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ABSTRACT 

Buildings are responsible for approximately 40% of global energy consumption and 30% 

of greenhouse gas emissions, highlighting their central role in sustainability efforts. 

Heating, ventilation, and air-conditioning (HVAC) systems are typically operated based 

on fixed schedules or occupant input, often misaligned with actual occupancy patterns. 

This mismatch leads to energy inefficiencies and occupant discomfort. Vision-based 

sensing technologies, particularly those employing cameras, offer the potential for real-

time occupancy detection, providing a foundation for more adaptive building control 

strategies. 

This thesis investigates the integration of vision-based deep learning methods for 

occupancy prediction and personalised thermal comfort modelling, aiming to enhance 

building energy performance and occupant well-being. Following a comprehensive 

review of the literature and identification of key research gaps, three main studies were 

conducted. 

The first study develops and compares eight deep learning algorithms for vision-based 

occupancy detection. Annotated datasets were created from images collected in 

controlled environments. The models were evaluated using detection accuracy, mean 

average precision (mAP), and inference speed. Among the models tested, YOLOv8x 

achieved the highest accuracy (F1 score 0.87), while YOLOv8n offered a balance 

between accuracy and processing speed. When integrated into building simulations 

using IESVE, the predicted occupancy profiles led to significant improvements in 

HVAC energy estimation. A daily heating demand deviation of 13.45% in the base case 

was reduced to under 7% using deep learning models. 
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The second study compares the performance of thermal and standard RGB cameras for 

occupancy detection. Both modalities achieved comparable accuracy—around 70% 

with YOLOv8 and 80% with YOLOv10—given adequate training data. RGB cameras 

provide high-resolution detail but are susceptible to privacy concerns and visual 

interference. Thermal cameras, while offering better privacy and low-light performance, 

face limitations in scenarios involving overlapping occupants and residual heat. The 

results support thermal imaging as a viable, privacy-preserving alternative in suitable 

contexts. 

The third study proposes a vision-based thermal comfort prediction model using deep 

learning and thermal imagery, offering an alternative to the conventional Predicted 

Mean Vote (PMV) approach. Personalised models achieved up to 68.49% accuracy in 

intra-subject tests, indicating potential for individual comfort prediction. However, 

reduced performance in cross-subject testing underscored the challenge of generalising 

thermal comfort models across diverse users. 

Through systematic evaluation of algorithms, camera types, and comfort prediction 

strategies, this research advances the development of intelligent building systems. The 

findings suggest that vision-based approaches can support real-time, occupant-centred 

control of HVAC systems, contributing to improved energy efficiency and thermal 

comfort. Future work should focus on expanding datasets, refining model 

generalisability, and validating performance in real-world conditions. 
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1. INTRODUCTION  

1.1 Research Background 

Buildings are responsible for up to 40% of the global total energy (Cao et al., 2016) and 

30% of greenhouse gas (Sbci, 2009). Buildings consume a lot of energy since they serve 

various purposes and consume energy (Bosák and Palko, 2014). Particularly, buildings 

now combine traditional energy services systems like heating, ventilation, and air 

conditioning (HVAC), lighting, power distribution, and water systems with on-site 

power-generating systems like solar photovoltaic (PV), wind turbines, and electric 

vehicle charging systems (Šimić and Devedžić, 2003). At the same time, people spend 

80%–90% of their time indoors, and thermal comfort is a critical factor for physical health, 

mental well-being, and productivity (Mujan et al., 2019). The main challenge is to find a 

balance between providing a comfortable and healthy indoor environment and 

minimising the energy demand.  

Despite the massive quantity of energy used by buildings, thermal comfort is not always 

achieved. The study showed that in a conditioned office building, 75% of occupants 

report that they are dissatisfied with their thermal comfort (Erickson and Cerpa, 2012). 

Another field study in the US indicated that only 60% of occupants in 60 office buildings 

were satisfied with their thermal environment (Karmann et al., 2017). Even high-

performance and energy-efficient buildings may not be as comfortable or healthier than 

other buildings as they are intended to be (Roulet et al., 2006).  

Energy consumption in buildings is influenced by many factors, including weather 

conditions, building design, HVAC system efficiency, and the operation of appliances. 

Among these, occupancy is one of the most complex and least predictable factors. Unlike 

other variables, occupancy is dynamic, varying in time, space, and behaviour (Yoshino et 

al., 2017). In the past, occupants’ behaviours were observed (Barthelmes et al., 2016) or 
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through interviews and surveys (Rebaño-Edwards, 2007) to generate a fixed occupancy 

schedule (Tuohy et al., 2009) which can be used in building models or simulations for 

existing buildings. However, the actual occupancy behaviour is difficult to predict since it 

is time-varying and identity in different cases. Therefore, proposing a thorough and 

accurate occupancy prediction model is necessary for building energy conservation and to 

guide occupant behaviour modelling in building energy simulation (Nastasi et al., 2022). 

As a result, static schedules can lead to inefficiencies, such as ventilation, heating, 

cooling, and lighting spaces that are unoccupied, or failing to adequately condition 

spaces that are occupied outside of expected times. This mismatch between predicted 

and actual occupancy not only wastes energy but also diminishes the comfort and 

satisfaction of building occupants (Pappalardo and Reverdy, 2020). Addressing these 

inefficiencies requires more dynamic and accurate methods of occupancy detection that 

can adapt to the real-time presence and movement of people within buildings. 

In the last decade, new powerful tools, including machine learning methods and data 

mining techniques, have been suggested to diagnose unnoticed relationships and 

summarise the data in innovative ways according to large information datasets, as 

discussed in many studies (Nastasi et al., 2022). To better understand energy usage in 

buildings, research tends to study the diversification of occupancy schedules based on big 

data streams (Ding et al., 2021a). A lot of research has been conducted to bridge the gap 

between occupancy prediction and building control while maintaining thermal comfort, 

which naturally has a significant impact on building energy use. One research with an AI-

based method achieved energy conservation of up to 30% by using occupancy and eight 

different physical sensors (Turley et al., 2020). Another paper proposed an integrated 

framework for an HVAC system that suggested a significant reduction in comfort 

dissatisfaction, going from 25% with the baseline strategy to 0% dissatisfaction while 

decreasing the energy cost by more than 10% (Winkler et al., 2020).  
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Many occupancy models have been created over the last twenty years to simulate 

occupant unpredictability and variety and generate stochastic occupancy models for 

making accurate simulations (Kamel et al., 2020). The three types of prediction models 

are the physical model or white-box model, the black-box model, also called the data-

driven model, and the grey model (Foucquier et al., 2013) as shown in Figure 1-1. 

White-box models produce detailed simulations of a building's energy performance, 

with details such as the building material, HVAC control, and management systems 

(Coakley et al., 2014). In addition, creating a white-box model takes time and some 

building details are difficult to obtain. Data-driven models are fast to construct and 

provide acceptable results with good data quality, but they require a large amount of 

data, and their parameters and inputs have no obvious physical meaning (Meng et al., 

2020). Mixture models combine physical and data-driven models, inheriting the 

advantages and disadvantages of both techniques. Traditional energy models with sets 

of specified static coefficients multiplied by a maximum room occupancy were white-

box models with extensive building information and certain occupancy characteristics 

(Abushakra et al., 2004).  

 

Figure 1-1 The difference between the black box model, white box model and grey 

box model. 

With the rapid advancement of computer technology, data-driven approach (black-box) 

models have shown great potential in building energy models to simulate and predict 
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related appliances, including occupancy behaviour, thermal comfort, IAQ and energy 

consumption. A study compared the occupancy prediction model with and without a 

machine learning algorithm and showed that the accuracy was significantly improved 

and 30% energy saving can be achieved with the proposed algorithm (Aftab et al., 2017). 

Another study using a learning-based model predictive control (MPC) technique 

achieved significant energy savings, with 40.56% less cooling and 16.73% less heating 

power while keeping occupants comfortable (Eini and Abdelwahed, 2019). 

Traditionally, occupancy detection methods have relied on a variety of sensors such as 

Passive Infrared (PIR) sensors (Sheikh Khan et al., 2021), carbon dioxide (CO2) sensors 

(Franco and Leccese, 2020), Radio-Frequency Identification (RFID) systems (Li et al., 

2012),  and electricity meters (Razavi et al., 2019). These technologies can provide 

useful data but often fall short in accuracy and granularity, especially in high occupancy 

environments where the number of occupants and their movements can vary 

significantly. Furthermore, these sensor-based methods can be intrusive and may not 

effectively capture the dynamic nature of human occupancy.  

More recent approaches have incorporated Wi-Fi signals (Alishahi et al., 2022) and 

cameras (Tien et al., 2022) to monitor occupancy. While Wi-Fi-based methods can offer 

improved coverage, they still struggle with accuracy and real-time responsiveness. 

Cameras, on the other hand, present a promising solution by using visual data to track 

occupancy more precisely (Gao et al., 2022). Cameras continuously monitor visual cues 

to track people's presence, movements, and interactions, which is crucial in dynamic, 

crowded settings. This is particularly valuable in environments where understanding 

occupancy patterns and behaviours is essential. 

Earlier computer vision methods (Tong et al., 2013) for occupancy detection often 

required extensive computational resources and were hindered by the limitations of 

available hardware and algorithms. These methods typically involved complex feature 
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extraction and pattern recognition, which were not robust enough for real-time 

applications and, hence, were not scalable or efficient for widespread adoption.  

In recent years, improvements in computational power, alongside the advancements in 

computer vision and deep learning have opened new avenues for occupancy detection. 

Vision-based approaches offer a non-intrusive and highly accurate means of monitoring 

occupancy by analysing visual data captured from cameras. Deep learning, particularly 

Convolutional Neural Networks (CNNs), has transformed the field of computer vision 

(O’Mahony et al., 2020). CNNs are designed to automatically and adaptively learn 

spatial hierarchies of features from input images. This ability to learn and extract 

intricate patterns and features makes CNNs particularly effective for tasks such as object 

detection and recognition, which are critical for accurate occupancy detection (Sindagi 

and Patel, 2018). 

Studies have shown that the CNN method performs particularly well in high-density 

scenes, making it suitable for environments where the number of occupants can vary 

widely and rapidly. This enhanced capability is due to CNNs' proficiency in handling 

occlusions and complex visual data, allowing for more reliable detection and tracking 

of individuals in crowded settings. Specifically, models such as Single Shot MultiBox 

Detector (SSD), Faster Region-based Convolutional Neural Networks (Faster R-CNN), 

and You Only Look Once (YOLO) have shown great promise. 

These models enhance occupancy detection by processing large amounts of visual data 

to identify and count occupants in real-time. SSD and YOLO are known for their speed 

and efficiency, making them suitable for applications requiring real-time analysis. Faster 

R-CNN, while slightly slower, provides higher accuracy and is effective in complex 

scenes with varying levels of occupancy. Despite their promising performance in 

controlled environments, the effectiveness of these methods in real-world building 

environments has not been thoroughly examined, particularly in situations where the 
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presence of people is essential for building energy management (Li et al., 2018b). 

Further research is needed to validate the performance of deep learning models in real-

world building scenarios and to understand their impact on energy efficiency.  

Within vision-based systems, cameras play a central role, with two primary technologies 

being thermal cameras and standard cameras (Kim et al., 2023). Thermal cameras detect 

heat signatures, making them effective in low-light environments and providing privacy 

advantages by avoiding identifiable facial features (Gade and Moeslund, 2014). 

However, they are often more expensive and have lower spatial resolution compared to 

standard cameras. Standard cameras, on the other hand, capture visible light, offering 

higher resolution and widespread availability at lower costs (Lydon et al., 2019). They 

can support detailed analyses of occupancy but are less effective in low-light conditions 

and raise privacy concerns (Agrawal et al., 2022). Comparative studies of thermal and 

standard cameras, especially in occupancy prediction, remain limited, leaving a critical 

gap in the understanding of their effectiveness. 

Traditional HVAC systems, which operate at fixed settings irrespective of occupancy or 

environmental changes, often result in energy inefficiencies, such as over-conditioning 

unoccupied spaces. In contrast, advanced HVAC systems equipped with real-time 

monitoring capabilities can dynamically adapt to changing conditions by analysing 

factors such as occupancy, temperature, and humidity (Kim and Hong, 2020). This 

responsiveness not only reduces unnecessary heating or cooling in underutilised spaces 

but also ensures optimal comfort for occupants. As a result, such systems provide a 

balanced approach to energy management, enhancing efficiency without compromising 

user satisfaction (Lan et al., 2010). Studies indicate that these adaptive systems can 

achieve up to 21.4% energy savings compared to static HVAC setups, highlighting their 

potential for mitigating energy waste while improving indoor environmental quality 

(Jung and Jazizadeh, 2020). 
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To optimise both energy efficiency and occupant well-being, various thermal comfort 

models have been developed to regulate indoor climates. One of the most widely used 

models is the Predicted Mean Vote (PMV), which underpins many modern HVAC 

control strategies. PMV-based systems continuously monitor indoor environmental data, 

such as temperature and humidity, and adjust HVAC settings accordingly to create a 

more comfortable environment compared to traditional static HVAC systems (Mao et 

al., 2019). Beyond energy savings, PMV-based control enhances occupant comfort by 

dynamically fine-tuning HVAC operations to maintain a stable thermal environment 

(Choi et al., 2024). 

The PMV model considers six key variables: air temperature, relative humidity, wind 

velocity, mean radiant temperature, metabolic rate, and clothing insulation (Fanger, 

1970b). However, obtaining these variables can be both costly and challenging in real-

world buildings. For instance, measuring mean radiant temperature and air velocity 

requires sophisticated and expensive instruments, which are often impractical for 

continuous monitoring across multiple building zones. Meanwhile, parameters such as 

clothing insulation and metabolic rates are typically assumed or simplified, as it is 

typically not practical to collect precise data in real-time for every occupant 

(d’Ambrosio Alfano et al., 2011). This reliance on estimated values can limit the 

effectiveness of PMV-based control, particularly in environments with diverse occupant 

profiles or rapidly changing conditions. 

Moreover, the PMV model struggles to account for changes in thermal comfort during 

dynamic scenarios (Cheung et al., 2019b). It also overlooks individual differences, 

which can lead to inaccurate predictions of personal thermal comfort and inefficient 

energy use (Jazizadeh et al., 2014). These limitations highlight the need for more 

adaptive and personalised approaches to thermal comfort prediction that can respond to 

dynamic conditions and account for individual variability.  
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1.2 Aim and Objectives 

The overall aim of this thesis is to explore the application of vision-based deep learning 

framework s for improving occupancy prediction and thermal comfort modelling in 

building environments. Occupancy prediction plays a critical role in optimizing building 

energy management, as it directly affects the operation of HVAC, lighting, and other 

energy-intensive systems (Pang et al., 2023). However, traditional approaches often rely 

on static assumptions and generalised models, which fail to capture the complexity and 

variability of real-world occupancy (Esrafilian-Najafabadi and Haghighat, 2022). 

Similarly, thermal comfort is frequently assessed using generalised models, such as the 

PMV, that overlook individual differences and dynamic conditions (Dong et al., 2021). 

These limitations present an opportunity for advanced vision-based deep learning 

methods to bridge the gap between energy efficiency and occupant satisfaction.  

By enabling real-time occupancy and personalised comfort prediction using non-

intrusive vision-based sensing, the proposed framework can support the development of 

smart building systems that dynamically respond to occupants’ presence and comfort 

needs. The integration of such models into building management systems (BMS) has 

the potential to improve energy efficiency, reduce HVAC-related emissions, and 

enhance indoor environmental quality. Moreover, the use of thermal cameras offers a 

privacy-conscious solution for sensitive environments, expanding the applicability of 

vision-based control in contexts such as offices, educational settings, and healthcare 

facilities. 

To achieve the aim, the main objectives listed below are carried out in this research. 

1) Conduct an in-depth and critical review of existing literature on machine learning 

applications in building systems, focusing on occupancy prediction, indoor air 
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quality (IAQ) prediction, thermal comfort modelling, and energy consumption 

optimization. 

2) Collect, annotate, and test a dataset of occupant images from random and dynamic 

environments, ensuring diversity in environmental conditions, occupant 

demographics, and behaviours to support model development. 

3) Evaluate the performance of various deep learning algorithms (e.g., SSD, Faster R-

CNN, YOLO series) for real-time occupancy prediction, identifying the most 

effective method for optimizing energy use and occupant detection in complex 

environments. 

4) Investigate and compare the performance of standard and thermal cameras for 

occupancy prediction, to systematically analyse trade-offs in privacy, cost, and 

spatial resolution for building energy systems. 

5) Compare predicted occupancy data with ground truth (actual) measurements and 

evaluate the impact of accurate occupancy detection on energy use and CO2 

concentrations through building energy simulations. 

6) Develop a personalized vision-based thermal comfort prediction model using real-

time occupant data from thermal cameras combined with environmental conditions, 

addressing limitations of traditional comfort models and exploring applications for 

improving occupant well-being. 

1.3 Thesis Outline 

This thesis is organized into six chapters, the summary for each chapter is listed as 

follows: 
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Chapter 2 presents a comprehensive review of the literature, covering current 

approaches to occupancy prediction, especially the use of vision-based methods, and 

advancements in machine learning for thermal comfort assessment. Research gaps are 

identified to position the study within the existing body of knowledge.  

Chapter 3 focuses on the comparison of eight deep-learning algorithms for occupancy 

prediction, evaluating their performance in detecting and counting occupants in a lecture 

room.  

Chapter 4 presents a comparative study of thermal and standard cameras, analysing their 

respective strengths, limitations, and suitability for real-world applications in building 

energy management. 

Chapter 5 explores thermal comfort prediction using thermal cameras and deep learning 

methods, emphasizing the development of personalized models that integrate real-time 

data for improved occupant satisfaction.  

Chapter 6 concludes the thesis by summarizing the key findings, discussing the 

contributions to the field, and proposing future research directions.  

2. LITERATURE REVIEW 

Some work presented in this Chapter was previously published in the journal 

[Renewable and Sustainable Energy Reviews] as titled A Review on Occupancy 

Prediction Through Machine Learning for Enhancing Energy Efficiency, Air Quality 

and Thermal Comfort in the Built Environment by author Wuxia Zhang and co-authors 

Yupeng Wu and John Kaiser Calautit. I played a major role in Conceptualization, 

Methodology, and Writing - the original draft and this study were conceived by all the 

authors. 

https://www.sciencedirect.com/science/article/pii/S0378778821005752#!
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This chapter conducted an in-depth and critical evaluation of the application of machine 

learning on buildings including occupancy prediction, indoor air quality prediction, 

thermal comfort prediction and energy consumption prediction, specific to the vision-based 

method for occupancy prediction. In 2012, a brief review was conducted of the methods 

for predicting building energy consumption, including ANNs and SVM (Zhao and 

Magoulès, 2012). In 2021 a review compared the AI-based and conventional models 

employed in building energy consumption prediction with occupancy factors and 

proved that AI-based models had better accuracy (Ramokone et al., 2021). Another work 

reviewed studies on electrical load prediction and provided an overview of the 

prediction timescale and potential model solutions (Kuster et al., 2017). The use of 

machine learning in the various phases of the building lifecycle was examined, and 

research gaps in the design, construction, operation and maintenance, and control, were 

investigated in another paper (Hong et al., 2020). Most of these review papers focused 

on the occupancy detection approach and performance, while in terms of its application 

in buildings, most of the studies evaluated its impact on energy efficiency but not 

thermal comfort and air quality (as shown in Table 2-1). This work argues that the 

occupancy behaviour data obtained can be employed to minimise energy and at the same 

time provide a comfortable and healthy environment. For example, the occupancy 

prediction method can be integrated into a framework or model which can control and 

optimise the operation of the HVAC regarding energy, comfort and health. 

Table 2-1 Information on existing reviews in recent years. 

Ref. Year Journal Research Focus and Gaps 

(Wei et al., 

2019a) 2019 Indoor Air 

Focused on the sensors collecting air quality 

index and have not considered the occupancy 

impact. 

(Saha et al., 

2019) 2019 
Energy & 

Buildings 

Focused on occupancy sensing review and lack 

of consideration of future prediction and 

validation methods 
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(Xilei et 

al., 2020) 2020 
Energy & 

Buildings 

Mainly focused on occupancy detection and 

estimation, not enough integrating occupancy 

information with models. 

(Hong et 

al., 2020) 2020 
Energy & 

Buildings 

Examined papers using machine learning in 

different stages of the building life cycle. 

(Yao and 

Shekhar, 

2021) 

2021 
Building and 

Environment 

Focused on the various types of MPC and their 

software implementation 

(Ramokone 

et al., 

2021) 

2021 

Sustainable 

Energy 

Technologies 

and 

Assessments 

Focused on prediction of occupant 

number/level and fail to locate the impact of 

occupancy-interlinked inhabitant behaviour. 

(Ding et 

al., 2021b) 2021 
Building 

Simulation 

Focuses on sensors and algorithms used in 

occupancy prediction and does not pay 

attention to the interaction of occupants with 

the building systems. 

(Fu et al., 

2021) 2021 

Renewable and 

Sustainable 

Energy Reviews 

Focused on the energy model but did not pay 

enough attention to the occupancy factors and 

their comfort. 

(Esrafilian-

Najafabadi 

and 

Haghighat, 

2021) 

2021 
Building and 

Environment 

Divided the occupancy prediction models into 

state/level prediction and occupancy activities 

prediction, but not much discussion about 

activities prediction. 

2.1 Method and commonly used occupancy prediction workflow 

based on ML 

Although there is a large amount of literature on building occupancy prediction using 

machine learning and a great number of review articles, what is lacking is a 

straightforward categorization and organization of mathematic methodologies and 

technologies, allowing for the definition of a useful (or ideal) "occupancy data 

structure." Therefore, we consider articles published from 2011 to 2021 in the main 

databases such as Scopus and Thomas Reuters’ Web of Science. The keywords included 
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“building, occupancy prediction, machine learning” & “thermal comfort, occupancy 

prediction, building”. The keywords “thermal comfort, machine learning, artificial 

intelligence, comfort factor, indoor air temperature, and control method” were also used 

to identify more related publications. We focus on papers that employ machine learning 

to predict occupancy in buildings and related applications. Review papers and irrelevant 

papers were excluded, for example, some research only focused on occupancy detection 

and was not suitable for the review purpose.  

2.1.1 The application of reviewed research  

160 papers were selected, and a timely review was proposed, which can help guide the 

future research of occupancy prediction with machine learning regarding building 

design, operation, and research activities and provide a better understanding of 

occupancy behaviour and building performance. 

 

Figure 2-1 An overview of the application of machine learning in the built environment 

based on the reviewed studies from 2011 to 2021. 

In general, the number of machine learning and its applications research in building 

environments is rising, particularly in recent years (Figure 2-1). These applications 

include the prediction of occupancy state, occupants' interactions with thermal comfort, 

energy consumption, indoor temperature, and lighting use. Occupancy state prediction 
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was the most popular application of machine learning models until 2020, while the 

number of studies on energy consumption prediction increased. This could be due to the 

development of prediction models, which can be specifically used for more detailed 

problems like the comfort state and the occupancy activities instead of just predicting if 

the room is occupied or not. Also, it shows an increasing awareness of energy efficiency 

and occupancy comfort in the built environment. 

2.1.2 The regions of reviewed studies 

The case studies in the reviewed papers were mostly conducted in three big geographic 

regions: Europe, North America, and Asia. Most of the early studies were in Europe and 

North America, while studies in Asia have increased since 2016, as shown in  

Figure 2-2. In recent years when the topic became more popular, these three main 

regions dominated this field by turns. Other regions showed less interest in this area 

until 2017, indicating that more studies would be conducted in other regions in the future.

