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Abstract

CRISPR-Cas systems are a crucial and intriguing defence mechanism found
in bacteria and archaea. This defence mechanism is able to adapt and defend
against attacks from Mobile Genetic Elements (MGEs). This mechanism also has
many uses outside of genomic defence. For example, certain types of CRISPR-
Cas proteins allow for modification of eukaryotic genomes in vivo. Currently,
there are applications and algorithms capable of finding CRISPR-Cas types and
the associated arrays, however, the idea of predicting whether a genome might
contain a CRISPR-Cas locus, based purely on the background genome content
offers a faster query time. To test whether the presence of CRISPR-Cas systems
could be predicted from the background genome, a Random Forest algorithm
was employed using a large data set - a bacterial pangenome containing 9,689
genomes. To annotate this pangenome with 'CRISPR’ identifiers, the annotation
tool Bakta was used, allowing for the use of custom scripts to find the relevant
information needed from the annotated genomes. The algorithm was shown to
have an accuracy of 0.89, and an AUC-ROC score of 0.96. These results imply a
strong ability to classify the predictions correctly, based on background genome
content. The algorithm calculated the ’feature importance’ of all genes that were
present in the pangenome; the gene of highest importance was "pbp4b’ followed
closely by ’csy3’ (a positive control variable). The ten genes that had the highest
feature importance all had a statistically significant association with CRISPR-Cas
systems when evaluated using chi-squared tests. The algorithm was capable
of predicting CRISPR-Cas systems in ~y-proteobacteria and offers potential for
research candidates when investigating CRISPR-Cas associations. This approach
could be used to predict CRISPR-Cas more broadly across prokaryotic life, upon
data availability.
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Introduction

The aim of this research project is to find new Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) associated genes (Cas), within the genomes
of bacteria. An “associated gene” is one whose presence or absence in a genome
appears to be modulated by the presence or absence of CRISPR-Cas elements.
With the enormous expansion in the availability of prokaryotic genomes, we
can now use sophisticated computational approaches to fully understand the
extent to which the presence or absence of a gene is potentiated by the presence
or absence of CRISPR-Cas.

Traditionally, understanding the factors that influence CRISPR-Cas presence
and function in bacteria requires the analysis of complex, genomic and eco-
logical data. Historical research methods, while useful for identifying linear
correlations, may struggle to capture the intricate interactions and non-linear
relationships that characterize bacterial genomic evolution. Machine learning
(ML) offers a modern alternative by enabling data-driven pattern recognition
and predictive modelling, making it particularly suitable for genomic studies
where relationships between variables are not always obvious. New methods
of analysis find that ML has emerged as a powerful tool for genomic analysis,
capable of identifying complex, non-linear relationships within large datasets
(Monaco et al., 2021) . In research, ML methods have been applied to classify
system subtypes (Russel et al., 2020) and explore phage-host interactions (Di-
mitri Boeckaerts et al., 2024). Among ML techniques, the Random Forest (RF)
algorithm is particularly well-suited for this study due to its ability to handle
large datasets with numerous predictor variables while maintaining high accur-
acy and interpretability (Breiman, 2001) . Applying a RF algorithm facilitates
the use of a diverse dataset to explore these associations.

Additionally, this project aimed to create a functional algorithm to predict
whether a bacterium will utilise CRISPR-Cas systems in their defensome. The
defensome of a bacterium is defined as all of the systems and genes which
are used in the defence of a cell, a prokaryotic immune system (Goldstone et
al., 2006; Beavogui et al., 2024). This approach could enable the use of the
bacterial transcriptome, a collection of all of the RNA sequences which are
being transcribed within the cell at the time of sampling (Wang, Gerstein and



Snyder, 2009), or the fully annotated genome to reliably predict this system in
clinical settings. Future work could therefore lead to the prediction of whether a
bacterial infection is amenable to the use of phage therapy. The development of
Phage therapies takes time (Leptihn and Loh, 2022) and if the bacterium can use
CRISPR-Cas to defend from the chosen phage, the therapy would be ineffective.

This study does not only apply to CRISPR-Cas systems; it could also be used
to find associations or correlations with other biological systems or functions.
Feasible uses for this methodology lie within AMR and gene studies where
there are more associations to be found. The use cases for ML in bioinformatics
are endless, as it widens opportunities for large amounts of information to be
identified and analysed. A challenge with ML is its heavy dependence on large
volumes of data to be efficient and accurate.

Understanding CRISPR-Cas systems’ associations within bacterial genomes
could assist us in understanding which genes and type of environment makes
CRISPR-Cas systems efficient. What types of genetic spacers do these systems
acquire? Which genes inhibit or directly impact the capabilities or accuracy of
these systems? These are questions that must be answered before attempting
to implement this kind of gene therapy for use in eukaryotes. Currently, the
use of CRISPR-Cas9 in functional genomics, specifically to edit gene variants
and introduce new genes into genomes, is revolutionary (Kim, Kweon and Kim,
2024) . This application allows for the comprehension of how different elements
of these genes interact within the studied organism (Kim, Kweon and Kim,
2024). Historically, functional genomic insight was mainly based on the study
of naturally occurring genetic mutations, however now, the use of CRISPR-Cas9
systems enables more research and development within this field (Agrotis and
Ketteler, 2015) .

Bacteria have a cosmopolitan global distribution, being found in every ecolo-
gical niche on the planet, from soil to the rumen and guts of animals (Ahmed and
McKay, 2024). Bacteria are a significant ecological driving force in all environ-
ments and ecosystems of which they are a part (Ahmed and McKay, 2024). They
are also the etiological agents of many infections and diseases. The adaptable
nature of bacteria allows them to persist in numerous environments; this often
means that bacteria have become pathogenic and can predate on humans and
other organisms. Infectious diseases are on the rise and the ability of frontline
antibiotics to deal with infection is diminishing (Salam et al., 2023). Antimicro-
bial resistance (AMR) is becoming more problematic in clinical settings. The
overprescription or the widespread use of antibiotics within the meat humans
eat or the food we feed our livestock could be at fault for AMR (Bava et al., 2024).
Nonetheless, the discovery of antibiotics may have been one of the most integral
discoveries of the 20th century, allowing humans to increase their lifespan and
have a capability to treat bacterial infections (Nicolaou and Rigol, 2017).
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Bacteria can be manipulated to assist us in certain practices and can be ge-
netically modified to produce numerous substances. A major use of bacteria is
in bioremediation, the employment of bacteria to breakdown or degrade con-
taminants in soil and water (Gupta and Gandhi, 2023). One specific example is
Deinococcus radiodurans, an extremely radioresistant organism that has been
genetically engineered to assist in the removal of toluene and ionic mercury
from nuclear waste (Vaishnav and Demain, 2009). Though bacteria can often be
a hindrance in modern medicine, they can also provide innovative solutions in
infectious disease prevention, with Pseudomonas aeruginosa and Rhodopseudomo-
nas capsulata being used to produce gold nanoparticles for different therapeutic
purposes (Singh and Kundu, 2013).

With the rise of AMR bacterial strains there has been a greater urgency in
the field of clinical science to find new therapeutic responses. Research carried
out by Sawa, Moriyama and Kinoshita (2024) highlights a key opportunity
that humans could use to their advantage in this war against AMR: phage
therapy. This approach has shown promise in the effort to manage AMR bacteria.
Bacteriophage offer a feasible way to infect specific bacteria that are resistant
to the other therapeutic options (Lusiak-Szelachowska et al., 2022). That said,
to use bacteriophage to attack a bacterium we must understand the specific
defence mechanisms of the bacteria, which have been evolving and adapting for
billions of years (Abedon, 2012). Bacteria have evolved many different defence
mechanisms that can be used in diverse ways to protect themselves from attack.

While this project focusses on uncovering associations between CRISPR-Cas
systems and the rest of the genome, there are uses for CRISPR-Cas9 outside
of the bacteria in which this system is found. In 2012, Jinek et al. published
‘A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial
Immunity’ which marked a new opportunity in research regarding gene editing
and genetic engineering in eukaryotic life using the CRISPR-Cas9 protein. This
research explored the capabilities that the Cas9 protein could have, whilst used
in conjunction with modern techniques of synthesizing genetic material (Jinek
et al., 2012). Fixing defective genes, replacing cancerous genetic markers, and
alleviating hereditary diseases are among some of the capabilities that the use of
Cas9 led gene editing could pose for medical use in humans (Zhang and McCarty,
2016). However, a few issues arise when attempting to use this incredible
discovery within such complex genomes. In the process of utilising CRISPR-
Cas9 proteins in eukaryotic life, it is critical that the risks associated with
off-target cleavage, which can lead to unintended and volatile consequences, are
understood (Ochiai and Yamamoto, 2023).



1.1 CRISPR-CAS SYSTEMS

CRISPR-Cas is a sophisticated biological defence system that is used by almost
40% of all bacterial genomes and 80% of all archaeal genomes (Zink, Wimmer
and Schleper, 2020). These defence mechanisms are used to protect the genome
from genetic attack. A notable difference between CRISPR-Cas and Restriction-
Modification (R-M) systems is that CRISPR-Cas systems can adapt, such that
the cell becomes immune to attack from specific external threats. Briefly, the
CRISPR-Cas system works by assimilating a spacer of foreign DNA into the
CRISPR array, transcribing the array to form a pre-crRNA complex. This pre-
crRNA complex is then processed into an individual crRNA unit which is then
implemented into the effector complex, allowing the system to intercept the
incoming foreign DNA and cleave it into inactivated strains of DNA (Figure 1.1)

Figure 1.1: CRISPR-Cas system overview.
The figure outlines the three major phases of defence — adaptation, crRNA
Biogenesis and processing, and Interference. Used with permission from Prof.
Gabriela Jorge da Silva (Loureiro and da Silva, 2019) .
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This system was initially mentioned by Ishino et al. (1987) and later char-
acterized by Jansen et al. (2002). The uses of the defensive abilities are vast
and capable; researchers found that the CRISPR-Cas system can defend from
Bacteriophage attack (Marraffini and Sontheimer, 2008) ; this form of attack is
common throughout a bacteria’s life span. CRISPR-Cas allows for the identifica-
tion, recognition and destruction of the genetic material that has been introduced
into the organism (Loureiro and da Silva, 2019). Horizontal gene transfer (HGT),
the movement and transfer of genes between organisms, presents an interesting
case where the CRISPR-Cas system is employed to recognise and inhibit the
process. There are reported cases of HGT being limited through the applic-
ation of CRISPR-Cas to protect the genome (Wheatley and MacLean, 2020).
Conversely, there has been research which contradicts these reported cases
where no inhibitions of HGT could be proven (Gophna et al., 2015). There are
many reasons why CRISPR-Cas is used in this manner, but the most interesting
hypothesis is that the stability of the genome, and henceforth the survival of the
organism, could be adversely affected by the introduction of new genes through
HGT (Marraffini and Sontheimer, 2008). The requirement for the system to
recognise the invading DNA sequence and respond specifically to it causes the
systems slow reaction; both the expression of the relevant spacer sequence and
its use to neutralise the invading DNA can take time (McKenzie et al., 2022).
The other limitation of the CRISPR-Cas defence system is that it requires many
proteins to be expressed. The assembly of these proteins limits the efficiency of
the system and requires considerable resources to be poured into it (Zaayman
and Wheatley, 2022) . The efficiency trade-off associated with the CRISPR-Cas
system may explain why 60% of organisms that could potentially utilise it do
not retain it in their genomes (Jiang et al., 2013). In some cases, this could
be the result of natural selection, such that maintaining the system imposes a
fitness cost greater than its benefit. Alternatively, genetic drift may lead to the
loss of the CRISPR-Cas system in populations where it provides no significant
advantage, rendering it effectively neutral over evolutionary time. This system
would confer a significant deleterious effect in an environment where multiple
bacteriophage attacks were taking place simultaneously. It is easily speculated
that this lack of efficiency may be the reason that this system would be deleted
from a genome (Hille and Charpentier, 2016).

