide these events into

two top-level categories: threshold-based and shape-based.

Threshold-based Events: Threshold-based events are simply times when blood

glucose readings pass a given level of importance. Drawing from the glucose target

ranges and their respective categories as shown in the diabetes research literature [117],

see Figure 5.9, we use these ranges to identify important threshold-based events.

Shape-based Events: Shape-based events are important periods of fluctuating

blood glucose initially indicated by a health data expert using a hand-drawn sketch.

See Figure 5.2 for a re-creation of the hand-drawn sketches provided by a health data

expert. These events indicate that the glucose reading profile exhibits a given shape,
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Figure 5.3: This pair of 2D histogram matrices depict the distribution of both mono-
tonic and nonmonotonic sharp rises and falls captured automatically using a duration
indicated by the x-axis. The y-axis represents the change in readings as a percentage,
and the x-axis represents the duration of events in minutes. Colour is simply mapped
to number of events in each histogram bin. In this case, 8,513 events are automatically
identified from the Marjorie data set [315].

such as glycaemic variability, characterised by spikes or drops. Such events may be

triggered by inconsistent carbohydrate intake, incorrect insulin doses, or poor adherence

to medication.

Sharp Changes: Indicate that the glucose reading exhibits a sharp rise. We

divide sharp rises into two subcategories: monotonic and nonmonotonic. Specifically,

a monotonic sharp rise strictly follows an increasing trajectory. See Figure 5.2 (A). In

contrast, a nonmonotonic sharp rise takes into account readings that do not strictly

increase successively. See Figure 5.2 (B). This consideration is based on the potential

for the readings to exhibit fluctuations with a sharp increase. We treat sharp falls

similarly.

Bell Curves: Indicate that the glucose reading exhibits a Gaussian curve shape.
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Figure 5.4: Similiar to Figure 5.3, this 2D histogram matrix depicts both the number
of monotonic and nonmonotonic sharp falls captured automatically.

Figure 5.5: A sample 2D histogram matrix depicts bell curve and reverse bell curve
EoIs using a sliding window (k = 12). The y-axis represents the percent change in
glucose readings, calculated using the minimum and maximum values in each captured
curve, while the x-axis is mapped to event duration. The distribution reveals that the
subject’s glucose readings show frequent but small spikes and drops, which could be
used to infer the stability or variability of glucose levels over time. The majority of the
events fall within the 0 - 20% change bracket. 17,679 curves are captured and rendered
from the Marjorie data set [315].

See Figure 5.2 (E) and (F) for an illustration. This may also indicate a sharp rise

followed by a sharp fall and vice versa. We capture bell curves, as they can potentially

indicate high glycaemic variability, which contributes to multiple complications related

to diabetes and has a negative impact on the quality of life of a patient [155, 307].

5.3.2 From Natural Language to a Technical Event Spec-

ification

Starting from the natural language description plus some initial sketches of important

EoIs, we set out to turn this into a technical specification of events in the time series
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Figure 5.6: This grouped bar chart depicts the distribution of threshold events in the
Marjorie data set [315]. The y-axis represents the number of threshold events, and the
x-axis represents the blood glucose thresholds. Ascent threshold events, e.g. 49 to 50,
are shown in orange, and descent threshold events, e.g. 50 to 49, are shown in blue.

space, such that we can automatically search for these patterns.

Threshold-based Events: For threshold-based events, we simply identify the

times at which blood glucose levels cross the important thresholds presented in Fig-

ure 5.9. A sample distribution of threshold-based events is shown in Figure 5.6.

Shape-based Events: To transform the natural language specification into a

technical specification, we created digital versions of the curves based on synthetic

data manually. For shape rises, we started with four data points representing a sharp

increase. A sharp rise is considered to be an increase of 20 mg/dL over a period of 20

minutes (k = 4). We then added to the duration of increments up to 150 minutes. For

identifying bell curves, we begin by creating synthetic curves with perfect symmetry to
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resemble the sketches, similar to those illustrated in Figure 5.2. The lengths of these

synthetic curves are set to 6, 8, 10, and 12 sample data points, which correspond to 30,

40, 50, and 60 minutes, respectively.

5.3.3 Event Extraction

After transforming the natural language description of EoIs to a more technical specifi-

cation, we can then use automatic EoI identification and extraction methods. We then

apply STUMPY [239] with the synthetic curves to capture individual curve-shaped

events in the data automatically.

Extraction Library: Siebert et al. [296] conduct a comprehensive systematic

review focusing on time series analysis packages available in Python. The authors

analyse and categorise a total of 40 packages, considering various factors such as the

analytical tasks implemented, data preparation methods, and the means of evaluating

the results. Drawing on their insightful findings, we carefully select packages that align

with our specific requirements. Among these choices, we opt to utilise STUMPY [239],

a popular Python library for its efficient computation of the matrix profile.

Matrix Profile: To improve the scalability of our work, we use matrix profile

computations to effectively categorise and group events [239]. At its core, the matrix

profile is constructed by computing the Euclidean distance between subsequences of a

time series and their nearest neighbours [184, 185], making it an effective technique to

reveal patterns and aid in anomaly detection. This computation involves calculating

the distances between subsequences and their neighbours. The matrix profile also

supports various tasks such as motif discovery, thus improving decision-making and

our understanding of time series data [221, 234].

Extraction Analysis: We utilise 2D histogram matrices to illustrate the sample

distribution of EoIs in the Marjorie data set [315]. Figure 5.3 shows the distribution

of sharp rises and falls, both monotonic and nonmonotonic. The y-axis represents

the percentage change in readings, while the x-axis represents the duration of EoIs

in minutes. For these 2D histograms, we use a continuous blue hue colormap from

ColorBrewer [28], where the colour is simply mapped to the number of EoIs in each

duration-magnitude bin. We plot 2D histograms in order to obtain an understanding
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and overview of the distribution of EoIs in both duration and magnitude for each type

of curve in Figure 5.2. The data reveals that sharp falls are typically short-lived with

minor changes in readings, while sharp rises tend to be more prolonged and involve

larger changes. Nonmonotonic EoIs, compared to monotonic ones, are more persistent

and exhibit larger changes.

Another 2D histogram matrix depicts the bell curve and reverse bell curve EoIs in

the Marjorie data set [315]. See Figure 5.5. The distribution reveals that the patient’s

glucose readings show frequent but small spikes and drops, which could be used to infer

the stability or variability of glucose levels over time.

5.4 Time Series Map

In this section, we present our scalable design for Time Series Maps, specifically tailored

to render visual overviews of large-scale time series data, such as blood glucose readings.

This design is informed by feedback from health data experts to validate its relevance

and effectiveness in real-world applications. We begin by detailing the construction

of the hierarchical structure that underpins our approach, followed by an in-depth

discussion of the design elements and colormaps employed to enhance data visualisation.

Finally, we conclude this section by exploring additional views and interactive features

that complement and enrich the exploration of the rendered data sets.

We provide a demonstration video to illustrate the design, available at https://

youtu.be/TnlyZDQCpQE. There is a live demo of Time Series Maps at https:

//tsm.wangqiru.com/, with all supplementary materials available at https://doi.org/

10.17605/OSF.IO/7B6VW.

5.4.1 Hierarchy Construction

At the core of our approach is to build a scalable hierarchy of EoIs. Our hierarchy is

derived from the unique categories of the six shape-based event groups in Figure 5.2.

The hierarchy is composed of 5 levels: 1) Event at the top, 2) Sharp rises, falls, and bell

curves underneath, 3) monotonic and nonmonotonic, 4) the histogram bins described

in Section 5.3.2 and, 5) the individual EoIs at the bottom. See Figure 5.7 for an

155

https://youtu.be/TnlyZDQCpQE
https://youtu.be/TnlyZDQCpQE
https://tsm.wangqiru.com/
https://tsm.wangqiru.com/
https://doi.org/10.17605/OSF.IO/7B6VW
https://doi.org/10.17605/OSF.IO/7B6VW


Figure 5.7: The hierarchy is derived from the unique shapes of the six shape-based
event groups presented in Figure 5.2. Each group is further subdivided into a range of
durations as indicated in Figure 5.8, which are mapped to the x-axis, while the changes
in reading are mapped to the y-axis.

illustration. In the Time Series Map, each group is represented by a concentric rectangle

that illustrates the distribution of glucose profile ranges within the group itself.

5.4.2 Time Series Map View

A treemap is an efficient space-filling visualisation technique capable of depicting hi-

erarchical structure and enabling intuitive comparisons among categories [6, 7]. We

adapted a treemap to provide an overview for a number of reasons: 1) a treemap is

scalable, 2) a treemap is a well-known visual representation, and 3) a treemap is not

bound to a linear mapping of time to an x-axis like most other time-oriented representa-

tions. The treemap shown in Figure 5.8 is constructed using the hierarchy illustrated in

Figure 5.7. The size of each parent node is determined by the number of children in the

corresponding subcategory. Each node also contains a set of concentric rectangles that

depicts the frequency and distribution of threshold events in that group (Figure 5.11).

Users can toggle the visibility of the curve in the Time Series Map view and choose

the curve’s color. This user option was introduced as a feature based on a health data

expert’s suggestion that the curve obscured the node, and removing it would enhance

clarity.
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Figure 5.8: A Time Series Map constructed based on the hierarchy shown in Figure 5.7.
It provides an overview of all the events, with the size of each parent node determined
by the number of children in the corresponding event category. Each child node also
contains a set of concentric rectangles that depict the frequency and distribution of
threshold EoIs for that group. Superimposed over each child node is a curve provides a
representative trend for the category, illustrating each group in Figure 5.2. This view
enables quick identification of both the volume and characteristics of EoIs within each
category. The colour scale is shown in Figure 5.10 bottom.

5.4.3 Color and Threshold

We experimented with a number of colour mapping options and arrived at two guided by

our interviews with health data experts. The first and default colour scheme is a stan-

dard categorical colormap taken from the International Diabetes Center, as shown in

Figure 5.9. In this scheme, four distinct colours are used to represent the glucose target

ranges and their respective categories: 1) Dangerously High/Low; 2) Very High/Low;
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Figure 5.9: Important glucose target ranges, thresholds, and categories, proposed by
the International Diabetes Center [117]. We use this as one of our colormap options,
due to the importance of threshold-based events as guided by the health data experts
we worked with. Figure reproduced from Bergenstal et al. [117].

Figure 5.10: Two colormaps are available for representing glucose reading categories.
Top: a colormap from the International Diabetes Center, as shown in Figure 5.9.
Bottom: a sequential colormap derived from ColorBrewer [28], as suggested by a health
data expert.

3) High/Low, and 4) In Range.

Guided by the feedback of the health data expert, we incorporate a second colour

scheme, a sequential colormap with a 7-category colormap derived from ColorBrewer

[28], to make a distinction between the low and high categories because, as observed by

one expert, the low blood glucose values may result from different circumstances than

the high values. See Figure 5.10.

We experimented with a number of different options for depicting the threshold

events. Since they are not exclusive to curve-based events, we integrate them directly

into the treemap layout. We considered different options including inserting a histogram

158



Figure 5.11: The figure illustrates treemap nodes with a concentric square colour design.
Each node’s colours are determined by the distribution of glucose readings per threshold
category represented by the node. The numbers indicate the total number of EoIs for
the child node.

inside each treemap rectangle, to indicate the different instances of threshold events

in each category of shape-based events. However, this visual design is not optimal

according to Tong et al. [201]. We also experimented with mapping the colour of each

treemap node to the average blood glucose value amongst its children. However, we

found that dangerously high and dangerously low events were obscured by this choice.

Thus, we wanted a colour design that captures each category clearly and that integrates

easily into the Time Series Map design.

We chose a concentric square colour design seen in both the Time Series Map and

day-oriented views, based on the existing colormaps. See Figure 5.11 for an example of

the concentric design. The concentric design represents the number of events that cross

the blood glucose threshold per glucose range depicted in Figure 5.9 and within each

set of child EoIs. The size and rendering order of the concentric colours within each

rectangle are determined by the distribution of blood glucose readings, with the outer-

most shape representing the most frequent threshold events. The smallest, innermost

square represents the least frequent range of blood glucose readings. By rendering the

least frequent range of blood glucose readings on top, they are not obscured by these

larger, more frequent categories.
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5.4.4 Other Views and Interactions

Here, we describe the additional views employed to complement and enrich the explo-

ration of the rendered data sets.

Day-oriented View

The day-oriented view (Figure 5.12) is critical because it maps time to the more tradi-

tional x-axis to facilitate the interpretation of the Time Series Map view. It is also the

view with which most users are familiar. Each row in the day-oriented view represents

a day (24 hours). Each day is divided into hourly blocks by default from midnight to

midnight. Aligning days on top of one another supports observation of daily patterns.

This choice was supported by one of the health data experts we interviewed. Because

not all days are visible in this view, the user can scroll up and down to observe all the

rows showing the remaining days.