 

Figure 2-2 The location of case studies in the reviewed papers conducted from 2011 to 

2021. 

The prediction timeframe and model system are different in the identified studies, making 

it hard to conclude a perfect model for building occupancy prediction. However, in current 

studies, a typical occupancy prediction model usually consists of several procedures: data 

collection, occupancy prediction, and validation (as shown in Figure 2-3). Each procedure 
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contains various options concerning the inputs, data structure and algorithm, which 

require dedicated examination based on the target problem and building system. 

Conversely, the building performance and occupancy comfort will be impacted by the 

model proposed. Therefore, this paper will have the following sections: existing data 

gathering and sensor technology, ML techniques for developing occupancy prediction 

models, and model verification methodologies. The best-performing and popular 

predictors and ML methods will be labelled, which will help future studies construct 

suitable models. 
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Figure 2-3 The typical procedure of occupancy prediction with machine learning, 

validation and applications in the built environment. 

2.2 Data collection for occupancy data 

2.2.1 Data collection, methods and privacy preservation 

To improve the accuracy of occupancy prediction, plenty of data collection methods 

have recently been introduced. According to several studies, occupancy sensing can 

save up to 30% (Lo and Novoselac, 2010) on energy costs while improving indoor air 

quality (Yang and Becerik-Gerber, 2014). However, although the use of such technology 

is promising and provides a glimpse of future smart buildings, privacy issues have to be 
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addressed for wider adoption. More resolution and accurate building prediction models 

can be achieved by combining adequate monitoring technology of the building 

environment with proper HVAC or other systems monitoring. 

Because the detection of occupancy status is constantly linked to privacy concerns 

(Nguyen and Aiello, 2013), selecting the appropriate sensor is not always simple. Based 

on the reviewed literature, studies are usually narrowed to academic buildings (labs or 

offices in universities/research institutes), which could impact the quantity and quality 

of data obtained, particularly when the prediction method is applied to the industry. As 

shown in Figure 2-4, 46% of the case studies were conducted in academic buildings. 

Other case study building types include office (25%), residential (16%), commercial 

(8%) and others such as airport terminals (Reena et al., 2018), museums (Lu et al., 2020), 

mosques (Aftab et al., 2017) and metro stations (Massimo et al., 2016). 

 

Figure 2-4 The proportion of building types in the reviewed case studies 

Figure 2-5 shows the building types in case studies in different regions. Academic 

buildings play a dominant role in the reviewed studies in all regions because it is easier 

to conduct, especially when considering privacy issues. Office buildings are quite 

popular in all regions since the occupants are usually fixed, and not hard to get 

permission. In 2020, a paper conducted a case study in an office building in Stockholm, 
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collecting five years of data with multiple sensors installed in the building (Ferrantelli 

et al., 2020). However, privacy concerns may arise when such technology is applied 

commercially or for widespread adoption in some regions as commercial buildings are 

the least favoured case study type in Europe and North America. In Asia, the residential 

building is the least used, indicating the intense privacy concern for households in this 

area. 

 

Figure 2-5 Case study building types in different regions of reviewed studies. 

Privacy leakage is always a concern when choosing sensors for data collection. The 

key privacy risks for occupancy detection include collecting the identification and 

location of individuals. Masking, encryption, noise addition, anonymization of data, 

and scrambling of location data to avoid individual identification are all common 

procedures for dealing with private data. User/data anonymization is a simple solution, 

but it offers no protection against attackers who have direct access to the sensing 

database and fail to provide the room-specific information and required room identity 

(Alomair et al., 2010). An alternative way is to detect certain occupancy patterns in a 

particular zone rather than target individuals (Lee et al., 2019a). Also, occupancy 

location can be inferred from the occupancy data with some auxiliary information 

(Wang and Tague, 2014). For instance, a purposely defocused camera that creates a 

‘fuzzy’ or ‘warped’ image or out-of-focus images is also a solution to room occupancy 

sensing (Wang et al., 2019b).  
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In general, the two types of data gathering methods are direct counting approaches, 

which directly track the occupancy number, and environmental sensors, which indirectly 

reveal the occupancy state. Figure 2-6 shows the connection and details of different 

sensors in various applications of occupancy prediction models. Temperature sensors 

are the most used sensors in all kinds of studies since they are easy to set up and usually 

pre-installed in HVAC systems or other building systems. Some sensors are only used 

in specific applications; for example, cameras are only found for occupancy state 

prediction and energy consumption prediction. Also, some sensors are more suitable for 

a particular application, like most studies use energy meters as sensors for energy 

consumption predictions. The following sections will explore the benefits and 

drawbacks of these sensors in terms of precision, price, ethical concerns, unresolved 

difficulties and future recommendations. 
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Figure 2-6 Data collection methods and their related application in the reviewed studies. 

2.2.2 Direct occupancy counting sensing technology 

The most straightforward way to access occupancy data or profiles that record how 

occupants use the facilities, or their lifestyle is to directly follow the occupants’ status. 
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Many researchers employed questionnaires, especially data from large-scale surveys, 

and it is convenient for groups who share the same lifestyle, such as students on campus 

or residents of the same culture. A dormitory building with 200 rooms was selected as 

the target building, and questionnaires were sent to occupants to get their working 

schedules (Ding et al., 2021a). Another national survey was taken in Korea of 5240 

single-person households for their daily routines (Lee et al., 2019c). Accurate occupancy 

data can be obtained through these large-scale surveys, and questions about their 

behaviour and other evaluations can be easily added to get the full picture as the research 

did in 2007 (Lee et al., 2019c). The mass data can show the lifestyle of a group of people. 

However, these surveys are usually time-consuming and require many participants from 

the same area and extra form-filling while participants are not always willing to 

cooperate. 

The most accurate approach for determining the occupants' state and the number of 

inhabitants is camera-based occupancy detection, which is often used to offer the ground 

truth of occupants. An experiment in research students' office rooms with overhead 

cameras achieved over 80% accuracy (Wang et al., 2017) and another monitoring system 

with cameras was employed to examine the new proposed occupancy prediction 

algorithm (Li and Dong, 2017). However, most cameras were installed in the researchers’ 

offices or specialised experimental rooms due to private intrusiveness (Chen et al., 2018).  

In recent articles, wearable sensors, mobile devices, and security systems have all been 

used to detect occupancy (Li et al., 2020a). The Internet of Things (IoT) has opened new 

possibilities for occupancy detection. Wi-Fi, Bluetooth, RFID, and other technologies 

are examples of these strategies. Because Wi-Fi networks are common in modern 

buildings, they require no additional hardware or software instalments and perform well 

when it comes to monitoring occupancy. A Wi-Fi-based event-triggered update system 

for a university lecture theatre was developed in 2019 to improve detection accuracy 

from 77.3% to 96.8% (Lee et al., 2019b). Despite the potential for occupancy 
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monitoring, detection mistakes do exist, requiring extensive data cleaning methods to 

filter errors to acquire trustworthy occupancy data. Details of the comparisons between 

these data collection methods can be found in Table 2-2. 

Table 2-2 Comparison and key findings between different direct occupancy counting 

methods in recent studies. 

Data 

collection 

mothed 

Year 
Testing 

environment 
Study scale Ref. 

 

Key findings 

Survey 

 

2021 Dormitory and 

office on a 

campus 

200 students 

and 90 staff 

(Ding et al., 

2021a) 
✓Get access to the 

full picture of the 

occupancy 

lifestyle. 

✕Time-consuming 

and requires many 

participants 

2019 Residential 

houses 

5240 

occupants 

(Lee et al., 

2019b) 

2019 Apartments 154 

occupants 

(Maljkovic, 

2019) 

2007 Residential 

houses 

60 

occupants 

(Rebaño-

Edwards, 

2007) 

Camera 

 

2020 Office 12.4 m2 (Tien et al., 

2020c) 

✓ The most 

accurate method 

provides the ground 

truth. 

✕ The private 

intrusiveness  

2020 Student centre 1400 m2 (Meng et al., 

2020) 

2018 Student office 25 residents (Wang et al., 

2018b) 

2017 Student office 2 students (Wang et al., 

2017) 

2017 lecture theatre 876 m3 (Sultan et al., 

2017) 

Internet of 

Things 

 

2020 Office 350 

employees 

(Hou et al., 

2020) 
✓ Low cost and 

requires no 

additional device. 

✕ The detection 

error needs data 

cleaning 

2019 Residential 

complex 

149 rooms (Pesic et al., 

2019) 

2019 Office  80 

employees 

(Ashouri et 

al., 2019) 

2019 Office 200 m2 (Wang et al., 

2018c) 

2018 Student office 25 residents (Wang et al., 

2018a) 
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2.2.3 Environmental sensors for data collection  

As shown in Table 2-2, most direct occupancy counting methods either cause private 

intrusiveness or are time-consuming. Compared to direct occupancy counting methods, 

environmental sensors often target a smaller group of occupants, which is partly due to 

the cost of sensors and the detailed data these sensors can collect. Most papers use more 

than one sensor to combine the data and avoid missing data. Also, when people are 

aware that they are being watched, they may alter their behaviour (Diaper, 1990). The 

idle way of data collection would be employing existing infrastructures or simple 

instalments without capturing detailed personal information that concerns private 

intrusiveness. In most research, the case study is the researcher’s own office or dwelling 

to avoid private intrusiveness (Tien et al., 2020b). However, the number of occupants is 

always limited, and the behaviour routine is usually fixed, which could make the model 

defective when applied to larger implementations. Therefore, some studies are 

conducted in public areas like shopping malls (Zeng et al., 2019) and cinemas (Arief-

Ang et al., 2018b), while the sensors could miss some data with the large group of 

occupants. 

Table 2-3 summarises some of the recent studies using environmental sensors. Many 

researchers use physical sensors like motion sensors to capture accurate occupancy 

status without being aware. 20.3% of energy-saving was achieved in a 550 m2 office 

space with motion sensors (Peng et al., 2017), and another experiment in a smart-home 

testbed with a motion sensor achieved around 60% accuracy for occupancy prediction 

(Sama and Rahnamay-Naeini, 2016). On the other hand, motion sensors are not able to 

detect nearly stationary individuals, which is common in offices and during inactive 

time at home. Therefore, the state of occupancy can only be identified by the arrival and 

departure times. Also, non-intrusive sensors such as pyroelectric infrared (PIR), 

ultrasonic, and acoustic sensors can only be used to assess whether or not a space is 

occupied, not the occupants’ number (Sun et al., 2014). Therefore, they are suitable for 
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single-occupancy rooms. For example, research conducted in a single-occupant office 

had a 1-hour forecast accuracy of 79% to 98% (Manna et al., 2013). However, due to 

the air mixing process, there were always significant delays for these sensors, especially 

when they were located far away from occupants. 

Table 2-3 Recent studies on occupancy detection using environmental sensors. 

Ref. Accuracy 
Testing 

Environment 

Study 

Scale 

Data Collection 

Method (DCM) 
(Jin et al., 2021) Up to 97.4% Office around 20 

m2 

3 DCM - Passive 

infrared sensor (PIR) 

sensor, an on-site 

survey, a camera 
(Rueda et al., 

2021) 

The average 

accuracy of 

95.8% 

An apartment - 6 DCM - CO2 

concentration, motion 

sensors, relative 

humidity, 

temperature, heating, 

and lighting 

consumption 
(Tien et al., 

2020b) 

Average 

detection 

accuracy of 

92.2% 

Office space 39 m2 AI-powered camera 

(Panchabikesan 

et al., 2020) 

The best-adjusted 

R2 is 0.94 

Eight 

apartments 

3-bedroom 

apartments 

5 DCM - Motion 

sensors, indoor CO2, 

indoor humidity, 

temperature, and the 

number of occupants 
(Pigliautile et 

al., 2020) 

Up to 84% A house-like 

cubicle 

3 m x 3 m 9 DCM - 

Microclimatic station 

air temperature, 

relative humidity, net-

radiation, air speed, 

CO2 concentration, 

and illuminance level 
(Li et al., 

2020b) 

Vary from 0.82-

0.98 for heat 

consumption and 

0.87-0.97 for 

electricity 

consumption 

A mixed-use, 

university 

building 

7,445 m2 3 DCM - Outdoor 

temperature, and 

historical energy 

consumption data 
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(Ferrantelli et 

al., 2020) 

The error of only 

5% 

Office building 8 floors, 

area: 

19,642 m2 

9 DCM - Water 

consumption, 

electricity load, room 

temperatures, 

ventilation devices 

and controllers, air 

pumping, indoor air 

quality 
(De Bock et al., 

2020) 

Vary from 85.6 to 

93.7% 

Office single user  7 DCM - Motion and 

temperature sensors, 

door sensors, and 

pressure sensors on 

office chairs. 
(Wang et al., 

2019a) 

The best 

accuracy for real-

time prediction is 

86% 

A graduate 

student office 

about 200 

m2 

with 25 

residents 

3 DCM - CO2 

concentration, 

relative humidity, and 

temperature 

(Wu et al., 

2021) 

The highest R2 is 

0.9594 

Office room the floor 

area of 152 

m2 

4 DCM - CO2 

concentration, 

temperature, relative 

humidity, energy 

consumption 
(Peng et al., 

2017) 

The total control 

accuracy is 

88.1% 

Office space 550 m2 5 DCM - Motion 

sensors, temperature 

sensors, relative 

humidity sensors, 

CO2 sensors, and 

HMI 
(Sangogboye et 

al., 2017) 

Prediction errors 

below 7% 

A study zone 125 m2, 36 

occupants 

6 DCM - PIR 

sensors, cameras, 

temperature sensors, 

CO2 sensors 

Therefore, environmental sensors, including CO2-based detection, indoor temperature, 

relative humidity, and energy meters, are proposed. The indoor temperature sensor is 

the most used data collection method in the reviewed papers (as seen in Figure 2-6) 

because they are small and usually already available in standard HVAC systems. Since 

the indoor temperature is not directly linked to occupancy data, the temperature and 

humidity sensors are commonly combined with CO2 sensors (Peng et al., 2017) or 

weather data (Marchelina et al., 2019). Also, sensors that record the indoor temperature 

and relative humidity are generally used to operate window openings and thermostat 

adjustments. These sensors, however, should be kept away from sources of heat, 
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humidity, and contamination (equipment, humans, and solar power) to avoid a mixture 

of their readings (Xilei et al., 2020). 

Smart meters, which can reflect the actual electricity consumption, are also employed 

in many works. The energy load data is easy to collect and compare to the simulation or 

prediction result. Most works exhibit a significant performance gap between models and 

observed energy use and meters that monitor real energy consumption can be used to 

detect the gap and validate the influence of occupancy behaviours (Ramokone et al., 

2020).  

CO2 sensors are a viable technique since they are inexpensive, tiny, non-intrusive, and 

non-terminal, making them a popular data collection method (Wei et al., 2019b). Since 

CO2 sensors commonly exist in regular HVAC systems, no new infrastructure 

expenditure is needed. The method calculates the number of occupants with an equation 

using CO2 concentration (Mumma, 2004), which has the main disadvantage of delayed 

response and possible difficulties in identifying physical parameters. As a result, when 

CO2 sensors are properly installed, and details about observed rooms (room volume and 

airflow rate) are known, the CO2-based method performs well, whereas the results were 

unreliable when the studied spaces were open and irregular, such as an open-plan or 

naturally ventilated office (Dey et al., 2016). To overcome these weaknesses, more 

accurate methods were developed including data mining algorithms. 

Thermal imaging and thermal comfort voting are new contactless sensors that have 

demonstrated the capacity to enhance thermal comfort while affecting energy 

consumption. In an office room, using thermal comfort voting to obtain users' real-time 

reactions to the environment and then modifying the management goal settings enhances 

thermal comfort while saving up to 40% energy (Murakami et al., 2007). Consequently, 

subjective responses instead of physical parameters might be a new approach to 

occupancy detection that should be paid more attention to. 
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2.2.4 Data mining technologies 

As shown in Table 2-3, in most studies, data collected from buildings has more than one 

kind of sensor installed. For reviewed papers in this article, the most widely used method 

is the combination of indoor temperature sensors and CO2 sensors (Khalil et al., 2021, 

Yuan et al., 2020, Wang et al., 2019a). However, raw data might have a variety of issues, 

such as missing information or sudden swings if one or more sensors are disrupted. Also, 

sensor readings could conflict with each other, and sometimes, the reading in sensors 

will not change much, so it provides no valuable information. 

To solve these problems above, data mining technologies have been introduced by many 

researchers. For example, missing data were replaced with interpolated data, and 

nonsensical data was either removed or reset to the sensor's initial values using the "data 

cleaning" method (Yu et al., 2011). Extraction of the mean, standard deviation, mean 

absolute deviation, first, second, and third-order differences and even simple moving 

averages are used as post-processing procedures for collected original data. For data 

mining, most researchers use supervised algorithms like the SVM (Support Vector 

Machine) and the Decision Tree to categorize samples based on a target variable (Das 

et al., 2019). Unsupervised learning techniques, such as hierarchical clustering and k-

means, have recently been adopted in studies to organize data into clusters based on the 

characteristics of all variables without any target variable (Killian and Kozek, 2019). 

With the trend of multiple sensors, it is hard to confirm an occupancy dataset structure 

in advance. Therefore, using cluster algorithms is becoming a standard step before 

sending data to machine learning training. 

2.3 Machine learning algorithms and their applications 

Supervised learning, unsupervised learning, and reinforcement learning are the three 

most typical machine learning approaches used in occupancy prediction (Mohri et al., 
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2012). Supervised learning models include decision trees (Koklu and Tutuncu, 2019) 

(such as the gradient boosting tree), classifiers (such as the Bayes classifier, kNN, and 

support vector machine), and neural network-based models (Kim et al., 2020) (such as 

the feedforward backpropagation network and cascade correlation). Furthermore, these 

models can be classified as linear or nonlinear based on the data structure. Linear 

methods are used when the responding and prediction data are linearly linked or 

converted into a linear relation. With the dramatically increasing of variates, data 

transformation techniques like normalization process, log conversion, and ranking 

transformation might be utilized (Apostolo et al., 2020). In the majority 

of circumstances, linear models are easy to create and use, and they are frequently used 

as the first model. Other nonlinear models can be employed more effectively if the data 

are unlikely to be linearly connected. 

Unsupervised learning methods reduce, summarize, and synthesize data using 

unlabelled training data (Mohri et al., 2012). Unsupervised learning algorithms include 

cluster analysis learning, like principal component analysis and parametric analysis, and 

various ANNs (e.g., autoencoder neural network and self-organising map) (Liang et al., 

2016). Because occupants behave in a stochastic manner impacted by a variety of 

parameters, the majority of which are immeasurable and unpredictable, it's critical to 

figure out which inputs are the greatest influencers and only add those that significantly 

increase behaviour. As a result, while unsupervised learning cannot generate prediction 

for a new dataset, it can contribute to the comprehension of the data's character, allowing 

for the selection of supervised models for prediction (Amel et al., 2018). Since there is 

no output in unsupervised methods, data linearity is not an issue. Similarly, with 

reinforcement learning, a direct match of input and output does not exist, and it can only 

estimate how well the output is. 
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2.3.1 The trends of machine learning and deep learning 

In general, there is a rise in machine learning applications because of the availability of 

building automation systems, smart systems and IoT platforms, which increases the 

quantity of data available as discussed before (Zantalis et al., 2019). The great volume 

of data requires advanced techniques to analyse them which conventional models cannot 

handle properly. In addition, most behaviours are influenced by several contextual 

elements, the best way to mimic them is to either integrate all the parameters in one 

equation or address the factors that influence behaviour separately, allowing them to be 

split into various formulae. Therefore, powerful methods like deep learning which is 

suitable for big-data and computationally intense processes have been introduced in 

recent years. 

As can be seen in Figure 2-7, the neural network-based algorithm (which occupied more 

than 40% of reviewed papers after 2018) is the most popular method in building 

machine learning prediction. Particularly, deep learning with a large number of hidden 

layers that compose the neural network showed good capacity in image pattern 

recognition, speech recognition and synthesis, etc. which also indicated possible future 

development in occupancy prediction models. 
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Figure 2-7 Summary of the reviewed studies from 2011 to 2021 using machine learning 

algorithms. 

The popularity of the neural-network-based algorithm indicated that deep learning is 

making major advances as typical machine-learning techniques were narrowed in the 

ability to deal with data in the natural form (LeCun et al., 2015). Deep learning uses 

graph technologies and neuron transformations to obtain multilayer learning models and 

automatically learns the data. The most widely used deep learning models are 

Convolutional Neural Network (CNN) (Arvidsson et al., 2021) and Recurrent Neural 

Networks (RNN) (Kim et al., 2018), which are also popular in building occupancy 

prediction. Also, the development of deep learning algorithms provides advancement in 

building automation systems as it can convert the data at one level (starting with the 

natural data) into a depiction at a slightly more abstract level. In 2021, a smart Oracle-

based building management system was proposed that auto-learns occupancy patterns 

and leverages spatial organization to deliver actionable insights on energy savings (Mitra 

et al., 2021). 

2.3.2 Occupancy prediction  

Occupancy prediction, in general, draws the most attention in the reviewed papers until 

2020, which is since the variation of occupants' interactions is regarded as the 

foundation of the uncertainty in building models. One of the key parameters an 
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occupancy prediction model should consider is the occupancy level. In 2011, a study 

separated occupancy prediction levels into three major factors: temporal, spatial and 

occupancy state resolution (Melfi et al., 2011). The precision with which the timing of 

events is modelled is referred to as temporal resolution. The precision of the physical 

scale is defined by spatial resolution (e.g., a building or a zone of the model target). The 

model's occupancy resolution refers to how it specifies individuals. 

For temporal resolution, one of the classifications divided occupancy prediction models 

into three categories: real-time recognition, future time-step predicting, and occupancy 

profile modelling (Xilei et al., 2020). These approaches either estimate the number of 

occupants, determine whether they exist in a particular area, or generalise a few 

occupancy profiles based on previous occupancy patterns. In most occupancy prediction 

models, the monitor period has ranged from a day to multiple years, and the time they 

mean to predict varies from serval seconds to more than a year. A study showed 61.5% 

and 43.6% accuracy for building predictions of more than a year and one hour, 

respectively (Kuster et al., 2017). The short-term prediction has a direct application for 

quick occupancy demand response and suits the needs of the industry. However, the 

seasonal effect of occupant behaviours requires a full year of monitoring is more reliable, 

especially in specific cases, such as simulating academic buildings' holiday schedules 

regarding energy consumption (Li et al., 2020b). 

In the reviewed studies, the regression-based method based on Random Forest is the 

most used method for occupancy prediction. According to a study, the regression model 

is primarily used for long-term forecasting, while ANN is mainly used for short-term 

forecasting (Kuster et al., 2017). Different methods should be employed for different 

types of occupancy state prediction. For example, ANN with long short-term memory 

(LSTM) architecture is the most commonly used and suitable method for time series 

prediction (Mandic and Chambers, 2001). A study found that Random Forest is the most 

suited classifier (Haidar et al., 2019), with at least 90.53% accuracy, after training data 
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with five different machine learning classifiers (Random Forest, Decision Tree 

Classifier, Extra-Trees, Gaussian Naive Bayes, and Multi-layer Perceptron). Another 

study achieved 97.27% to 98.90% accuracy in an indoor office by employing several 

Deep Neural Networks (DNNs) (Metwaly et al., 2019a). The method's accuracy also 

depends on the type of data collected. For example, the SVM and k-NN models have 

lower counting errors when using Wi-Fi data, whereas the ANN model is more accurate 

when using fused data (Wang et al., 2018a).  