CRISPR-Cas systems are suggested to have evolved from integrases, which are
elements similar to transposons (Koonin and Makarova, 2019); these elements are
responsible for integration of spacers into CRISPR arrays, and this relationship
suggests that the adaptability of CRISPR-Cas systems may have originated from
these elements. The integrated genetic material is used as the (g)RNA within the
system which enables the recognition and destruction of the invading genetic
material (Koonin and Makarova, 2019).

1.1 CRISPR-Cas systems



1.2 TYPES OF CRISPR

There are many types of CRISPR-Cas systems which employ different unique
genes and proteins in different combinations; significant differences between
theses types enable distinct levels of defence. CRISPR-Cas types I, I and III all
use different unique genes within their systems: Cas3 for type I, Cas9 in type
IT and finally Cas10 in type III. These types are found in many varied species
across both Bacteria and Archaea (Makarova and Koonin, 2015) ).

Some Cas proteins have been shown to have different efficiencies in gene edit-
ing scenarios. A study published by Banakar et al. (2020) compared two different
Cas proteins, Cas9 and Cas12a, that cleave DNA in different ways. In situations
where Cas9 would cleave to produce a blunt end of DNA, Cas12a cleaves to
create a staggered DNA end. Although Cas genes have similar functions within
the biological system, they vary in their efficiency at cleaving DNA and causing
genetic disruption (Makarova et al., 2019) . These differences in efficiency may
influence which organisms adopt certain CRISPR-Cas systems, depending on
environmental pressures or the presence of other existing defence mechanisms
(Makarova et al., 2019) . There is significant amounts of research carried out
on Cas9 proteins, which have various reports of Cas9 cleaving with blunt ends,
1-base pair staggered ends or multiple base pair staggered ends (Stephenson,
Raper and Suo, 2018). This is a key concern regarding the capabilities of this
type of gene editing that uses Cas proteins in vivo. The variation in results
reported implies that Cas9 can cut in multiple ways, however, this variation has
yet to be explained in published research.

The types of CRISPR-Cas systems that are present across biological life differ
in many ways. In this project we did not discriminate between CRISPR-Cas
subtypes due to the challenges associated with labelling and sorting data in
a project of this duration. The amount of data required to discriminate the
subtypes would also have been a limiting factor in terms of having comparable,
or balanced, numbers of each CRISPR-Cas type in order to prevent overfitting.

Phages and their respective bacteria have been in an arms race for billions of
years (Koskella and Brockhurst, 2014). Some of these phages have evolved to have
CRISPR-Cas aversion through the inhibition of the CRISPR-Cas proteins (Stanley
and Maxwell, 2018). This presents an interesting opportunity to apply these
phages within medicine. If the use of a designer phage is required for treatment
of a bacterial infection, the use of this protective inhibition could be added to
all phages to universally remove the chance of the bacteria defending from the
phage attack. However, research carried out by Camara-Wilpert et al. (2023)
found that the inhibition features of these ‘Racr’ proteins are specific to the type
of CRISPR-Cas system it is trying to inhibit. This necessitates the sequencing of
the bacterial genome to identify the type of CRISPR-Cas system present prior to
deciding which inhibiting protein would work for that specific bacterium. The
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potential of these inhibition proteins is currently unrealised, though once fully
characterised, these proteins could offer a deeper understanding of mechanisms
to fight these dangerous infections.

1.3 RANDOM FORESTS

RF algorithms are a powerful ML methodology, commonly used for classification
and regression tasks (Breiman, 2001). The algorithm operates through the
creation of many decision trees and calculating the mode when classifying, or

alternatively the mean prediction when working in regression, for each tree.

To form the forest the algorithm uses decision trees, these trees split the data
based off of the significance levels of the differentiators in the input features,
creating a set of simple decision rules which are interpreted from the input data
features (Breiman, 2001) . RF algorithms use a technique called ’bagging’ which
allows multiple subsets of the original data to be used to train trees on different
pieces of data; this allows for diverse training of the algorithm. Random feature
selection at each split of the tree increases the diversity of data features used
to train the algorithm, enabling uncorrelated data features to be used in each
tree. The algorithm then uses the decision trees it has created to “vote’ at the
end of training; when the algorithm is classifying, the majority vote is selected,
whereas when the algorithm is being used for regression, the average output
of all the trees in the forest is computed (Breiman, 2001). These features of the
model allow for use with Big Data and enables increased predictive performance
when compared to stand alone decision trees.

‘Big data’ is a term used to define data sets which are orders of magnitude
larger than datasets which can be analysed by conventional methods. This
type of data set is linked with generation speed and volume of data which can
both be affected by the types of data being used and the accuracy of said data
(Greene et al,, 2015). While being used for many diverse types of analysis in
bioinformatics, it is also used in genomics, proteomics, transcriptomics, and
more. In specific, the use of Next-Generation Sequencing (NGS) techniques,
can quickly generate terabytes of data. Illumina, PacBio and Oxford Nanopore
sequencing all require techniques to analyse the output of genomic data in a
fast and efficient manner (Gupta, Kumar and Kumar, 2023). The techniques used

for analysing this type of dataset require the capability to understand patterns.

Common methodologies which use Big Data are ML models; the capabilities
these models have for understanding and analysing copious amounts of varied
data enables bioinformaticians to find patterns previously unrecognisable in
the data (Greene et al., 2014). The combinations of data which can be used is
endless within this space. The use of genomic and transcriptomic data by Curtis
et al. (2012) has enabled the analysis of the data of 2000 breast tumours and has

1.3 Random Forests
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revealed novel subgroups. Some challenges which are faced when using Big Data
in bioinformatics are the requirements for storage; high-performing computing
facilities limit the capabilities of research to groups or companies which can
afford to use these types of facilities. Another challenge regarding the use of
Big Data is that currently, there is no standardised file format and structure for
types of information available in online repositories and databases. Further-
more, data privacy and security must also be considered, as human genomic
data is considered confidential information and would require ethical and legal
understanding of what is required to protect this type of information(Greene et
al., 2015). The future direction of Big Data in bioinformatics could include the
possible use of quantum computing and a deeper use of artificial intelligence
and ML models (Li et al., 2019).

There are a few advantages of using this model compared to other models.
One advantage of this model is reducing overfitting; the use of multiple different
trees allows the model to calculate using vast amounts of data, thus improving
the capabilities of the algorithm regarding the diversity of inputs and decisions
made from those inputs. Another advantage is the model’s capability to handle
Big Data, the model allows for use of large datasets, enabling use within complex
tasks or datasets where associations are difficult to find. Another advantage is
the model’s stability with ‘noisy data’, when parts of the data are not associated
or integral to the objective of the analysis the model handles the irrelevant data
effectively.

For RF to be used appropriately with the data, we must understand the type
of data required for RF - a pangenome is used in this project. The pangenome
allows us to use it as a matrix to enable features to be used for decision trees.
The matrix enables the algorithm to understand if a gene family is present or
absent in the genome. These gene families are seen as features for use in the
decision trees.

For this project we applied the ML architecture of RF to approach the project.
An RF algorithm can be used for many different problems, it allows for use of
randomised decision trees to calculate probabilities based off of a ’training set’
and a ’test set’, these sets are randomised. A predetermined percentage of the
dataset will be used to train the algorithm, and the remaining data will then
be used to test the algorithms capabilities. These algorithms are particularly
useful in answering yes or no questions, or in other words binary questions.
This lies in agreement with the current assumption of CRISPR-Cas systems;
either an organism will have the genes within their genome or they will not.
Using this architecture, we can feed large pangenomes into the algorithm and
use the presence or absence of a gene to calculate a probability. Subsequently,

we can find the associated genes with the CRISPR-Cas system.
This method allows for a large amount of data to be used to find the associ-
ations. There are many computer programming libraries available which contain

1 Introduction



a function to use RF. The one used within this project is Sklearn (Pedregosa et
al., 2011), in the Python programming language (Python Software Foundation,
2024). This allowed for a quick turn around with development and allowed
for fast customisation of each parameter. Specifically used for limiting RAM
usage were: ‘'max_depth’ which is the maximum depth each decision tree will
reach before being stopped, 'n_estimators’ which is the number of decision
trees which the algorithm uses to calculate the feature importances, and finally
‘n_jobs” which is the number of CPU cores which are used by the algorithm for
parallelisation. The modification of these parameters is crucial to the effective-
ness of the algorithm, increasing or decreasing accuracy and computational time
accordingly. The Sklearn library also has features which can report the results of
the algorithms calculations, these can be customised as well. Accuracy, Precision
and Recall are all metrics that are calculated to understand the effectiveness of
the algorithm, the equations used to calculate these are found below.

A _ True Positive(T P)+True Negative(TN)
CCUTracy = e Positive(T P)+True Negative(T'N)+False Positive(FP)+False Negative(FN)
o True positive(T P)
Prescision =

True Positive(T P) + False Positive(F P)

True positive(TP)
True positive(T P) + False Negative(FN)

Recall =

(Chen and Liaw, n.d.)