Details-on-demand View

The details-on-demand view enables in-depth analysis of individual EoIs through jux-

taposed line charts, an example of which is shown in Figure 5.1 bottom. As the view

with the finest granularity, it provides close observation of glucose readings and facili-

tates the detection of patterns in glucose readings. The view is populated with charts

by selecting a specific rectangle in the Time Series Map view.

Interaction and Exploration

Utilising three views, our implementation supports linked interaction to facilitate ex-

ploration. The Time Series Map view, as an overview, provides the entrance to the

exploration. Selecting a specific node mapped to an event category triggers updates

in both day-oriented and details-on-demand views to display the child EoIs. For an

illustrative example, refer to Figure 5.1 and the supplementary video. By selecting a

child node in the Time Series Map view, all events within that group are highlighted in

the day-oriented view, displayed with the time and duration of each event. The details-

on-demand view is updated with an individual EoIs, each of which is a member of the

selected group. Clicking on a line chart will navigate the user to the corresponding
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Figure 5.12: The day-oriented view provides a more traditional depiction of blood
glucose readings with each row representing one day divided into 24 hours. The x-axis
represents the time of day, while the y-axis of each row represents the blood glucose
readings in mg/dL. Each colored rectangle corresponds to one hour, with the horizontal
curve within indicating the blood glucose readings. The gaps in the graph, where the
rectangles are absent, are periods when readings are missing, indicating times when
the continuous glucose monitor did not record. The red outline rectangles highlight
patterns observed in case study 2.

event in the day-oriented view for further examination.

5.5 Evaluation

In this section, we describe two data sets we use throughout our study. We then

detail two evaluation methods used in our study. We first conduct case studies to

demonstrate the effectiveness of Time Series Maps. The case studies in Section 5.5.2

provide a contextual and nuanced exploration of how Time Series Maps function with a

real-world time series data set. We then invite health data experts for guided interviews,

as described in Section 5.5.3. Experts share their specialised knowledge and experience
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and offer valuable insight into the effectiveness and appropriateness of Time Series

Maps.

5.5.1 Data sets

We use two open data sets of continuous blood glucose readings. The first data set

is obtained from IDMVis [251], which contains a CSV file of blood glucose readings

measured from two CGMs (Tidepool and Nightscout) collected from a patient with

type 1 diabetes over a period of 26 days. The CGMs measure glucose readings every

5 minutes. The data set features 1) Time - the time of the reading, e.g., 2017-08-23

00:03:52.591; 2) Source - the source of the reading, either from Nightscout or Tidepool

(CGM). We only use readings from Nightscout, as we observe that the readings from

Tidepool contain irregularities and missing data; 3) Unit - the unit of the reading,

milligrams per deciliter (mg/dL); and 4) Glucose reading - the glucose reading, e.g.,

152.6.

The second data set was obtained from Marjorie [315], which contains a CSV file of

blood glucose readings measured from a patient with type 1 diabetes over a period of 8

months. The CGMs measure glucose readings every 5 minutes. The data set features:

1) Day - the date of the reading, e.g., 23.12.2021; 2) Time - the time of the reading,

e.g., 22:12; and 3) Glucose reading - the glucose reading, e.g., 152.

For the implementation and evaluation of our approach, we use both data sets.

Given that the second data set is longer, we use it to demonstrate the scalability of

our technique. Figures presented in this paper are derived from the second data set.

However, for the case study we use the first data set because it features supplementary

data such as a diary of food intake and insulin dosage.

5.5.2 Case Study

In this section, we explore case studies that demonstrate the effectiveness of Time Series

Maps.

All case studies are included in our video, available at https://youtu.be/TnlyZDQ

CpQE.

Case Study 1: Finding and Analysing Unusual Rises: The Time Series Maps
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Figure 5.13: The overview for case study 1. In this case study, we focus on finding
unusual rises in glucose readings.

enable the user to quickly and easily find outlier events and their causes. We quickly

find and select one child in the Time Series Map because it is the only instance that

contains readings in a dangerously high range. See Figure 5.13 and the accompanying

video. We use the day-oriented view to identify the specific hours of these spikes for

further exploration. Combined with the detailed event logs [251], the three occurrences

can be interpreted as follows:

• On 7 Sep at 12:00: The reading shows a sharp rise immediately after the patient’s

lunch, which included carrots, tofu, tortillas, and cream cheese.

• On 8 Sep at 11:50: The reading rises again, presumably for the same reason, as

lunch was 10 minutes earlier than the previous day.

• On 18 Sep at 20:20: The event log does not show any recorded activity. However,

the glucose monitor appears to malfunction, as the readings consistently show

values of 396.396 and 401.

In this case, we effectively use Time Series Maps to identify an unusual sharp rise as

it is the only instance of dangerously high readings. The day-oriented view also reveals

unusual sharp falls, which are caused by the disconnection of the CGM.
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Case Study 2: Observing Daily Patterns: In this case study, we observe

the repeated appearance of patterns in glucose readings. Identifying patterns such as

consistent increases or decreases in blood glucose levels can inform adjustments in med-

ication, diet, or lifestyle to achieve better overall control. On many days, a prolonged

period of high glucose levels is observed, which lasts approximately 8 hours between

3am and 11am. This is known as the dawn phenomenon, which results from natural

hormonal changes. During these times, the patient’s glucose readings consistently fall

within high and very high ranges, indicating that insulin dosage is insufficient. This is

especially evident during the four days, when the readings remain consistently in the

very high range, as shown in Figure 5.12.

Case Study 3: Finding Hypoglycemia: In this case study, we use Time Series

Maps to identify hypoglycemia. Our analysis incorporates glucose readings alongside

event log and insulin records from the data set [251]. Hypoglycemia occurs when the

blood glucose level is below 70 mg/dl. This condition needs immediate treatment. In

Figure 5.14, we begin by investigating the child nodes with a higher concentration of

colours representing low and very low ranges. As there are unusually low readings

from the data set (consistent readings of 5), we believe these readings are erroneous

and exclude them. We then utilise the details-on-demand view to identify reverse bell

curves where the readings consistently fall within the low or very low range, leading to

a match on 17 September between 12:30pm and 1pm. There is no recorded food intake

in the event log provided for that period. Upon reviewing the insulin records, a dose of

bolus (quick-acting) insulin was administered at 10:33 am, approximately 82 minutes

earlier than the usual time, according to the insulin records.

5.5.3 Health Data Experts Interviews

We conducted semi-structured interviews with each health data expert group and ex-

plained and demonstrated each aspect of our approach to obtain qualitative feedback

and expert evaluations. Feedback and evaluation sessions were organised as follows:

• We asked the experts to describe their backgrounds and why they originally

started studying health data

• We asked them how they currently obtained an overview of time series data
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Figure 5.14: The overview for case study 3. In this case study, we focus on finding
hypoglycemia, where glucose readings fall below 70 mg/dL.

• We asked if they are familiar with treemaps

• We explained the idea behind our approach starting with the EoIs, 2D matrices,

and event hierarchy

• We demonstrated the Time Series Map view soliciting feedback and discussion

• This was followed by a demonstration of the day-oriented and detailed views

soliciting feedback and discussion

A total of four health data experts were involved in this evaluation process, which was

conducted individually for each expert group to ensure relevant and focused feedback.

The interviews were conducted separately in two groups.

Expert Group 1

Background: Group 1 consists of two health data experts. Expert 1 (E1) is an

Assistant Professor at Northeastern University, with over 10 years of experience in vi-

sualisation of time series health data, with a focus on diagnostic and treatment decision

support systems for diabetes and neurological conditions. The expert’s child was diag-

nosed with type 1 diabetes in 2016, and the lack of competent tools to analyse diabetes
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data inspired their research interest in blood glucose management. E1 focuses primarily

on type 1 diabetes research. E1 developed their interest in health care with a funded

PhD research assistantship, working on visualising networks of patients and concepts

related to their care, with data extracted from patient discharge summaries. They then

worked at IBM Watson Health which a focus on exploring the use of visualisation for

health data.

Expert 2 (E2) is a postdoctoral researcher at the University of Konstanz, with ex-

pertise in health visualisation, specifically in the analysis of blood glucose data. E2

started studying blood-glucose related data in 2018, as a practical application of tem-

poral event sequence visualisation research. They previously worked on how graph

layout algorithms can be used to create overviews of Type 1 Diabetes data.

Feedback: When demonstrating the Time Series Map view and its interactions

with other views, E1 provided the following feedback:

“Overall, I really like this idea of separating out the patterns and clicking on patterns

to see everywhere it occurs in all of the days, and getting a sense of the distribution of

the different ranges within each of these patterns. I can imagine a clinician looking at

sharp falls or just falls in general, and then drilling down into the ones that result in

extreme lows.”

E2 adds: “I think reconciling overview visualisation with detail visualisation is an

extremely complicated, still unsolved problem. Highlighting patterns can absolutely help

on this, to avoid having the attention of the reader wandering through uninteresting

details and wasting precious time and attention. In a medical setting, this can be

particularly important, especially considering the short time doctors have to evaluate

large amounts of data.”

In addition, E1 commented on the Time Series Map view:

“I do see value in seeing extreme readings. The green samples are not interesting,

these are not something that you would treat. But the bell curve that goes up and down

is definitely something I’d want to pay attention to. The bell curve can be used more

directly in the case of meals or other events. The reverse bell curve, I am not sure if

it’s long enough duration (150 mins), is useful for seeing the period of exercise.”

When asked about potential use cases for the day view, E1 gave the following
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feedback:

“I think there is value in searching for patterns, and this is so different from what

the clinicians are used to. The clinicians usually look at 2 weeks’ worth of data. The

real power of this comes when you are trying to do a search across many days. Yes I

do see the possibility of this being valuable.”

E2 adds: “I think this could let a clinician be able to read and have a general

understanding about more data at a time—more than 2 weeks of data. In our previous

research, we did try to focus on visualising patterns over multiple days for exactly

this purpose, however, the approach we used was completely different. We did notice,

though, that highlighting patterns can help spot systematic issues in the behaviour of

patients.”

Expert Guided Features: When asked about changes that can be made to

improve our implementation, E1 responded:

“A percentile chart to show the distribution of the readings could be useful, especially

for observing variability.

If you’re going to keep that you know primary goal of identifying common and

uncommon events, like with the area encoding here, I’d suggest removing the lines from

the left from the treemap, because due to the area encoded in the treemap, it is difficult

to see the lines within the nodes.”

Based on E1’s suggestion on distinguishing extreme glucose levels, we added another

colormap to help clinicians make more informed and rapid decisions to ensure patient

safety. We also added a user option to turn representative curves on and off. See

Figure 5.15.

“I think there would be some good value in having a diverging colour scale, or

something where it’s clear that the extremums are different, because the way that a

diabetes clinician will treat those extremums is very different. For example, for most

patients, the clinician would strive to virtually eliminate lows, especially if there’s any

concern that the patient or their caregivers can’t address it rapidly enough to keep the

patient out of the hospital, or keep the patient out of a coma, or from needing glucagon

to bring them back up. So they’re much more tolerant of high excursions.”

When looking at the interaction between the Time Series Map view and the day
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Figure 5.15: Comparison of the Time Series Map view, with representative curves
enabled (top) and disabled (bottom), using the colormap suggested by health data
experts, which is derived from ColorBrewer [28].

view, E1 made the following suggestion:

“From a health informatics standpoint, where maybe you’re looking at multiple pa-

tients and you’re trying to understand how they behave on a new drug you’re trying, or

whether there’s general trends across patients, that could be an interesting application.

I’d love to see an example of this with fewer days just to get a better sense of what the

treemap would look like.”

E1 commented that the representative curve in the Time Series Map view is a good

idea:

“These curves they are useful, but they block the nodes behind them and make the
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node-to-node comparison difficult.”

In response to this feedback, we introduced an option to toggle the visibility of

representative curves in the Time Series Map view.

E1 also thought that our implementation is novel therefore a comprehensive on-

boarding process is necessary:

“I have a feeling, for clinicians, it would have to be a long study with lots of training

because this is so different from what they’re used to. They’re not used to searching for

patterns, they’re used to doing a manual visual search across 14 days.”

E2 adds: “The applications of this methods could extend to more than this domain.

I am thinking about how I track my daily productivity trying to find low productivity

days so I can avoid the events that cause them.”

Expert Group 2

Background: Group 2 consists of two health data experts. Expert 3 (E3) is a Research

Fellow at University of Birmingham, specialising in patient self-management, health

service improvement, and digital health, with a focus on communications via readily

accessible and understandable visualisations. E3 has over twenty years of experience in

researching health data collected routinely and prospectively in primary and secondary

care settings, with a focus on improving the effectiveness of health service delivery. E3

developed their interest in blood glucose data as part of an ongoing research programme

funded by the UK’s National Institute for Health and Care Research, with a focus on

children and young people’s blood glucose monitoring and control.