Based on the reviewed papers, many studies focus on detecting the occupancy 

information, including the occupancy presence, number and location in space, zone or 

building. However, there are limited studies on the detection of occupancy activities, for 

example, movement in space (Tien et al., 2020c), opening/closing of windows (Tien et 

al., 2022), adjustment of HVAC, and use of equipment and appliances. Furthermore, 

significant attention of the existing literature is focused on the performance of developed 

algorithms, such as their speed and accuracy. Details of different kinds of occupancy 

prediction are listed in Table 2-4. 

Table 2-4 The information about studies using various algorithms in occupancy 

state/number/activities prediction. 

Prediction 

Classification 
Ref. Year Sensor Algorithm 

Test 

Environment 
Accuracy 

Occupancy 

State 

Prediction 

(Vaňuš 

et al., 

2019) 

2019 Relative 

humidity, 

temperature

, and CO2 

Linear 

Regression, 

Neural 

Networks, and 

Random Tree 

A laboratory Higher 

than 90% 

(Arief-

Ang et 

al., 

2018a) 

2018 CO2 data 

and indoor 

human 

occupancy 

seasonal-trend 

decomposition 

(STD) 

An academic 

office and a 

cinema theatre 

An 

average of 

94.68% 

      

Occupancy 

Number 

Prediction 

(Apost

olo et 

2021 28 Wi-Fi 

Apps 

Multilayer 

Perceptron 

ANN 

5 floors of 

classrooms 

RMSPE 

of 0.29 
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al., 

2021) 

(Salim

i et al., 

2019) 

2019 Real-Time 

Locating 

System 

inhomogeneous 

Markov chain 

A research 

laboratory 

86% on 

average 

(Wang 

et al., 

2018c) 

2019 Wi-Fi 

probes and 

indoor air 

temperature

, relative 

humidity, 

and airflow 

rate 

Gradient tree 

boosting, 

Random forests, 

AdaBoost 

A large office 

room, 200 m2 

Reached 

72.7% 

(Kim 

et al., 

2019) 

2019 Camera and 

motion 

sensor 

RNN with 

LSTM units 

An exhibition Best 

RMSE of 

10.31 

Occupancy 

Activity 

Prediction 

(Tien 

et al., 

2020b) 

2021 Camera CNN Office space, 

39 m2 

Average 

accuracy 

92.2% 
(Lu et 

al., 

2020) 

2020 Social 

networks 

Random Forest 

and XGBoost 

A public 

museum 

RMSE 

within 

30% 
(Huch

uk and 

Sanner

, 2019) 

2019 Temperatur

e sensor and 

PIR sensor 

Markov model 

(MM), HMM, 

and RNN 

Single-family 

homes 

Under 

0.80 

average 

accuracy 

Limited works focused on evaluating the impact of the detection technique on the 

performance of the building and HVAC systems. For example, a study proposed a 

vision-based approach for detecting and recognising the occupants’ activities within 

building space (Tien et al., 2020c). Unlike previous works which focused on occupancy 

levels, the study used the data to predict the indoor heat gains from the occupants with 

varying activity levels. Such information would be useful for HVAC controls to adapt 

and make a timely response to dynamic changes in occupancy activities. A recent work 

used the same detection approach to detect how the occupants interact with the 

equipment or appliances such as computers (Tien et al., 2022). Similarly, the proposed 

approach can predict the internal gains from the facilities operated, contributing to the 

indoor heat gains. 

The exploration of vision-based methods for occupancy detection and prediction in 

buildings has gained considerable attention in recent years. Table 2-5 outlines examples 



34 

of recent research efforts in this area, highlighting a variety of algorithms and data 

collection techniques utilised over the years. For instance, Yang et al. (Yang et al., 2022) 

employed a framework that utilises CNN-based density estimation methods to fuse image 

information from surveillance videos to obtain accurate and high spatial-temporal 

resolution indoor occupancy information. This framework trains an ML-based ensemble 

model to predict occupancy schedules based on the occupancy information extracted from 

the images, achieving 95.67% accuracy in high-density environments.  

Table 2-5 Examples of research work on occupancy detection and prediction using the 

vision-based method  

Ref. Year 
Data 

Collection 

Test 

Building 

Participants 

number 
Result Algorithm 

(Zou et al., 

2017) 2017 
Surveillance 

camera 
Office 12 

The number 

of occupants 

CNN, SVM, and 

K-means 

(Callemein 

et al., 

2019) 

2019 
Omnidirectional 

camera 
Office 4 

The number 

of occupants 
YOLOv2 

(Tien et 

al., 2020d) 2020 Camera Office 1 

The number 

and activity 

of occupant 

CNN 

(Sun et al., 

2022b) 2021 

Entrance video 

and interior 

camera 

Office 11 
The number 

of occupants 

GMM, CNN-

based FCHD, 

Kalman filter, 

OFH 

(Choi et 

al., 2021) 2021 
Internet 

protocol camera 
Office 10 

The number 

of occupants 
YOLOv5 

(Tien et 

al., 2022) 2021 Camera Classroom 2 
The number 

of occupants 

Faster R-CNN 

with Inception 

V2 

(Sun et al., 

2022a) 2022 Cameras Office 11 

Head and 

occupancy 

detection 

YOLOX, 

Deepsort, 

dynamic 

Bayesian fusion 

(DBF) 

(Gursel 

Dino et al., 

2022) 

2022 

Cameras in 

large indoor 

space 

Classroom 
More than 

100 

Head and 

occupancy 

detection 

YOLOv3 

(Choi et 

al., 2022) 2022 
Internet 

protocol camera 
Office 6 

The number 

of occupants 
YOLOv4 

(Wei et al., 

2022a) 2022 Camera Classroom 7 Occupancy 
count and 

 Faster R-CNN 

with Inception 

V2 
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activity 

profiles 

(Wei et al., 

2022b) 2022 Camera Classroom 3 

Occupancy 

count and 

activity 

profiles 

 Faster R-CNN 

with Inception 

V2 

(Yang et 

al., 2022) 2023 
Surveillance 

videos 
Classroom 

More than 

100 

Occupancy 

count and 

schedules 

CNN-based 

density 

estimation 

method and 

ensemble model 

Sun et al. (Sun et al., 2022a) proposed a three-level fusion framework based on YOLOX 

for indoor occupancy estimation in a University office space, which achieved a prediction 

accuracy of up to 99%. Furthermore, Choi et al. (Choi et al., 2022) employed a deep 

learning model based on YOLOv4 for occupancy counting in small and medium-sized 

offices, demonstrating high performance (root mean square error (RMSE): 0.883), broad 

applicability and cost-effectiveness of the method. 

Expanding on these advancements, Sun et al. (Sun et al., 2022b) proposed a four-step 

system combining motion detection and static estimation. This approach filters non-

occupied frames, detects entrance and exit events, and uses a Fully Convolutional Head 

Detector (FCHD). The results are fused using Kalman filtering and Occupancy Frequency 

Histogram (OFH), achieving 97.8% accuracy. This fusion method effectively addresses 

common issues like occlusions and cumulative errors, enhancing occupancy estimation in 

diverse environments. These studies (Wei et al., 2022a, Tien et al., 2020d) have shown that 

with accurate real-time occupancy data in building management systems, HVAC systems 

can be optimised to match actual occupancy patterns, which leads to improved energy 

efficiency and significant energy savings. For instance, the study (Han et al., 2024) reduced 

the total energy consumption of fan coil units by 18.43%, 8.71%, and 18.97% in different 

cities by using the occupancy estimation framework. 

Some studies have demonstrated the capability to identify not just the presence of 

occupants but also specific activities and behaviours such as using equipment (Wei et al., 

2022a) or opening windows. Such activities can influence the heat gains or heat loss in 
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buildings and consequently influence the operation of HVAC systems. For instance, Wei 

et al. (Wei et al., 2022b) utilised Faster R-CNN models to detect the number of occupants 

and their specific activities such as walking, sitting, and standing, achieving an accuracy 

of up to 88.5% for activity recognition. However, the accuracy of detecting specific 

activities is generally lower compared to simply detecting the number of occupants, which 

can achieve higher accuracy, as evidenced by the 98.9% accuracy for occupancy counting 

in the same study.   

In another study, Wei et al. (Callemein et al., 2019) introduced a real-time occupancy and 

equipment usage detection approach using Faster R-CNN for demand-driven controls. The 

approach achieved 93.60% for occupancy activity detection but lower accuracy for 

equipment detection (78.39%). Occupancy activity detection requires the detection of the 

entire body of the occupants, which can be more challenging than methods that employ 

head counting or detection. Similarly, Tien et al. (Tien et al., 2021) employed Faster R-

CNN to detect real-time window conditions, achieving a detection accuracy of 97.29% in 

tests conducted in a case study building. Building on this, the study (Tien et al., 2022)  

developed a real-time occupancy and window operation detection, which achieved 85.63% 

for occupancy activity detection and 92.2% for window operation detection. These studies 

highlight the potential for reducing energy loss and optimising HVAC systems by 

incorporating real-time detection of window operations.  

The use of cameras for occupancy detection raises privacy issues, as continuous 

monitoring can be intrusive. A small survey conducted by (Choi et al., 2021) suggests that 

people preferred occupancy counting techniques that automatically extract and delete 

images without human intervention, rather than methods that use video encryption or blur 

occupants. Callemein et al. (Callemein et al., 2019) addressed privacy concerns by using 

a low-resolution omnidirectional camera that maintains privacy while still providing 

accurate occupancy counts. Using YOLOv2, they combined spatial and temporal image 

data to improve detection performance even with extremely low-resolution images. 
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Many of the studies highlighted above were conducted with a limited number of 

participants in small to medium-sized offices and classrooms, indicating a potential area 

for further exploration and validation of these vision-based methods in more populated 

building spaces. A potential limitation in larger scenes is that the increased distance 

between the camera and occupants results in lower-resolution images (Gao et al., 2020a), 

making it difficult for detection algorithms to accurately identify and count individuals. 

Furthermore, the complexity of indoor environments, such as open-plan offices and 

classrooms, further poses a challenge due to the presence of obstacles like furniture and 

equipment, which can hinder accurate person identification (Zhang et al., 2016).  

To address these issues, some studies have explored the use of multiple cameras for 

localising and counting individuals (Choi et al., 2021). For instance, one study 

(Maddalena et al., 2014) introduced a 3D self-organising neural network approach 

utilising multiple cameras to tackle occlusions and visibility issues common in crowded 

and cluttered scenes. The use of multiple cameras can provide different viewpoints and 

help overcome occlusion problems by covering blind spots, but these methods often 

necessitate calibrated and synchronised cameras, introducing a layer of complexity and 

computational demand.  

Dino et al. (Gursel Dino et al., 2022) investigated vision-based methods for estimating the 

number of occupants using multiple video cameras. Their hybrid approach combined 

instantaneously counting people in a scene with incrementally counting those entering or 

exiting a room. Tested in a large, crowded, and occluded classroom with over 100 

occupants, it showed high predictive capacity. However, the study focused on head 

detection and counting occupants, without considering specific activities or the impact on 

building energy performance. It also noted high computational costs and significant 

infrastructure expenses for multiple cameras and continuous internet connections. This 

underscores the need for more efficient algorithms and comprehensive privacy-preserving 

solutions.  Furthermore, Yang et al. (Yang et al., 2022) proposed a CNN-ML framework 
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for crowd counting and prediction in high-density public buildings, achieving 95.67% 

recognition and 83.12% all-day prediction accuracy. However, detection accuracy 

decreases in dense scenes, and the method has high computational costs and requires 

extensive manual labelling. Future research should optimise algorithm efficiency and 

reduce manual labelling.  

In contrast, another study (Callemein et al., 2019) employed an omnidirectional or wide 

field-of-view camera mounted in the ceiling, which captures a single 360-degree image 

without the need for camera repositioning. This method simplifies the setup by using a 

single camera to cover an area, reducing the complexity and cost associated with multiple 

cameras. However, it introduces challenges related to image distortion and lower resolution 

at the edges of the captured image. The study achieved favourable results but required 

retraining the detector with similar omnidirectional images to account for the distortion 

effects. While multi-camera systems improve accuracy in complex environments, they 

pose challenges in cost and complexity. In contrast, single-view camera systems are 

simpler and more cost-effective. This research will focus on single-view camera systems 

evaluating their potential for accurate and efficient occupancy detection in building 

environments. 

2.3.3 Indoor air quality (IAQ) prediction 

IAQ has long been an important topic for the health and wellbeing of the occupants in 

buildings. The previous sections have highlighted the importance of a holistic approach 

to deal with these challenges adequately. Traditionally, mechanistic IAQ models have 

been utilized, and the link between inputs and outputs has been based on mechanisms 

(Yang et al., 2014). However, mechanistic IAQ models do not include the interactions 

between the occupants and the indoor environment and the differences between 

individuals, which can impact energy consumption and building performance. The 

operation of HVAC systems affects both comfort and IAQ. Hence in some studies, IAQ 
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prediction is combined with thermal comfort prediction and considered as part of the 

overall occupant’s comfort parameter (Goyal et al., 2012). Therefore, these models, 

especially ML models, which consider occupancy interaction and building performance, 

are increasingly being employed in recent research. 

One of the most crucial issues in IAQ prediction is finding the right input to achieve a 

reliable prediction. Since the model is data-driven, it is important to identify the key 

variables inputs. Many environmental indexes are used to determine the relationship 

between occupants' feelings about IAQ, such as door/window opening behaviour, 

temperature, relative humidity, CO2 concentration, solar radiation, rainfall, wind speed, 

noise, illumination, and so on (Kallio et al., 2021). Therefore, in IAQ prediction models, 

normally, one or more driving factors are used for prediction (Kamel et al., 2020). The 

inputs may have an indirect and unexpected impact on the behaviour (Killian et al., 

2018), therefore an over-fitted model that has many inputs is often conducted. Many 

research used data mining approaches such as stepwise regression, principal component 

analysis (Das et al., 2014), and partial least squares (Kim et al., 2009) to uncover the 

driving components before developing the models. 

The algorithm selection is often related to the data structure and collection method. 

However, IAQ is related to a lot of environmental indexes, as stated before, which can 

be recorded by various kinds of sensors and parameters, it is hard to recommend a 

specific kind of algorithm without analysing the detail of the model. One review 

summarised the popular algorithms, for example, ANN, linear regression models, and 

Decision Trees developed for predicting different factors of IAQ, but cannot recommend 

the optimal method and suggested a test and compares different models before choosing 

the most suitable model (Wei et al., 2019a).  

Most IAQ models are employed to improve the occupants’ overall comfort or lower 

the concentration of indoor air pollutants. For example, a study tested a control model 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/air-pollutant
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of a filter for indoor CO2 decreasing in a sports centre while using fuzzy inference to 

reduce the indoor CO2 concentration (Omarov et al., 2021). Another research found 

Multilayer Perceptron (MLP) follows the pattern of CO2 changes more quickly and 

with higher accuracy compared to other algorithms (Support Vector Machine (SVM), 

AdaBoost (AdB), Random Forest (RF), Gradient Boosting (GB), Logistic Regression 

(LR)). It reduced 51.4% of energy consumption in the total energy usage (Razban and 

Taheri, 2021). Other environmental indexes like PM2.5 concentration can also be 

predicted by neural networks (i.e., RNN, LSTM, and gated RNNs) (Loy-Benitez et al., 

2019).  

2.3.4 Thermal comfort prediction 

The number of thermal comfort prediction studies and approaches using the ML 

methods is limited compared to occupancy and energy consumption prediction, as in 

Figure 2-1. In the existing literature, thermal comfort is typically assessed by the PMV 

model based on extensive laboratory tests, which ignore individual comfort (Fanger, 

1970a) and, in some cases, do not provide satisfaction for all occupants (Cheung et al., 

2019a). Therefore, most existing literature uses the ML approach to forecast thermal 

comfort and consider all occupants as a whole, disregarding data acquired from separate 

occupants (Chai et al., 2020). In this scenario, individual occupant diversity was lost, 

and occupants were modelled as an "average group," which is a statistical construction 

rather than an actual person (Goyal et al., 2012). It's worth noting that occupant comfort 

differs according to one's age, gender, background, and other personal characteristics. 

Therefore, individual comfort is becoming more popular, and personal comfort models 

based on data from individual occupant comfort surveys are being developed 

(Issaraviriyakul et al., 2021).  

A recent study used two different machine learning algorithms to analyse a combination 

of inputs, including an individual comfort system, body temperatures, timing, and 
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environmental parameters. Personal comfort models achieved the best accuracy across 

all examined methodologies and participants, according to their findings (Katić et al., 

2020). With the advancement of the Internet of Things, it is becoming more convenient 

to collect physiological data using a range of sensors (wearable or non-wearable 

devices). They can forecast thermal experience or satisfaction based on users' 

physiological data, such as employing wearable devices to monitor skin temperature, 

heart rate, blood pressure, and other physiological parameters at various human body 

positions (such as wrist, face, back and legs) (Chai et al., 2020). Therefore, these sensors 

show potential for the future development of thermal comfort prediction. 

In 2012, the research employed a PMV control model with an RNN network and branch-

bound boost to the HVAC system (Ferreira et al., 2012). Another study looked at the 

effectiveness of an ANN-based adaptive PMV control algorithm in a residential house 

and discovered that it was more effective than non-adaptive algorithms for improving 

control and disturbance reaction (Moon, 2012). Meanwhile, since two behaviours can 

achieve the same goal and thermal comfort often links to serval behaviours, ensemble 

models are likely to be introduced in comfort prediction models. A paper using the 

machine learning approach Bagging, using a multilayer perception network (MLPN) as 

a learning algorithm, outperformed traditional ANN and SVM methodologies (Wu et al., 

2018). 

The prediction model of thermal comfort is directly linked to the occupants’ satisfaction 

with the indoor environment. With new ML models and data collection methods, the 

performance gaps will be reduced. Improved models could be linked to a real-time 

environmental control system to improve building management without sacrificing 

occupant comfort. For example, as shown in Figure 2-8, the environmental information 

obtained can be used to provide data for the prediction of thermal comfort in real-time, 

which can be used to adjust the operation of the HVCA system. The occupancy data, 

such as the occupant’s number and metabolic/activity level, can estimate the indoor CO2 
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level and minimum ventilation level. Similarly, the thermal comfort prediction model 

can also use the occupancy number and activity level. Such information can be used to 

optimise the HVAC operation while also minimising the energy demand. 

 

Figure 2-8 The existing workflow of IAQ and thermal comfort prediction and the 

potential improvement. 

2.3.5 Energy consumption prediction 

Prediction of energy usage in buildings is becoming increasingly important, however, it 

is influenced by interrelated physical, operational, and behavioural factors such as 

building material, building schedule, and occupant behaviour (Chari and Christodoulou, 

2017). In most cases, physics-based building energy simulation tools (white-box models) 

such as DOE-2 and Energy-Plus are often used (Fumo et al., 2010). However, these tools 

are limited for energy analysis since they do not contain uncertain factors like occupancy 

behaviour, impacting annual energy consumption up to 75% for residential buildings 

and 150% for commercial buildings (Clevenger et al., 2014). As a result, many 

researchers use the data-driven method (black-box models) to forecast energy use and 

analyse the effects of energy-saving initiatives like energy-retrofit strategies and 

renewable energy technology (Wei et al., 2018). Meanwhile, other researchers use the 

https://www.sciencedirect.com/topics/engineering/annual-energy-consumption
https://www.sciencedirect.com/topics/engineering/commercial-building
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output of occupancy prediction to generate an occupancy profile as input for physics-

based simulation tools to calculate the energy use result (grey-box model).  

Existing machine learning-based models, on the other hand, do not adequately account 

for occupant behaviour. They either ignore occupancy behaviour entirely or deal with 

it in a limited way, such as merely examining building operation schedules (Massana et 

al., 2016) or simplifying the occupancy model as occupancy rate (Truong et al., 2021). 

In addition, with the new development of data collection methods, models that target 

specific occupants will be proposed. A model simulating energy consumption on the 

personal level and considering the gender difference was proposed in (Lee et al., 2019b) 

and concluded that females tend to use more energy than males. 

Although HVAC is usually required to provide comfortable, productive, and healthy 

surroundings, it also uses a large amount of energy (Fan et al., 2017). However, 

occupants have many adaptive opportunities and other energy-relevant behaviours to 

minimise consumption. Furthermore, two behaviours can achieve the same goal, for 

instance, adding more clothing and turning on or adjusting a heater can both lead to 

warming a person, but at different levels of efficiency, price, and energy intensiveness. 

Most machine learning models of energy consumption only evaluate and discuss a single 

behaviour without considering their correlated relationship. It could be due to the ML 

algorithm requirements for the data structure and simplifying the model. Therefore, 

choosing suitable inputs and model structures is critical for the prediction method and 

affects accuracy and performance. 

The most often utilized methods for building energy estimates using historical data are 

regression and ANN models (Ahmad et al., 2018). The performance of different data-

driven models may differ from residential, commercial, and office buildings when 

picking the best strategy for a certain case. Most researchers would use a trial-and-error 

method to find the best model performer for a certain structure instead of assuming a 
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universal model and applying it to all building types. In general, ANN prefers 

environmental, time index inputs (Kuster et al., 2017). Ensemble models, which 

combine numerous models due to the nature of energy use in buildings, are more likely 

to produce accurate predictions than single models (Wang et al., 2018d). A few studies 

achieved better results with the ensemble techniques than the single method. For 

example, the performance of three ANN models – Feed Forward Neural Network 

(FFNN), radial basis function network (RBFN), and adaptive neuro-fuzzy interference 

system (ANFIS) – was compared to the ensemble of these three models, and the 

ensemble model produced the best accurate prediction results (Jovanović et al., 2015). 

One major challenge to the machine learning model is the large number of algorithms 

available, making it difficult to determine which one should be used for a given task. 

The type of data provided determines the learning methods. Statistical models are 

classified as linear or nonlinear based on whether they are used to solve linear or 

nonlinear problems. After appropriate data transformations, nonlinear issues can be 

turned into linear ones. Aside from the differences, one model may involve multiple 

learning algorithms, with their own set of strengths and disadvantages, making it even 

more difficult to choose the best method. Making several assumptions and testing 

various approaches is a frequent solution. A more comprehensive estimation can be 

obtained by training various models and combining prediction outcomes. Consequently, 

it is vital to summarize the data for various applications to assist researchers in 

developing better prediction models. A list of popular machine learning algorithms for 

different applications in the existing literature is made in Table 2-6. 

Table 2-6. Summary of the commonly used machine learning algorithms for different 

applications 

Application Algorithm Suitable Cases Accuracy Ref. 

Decision tree and 

HMM 

The decision tree is 

suitable for current 
86.2% and 93.2% 

(Ryu and Moon, 

2016) 
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Occupancy 

State 

Prediction 

state detection and 

HMM for future 

state 

CNN 
Good with images 

89.39% 
(Tien et al., 

2020a) 

DNN 

Suitable for 

resource-

constrained devices 

used in IoT-based 

applications 

Ranging from 

97.27% to 

98.90%. 

(Wang et al., 

2018a) 

Indoor Air 

Quality 

Prediction 

LSTM 

Outperform other 

algorithms with 

real-time collected 

data 

96% 

(Hitimana et 

al., 2021) 

Markov model 

and ANN 

Markov model for 

comfort assessment 

and ANN for CO2 

predictions 

R2 = 0.92. 