These equations use four key metrics: True Positives (TP), which are the
correctly predicted positive cases; False Positives (FP), which are negative cases
incorrectly classified as positive; True Negatives (TN), which are correctly pre-
dicted negative cases; and False Negatives (FN), which are positive cases in-
correctly classified as negative. These values provide measurements of the
performance of the ML algorithm. The strength of the associations within the
dataset can affect these metrics. While a high accuracy (>0.9) is often considered
strong, accuracy can be misleading if interpreted alone, especially in imbalanced
datasets. Therefore, other metrics such as Precision, Recall, and the AUC-ROC
score are important for evaluating performance. The AUC-ROC score reflects the
model’s ability to distinguish between classes across all classification thresholds
(Corbacioglu and Aksel, 2023). It is particularly useful for binary classifications,
as it shows how well the model separates positive cases from negative cases
regardless of the decision boundary. Given the binary nature of both the data
and the classification task in this project, the AUC-ROC score is a metric which
will be used for model evaluation. However, Precision, Recall, and Accuracy
are also calculated to assess changes in hyper-parameters and how input data
affects overall model performance.

1.3 Random Forests 9
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1.4 PROTEIN SYSTEMS AND CO-EVOLUTION

Proteins rarely work in isolation, these molecules work in systems and pathways.
These systems are commonly called networks and are found through associ-
ations computationally and experimentally (Spirin and Mirny, 2003). These
Protein-Protein Interactions (PPIs) are multifunctional and capable of enabling
adaptive responses to environmental changes and signals (Westermarck, Ivaska
and Corthals, 2013), these PPIs allow cells to exhibit many diverse external
features (Nooren, 2003) and fulfil many roles in cellular signalling, enabling
communication and coordination between organisms of the same and different
species (Nada et al., 2024). Certain proteins and genes may not be part of a
specific pathway or system, but these proteins still interact and associate with
various systems, increasing the efficiency of the system as a whole. These types
of proteins are called ‘moonlighting proteins’ (Huberts and van der Klei, 2010).
The multitasking capabilities that these molecules provide is essential to saving
energy and enabling certain biological systems to perform their role efficiently.
An example of this is the protein pyruvate kinase (PykA), it has been linked
with replication, and research has implicated that this specific enzyme has the
capability to interact and react to signalling molecules (Horemans et al., 2020).
These proteins do not only interact with other proteins; some can be used to
enable transcription of genes in specific scenarios or even inhibit transcription
of proteins by way of binding to enhancers and promoters (Westermarck, Ivaska
and Corthals, 2013).

The co-evolution of genes and their corresponding proteins has allowed ad-
aptation and efficiency to be meticulously tested for survival fitness, elucidating
the full extent of the roles each gene has within a network can allow for the
understanding of why certain genes have evolved alongside others (Dilucca,
Cimini and Giansanti, 2021). Research shows that certain genes which have
similar patterns in codon usage are usually part of a PPI system together; these
interactions have been conserved over generations due to the beneficial nature
of the system, forming a lineage of co-evolution (Fraser et al., 2004). The co-
evolution of transcription factors and the specific binding sites have evolved
simultaneously alongside their specific genes to allow for tuning and control
of the response to certain stimuli (Yang et al., 2011). These factors enabling
the co-evolution of both proteins which interact in systems or PPIs and the
transcriptional factor tuning, has allowed for associations to be formed outside
of the system specific proteins. Understanding how certain genes interact or
associate with genes outside of the systems which they are involved in is crucial
to fully understand how the genome works. Understanding the fundamental
associations could also shine a light on the selective capabilities which bacteria
hold when being presented genes through Horizontal Gene Transfer (HGT; Yang
et al., 2011). Why would a bacteria choose to have one gene over another if
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presented simultaneously? Is this just random chance or is this decision made
through a selection process of associations between the proposed addition and
the current genome? If the associations are not beneficial and only hinder the
organism, this could explain why certain systems, as an example CRISPR-Cas
systems, are not found within more of the population of bacteria.

1.5 OTHER DEFENCE MECHANISMS

Phages and bacteria have a relationship similar to that between viruses and
humans, parasitic in nature. Phages invade the cell and inject their genomes into
the bacteria to integrate and use the bacteria to replicate itself within the host
organism (Huang et al., 2021). The phages which infect the bacteria are very
specialised and specific to each bacterium. Being species-specific allows for the
specialisation of infection methods. Binding to the cell surface membrane of the
organism is the most direct route to injection of genetic material into the bacteria
(Huang et al., 2021). Infection can be halted at the first interaction between
the bacteria and phage by modification of the external proteins to which these
phages bind. If the phage cannot bind to the cell surface membrane, they are
unable to inject their genomes into the bacterial cell. This is a passive defence
system which can be used by the bacteria to increase its survival until the phage
mutates and is able to interact and bind to the newly formed protein (Wang, Fan
and Tong, 2023) . Reconstructing external structures such as membrane lipids is
the backbone of defence for the bacteria, however it can also affect the virulence
of a bacteria. Changing the structure of capsular polysaccharides can reduce
the phage susceptibility. This is just one example of extracellular structures that
can be modified to defend the assault of the phages (Wang and Leptihn, 2024). If
the binding of a terminal phage can be defended against, then the fitness of the
bacterium is increased; simple changes of structure can come about by mutation
of the genome. Sorensen et al. (2011) reported that phage F336, which infects
Campylobacter jejuni, recognises the capsular phosphoramidate which is found
on its cell surface. Phages binding to non-protein extracellular structures creates
numerous opportunities for the subversion of the bacterial defence systems.
Changing the structures of extra-cellular polysaccharides can affect the fitness
of the bacteria within the environment, affecting their resistance to desiccation
and their ability to adhere to surfaces in their environment (Bazaka et al., 2011).
Superinfection exclusion systems are defence systems that function at the cell
surface level, working to prevent the injection of phage DNA into the cytoplasm
(Cumby et al., 2012). Research has showed how specific proteins which are
bound to the inner membrane of the bacterial cell prevent the DNA of specific
phage from entering the cell (Cumby et al., 2012); these proteins only defend the
cell from the DNA of a specific phage. An efflux of potassium ions from cells
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into the growth medium correlates with the injection of phage DNA into the
cell. When gp15, a mucin glycoprotein found in certain bacteriophages, was
present there was no efflux measured when its specific phage HK97 attempted
to inject the DNA into the cell. The results of the study imply that a bacteria can
adaptively defend against the phages that are present in its natural environment
by actively blocking foreign DNA from entering, using specific proteins that
can combat infection by those bacteriophages.

1.6 INTERNAL GENETIC DEFENCE SYSTEMS

Microbes use sophisticated systems that have evolved and adapted over billions
of years to defend against introgression by Mobile Genetic Elements (MGE) and
phages. Common genetic defence systems include R-M systems, CRISPR and
CRISPR-Cas genes. Bacteria can also defend the rest of the colony by causing self-
destruction if infected by a phage for which there is no possible defence (Lopatina,
Tal and Sorek, 2020). R-M systems are defence systems that are used to defend
from genetic attacks; these systems are used by the bacteria to defend against
specific MGE. These systems are non-adaptive and only defend against specific
genetic sequences. They are separated into 4 types (I-IV; Vasu and Nagaraja,
2013). Each type consists of different genes, or more specifically, different
combinations of genes. Most are found to contain a restriction enzyme (R unit),
a modification enzyme (M unit) and a specificity unit (S unit) (Labrie, Samson
and Moineau, 2010). These systems only identify specific DNA sequences if
the invading genetic material does not contain the specific sequences targeted
by the R-M system; this then leaves a gap in the bacterium’s defences as R-M
systems are not adaptive. Ifthe bacterium is moved to another environment with
different bacteriophages or MBEs, the defence system becomes inefficient to
retain within the genome. This defence system is not adaptive and is only useful
if the invading genetic material has an appropriate restriction site that can be
cleaved by the R-M system (Labrie, Samson and Moineau, 2010). The upside to
harbouring such a system is that the response time of this defence system is
faster and more efficient, which could be a reason these defensive systems are
found widely across bacteria (Weissman et al., 2021).

1.7 MEMBRANOME

The membranome plays a crucial role in the protection of the single-celled
organism, and the composition of the membranome has been linked with CRISPR-
Cas. Research carried out by Rubio et al. (2023) analysed the ESKAPE organism
group and found that there was a link between the membranome and CRISPR-
Cas. Associations between other cellular systems and CRISPR-Cas are being
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discovered (Hille and Charpentier, 2016), and this project sought to add to that
knowledge base.

The membranome contains multiple types of proteins, including anchored
and unanchored proteins (Brown and Waneck, 1992). Anchored proteins are
bound to the plasma membrane and are unable to move about the space freely
(Brown and Waneck, 1992). These proteins are usually transport proteins, or
proteins that have a defensive mechanism to block the binding of external
molecules to the plasma membrane. Unanchored proteins fulfil a different role
as they are present outside of the inner membrane within the periplasmic space;
these proteins are designed to intercept attacks before they reach the inner
membrane, and are usually secreted (Fryszczyn et al., 2011) . Other structures
outside of the cell-surface membrane are also used as defensive mechanisms to
protect from non-specialised attack, these can include antigenic proteins and
the peptidoglycan cell wall (Salton and Kim, 2011). The cell wall is designed to
protect from environmental factors, whereas the antigenic proteins are designed
for signalling what they are and whether they are the same species or not, to
other bacteria and organisms within their environment. These structures all
work in unison outside of the cell, however, the links found within the research
mentioned previously and within this project, may infer that there is more
of a link between the defence mechanisms outside of the cell and inside, in
this project we attempt to find the associations between the internal defence
mechanisms (in this case CRISPR-Cas) and external defensive mechanisms.