Expert 4 (E4) is an assistant professor at Aston University, specialising in clinical

care processes and visualisation. E4 has been researching data mining and analyt-

ics since 2016, with experience in applying process mining techniques to understand

time-based patterns of drug prescription and their alignment with multimorbidity. E4

developed their interest in combining visualisation of blood glucose data with process

mining algorithms to inspire more informed analysis of clinical processes.

Feedback: When viewing the Time Series Map view, E3 immediately made the

following observation:

“From the visualisation, I can immediately see the amount of green, where it’s
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actually staying within range. That is important. I think it’s quite powerful, the fact

that you can break the whole data set down and at a glance, as a clinician, you can see

the practical patterns and you want to pass on to the patient.

I actually think it could be as equally powerful if it was patient-facing. Of course

they need to understand exactly the type of curve and whatever per se. But in terms of

an overview, the patient could see there’s that issue on a Thursday and you could do

something about it, because the issue might not stand out if you are just looking at the

readings alone.”

After our complete demonstration of all views and features, E3 commented on our

implementation:

“The continuous glucose monitor generates a lot of data, this overview offers the

benefits of understanding the data at a glance. In healthcare, for shared decision-making

to happen the patient needs to be empowered by information to understand and make

informed decisions, and I can see this interface could be useful for that.”

E4 provided the following feedback when seeing the interactions, specifically be-

tween the Time Series Map view and the day view, and between the Time Series Map

view and the detail view:

“The treemap provides a good way of seeing the overview of the patterns within

the data, but we don’t know about how all those patterns occur in time. Then on the

right-hand side you can start drilling into particular things. So if we want the details

of the curves we would click on one of the rectangles in the treemap and then get the

actual details and this is where we would find it useful.”

When asked about the potential use cases for our implementation, E4 responded:

“I can see it being useful, compressing arbitrary length sequences down and ex-

tracting the main features from that. An end user could potentially benefit from seeing

colours and shapes, they give a very intuitive early warning sign potentially.”

Expert Guided Features: E3 suggested a filtering feature and a bidirectional

interaction between the Time Series Map view and the day view:

“Filtering by time of day would be useful, as it would allow us to see patterns at

different times of the day, such as between 4 am and 6 am. Bidirectional interaction

would be useful, as it would allow us to click on the day view to see the patterns in the
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treemap. ”

Similarly to E1, E4 suggested that we need to carefully design the onboarding

process to ensure first-time users understand how to navigate through all the features

provided by our implementation.

“The interface might seem visually too busy at first, as it condenses a massive

amount of information into something that’s small and fixed dimension. You need to

walk the user through it, adapt the interface per use case, before they find it useful.”

5.6 Limitations and Future Work

The current implementation has been tested on data sets with 68,000 events over eight

months, we further tested with a synthetic data set three times larger and did not

observe any performance issues. However, scalability with extremely large data sets,

such as millions of events, likely needs to be managed with desktop applications instead

of a web application, or with a specialised client-server implementation.

To increase the applicability of the hierarchical visualisation approach, future re-

search should explore its adaptation to other domains with different types of time series

data. This includes identifying relevant event categories and designing appropriate vi-

sual representations for these domains.

Our approach is novel and differs significantly from the traditional time series visu-

alisation techniques to which clinicians and patients are accustomed to. User training

is required to ensure effective use and help users understand the potential of our design

in their workflows.

5.7 Conclusions

In this paper, we introduce Time Series Maps, a novel hierarchical visualisation ap-

proach for managing and exploring long time series data with a focus on continuous

blood glucose readings. Time Series Maps integrate the strengths of time series and

event sequence visualisation to provide a comprehensive, scalable overview of blood

glucose data, aiding in the identification of significant patterns and events.

By structuring long-term patient histories into visually navigable forms, this work
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contributes to the broader “EHR Vis” framework by addressing the challenge of tem-

poral abstraction, complementing Chapter 3’s transformation of unstructured text and

Chapter 4’s incorporation of geospatial context. Just as clinical narratives require struc-

tured representation and spatial data must maintain geographic coherence , temporal

visualisations must preserve the integrity of event sequences while enabling scalable

exploration.

We demonstrated the effectiveness of Time Series Maps on two real-world con-

tinuous glucose monitoring data sets, showcasing its ability to generate overviews for

extended data sets and support user exploration through interactive visual designs. The

hierarchical structure allows users to explore data at multiple levels, from high-level

overviews to detailed examinations of individual events. This flexibility is particularly

beneficial for clinicians and researchers needing to identify trends, anomalies, and key

events within long time series data sets.

This chapter contributes to the broader EHR Vis narrative by transforming vast,

multidimensional data into accessible visualisations without losing the depth required

for clinical insight.
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Chapter 6

EnsembleDashVis Views and Volunteers

- A Retrospective and Early History

Wang, Q., Borgo, R., & Laramee, R. S. (2024). EnsembleDashVis Views and Volunteers

– A Retrospective and Early History. In M. Bassanello, R. Geppini, X.-N. Li, & A.

Matecki (Eds.), New Community Health Models. IntechOpen. https://doi.org/10.577

2/intechopen.115029 [318]

“Above all else, show the data.”

– Edward R. Tufte, the Father of Information Design (1942 - present)

The chapter is based on the book chapter published in New Community Health

Models [318].

This chapter is an unconventional chapter and represents a unique, unplanned ex-

perience during this Ph.D. The chapter offers a retrospective history of the early de-

velopment stages of EnsembleDashVis, a visualisation dashboard specifically crafted

to support modellers in interpreting a simulation model utilised to forecast COVID-19

trends. The volunteer effort behind this dashboard was collaboratively contributed with

the Scottish COVID-19 Response Consortium (SCRC), with the objective of enabling

an enhanced comprehension of the complex dynamics of the pandemic through the

modelling of COVID-19 data collected by the National Health Service (NHS) during

the first wave of the outbreak in Scotland.
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This retrospective chronicles the design and development journey of the system,

guided by feedback from domain experts, all taking place amidst the exceptional cir-

cumstances of an unprecedented pandemic. Our expertise in EHR Vis was able to

contribute significantly to combating the pandemic, and the lessons learnt from this

experience have been invaluable in shaping the future of cross-disciplinary collabora-

tions in the field of Visualisation and beyond.
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Figure 6.1: A timeline of the events between Mar 2020 and the end of our volunteer
work on 19 May 2021. The upper section include policy changes during the time span,
the lower section includes project developments and meetings. Milestone events are
shown in red.

6.1 Introduction and Motivation

The Scottish COVID-19 Response Consortium (SCRC) [279], in collaboration with the

Royal Society’s call to action in March 2020, has taken a proactive approach to address

the need for enhanced epidemiological models of COVID-19 transmission. This joint

volunteer effort, known as Rapid Assistance in Modelling the Pandemic (RAMP) [271],

aims to foster a deeper understanding of the consequences associated with various exit

strategies from lockdown measures. Moreover, this consortium attracted the involve-

ment of distinguished scientists and experts from diverse organisations both within

the United Kingdom and abroad, thus augmenting the collective knowledge base and

ensuring comprehensive expertise in specialised domains.

RAMPVis [281] is a group of researchers specialised in Data Visualisation and Vi-

sual Analytics (abbreviated as VIS). The group voluntarily came forward to contribute

its specialised skills and knowledge in order to provide valuable support to the SCRC

modellers. The term modellers used here refers to the SCRC researchers who were

actively engaged in the development of epidemiological models in SCRC.

This target user group predominantly includes experts in domains such as mathe-

matics, statistics, and epidemiology.

Serving as the volunteer team responsible for providing visualisation support to

one of the epidemiological models developed by the SCRC modellers [301], our main
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Figure 6.2: The organisation of researchers from the SCRC and RAMPVis. The SCRC
modelling team is responsible for developing the epidemiological models leveraging
different modelling techniques. The RAMPVis team provides visualisation support to
the SCRC modelling team, by establishing four VIS volunteer teams who work on the
actual development under the guidance of the RAMPVis team.

objective is to provide Data Visualisation and Visual Analytics (VIS) researchers and

practitioners with valuable insights gained from our research and development (R&D)

activities conducted during the COVID-19 pandemic. In an effort to predict the poten-

tial impact of diverse interventions, modellers have actively utilised COVID-19 data,

employing a method known as Uncertainty Quantification (UQ). This process seeks

to measure uncertainties through the application of mathematical models and simula-

tions. However, modellers are faced with significant challenges, including the aspects

of expert elicitation and effective communication. In other words, there is a need for

software engineering efforts coupled with visualisation to provide support for validation

and verification tests of models, and to create efficient workflows between modellers and

researchers from other disciplines [299].

In addressing these hurdles, VIS emerge as a potent tool, offering the capacity

to significantly enhance and streamline their collaborative workflows [310]. While our

work may not have showcased the state-of-the-art VIS techniques, it effectively delivered

rapid and practical VIS support to the modellers during an exceptional and demanding

time.

Our contribution is an early history of our volunteer response from a software

engineering and visualisation perspective. We present the earliest stages of the visuali-

sation dashboard, EnsembleDashVis, developed during the pandemic, aiming to assist

the modellers in interpreting an Approximate Bayesian Computation Sequential Monte
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Carlo (ABC-SMC) inference model that they have developed using COVID-19 data

collected during the first wave of the outbreak in Scotland [275]. Much of this effort

and the reasoning behind this volunteer work was never documented.

Unconventional Software Development: The visualisation software created in this

project was developed under unconventional and unprecedented circumstances.

One of the distinctive features of this software project was the significant level of

uncertainty encountered at the project’s inception. The following aspects were unknown

at the project outset:

• An unknown a priori requirements specification: We did not know what the user

requirements and expectations were.

• An unknown project team: The members of the project team were unknown

and/or had no previous history of collaboration. We only knew the leader of the

visualisation team, Prof. Min Chen. In addition, the project team was dynamic,

with new members joining throughout.

• Unknown data characteristics: We did not know what the simulation data was

at the start of the project.

• An unfamiliar work environment: The landscape of the collective work environ-

ment changed to a work-at-home model, which was new to the team at the time.

While arguably, these characteristics could describe other software engineering projects,

we believe that the uncertainty in this particular case was unusually high. All aspects

of this project had the feel of “laying down the tracks as the train was running”.

6.2 Background and Related Work

VIS has been widely utilised in critical applications such as emergency responses and

healthcare, assisting public officials and decision makers in understanding intricate

data sets and extracting useful, actionable insights from them [160]. VIS has also

played a prominent role in disseminating COVID-19 information through various media

channels. It has played a substantial role in enhancing public communication, making

it more efficient and clear, thereby fostering a wider comprehension of the crisis [346].

In our work, our primary objective was to extend support through VIS to two
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distinct user groups. Firstly, the statisticians, who could significantly benefit from

VIS in comprehending their models more effectively and fine-tuning them. Secondly,

to the epidemiologists, whom VIS could assist in interpreting the outcomes of these

computational models. Our outcomes are later included in multiple publications [301,

302, 305, 306]. The early stages functioned as the preliminary VIS prototype, shaping

a portion of their respective studies. We refer the reader to Preim and Kai for an

overview of VIS applied in the context of public health [270].

6.2.1 VIS for Emergency Response

Previously, we described related work that focuses on the use of VIS in emergency

response. We refer readers to the related work section in Chen et al. [301]. The

aforementioned literature review laid the foundation and was conducted prior to the

development of our study in 2020.

Maciejewski et al. [97] develop a VIS toolkit to analyse the effect of decision mea-

sures enforced during a simulated pandemic, the tool was later utilised by the Indiana

State Department of Health during an outbreak of H1N1 (swine flu). Ribicic et al. [112]

leverage VIS with the intention of delivering real-time feedback derived from flood simu-

lations to nonexpert users, while Konev et al. [135] use VIS to support decision-making

in flooding scenarios.

Jeitler et al. [233] use VIS to analyse social media data to aid rescue teams, specif-

ically in terms of optimal allocation of resources during emergency response situations.

Similarly, Nguyen and Dang [242] harness social media data, paired with VIS, to facil-

itate and improve post-earthquake resource allocation and rescue effort.

In contrast to the majority of previous studies mentioned here that generally focus

on preparing for future emergencies, our work was undertaken during the COVID-19

pandemic as a rapid response to a then current and ongoing emergency.

6.2.2 VIS for COVID-19 Data Modelling

In the rest of the section, we focus on the use of VIS to analyse the computational

modelling of COVID-19 data. These studies were not published nor available to us

during the development of the work we present here (from July 2020 to April 2021).
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In fact, the use of VIS in epidemiological modelling was rare, the modellers might have

not known that they had such a potent instrument readily available [301].