(Tagliabue et al., 

2021) 

SVM, AdB, RF, 

GB, LR, and 

MLP 

MLP outperformed 

for CO2 forecasting The best RMSE 

for MLP is 33.78 

(Razban and 

Taheri, 2021) 

Energy 

Consumption 

Prediction 

k-means cluster 

Better fitting for 

time series with 

less mobility of 

occupants or the 

rooms with larger 

capacity 

15 % error 

(Ding et al., 

2021a) 

ANN four Back-

propagation 

neural network 

Levenberg–

Marquardt Back-

propagation has 

better performance 

in forecasting 

electricity 

consumption. 

The error rate is 

1.07–2.23% 

(Kim et al., 

2020) 

SVR, LMSR, 

KNN and NB 

Regression models 

fit for modelling 

daily electricity and 

heat demand 

varies from 0.82-

0.98 for heat 

consumption and 

0.87-0.97 for 

electricity 

consumption 

(Li et al., 

2020b) 

LSTM and 

NNARX and 

MLP 

LSTM models 

reduce prediction 

error by 50%. 

the error is under 

0.35 

(Mtibaa et al., 

2020) 

Thermal 

Comfort 

Prediction 

SVC and ANN 

Suitable for single-

room residences 

with the phone 

application 

above 95% 

(Issaraviriyakul 

et al., 2021) 

ANNs and SVM, 

PMV, aPMV, and 

ePMV 

ANNs model is 

effective in naturally ANNs model had 

the highest R 

(Chai et al., 

2020) 
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ventilated residential 

buildings 

(0.6984) and R2 

(0.4872) values 

Linear 

Discriminant 

Analysis (LDA), 

KNN, DT, NB, 

SVM, and RF 

classifiers 

Could be combined 

with the real-time 

control system 
up to 84% 

(Pigliautile et 

al., 2020) 

LSTM 

Can accurately 

forecast overheating 

conditions 

throughout the year 

over 95% 

(Yuan et al., 

2020) 

Therefore, new prediction methods that distinguish different types of activities and the 

personnel management system are required for future energy consumption models and 

fill the research gap. Like the methods discussed in the earlier sections, future energy 

models could benefit from more advanced occupancy data collection methods or 

integrated sensor systems, which can better capture the dynamic variations and make 

the necessary adjustments to the HVAC system.  

2.4 Validation of the prediction models: case study and time series 

Most studies include a validation stage or process after obtaining the results, which 

evaluates the proposed model's accuracy and applicability. The leave-one-out cross-

validation approach is the most common validation method. The entire data set is usually 

separated into three sections: training stage, verification, and testing. The majority of 

the data is normally used for training (more than 70%), while the rest is used for testing 

and model validation (Arief-Ang et al., 2018a). The result from machine learning 

methods will be compared with the validation data collected to evaluate the method's 

accuracy. 

In the reviewed studies, as shown in Figure 2-10, most research conducted field 

experiments in existing buildings or testbeds to test and validate the proposed method, 

while others used simulation-based investigations. Using historical occupancy data or 

other data collected as the input, the prediction accuracy can be up to 95% (Dey et al., 
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2016). For experimental studies, the implementation scale in reviewed studies varies 

from a small testbed (Gilani and Gunay, 2018) to the whole building (Ding et al., 2021a). 

Many energy-related experiments are conducted in a whole building, while most 

occupancy prediction models use selected rooms inside a building for the case study ( 

Figure 2-9). Some research separates the testbed into zones to compare different 

methods (Rahaman et al., 2019), while others define a small area as a testbed to check 

the prediction method (Pigliautile et al., 2020). The selection of implementation scale is 

often related to experiment design, and the challenges researchers faced ranged from 

communication issues with facility managers to equipment (De Bock et al., 2020) and 

sensor malfunction, which should be considered before conducting similar experiments 

(Gilani and Gunay, 2018). 

Some of the studies use public occupancy datasets to test the prediction models they 

proposed. For example, one research employed the ASHRAE Global Thermal Comfort 

Database with data from 52 field studies conducted in 160 buildings around the world 

(Földváry Ličina et al., 2018). This database is also used in another project to study the 

subjective metrics used for the assessment of the occupants’ thermal experience (Wang 

et al., 2020). Another example is the American time use survey (ATUS) conducted by 

the U.S. Bureau of Labor Statistics as an annual survey to record the respondent's 

activities and locations on a regular day (Statistics, 2009). Another dataset conducted in 

2015 in Berkeley, California includes whole-building and end-use energy consumption, 

HVAC system operating conditions, indoor and outdoor environmental parameters, as 

well as occupant counts (Luo et al., 2022). With the awareness of the importance of 

occupancy behaviour, there will be more datasets available in the future and validated 

by the scientific community. 
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Figure 2-9 The implementation scale of different applications of prediction models in 

reviewed studies. 

Also, the time series they meant to predict in Figure 2-10, short-term, long-term, and 

24-hour predictions each contribute about one-third of reviewed papers for all regions. 

Short-term predictions are more common in North America and Europe, while long-

term predictions are more common in Asia. This could be due to the sensor chosen and 

the prediction method design difference and most of the short-term predictions are 

usually tested before the longer version. The time series in different regions is shown in 

Figure 2-10, as the red columns indicate the time length in implementations. 
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Figure 2-10 The prediction timeframe and experimental method were conducted in 

different regions based on the reviewed studies. 

Accuracy is an important index for evaluating the model’s performance and the baseline 

could be either raw data collected from sensors, or a baseline set before the prediction. 

However, because of the multiple variables that influence their performance, a straight 

comparison of the study cases may not be the ideal method. Indeed, models are 

developed for various places and periods, using data of varying quality, and 
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supplemented by scripts of varying quality. Even the value used to determine accuracy 

in different studies differs including mean absolute percentage error, mean percentage 

error, RMSE, and coefficient of variation of RMSE, making comparison impossible. 

Table 2-7 shows the algorithms and accuracy index used in some of the reviewed papers, 

which indicate the different kinds of the mean for accuracy determination used in 

various models. 

Table 2-7. Summary of the algorithm, prediction time and accuracy in some of the 

reviewed studies. 

Ref.  Year Prediction 

time 

Algorithm Accuracy 

(Salimi et al., 

2019) 

2021 30 mins and 

5 mins 

Inhomogeneous Markov 

chain 

86% and 68% for 

lighting and HVAC 

systems  
(Chen et al., 

2021) 

2021 6 months ANN and fuzzy logic 

techniques 

Reduce the average 

RMSE by 35% 
(Chong et al., 

2021) 

2021 9 months LSTM RMSE reduced from 

37% to 24% 
(Apostolo et al., 

2021) 

2021 24 hours Multilayer Perceptron 

ANN  

86.69% accuracy for 

classification and 

RMSPE of 0.29 for 

occupancy counting 
(Kim et al., 

2018) 

2021 24 hours LSTM cells in RNN 

algorithms 

RMSE of 4.48% 

(Tagliabue et 

al., 2021) 

2021 2 months Markov model for 

comfort assessment and 

ANN for CO2 

predictions 

R2 = 0.92 

(Eini and 

Abdelwahed, 

2019) 

2019 6 months ANN MSE error is 0:003189 

2.5 Thermal Comfort: Theories, Assessment, and Prediction 

Thermal comfort is commonly defined as “that condition of mind which expresses 

satisfaction with the thermal environment” (ASHRAE, 2019). It is influenced by both 
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environmental variables—such as air temperature, mean radiant temperature, humidity, 

and air velocity—and personal factors including metabolic rate and clothing insulation. 

Ensuring thermal comfort is critical not only for occupant satisfaction and well-being, 

but also for improving the energy efficiency and responsiveness of building systems. 

The understanding of thermal comfort is primarily in two theoretical models: the heat 

balance theory and the adaptive comfort model. The heat balance approach, often 

referred to as the rational model, was formalised by (Fanger, 1970b) and central to this 

model is the Predicted Mean Vote (PMV), which estimates the average thermal 

sensation vote of a large group of individuals on a seven-point scale ranging from cold 

to hot. PMV is derived from a steady-state energy balance between the human body and 

its environment, taking into account six core parameters: air temperature, mean radiant 

temperature, relative humidity, air speed, clothing insulation, and metabolic rate. While 

PMV has been widely adopted in standards and simulation tools, it assumes a static 

indoor environment and homogeneity among occupants, and it does not account for 

behavioural or psychological adaptation. 

In contrast, the adaptive comfort model emerged from extensive field studies and posits 

that individuals are capable of adapting to their environment through behavioural, 

physiological, and psychological means (Carlucci et al., 2018). This model suggests that 

people accept and are comfortable with a wider range of indoor temperatures when they 

have access to control opportunities, such as operable windows or fans. As a result, 

thermal expectations in naturally ventilated buildings differ markedly from those in 

mechanically cooled environments. The adaptive model is particularly relevant in 

temperate climates and has become increasingly influential in contemporary comfort 

standards. 

Numerous researchers have sought to improve the performance and address the 

limitations of the PMV model. Adaptive PMV models have been proposed, 

incorporating an adaptive coefficient to reflect behavioural and psychological 
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adaptations (Yao et al., 2009). Additionally, two modified PMV models were developed 

to enhance the predictive accuracy of the original PMV framework (Kim et al., 2015). 

Individual variances and unique circumstances, such as non-steady-state heat 

production, were considered in the Metabolic Predicted Mean Vote (MPMV) model 

(Laouadi, 2022). Another approach focused on the dynamics of body temperature 

regulation and the environmental impact on thermal comfort across different parts of 

the human body (Li et al., 2022). However, even under identical fixed thermal 

conditions, occupants exhibit varying thermal sensations due to factors such as sex, 

body mass index, time of day, age, and health status (Wu et al., 2023b). These individual 

characteristics significantly influence subjective thermal comfort. As a result, 

researchers have increasingly focused on personal comfort models, which predict an 

individual’s thermal comfort response rather than relying on average responses across 

large populations. Such models are better suited to understanding the unique comfort 

needs of individual occupants and align with the growing trend toward intelligent and 

personalised comfort management systems (Talon and Goldstein, 2015). 

In recent years, dynamic thermal comfort which account for real-time, individualised 

responses to changing environmental and physiological conditions has emerged. Unlike 

static approaches such as the PMV model, or even adaptive models that rely on long-

term behavioural adjustment, dynamic thermal comfort models aim to capture the 

moment-to-moment variability in thermal sensation using continuous data inputs. These 

models recognise that thermal comfort is not fixed, but influenced by transient factors 

such as recent activity, emotional state, or microclimatic variations within a room. While 

some dynamic approaches use physiological signals or wearables, non-invasive 

methods—particularly those based on thermographic imaging—are increasingly being 

explored as scalable alternatives. In this context, this thesis contributes to the field by 

developing a vision-based dynamic thermal comfort prediction model using deep 

learning. This approach is intended as an initial investigation into the feasibility of real-
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time, personalised comfort estimation based on thermal imagery, and lays the 

groundwork for future integration into adaptive, occupant-aware HVAC control systems. 

These theories have been formalised within key international standards that shape 

building design and operation. ASHRAE Standard 55 incorporates both PMV and 

adaptive models, allowing practitioners to choose the appropriate method based on the 

building’s ventilation strategy (Olesen and Brager, 2004). European standards such as 

EN 15251 and EN 16798-1 similarly define acceptable indoor environmental conditions 

and support both models depending on building type and operational context (Nicol and 

Wilson, 2010). The implications for public buildings—such as schools, offices, and 

hospitals—are significant. Strict application of PMV may require more intensive HVAC 

operation to maintain narrow temperature bands, while the adaptive approach permits 

broader comfort zones and supports passive or mixed-mode strategies, potentially 

reducing energy use. 

Recent developments in machine learning have provided substitute techniques for 

personal thermal comfort prediction. Several studies have utilised device-generated data 

as model inputs to develop high-precision thermal comfort models. These inputs include 

heart rate (Nkurikiyeyezu et al., 2017), pulse rate (Tamura et al., 2018), oxygen 

saturation (Xiong et al., 2016), blood pressure (Choi and Yeom, 

2017), electroencephalogram (Shan and Yang, 2020), electrocardiogram (Zhang et al., 

2017), and skin temperature (Salehi et al., 2020, Cosma and Simha, 2018), all of which 

exhibit strong correlations with human thermal sensation and comfort. For example, one 

study proposed a model that measured blood volume pulse, heart rate, electrodermal 

activity, and hand skin temperature, achieving an impressive accuracy of 95% (Park and 

Park, 2022). However, wearable sensors required for these approaches are intrusive, as 

they involve direct physical contact and necessitate that each occupant wears a device, 

limiting their practicality in real-world scenarios. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electroencephalography
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electrocardiography
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Also, recent studies have concentrated on creating non-invasive, vision-based 

contactless methods for predicting thermal comfort to overcome these limitations. 

Advances in computer vision technology allow predictions to be made quickly and 

accurately without directly interfering with users (Zhou et al., 2020). Unlike wearable 

sensors, cameras—particularly infrared cameras—can capture comprehensive thermal 

images that include temperature values while preserving occupant privacy (Metwaly et 

al., 2019b). This approach reduces the need for physical contact and enables more 

seamless integration into everyday environments. 

Table 2-8 Vision-based machine learning research for building thermal comfort in recent 

years. 

Ref

. 
Year Sensor Model input Model process Algorithm 

Accura

cy 

(Ranja

n and 

Scott, 

2016) 

2016 

Thermogra

phic 

camera, air 

temperatur

e and 

humidity 

and radiant 

temperatur

e 

Thermograph

ic data of 7 

facial regions 

and 6 hand 

regions 

Manually obtain 

temperatures in each 

region and use as 

features input into 

machine learning 

classifications 

Rotation 

Forests 
94-95% 

(Burzo 

et al., 

2017) 

2017 

One 

scientific 

and one 

cost-

effective 

thermal 

camera 

Thermal 

features from 

faces 

Face segmentation, face 

tracking, and thermal 

map formation 

Decision 

tree 

exceede

d 70 % 

(Ghahr

amani 

et al., 

2018) 

2018 

Four 

infrared 

sensors on 

an eyeglass 

frame and 

room 

temperatur

e 

Ear, nose, 

front face, 

and 

cheekbone 

temperature 

Skin temperature values 

as input for the machine-

learning model 

Hidden 

Markov 

model 

82.8 % 

(Li et 

al., 

2018a) 

2018 

Low-cost 

thermal 

cameras 

Temperature 

of the 

forehead, 

nose, cheeks, 

ears, lips, and 

neck 

The application of 

computer vision for 

human face detection and 

region of interest 

extraction; use of 

statistical methods for the 

Haar 

Cascade 

algorithm, 

Kernel 

smoother, 

Random 

average 

85% 
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cleaning and analysis of 

raw skin temperature 

data; and implementation 

of machine learning 

techniques to create 

personalised comfort 

prediction models and 

examine relevant facial 

skin temperature features. 

Forest 

classifier 

(Jaziza

deh 

and 

Jung, 

2018) 

2018 
RGB video 

images 

The 

magnified 

colour values 

are derived 

from the 

pixels 

representing 

skin. 

Face recognition is used 

for skin isolation and 

image magnification. The 

magnified values of 

colour are extracted; the 

thermoregulation state 

can be identified 

Eulerian 

video 

magnificati

on 

algorithm 

89% 

(Cosm

a and 

Simha, 

2019b) 

2019 

A colour 

and a 

thermograp

hic camera 

Generic heat 

maps 

Face detection first 

identifies the face 

borders, next computes 

the generic heat maps and 

then trains a classifier. 

SVM and 

random 

forest 

76% 

(Cosm

a and 

Simha, 

2019a) 

2019 

a colour 

camera, a 

depth 

sensor, and 

a 

thermograp

hic camera 

Both skin and 

clothing 

temperature 

Occupant detection and 

body parts identification, 

extract skin and clothing 

temperatures, the thermal 

model was trained using 

the thermal profile of all 

identified local body parts 

SVM, 

Gaussian 

process 

classifier, 

k-

neighbours 

classifier 

and 

random 

forest 

classifier 

higher 

than 

80% 

(Salehi 

et al., 

2020) 

2020 

Infrared 

sensor and 
a 

thermostat 

Four-point 

skin 

temperatures 

14 skin temperature 

points were measured, 

and 4 points were 

selected with a correlation 

matrix. With chosen 

points, an optimal method 

is defined for estimating 

the thermal sensation 

ANN, 

Decision 

Trees, 

Gaussian 

Process 

Regression

, Fit 

Regressio

n Ensembl

e and 

Group 

Method of 

Data 

Handling 

methods 

86% 

(Baek 

et al., 

2023) 

2022 

Thermal 

camera and 

microclim

ate data 

Pre-processed 

infrared 

images 

To create an ROI image 

that only displayed the 

human body region, all of 

the photographs were 

Deep conv

olutional 

neural 

network 

96% 

https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/regression-fit
https://www.sciencedirect.com/topics/engineering/regression-fit
https://www.sciencedirect.com/topics/engineering/regression-fit
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microclimate
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microclimate
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
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transformed to greyscale. 

The pre-processed photos 

were fed into the 

prediction model after 

being scaled to a 

resolution appropriate for 

the CNN structure. 

(Jeoun

g et 

al., 

2023) 

2023 

RGB and 

thermal 

camera 

Skin 

temperature 

of the face 

(i) face detection, (ii) skin 

temperature extraction 

from ROIs of face 

components, and (iii) 

thermal comfort 

prediction using machine 

learning models 

YOLOv5 90.26% 

(He et 

al., 

2023) 

2023 

Thermal 

infrared 

cameras 

Cheek, nose, 

and hand 

temperatures 

Camera imaging, body 

detection, image 

registration, data 

extraction, and modelling 

Random 

Forest 

up to 

96% 

(Wu et 

al., 

2023a) 

2023 

Two IR 

sensors and 

air tempera

ture 

distributio

n 

Air, hand, and 

mean facial 

temperatures 

The data point contains 

information on skin 

temperature, 

environmental 

parameters, and TSV, 

which were collected as 

inputs for the data-driven 

ML algorithm 

Random 

forest 
0.84 

Table 2-8 summarises recent research on individual thermal comfort prediction using 

vision-based methods. A common pattern in these studies involves detecting and 

tracking occupants within an image, identifying regions of interest (ROIs) (e.g., the face 

or specific body parts), and applying machine learning algorithms to predict thermal 

comfort (Burzo et al., 2017). However, a significant limitation of these earlier 

approaches is their heavy reliance on manual feature extractions specifically, the need 

for researchers, developers or practitioners to manually select which areas of the image 

(ROIs) should be analysed for thermal comfort prediction models. 

In many studies, traditional machine learning techniques, such as support vector 

machines (SVM) or decision trees, have been employed to predict thermal comfort. 

These methods typically require researchers to extract specific temperature data from 

ROIs, often focusing on localised points of interest, such as the forehead or other visible 

body parts in infrared images (Li et al., 2018a). Some studies have gone further by 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temperature-distribution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temperature-distribution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temperature-distribution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temperature-distribution
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converting infrared images into skin temperature maps before inputting the data into 

machine-learning models (Jeoung et al., 2023). This preprocessing step ensures more 

detailed thermal information is available, improving the model's predictive accuracy. 

However, even with these more comprehensive temperature maps, the process still 

involves the manual selection of temperature regions, which may limit the system’s 

scalability and its ability to operate effectively in real-time environments. 

 

Figure 2-11 Comparison between workflow steps of machine learning and deep learning 

for vision-based thermal comfort prediction models. 

The key distinction between machine learning and deep learning lies in how features 

and regions of interest (ROIs) are handled (as shown in Figure 2-11). In machine 

learning-based methods, much of the process depends on manual intervention. For 

instance, researchers or practitioners often convert infrared images into skin temperature 

data and manually extract relevant temperature points to input into the model (Salehi et 

al., 2020). While this approach can provide detailed data, it requires significant human 

input for feature and ROI selection, making the method less adaptable and automated. 

Moreover, the accuracy of thermal images can degrade with distance, often necessitating 

the use of expensive, high-resolution cameras to ensure precision. Additionally, relying 
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on temperature data from only a few localised points limits accuracy, as it fails to capture 

the overall thermal distribution across the body. 

In contrast, deep learning models, particularly Convolutional Neural Networks (CNNs), 

have the potential to directly process raw thermal or infrared images without requiring 

manual conversion into skin temperature maps or the selection of specific ROIs (Alaskar 

and Saba, 2021). These models are designed to automatically identify key thermal 

features and regions of interest by analysing the entire thermal image, which could 

provide a more comprehensive view of the occupant’s thermal profile. Such automated 

feature extraction holds promise for eliminating the need for manual intervention, which 

can enable real-time thermal comfort prediction and allow the model to continuously 

learn and improve from new data. 

Previous studies have often focused on extracting discrete temperature data points or 

regions of interest (ROIs), which may limit the model's ability to generalise across 

diverse conditions and reduce its adaptability to real-world scenarios. Furthermore, most 

research has not fully explored the potential of deep learning to directly interpret raw 

thermal images for thermal comfort prediction, leaving a significant gap in the 

development of fully automated and adaptable systems.  

2.6 Research gap  

This chapter presents a comprehensive review to explore key advancements in the 

application of machine learning techniques to building management. Studies generally 

follow a structured workflow comprising steps such as data collection, algorithm 

development and application, and validation methods. This workflow was employed by 

many occupancy prediction methods, enabling dynamic and adaptive building energy 

management. However, several gaps remain as follows, particularly in the use and 

evaluation of vision-based methods. 
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1) Vision-based methods, particularly those using thermal cameras, are underexplored 

compared to traditional sensor-based approaches. Datasets used for occupancy 

prediction are often limited in diversity and do not include scenarios utilizing 

vision-based sensors. 

2) While several camera types (RGB and thermal) are discussed in the literature, their 

relative performance under varying conditions (e.g., lighting, privacy concerns, 

cost, accuracy) has not been comprehensively evaluated. 

3) Privacy concerns remain a barrier to the widespread adoption of cameras in 

occupancy prediction. Further work is needed to develop and promote privacy-

preserving techniques for vision-based methods. 

4) Few studies systematically compare multiple deep learning algorithms for vision-

based occupancy prediction in real-world scenarios. 

5) With new algorithms emerging frequently, studies often fail to test their suitability 

for specific building scenarios. 

6) Current approaches often rely on generalised models for thermal comfort prediction, 

and occupant-specific thermal comfort often relies on manually defining regions of 

interest (ROIs) which leaves a gap for more personalized and adaptive solutions. 

2.7 Summary  

Results of the literature showed that the application of machine learning in building has 

significantly grown in recent years. The number of studies focusing on occupancy state 

predictions outnumbered other applications in the early years. The focus of occupancy 

prediction research is shifting from simply determining whether there are people inside 
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a room toward more complicated objects such as the occupant's motion, resulting in 

more accurate building simulation models and better building service operation. 

Compared to other commonly used sensors, vision-based sensors do not get enough 

attention like temperature and CO2 sensors. This gap is primarily due to privacy 

concerns associated with cameras, as they capture identifiable visual data. Despite these 

challenges, vision-based methods, particularly thermal cameras, show significant 

promise for detailed occupancy detection and thermal comfort modelling. The review 

also highlights the importance of combining different types of data collection methods 

and sensors to capture the dynamic variations within buildings and make the necessary 

adjustments.  

Machine learning implementations in different stages of the occupancy prediction 

workflow were evaluated. One of the most popular algorithms in building occupancy 

prediction is the neural-network-based algorithm, particularly ANN - LSTM, which was 

utilised by more than 10 papers after 2018 (Jiang et al., 2021). However, the best method 

for a specific scenario differs depending on the circumstances. The rapid evolution of 

machine learning continues to introduce new algorithms with improved capabilities. 