1.8 GENOME ANNOTATION AND PANGENOME CREATION

Genome annotation, the identification and characterisation of functional ge-
netic material within a file which contains the genome, is a crucial process
in bioinformatics. Annotating genomes can label genes, regulatory elements,
and even non-coding sequences; these can be separated into structural annota-
tion and functional annotation (Ejigu and Jung, 2020). Structural annotation
labels the genes’ locations, coding sequences (CDS) and even CRISPR-Cas ar-
rays. Functional annotation labels sequences with biological roles based off
of the homology, experimental and predictive data (Loewenstein et al., 2009).
To perform this task, there are applications which allows one to feed genetic
information into and annotate quickly and easily; however, these applications
require the use of databases to find these sequences. A few databases which
are commonly employed for this are: RefSeq and UniProt (Bateman et al., 2020,
Goldfarb et al., 2024). The use of sequence similarity searches is also employed to
assist in finding predicted labels for genes which are not exactly alike. Blast and
Diamond are both frequently used and respected applications used for this task
(Altschul et al., 1990; Buchfink, Xie and Huson, 2014). These applications though,

1.8 Genome annotation and Pangenome Creation

13



14

have their downsides; incorrect predictions and mis-annotation of genes are
both issues which can arise. Another frequent issue is labelling uncharacterised
proteins, as there is no information about them, and even in some cases, do not
have a name associated with them. Even with these challenges, this process
and mentioned applications are pillars in the bioinformatic process for studying
genetic variation and improving microbial strain characterisation (Truong et al.,
2017).

The use of annotated genomes allows the formation of a pangenome. A pan-
genome is a collation of all of the genes found within the genomes of many
different species; a matrix of presence and absence of each gene family, which
separates them into core genes - genes found in most if not all genomes- and
accessory genes -genes found in a few genomes (Matthews et al., 2024). To
construct the pangenome, the comparison of all of the genomes which are to
be added is required, and there are tools available to help with this task: Roary,
PanX and PanTA. These applications allow for the construction of pangenomes
in effective time windows, and althought the computational requirement is
intensive, it can be controlled through the understanding of the size and depth
of the pangenome being created. Most applications require a niche type of file
to create a pangenome: a .GFF3 file. A GFF3 file contains both the annotated
gene sequences and the raw DNA sequence; this type of file can be created
from the annotation application being used. Pangenomes are unique in their
position within bioinformatics, which allows for the understanding of gene asso-
ciations and strain-specific genes that may influence virulence or environmental
survivability.

1.9 WHY v-PROTEOBACTERIA?

The focus of this study is on a y-proteobacteria pangenome. y-proteobacterial
genomic data is readily available, allowing for an exceptionally large dataset to
be created for the training of the ML algorithm. Many of these genomic files are
available in the required format, and with the appropriate level of contamination
and completeness of the genome from the NCBI repository. Reference and
complete genomes are the only genomes downloaded from the repository for
this project. This study focusses on genomes that have been sequenced after
the 1st of January 2018, in order to take advantage of the improved quality of
these genomes that is primarily due to the use of next generation sequencing
techniques.

The NCBI repository offers a wide range of available genomes for bacterial
species and an even spread of the presence of CRISPR-Cas systems within the
dataset, which enables the highest predictive power of the algorithm. A dataset
with a balanced number of CRISPR-containing and -deficient genomes provides
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greater power for understanding their association with genes in the respective
background genomes.

~v-proteobacteria have been used throughout many different comparative gen-
omic studies. The genetic variability that is shown by this phylogeny lends itself
to suitability within large scale comparative genomic datasets (Vazquez-Rosas-
Landa et al., 2017). This phylogeny also exhibits high levels of HGT, emphasising
the highly variable nature of the genomes (Juhas et al., 2009). These bacteria
are becoming more significant within clinical biology and medical sciences due
to their relevance within infection cases and the rise in antibiotic resistance
(Diebold et al., 2023). y-proteobacteria are a phylogeny which interacts with
many different species of flora and fauna and these microbes are extremely
versatile within ecology. Their presence and interactions within certain microbi-
omes and environments can offer a beneficial outcome for both parties involved
(Koberl et al., 2017).

The primary aim for this research project is to develop a RF algorithm in
Python, that when provided with a pangenome of «-proteobacteria, will be
capable of finding gene families that have an association with CRISPR-Cas
systems. To achieve this aim, a large interspecies pangenome will be construc-
ted using complete genomes from the NCBI repository; this will require the
use of PanTA as a pangenome construction tool. This pangenome will be re-
fined and annotated with a binary identifier to determine if a genome does or
does not contain CRISPR-Cas arrays. Importantly, the gene families which are
already known to have associations with CRISPR-Cas systems will be removed
from the pangenome, which will reduce the algorithm’s dependency on known
associations.

In this thesis, the materials and methods presents a step-by-step overview
of our pipeline and the applications used, including all of the settings and data
used for each step. A few steps include evidence of the editing of application
code, where images and line numbers are referenced regarding the changes
that were made. The results section includes: excerpts of each pangenome
that illustrate how the dataset for training our algorithm was constructed, the
associations found by the algorithm and its final calculated accuracy metrics.
In the discussion section of this thesis, you will find the breakdown of the
analysis of the algorithm’s accuracy, and associations alongside their ‘feature
importances’. Chi-squared tests were carried out on the contingency tables,
shown in our results section, to help understand the significance level of the
results gathered.

1.9 Why v-proteobacteria?
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Materials And Methods

All computational work was completed on the Ada high performance computing
facilities which are provided by the University of Nottingham

( https://exchange.nottingham.ac.uk/blog/introducing-ada-the-universitys-new-
most-powerful-hpc-service/) All scripts used and mentioned will be freely avail-
able for use and viewing on the GitHub repository (https://github.com/Zephyure/Thesis-
Code-1). The high-performance computing system that was used had maximum
settings allowed these settings were as follows: 300 Gb of RAM, 96 CPU cores
and 2 Tb of hard drive storage. While some scripts which were used did use the
full 300 Gb of RAM, most did not. The datasets are available in the supplement-
ary information. Below is the Pipeline overview, which was used to process
all the genomes, each step that was used work in succession, however, due to
unstandardised file structures some files do not work with this pipeline. For
that reason, the starting number of genomes was 14,500, however at the end of
the pipeline only 9,689 genomes remained for use in training the ML algorithm.
Figure 2.1 shows the entire main application pipeline it does not include all
custom scripts which were used due to the number; however, all scripts are
available in the GitHub as mentioned. While using applications which require
dependencies an environment was used, specifically Anaconda, this allows for
installation of the applications and their dependencies in an easy-to-use package
where a ‘Conda’ environment can be used to separate different processes and
applications depending on the versions of the dependencies which are needed.
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21 GENOME ACQUISITION

NCBI datasets application was used to interact and query with the NCBI database,
using specified criteria to download high quality starting data. The command
used: ’datasets download taxonomy taxon 1236 —assembly-source Refseq —
assembly-level complete —include gff3 -released-after 2018-01-01" this command
downloaded 14500 gff3 file format genomes through the NCBI database API.

2.1.1 MOVING FILES WITH SPECIFIC FILE ENDINGS

After downloading these genomes, we needed a way to move specific files
from the download package to the directory that we wanted to store them in.

These lines allow for the changing of the source directory and target directory,
this script was used at every step of this project to move all the files around simply
and quickly. (The FileMover.py script is available here: https://github.com/Zephyure/Thesis-
Code-1/blob/main/FileMover.py)

22 GENOME ANNOTATION USING BAKTA

Bakta (Schwengers et al.,, 2021) was used as a genome annotation application to
annotate the (14,500) genomes to generate the file formats which were required
to be used within the pan-genome generation application PanTA (Le et al., 2024)
which requires a .gff3 file format with the genome sequence in fasta format
underneath a detailed annotation of the genome. Bakta has a database option
which must be downloaded and the file path to the database was integrated
into the command to activate bakta. A job-array of 100 simultaneous jobs was
used to run all (14500) genomes through bakta quickly. Bakta does not have
a parallelisation command within it so each genome must be run separately,
for this a custom script written in Python was used to allow for automatic
annotation this script can be found in the GitHub repository under the name
BaktaPipe2.py. Bakta outputs many files which vary in use cases. We only
retained the .json files and .gff3 files for further analysis. BAKTA was installed
onto a Conda environment and the ‘Diamond’ dependency required a downgrade
from the latest version back to version (2.7) due to a conflict with the more recent
version (Buchfink, Xie and Huson, 2014). Ensuring the installed dependencies
are compatible with Bakta was required for proper usage of the application.
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2.21 CREATING LIST OF FILES TO BE PROCESSED

Jdterdir() if f.i

To facilitate the use of Bakta we first iterated through the directory of bacterial
genomes downloaded from the NCBI repository. This line in the script makes a
list of all file names, to allow for full processing of the genomes.

2.2.2 RUNNING BAKTA PROCESS

Using the ‘subprocess’ module a Python script was used to run terminal com-
mands with applications that needed to be used through the console. Bakta and
most applications for this kind of process require use of this kind of command.
This script also renames the output files of Bakta to the name of the input genome,
Bakta produces a whole file batch for each file processed which is why we use
the file mover script to move the files that we want after full annotation has been
carried out. The movement of “.gff3’ files into their own directory for the use
within pangenome creation, and the “json’ files are moved as well for use in the
CRISPR annotation step later. (Available at: https://github.com/Zephyure/Thesis-
Code-1/blob/main/Baktapipe.py)

2.3 PANGENOME CONSTRUCTION

PanTA (Le et al., 2024) was used as a pan-genome generation tool to gener-
ate a gene presence absence file which simply shows all the genomes and all
the genes which are present within each genome. This allows for the use of
the gene_presence_absence.Rtab in the next steps of the pipeline. The .GFF3’
files were input into the PanTA application 1000 at a time, this was due to
the limitations of the high-performance computing system that was available.
PanTA was used is due to its ability to add a new genome or multiple gen-
omes to an already generated pangenome. This functionality allows for the
gradual increase of the size of the pan-genome, 1000 genomes each time. The
gene_presence_absence.Rtab was then reformatted into a comma-separated
values file and was then binarized to show 1 for gene presence and 0 for gene
absence.

2.3.1 MOVING 1000 FILES AT A TIME

To move 1000 files at a time into the pangenome target directory a for loop with
a counter to 1000 was implemented, and a file type filter was used so that it
would only move files of a specific file type, in this case “gff3’ files, this enables
the directory to be populated with 1000 files at a time from the source directory.
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This type of movement uses the ‘Shutil’ module to allow the movement of the
files instead of the copying of the files.

2.3.2 PANTA CODE EDITED: (MAIN_PIPELINE.PY)

84  def run_blast(database_fasta, query_fasta, out_dir, evalue=1E-6, threads=32):

For PanTA to run faster I edited the 84th line of the ‘main_pipeline.py’ to
increase the number of ‘threads’ that PanTA uses for BLAST commands to 32,
the number of ‘threads’ refers to the number of CPU cores that will be used
when the application is being ran. This effects the number of CPU cores which
can be pooled by the PanTA application so the number of cores which I needed
from the Ada HPC was changed to enable this level of threads.