He et al. [262] developed an SEIR (Susceptible, Exposed, Infected, and Recovered)

model for spread prediction by leveraging COVID-19 data obtained from the Hubei

province in China. They employed a variety of 2D plots to estimate the parameters of

the model and interpret the results that the model yielded. Godio et al. [260] took the

same approach in developing an SEIR model for the Lombardy region in Italy.

The IHME COVID-19 Forecasting Team [ihmecovid-19forecastingteam2021Modelling]

take the application of data visualisation (VIS) a step further in their development of

the SEIR model for accessing social distance mandates, they extend the use of VIS to

include choropleth and violin plots, and small multiples for 2D plots.

Chinazzi et al. [255] develop a model to simulate the effectiveness of international

travel restrictions in containing the spread of COVID-19. In addition to the use of 2D

plots to refine their models, they also utilise a range of geospatial approaches. This

enabled them to more effectively interpret the results generated by their models. The

use of geospatial visualisations is also adopted by Alvarez Castro and Ford [285] in their

development of a model for analysing transmission in a university campus in the UK.

Studies have also been introduced which focus on the individual level, examining

the transmission chain from person to person. Antweiler et al. [286] collaborated with

public health departments in Germany and introduced a novel visual analytic method

to identify clusters of COVID-19 infections in contact tracing networks. Meanwhile,

Baumgart et al. [288] presented a visualisation system designed to explore and analyse

the pathways of pathogen transmission within hospitals. The system leverages linked

views, including a transmission pathway view inspired by storyline visualisation, aiming

for efficient and intuitive contact tracing.

In contrast to these studies that highlight the efficacy of VIS in supporting the

computational modelling of COVID-19 data with a primary focus on model develop-

ment, as they are formulated by the modellers, our study takes a different approach.

We focus our attention on exploring VIS as a potent tool that can significantly improve

the computational modelling of COVID-19 data, all viewed through the unique lens of

a VIS practitioner.
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Table 6.1: 16 input parameters for the ABC-SMC inference model. As constant pa-
rameters such as K and rrd do not affect the simulation results, they are not rendered
in our visual designs.

Name Description

T lat Mean latent period (days)

juvp s Probability of juvenile developing symptoms

T inf Mean asymptomatic period (days)

T rec Mean time to recovery if symptomatic (days)

T sym Mean symptomatic period prior to hospitalisation (days)

T hos Mean hospitalisation stay (days)

inf asym Reduction factor of infectiousness for asymptomatic infectious individuals

p inf Probability of Infection

p hcw Probability of Infection (Healthcare Worker)

c hcw Mean number of Healthcare Worker contacts per day

d Proportion of population observing social distancing

q Proportion of normal contact made by people self-isolating

p s Age-dependent probability of developing symptoms

rrd Risk of death if not hospitalised

lambda Background transmission rate

K Hospital bed capacity

6.3 Data Description

The data used in our work includes simulation parameters and outcomes from an

ABC-SMC inference model [61] developed by a group of modellers from Durham Univer-

sity, the University of Edinburgh, the University of Exeter, the University of Glasgow,

and the London School of Hygiene & Tropical Medicine. The pandemic data used for

the simulation was collected by NHS Scotland during the first wave of the outbreak in

Scotland spanning a period of 59 days [275].

The model was built to analyse the pandemic data and infer the parameters of the

model that best fit the data. The model accepts 16 input parameters (see Table 6.1),

and a random seed facilitates the generation of 160 distinct sets of configurations for

these input parameters. The model then employs these configurations as the initial

input to perform 1,000 simulation iterations. As the outcome of these simulations, 160

sets of predictions are generated, each containing 13 output parameters, as shown in

Table 6.2.

Upon receiving the data, we consulted the modellers to gain insights into the con-
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Table 6.2: 13 output parameters from the simulation performed by the ABC-SMC
inference model.

Name Description

iter The simulation number.

day The day number.

age group The age group of the population.

S Number of susceptible individuals (not infected).

E Number of infected individuals but not yet infectious (exposed).

E t Number of exposed individuals and tested positive.

I p Number of infected and infectious symptomatic individuals but at
pre-clinical stage (show yet no symptoms).

I t Number of tested positive individuals that are infectious.

I Number of infected and infectious asymptomatic individuals.

I s Number of infected and infectious symptomatic individuals.

H Number of infected individuals that are hospitalised.

R Number of infected individuals that have recovered from the infec-
tion.

D Number of deceased individuals due to the disease.

Figure 6.3: An illustration of the flow from the input parameters to the prediction
results. 160 sets of input parameters are used to perform 1,000 simulation iterations,
resulting in 160 sets of prediction results.

ventional workflow they employ for data processing, as well as the significance and the

underlying meaning associated with each input and output parameter. As constant pa-

rameters such as K and rrd do not affect the simulation results, they are not rendered

in our visual designs.

It is worth mentioning that after plotting the output data using a line chart, an

error was immediately spotted, see Figure 6.7, where an unusual spike can be observed

on day 20. The modellers were notified and the bug was fixed. However, the rectified

output file was never made available to us.
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Figure 6.4: The overview of EnsembleDashVis. The dashboard consists of five views:
(Figure 6.4A) a parallel coordinates plot for all input configurations, (Figure 6.4B) a
table view with glyphs for all input configurations, (Figure 6.4C) a parallel coordinates
plot with brushing to enable quick simulation outcomes filterting, (Figure 6.4D) a line
chart for model predictions, and (Figure 6.4E) a scatterplot for Principal Component
Analysis (PCA) outcomes. The views are coordinated with each other, enabling the
modellers to observe relationships between input and outcome through interactions.

6.4 EnsembleDashVis

This section presents the development of EnsembleDashVis from its technology and

design and interaction techniques. We then present the history behind our fully virtual

collaboration between volunteer researchers from multiple UK institutions. Being one

of the four VIS volunteer teams, we received guidance from the RAMPVis team through

regular virtual meetings. The RAMPVis team regularly communicated with the SCRC

modelling team and provided us with important information and data. We chronicle

the development of different views of the data, the order in which they were introduced,

and the reasons and motivations at the time. In 2020 we were all in an unprecedented

and unfamiliar situation, thus, some of our decisions were ad hoc.

182



6.4.1 An Unconventional Software Development Cycle

A common agile software development life-cycle consists of five stages: 1) requirements

specification, 2) software design, 3) implementation, 4) testing, 5) documentation. [5]

And these five stages iterate repeatedly until the software project is finished. However,

this project deviated significantly from the standard agile software engineering model.

Knowledge Exchange: This project, as well as all other visualisation projects

we have collaborated on, starts with a phase more appropriately named Knowledge

Exchange (KE). This is due to the fact that the domain experts do not have a back-

ground in visualisation, thus they do not know what the options are in terms of visual

analysis. As a result of this absence of visualisation expertise, the KE phase (which

replaces the standard requirements specification phase) involves two sub-phases:

From Domain Experts to Visualisation Team: The discussion starts with the

visualisation team asking a series of questions to the domain experts. These questions

are typically:

1. What data have you collected?

2. Why did you collect the data?

3. What questions were you trying to answer with the (simulation in this case)

data?

4. What information were you hoping to obtain as an outcome from your data

collection process?

5. Can you describe the characteristics of your data in more detail? After the

visualisation team has gathered enough of the first round of knowledge, the next

phase of the KE process can begin.

From Visualisation Team to Domain Experts: Since the domain experts, in

this case the simulation experts, do not have a background in visualisation, they look

to the visualisation team to make recommendations to them in terms of what visual

analysis designs might make sense. Thus, the visualisation team typically discusses

options in terms of graphical displays that might help the domain experts answer the

questions posed in the previous sub-phase. In essence, the KE process flows in the

other direction. The visualisation team essentially educates the domain experts on

visual analysis options that they may not be familiar with. After this discussion, the
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actual next phase of the software engineering lifecycle can begin.

The software design and implementation phases are the same as in the typical agile

model of software development.

Testing and Evaluation: Instead of the conventional testing phase of a typical

agile development model, this project and our other collaborative visualisation projects,

undergo a more appropriately described testing and evaluation (TE) phase. Instead of

the emphasis on extensive testing on a wide range of cases, our visualisation software

undergoes an extensive evaluation by the domain experts. Specifically, they carefully

evaluate if and how the software can be used to answer their domain-specific questions

or hypotheses. They will ask for a demonstration of precisely how it can be used for

their specific application. Typically, when we demonstrate a version of the visualisation

software, the domain experts will ask several questions about how it works. And

then, during the discussion new feature requests arise. Often these sessions are also

characterised by feature creep [50]. The TE phase is usually fairly intense generating a

lot of enthusiasm from the domain experts since they are seeing visualisation software

that they have never seen before and thus a large number of feature requests arise from

the meetings in this phase.

After the TE phase the cycle repeats interactively. In the visualisation software

development lifecycle, the requirements specification phase is replaced by the KE phase

and the testing phase is replaced by the TE phase. This is because adequate knowledge

transfer and evaluation cannot be completed in one single cycle. The cycle repeats until

the project ends, typically constrained by a funding period.

6.4.2 Technology and Design

The development of EnsembleDashVis was carried out using a combination of web

technologies, including HTML, CSS, and JavaScript. The dashboard was designed to

be a web-based application, enabling it to be accessed from any device with a web

browser. The dashboard was built using D3.js [328], which is a powerful and flexible

library for creating visual data representations in web applications. D3.js provides a

wide range of tools for creating interactive graphics, including support for a wide range

of data formats, and a large number of built-in visual designs. The dashboard was
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Figure 6.5: The structure of the actual code. Components are organised into separate
files, with each file containing the code for a single view. Utilities contain the code for
the data preprocessing and calculations. Data contains the metadata and preprocessed
output by utilities.

designed to be responsive, allowing it to adapt to different screen sizes and orientations,

and to be accessible, allowing it to be used by people with disabilities.

The dashboard was then hosted on Netlify [267], which provided unlimited credits

to websites that were dedicated to sharing information about COVID-19. This allowed

the dashboard to be accessed by anyone with an internet connection, which was crucial

during the pandemic for virtual collaboration.

The dashboard was designed to be easy to use, with a simple and intuitive interface

that enables users to quickly and easily explore the data. It employs a modular design,

with each view of the data rendered as a separate component, allowing the dashboard

to be easily extended and modified. Data is preprocessed by utility functions and stored

in separate CSV files, which is then loaded into the dashboard when accessed.

The source code is publicly available on GitHub, https://github.com/thevisgroup

/EnsembleVis [297].

6.4.3 Interaction

In this section, we describe the interaction techniques that were incorporated into the

dashboard to enable the modellers to explore the data and identify interesting patterns.

Here we follow the Visual Information Seeking Mantra [9]: “overview first, zoom and

filter, then details-on-demand”.
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Overview First

Figure 6.4 shows the overview of the dashboard. The dashboard consists of five views:

Figure 6.4A a parallel coordinates plot [15, 105] for all input configurations, Figure 6.4B

a table view with glyphs for all input configurations, Figure 6.4C a parallel coordinates

plot for simulation outcomes, Figure 6.4D a line chart for model predictions, and Fig-

ure 6.4E a scatterplot for Principal Component Analysis (PCA) [320] outcomes.

Each view provides an overview of the corresponding data, supporting the modellers

to quickly identify interesting patterns and outliers.

Zoom and Filter

The parallel coordinates plot in Figure 6.4A and Figure 6.4C allows the modellers to

select a subset of input parameters via brushing to focus on interesting configurations.

The table view in Figure 6.4B enables the modellers to sort configurations by individual

input parameters via sorting. The scatterplot in Figure 6.4E enables the modellers to

reduce the dimensionality and identify key parameters via brushing.

These interactions enable the modellers to quickly adjust the focus of the views and

drill down into the details.

Details-on-Demand

These views in Figure 6.4 are coordinated with each other, e.g., brushing on the input

parallel coordinates plot in Figure 6.4A highlights the corresponding input configura-

tions in both the table view Figure 6.4B and scatterplot Figure 6.4E. Focusing on a

specific row in the table view Figure 6.4B renders the corresponding output data in

both the output parallel coordinates plot Figure 6.4C and line chart Figure 6.4D.

These coordinated interactions enable the modellers to quickly identify interesting

configurations and observe relationships between input parameters and model out-

comes.

6.4.4 Meetings and Milestones

In this section, we provide a detailed history of meetings and development milestones.

Section 6.4.4 shows the list of meetings held throughout the entire volunteering period,
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Date Attendees Milestones

27 July 2020 Dylan Rees, Elif Firat, Hui Fang,
Min Chen, Qiru Wang, Rita
Borgo, Robert Laramee, Tom
Torsney-Weir

Volunteer team established.

6 Nov 2020 Cagatay Turkay, Hui Fang,
Qiru Wang, Rita Borgo, Robert
Laramee, Tom Torsney-Weir

First prototype.