While these advancements hold great promise, no single algorithm is universally 

superior.  

The review of existing literature reveals advancements in vision-based occupancy 

detection methods, highlighting the effectiveness of deep learning models such as CNN, 

YOLO, and Faster R-CNN. Many studies use various types of algorithms, and a 

comprehensive evaluation of various deep learning models (Dridi et al., 2022) in building 

environments is yet to be conducted. The lack of a standardised dataset applicable to the 

building field and the variance in results even when employing the same algorithm 

underscores a gap in the current body of research (Gursel Dino et al., 2022). Testing 

different vision-based deep learning models on a consistent dataset within a building 
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environment would provide valuable comparative insights. Also, CNN and early iterations 

of YOLO have been extensively utilised in research, yet the latest YOLO algorithms have 

not been sufficiently evaluated in a realistic and dynamic building environment.  

According to the study, investigations on thermal comfort and IAQ prediction using ML 

are rather limited compared to other domains such as occupancy prediction and energy 

consumption prediction. According to the study, there is a growing trend of research into 

occupant comfort and occupancy-centric comfort systems. The concept of thermal 

comfort is changing from physical index like PMV to occupant's overall comfort, which 

needs more attention in future works (Xie et al., 2020). Occupants’ behaviour, including 

operating the HVAC system, is driven by their satisfaction with the overall comfort and 

leads to changes in energy consumption. Therefore, advanced models in the future 

which maintain comfort and minimize energy consumption will have a promising future. 

Individual occupant diversity should also be considered, and future models could 

include exact comfort measures and responses gathered through thermal-based data 

collection methods such as thermal cameras and thermal comfort rating apps. 
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3. METHODOLOGY 

This chapter presents the methodological framework of the thesis, including the 

overarching research design, three experiments, sample sizes, data collection procedures, 

and equipment used. The thesis is positioned within a vision-based, machine learning-

driven approach to building performance optimisation, focusing on occupancy detection 

and thermal comfort prediction.  

The research was designed as a three-phase study to systematically investigate the 

application of vision-based deep learning models for occupancy detection and thermal 

comfort prediction in buildings. All experiments were integrated into a unified 

framework aimed at developing practical solutions for occupant-centric building control. 

The first phase focused on assessing the performance of various deep learning models 

for occupancy detection. The second phase compared sensor modalities, evaluating the 

relative strengths and limitations of RGB and thermal cameras in occupancy prediction. 

The final phase explored the feasibility of using thermal imaging and deep learning for 

personalised thermal comfort prediction. The logical progression of these phases 

allowed for incremental development of model complexity and ensured that the findings 

from each stage informed subsequent work. 

3.1 Research Structure 

This thesis is structured as a workflow to systematically address key challenges in 

vision-based deep learning methods for building management. The workflow begins 

with an evaluation of different deep learning algorithms for occupancy prediction, 

followed by a comparison of camera technologies, and concludes with an exploration 

of thermal comfort modelling as an initial step toward occupant-focused energy 

management systems. The general workflow for this thesis is shown in Figure 3-1. 
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Figure 3-1 The workflow for PhD Methodology in this thesis. 

All three experiments were designed to be indepentant phases of a unified study, each 

phase building upon the results of the previous one. This integrated approach allowed 

for development of the vision-based methodology, ensuring that findings from each 

stage informed and strengthened subsequent analyses. Specifically, the evaluation of 

occupancy detection algorithms provided a foundation for testing different sensing 

modalities, which in turn established a basis for investigating occupant thermal comfort 

through deep learning. 

The thesis aims to contribute to the development of vision-based methods for building 

management by exploring their potential to improve occupancy prediction and thermal 

comfort modelling. Through systematic experimentation and analysis, the findings 

provide a deeper understanding of the strengths and limitations of different deep 

learning algorithms and camera modalities, offering practical recommendations for their 

application in intelligent building control. Moreover, this study lays the groundwork for 

future research into integrating real-time, personalised occupant data into adaptive 

energy management frameworks, further enhancing building efficiency and occupant 

well-being. 
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3.2 Experimental Setting 

All experiments were conducted at the University of Nottingham campus in various 

indoor environments, to represent realistic and controlled building conditions. 

The research was designed as a three-phase study to progressively address the 

challenges of vision-based occupancy detection and thermal comfort prediction. The 

first phase was conducted in a lecture room on the University of Nottingham campus, 

with areas 96.9 m² and occupancy levels varying from barely occupied to fully occupied 

scenarios. This phase evaluated different deep learning algorithms for RGB-based 

occupancy detection, using Logitech C920 RGB cameras positioned at fixed points to 

record video footage of up to 25 occupants. The environmental conditions, including 

temperature, humidity, and CO₂ concentration, were continuously monitored using 

Awair Element sensors to provide context for interpreting the occupancy data. 

The second phase built on the first by comparing RGB and thermal cameras to assess 

their relative performance in occupancy detection tasks. This phase was carried out in 

similar indoor spaces, including meeting rooms in the Mark Group House, Paton House, 

and Sustainable Research Building, involving three to eight occupants per test. In 

addition to the RGB cameras, FLIR ONE Pro thermal cameras were used to capture 

thermal images alongside RGB video. The duration of each session ranged from 35 to 

38 minutes, during which environmental data continued to be recorded. This phase 

enabled a direct evaluation of sensor modality effects, including detection accuracy, 

reliability under varying conditions, and privacy implications. 

The third phase extended the research to the prediction of individual thermal comfort 

using thermal imagery and deep learning. Conducted in a temperature-controlled 

meeting room within the Sustainable Research Building, this phase focused on a single 

occupant per session. Fourteen participants each took part in an individual session 

lasting between 90 and 110 minutes. The indoor temperature was dynamically varied 
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from an initial 12°C to up to 30°C using a Fujitsu split wall-mounted air conditioner 

operated at low speed to avoid direct airflow effects on comfort perception. Thermal 

images were collected using a FLIR Lepton 3.5 thermal camera and synchronised with 

subjective Thermal Sensation Votes (TSVs) reported by the participants at five-minute 

intervals. Environmental data from the Awair Element sensors were also continuously 

recorded to provide a complete picture of the indoor climate. 

Across all experiments, video data were manually annotated to create bounding boxes 

for occupancy detection and cropped, greyscaled thermal images for thermal comfort 

prediction. The details of the settings for the three experiments were listed in Table 3-1. 

Table 3-1 Summary of Experimental Settings and Methodology 

 Experiment 1: 

Occupancy 

Detection 

Experiment 2: RGB 

vs. Thermal 

Experiment 3: 

Thermal Comfort 

Purpose Evaluate deep 

learning models for 

RGB-based 

occupancy detection 

Compare RGB and 

thermal cameras for 

occupancy detection 

Predict individual 

thermal comfort 

using thermal images 

Location Lecture rooms on 

campus (96.9 m²) 

Meeting rooms 

(23.14–53.96 m²) 

Meeting room in 

Sustainable Research 

Building 

Sample 

Size 

Up to 25 occupants 14 participants, 3–8 

occupants per test 

14 participants, 

individual sessions 

Equipment RGB cameras 

(Logitech C920), 

environmental 

sensors 

RGB (Logitech C920) 

and thermal (FLIR 

ONE Pro) cameras, 

environmental sensors 

Thermal cameras 

(FLIR Lepton 3.5), 

environmental 

sensors, TSV 

interface 

Data 

Collected 

RGB video, 

environmental data 

RGB and thermal 

videos, environmental 

data 

Thermal images, 

TSVs, environmental 

data 

Session 

Length 

35–60 minutes 

(depending on 

scenario) 

35–38 minutes per 

field test 

90–110 minutes per 

participant 

Key 

Analysis 

Model accuracy, 

precision, recall, 

mAP 

Sensor modality 

comparison, detection 

accuracy, privacy 

aspects 

Thermal comfort 

classification 

accuracy (intra- and 

cross-subject) 
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3.3 Ethical Considerations 

Ethical considerations were central to the design and implementation of all three 

experiments in this research. All activities involving human participants were conducted 

in full compliance with the University of Nottingham’s ethical guidelines and approved 

research protocols. Informed consent was obtained from all participants prior to data 

collection, ensuring that they fully understood the nature and purpose of the study, as 

well as the data handling procedures in place to protect their privacy. 

To maintain participant anonymity, all video and thermal data were anonymised prior to 

analysis. For occupancy detection tasks, data were handled securely and stored in 

encrypted formats, with personally identifiable information excluded. In the thermal 

comfort prediction experiment, thermal imagery was specifically chosen to protect 

privacy, as it does not contain facial details or other personally identifying visual 

information. Additionally, in this phase, the split wall-mounted air conditioner in the 

experimental room was carefully operated at low speeds and positioned to avoid direct 

airflow towards participants, thus ensuring that no unintended physical discomfort or 

bias was introduced into the subjective comfort assessments. 

By adhering to these consistent ethical practices, this research ensured that participant 

rights and well-being were safeguarded throughout, while still enabling a 

comprehensive exploration of vision-based occupancy detection and thermal comfort 

modelling in real-world building environments. 

4. VISION-BASED DEEP LEARNING MODEL 

COMPARISON FOR OCCUPANCY DETECTION 

Some work presented in this Chapter was previously published in the journal [Journal 

of Building Engineering] as titled Deep Learning Models for Vision-based Occupancy 



67 

Detection in High Occupancy Buildings by author Wuxia Zhang and co-authors John 

Kaiser Calautit, Paige Wenbin Tien, Yupeng Wu and Shuangyu Wei. I played a major 

role in Conceptualization, Methodology, and Writing - the original draft and this study 

were conceived by all the authors. 

4.1 Introduction 

This chapter explores the performance of state-of-the-art deep learning models, 

including SSD, Faster R-CNN, and the latest YOLO series, in a dynamic and realistic 

building environment, using a low-cost camera setup. By employing single-view camera 

systems, this research seeks to balance accuracy and cost-effectiveness, providing a 

practical solution for real-time occupancy detection. The performance of these models 

will be assessed in terms of speed of detection, computational requirement and 

capability in complex scenes. A computer vision and deep learning-based approach aimed 

at detecting and recognising occupants within the building environment was employed. 

The results from the detection phase are inputs for building energy simulation, which 

analyses building energy loads and other indices. Figure 4-1 shows the general workflow 

of the vision-based deep learning model employed in this study.

 

https://www.sciencedirect.com/science/article/pii/S0378778821005752#!
https://www.sciencedirect.com/science/article/pii/S0378778821005752#!
https://www.sciencedirect.com/science/article/pii/S0378778821005752#!
https://www.sciencedirect.com/science/article/pii/S0378778821005752#!
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Figure 4-1 The workflow of the proposed vision-based deep learning method for 

occupancy detection. 

4.2 Vision-based occupancy prediction method 

4.2.1 Dataset generation 

This section outlines the process of creating and preparing the dataset used for training 

deep learning models. It covers the steps involved in image collection, annotation, and the 

splitting of the dataset into training, validation, and testing sets. Detailed information is 

provided on the methodology for generating a standardised dataset, which is essential for 

reproducibility and understanding the foundation of our model training process. 

Deep learning object detection requires a carefully curated image dataset as input. The 

selection of images should account for various factors to ensure accuracy. For example, 

variations in indoor lighting, daylight changes, building orientation, and lighting system 

operations can all affect image recognition (Sun et al., 2020). Therefore, the dataset should 

include photos from a variety of scenarios, different types of rooms or buildings, varying 

numbers of people, and multiple angles. These images should be evenly distributed across 

the test, validation, and training sets to provide comprehensive coverage and improve the 

model's robustness (Kang et al., 2019).  

Since the occupancy dataset in this study is not based on publicly available datasets, the 

images were manually gathered, annotated, and then randomly divided into three subsets: 

training, validation, and testing, with a ratio of 88%, 8%, and 4% respectively. A total of 

377 images were selected, with 330 for the training set, 31 for the validation set, and 16 

for the testing set. The small dataset will allow us to test the capability of the models even 

with limited data, providing valuable insights into their accuracy and computational 

efficiency. Our training dataset includes images of humans in diverse environments such 

as classrooms, offices, and outdoor scenes, to ensure the robustness and generalisation of 
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the deep learning models. This diversity helps improve the model's performance across 

different scenarios, making it more versatile and reliable for real-time occupancy detection. 

The images for training and validation were sourced from publicly accessible image 

repositories and manually collected by the research team to ensure diversity and robustness. 

Notably, the images used for training and validation were not collected from the same room 

or period as the validation video, which was specifically recorded between 15:15 and 16:21 

during a lecture session on December 2nd, 2022. This approach helps to avoid overfitting 

and ensures that the models can generalise well to different environments. 

The collected images were annotated with bounding boxes using the Labelling tool 

(Tzutalin, 2018), which generated the necessary label files for the training phase. Labelling 

is an open-source graphical tool used to create bounding boxes, crucial for object detection 

and image classification tasks. It supports outputs in Pascal VOC XML and YOLO text 

formats, making it compatible with popular machine-learning frameworks. In this project, 

377 images were manually annotated by drawing bounding boxes around each occupant, 

ensuring high-quality training and evaluation of the deep learning models. The annotation 

process included loading images, drawing bounding boxes, labelling, and saving 

annotations in the required format. 

Each image was annotated with bounding boxes specifying the exact location of humans, 

using coordinates for x_center, y_center, width, and height. The annotations were saved 

in .xml files for YOLO input and .txt files that can be easily converted to TF records for 

TensorFlow models (Developers, 2022). Pre-processing steps included resizing images 

to 640x640 pixels and applying auto-orientation to ensure compatibility with the models, 

preventing memory leaks, poor performance, and imprecise results. Details of the 

bounding box creation and image preprocessing are listed in Table 4-1.  
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Table 4-1 Dataset creation and preprocessing steps for occupancy detection 

 Tool Process Description 

Dataset 

creation 

Google 

Images 

Image collection 
377 images were collected from 

Google Images 

Image selection 

Images were carefully selected to 

ensure diversity in postures and 

arrangements. 

Bounding 

box 

creation 

LabelImg 

Loading images 
Images were loaded into LabelImg 

for annotation 

Drawing 

bounding boxes 

Bounding boxes were manually 

drawn around each occupant in the 

images using the tool's intuitive 

interface. 

Assigning labels 
Each bounding box was labelled to 

indicate the number of occupants. 

Saving 

annotations 

The created picture annotations were 

stored as .xml files, which served as 

YOLO's input, and .txt files that can 

be easily converted to TF records for 

TensorFlow models. 

Image 

preprocess

ing 

Data 

augmentatio

n 

Resizing 

All images were resized to a 

uniform resolution of 640x640 

pixels. 

Auto orient 

Ensured images are correctly 

oriented to prevent memory leaks, 

poor performance, and imprecise 

results. 

Figure 4-2 illustrates the variety of images collected and the manual labelling process 

used to identify the unique regions of interest in each image. This diverse dataset ensures 

the robustness and generalisation of the deep learning models for occupancy detection 

across different settings. The number of labels applied to each image was determined 

by its content. The dataset (https://universe.roboflow.com/wuxia-w5dzu/people_small) 

has been uploaded and is available on Roboflow, a web-based application for object 

detection datasets (Wuxia, 2022). 

https://universe.roboflow.com/wuxia-w5dzu/people_small
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Figure 4-2 Example images from the training dataset, showcasing humans in various 

environments including classrooms, offices, and outdoor scenes. The diversity of the 

dataset ensures the generalisation of the deep learning models for occupancy detection 

in different settings. 

4.2.2 Deep learning model training and testing 

Given that the experiment is conducted in a real environment characterised by high-density, 

highly variable, and overlapping occupants, YOLO and SSD have been selected for real-

time occupancy detection. SSD MobileNet V2 is recognised for its high speed and 

reasonable accuracy, attributed to its lightweight nature which facilitates quick inference 

times, thus making it suitable for real-time detection in high-density spaces (Chiu et al., 

2020). YOLOv5 (Choi et al., 2021) has been employed by many researchers while 

YOLOv7 (Wang et al., 2022) and YOLOv8 (Jocher, 2023) are the latest version and have 

shown the best performance to date in terms of accuracy and speed. The YOLO series 

outpaces Faster R-CNN in speed and has shown improved accuracy over earlier YOLO 

versions, rendering it well-suited for dynamic, high-density spaces. Moreover, it features 

enhancements geared towards handling smaller objects, which can be advantageous in 

situations with overlapping occupants (Jocher et al., 2022). 
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The SSD and Faster R-CNN models were trained using Tensorflow Object Detection on 

an NVIDIA GeForce GTX 1080 GPU (2560 CUDA cores, 1607 MHz graphics clock, 

320GB/s memory bandwidth, 8GB), while the YOLO models were trained with Pytorch 

in Google Colab (Bisong and Bisong, 2019), which provides free access to NVIDIA T4 

Tensor Core GPU (2560 CUDA cores, 1590 MHz graphics clock, 320GB/s memory 

bandwidth, 16GB). 

The decision to use two different GPUs is due to the availability of the GPU on Google 

Collab. Maintaining a valid and insightful comparison across models, despite using 

varied hardware, is crucial. Both GPUs have the same CUDA core count and nearly 

identical clock speeds, which are critical for training speed and computational capacity. 

They also share a 320 GB/s memory bandwidth, ensuring aligned performance. The 

primary distinction is the NVIDIA T4's larger memory compared to the GTX 1080, 

allowing for potentially larger batch sizes or more complex models. Despite this, the 

comparative analysis remains valid since the core specifications affecting training and 

inference performance are closely aligned. 

All models were trained in the same dataset to ensure consistency. The model loss curves, 

shown in Appendix A, illustrate the training process and help avoid underfitting or 

overfitting. Training stopped either when no further improvement was observed or when 

the loss consistently fell below a certain threshold. SSD and Faster R-CNN required 

more than 40,000 steps to complete training, while the YOLO models took less than 300 

epochs due to their different architectures. The training speed and mAP of the different 

models is summarised in Table 4-2. 
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Table 4-2 Comparison of different objection detection models' training performance in 

this study. The best results for each category are highlighted in bold.  

Model Year Platform 

Training 

time 

(hours) 

Epochs 
mAP50 

(%) 

MIT 

(ms) 
GPU 

SSD 

MobileNetV2 
(Chiu et al., 2020) 

2020 Tensorflow1.14 8.69 48712 0.22 42 

NVIDIA 

GTX 

1080 

Faster R-CNN 

InceptionV2 

(Ren et al., 2015) 

2019 Tensorflow1.14 2.9 41901 0.83 79 

NVIDIA 

GTX 

1080 

YOLOv5n 
(Jocher et al., 2022) 

2020 Pytorch1.7 0.39 240 0.64 28.0 Tesla T4 

YOLOv5x 
(Jocher et al., 2022) 

2020 Pytorch1.7 0.42 240 0.63 27.6 Tesla T4 

YOLOv7 (Wang 

et al., 2022) 
2022 Pytorch1.12 1.75 300 0.68 57.5 Tesla T4 

YOLOv7w6 
(Wang et al., 2022) 

2022 Pytorch1.12 2.03 300 0.76 47.5 Tesla T4 

YOLOv8n 
(Jocher, 2023) 

2023 Pytorch2.0 0.32 88 0.82 16.4 Tesla T4 

YOLOv8x 
(Jocher, 2023) 

2023 Pytorch2.0 0.43 51 0.87 292.1 Tesla T4 

The Mean Average Precision (mAP) at an Intersection over Union (IOU) threshold of 

0.5 was measured for each model using our dataset. Additionally, the mean inference 

time (MIT) per image in milliseconds (ms) was evaluated to compare the different 

models. The best results for each metric are highlighted in Table 3. Faster R-CNN 

outperformed SSD, achieving a mAP of 0.83, ranking as the second-best in terms of 

mAP among all models. However, since the Faster R-CNN is a two-stage detection 

model, its detection is not real-time and has a delay in the detection process (Ren et al., 

2015). YOLOv8x achieved the highest mAP among all models in 0.43 hours, albeit with 

a slower inference time. Conversely, YOLOv8n emerged as the fastest model, 

completing the training process in 0.32 hours with a mAP of 0.82, and featuring the 

shortest inference time among all models. Given these results, YOLOv8n is selected for 

a detailed evaluation, which involves validation of the method with all four cameras. 

The detailed results will be discussed in the following sections. 
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4.2.3 Case study lecture room, testing and BES modelling 

This section describes the setup of the case study room, including the installation of 

cameras and environmental sensors, the layout, and the conditions under which the 

experiments were conducted. It provides context for the practical application and testing 

of the trained models in a real-world environment, demonstrating the feasibility and 

effectiveness of our approach. 

For the implementation of the proposed vision-based deep learning method, lecture room 

B5 within the Marmont Centre in the University Park Campus, University of Nottingham, 

UK (Figure 4-3) was selected. The lecture room, located on the first floor of the building, 

is used by students in the Architecture and Built Environment department for both lectures 

and tutorial sessions during weekdays. It is also available to students outside of lecture and 

tutorial periods and on weekends. The room has a capacity of 48 seats and 96.9 m2 of floor 

space, measuring 12.75 m × 7.6 m, with a ceiling height of 2.5 m. Detailed information 

about the case study room is provided in Table 4-3. 
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Figure 4-3  (a) The Marmont Centre at the University of Nottingham, UK. (b) The 

indoor view of the case study lecture room. (c) The floor plan and installed sensors 

layout of the case study building (d) The picture of the camera in this test. (e) The 

Awair Element environmental sensors in indoor and outdoor 

Table 4-3 Information of the case study lecture room and occupancy profiles. 

Location Nottingham, UK 

Room area 96.9 m2 

Room Dimensions 12.75 m × 7.6 m × 2.5 m 

Seats 48 

Heating setpoint 21°C 

Occupancy schedule (base 

case) 

08:00 – 18:00 

Ground Truth occupancy 

profile 

The observed occupants’ number 

Occupancy detection profile Profile generated from vision-based occupancy 

detection 

Four Logitech C920 cameras were installed, one in each corner of the room, capable of 

recording full-HD 1080p video at 30 frames per second (fps) with a 78-degree field of 
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view. Additionally, two Awair Element environmental sensors were placed both outside 

and inside the room to monitor temperature, relative humidity, carbon dioxide levels, 

volatile organic compounds (VOCs), and fine particulate matter (PM2.5). All 

environmental sensors were set to record data continuously on December 2nd, 2022. 

The layout and location of the sensors are shown in Figure 4-3, and detailed information 

about the sensors used is listed in Table 4-4. 

Table 4-4 Environmental sensors and cameras used in the case study experiment.  

Measurement 

parameters 
Sensor Range Resolution Accuracy 

Number and 

location 

Air temperature 

Awair Element 

environmental 

sensors 

0-90°C 0.015°C ±0.2°C 

2, one inside 

and one 

outside 

Relative 

humidity 
0%-100% 0.01% ±2% 

CO2 

concentration 

400 to 

5000ppm 
1ppm 

75ppm or 

10% 

Camera Logitech C920 

78-degree 

field of 

view 

Full-HD 

1080p video 

30 frames 

per second 

- 
4 in each 

corner 

The experiment was conducted during a single lecture session, capturing various 

occupancy conditions: the initial period when participants were entering the lecture 

room, resulting in barely occupied conditions; during the lecture when the room was 

occupied; and the period when participants were leaving the lecture room, resulting in 

barely occupied conditions again. By evaluating the models under these different 

occupancy levels, we were able to assess their performance in adapting to changing 

conditions within a single session. During the test, the lecture room was mainly occupied 

from 15:30 to 16:10, with no other activities scheduled for the day. To evaluate the 

performance of the trained occupancy detection models in a real-world setting, video 

recording in the room was carried out from 15:15 to 16:20, focusing particularly on the 

lecture period with a maximum of 25 attendees. Additional environmental factors, such 

as relative humidity, temperature, and CO2 levels, were monitored throughout the day 
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to capture the conditions during both occupied and unoccupied periods. All participants 

were students at the University of Nottingham and were informed about the experiment; 

they consented to the usage of the footage for this study. The detailed experiment 

workflow is shown in Figure 4-4. 