Like the previous change however this was to change the ‘num_threads’ value
to 4 so that PanTA would run 8 BLASTs at a time for much faster processing
of the genomes and genes which are being added to the pangenome. Without
these two changes PanTA took too long to sequentially add 1,000 genomes at
a time. Upon investigation changing to 4 cores being allotted for each BLAST
search within the PanTA application and a 32 core CPU pool allowed for the
greatest speed-up while keeping the CPU usage to a minimum.

Even though we do not use ‘Diamond’ within the PanTA application, the
program has an option to use it. A compatibility issue with the version of
‘Diamond’ that was being used by the application, required us to downgrade
from the latest version of ‘Diamond’ back to a more stable version.

2.3 Pangenome Construction
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2.3.3 BINARIZING DATASET

After PanTA was used, we had to then binarize the data set to be able to feed it
into our algorithm, this required changing any value which was greater than ’0’
to be changed to a’1’. PanTA has many different values across the pangenome
instead of just a presence-absence (or 1 and 0) approach to evaluating genomes, it
runs a blast across the genomes and finds the number of genomes which contain
a similar gene sequence for that genome's version of the gene family and outputs
that value as it being present; For instance a value for a gene family within
the genomes column of ‘42° depicts that 42 genomes have a similar sequence
to that genome's version of the gene. The absence of the gene family is still
only outputted as ’0’. This script can be found in the GitHub repository at:
https://github.com/Zephyure/Thesis-Code-1/blob/main/GenomeBinarizer.py.

24 REMOVAL OF EXTRANEOUS DATA POINTS

The 2% check script uses the data within the pangenome to check whether there
is a minimum of a 2% difference in the number of genomes which contain or
do not contain said gene. At least 2% of the columns must contain a different
value to the rest of the dataset (within a row) to be kept within the dataset. The
script then removes all the rows which do not contain the required difference,
this script was designed to remove the cases where only one genome contains a
gene, because it would be a result that is not statistically relevant.

241 COUNTING TO CALCULATE

The ‘Counter’ module was used in this scenario to reliably count the number
of ‘1’s or ‘0’s found in each row of the pangenome.

24 for row_number, row in enumerate(reader, start=2): # Start from 2 because we ski

We skip row 1 and column 1 or the pangenome due to the first row being
used for the names of the genomes and column 1 contains the feature labels for
each feature (gene family label) for the algorithm.

31 # Get the most common value and its count
. most_common_value, most_common_count = value_counts.most_common{1)[@]
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Line 32 finds the most common value of either ‘1’ or ‘0’ within each row, then
assigns that value to the most common value, and also assigns the number of
times that value was found to the most common count variable to then be used
to calculate the percentage which the value covers within that row.

Line 42 calculates if the coverage of the row is more than 2% of the different
values, which then if it is found to be greater than or equal to the threshold set
it then uses line 44 to write the row into a new ‘.csv’ file which is the filtered
pangenome. This threshold can be changed to any value which you desire but
for this project it was set to 2% allowing extraneous data points to be removed to
give the algorithm more reliable predictive capabilities. This script is available
at: https://github.com/Zephyure/Thesis-Code-1/blob/main/twopercentcheck.py.

2.5 ANNOTATING PANGENOME WITH CRISPR DATA POINTS

This script was written in Python to use the .json files that were generated by the

Bakta application to annotate each of the genomes within the gene_presence_absence.CSV
based off of whether the string 'CRISPR array’ was found within the .json file

which has the same name as the column, it then places a 1 for if the desired

string was found or a 0 if it was not found in a new row at the bottom of the

.CSV file.

json_dir, filename)

in json.dumps(data)

if found:
print (" rray’ in {filename}"}

2}. {checker3}

in {filename}")

column_name = os.path.splitext(filename)[a]

ts[column name] = 1 if found else @

This is a part of the script which was used to annotate the pangenome with
CRISPR classifications under each genome, this if what the algorithm will use to
learn how to identify if CRISPR will be present or not. From this script we can see
that in line 16 we iterate through the directory with the “json’ files from Bakta
which we moved earlier. Line 21 loads the file data and allows us to use line 23 to
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search through to find the words ‘CRISPR array’ this indicates where Bakta has
found a CRISPR array which in this project we say that CRISPR is present in the
genome if this is found within the “json’ file. From there we then made a running
count from lines 27-29 where the exact percentage of genomes which contain
CRISPR was calculated in real time. This script then populated the CRISPR row
within the pangenome with either a 1 or 0 based on if the ‘CRISPR array’ quote
was found within its associated “.json’ file or not. This script is available here:
https://github.com/Zephyure/Thesis-Code-1/blob/main/Crispradder.py.

2.6 REMOVING CRISPR ASSOCIATED GENES

A Python script written to remove any gene from the pangenome that contained
’Cas’ within its nomenclature. This would remove genes such as the cas2’ gene
and its representative row within the .csv file. Some *CRISPR associated proteins’
genes were left within the pangenome specifically any ’csy’ gene such as ’csy3’
these genes were left in the pangenome to set a benchmark to check if the
algorithm was finding similar associations each time the algorithm was ran.

The script used in this step is available for use from the GitHub repository:
https://github.com/Zephyure/Thesis-Code-1/blob/main/CasRemover.py.

2.7 RANDOM FOREST ALGORITHM

The SKLearn random forest package was used to write the ML algorithm, in
conjunction with the .CSV file that was constructed previously. Transposition of
the data was required for compatibility with the SKLearn package. The random
forest package from SKLearn can produce many different statistics, however,
this algorithm was written to only save certain statistics. For the results of this
project the feature importance of all genes within the pangenome were collected
into a .CSV file and the calculated Accuracy, Precision, Recall, F1 score and ROC
AUC scores in another .CSV file.

2.71 CODE USED FOR RANDOM FOREST ALGORITHM

The ’pandas’ module allows for the creation of a ’pandas’ data frame to allow for
the data to be manipulated in ways which it needs to be used for the algorithm
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to work, this option does have an issue though, if the data frame is too large, say
the pre 2% removal pangenome with too many cells in the matrix "pandas’ will
be unable to create and manipulate the data frame. The ’sklearn’ module was
used to simplify the RF algorithm to allow for simple creation and control of
each individual setting if required. Line 3 is where the 'RandomForestClassifier’
was imported.

data.set

data_transposed = data.T

Here we take the data frame and set an index; this index will be used to
make sure that the ‘features’ (the gene families within the pangenome) are still
labelled when the data frame is transposed from vertical to horizontal, in line 10
we see ‘inplace=True’ this setting states that the label is already in the correct
place on the Un-transposed data frame and will be kept in the same place when
transposed, due to the way the random forest algorithm is coded to work in the
‘sklearn’ library.

st_split(X, y, test_size=8.3,)

The data was split into a training set and testing set. In line 22 the ‘test_size’ is
set to 0.3 meaning that 30% of the data is set aside in the training of the algorithm
so that it can be used to test the algorithm after training, this can be changed to
any specific number from 0-1, however, it was found in testing that a split of 0.2
(20%) to 0.3 (30%) was best for the algorithm’s accuracy.

These lines of code run the algorithm on our dataset, this sets the settings
for the algorithm as well, 'max_depth’ is the depth that each decision tree will
grow to until moving to the next one. 'n_estimators’ is the direct control over
the number of decision trees will be generated and calculated by the algorithm,
the depth and number of trees are a direct link to how many CPU cores you will
need as well as the amount of RAM you will require. Consequently, we set the
‘n_jobs’ to 90 to use 90 CPU cores, this was used in conjunction with 300 Gb
of RAM which was available to the algorithm. The criterion for classification
was set to ’gini’ which refers to the Gini Index this was chosen due to testing

2.7 Random Forest Algorithm
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carried out where the best performance of the algorithm was found when ’gini’
was used as the criterion.

Lines 32-38 calculate all the metrics which are used to analyse the capabilities
of the algorithm, these are then saved into a “.csv’ file. These metrics are calcu-
lated by the ‘sklearn’ library previously mentioned, using this package allows
us to calculate the metrics directly from the algorithm.

values{by="Importance', ascending=False)

The use of a 'Pandas’ data frame is used again to collect the feature importance
values which are calculated from the model, this section places all the calculated
values and places them into a descending order based off the calculated "Import-
ance’ value. This script is available on the GitHub at: https://github.com/Zephyure/Thesis-
Code-1/blob/main/RandomForestAlgo.py.

2.8 CREATING CONTINGENCY TABLES FROM THE
PANGENOME

To calculate the Contingency tables for each gene, a Python script was used to
find the number of genes for all associations between any gene and the ‘CRISPR’
identifier row.

2.8.1 CODE USED TO CONSTRUCT CONTINGENCY TABLES

roW_Name: name 1Im row

{row Y row_name in

row_name in

Line 21 is the creation of a dataframe which enables the searches, and lines 22-
25 create arrays for each option which the contingency table has. The variables
named ‘match_counts0’ and ‘match_counts1’ both are related to the times where
both the gene being searched for and the ‘CRISPR’ identifier row have the same
value within the genome. Whereras, the variables ‘mismatch_counts10’ and
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‘mismatch_counts01’ link to when the gene is present and ‘CRISPR’ is absent,
and when the gene is absent but ‘CRISPR’ is present respectively.

"OW_Name 1n row_names:

name "{row_name}"' not found in

This checks if the genes that are being compared to ‘CRISPR’ identifier row
are actually within the pangenome, this step requires the full name of the gene
which is being added to the contingency table.

mismatch_co _name] += 1

Lines 35-43 add the counts of each option of the contingency table to their re-
spective variables. This script is available on GitHub at: https://github.com/Zephyure/Thesis-

Code-1/blob/main/ContingencyTableMaker.py
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Results

3.1 PREPROCESSING

The use of NCBI's Datasets allowed for the download of 14,500 genome files
from the NCBI public API These files were used in conjunction with the Bakta
application to annotate the genome files using the Bakta associated database
(available at (put in links)). The Bakta application outputs nine different file
types. Seven of these files were deleted, however, two of these file types were
not as they were used for the later steps in the data processing. The results of
the annotation and files which were used are available in the supplementary
information section. PanTA used the input of .GFF3 files to produce a pangenome,
and excerpt of this pangenome can be found in Table 3.1. This output is coupled
with Table 3.2 which is the percentage of each type of gene these genes are
placed into four categories ’Core genes’ which are genes found in 99.0-100.0% of
the genomes, ’Soft core genes’ which are found within 95.0-98.99 of the genomes,
"Shell genes’ which are found within 15.0-94.99% of the genomes and finally the
"Cloud genes’ which are found to be in 0-14.99% of genomes. These numbers
which are calculated by PanTA allow us to understand how closely related our
genomes are within the pangenome that was constructed. There are additional

steps between each stage which are within the Materials and Methods section.