6 Nov 2020 Ben Swallow, Hui Fang, Qiru
Wang, Rita Borgo, Robert
Laramee, Tom Torsney-Weir

First prototype feedback

11 Nov 2020 Cagatay Turkay, Elif Firat,
Hui Fang, Rita Borgo, Robert
Laramee, Qiru Wang, Tom
Torsney-Weir

6GB of simulation data received. Second prototype.

25 Nov 2020 Cagatay Turkay, Elif Firat, Hui
Fang, Robert Laramee, Qiru
Wang

Third prototype.

9 Dec 2020 Cagatay Turkay, Hui Fang,
Robert Laramee, Qiru Wang

All views implemented.

10 Dec 2020 Ben Swallow, Cagatay Turkay,
Hossein Mohammadi, Hui Fang,
Janine Illian, Michael Dunne,
Peter Challenor, Qiru Wang,
Richard Reeve, Robert Laramee,
Thibaud Porphyre

Presentation to modellers.

25 Mar 2021 Cagatay Turkay, Elif Firat,
Hui Fang, Rita Borgo, Robert
Laramee, Qiru Wang

Further feedback from modellers.

19 May 2021 Ben Swallow, Cagatay Turkay,
Hossein Mohammadi, Hui Fang,
Janine Illian, Michael Dunne,
Peter Challenor, Qiru Wang,
Richard Reeve, Robert Laramee,
Thibaud Porphyre

Final presentation to modellers.

Table 6.3: The table shows the list of meetings held throughout the entire volunteering
period, detailing each meeting’s date, the attendees, and the milestones accomplished.

detailing each meeting’s date, the attendees, and the milestones accomplished.

Meeting #1 - July 2020

On 27 July 2020, amid the UK’s first national lockdown and stricter measures im-

posed by local authorities, we convened the initial virtual meeting with VIS researchers

from King’s College London, Loughborough University, Swansea University, University

of Nottingham, University of Warwick, and University of Oxford.

During the meeting, we received an overview of the SCRC and the responsibilities

of the visualisation volunteer team. Our assigned task was to create visual interfaces

for the model, for the purpose of enabling the modellers to analyse the outcomes of the

model.
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Following the initial meeting, we engaged in email correspondence with the mod-

ellers to delve into the visualisation requirements. The modellers shared a compre-

hensive list of parameters and model outcomes, along with the corresponding outcome

data [275].

Commit #1 - Sep 2020

We proceeded to create an initial prototype of the visualisation, which was subse-

quently reviewed by the modellers. Incorporating their input, we refined the prototype

during our weekly internal discussions. On 14 Sep 2020, England introduced the ‘rule of

six’, which banned any gatherings above six. On the same day, we made our first com-

mit to a GitHub repository (https://github.com/thevisgroup/EnsembleVis), signifying

the commencement of our development. At the same time, we began preprocessing

the data. A week after the initial commit, the UK witnessed the implementation of

additional restrictions, such as mandatory work from home and a 10PM curfew.

Meeting #2, View #1 - Nov 2020

On 5 Nov 2020, the first day of the second national lockdown in the UK, we com-

pleted the first view of the simulated input parameters, a parallel coordinates plot. See

Figure 6.6. We chose to use a parallel coordinates plot as it is a common technique

for visualising multivariate data, and is particularly useful to explore relationships and

patterns across multiple input parameters. Each axis in the plot represents an input pa-

rameter, the y-axis represents the value of the parameter, and each polyline represents

one input configuration. The plot supports brushing and linking, enabling modellers to

select a subset of input parameters to focus on interesting configurations. This followed

by the second meeting with the RAMPVis team from other institutions, where we re-

ceived feedback on the first view, on 6 Nov 2020. The response from the modellers to

the parallel coordinates view was, in general, very positive. They are very interested in

multivariate analysis and had not seen this visual representation before. More details

are provided in Section 6.5 on domain expert feedback.

Meeting #3, View #2 - Nov 2020

On 11 Nov 2020, the group convened for the third meeting, where we received

further feedback from the RAMPVis team on the parallel coordinates plot. As per
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Figure 6.6: The first visual design, a parallel coordinates plot depicting all 160 input
configurations of the model, was completed on 5 Nov 2020. Each axis represents an
input parameter, the y-axis represents the value of the parameter, and each polyline
represents one input configuration. The table below shows the configuration details.

the modellers’ requests conveyed via email, we incorporated a line chart to depict

the model outcomes. See Figure 6.7. The x-axis of the chart corresponds to the

number of days since the first date in the Scottish data set, while the y-axis represents

the population. Line chart and other classic visual designs are widely used by the

modellers, they are familiar with these designs and can easily interpret the results.

The line chart is coordinated with the parallel coordinates plot, enabling the modellers

to select a subset of the input parameters and quickly identify the corresponding model

outcomes. A focus+context technique is used to highlight the selected subset of the

input parameters in the parallel coordinates plot.

Meeting #4, View #3 - Nov 2020

On 25 Nov 2020, the group convened for the fourth meeting, held just a day after

the announcement of the gathering rules for Christmas in the UK. During the meeting,

we received feedback from the RAMPVis team on the new view of the input param-

eters, a table with glyphs. See Figure 6.8. We incorporated this table view featuring
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Figure 6.7: A line chart depicting the model outcomes. The x-axis of the chart corre-
sponds to the number of days since the first date in the Scottish data set, while the
y-axis represents the population. To differentiate between different population cat-
egories, a colormap was incorporated: susceptible, exposed, hospitalised, recovered,
death, asymptomatic, and symptomatic. The focus+context technique is used here to
highlight the outcome of the current configuration, while the grey lines represent other
outcomes. On day 20, there is an unusual spike which was later identified as caused by
an error in the model.

glyphs to depict all 160 input parameter configurations, following discussions with the

modellers. Each row represents an input configuration, and each column represents

an input parameter. The table view enables the modellers to sort configurations by

individual input parameters. Each parameter value is symbolised by a bar glyph, the

colour and length correspond to its deviation from the average value of 160 predictions.

The table view provides the functionality to sort the parameters according to their

values and can be dynamically updated by brushing the parallel coordinates plot for

the input parameters in Figure 6.6. The line chart in Figure 6.7 can be quickly updated

to display the corresponding model outcomes by clicking on the configuration index in

the table view.
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Figure 6.8: The table view depicting all 160 input parameter configurations. The view
enables the modellers to sort parameter values and identify interesting configurations.
Each row represents an input configuration, and each column represents an input pa-
rameter. Upon clicking on a row, the line chart in Figure 6.7 is updated to display the
corresponding model outcomes. Clicking on the column header sorts the table by the
parameter values.

Meeting #5 - Dec 2020

On 9 Dec 2020, a week after the end of the second national lockdown in the UK, with

England facing a stricter three-tier restriction policy, the group convened for the fifth

meeting. At this point, we still had not met with the modellers, all communications and

discussions took place via email. The RAMPVis team decided to organise a meeting

with the modellers to present our prototype for feedback.

Meeting #6, Views #4 & 5, Feedback #1 - Dec 2020

On 10 Dec 2020, we finally met with modellers from Durham University, the Uni-

versity of Edinburgh, the University of Exeter, the University of Glasgow, the London

School of Hygiene & Tropical Medicine, for the first time. In contrast to sharing screen-

shots via email and deploying a website with a live view of our development (which

they might not have been proficient in using), we delivered a live presentation, fielding

numerous questions. The modellers were pleased with the dashboard, and a list of ad

hoc requirements was provided. Furthermore, we collected insightful feedback that we

elaborate on in detail in Section 6.5.

1. The modellers found that the parallel coordinates plot is useful in identifying

outliers, and requested the incorporation of another one for the model outcomes.

Given that the outcome data mirrors the input in a multivariate format, employ-

ing a parallel coordinates plot could potentially be useful. We implemented this

as shown in Figure 6.9.

2. The modellers requested that all the simulation results be displayed in the line
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chart, with the current one highlighted. This resembles their usual workflow

for analysing multiple simulation outcomes. We implemented this as shown in

Figure 6.7.

3. The modellers requested the incorporation of a scatterplot to visualise the model

outcomes, specifically a Principal Component Analysis (PCA) result obtained

from another VIS volunteer team. The motivation behind this is to reduce the

dimensionality and identify key parameters. We implemented this as shown in

Figure 6.10.

4. The modellers requested all views to be coordinated with each other, enabling ob-

servation of relationships between input parameters and model outcomes through

interaction.

(a) Brushing on the input parallel coordinates plot (Figure 6.6) highlights the

corresponding input configurations in both the table view (Figure 6.8) and

scatterplot (Figure 6.10).

(b) Brushing on the scatterplot (Figure 6.10) for input configurations highlights

the corresponding input configurations in both the table view (Figure 6.8)

and input parallel coordinates plot (Figure 6.6).

(c) Clicking on a specific row in the table view (Figure 6.8) renders the cor-

responding output data in both the output parallel coordinates plot (Fig-

ure 6.9) and line chart (Figure 6.7).

Furthermore, we received the exciting news that initial funding had been success-

fully secured [291], which led to the transition of our volunteer work to a team of paid

developers, who would continue with further implementation of the project.

Meeting #7, Feedback #2 - Mar 2021

On 25 Mar 2021, the UK was in the process of cautiously lifting its third national

lockdown, the ‘rule of two’ was still in place. The group convened for the seventh

meeting, where we received further feedback from the modelling team on our imple-

mentation. We detail the feedback in Section 6.5.

Last Commit - Apr 2021

By 28 Apr 2021, more restrictive measures were abolished, although the prohibition
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Figure 6.9: A parallel coordinates plot depicting the model outcomes by age group 5.
As requested by the modellers, each blue line represents one simulation outcome, and
each coloured line represents the age group’s mean. In addition, the dotted red line
. . . represents the group’s standard deviation, and the dashed red line represents
the mean of all groups.

Figure 6.10: A scatterplot depicting the PCA outcome from another VIS volunteer
group, was added upon request by the modellers. Upon brushing, the selected config-
urations are highlighted in the table view in Figure 6.8.

on mixing between households was still in effect. On this day, we made our last commit

to our GitHub repository. This act signified the completion of our volunteer work, as

we had smoothly transitioned all tasks to a team of paid developers.

During the entire development process, our meetings were conducted exclusively

online, and our communication relied heavily on email correspondence. Despite the

lack of in person interactions, we successfully met the initial requirements of the mod-

elers and delivered a VIS solution that received very positive feedback from the SCRC

modelling team.
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Meeting #8, Feedback #3 - May 2021

On 19 May 2021, the UK was viewing the light at the end of the Covid tunnel,

weddings and funerals were still restricted to 30 people, and indoor gatherings of more

than two households were still banned. The group convened for the eighth and final

volunteer meeting. During this final meeting, a modeller joined and gave us some in-

depth feedback on the influence our work had on their modelling process, as well as

suggesting potential improvements. We detail the feedback in Section 6.5.

6.5 Domain Expert Feedback

In this section, we share the invaluable feedback collected from the modellers. Meeting

#6 and #7 were held prior to the conclusion of our development, serving as an itera-

tive process of refinement aimed at validating and improving our visual designs while

ensuring their relevance and utility to domain experts. Meeting #8 was held after the

conclusion of our development, functioning as a means to gather feedback on our work

and to identify potential future work. Three domain experts in statistics from Durham

University, the University of Exeter, and the University of Glasgow, were invited to

join these meetings.

6.5.1 Summary of Feedback

In this section, we provide a summary of the feedback collected from the domain experts

during our meetings.

Appreciation for Interaction and Visualisation Design

The experts commended the visual designs for effectively depicting the relative

importance of input parameters on model predictions, highlighting the utility of in-

teractive graphics in understanding the significance of different inputs. The ability to

visually present the connection between input and output parameters was particularly

appreciated, emphasising the value of visual techniques in elucidating the relationships

between variables.

Identification of Ineffective Parameter Combinations
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The linked visual designs were recognised for their potential to help identify inef-

fective parameter combinations, aiding in the optimisation and calibration process by

revealing which combinations may not be useful. The ability to filter out redundant in-

put parameter configurations was seen as beneficial for focusing on the most influential

parameters, thereby reducing the dimensionality of the problem.

Potential for Identifying Model Discrepancy

There was interest in the potential of visual designs to aid in identifying model

discrepancies when observational data becomes available, highlighting the importance

of visualising observational data alongside model predictions.

Overview of Input Parameters and Distributions

The table view was praised for providing a clear overview of input parameters and

their distributions, enabling quick identification of influential parameters and possible

adjustments, as well as the elimination of unnecessary complexities.

6.5.2 Detailed Feedback

In this section, we present some of the original quotes collected from domain experts

during these meetings.

Domain Expert #1 - Professor in Statistics, Durham University

On 25 March 2021, Meetings #6 and #7, we presented the dashboard through

screen-sharing demonstrations, the domain expert appreciated the interactions provided

by the visual designs in depicting the relative importance of different input parameters

on the model’s predictions. “The visualisations are able to show how important a

particular input is for a particular output.”