 

Figure 4-4 The workflow for the different cameras employed in the case study 

experiment on Dec 2nd, 2022. 

Given that video footage from a single viewpoint may suffer from overlapping views 

and signal synchronisation issues (Hsu et al., 2020), this study initially tests all deep 

learning models using the recorded video from Camera 1. Subsequent experiments will 

employ the algorithm demonstrating the best performance, utilising videos from the 

remaining cameras to assess the influence of different viewing angles. Detailed results 

from these experiments will be discussed in the following section. 

The performance of vision-based models can be significantly affected by various factors, 

particularly when deployed in complex indoor environments. Although the video footage 

represents a full lecture scenario, it may not capture all possible occupancy patterns. 
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Factors such as changing lighting conditions, shadows, and the presence of other objects 

may lead to inaccurate results. Additionally, occupants situated in corners might be easily 

missed due to the camera's resolution. While the use of low-cost cameras might constrain 

accuracy in certain scenarios, it enables cost-effective implementation, making it 

feasible to deploy these systems without heavily investing in new infrastructure. This 

approach allows for more widespread adoption of occupancy detection technologies 

within budget constraints. 

Table 4-5 IES Modelling construction details including U-values (W/m²K) and 

thickness. 

  Wall Roof Ground 

floor 

Window Door 

U-value 

(W/m²K) 

0.33 0.22 0.32 2.95 2.30 

Thickness (mm) 300 290 230 20 40 

IES VE, a Building Energy Simulation (BES) tool, was used to model the building 

(Solutions, 2020) to evaluate the potential of the proposed approach and to assess its 

impact on building energy loads and CO2 concentration predictions. The building is 

equipped with a central heating system and has operable windows for natural 

ventilation. During hours when the building is occupied (08:00 – 18:00), the heating 

system was set to maintain an indoor temperature of 21°C (CIBSE, 2021). In this case 

study, operational hours of 08:00 – 18:00 on working days (CIBSE, 2008) were assumed 

for the base case occupancy profile (fixed schedule). For the simulation, a weather data 

file from Nottingham, UK was used. The respective U-values for the wall, roof, ground, 

window, and door are detailed in Table 4-5. 

4.3 Experiment results and discussion 

The following section presents the results, analysis, and assessment of the model 

detection performance and the impact of the suggested approach on building energy 

https://www.sciencedirect.com/topics/engineering/central-heating-system
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predictions. The trained models are applied in the case study lecture room to evaluate 

their performance in a real-world environment. 

4.3.1 Comparison of state-of-the-art deep learning models in occupancy 

detection 

Most models except SSD demonstrated the capability to identify, classify, and locate 

occupants within the lecture room. However, due to varying frame rates and inference 

speeds among different models, synchronisation across all videos was not achieved. For 

instance, Faster R-CNN does not facilitate real-time object detection, thereby exhibiting 

delays, whereas the YOLO series operates in real time without delays.  

Video 4-1 illustrates the first 15 seconds of the inference videos from all models, 

showcasing their performance as individuals began entering the room. As seen in Figure 

4-5, while the number of occupants was limited, most models captured all individuals 

present in the video, except for SSD, which only detected one occupant near the camera— 

these findings align with its low mAP score as shown in Table 4-2. Occasionally, the deep 

learning models generated false-positive results, likely due to the presence of objects with 

patterns resembling the target [56]. For example, YOLOv5n and YOLOv5x falsely 

identified two objects on the left wall, YOLOv7 positioned a bounding box on the right 

wall, and YOLOv7w6 misclassified the overhead projector as occupants.  

These false positives typically had lower confidence scores, often falling below 0.3, 

indicating a lack of certainty in those detections and suggesting a potential avenue to 

enhance model accuracy. 

Figure 4-6 shows the scene at 15:45 when all students have settled into their seats and 

exhibit minimal movement, providing a clearer perspective on model performance in a 

relatively static scenario. Video 4-2  compares the detection performance from 15:45:00 

to 15:45:15. The SSD model's performance remains suboptimal, detecting only one 



80 

occupant near the camera. While other models successfully capture the occupants, 

"flickering" bounding boxes are observed across all models. This flickering, which 

occurs even in the absence of movement, is a common challenge in object detection 

algorithms applied to videos. It often arises due to changes in object position, lighting 

variations, and the underlying algorithmic architecture (Azulay and Weiss, 2018). 

 

Figure 4-5 The frame at 15:15:10 compares the deep learning models' detection of the 

participants entering the room. 
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Video 4-1 The inference videos from 15:15:00 to 15:15:15 compare the detection 

performance of the models when people were entering the room. The playable video is 

available at https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-

mmc1.mp4 

https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc1.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc1.mp4
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Figure 4-6 The frame at 15:45:00 compares the deep learning model detection of the 

participants in the middle of the lecture. 
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Video 4-2 The inference videos from 15:45:00 to 15:45:15 compare the detection 

performance of deep learning models when the participants were mostly sitting. The 

playable video is available at https://ars.els-cdn.com/content/image/1-s2.0-

S2352710224029231-mmc2.mp4 

In this scenario, YOLOv5n and YOLOv5x continue to exhibit two false positives on the 

left side, while YOLOv7 and YOLOv7w6 misidentify the screen and overhead projector 

as occupants. In contrast, Faster R-CNN, YOLOv8n, and YOLOv8x demonstrate a more 

accurate capture of almost all occupants, although they still produce a few false positives. 

Video 4-3 and Figure 4-7 show the scene as students exit the lecture room, with most 

occupants congregating near the door and moving out of the camera's view. The SSD 

model continues to fail to detect any occupants, a consistent issue observed in previous 

scenarios. Faster R-CNN occasionally misses an occupant near the door in certain 

frames, possibly due to low resolution. YOLOv5n and YOLOv5x mistakenly label two 

boxes in the left corner—a recurring error—while YOLOv7 generates several false 

positives on the left seats. YOLOv7w6 and YOLOv8x successfully capture all 

occupants, though one false positive occurs for the monitor, likely due to reflection. 

https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc2.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc2.mp4
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After discussing occupancy detection in different lecture room scenarios, a detailed 

analysis of these models' real-world applicability and precision will be conducted. This 

leads us to a deeper examination using standard metrics in the following section.

 

Figure 4-7 The frame at 16:09:40 compares the deep learning models' detection of 

participants leaving the room. 



85 

 

Video 4-3 The inference videos from 16:09:45 to 16:10:00 compare the detection 

performance of deep learning models when participants are leaving the room. The 

playable video is available at https://ars.els-cdn.com/content/image/1-s2.0-

S2352710224029231-mmc3.mp4 

4.3.2 Evaluation of the model performance in the case study building 

Building on the initial findings from the previous section, this section conducts a 

detailed evaluation of the models. We use common metrics such as Accuracy, Recall, 

Precision, and the F1 Score for a comprehensive analysis of each model's performance. 

Understanding and applying these metrics is crucial, as they provide a quantitative 

measure of the model's ability to accurately identify and classify occupants within the 

building environment. Additionally, we explore the impact of camera positioning and 

different angles on detection accuracy to gain a more comprehensive understanding of 

the models' practical performance. 

https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc3.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc3.mp4
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The accuracy metric (Sokolova et al., 2006) provides the proportion of correctly 

classified samples to all samples, offering a broad understanding of the model's 

performance. The formula for Accuracy is expressed in Eq. (1): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
(3 − 1) 

Where TP (true positive) represents the number of correctly predicted occupants in the 

video, FP (false positive) represents the number of predictions where other objects are 

regarded as occupants, FN (false negative) represents the number of undetected 

occupants, and TN (true negative) represents the number of images without occupants 

where no prediction is performed. Figure 4-8 illustrates examples of True Positive (TP), 

False Positive (FP), and False Negative (FN) occurrences in a frame captured from the 

YOLOv7 model inference video at 15:41:40. 

 

Figure 4-8 Examples of TP, FP and FN in a frame taken from the result of Faster R-

CNN, YOLOv5n, YOLOv7 and YOLOv8n at 15:35:00. 
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The recall is crucial because it displays the proportion of true-positive predictions to all 

occupants found, which is particularly relevant in scenarios where missing an occupant 

detection is undesirable. The formula for Recall is expressed in Eq. (2): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3 − 2) 

The ratio of true positive predictions to all positive predictions made is calculated by 

precision, while the F1 Score provides a balanced measure between precision and recall, 

which is particularly useful when we want to understand the model's balance between 

these two metrics. The formulas for Precision and F1 Score are expressed in Eq. (3) and 

Eq. (4): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3 − 3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3 − 4) 

Table 4-6 compares the performance of eight deep learning models (SSD, Faster R-CNN, 

YOLOv5n, YOLOv5x, YOLOv7, YOLOv7w6, YOLOv8n, YOLOv8x) across different 

metrics (Accuracy, Recall, Precision, and F1 score) during three phases: as participants 

enter the room, during the lecture, and as they exit the room. 

During the first 15 minutes as participants enter the room, YOLOv8x shows the highest 

accuracy at 0.89, significantly outperforming other models. It also achieves the highest 

recall at 0.94, indicating its effectiveness in identifying true positive instances. Both 

Faster R-CNN and YOLOv8x maintain high precision (1.00 and 0.94, respectively), 

meaning they have the lowest false positive rates. YOLOv8x again stands out with the 

highest F1 score of 0.94, demonstrating its balanced performance in both precision and 

recall. In contrast, SSD shows the lowest performance in this phase, with an accuracy 

of 0.05 and an F1 score of 0.10. 
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During the lecture, which lasts from 15:30 to 16:10, YOLOv8x and YOLOv8n continue 

to lead in performance. YOLOv8x achieves an accuracy of 0.75 and a recall of 0.80, 

while YOLOv8n follows closely with an accuracy of 0.73 and a recall of 0.78. Both 

models also maintain high precision, with YOLOv8x at 0.93 and YOLOv8n at 0.92. The 

F1 scores for YOLOv8x and YOLOv8n are 0.86 and 0.84, respectively, indicating their 

robust performance during the lecture phase. Faster R-CNN, while maintaining perfect 

precision (1.00), falls behind in recall (0.57) and overall accuracy (0.57). 

In the last 10 minutes as participants leave the room, YOLOv8n achieves the highest 

accuracy at 0.78 and the highest recall at 0.82. It also maintains a high precision of 0.93 

and an F1 score of 0.88, making it the best performer during this phase. YOLOv8x, 

while slightly behind YOLOv8n, still performs well with an accuracy of 0.63, recall of 

0.71, precision of 0.86, and F1 score of 0.77. In this phase, SSD performs the poorest 

with accuracy, recall, precision, and F1 score all at 0.00. 

When considering the overall performance across all phases, YOLOv8x emerges as the 

top performer with an accuracy of 0.77, recall of 0.82, precision of 0.93, and an F1 score 

of 0.87. YOLOv8n also shows strong overall performance with an accuracy of 0.72, 

recall of 0.78, precision of 0.90, and an F1 score of 0.84. Faster R-CNN excels in 

precision (1.00) but lags in recall (0.61) and overall accuracy (0.61). SSD, on the other 

hand, consistently shows the lowest performance metrics. 

YOLOv8x consistently outperforms other models across all phases in terms of accuracy, 

recall, precision, and F1 score. However, YOLOv8n also demonstrates a balanced and 

strong performance and is particularly noteworthy for its good speed, making it a highly 

suitable model for real-time applications where both performance and efficiency are 

crucial. The superior capabilities of these advanced YOLO models in real-time 

occupancy detection systems provide valuable insights for their application in building 
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and energy management, with YOLOv8n being a promising candidate for future use due 

to its excellent balance of accuracy and speed. 

Table 4-6 Comparison of the performance of the deep learning models during three 

distinct phases: as participants enter the room, during the lecture, and as they exit the 

room  

Model SSD  
Faster 

R-CNN 

YOL

Ov5n  

YOL

Ov5x  

YOL

Ov7  

YOLO

v7w6  

YOL

Ov8n  

YOL

Ov8x  

Enter 

(First 

15 

mins) 

Accuracy 0.05  0.76  0.51  0.47  0.49  0.50  0.66  0.89  

Recall 0.05  0.76  0.66  0.62  0.68  0.74  0.77  0.94  

Precision 1.00  1.00  0.69  0.66  0.64  0.61  0.82  0.94  

F1 score 0.10  0.86  0.67  0.64  0.66  0.67  0.80  0.94  

Lectu

re 

(15:3

0-

16:10

) 

Accuracy 0.03  0.57  0.57  0.46  0.57  0.60  0.73  0.75  

Recall 0.03  0.57  0.65  0.54  0.64  0.73  0.78  0.80  

Precision 1.00  1.00  0.81  0.75  0.84  0.77  0.92  0.93  

F1 score 0.05  0.72  0.72  0.63  0.73  0.75  0.84  0.86  

Leav

e 

(Last 

10mi

ns) 

Accuracy 0.00  0.59  0.50  0.41  0.56  0.43  0.78  0.63  

Recall 0.00  0.59  0.65  0.53  0.82  0.67  0.82  0.71  

Precision 0.00  1.00  0.69  0.64  0.64  0.56  0.93  0.86  

F1 score 0.00  0.74  0.67  0.58  0.72  0.61  0.88  0.77  

Over

all 

Accuracy 0.03  0.61  0.55  0.46  0.55  0.56  0.72  0.77  

Recall 0.03  0.61  0.66  0.56  0.66  0.73  0.78  0.82  

Precision 1.00  1.00  0.77  0.72  0.77  0.71  0.90  0.93  

F1 score 0.06  0.75  0.71  0.63  0.71  0.72  0.84  0.87  

Figure 4-9 compares the accuracy of all models with their training and inference times, 

where a model with better accuracy occupies a larger circular area. The SSD model's 

performance is notably poor in most frames, even with the longest training time. 

YOLOv8x, with an acceptable training time, demonstrated superior performance, 

achieving the highest overall accuracy of 0.77 and an F1 score of 0.87, although its 

inference time is lengthy. It can detect most occupants but occasionally misses some at 

the far end. It is worth noting that Faster R-CNN achieved high precision and confidence 

scores, as shown in Figure 4-9, despite requiring more training time. YOLOv5n, 
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YOLOv5x, and YOLOv8n all exhibited good performance, recognizing most occupants, 

although they sometimes mistakenly identified other objects as occupants initially. 

YOLOv8n has better accuracy, which is why it was selected for the next stage of testing 

with cameras from various angles. YOLOv7 and YOLOv7w6 provided the same 

accuracy and F1 score, although their training times and mAP were quite different. 

These two models occasionally mistook the screen on the table and the overhead 

projector for occupants. 

 

Figure 4-9 Performance of deep learning models comparing training time, inference 

time and accuracy (higher accuracy model occupied bigger circular area) 

Figure 4-10 presents occupancy profiles predicted by deep learning models compared 

to the actual number of occupants (ground truth). These profiles will be used as input 

for subsequent energy simulations. The results from the deep learning models represent 

the number of detected occupants, including both true positive and false positive 

detections. Consequently, there may be instances where the results approximate the 
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ground truth but exhibit discrepancies due to missed occupants or false detections. 

Further work is needed to improve the accuracy, stability, and dependability of the 

detection models. Based on a comparative analysis of the eight models used in the 

experiment, YOLOv8n exhibits the least variation in prediction error, yielding the most 

accurate results when compared to the ground truth. 

 

Figure 4-10 The occupancy profiles predicted by the deep learning models, compared 

to the ground truth.  

Moreover, four cameras were strategically positioned at each corner to assess the impact 

on detection performance, addressing the inevitable occlusions inherent in a singular 

view. Figure 4-11 shows a frame from the inference videos captured by different 

cameras at 15:45, a time when most students were seated with minimal movement. 

Video 4-4 compares the detection from the four different cameras from 15:45:00 to 

15:46:00. The YOLOv8n model was selected for this experiment due to its superior 

overall performance demonstrated earlier. While some occupants were missed by one 

camera, they were discernibly captured by others. For instance, camera 2 overlooked 
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several individuals in the right corner, yet they were clearly captured by cameras 1 and 

3. This highlights the suboptimal performance of camera 2, which consistently missed 

occupants in the right corner. 

 

Figure 4-11 A frame taken from the YOLOv8n inference detection videos comparing 4 

different cameras at 15:45:00. 
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Video 4-4 The inference detection videos comparing 4 different cameras using 

YOLOv8n from 15:45:00 to 15:46:00. The playable video is available at https://ars.els-

cdn.com/content/image/1-s2.0-S2352710224029231-mmc4.mp4  

Figure 4-12 compares the detection results from each of the four cameras. Detailed 

model performance is also shown in Table 4-7. The occupant number detected by 

cameras 1 and 3 tends to surpass that of cameras 2 and 4. These contrasting outcomes 

from different cameras underscore the potential uncertainty in detection when relying 

on a single view. Considering installation costs, enhancing the accuracy of the deep 

learning model emerges as a more efficient alternative compared to deploying multiple 

cameras within a room. Investing in more advanced algorithms can potentially reduce 

the need for extensive hardware setups, leading to cost savings and simpler 

implementations.  

https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc4.mp4
https://ars.els-cdn.com/content/image/1-s2.0-S2352710224029231-mmc4.mp4
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Figure 4-12 Occupancy profiles predicted by the deep learning models based on the 

different detection camera locations using YOLOv8n compared to ground truth.  

Table 4-7 The model performance across all four cameras. 

Metric Camera 1 Camera 2 Camera 3 Camera 4 

Accuracy 0.72  0.51  0.69  0.65  

Recall 0.78  0.71  0.90  0.82  

Precision 0.90  0.64  0.74  0.76  

F1 score 0.84  0.67  0.81  0.79  

4.3.3 Energy and CO2 simulation results 

An IES VE model was used to simulate the case study building [64] to determine how 

the occupant detection approach would affect the building's predicted performance, with 

a focus on energy consumption and CO2 concentration. Even though the SSD model 

was wildly off and ill-suited for the application needed, it is nevertheless assessed here 

to demonstrate its impact on the forecasts. The occupancy profiles generated, 

encompassing both true and false positive results from the deep learning models, were 

integrated into the simulation. These profiles were formatted into 5-minute intervals to 

align with the constraints of the building energy software. 
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A conventional occupancy profile, designating full occupancy (48 individuals) from 

8:00 to 18:00 on weekdays, was established as the "Base Case" for comparison. Figure 

4-13a shows the CO2 concentration trends predicted using the occupancy profiles based 

on the eight deep-learning models compared with the recorded CO2 sensor data during 

the experiment. The CO2 concentration trend predicted using detections from the deep 

learning models aligned reasonably well with the recorded data, showcasing a prompt 

response to occupancy changes from 15:15 onwards, although it generally overpredicted 

the measurements. This could be an issue with the IES VE modelling, as the ground 

truth (actual occupancy) also showed discrepancies. In contrast, the "Base Case" 

simulation exhibited a pronounced discrepancy with the actual data, and the SSD model 

profile failed to capture the trend. 

A notable lag of approximately 15 minutes was observed in the recorded CO2 data from 

the sensor as occupants began entering at 15:15, with the sensor reflecting changes only 

around 15:30. This delay is typical for CO2 sensors, highlighting a temporal limitation 

in capturing occupancy variations (Liang et al., 2024). The vision-based deep learning 

approach demonstrated a promising capacity to mitigate this lag, signifying its potential 

to enhance real-time responsiveness in monitoring and controlling building 

environments.
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Figure 4-13 Predicted vs. recorded data for a) CO2 concentration, b) internal gains, and 

c) heating loads. 

Figure 4-13b displays the internal gains profiles predicted based on the deep learning 

models, compared to the "Base Case" profile, which assumes full occupancy from 8:00 

to 18:00. The actual observed "Ground Truth" profile is highlighted. There is a 

significant gap between the actual occupancy profiles and the fully occupied profiles 

commonly used (Azar and Menassa, 2012). Most deep learning models in this study can 

identify and locate people in the case study room, demonstrating the potential for 

improving model performance and energy demand prediction accuracy. 
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Figure 4-13c displays the heating energy load results in the modelled room from 8:00 to 

17:00. The "Base Case" simulation showed a significant discrepancy from the "Ground 

Truth" simulation, indicating that the conventional fixed profile can be inaccurate in 

certain scenarios. At the beginning of the lecture during the heating period at 15:15, a 

substantial amount of heating energy was required to maintain the room at the setpoint 

temperature of 21 °C for the duration of the occupancy period. This need rapidly 

decreased as occupants entered the room and generated internal heat gains. Compared 

to the actual profile ("Ground Truth"), the YOLOv8n and YOLOv8x models achieved 

the most accurate heating energy load predictions, while SSD showed the worst 

performance. 

Figure 4-14 illustrates the predicted heating energy consumption in the case study room 

on the test day, comparing different models, the “Ground Truth” and the “Base Case” 

profiles. The results reveal a 13.45% discrepancy between the conventional “Base Case” 

profile and the “Ground Truth” heating energy consumption. In contrast, the deep 

learning models show a narrower variation, ranging between 0 and 6.72% from the 

“Ground Truth” results, except for the SSD model, which barely detects any occupants. 

The conventional fixed profile sets the heater on continuously, even when there are no 

occupants, leading to higher energy consumption. The data highlights the potential of 

deep learning models to accurately capture occupancy changes, improving energy 

consumption predictions compared to traditional methods. These findings emphasise the 

shift from static to real-time occupancy detection models. Deep learning models reduce 

variations in consumption, providing a more reliable foundation for energy management 
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decisions.

 

Figure 4-14 The predicted heating energy of the case study room on Dec 2nd, 2022, based 

on the simulation of deep learning model profiles, the “Ground Truth” profile and the 

“Base case” profile. 

Generally, the deep learning models showed good performance, particularly when 

compared to the conventional fixed occupancy profile regarding energy and CO2 

predictions. These models were adept at swiftly capturing occupancy variations, faster 

than the CO2 sensor, indicating promising avenues for future developments. Although 

the configuration of the model influenced detection performance, other elements like 

appliances, furniture, lighting conditions and obstructions also played a role. These 

factors contributed to the observed changes in predictions and detection performance 

over the detection period. In this context, YOLOv8x emerged as the most proficient in 

detection performance, delivering the most accurate predictions on occupant profiles, 

while YOLOv8n excelled in speed and maintained good accuracy overall. 

The vision-based method does present certain limitations, with obstructions being a 

notable challenge due to its inherent nature. This study evaluated the impact of the 

position and angle of the cameras on detection performance. The effectiveness of the 

vision-based method is constrained by the camera's field of view, necessitating strategic 
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placement and perspective adjustments. Additionally, camera resolution could 

potentially hinder model performance, especially in detecting minute movements or 

small objects.  

4.4 Summary  

A vision-based deep learning approach for real-time occupancy detection in crowded 

environments is presented in this chapter, with a specific focus on a lecture room at a 

university. We evaluated eight deep learning models, including SSD, Faster R-CNN, 

YOLOv5n, YOLOv5x, YOLOv7, YOLOv7w6, YOLOv8n, and YOLOv8x, using a self-

compiled dataset during a university lecture experiment. The performance of these 

models was evaluated in terms of speed of detection, computational requirement, and 

complexity of the scene. The evaluation revealed varying performance levels among the 

models. YOLOv8x emerged as the most accurate, with an overall accuracy of 0.77 and 

an F1 score of 0.87, albeit with a longer inference time. YOLOv8n also demonstrated 

commendable speed in both training and inference phases while maintaining good 

accuracy, making it a suitable choice for scenarios prioritising both speed and accuracy. 