These steps utilised custom scripts to move file types and sort the respective
files into groups for use in further analysis within the pipeline.

3.1.1 REMOVAL OF GENES NOT FOUND IN MORE THAN 2% OF
GENOMES

Using the 2% check algorithm on the large pangenome, the removal and trimming
of 1,372,990 gene families from the pangenome which left only 28,683 gene
families for the algorithm to use to find associations for prediction. This was the
expected result from the 2% check, due to the substantial number of genomes
which were used to construct the pangenome and the fact that the vast majority
of genes in pangenomes tend to be rare (Horesh et al., 2021).
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Table 3.1: Excerpt of Pangenome.

A small section of the Pangenome created by PanTA after the input of .GFF3 files,
the Gene column shows which gene has been found within each of the genomes. The
rows show how many gene sequences were found to be 70% similar to each of the
other sequences found for each gene within the pangenome. The full pangenome is
available in the electronic appendix.

Gene GCF_012052965.1

GCF_012053145.1

GCF_012053325.1

GCF_012053725.1

pilA
pmgR
mazZ

stfR

ssb

0

—_ W o O

0

- N O O

0

N WO O

L = =)

3.1.2 EXCERPT OF FIRST PANGENOME

After annotation, 9,689 genomes were added to the pangenome above using the
PanTA program. From this, the result which was produced was expected; the
genes are organised in descending order of most common to the least common.
Each genome has its own column, and each gene family has its own row; many
gene families have different variants which are listed within the pangenome as
the name of the gene family with a series of numbers afterwards, this is shown

more in Table 3.6.
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Table 3.2: Pangenome Gene Category Statistics.
The number of genes that fit into each category according to the output from PanTA,
before removal of 2% outliers.

Category of Genes Number of Genes Percentage of Genes

Core 33 0.002%
Soft Core 21 0.001%
Shell 5328 0.380%
Cloud 1396291 99.6%
Total 1401673 100%

3.1.3 PANGENOME GENE CATEGORY STATISTICS

The Pangenome showed a large distribution of types of genes across the four
calculated categories: Core, Soft Core, Shell, and Cloud (Table 3.2). The 33
core genes found are highly conserved across all genomes meaning they were
present in 99% of genomes, this was expected within such a diverse dataset.
There are fewer Soft-Core genes (21) compared to Core genes. These genes
were found in most, but not all of the genomes present in the dataset. The
Shell genes (5,328) were found in most genomes, but not all. This is expected
when compared to the other categories because it shows a moderate level of
genetic diversity. Many of the gene families fell into the Cloud genes category.
This distribution of genes fits the expectations from previous studies, where
the majority of genes are in the cloud category, and also because of the large
amount of genetic variability present in the group of genomes that we added to
the pangenome. Large bacterial pangenomes show this level of separation due
to the highly variable nature of these genomes.

3.1 Preprocessing
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Table 3.3: Excerpt of Pangenome After Binarization.

Gene GCF_012052965.1 GCF_012053145.1 GCF_012053325.1 GCF_012053725.1

pilA 0 0 0 0
pmgR 0 0 0 0
mazZ 0 0 0 0

stfR 1 1 1 1

ssb 1 1 1 1

3.1.4 EXCERPT OF PANGENOME AFTER BINARIZATION

After the initial pangenome was constructed, a binarization step was carried
out by the Python script ‘genomebinarizer.py’. This transformed the dataset
into the presence absence matrix (Table 3.3) which was the structure required
for input into the algorithm. This process converted all the data within the
pangenome into either a ‘1’, indicating the presence of the gene, or a ‘0’ which
indicated absence. An example of this is the gene ‘stfR’ which across the 4
genome columns, shows presence (1), in contrast, the genes ‘pilA’, ‘pmgR’ and
‘mazZ’ show only absence ‘0’ in all genome columns. This excerpt is merely 4
columns of the 9689 within the pangenome. Across the rest of the pangenome
the gene families found here are the most conserved gene families which aligned
with the expectation. This binarization process enabled further analysis with
the use of the RF algorithm.
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Table 3.4: Excerpt of the Pangenome After CRISPR Identification.
The ellipses indicate a skip in the information as the list of genes is 17813 genes long.
CRISPR row has been added to the bottom using the CRISPRadder.py algorithm.

Gene  GCF_012052965.1 GCF_012053145.1 GCF_012053325.1 GCF_012053725.1

pilA 0 0 0 0
pmgR 0 0 0 0
mazZ 0 0 0 0

stfR 1 1 1 1

ssb 1 1 1 1
CRISPR 1 1 1 1

3.1.5 CRISPR ANALYSIS OF PANGENOME

The ‘CRISPRadder.py’ Python script was used to process the binarized pan-
genome to add the ‘CRISPR’ row. This followed the same logic of presence ‘1’
and absence ‘0’. This type of addition to the pangenome enabled the use of
our RF algorithm, as every genome which was annotated in the first step of
pre-processing had labelled sequences within a ‘json’ file. This file contains the
labelled ‘CRISPR array’ sequences. This step also allowed for the understand-
ing of the percentage of the pangenome that contained CRISPR, and did not
contain CRISPR. The number of instances of CRISPR within the genomes was
4,914 (50.72%) present, with 4,775 (49.28%) genomes recording CRISPR loci being
absent. This split is near perfect for the algorithm, due to the desire of having a
50-50 weighting of present and absent genomes.

3.1 Preprocessing 33
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Table 3.5: Calculated Accuracy, Precision, Recall, F1 Score and AUC-ROC
The calculated values of the set measurements of accuracy for the Random forest
algorithm

Accuracy Precision Recall F1Score AUC-ROC

0.89 0.93 0.85 0.89 0.96

3.1.6 CALCULATED ACCURACY METRICS

The algorithm ran on the processed pangenome, which enabled the evaluation by
use of classification metrics: Accuracy, Precision, Recall, F1 score and AUC-ROC
(Table 3.5). The model achieved an Accuracy score of 0.89, indicating that 89%
of all predictions were correct. This score shows the model has strong accuracy.
The Precision score of 0.93, indicates that when the model predicted that a
genome would contain CRISPR, it was correct 93% of the time. The Recall value
of 0.85 is measured based off the proportion of true positive results (genomes
which contain CRISPR) that were classified correctly. This small differential
between precision and recall imply that the model will prioritise classifying
genomes as negative to avoid false positives whilst still having strong sensitivity.
The calculated F1 score is the mean of precision and recall. The F1 score of
0.89, showed that the model was capable. The final metric calculated was
the AUC-ROC score, 0.96, this score highlights the model as having excellent
capabilities when distinguishing between genomes which contain CRISPR and
do not contain CRISPR. The AUC-ROC score near 1.0, implies the model is good
at discriminating between the classes of positive and negative. The results show
promise of an algorithm which can classify with great reliability, high accuracy,
and strong precision.

3 Results



Table 3.6: Feature Importance Table.
The calculated feature importance of each gene within the top 10 highest feature
importances, however, the entire entire pangenome has been calculated for based
off of the genes used within the decision trees in the random forest.

Gene Feature importance
pbp4b 0.00286
csy3 0.00276
yghA 0.00256
ydel 17612 0.00251
pdeA 0.00226
IsrA_07895 0.00219
csy3_11537 0.00216
ais 0.00203
ycaM 0.00197
yjfL_11048 0.00197

3.1.7 ALGORITHM CALCULATED FEATURE IMPORTANCES

The RF algorithm was used to calculate the feature importance of genes when
predicting the presence of CRISPR-Cas systems in the genomes. Feature im-
portance values are determined by the algorithm and calculated based on the
frequency of each gene when contributing to the decision splits within each
decision tree. The genes which have the highest feature importance contribute
most to the algorithm’s predictive capabilities. Table 3.6 contains the list of the
top 10 genes found by the algorithm; pbp4b has the highest feature importance
value of 0.00286, followed by the positive control csy3 (0.00276), yghA (0.00256),
and ydel 17612 (0.00251). According to the algorithm, these genes were found
to reduce the impurity in classification decisions, playing a significant role in
the classification of genomes. These values are small, however, across the al-
gorithm using these genes in multiple decision trees supplements the predictive
capabilities of the model.

The presence of csy3 gene variants (both csy3 and csy3_11537) imply that the
algorithm is finding genes which associate with CRISPR-Cas systems. The
csy3 gene and its variants remained in the pangenome as positive controls,
guaranteeing that while testing the algorithm, the identified genes were found
alongside known associates of CRISPR. These results confirm that the algorithm
can find genes that contribute to the accuracy of the model more than other
genes. This means that they have a stronger association with CRISPR-Cas
systems than others.

3.1 Preprocessing
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Table 3.7: Contingency tables and chi-squared tests for the top 10 genes removing the positive controls

Gene Name Gene present CRISPR present Gene + CRISPR present Neither present Chi-squared statistic Degrees of freedom  p-value
pbp4b 93 2482 2432 4682 966.091 1 <0.01
yghA 336 2113 2801 4439 521.056 1 <0.01

ydel_17612 94 2441 2473 4681 2907.894 1 <0.01
pdeA 222 2270 2644 4553 2809.268 1 <0.01

IsrA_07895 107 2585 2329 4668 2623.565 1 <0.01

ais 321 2212 2702 4454 2627.949 1 <0.01
ycaM 232 2410 2504 4543 2539.568 1 <0.01
yjfL_11048 337 2222 2692 4438 2566.845 1 <0.01

3 Results
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3.1.8 SIGNIFICANCE FOR TOP 10 GENES WITHIN THE
PANGENOME

The calculated chi-squared statistics for all genes is found to be relatively high,
indicating a large difference when compared to the expected distributions. All
p-values are found to be <0.01 enabling the rejection of the null hypothesis for all
genes, the p-values were too small to be calculated, implying great significance
for the association between the genes and CRISPR. ’ydel_17612" and pdeA have
the highest chi-squared statistics, these genes have the furthest deviation from
the expected distributions. All of the genes except 'pbp4b’ and 'yghA’ have
a chi-squared statistic which is very significant (>2500) these results greatly
support the hypothesis of significant associations found by the algorithm. *pbp4b’
has a lower chi-squared statistic (966.091), however, this result implies that
the association is still significant. The lowest chi-squared statistic (521.056) is
found for *yghA’, but it is still a result which points to a statistically significant
association. This table also removes the positive control variables, these are
found by the algorithm but are known to have a significant association with
CRISPR.