In addition, the ability to visually present the link between the input and output

parameters. “The real interesting game here is the connection techniques to understand

the relations between input and output.”

The linked visual designs also potentially enable the domain expert to identify in-

effective parameter combinations. “The different configurations is the sort of history

of calibration and by looking at those visualisations you can start saying certain com-

binations may not be useful.”
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The inclusion of a PCA plot was seen as a significant step towards dealing with

feature selection. The expert suggested adding two further plots depicting, MDS and

possibly ICA, to support model calibration using history matching. “to perform history

matching MDS is really what we use. The PCA plot is already very informative ... t-sne

like methods are ill suited for the task.”

Furthermore, the domain expert also expressed interest in the potential of our visual

designs to aid in identifying model discrepancy, when the observational data becomes

available. “The visualisation would be helpful in identifying model discrepancies when

we eventually plot the observational data.”

Domain Expert #2 - Professor in Statistics, the University of Exeter

On the same date, during Meeting #6 and #7, the domain expert was pleased

with the ability of the visual designs to provide the potential to filter redundant input

parameter configurations, enabling users to concentrate on the most influential con-

figurations. “For particular input configurations after filtering, the visualisation shows

that some of the input parameters can be ignored, which reduces the dimensionality of

the problem, and we can focus on the important parameters.”

The domain expert also noted the usefulness of the PCA plot and suggested to

replace the method with MPCA [245] to further support the process of detecting im-

plausible input values “One approach is to look for inputs configurations which would

produce implausible outputs, we work with a sort of implausibility statistical measure”.

Domain Expert #3 - Assistant Professor in Statistics, the University of

Glasgow

On 19 May 2021, Meeting #8, the domain expert praised the visual designs’ ability

to provide a clear overview of the input parameters and their distributions. This enables

them to quickly identify possible adjustments they can make to their input parameters,

as well as to identify the most influential parameters. “The table view is really useful

in showing how close those input parameters are to the threshold, which is very useful

to understand affordability.”

The domain expert also noted that some overlapping distributions can be ruled

out quickly via the interactivity provided by our visual designs, this enables them to
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eliminate unnecessary complexities and increase the overall efficiency of their model.

“It’s fairly obvious that some of the parameters can be ruled out quite quickly, including

some overlapping distributions.”

An avenue for future work, as unanimously identified by all three domain experts, in-

volves integrating new visual designs to render and compare observational data against

model predictions effectively.

6.6 Limitations

Due to the impact of the pandemic, the project was conducted in a fully virtual man-

ner, with all meetings and discussions taking place online, between a large group of

researchers from different disciplines and different institutions. In total, 33 VIS re-

searchers and 7 modellers were involved in this volunteer work. The development was

ad hoc in some ways due to the unprecedented nature of the pandemic. This resulted

in a number of limitations, which we will discuss in this section.

Lack of Novel and Advanced Visual Designs: Operating under a time constraint,

the primary objective of our project centered on offering immediate visual analysis as-

sistance to the modellers. Thus, we were unable to explore the inclusion of innovative

and advanced visual design approaches. Instead, we integrated a series of classic views,

such as line charts and scatterplots. These are visual designs commonly leveraged by

modellers in their day-to-day research. Interestingly, the modellers welcomed the intro-

duction of a less conventional (to them) visualisation technique: parallel coordinates.

They had never previously employed this technique, and its introduction proved bene-

ficial to their research. Consequently, they expressed a desire for the incorporation of

an additional parallel coordinates to assist in the visualisation of model outcomes.

We believe that this is a testament to the effectiveness of advanced visual designs

in enhancing the modellers’ understanding of their models, this signals the possibility

for future inclusion of more sophisticated visual designs.

Lack of Formal Requirements Gathering: We were unable to meet with the mod-

ellers until a particularly late stage. Instead, we had to rely on email correspondence,

which was arguably not as effective as face-to-face or even virtual meetings. In a tra-
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ditional software engineering project, requirements are gathered through a series of

meetings and discussions with end users. This did not occur in our case.

This resulted in a lack of proper requirement gathering, which in turn led to a

number of challenges during the development process. For example, the modellers

made ad hoc requests to incorporate different views at different stages of the project,

resulting in unexpected changes on the development side. This could have been avoided

if we had a better understanding of their requirements from the beginning.

Dynamic Group Membership: The group membership was dynamic, with re-

searchers joining and leaving the group at different stages of the project. This intro-

duced some lack of continuity, as newcomers had to spend time to familiarise themselves

with the project. Furthermore, members came from different disciplines, with different

levels of expertise in visualisation. This has resulted in a lack of consistency in the

development process, as different members have different ideas on how to implement

the views. The responsibility of each member, apart from the only developer in the

group, was not clearly defined.

Uncertain Project Direction: The exact direction of the project was not clearly

defined from the outset. Numerous details remained unknown to us during the devel-

opment process, such as the exact purpose of the visualisation, the target audience, and

the end product. Consequently, the final product suffered from suboptimal utilisation

of screen space, as additional views were requested, the implementation of a multiview

display design or collapsible views became time-constrained and unattainable.

Other Technical Limitations: Some additional technical limitations include:

• Real-time updating: Coupling the simulation with the visual rendering directly

would have been very beneficial to the project, e.g., computational steering.

• Standardisation: Standardisation of the data format would be beneficial to all

participants.

• Interpretability: A more formal evaluation of how interpretable our visual rep-

resentations are would be beneficial, e.g., presenting complex epidemiological

concepts in a clear and understandable manner to a wider audience.

198



6.7 Conclusions

In this chapter, we present the stories behind the development of EnsembleDashVis, an

interactive dashboard designed to visualise the input parameters and outcomes of an

ABC-SMC inference model used to analyse COVID-19 data collected during the first

wave of the outbreak in Scotland.

Given the multitude of uncertainties and challenges during this exceptional period,

a considerable amount of information was unavailable to us during the development

process. It was only through the Scottish COVID-19 Response Consortium Stakeholder

Report [283], published in late 2021, and various publications [301, 302, 305, 306]

that unveiled the remarkable endeavours undertaken by other volunteer teams, gained

additional insight and details.

While this chapter distincts from the primary focus on EHR Vis, its challenges

and solutions align closely with the broader EHR Vis framework. The visualisation of

pandemic simulations, like EHR data, requires handling large, multidimensional data

sets, supporting interactive exploration, and ensuring that insights remain interpretable

for diverse stakeholders. The iterative, expert-driven design process in this chapter

mirrors the methodological approach of previous chapters, emphasising the importance

of domain collaboration in visualisation development.
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Chapter 7

Conclusion

“Never believe that one number on its own can be meaningful.”

– Hans G. Rosling, Physician and Statistician (1948 - 2017)

This chapter concludes the discussions presented in this thesis, synthesising key

findings and outlining future research avenues in EHR Vis. The research conducted

has significantly advanced the field by addressing fundamental challenges in textual,

spatial, and temporal EHR data visualisation.
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7.1 Key Contributions and Findings

This thesis contributes to EHR Vis by developing novel techniques that improve the

interpretability, scalability, and usability of complex EHR data. The research follows

an iterative, expert-driven design approach, ensuring that the proposed visualisations

align with real-world healthcare needs.

Unlike previous works that focus on a single visualisation problem, this thesis takes

a multidimensional approach. It integrates textual, spatial, and temporal data repre-

sentations to support clinical decision-making, where insights often emerge from the

interplay between different data modalities.

The findings extend beyond EHRs and can be applied to any domain dealing with

complex and multimodal data. The emphasis on human-centred design and interdis-

ciplinary collaboration provides a transferable model that can guide future research in

other fields.

7.1.1 Summary of Chapters

This thesis begins with Chapter 1, which introduces the research landscape of EHR

Vis, discussing the challenges of visualising complex patient records, the motivation

behind this research, and the methodology employed. It provides an overview of data

visualisation techniques, their relevance to healthcare, and the specific gaps in current

EHR visualisation approaches that this thesis seeks to address. The chapter also out-

lines the research contributions, highlighting the significance of interactive, scalable,

and domain-expert-informed visualisation tools that serve as a critical reference for

subsequent chapters.

Chapter 2 presents a state-of-the-art review of interactive EHR Vis techniques, sys-

tematically classifying existing research and identifying gaps in the field. By analysing a

broad spectrum of literature, this chapter establishes a taxonomy of EHR Vis method-

ologies, categorising techniques based on their visualisation approach, target data type,

and intended user interaction. The findings reveal the need for novel solutions that ad-

dress the challenges of heterogeneous EHR data, informing the subsequent chapters’

research directions.
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In Chapter 3, the focus shifts to text data visualisation with the introduction of

LetterVis, a novel tool for structuring and analysing unstructured clinical text. Let-

terVis enables clinicians to explore medical letters through an interactive, letter-space

representation, allowing for rapid identification of key information such as medications,

diagnoses, and treatment histories. The chapter discusses the iterative development

process conducted with domain experts, ensuring that the final visualisation effectively

supports clinical decision-making. Evaluations demonstrate its ability to enhance read-

ability and facilitate comparative analysis of multiple documents.

Chapter 4 introduces a spatial data visualisation technique through the develop-

ment of a novel hybrid cartogram algorithm for Demers Cartograms. This approach

incorporates river networks to enhance the spatial accuracy and legibility of geospa-

tial health data. The proposed solution improves existing cartogram techniques by

preserving geographic relationships while ensuring that distortions introduced in the

visualisation process do not hinder interpretability. A user study validates the effective-

ness of this method, showing its potential for applications in epidemiological mapping

and healthcare resource planning.

Building on the need for effective time series visualisation, Chapter 5 presents Time

Series Map, a scalable approach for organising and visualising temporal patterns in long-

term health data. The chapter outlines the design of a hierarchical visualisation system

that allows clinicians to extract meaningful insights from extensive patient histories.

By structuring time series events into visual hierarchies, this method supports efficient

exploration and pattern recognition, particularly for chronic disease monitoring. User

evaluations highlight its usefulness in summarising long-term trends and identifying

irregularities in patient data.

Chapter 6 offers a retrospective analysis of EnsembleDashVis, a visualisation dash-

board developed for COVID-19 forecast simulations. This project was a collaborative

effort that involved more than 40 experts in various fields, including epidemiology,

mathematics, and data science. The chapter details the design and deployment of the

dashboard, which was used to analyse epidemiological models during the pandemic.

It also reflects on the challenges of remote interdisciplinary collaboration, emphasising

the importance of agile development and expert-driven design in visualisation research.
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7.2 Future Work and Challenges

While this research has contributed significantly to the advancement of EHR Vis, sev-

eral challenges remain for future exploration. One key area is the integration of visu-

alisation modalities, where a unified system could allow clinicians to seamlessly tran-

sition between textual, spatial, and temporal views. Such an approach would enable a

more comprehensive analysis of patient records, reducing cognitive load and improving

decision-making efficiency.

Since the publication of EHR STAR [311], the field of EHR Vis has gained increasing

attention from researchers across various disciplines. Rapid advancements in interactive

EHR Vis systems and techniques since then suggest that a new and updated survey

may be necessary to capture the latest developments and trends.

Another challenge lies in EHR data set accessibility and standardisation. The lack

of high-quality open-access EHR data sets has historically impeded research progress.

The mini-survey on open-access EHR data sets in Chapter 2 offers a starting point, but

there is a clear need for a more comprehensive review of available data sets. Expanding

this section into a full survey would significantly benefit the research community by

saving researchers valuable time and streamlining their work.

The role of AI-assisted and automated visualisation also presents an exciting avenue

for further research. Machine learning techniques could be integrated into visualisa-

tion systems to identify patterns, highlight anomalies, and provide predictive insights.

Exploring how AIs can be effectively combined with human-centric visualisation tech-

niques remains an open challenge.

Enhancing interactive and multimodal exploration is another potential direction.

While this thesis introduces novel visualisation tools, future work should focus on im-

proving interactivity, allowing users to query, manipulate, and cross-analyse data across

different visual representations. This could lead to more intuitive and powerful decision

support systems for clinicians.

Finally, user-centred evaluation and deployment in real-world clinical environments

is essential. While this thesis incorporates domain expert feedback, broader clinical

validation is required to assess the practical impact of these visualisation tools. The

deployment of them in healthcare settings and the study of their influence on clinical

204



workflows will be crucial in refining and adapting them to widespread adoption.

In conclusion, this thesis advances the field of EHR Vis by addressing key chal-

lenges in text, geospatial, and temporal data visualisation. The proposed techniques

provide novel and innovative solutions that improve the usability and interpretability of

complex medical records. By emphasising human-centred design, interdisciplinary col-

laboration, and scalability, this thesis establishes a foundation for future advancements

in interactive EHR Vis. As the field evolves, continued integration of AI, multimodal

visualisation, and real-world clinical validation will be critical in shaping the next gen-

eration of EHR Vis systems.
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[295] Sarah Schöttler, Yalong Yang, Hanspeter Pfister, and Benjamin Bach. “Visual-
izing and Interacting with Geospatial Networks: A Survey and Design Space”.
In: Computer Graphics Forum 40.6 (Sept. 2021), pp. 5–33. issn: 0167-7055,
1467-8659. doi: 10.1111/cgf.14198. (Visited on 07/10/2022).