The SSD model, on the other hand, trailed behind significantly, showing a subpar 

detection ability, particularly struggling to identify occupants unless they were near the 

camera.  

Additionally, this chapter explored the impact of the location and angle of the camera, 

to assess occlusion challenges often encountered in single-view setups. Specifically, the 

experiment demonstrated that when one camera missed certain occupants due to 

obstructions or limited field of view, other cameras positioned at different angles could 

successfully detect those individuals. For example, individuals missed by camera 2 were 

detected by cameras 1 and 3, illustrating how a multi-camera setup can compensate for 

the limitations of a single viewpoint. However, implementing such a multi-camera 
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system would also increase costs and complexity, necessitating more extensive 

infrastructure and maintenance. 

Examining the impact on the predicted energy consumption, our findings revealed a 

substantial daily heating energy demand difference of approximately 13.45% when 

comparing the conventional occupancy profile (Base Case) and the Ground Truth (actual 

occupancy number). In contrast, deep learning models except the SSD model showed 

much smaller variations, with a maximum difference of 6.72% compared to the “Ground 

Truth”. This highlights the potential of the approach to reduce the gap between actual 

and predicted energy consumption and improve precise, demand-driven building 

management systems. Although the deep learning models generally overpredicted the 

recorded data, the CO2 concentration trends they predicted aligned closely with the 

recorded data, unlike the Base Case profile. This alignment demonstrates the potential 

of the proposed method not only to improve the accuracy and reliability of energy 

performance predictions but also to respond more quickly to occupancy changes than 

CO2 sensors.  

These findings suggest a promising future for demand-driven management systems. 

Assessing scalability, conducting comparative studies with other technologies, and 

gathering user feedback could provide comprehensive insights into the practical 

deployment and effectiveness of the proposed system in real-world settings. However, 

while algorithmic performance is critical, the choice of sensing technology also plays a 

vital role in occupancy detection systems. Different types of cameras, such as standard 

and thermal cameras, offer unique advantages and face challenges in real-world 

scenarios. The next chapter explores the comparative performance of standard and 

thermal cameras in diverse settings, evaluating their suitability for privacy-sensitive 

environments, complex occupancy scenarios, and energy management applications. By 

linking algorithmic efficiency with sensor selection, the following chapter aims to 
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provide a holistic understanding of vision-based occupancy detection for smarter, more 

energy-efficient buildings. 
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5. OCCUPANCY PREDICTION PERFORMANCE 

COMPARISON OF STANDARD CAMERA AND 

THERMOGRAPHIC IMAGING  

5.1 Introduction 

This chapter presents a comparison study for building occupancy prediction with deep 

learning methods with both standard cameras and thermal images. Many HVAC systems 

operate on fixed or predefined schedules, which assume steady occupancy patterns 

throughout the day. This often results in energy waste in unoccupied or partially 

occupied spaces (Tien et al., 2020c). Therefore, effective occupant detection and 

monitoring are essential for optimizing energy performance by enabling dynamic 

control strategies, improving simulation accuracy, and maintaining indoor 

environmental quality. 

Traditional occupant detection methods, such as passive infrared sensors, CO₂ sensors, 

and radio frequency identification, are widely used in building control systems (Zhang 

et al., 2022, Franco and Leccese, 2020). While these methods capture basic occupancy 

signals like motion or changes in ambient CO₂ concentration, they may offer limited 

insights into occupant distribution, behaviour, or activities. More advanced approaches, 

such as systems utilizing Wi-Fi (Alishahi et al., 2022) and Bluetooth signals (Park et al., 

2019), have been developed to detect and track occupants with greater precision and 

contextual awareness, thereby enhancing dynamic building control. Despite their 

potential, these methods face challenges such as susceptibility to signal interference, 

significant infrastructure costs, and privacy concerns associated with the continuous 

tracking of personal devices. 
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Recent advances in computer vision provide richer contextual information, enabling 

building control systems to detect presence and understand occupant locations (Hu et 

al., 2023), movement patterns, and interactions within a space (Aliero et al., 2022). 

However, vision-based solutions using standard (RGB) cameras present privacy 

challenges (Winkler and Rinner, 2013), particularly in commercial or sensitive 

environments, and are prone to false detections caused by indoor elements like portraits 

and photographs. 

Thermal imaging has emerged as a promising alternative to address these limitations. 

By capturing temperature variations instead of visual details, thermal cameras safeguard 

privacy by rendering faces and personal identifiers less discernible (Qin et al., 2021). 

Additionally, thermal cameras are robust to variations in lighting conditions, making 

them suitable for low-light or nighttime scenarios where standard cameras are less 

effective. However, the effectiveness of thermal imaging for occupant detection can be 

influenced by factors such as emissivity settings, ambient temperature fluctuations, and 

object heat signatures resembling human presence. While the higher cost of thermal 

cameras has traditionally limited their adoption, the emergence of low-cost and low-

resolution thermal cameras offers more accessible options (Metwaly et al., 2019a), 

although with trade-offs in image quality and detection accuracy (Kraft et al., 2021, 

Sirmacek and Riveiro, 2020). 

Previous works (Cosma and Simha, 2018) have successfully utilized thermal imaging 

and computer vision to assess thermal comfort. However, few studies (Acquaah et al., 

2021) have focused on using thermal imaging for indoor occupancy detection, 

especially in real-time applications employing algorithms like single-shot detectors such 

as YOLO (Long et al., 2020), which provide faster and more efficient processing 

compared to older models such as traditional machine learning models (e.g., k-means, 

SVM, RF, and GNB) (Sahoo and Lone, 2023), classic neural networks (e.g., MLP) 

(Long et al., 2020), and earlier deep learning architectures (e.g., ResNet-50 and VGG-
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16) (Acquaah et al., 2021). YOLO's architecture enables simultaneous object detection 

and classification in a single step, reducing computational demands and improving its 

real-time applicability for dynamic and complex indoor environments. 

Furthermore, most studies (Figure 5-1) rely on ceiling-mounted, top-view and low-

resolution cameras (Sahoo and Lone, 2023) that capture heads rather than full bodies, 

which could potentially restrict its ability to analyse occupant behaviour or activities 

(for example using appliances, opening windows). Moreover, comparisons between 

low-cost thermal cameras and standard vision-based occupancy detection systems are 

lacking. Research evaluating these technologies in real environments is also limited. 

Additionally, no studies have systematically examined the impact of various heat 

sources, such as TV screens, computers, heated seats, or coffee cups, as potential sources 

of error for thermal imaging (Figure 5-1). For standard cameras, challenges like 

detecting pictures or screens displaying people in rooms also remain underexplored. 
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Figure 5-1 Evolution of the use of thermal imaging across occupancy studies, from 

low to medium pixel grids  (Kraft et al., 2021, Sirmacek and Riveiro, 2020) to higher 

detail (present). 

Building on this context, the study explores real-time occupancy prediction performance 

using low-cost thermal cameras and standard cameras across a range of indoor settings, 

employing advanced deep-learning algorithms. Specifically, it utilizes the YOLOv8/v10 

models to detect occupants under different experimental conditions, including Same-

Video, Split-Video, and Cross-Video setups (Figure 5-2). These experiments also 

emphasize the importance of creating robust datasets, particularly for thermal image 

detection. Creating such datasets involves carefully selecting environments with varying 

levels of complexity, incorporating diverse heat sources, and ensuring representative 

scenarios to account for potential sources of error, such as reflections and heat signatures 

from objects like coffee cups or electronic devices. These experiments are carefully 

designed to test how well the models adapt to varying environmental complexities and 

occupant densities, offering a thorough evaluation of their practical effectiveness in real-

world scenarios while addressing key research gaps from prior studies. 
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Figure 5-2  The workflow for the comparsion of standrard and thermal cameras in 

vision-based occupancy detection. 

5.2 Occupancy prediction methodology 

This chapter investigates the performance of standard and thermal cameras for 

occupancy prediction through experiments designed to explore datasets, model training, 

validation, and comparative analysis. There are three different kinds of experimental 

setups in this research namely, Same-Video Experiment, Split-Video Experiment, and 

Cross-Video Experiment. For all experiments, both standard camera and thermal camera 

videos are recorded. The Same-Video Experiment extracted frames from a video 

captured in a meeting room with 8 occupants which serves as both the training dataset 

and validate it on the same video while expected to have high accuracy and serves as a 

baseline for comparison rather than reflecting real-world applicability. In the Split-

Video Experiment, the first half of the video is used for dataset generation and the 

second half for validation, which is to test in a realistic scenario where pre-data 

collection in the same environment enables model training. Finally, the Cross-Video 

Experiment, which uses datasets from other videos and validates the model in different 

videos captured in separate locations, aims to evaluate the model’s generalization 

capability. Various settings of experiments were conducted, and the details will be 

discussed later in this section. 
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5.2.1 Case study experiment setups 

This chapter evaluates the performance of standard and thermal cameras for occupancy 

prediction through four field studies, all conducted at the University of Nottingham, UK.  

In each field study, a thermal camera (FLIR ONE Pro) and a standard webcam (Logitech 

C920) were positioned and recorded videos at the same time as shown in Figure 5-3. 

These cameras were selected to represent different technologies, with the FLIR ONE 

Pro capturing thermal images and the Logitech C920 recording standard video. The 

Logitech C920 webcam was chosen for its capability to record full-HD 1080p video at 

30 frames per second (fps) and its 78-degree field of view , which provided a detailed 

and comprehensive perspective of the test environment. The high resolution and wide 

field of view make it an effective tool for detecting and analysing occupant movements. 
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Figure 5-3 The details of the buildings where the field studies are conducted. 

The FLIR ONE Pro thermal camera  was selected for its affordability and suitability for 

building applications, costing approximately £300–400. Despite its relatively low 

resolution of 160 × 120, the thermal camera ensures privacy by capturing only 

temperature variations and patterns, avoiding identifiable visual details. It operates 

within a spectral range of 8–14 μm with a horizontal field of view of 50° ±1°. The 

differing fields of view between standard and thermal cameras need adjustments during 

comparison. To ensure consistency, the images captured by the Logitech C920 were 

cropped to match the narrower field of view of the FLIR ONE Pro. 

The accuracy of the FLIR ONE Pro thermal camera is ±3°C or ±5%, and it has an object 

temperature range of -20°C to 120°C. To optimize its performance for human detection, 

the emissivity was set to 0.98, which is appropriate for human skin, and the reflection 
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temperature was set to the factory default of 22°C. The FLIR ONE Pro is factory-

calibrated and performs automatic flat-field correction. During this process, the shutter 

closes, and auto-calibration is executed every 3 minutes to account for changes in the 

thermal scene. The infrared (IR) scale was set to automatic for all experiments to ensure 

consistency in thermal image quality. The thermal camera recorded videos of occupants’ 

movements, which were then converted into individual frames to create datasets for 

training the deep learning models. 

The settings for each field study are detailed in Table 5-1. Field study 1 was conducted 

in a small room in the Mark Group House, involving three occupants. The scenario was 

considered simple, with occupants seated separately most of the time, providing a 

controlled and basic setting to establish baseline performance for both standard and 

thermal cameras. Field study 2 took place in a larger room in Paton House, involving 

seven occupants. In this field study, occupants sometimes sat close together, offering a 

more complex and dynamic environment to test the cameras' ability to differentiate 

individuals at closer distances. Field study 3 was conducted in a meeting room in the 

Sustainable Research Building, involving eight occupants. This test introduced 

additional complexities, such as posters of human figures on the walls and people’s 

images displayed on a TV screen. These additional elements were intentionally included 

to evaluate the performance of both standard and thermal cameras for specific 

challenges, such as distinguishing between real occupants and distractions within the 

environment. Field study 4 served as an additional test and involved capturing random 

thermal images of students in various classrooms across the campus. This test captured 

scenarios where students were seated, leaving their chairs, or interacting with screens. 

Table 5-1 Details of the setting of experiments conducted for this study. 

  Location 
Occupancy 

Number 

Area 

(m2) 

Video 

Duration 
Description 

Field 

study 

1 

Sun Space, 

Mark Group 

House 

3 23.14 35 mins 

A meeting room with 

max 3 sitting 

occupants. 
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Field 

study 

2 

Room B5, 

Paton House 
7 36.62 38 mins 

A meeting room with 

occupants, from an 

empty room to a 

crowded scenario. 

Field 

study 

3 

Room B12, 

Sustainable 

Research 

Building 

8 53.96 10mins 

A meeting room with 

occupants sitting and 

walking, with a TV 

and a poster in the 

background. 

Field 

study 

4 

Random 

Classrooms 
Various - - 

Random occupants in 

different classrooms. 

5.2.2 Training dataset generation 

For the Same-Video Experiment and Split-Video Experiment, both the training dataset 

and validation video were derived from Experiment 3, conducted in the Sustainable 

Research Building. This experiment involved a 10-minute recording that captured a 

dynamic scenario with people entering the room, walking around, and sitting together. 

Special features of the environment included a TV screen displaying images of people 

and a poster of human figures on the wall. These elements were intentionally included 

to test the deep learning model's ability to distinguish between real occupants and visual 

distractions, such as images of people on screens or posters. 

The Same-Video Experiment used the entire video from Experiment 3 for both the 

dataset and validation, aiming to assess the model’s peak performance under ideal but 

unrealistic conditions. 300 frames in the video were taken and labelled as the training 

dataset. This setup, though unlikely to reflect real-world applications, serves as a 

benchmark for comparison with other experiments. 

The Split-Video Experiment took 300 frames in the first half of the Experiment 3 video 

for the training dataset and the remaining half video for validation. This configuration 

used pre-collected data from the same room for training. It evaluates the model’s 

adaptability to slight variations within the same environment while still maintaining 

continuity between training and validation datasets. This experiment bridges the gap 
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between ideal and real-world applications, providing insights into the model’s 

performance in more achievable conditions. 

For Cross-Video Experiments, datasets were created using images captured in different 

locations to evaluate the model's performance in more generalised and diverse situations. 

This approach was designed to test the adaptability of the deep learning model beyond 

a single environment and examine its effectiveness in scenarios that closely resemble 

real-world applications. Three datasets were developed, each representing different 

levels of complexity, ranging from basic scenarios with a small number of people to 

crowded scenarios with movement and overlapping individuals. The aim was to assess 

how variations in environmental settings and occupant density impact the model's 

accuracy. The details of the datasets, including the characteristics of each scenario, are 

outlined in Table 5-2. 

Table 5-2 The details of the different datasets used as Cross-video experiments in this 

study. 

 Source Images Description Aims Dataset 

Dataset 

1 

Field 

study 1 
300 

Contains 

basic 

scenario 

Set a 

baseline 

Standard: 

https://app.roboflow.

com/ds/ZWRk34k5L

8?key=W7OA90qchf 

Thermal: 

https://app.roboflow.

com/ds/ByXqPWkzw

c?key=KEOuoOiQs4 

Dataset 

2 

Field 

study 1+4 
785 

The basic 

scenario 

with 

additional 

images of 

random 

people 

Increase the 

dataset and 

add images 

of people in 

different 

background 

Standard: 

https://app.roboflow.

com/ds/yFGSO7dnB

E?key=vs1aLGOqgD 

Thermal: 

https://app.roboflow.

com/ds/Ge1nl15j5h?

key=kjI3Dgyph7 

Dataset 

3 

Field 

study 

1+2+4 

985 

The basic 

scenario and 

crowed 

scenario 

Increase 

dataset with 

crowed 

scenario 

Standard: 

https://app.roboflow.

com/ds/95n4NmI7Pq

?key=y2Jz6qzs2O 

https://app.roboflow.com/ds/ZWRk34k5L8?key=W7OA90qchf
https://app.roboflow.com/ds/ZWRk34k5L8?key=W7OA90qchf
https://app.roboflow.com/ds/ZWRk34k5L8?key=W7OA90qchf
https://app.roboflow.com/ds/ByXqPWkzwc?key=KEOuoOiQs4
https://app.roboflow.com/ds/ByXqPWkzwc?key=KEOuoOiQs4
https://app.roboflow.com/ds/ByXqPWkzwc?key=KEOuoOiQs4
https://app.roboflow.com/ds/yFGSO7dnBE?key=vs1aLGOqgD
https://app.roboflow.com/ds/yFGSO7dnBE?key=vs1aLGOqgD
https://app.roboflow.com/ds/yFGSO7dnBE?key=vs1aLGOqgD
https://app.roboflow.com/ds/Ge1nl15j5h?key=kjI3Dgyph7
https://app.roboflow.com/ds/Ge1nl15j5h?key=kjI3Dgyph7
https://app.roboflow.com/ds/Ge1nl15j5h?key=kjI3Dgyph7
https://app.roboflow.com/ds/95n4NmI7Pq?key=y2Jz6qzs2O
https://app.roboflow.com/ds/95n4NmI7Pq?key=y2Jz6qzs2O
https://app.roboflow.com/ds/95n4NmI7Pq?key=y2Jz6qzs2O
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Thermal: 

https://app.roboflow.

com/ds/GONHsm1Uj

G?key=BBBQpCZC

UM 

In this study, all datasets were created using frames extracted from the field study videos, 

which were then manually annotated. The images were randomly divided into three 

subsets for training, validation, and testing, with proportions of 70%, 20%, and 10%, 

respectively. All datasets are publicly available on Roboflow, an open-source platform 

for sharing datasets (Jocher, 2023). The annotation process was carried out using 

Roboflow’s tools, which generate bounding boxes around each occupant in the images. 

The annotations were saved in YOLO text format, ensuring compatibility with the 

machine learning frameworks. Each frame was carefully reviewed and annotated 

manually to maintain high data quality for training and evaluating the deep learning 

models. The annotation workflow included loading images, creating bounding boxes, 

assigning labels, and exporting the annotations in the required format, ensuring the 

datasets were well-prepared for further model development. 

 

Figure 5-4 Example images from datasets 1, 2 and 3. Dataset 1 represents simple 

scenarios and 2 and 3 for crowded ones. 

Each image was annotated with bounding boxes specifying the exact location of humans, 

using coordinates for x_center, y_center, width, and height. The annotations were saved 

https://app.roboflow.com/ds/GONHsm1UjG?key=BBBQpCZCUM
https://app.roboflow.com/ds/GONHsm1UjG?key=BBBQpCZCUM
https://app.roboflow.com/ds/GONHsm1UjG?key=BBBQpCZCUM
https://app.roboflow.com/ds/GONHsm1UjG?key=BBBQpCZCUM
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in.xml files for YOLO input. Preprocessing steps included resizing images to 640x640 

pixels and applying auto-orientation to ensure compatibility with the models, preventing 

memory leaks, poor performance, and imprecise results. Figure 5-4 shows examples of 

standard and thermal images in Datasets 1, 2 and 3. 

5.2.3 Training model 

YOLOv8 (Jocher, 2023) and YOLOv10 (Wang et al., 2024) are selected for real-time 

deep-learning occupancy detection, as they represent the latest advancements in the 

YOLO series. These models have demonstrated good performance in terms of both 

accuracy and speed, making them ideal for dynamic and high-density environments. 

Compared to earlier YOLO versions, YOLOv8 and YOLOv10 offer improved detection 

accuracy, particularly for smaller objects, which is critical for distinguishing individuals 

in scenarios with overlapping occupants. Additionally, the model’s ability to perform 

high-speed inference makes them well-suited for real-time applications. 

The YOLO models were trained using the Pytorch framework in Google Colab (Bisong 

and Bisong, 2019), which provides free access to an NVIDIA T4 Tensor Core GPU. 

This GPU features 2560 CUDA cores, a 1590 MHz graphics clock, 320 GB/s memory 

bandwidth, and 15 GB of GPU memory, enabling efficient processing for large-scale 

datasets. The training process was set to run for 300 epochs, and the training was 

automatically terminated if the mean Average Precision (mAP) did not improve over 

100 epochs, ensuring efficient use of computational resources and preventing overfitting. 

The details of the training process for different tests conducted in this study are 

presented in Table 5-3. And  

Figure 5-5  demonstrates the normalized confusion matrices for all experiments. All 

tests were conducted using both standard and thermal images and videos. YOLOv8 was 

employed for most experiments, except for the final test, which used YOLOv10 to 

compare its performance with the latest YOLO model with the best performance dataset 
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in previous tests. During training, the validation subset was used to monitor the model’s 

performance, with key metrics such as mAP@50, precision, and recall evaluated after 

each epoch. This monitoring ensured the early detection of overfitting and informed the 

fine-tuning of hyperparameters. 

Table 5-3 The training details of all deep learning tests in this chapter. 

Exp. 
Training 

dataset 

Standar

d/ 

Therma

l 

Model 

Traini

ng 

time 

(Hour) 

Epoc

hs 

Precisi

on 

Reca

ll 

mAP
50 

mAP5

0-95 

 

Sam

e- 

Vide

o 

Experime

nt 3 

N 
YOLOv

8 

0.60 300 0.97 0.94 0.97 0.8 

T 0.59 300 0.97 0.96 0.98 0.78 

Split- 

Vide

o 

The first 

half of 

Exp. 3 

N 
YOLOv

8 

0.60 300 0.99 0.98 0.99 0.92 

T 0.58 300 0.97 0.95 0.98 0.81 

Cros

s-

Vide

o 

Dataset 1 

N 
YOLOv

8 

0.70 300 0.95 0.92 0.98 0.9 

T 0.63 300 0.99 0.99 0.99 0.94 

Dataset 2 

N 
YOLOv

8 

1.36 271 0.94 0.88 0.94 0.73 

T 1.17 250 0.82 0.71 0.78 0.44 

Dataset 3 

N 
YOLOv

8 

1.84 300 0.93 0.92 0.95 0.73 

T 1.83 281 0.87 0.78 0.84 0.51 

Dataset 3 

N 
YOLOv

10 

1.92 249 0.93 0.91 0.94 0.7 

T 0.51 66 0.77 0.71 0.78 0.43 
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Figure 5-5 The normalized confusion matrix for the Same-Video Experiment, Split-

Video Experiment and Cross-Video Experiments for (a) standard and (b) thermal 

datasets.  

For the Same-Video Experiment, both standard and thermal tests achieved high 

mAP@50 values, reflecting good accuracy when trained and validated on identical 

datasets. This result highlights the models' capability to fit and perform well in 

controlled conditions, although it may not fully reflect real-world generalization. In the 

Split-Video Experiment, YOLOv8 demonstrated good accuracy, with the standard 

dataset achieving the highest mAP@50 and mAP@50-95 scores among all setups. This 

outcome indicates the model's ability to adapt effectively to slight variations within the 

same environment. The high performance of YOLOv8 in this scenario suggests that it 

is well-suited for situations where pre-collected data from the same location can be used 

for training. 

The Cross-Video Experiments demonstrated the models’ generalization capabilities 

when datasets were collected from different locations. The results reveal a decline in 

mAP@50-95 scores for thermal datasets, particularly in Dataset 2 and Dataset 3. This 

indicates that thermal datasets, while effective in controlled environments, are more 

sensitive to changes in environmental context and occupant behaviours. For instance, in 

Dataset 2 and Dataset 3, where the environments were more dynamic and occupant 

interactions were more complex, the thermal models struggled to maintain high recall 

and precision compared to their performance in Dataset 1 which has a simpler setting. 