3.1 Preprocessing
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Table 3.8: Contingency tables and chi-squared tests for Penicillin binding protein families

Gene Name  Gene present CRISPR present Gene + CRISPR present Neither present Chi-squared statistic Degrees of freedom  p-value
pbp4b 93 2482 2432 4682 966.091 1 <0.01
pbpG 2452 978 3936 2323 889.68 1 <0.01

pbpG_01091 475 4874 40 4300 399.62 1 <0.01
pbpC 351 4873 41 4424 263.22 1 <0.01

pbpC_15607 153 4789 125 4622 3.30 1 0.026

pbpC_01805 1865 1606 3308 2910 776.08 1 <0.01

pbpG_07529 465 4798 116 4310 232.53 1 <0.01
pbpC_03747 245 4822 92 4530 75.63 1 <0.01
pbpC_50525 209 4624 290 4566 11.21 1 <0.01

3 Results
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3.1.9 SIGNIFICANCE OF 'PBP’ HOMOLOGOUS FAMILY GENES
WITHIN THE PANGENOME

Table 3.8 contains the results of chi-squared tests carried out on the association
between the Penicillin-Binding Protein (PBP) gene family and CRISPR presence-
absence throughout the bacterial pangenome. The contingency tables include
the observed counts of genomes which contain and do not contain PBP genes
and the CRISPR presence-absence. There is a range of chi-squared results across
the PBP gene family, from 3.79 for pbpC_15607 to 889.68 for pbpG, only one
result from these statistical tests imply that the results are insignificant. The
p-value for pbpC_15607 is 0.026 implying that the correlation between this gene
and CRISPR presence or absence is not significant, however, the other p-values
indict a strongly significant association with CRISPR presence or absence. These
p-values for genes other than pbpC_15607 allow us to reject the null hypothesis
and represent these genes not being independent from CRISPR, implying a
pattern of co-evolution and functional associations between them.

3.1 Preprocessing
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Discussion

Using PanTA as a pangenome generation application allowed for the generation
of the largest dataset of this kind to be created involving (number of genomes)
across the y-proteobacterial clade. The combination of the large dataset and the
appropriate methods of analysis allows the interpretation of the associations
between different genes across all environmental and genetic factors. When gen-
erating the pangenome from the genome files provided, PanTA does something
slightly different when populating its presence absence file to other pangen-
ome creation tools and applications. It populates the cells where the gene has
been found with the number of gene sequences showing significant similarity
to the sequence found within that specific genome. For example, the genome
GCF_012052965.1 contained a sequence for the gene stfR which manifested 95%
sequence similarity to three sequences for stfR found in the other (number of
all genomes). Binarizing the pangenome provided ensures the information is
in the appropriate format for subsequent analyses. Reformatting the data was
carried out using a custom script to change all cells within the .CSV file that are
populated with values that are larger than 0, changing them to a 1 instead.

The gene type breakdown allows for the understanding of the percentage of
all the genes found within the pangenome which fall into the categories defined
by the PanTA application settings. A total of 32 core genes were removed,
as they were universally core. This is in line with the expectation of a set of
approximately 33 ribosomal proteins that are present in all organisms (Melnikov,
Manakongtreecheep and Soll, 2018). Due to the enormous size of the dataset,
a 2% minimum cut off was required to limit and reduce the number of gene
families present in the pangenome. This is because using the cohort of rare
gene families that are present or absent in less than 2% of the population of
the pangenome would only hinder the capabilities of the algorithm. Rare genes
would not show strong statistical associations in any direction. After pruning
the rare genes from the dataset, the number of gene families found within the
pangenome dropped dramatically to 28,651.

CRISPR identification was added to the final row of the pangenome which
was required for the use of the algorithm; however, these values were added
based off of the .json files which were produced from the initial annotation of
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the bacterial genomes. The .json files contain all the genetic sequences which
are found by Bakta which could be of use from an annotation point of view, this
includes the key word ’crispr array’ which is how the script used the saved .json
to add the CRISPR identified row to the pangenome.

The analysis of the pangenome using the random forest algorithm resulted in a
general accuracy value of 0.89 to be calculated. Although there is no explicit test
for significance in this kind of analysis, the result can be interpreted as an 89%
accuracy value and it allows the interpretation of the associations that have been
found by the algorithm. Many of the genes with high levels of association with
CRISPR have not been previously defined in the datasets as CRISPR-associated
genes. The more interesting result from Table 3.5 is the calculated AUC-ROC
score. This value implies that the algorithm has excellent discrimination when
classifying the binary data. This value also suggests to us that the algorithm has
remarkably high likelihood of being able to predict whether a CRISPR locus is
in the genome, simply by analysing the rest of the genome. As a rule of thumb
within the ML space an AUC-ROC score of 0.8 is good and a score of above 0.9
is seen as excellent, however, the results are dependent on the situation that the
algorithm is being used to classify.

When looking at the values of the Precision and Recall, both are lower than
the AUC-ROC score implying that there is progress to be made with regards
to classification accuracy overall. Improving Precision and Recall could be
achieved by including more genomes to increase diversity within the pangenome.
Spending more time testing and tuning hyperparameters, or even introducing a
different feature selection process to add weightings to the most impactful genes.
Alternatively, using different ML strategies could offer improvement, especially
using deep learning technologies.

From the results so far, we can say that, as a binary classification algorithm it
performs at a high standard, however, as previously stated, the AUC-ROC score
being above 0.9 may not be a solid indicator of what the algorithm can achieve
with ideal hyper-parameters and datasets. Analysing where the algorithm is
failing regarding false positives and false negatives could provide an insight into
the issues the model is having trouble with.

Nonetheless, this result suggests that this approach is usable and could be a
step towards a system that predicts gene interaction across a clade or even across
bacterial life. Incorporating phylogeny and protein-protein interactions could
offer a more accurate algorithm, however, this would require standardisation of
information across bioinformatics. A multi-class classification system could be
explored, to increase the predictive power from only binary classifications to
sub-type classification. Identifying groups of genes which interact with CRISPR-
Cas systems would allow weightings to be added to the algorithm, increasing
accuracy and predictive power.
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In Table 3.6 the calculated feature importance of each gene family within the
pangenome is shown; these values allow us to understand how the gene families
are being used to predict the presence of CRISPR. Within the pangenome, the
genes known to be CRISPR associated genes have been removed, except for csy3
and other ’csy’ genes, these were left as positive controls. The research carried
out by Zhang et al. (2020) characterized csy3 as a ’Cas’ protein specifically cas7f
which is found within the csy protein complex. The fact that the algorithm
found this protein to be associated with CRISPR suggests that the algorithm is
finding connections that are not only CRISPR associated proteins, but proteins
which are found within many different biosynthetic pathways.

Many genes in the top 100 genes regarding feature importance are found to
be "uncharacterised", suggesting that these genes have not been characterised in
research. However, some are 'uncharacterised’ but also have a function which
has been identified using the structure of the protein which is a product of
transcribing the genes. As an example of this in Table 3.6 we find 'yghA’ which
can be found in the Uniprot repository as an "uncharacterised oxidoreductase’
(Bateman et al., 2020). Understanding uncharacterised genes is crucial to the
development of further research on this subject; however, there are other genes
that were found by the algorithm which do have a characterised function. The
breakdown of these are found below.

41 ANALYSIS OF 'PBP4B’

pbp4b is a gene within the penicillin binding protein family. This gene encodes a
DD-carboxypeptidase protein, which was previously believed to be a protein cru-
cial for cell growth and cell division (Vega and Ayala, 2006). However, Vega and
Ayala (2006) demonstrated that when this gene and other DD-carboxypeptidases
are eliminated, cell growth and cell division of enterobacteria are not negatively
affected. An overview of penicillin binding proteins carried out by Sauvage et
al. (2008) likens the structure of pbp4b to the structure of ampH, however, there
is no current research that characterises a function for the protein encoded in
pbp4b. In contrast, ampH has been found to be associated with peptidoglycan
recycling. The similarities in the encoded protein structure indicate a potential
function of pbp4b; if pbp4b has a similar role to AmpH within the cell, such
that it recycles peptidoglycan molecules which are found in the bacterial cell
wall, pbp4b may be a part of the membranome. Although there is currently no
research to support this claim.

The Penicillin binding protein family is vast and varied, with many different
proteins all serving a different role within the cell. Within the pangenome
used for our algorithm there are 9 gene families that are labelled as being
members of the homologous "pbp’ family, for these a contingency table and

4.1 Analysis of ’PBP4B’
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chi-squared test (chi-squared contingency table) was carried out. The results of
these statistical tests are found in Table 3.7. Particularly interesting results show
that two different sequences of pbpC, specifically the ones labelled pbpC and
pbpC_1805; These two sequences of the same gene have opposing results within
their respective contingency tables. The contingency table for pbpC shows a
large push towards the gene and CRISPR having an avoidance relationship. The
gene being present alone in 351 genomes, and both the gene and CRISPR being
present in 41 genomes; This is a stark contrast to pbpC_01805, where the gene is
present alone in 1865 genomes, but both the gene and CRISPR are present in 3308
genomes. This implies there is more of a correlative nature to the relationship
between the variant sequence of pbpC, pbpC_01805, and CRISPR comparatively
with the sequence of the main variant of pbpC. This relationship could also be
caused by the level of representation of both genes within the genome pool.

pbp4b

Figure 4.1: StringDB gene network of pbp4b
The light blue and pink lines both represent known interactions between genes.
Green, red and dark blue coloured lines indicate connections through gene
neighbourhood, gene fusions and gene co-occurrence respectively. Black indicates a
connection through co-expression.