[296] Julien Siebert, Janek Groß, and Christof Schroth. “A Systematic Review of
Packages for Time Series Analysis”. In: The 7th International Conference on
Time Series and Forecasting. MDPI, June 2021, p. 22. doi: 10.3390/engproc20
21005022. (Visited on 05/12/2023).

[297] Qiru Wang. Thevisgroup/EnsembleVis. https://github.com/thevisgroup/Ense
mbleVis. Aug. 2021. (Visited on 03/15/2024).

[298] Qiru Wang, Robert S. Laramee, Arron Lacey, and William Owen Pickrell. “Let-
terVis: A Letter-Space View of Clinic Letters”. In: The Visual Computer 37.9-11
(Sept. 2021), pp. 2643–2656. issn: 0178-2789, 1432-2315. doi: 10.1007/s00371-
021-02171-w. (Visited on 09/30/2021).

[299] G. J. Ackland, J. Panovska-Griffiths, W. Waites, and M. E. Cates. “The Royal
Society RAMPModelling Initiative”. In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 380.2233 (Aug.
2022), p. 20210316. doi: 10.1098/rsta.2021.0316. (Visited on 05/30/2023).

[300] Mohammad Alharbi, Robert S Laramee, and Tom Cheesman. “TransVis: In-
tegrated Distant and Close Reading of Othello Translations”. In: IEEE Trans-
actions on Visualization and Computer Graphics 28.2 (Feb. 2022), pp. 1397–
1414. issn: 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2020.301277
8. (Visited on 07/10/2022).

[301] M. Chen, A. Abdul-Rahman, D. Archambault, J. Dykes, P.D. Ritsos, A. Slingsby,
T. Torsney-Weir, C. Turkay, B. Bach, R. Borgo, A. Brett, H. Fang, R. Jianu, S.
Khan, R.S. Laramee, L. Matthews, P.H. Nguyen, R. Reeve, J.C. Roberts, F.P.
Vidal, Q. Wang, J. Wood, and K. Xu. “RAMPVIS: Answering the Challenges
of Building Visualisation Capabilities for Large-Scale Emergency Responses”.
In: Epidemics 39 (June 2022), p. 100569. issn: 17554365. doi: 10.1016/j.epide
m.2022.100569. (Visited on 06/02/2022).

[302] Jason Dykes, Alfie Abdul-Rahman, Daniel Archambault, Benjamin Bach, Rita
Borgo, Min Chen, Jessica Enright, Hui Fang, Elif E. Firat, Euan Freeman, Tuna
Gönen, Claire Harris, Radu Jianu, Nigel W. John, Saiful Khan, Andrew Lahiff,
Robert S. Laramee, Louise Matthews, Sibylle Mohr, Phong H. Nguyen, Alma
A. M. Rahat, Richard Reeve, Panagiotis D. Ritsos, Jonathan C. Roberts, Aidan
Slingsby, Ben Swallow, Thomas Torsney-Weir, Cagatay Turkay, Robert Turner,
Franck P. Vidal, Qiru Wang, Jo Wood, and Kai Xu. “Visualization for Epidemi-
ological Modelling: Challenges, Solutions, Reflections and Recommendations”.
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 380.2233 (Oct. 2022), p. 20210299. issn: 1364-503X,
1471-2962. doi: 10.1098/rsta.2021.0299. (Visited on 08/29/2022).

234

https://doi.org/10.1097/QAI.0000000000002903
https://doi.org/10.1111/cgf.14198
https://doi.org/10.3390/engproc2021005022
https://doi.org/10.3390/engproc2021005022
https://github.com/thevisgroup/EnsembleVis
https://github.com/thevisgroup/EnsembleVis
https://doi.org/10.1007/s00371-021-02171-w
https://doi.org/10.1007/s00371-021-02171-w
https://doi.org/10.1098/rsta.2021.0316
https://doi.org/10.1109/TVCG.2020.3012778
https://doi.org/10.1109/TVCG.2020.3012778
https://doi.org/10.1016/j.epidem.2022.100569
https://doi.org/10.1016/j.epidem.2022.100569
https://doi.org/10.1098/rsta.2021.0299


[303] Shunan Guo, Zhuochen Jin, Qing Chen, David Gotz, Hongyuan Zha, and Nan
Cao. “Interpretable Anomaly Detection in Event Sequences via Sequence Match-
ing and Visual Comparison”. In: IEEE Transactions on Visualization and Com-
puter Graphics 28.12 (Dec. 2022), pp. 4531–4545. issn: 1941-0506. doi: 10.110
9/TVCG.2021.3093585.

[304] Yi Guo, Shunan Guo, Zhuochen Jin, Smiti Kaul, David Gotz, and Nan Cao.
“Survey on Visual Analysis of Event Sequence Data”. In: IEEE Transactions on
Visualization and Computer Graphics 28.12 (Dec. 2022), pp. 5091–5112. issn:
1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2021.3100413. (Visited
on 05/31/2023).

[305] Saiful Khan, Phong H. Nguyen, Alfie Abdul-Rahman, Benjamin Bach, Min
Chen, Euan Freeman, and Cagatay Turkay. “Propagating Visual Designs to
Numerous Plots and Dashboards”. In: IEEE Transactions on Visualization and
Computer Graphics 28.1 (Jan. 2022), pp. 86–95. issn: 1941-0506. doi: 10.1109
/TVCG.2021.3114828.

[306] Saiful Khan, Phong Hai Nguyen, Alfie Abdul-Rahman, Euan Freeman, Cagatay
Turkay, and Min Chen. “Rapid Development of a Data Visualization Service in
an Emergency Response”. In: IEEE Transactions on Services Computing 15.3
(May 2022), pp. 1251–1264. issn: 1939-1374, 2372-0204. doi: 10.1109/TSC.202
2.3164146. (Visited on 06/01/2023).

[307] Yoshiki Kusunoki, Kosuke Konishi, Taku Tsunoda, and Hidenori Koyama. “Sig-
nificance of Glycemic Variability in Diabetes Mellitus”. In: Internal Medicine
61.3 (Feb. 2022), pp. 281–290. issn: 0918-2918, 1349-7235. doi: 10.2169/intern
almedicine.8424-21. (Visited on 10/06/2023).

[308] Jessica Magallanes, Tony Stone, Paul D Morris, Suzanne Mason, Steven Wood,
and Maria-Cruz Villa-Uriol. “Sequen-C: A Multilevel Overview of Temporal
Event Sequences”. In: IEEE Transactions on Visualization and Computer Graph-
ics 28.1 (Jan. 2022), pp. 901–911. issn: 1941-0506. doi: 10.1109/TVCG.2021.3
114868.

[309] Soeren Nickel, Max Sondag, Wouter Meulemans, Stephen G. Kobourov, Jaakko
Peltonen, and Martin Nollenburg. “Multicriteria Optimization for Dynamic
Demers Cartograms”. In: IEEE Transactions on Visualization and Computer
Graphics (2022), pp. 1–1. issn: 1077-2626, 1941-0506, 2160-9306. doi: 10.1109
/TVCG.2022.3151227. (Visited on 03/03/2022).

[310] Ben Swallow, Paul Birrell, Joshua Blake, Mark Burgman, Peter Challenor, Luc
E. Coffeng, Philip Dawid, Daniela De Angelis, Michael Goldstein, Victoria Hem-
ming, Glenn Marion, Trevelyan J. McKinley, Christopher E. Overton, Jasmina
Panovska-Griffiths, Lorenzo Pellis, Will Probert, Katriona Shea, Daniel Villela,
and Ian Vernon. “Challenges in Estimation, Uncertainty Quantification and
Elicitation for Pandemic Modelling”. In: Epidemics 38 (Mar. 2022), p. 100547.
issn: 17554365. doi: 10.1016/j.epidem.2022.100547. (Visited on 05/30/2023).

[311] Q. Wang and R.S. Laramee. “EHR STAR: The State-Of-the-Art in Interactive
EHR Visualization”. In: Computer Graphics Forum 41.1 (Feb. 2022), pp. 69–
105. issn: 0167-7055, 1467-8659. doi: 10.1111/cgf.14424. (Visited on 08/10/2024).

235

https://doi.org/10.1109/TVCG.2021.3093585
https://doi.org/10.1109/TVCG.2021.3093585
https://doi.org/10.1109/TVCG.2021.3100413
https://doi.org/10.1109/TVCG.2021.3114828
https://doi.org/10.1109/TVCG.2021.3114828
https://doi.org/10.1109/TSC.2022.3164146
https://doi.org/10.1109/TSC.2022.3164146
https://doi.org/10.2169/internalmedicine.8424-21
https://doi.org/10.2169/internalmedicine.8424-21
https://doi.org/10.1109/TVCG.2021.3114868
https://doi.org/10.1109/TVCG.2021.3114868
https://doi.org/10.1109/TVCG.2022.3151227
https://doi.org/10.1109/TVCG.2022.3151227
https://doi.org/10.1016/j.epidem.2022.100547
https://doi.org/10.1111/cgf.14424


[312] Zhong Wang, Yongguo Han, Guijuan Wang, Weixin Zhao, Jiansong Wang, and
Yadong Wu. “MCC-Vis: Visual Analysis for City Regional Co-occurrence Pat-
tern Based on Traffic Trajectory Data”. In: 2022 5th International Conference
on Pattern Recognition and Artificial Intelligence (PRAI). Chengdu, China:
IEEE, Aug. 2022, pp. 1245–1254. isbn: 978-1-6654-9916-3. doi: 10.1109/PRAI5
5851.2022.9904131. (Visited on 10/27/2023).

[313] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tomin-
ski. Visualization of Time-Oriented Data. Human–Computer Interaction Se-
ries. London: Springer London, 2023. isbn: 978-1-4471-7526-1 978-1-4471-7527-
8. doi: 10.1007/978-1-4471-7527-8. (Visited on 02/01/2024).

[314] Zikun Deng, Shifu Chen, Tobias Schreck, Dazhen Deng, Tan Tang, Mingliang
Xu, Di Weng, and Yingcai Wu. “Visualizing Large-Scale Spatial Time Series
with GeoChron”. In: IEEE Transactions on Visualization and Computer Graph-
ics (Oct. 2023). doi: 10.1109/TVCG.2023.3327162.

[315] Anna Scimone, Klaus Eckelt, Marc Streit, and Andreas Hinterreiter. “Marjorie:
Visualizing Type 1 Diabetes Data to Support Pattern Exploration”. In: IEEE
Transactions on Visualization and Computer Graphics (2023), pp. 1–11. issn:
1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2023.3326936. (Visited
on 11/20/2023).

[316] Anton Yeshchenko and Jan Mendling. “A Survey of Approaches for Event
Sequence Analysis and Visualization”. In: Information Systems (Sept. 2023),
p. 102283. issn: 0306-4379. doi: 10.1016/j.is.2023.102283. (Visited on 09/12/2023).

[317] Md. Jamal Hossain, Md. Al-Mamun, and Md. Rabiul Islam. “Diabetes Mellitus,
the Fastest Growing Global Public Health Concern: Early Detection Should Be
Focused”. In: Health Science Reports 7.3 (Mar. 2024), e2004. issn: 2398-8835,
2398-8835. doi: 10.1002/hsr2.2004. (Visited on 09/21/2024).

[318] Qiru Wang, Rita Borgo, and Robert S Laramee. “EnsembleDashVis Views and
Volunteers – A Retrospective and Early History”. In: New Community Health
Models. Ed. by Marco Bassanello, Ruggero Geppini, Xin-Nong Li, and Amy
Matecki. https ://doi . org/10 .5772/ intechopen .115029. Rijeka: IntechOpen,
Aug. 2024.

[319] Qiru Wang, Kai Xu, and Robert S. Laramee. “Demers Cartogram with Rivers”.
In: Visual Informatics (Sept. 2024), S2468502X24000445. issn: 2468502X. doi:
10.1016/j.visinf.2024.09.003. (Visited on 09/15/2024).

[320] Susanne Zabel, Philipp Hennig, and Kay Nieselt. “VIPurPCA: Visualizing and
Propagating Uncertainty in Principal Component Analysis”. In: IEEE Trans-
actions on Visualization and Computer Graphics 30.4 (Apr. 2024), pp. 2011–
2022. issn: 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2023.334553
2. (Visited on 03/15/2024).

[321] The U.S. General Services Administration. Data.Gov. https://www.data.gov/.

[322] Lifelines Biobank. Lifelines Biobank. https://www.lifelines.nl/.