Above is the gene network analysis of pbp4b. This network indicates sig-
nificant associations with genes that are involved in peptidoglycan synthesis
and cell wall restructuring (Figure 4.1). The gene of interest, pbp4b, encodes
Penicillin Binding Protein 4 (PBP4); this gene network shows many strong in-

4 Discussion



teractions with the dacB gene. The gene "dacB" encodes D-alanyl-D-alanine
carboxypeptidase, an enzyme which is involved in catalysing reactions that
involve DD-carboxypeptidase and DD-endopeptidase. This enzyme plays a
critical role in recycling peptidoglycans (Bateman et al., 2020). Furthermore,
pbp4b is linked with mrcB, which encodes PBP1B, another member of the peni-
cillin binding protein family. PBP1B is a bifunctional enzyme that exhibits both
transglycosylase and transpeptidase activity which assist in the polymerisation
of peptidoglycans (King et al., 2017). The network creation also highlighted
both mrdA and mrdB, which encode PBP2 and RodA respectively. Both pro-
teins are found to assist in maintaining cell wall integrity and rod shape during
elongation. These interactions suggest that pbp4b may play a significant role in
predicting the presence of CRISPR in the genome, due to its association with
external defence mechanisms.

42 OTHER GENE ANALYSIS

‘pdeA’ is another top 10 gene which encodes a putative c-di-GMP phosphodi-
esterase, which has been characterised as a part of the inner membrane proteome
(Bateman et al., 2020)(Daley et al., 2005). This protein interacts with the cyclic
di-DMP signalling molecule which interacts with a large amount of intercellular
and extracellular functions, some interesting ones are:

421 THE GENE "AIS’

The gene ’ais’ is found within the top 10 of the algorithm’s feature importance
table (Table 3.6) this gene encodes a Lipopolysaccharide core heptose (I)- phos-
phate phosphatase (Bateman et al., 2020) this protein is found to be within the
periplasmic space of gram-negative bacteria therefore making it a part of the
membranome of the bacteria. These Lipopolysaccharides are crucial for the sur-
vival of gram-negative bacteria, there may be a link here between these proteins
and CRISPR-systems. The research carried out by Rubio et al. (2023) found an
association between the membranome of bacterial species within the ’'ESKAPE’
group and CRISPR-Cas systems. These associations could be due to the nature
of what CRISPR defends from within the bacteria, an assault through genetic
material being injected into the cell. The first layer of defence in this scenario
would be the membrane, a link found between CRISPR and membrane-bound
proteins would be expected, these proteins having an association with CRISPR
opens a a research gap that requires deeper exploration. Could CRISPR be integ-
ral for bacterial organisms which have these kinds of lipopolysaccharides but
are missing other accessory genes?

This network is for the gene ais which encodes a lipopolysaccharide core
heptose(Il)-phosphate phosphatase; if it is present this gene may be a member of

4.2 Other Gene Analysis
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Figure 4.2: StringDB gene network of ais
The light blue and pink lines both represent known interactions between genes.
Green, red and dark blue coloured lines indicate connections through gene
neighbourhood, gene fusions and gene co-occurrence respectively. Black indicates a
connection through co-expression.

the outer membrane of bacterial organisms (Bateman et al., 2020). Specifically,
the encoded protein dephosphorylates heptose(Il), is a part of lipopolysaccharide
metabolism. Within this network we see associations with the arn gene family,
these genes (arnT, arnC, arnA and arnD) all take part in modification of lipid A
through the attachment of L-Ara4N. These proteins work within the periplasmic
space (Lin et al., 2014). Although these genes are all found on the same operon,
itis particularly interesting that the other three genes (arnB, arnE and arnF) are
not found within this gene network (Lin et al., 2014). Other genes found here are
the basS and basR genes, which encode a 2-protein regulatory system involved
in the organism’s ability to sense environmental stimulus for the organism (Liu
et al., 2022).

422 THE GENE 'LSRA’

IsrA, an intruding gene, has many functions at the intracellular and extracellular
level. It is part of the Isr operon, a cluster of genes regulated by the signaling
molecule AI-2. Among these, IsrA encodes a component of the AI-2 transporter
(Xavier and Bassler, 2005). This transporter is found to be within the membrane
mosaic, suggesting more genes that this algorithm is finding are parts of the
membranome. While this IsrA is a secondary sequence to the main sequence
of IsrA, it carries the same responsibilities. IsrA is found to be linked with ATP
hydrolysis and ATP binding activity, as the transportation of Al-2 is active and

4 Discussion



therefore requires ATP to function(Xavier and Bassler, 2005). The research
carried out by Xavier and Bassler in 2005 also shows more links from the gene
IsrA to the ABC transporter complex, the ATP-binding cassette (ABC) transporter
is found within the membranome as well.
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Figure 4.3: StringDB gene network of IsrA.

The light blue and pink lines both represent known interactions between genes.
Green, red and dark blue coloured lines indicate connections through gene
neighbourhood, gene fusions and gene co-occurrence respectively. Black indicates a
connection through co-expression.

The IsrA gene encodes a component of the Lsr (LuxS-regulated) transporter,
which is part of an ATP-binding cassette (ABC) transporter complex responsible
for importing autoinducer-2 (AI-2), a key molecule in quorum sensing (Xavier
and Bassler, 2005). This transport system also includes other components en-
coded by IsrB, IsrC, and IsrD, all of which work together to facilitate the uptake
of AI-2. The gene IsrR enrcodes a repressor protein that is involved in the
regulation of the Isr operon. While AI-2 is absent, IstR binds to the lsr operon
promoter region halting transcription (Xue et al.,, 2009). The Isr coalition of
proteins bind and package AI-2 within the periplasmic space, to be transported
into the cell for further use. Other than the Isr operon, other genes are found
within the network. The gene alsC encodes the permease component of the
AlsABC transporter system, which transports D-allose, an uncommon sugar.
The rbsC gene encodes another permease protein that is part of the RbsABC
transporter complex, involved in transporting D-ribose; this gene would enable
the use of ribose as an energy source for the organism if the gene is present.

4.2 Other Gene Analysis
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The fact that the results have found genes which are members of the mem-
branome, reinforces research mentioned earlier. Rubio et al. (2023) infers there is
a connection here that should be researched further. Our research and research
carried out by Rubio et al. (2023) found correlations between the membranome
and CRISPR-Cas systems, although laboratory-based work would be required
to find specific connections between them. Some genes homologous to those
identified by the algorithm, show differing patterns in their correlation with
CRISPR presence or absence within the pangenome. As shown in Table 3.8,
certain penicillin-binding proteins appear to be consistently absent when CR-
ISPR systems are present, suggesting a potential avoidance pattern. Particularly
looking at both "pbpG_01091" and "pbpC’, these genes show a strong proclivity
to avoid CRISPR. However, looking at the variant sequence of "pbpC_01805’
we can see the opposite; an association can be seen from the results of the
pangenome. The gene 'pbpC_01805" was not identified as significant by the
algorithm, and thus cannot be used as a predictor of CRISPR. After carrying out
a Chi-squared test on the contingency tables shown in Table 3.8, all results were
deemed significant except for one: *pbpC_15607". We can assume that this was
insignificant as there was not an adequate number of genomes where the gene
was present, or where the gene was present in addition to CRISPR. The gene
was found in only 278 genomes, representing just 2.8% of the entire pangenome.
To better understand the relationship between this gene sequence (pbpC_15607)
and CRISPR, more genomes containing pbpC_15607 would be needed. It’s low
frequency may simply reflect under representation within the current dataset.

4 Discussion



Conclusion

The project aimed to understand and analyse the associations between genes and
CRISPR-Cas systems in bacterial genomes, using a RF algorithm to find patterns
within a bacterial pangenome with 9689 genomes within it. This study found
that there are associations to be found between certain genes which some were
uncharacterised but other genes namely: pbp4b, ais and IsrA were characterised
but had no known association with CRISPR-Cas systems. Using this research,
we attempted to understand further why the proteins which are encoded by
these genes would interact with CRISPR-Cas systems and found that many the
top genes were found to exist in the periplasmic space of bacteria, the area
between the outer membrane and the inner membrane. This link indicated that
CRISPR-Cas systems may require certain external protection systems to enable
the level of defence that the bacteria require from the systems.

Understanding the associations CRISPR-Cas systems have using this method
allow for a large amount of data to be analysed and interpreted, this project found
that there are associations to be researched further. Understanding CRISPR-
Cas systems enables the understanding of the defensive arsenal that bacteria
use to survive in the environments they are capable of living in, defending
themselves from natural bacteriophages and MGEs. This study also enables
the understanding in clinical settings of whether a bacteria will have CRISPR-
Cas systems which could be a limiting factor when searching for therapeutic
responses to AMR bacterial strains in human infections, this application shows
a methodology which could enable a rapid response to the types of infection
which are currently believed to be immune to conventional treatment options.

The Feature importance results (Table 3.6) reinforced knowledge from re-
search carried out by Rubio et al. (2023) which linked CRISPR-Cas systems with
the membranome of bacteria including certain genes which encode proteins
dwelling in the periplasmic space. These results also imply that there are strong
associations with external proteins, understanding the connections with pro-
teins which are linked to maintaining the peptidoglycan cell wall imply that the
environmental defensive mechanisms also play a role in the selection of CRISPR-
Cas systems as an adaptive defence mechanism. Certain genes within the top
10 genes that the algorithm found were unfortunately uncharacterised proteins,
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these proteins would be interesting to research and eventually characterise with
the systems.

This study provides deeper insight into the associations with CRISPR-Cas
systems and the other genes found within bacterial genomes, however, there
are some limitations with the methodology. These limitations cause the types of
CRISPR-Cas system to not be separated and analysed alone, this is due to the
lack of time for analysis of types and the data available for each type of CRISPR
would be difficult to equalise. The requirements of data for the algorithm to limit
over-fitting of types and their associations, the amount of extra preprocessing
required would also require standardised file types and file structures. The
pipeline worked to analyse the majority of the genomes, however, there were
some issues found with applications and how the file structures effected the
way that annotation of those genomes happened; the file structures caused
these particular genomes to not work with the annotation application (Bakta)
causing a loss of 5000 genomes from the pangenome generation step. There
are also limitations found in the associations which were searched for, adding
analysis of untranslated regions, promoters and enhancers could offer a deeper
understanding of why certain genes associated with CRISPR-Cas systems. The
phylogeny of bacteria chosen also causes an issue if you are attempting to predict
a different type of bacteria other than (y-proteobacteria), the associations could
be vastly different or even opposing the associations found in this type of
bacteria.

Finally, the project demonstrated an algorithm which could predict if CRISPR-
Cas systems would be present within a genome, and that there are more associ-
ated genes than were previously believed that interact with CRISPR-Cas systems.
This project has shown that a ML algorithm could be the way to go when at-
tempting to predict complex systems, paving a way for the bioinformaticians to
transform the genetics and genomics world.

5 Conclusion



Appendix

Electronic Appendix link: 10.5281/zenodo.14988084
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