[323] UK Biobank. UK Biobank. https://www.ukbiobank.ac.uk/.

[324] Matthew Bloch. Mapshaper. https://mapshaper.org/. (Visited on 01/23/2022).

[325] NHS Commissioning Board. NHS England Data Catalogue. https://data.engla
nd.nhs.uk/.

[326] Department of Epidemiology Erasmus University Medical Center. The Rotter-
dam Study. http://www.erasmus-epidemiology.nl/research/ergo.htm.

236

https://doi.org/10.1109/PRAI55851.2022.9904131
https://doi.org/10.1109/PRAI55851.2022.9904131
https://doi.org/10.1007/978-1-4471-7527-8
https://doi.org/10.1109/TVCG.2023.3327162
https://doi.org/10.1109/TVCG.2023.3326936
https://doi.org/10.1016/j.is.2023.102283
https://doi.org/10.1002/hsr2.2004
https://doi.org/10.5772/intechopen.115029
https://doi.org/10.1016/j.visinf.2024.09.003
https://doi.org/10.1109/TVCG.2023.3345532
https://doi.org/10.1109/TVCG.2023.3345532
https://www.data.gov/
https://www.lifelines.nl/
https://www.ukbiobank.ac.uk/
https://mapshaper.org/
https://data.england.nhs.uk/
https://data.england.nhs.uk/
http://www.erasmus-epidemiology.nl/research/ergo.htm


[327] Big Cities Health Coalition. Data Platform — Big Cities Health Coalition. htt
ps://www.bigcitieshealth.org/city-data/.

[328] D3 by Observable — The JavaScript Library for Bespoke Data Visualization.
https://d3js.org/. (Visited on 02/24/2024).

[329] NHS Scotland Open Data. Datasets - NHS Scotland Open Data. https://www
.opendata.nhs.scot/dataset.

[330] NHS Digital. Personal Health Records Definition. https://digital.nhs.uk/service
s/personal-health-records-adoption-service/personal-health-records-adoption-t
oolkit/initiating-a-personal-health-record/personal-health-records-definition.

[331] Elsevier. Mendeley - Reference Management Software & Researcher Network.
https://www.mendeley.com/.

[332] Public Health England. PHE Data and Analysis Tools - GOV.UK. https://ww
w.gov.uk/guidance/phe-data-and-analysis-tools.

[333] FAIRsharing. FAIRsharing. https://fairsharing.org/.

[334] GIANTT. GIANTT — Groningen Initiative to Analyse Type 2 Diabetes Treat-
ment. https://www.giantt.nl/.

[335] Google. Dataset Search. https://datasetsearch.research.google.com/.

[336] Google. Google. https://www.google.com/.

[337] Google. Google Scholar. https://scholar.google.com/.

[338] HealthData.gov. HealthData.Gov. https://healthdata.gov/.

[339] Home. https://www.snomed.org. (Visited on 07/14/2024).

[340] ICD-10 Version:2019. https :// icd .who. int/browse10/2019/en. (Visited on
07/14/2024).

[341] IEEE. IEEE Xplore Digital Library. https://ieeexplore.ieee.org/Xplore/home.j
sp.

[342] National Cancer Institute. Definition of Electronic Health Record. https://ww
w.cancer.gov/publications/dictionaries/cancer-terms/def/electronic-health-rec
ord.

[343] National Cancer Institute. Definition of Personal Health Record. https://www.c
ancer.gov/publications/dictionaries/cancer-terms/def/personal-health-record.

[344] National Cancer Institute. Surveillance, Epidemiology, and End Results Pro-
gram. https://seer.cancer.gov/.

[345] ISARIC 4C. https://isaric4c.net. (Visited on 07/17/2022).

[346] Johns Hopkins University. COVID-19 Map. https://coronavirus.jhu.edu/map
.html. (Visited on 06/01/2023).

[347] The Association for Computing Machinery. ACM Digital Library. https://dl.a
cm.org/.
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Appendix A

Damon Berridge

This appendix is dedicated to the late Professor Damon Berridge.

As an expert in large healthcare data, Professor Berridge’s work greatly inspired

this thesis. He served as the Co-Investigator of the EP/S010238/1 EPSRC grant, which

supported this Ph.D.
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Appendix B

List of Domain Experts

Here we present a list of domain experts and collaborators with whom we have collab-

orated or consulted during the course of this thesis. The list is not exhaustive, but it

provides a starting point for interested researchers to explore the field of EHR Vis and

related disciplines.

B.1 Alfie Abdul-Rahman

Dr Alfie Abdul-Rahman is a Senior Lecturer in Computer Science at King’s College

London. Her research interests include information visualisation, computer graphics,

human-computer interaction, and digital humanities.

B.2 Sara Di Bartolomeo

Dr Sara Di Bartolomeo is a postdoc researcher at Vienna University of Technology.

Her research focuses on Graph Drawing - especially layered graphs, Generative Models

and Virtual Reality.

B.3 Rita Borgo

Dr Rita Borgo is the head of the Human Centred Computing Group at King’s College

London. Her research interests include Data Science, Augmented AI, Scientific and

Information visualisation, Time Series analysis, Large Data sets and High Performance
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Computing.

B.4 Peter Challenor

Peter Challenor is a professor in the statistical sciences group of the Department of

Mathematics of the University of Exeter. His research research is concerned with the

development of methods to quantify the uncertainty for models of the environment,

climate, engineering, and healthcare.

B.5 Min Chen

Min Chen is a professor of scientific visualisation at Oxford University and a fellow

of Pembroke College. His research interests include data visualisation, data science,

computer graphics, computer vision, and human-computer interaction.

B.6 Alena Denisova

Dr Alena Denisova is a senior lecturer at University of York. Her research interests

include understanding and improving player experience of interactive media.

B.7 Cody Dunne

Dr Cody Dunne is an associate professor at Northeastern University’s Khoury College

of Computer and Sciences. He works at the intersection of information visualisation,

network science, human-computer interaction, and computer science. Dunne focuses

on techniques for making data easier to analyse and share, as well as the application

of visualisation techniques to real-world problems.

B.8 Arron Lacey

Dr Arron Lacey is a lecturer in Health Data Science and Natural Language Processing at

the Swansea University Medical School. Dr Lacey has been based in the SAIL Databank
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at the Medical School since 2011 following a BSc in Physics, MScs in Computer Science

and a Ph.D. in Healthcare Studies at Swansea University.

B.9 Ian Litchfield

Ian Litchfield is a Research Fellow in the Institute of Applied Health Research, Uni-

versity of Birmingham, with a background in occupational medicine and interests in

health service delivery. He uses qualitative and quantitative research methods in the

evaluation of service delivery interventions in both primary and secondary care.

B.10 Owen Pickrell

Dr Owen Pickrell is a consultant neurologist and honorary clinical associate professor at

Swansea University Medical School. He practises clinically as a neurologist in Swansea

Bay University Health board with a sub-speciality interest in epilepsy.

B.11 Panagiotis D. Ritsos

Dr Panagiotis Ritsos is a Senior Lecturer (Associate Professor) in Visualisation, and

the Director of Research at the School of Computer Science and Engineering, Bangor

University. His research interests revolve around the domain of human-computer in-

teraction (HCI) and include mixed/augmented and virtual reality (XR), information

visualisation (InfoVis), visual analytics (VA) and wearable computing (WearComp).

B.12 Benjamin Swallow

Dr Benjamin Swallow is a Lecturer in Statistics, School of Mathematics and Statistics,

University of St Andrews. Ben’s research interests lie largely in statistical inference in

complex dynamic systems, often those changing in space and/or time.
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B.13 Thomas Torsney-Weir

Dr Thomas Torsney-Weir was a Lecutrer in Computer Science at Swansea University

when he provided his domain expertise to this Ph.D. He is a computer scientist with

extensive experience building systems from the ground up as well as research in ML/AI

with a focus on visual analysis in multidimensional continuous spaces and understand-

ing complex models.

B.14 Cagatay Turkay

Professor Cagatay Turkay from University of Warwick, his research falls under the

broad area that can be referred to as Visual Data Science and focuses on designing

visualisations, interactions and computational methods to enable an effective combina-

tion of human and machine capabilities to facilitate data-intensive problem solving.

B.15 Samantha Turner

Samantha Turner is a Research Officer and Data Scientist specialising in the field of

Injury Prevention. Samantha has worked on several data linkage and research projects

with the aim to improve injury profiling, injury incidence estimates, the comparability

of injury data across countries, and measurement of injury burden.

B.16 Ian Vernon

Professor Ian Vernon is a statistician at Durham University. His research focuses on

uncertainty quantification for galaxy formation, epidemiology, systems biology, geology,

and nuclear physics.

B.17 Franck P. Vidal

Dr Franck P. Vidal was a Lecutrer in Computer Science at Bangor University when

he provided his domain expertise to this Ph.D. His research area is mainly focusing on
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computer graphics, visualisation and physically-based simulation for medical applica-

tions.

B.18 Phil Weber

Dr Phil Weber is a lecturer in computer science and member of the Aston Centre for

Artificial Intelligence Research and Applications (ACAIRA), and Aston Institute for

Forensic Linguistics (AIFL), specifically the Forensic Data Science Laboratory (FDSL).

His current research is in forensic voice comparison (which uses state of the art tools

developed for automatic speaker recognition).

B.19 Kai Xu

Dr Kai Xu is an Associate Professor in the School of Computer Science at the Uni-

versity of Nottingham. His main research interest is Data Science, particularly Data

Visualisation, i.e., presenting data visually to facilitate pattern discovery using human

cognition and domain knowledge. Kai is also the second supervisor of this Ph.D.
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Appendix C

List of Data sets Used

Here we list a table of all data sets we have explored during this Ph.D.

Chapter Description Link

Chapter 3 Epilepsy Clinic Letters Supplied by Domain Ex-
perts

Chapter 4 River Shapefiles https://overpass-turbo.eu/

Chapter 4 NHS CCG Shapefiles https://geoportal.statistics
.gov.uk/maps/2f226df77c4
44d93aeebe5220cd50186

Chapter 4 NHS CCG Outcomes Indicator https://digital.nhs.uk/dat
a-and-information/publica
tions/statistical/ccg-outco
mes-indicator-set

Chapter 6 COVID-19 Outbreak Data in
Scotland

https://github.com/Scottis
hCovidResponse

Chapter 6 COVID-19 Scottish data mod-
elling and simulations

https://github.com/thevisg
roup/EnsembleVis

Chapter 5 Glucose readings from continu-
ous glucose monitors, food intake
record, insulin dosage

https://github.com/VisDu
nneRight/IDMVis

Chapter 5 Glucose readings from continuous
glucose monitors

https://github.com/jku-v
ds-lab/marjorie/

Table C.1: A list of data sets explored in this Ph.D.
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Appendix D

List of Data Set Access Applications

Access to EHR data sets is a major challenge, as stated in Section 2.6. Throughout this

Ph.D., we applied for access to multiple EHR data sets, here we record the timeline of

these applications. Due to the difficulty in obtaining access to these data sets, most of

the work in this Ph.D. leveraged open access data sets, stated in Section 2.6.5.

Name Region Description Application
Time

Application
Outcome

Emails
Exchanged

Epilepsy Clinic Letters UK The clinic letters are directly supplied
by a group of researchers in Swansea
University Medical School as part of a
collaboration.

15 July 2020 200 letters
granted in Oct

2022

> 30

ISARIC4C [345] UK The ISARIC4C study has created an
open-access integrated analysis plat-
form for linked clinical data across the
NHS for various studies.

17 Mar 2022 Under review 17

MIMIC-III [150] US MIMIC-III (Medical Information Mart
for Intensive Care) is a large, single-
centre database comprising informa-
tion relating to patients admitted to
critical care units at a large tertiary
care hospital.

14 May 2022 31 May 2022 4

Table D.1: A list of EHR data set access applications during this Ph.D. This table
demonstrates the difficulty in accessing EHR data sets for research purposes.
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Appendix E

List of Videos

During this Ph.D., multiple videos were created to illustrate the work conducted. The

following links to these videos offer interested readers a clearer understanding of the

research presented in this thesis.

Chapter Description Link

Chapter 2 EHR STAR Presentation at the
EuroVis 2022 Conference

https://youtu.be/8phSEun
qdpw

Chapter 3 Demonstration for LetterVis https://youtu.be/jSVzhCj
Li U

Chapter 4 Demonstration for Demers Car-
togram with Rivers

https://youtu.be/DgCwC
kyfGKk

Chapter 4 Demers Cartogram with Rivers
User Study

https://www.youtube.com/
playlist?list=PLL7sHvxLt
D75fMtrUQrAdddjt3wfFkc
Wz

Chapter 5 Demonstration and Case Studies
for Time Series Map

https://youtu.be/TnlyZDQ
CpQE

Table E.1: A collection of videos showcasing the research conducted during this Ph.D.
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