In contrast, the standard camera datasets showed more stable performance in all cross-

video experiments. This stability can be attributed to the high spatial resolution and 

detailed visual data provided by standard cameras, enabling the models to better 

distinguish individual occupants and adapt to environmental variability. However, the 

dependency on adequate lighting remains a limitation for standard cameras, making 

them less effective in low-light or privacy-sensitive scenarios. 
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5.3 Experiment Results 

5.3.1 Video inference results 

In addition to the validation process provided by the deep learning algorithm during 

training, this study employed the video from Field Study 3 as an inference video to 

evaluate the models’ performance under real-world conditions. During inference, the 

video was sliced into single frames by the algorithm, and each frame was processed to 

generate results indicating the number of occupants to form an occupancy profile in the 

room. To validate the model’s accuracy, the generated occupancy profile was compared 

with manual occupant counts from the same video which served as the ground truth for 

evaluating the inference results. Since occupant numbers in the experiment do not 

change rapidly, the deep learning profile generates the occupant count by taking the 

average over every 10-second interval. This interval was chosen to ensure consistency 

and reduce noise in the data, while accurately capturing occupancy patterns. 

In terms of the value for the ground truth, the average number of occupants in each 10s 

was manually counted. In general, the number of occupants does not change in an 

interval but in some cases, people would enter or leave the video at just the end of one 

interval or the start of the next interval. Since it was difficult to determine the number 

variation between two intervals, the 10s were further split into two 5s. That is, when the 

occupancy number in the first 5s is x, and in the later 5s is (x±1), the ground truth 

number would be x. If the variation of occupancy number were larger, e.g. ≥(x±2), the 

average of these two 5s would be calculated. 

To obtain an accurate ground truth number, we counted the number from the video 

generated by a standard camera, as the occupants were easier to recognise. The accuracy 

could be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝐴𝐵𝑆(𝐷𝑒𝑡𝑒𝑐𝑡 − 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟)

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟
) ∗ 100 (4 − 1) 
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Where 𝐴𝐵𝑆() is the function of absolute value; 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟 is the ground truth value of 

occupancy every 10 seconds; Detect is the average detected occupancy every 10 seconds. 

The detailed accuracy results for all experiments in this study are listed in Table 5-4. 

Table 5-4 The detailed accuracy results for all experiments with video inference. 

Experiment Training dataset 
Validation 

Video 
Model 

Accuracy (%) 

 

Standard Thermal 

Same-

Video 
Field study 3 

Field study 

3 
YOLOv8 94 93 

Split-Video 
The first half of 

Field Study 3 

Field study 

3 
YOLOv8 90 91 

Cross-

Video 

Dataset 1 
Field study 

3 
YOLOv8 53 53 

Dataset 2 
Field study 

3 
YOLOv8 71 71 

Dataset 3 
Field study 

3 
YOLOv8 78 88 

Dataset 3 
Field study 

3 
YOLOv10 78 83 

The accuracy was determined by comparing the model’s predicted occupant counts to 

the manually established ground truth. YOLOv8 served as the primary model, while 

YOLOv10 was applied to the dataset with the best performance to evaluate whether 

further improvements in accuracy could be achieved. The Same-Video Experiment 

achieved the highest accuracy, with YOLOv8 producing results of 94% for the standard 

dataset and 93% for the thermal dataset. In the Split-Video Experiment, where the first 

half of the video was used for training and the second half of the video for validation, 

accuracy was slightly lower but still strong, with values of 90% and 91% for standard 

and thermal datasets, respectively. The highest accuracy observed in this experiment 

serves as a benchmark for the deep learning model, offering a basis for comparison with 

other experimental setups and establishing the expected upper bounds of model 

performance under controlled scenarios. 
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The Cross-Video Experiments presented a more challenging evaluation with datasets 

collected in different locations for training. Dataset 1 showed the lowest accuracy, at 53% 

for the standard and thermal datasets. The accuracy was improved by adding Dataset 2, 

where both standard and thermal datasets achieved 71%. Dataset 3 showed the best 

results among the cross-video tests, with YOLOv8 achieving 78% accuracy for the 

standard dataset and 88% for the thermal dataset. Since the highest accuracy was 

generated from Dataset 3, the cross-video experiment 4 which applied YOLO v10 was 

also tested on this dataset and produced comparable results, achieving 78% accuracy for 

the standard dataset and 83% for the thermal dataset. This demonstrates the potential of 

the newer YOLO version to deliver competitive performance. 

In general, simpler datasets often struggle to perform well when applied to more 

complex validation videos, as they lack the diversity and variability needed to generalise 

effectively across different scenarios. This limitation was evident in cases where training 

datasets derived from straightforward scenarios, such as Dataset 1 in the Cross-Video 

Experiments, produced lower accuracy when validated on the more intricate video from 

Field Study 3. However, as the training dataset becomes more complex and diverse, the 

model's performance improves. This was observed with Dataset 3, where the inclusion 

of more varied scenarios and environmental conditions during training resulted in higher 

accuracy during validation. 
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Figure 5-6 The generated occupancy profiles in each experiment. (a) Same video, (b) 

Split video, and Cross-Video (c) Experiment 1, (d) Experiment 2, (e) Experiment 3, (f) 

Experiment 4. Three dark grey bars indicate the boundary of four stages of the 
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inference video, which are entering the room, discussion (sitting), leaving the room, 

and discussion (standing). 

When comparing the performance of standard and thermal datasets, it can be noticed 

that standard datasets outperformed thermal datasets in most tests. This is likely due to 

the higher resolution and richer visual details provided by standard datasets, which 

enable more accurate detection and differentiation of occupants. However, in cross-

video validations, thermal datasets exhibited competitive performance and, in some 

cases, surpassed standard datasets, particularly with Dataset 3. This highlights the 

potential of thermal cameras in privacy-sensitive applications and under complex or 

dynamic conditions, where their ability to preserve anonymity while maintaining 

sufficient accuracy becomes critical. Also, YOLO models were pre-trained on standard 

image datasets, introducing a bias toward visible-spectrum images. Therefore, the 

thermal datasets may require additional tuning or pretraining specific to thermal images 

to unlock their full potential. Such adaptations could enhance the performance of 

thermal cameras, particularly in scenarios that demand high privacy preservation or 

operation in low-light environments. 

 

Figure 5-6 shows the result of occupancy profiles in each experiment with a comparison 

between ground truth and detecting results generated by standard and thermal datasets. 

In the Same-Video Experiment, the occupancy profiles for both standard and thermal 

datasets closely align with the ground truth. The Split-Video Experiment shows a similar 

trend, only the latter half of the video is shown in the occupancy profile, as the first half 

is used as the training dataset. For the Cross-Video Experiments, the performance of 

both datasets varies based on the complexity of the training data and the details will be 

discussed in the next section. 
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5.3.2 Different scenarios result in Cross-Video Experiments 

To further investigate the result in Cross-Video Experiments, the inference video is 

divided into four stages as shown in Figure 5-7, which are 1) entering the room, 2) 

discussing (sitting), 3) leaving the room, and 4) discussing (standing).   These stages 

were categorized based on the number of occupants and the extent of occupant overlap, 

which influenced the complexity of the detection task. The first stage, entering the room, 

represents a relatively simple scenario with approximately three occupants, each 

separated within the room. The lack of overlapping individuals and lower occupant 

density in this stage make it less challenging for the model. In contrast, the second and 

third stages, which involve discussion while sitting and occupants leaving the room, are 

more complex. These scenarios feature approximately eight occupants, either sitting in 

close or moving within the room, increasing overlapping and making detection more 

difficult. The fourth stage, discussion while standing, is also classified as a crowded 

scenario due to occupant overlap, which challenges the model’s ability to distinguish 

individuals. 

 

Figure 5-7 The examples of inference video. From Stages 1 to 4: entering the room, 

discussion (sitting), leaving room, and discussion (standing). 

In the entering stage, the number of occupants was around three and gradually increased 

after 90 seconds. From Experiment 1 to Experiment 3, both the standard and thermal 
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cameras demonstrated improvements in their ability to detect entering occupants, 

indicating that adding more training data improved the models' performance. Both 

cameras were capable of capturing behaviours such as sitting, walking, and standing 

throughout the experiments.  

 

Figure 5-8 The Cross-Video Experiments video inference results in comparison for the 

standard and thermal models in the entering room stage. 
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In Experiment 1, as illustrated in the example screenshots in  

Figure 5-8, a person seated on the right was not detected by either the standard or the 

thermal camera. With more training images in Experiment 2 and Experiment 3, both 

cameras were able to identify all occupants in the room. Despite this progress, the 

standard camera encountered challenges in scenarios where portrait pictures were 

placed on the wall. These images were occasionally misidentified as occupants, 

reducing the standard camera’s detection accuracy. The thermal camera, in contrast, 

avoided such misdetections due to its design, which focuses solely on objects' heat. This 

advantage allowed it to maintain higher accuracy in scenarios involving visual 

distractions, such as portrait images. However, an unexpected issue arose with the 

thermal camera in Experiment 1 as shown in Figure 5-9, where it occasionally 

misidentified the heat signature of a monitor as an occupant. Although this error 

occurred in only a few frames, it highlighted a potential limitation of the thermal dataset 

when dealing with non-occupant heat sources. This issue was effectively addressed in 

Experiments 2 and 3 by expanding the training dataset to include more diverse scenarios, 

thereby improving the model’s ability to distinguish between occupants and objects 

emitting heat. 
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Figure 5-9 The detection results of thermal models at 01:14 of the inference video in 

Experiment 1 to 4. 

In the second stage, where occupants were seated around a table for discussion, the 

detection accuracy in Experiment 1 was low, with both cameras achieving less than 50% 

accuracy. In Experiment 2, the standard camera demonstrated better performance than 

the thermal camera, as the thermal camera’s accuracy continued to decline during this 

stage. Interestingly, the thermal camera’s accuracy only improved toward the end of this 

stage when occupants began moving out of the room, aligning more closely with the 

ground truth. By Experiment 3, both cameras performed better and accurately detected 

occupancy numbers during this stage. 

Example images of the detection results for the second stage are shown in Figure 5-10. 

In Experiment 1, both the standard camera and the thermal camera struggled to detect 

all occupants, particularly with overlapping occupants, which were detected as a single 
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entity. Additionally, neither camera successfully detected the person sitting next to the 

monitor, highlighting a shared limitation in the initial experimental setup. As a complex 

scenario, the images could be further analysed by dividing them into regions with 

overlapping and non-overlapping occupants. In Experiments 2 to 4, the non-overlapping 

occupants, such as the person seated next to the monitor, were successfully detected by 

both cameras. However, the regions with overlapping occupants remained challenging. 

A closer investigation of these areas revealed that occupants sitting on the right-hand 

side of the table were more spatially separated compared to those on the left-hand side. 

This separation contributed to improved detection accuracy for the right-hand side 

occupants in later experiments, as the increased diversity and complexity in the training 

datasets enabled the models to better handle such scenarios. 
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Figure 5-10 The Cross-Video experiments video inference results in comparison for 

standard and thermal models in the discussion (sitting) stage. 
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Some occupants went back to the room before they left in the third stage as shown in 

Figure 5-11 which made a temporary rise in the occupancy count for approximately one 

minute before declining once more. In Cross-Video Experiment 1, both the standard and 

thermal cameras demonstrated low accuracy during this stage. While the standard 

camera was able to capture the temporary increase in occupant numbers, its overall 

performance remained limited. Cross-Video Experiments 2 and 3 showed some 

improvements, particularly in Experiment 3, where the detection accuracy was better 

aligned with the ground truth, even as occupants moved back into the room and left 

again. The improved datasets used in Cross-Video Experiments 2 and 3 contributed to 

greater detection accuracy compared to Experiment 1. For example, in Cross-Video 

Experiment 3, the model was capable of detecting occupants positioned from the front 

of the view. In this stage, YOLOv8 outperformed YOLOv10, particularly in thermal 

camera applications. YOLOv10 displayed a tendency to misidentify heat-emitting 

objects as occupants, which reduced its accuracy. Additionally, there were instances 

where YOLOv10 failed to detect occupants standing in the background of the scene in 

a few frames. These limitations underline the strengths of YOLOv8, which provided 

more reliable detection of both near and far occupants, even under challenging 

conditions. 
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Figure 5-11 The Cross-Video experiments video inference results in comparison for 

standard and thermal models in the leaving room stage. 



131 

In the final stage, during which occupants were standing and engaging in discussion as 

in Figure 5-12, the overall accuracy of both the standard and thermal cameras was 

similar in Experiments 1 and 3. In Experiment 1, the standard camera tends to over-

detect the number of occupants. Conversely, the thermal camera under-detected the 

number of occupants, likely due to challenges in distinguishing closely grouped 

individuals. By Experiment 3, both cameras over-detect, with the standard camera 

continuing to overestimate occupant numbers while the thermal camera showed slight 

inaccuracies due to overlapping heat signatures. Interestingly, in Experiment 2, the 

thermal camera outperformed the standard camera, achieving better accuracy with the 

ground truth during this stage. The standard camera, on the other hand, over-detected 

occupant numbers, reporting a count higher than the actual number. This discrepancy 

may be attributed to the presence of additional visual distractions, such as overlapping 

individuals or environmental factors, which impacted the standard camera’s detection 

accuracy. 
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Figure 5-12 The Cross-Video experiments video inference results in comparison for 

standard and thermal models in the discussion (standing) stage. 
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5.4 Discussion 

5.4.1 Metrics evaluation 

Mean Average Precision (mAP) is a widely used metric in the field of object detection, 

serving as a standard for evaluating model performance during the training process. It 

provides a comprehensive measure by combining precision and recall across a range of 

intersection-over-union (IoU) thresholds, typically from 0.5 to 0.95 at 0.05 intervals. 

Precision refers to the proportion of correctly identified objects (True Positives) relative 

to all detected objects, while recall measures the proportion of correctly identified 

objects relative to the total number of ground truth objects. The mAP metric is useful 

for assessing model performance during training, as it evaluates both the localization 

and classification capabilities of the model under controlled conditions. A higher mAP 

score indicates that the model is capable of detecting objects with bounding boxes and 

correct labels, making it a reliable indicator of model effectiveness within provided 

datasets. 

The mAP metric is particularly useful for assessing model performance during training 

and validation, as it evaluates both the localization and classification capabilities of the 

model under controlled conditions. A higher mAP score indicates that the model is 

capable of consistently detecting objects with precise bounding boxes and correct labels, 

making it a reliable indicator of model effectiveness within the scope of the provided 

datasets. However, while mAP is an essential tool during the training process, it has 

limitations when applied to unseen inference videos that more closely resemble real-

world conditions. Training and validation datasets are often curated and structured, 

lacking the variability and complexity of practical environments. As a result, mAP may 

not fully capture the model’s generalization ability or its robustness in dynamic 

scenarios. 
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To address this gap, manually counted accuracy calculated as the ratio of detected 

occupant numbers to the ground truth numbers within each 10-second interval of the 

inference video is introduced as a metric for evaluating the model’s performance on 

inference videos. Unlike mAP, which focuses on precision at specific IoU thresholds, 

manual counted accuracy directly compares the number of detected occupants to the 

ground truth count in defined time intervals. This approach provides a more realistic 

measure of the model’s effectiveness in unseen environments, where factors such as 

overlapping occupants, environmental distractions, and varying camera angles can 

influence detection accuracy. As in Figure 5-13a, by comparing mAP with manually 

counted accuracy, the gap between training and real-world inference performance can 

be quantified, offering insights into the model’s adaptability and areas for improvement. 

One challenge that affects both mAP and manual counted accuracy is the overlapping 

of occupants, which complicates both the labelling and detection processes. In scenarios 

where the body parts of one occupant are occluded by others, labelled occupants in the 

training set may only be partially visible in the testing set. This issue is in both standard 

and thermal cameras, as occupant overlap reduces detection accuracy. Furthermore, in 

thermal images, occupants may not have distinct heat signatures, making them harder 

to recognize and detect accurately. This limitation often results in labels that do not fully 

represent the actual occupants, introducing additional inconsistencies into the training 

and evaluation processes. Addressing these challenges requires larger dataset 

preparation and model enhancements that can account for complex scenarios involving 

overlapping and partially visible occupants. 
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Figure 5-13(a) The comparison for mAP and manual counted accuracy in all 

experiments. (b) The accuracy comparison of simple and complex scenarios in 

different experiments.  

In the same-video experiment, both cameras achieved approximately 94% accuracy and 

a mean average precision (mAP) of 0.8. This indicates that the highest performance of 

both cameras could be similar, and it could be achieved with a large training dataset. 

Manually counted accuracy tends to be higher than mAP because manual counting can 

be considered as an idealized mAP@100 metric, which is unattainable for a machine 

learning model but achievable in a manual process. 
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In the split-video experiment, accuracy dropped slightly for both cameras compared to 

the same-video experiment. However, the mAP increased due to the lower variation in 

scenarios, which included only two stages compared to four stages in the same-video 

experiment. In Experiment 1, mAP was significantly higher than manual counted 

accuracy, highlighting a substantial gap between model performance during training and 

its application in real-world prediction tasks. This discrepancy arose because both the 

training and testing datasets in Experiment 1 represented simple scenarios, whereas the 

inference video featured a mix of simple and complex scenarios. By contrast, in the 

split-video experiment, mAP closely aligned with accuracy. This was because the 

training dataset included images from stage one and the first half of stage two, 

encompassing both simple and complex scenarios, leading to improved generalization. 

In the cross-video experiments, the gap between mAP and accuracy was smaller for the 

standard camera compared to the thermal camera, suggesting that the model trained with 

standard images exhibited better performance in terms of extracting the precise regions 

of occupants. Although labelling thermal images can be challenging due to difficulties 

in recognizing occupant outlines, this issue appeared to have a limited impact on mAP. 

Instead, the performance gap likely reflects the inherent limitations of the YOLOv8 

model’s ability when trained on thermal images. The difference in mAP between cross-

video experiments 2 to 4 and the same-video experiment was larger for thermal camera 

detection, indicating that the thermal camera struggled to detect the exact location of 

occupants across diverse scenarios. Despite this, the thermal camera’s ability to count 

occupants was unaffected, with manually counted accuracies reaching as high as 88% 

in cross-video experiment 3. This suggests that while the thermal camera may face 

challenges in precise localization, it remains effective for occupancy counting. 

When considering occupancy profile generation, accuracy is arguably more critical than 

mAP. The number of occupants within a given interval directly influences the demand 

for heating or cooling, making accurate occupant counts more relevant for building 
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energy management systems. Additionally, the thermal camera offers the advantage of 

better privacy protection, as detailed facial features are not discernible in thermal images. 

While the standard camera demonstrated the potential to achieve slightly higher mAP 

and accuracy, both cameras delivered comparable performance in generating occupancy 

profiles, highlighting their utility for real-world applications with varying priorities. 

5.4.2 Detection performance comparison in simple and complex 

scenarios 

Simple scenarios which have low occupant density and not much overlap, represent 

controlled environments where detection is relatively straightforward. In contrast, 

complex scenarios, such as crowded scenes with occupant overlaps, introduce 

challenges that test the limits of the model's ability to detect and distinguish individuals 

accurately. The detailed comparison is shown in Figure 5-13b. By analysing 

performance in these contexts, the strengths and weaknesses of both the standard and 

thermal cameras can be identified, as well as the effectiveness of the training datasets in 

preparing the models for real-world applications. 

In this study, Cross-Video Experiment 3 achieved the highest accuracy for both cameras. 

For the standard camera, errors caused by misdetections tended to have a greater impact 

in simpler scenarios due to the smaller number of total occupants. However, this trend 

was only consistently observed in Cross-Video Experiment 3. The lower accuracy 

observed in crowded scenarios during Cross-Video Experiments 1 and 2 suggests that 

the datasets used in these experiments lacked sufficient diversity and complexity. 

Additionally, YOLOv10 demonstrated better generalization capabilities with the 

standard camera, achieving approximately 80% accuracy in simple scenarios compared 

to YOLOv8’s 70%, reflecting the benefits of improved model architecture for certain 

conditions. A similar pattern was observed for the thermal camera. In Cross-Video 

Experiments 1 and 2, the accuracy in crowded scenarios was lower than in simple 

scenarios and improved with the increasing dataset. In Cross-Video Experiments 3 and 
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4, the detection accuracies in simple and crowded scenarios are the same, indicating the 

model’s ability to detect occupants in complex scenarios with Dataset 3. This highlights 

the importance of dataset diversity and coverage for enhancing model performance in 

complex scenarios. 

Despite the improvements, a gap remains between the highest accuracy achieved in 

cross-video experiments and same-video experiments. Considering the limitations in 

dataset size and variability, the difference of approximately 6% is acceptable. This small 

gap suggests that, with sufficient dataset preparation, both standard and thermal cameras 

can achieve near-optimal performance in challenging real-world scenarios. The results 

also underscore the importance of datasets to include diverse scenarios, particularly for 

models like YOLOv8, which require comprehensive training data to generalise 

effectively. While YOLOv10 demonstrated slightly better in certain cases, the choice 

between these models should consider specific application requirements, including 

accuracy, dataset availability, and computational efficiency.  

5.4.3 Additional findings in vision-based occupancy prediction 

Most existing vision-based occupancy prediction studies use standard cameras as 

sensors, with limited research exploring the use of thermal cameras. In this study, we 

addressed this gap by testing and comparing the performance of standard and thermal 

cameras for occupancy prediction. The comparison provided valuable insights into the 

advantages and limitations of each sensor in various scenarios. Additionally, we 

uncovered some novel findings for vision-based occupancy prediction, demonstrating 

its potential in privacy-sensitive applications and dynamic or low-light environments. 

These findings not only highlight the feasibility of thermal cameras for occupancy 

detection but also emphasize the importance of further exploring their capabilities to 

expand the scope of vision-based methods in real-world applications. 
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As mentioned earlier, most previous studies have relied on low-resolution thermal 

cameras, which are limited in their ability to capture occupants with detail (Figure 

5-14a). These cameras often render occupants as indistinct "blobs," making it 

challenging to detect finer features or analyse specific behaviours. In contrast, this study 

employed a higher resolution but cost-effective thermal camera, the FLIR ONE Pro, 

which provides detail and improves the accuracy of occupant detection. As shown in 

Figure 5-14a, the deep learning model trained on data from the camera could detect 

occupants when they are in different behaviours, including walking, standing, and 

sitting. This highlights the potential of leveraging higher-resolution thermal cameras for 

more advanced tasks beyond simple occupancy counting, addressing the limitations of 

previous studies while maintaining affordability and practicality for real-world 

applications. 

 

b 

a 
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Figure 5-14 (a) Examples of occupancy detection in previous studies, and (b) example 

pictures of deep learning model detecting occupants in the present study. The thermal 

imprints left on chairs: (c) the deep learning model mis-detected it as an occupant in 

Cross-Video Experiment 3, (d) additional images were added to the dataset with 

thermal imprints left on chairs, and (e) the model correctly ignored the thermal 

imprints left on chairs. 

In this study, we observed thermal imprints left on chairs in the thermal images, where 

the residual heat signature persisted for a period after the occupant had left. This 

phenomenon posed a challenge for accurate detection, as the model often misclassified 

these heat signatures as occupants. For example, in Experiment 3, as shown in Figure 

5-14b, the model incorrectly detected the residual heat in a chair as a person. To address 

this issue, additional images of chairs with thermal imprints were added to the training 

dataset. Specifically, 211 such images were included, as illustrated in Figure 5-14c. This 

adjustment allowed the model to learn to distinguish residual heat patterns from actual 

occupants. The results, as shown in Figure 5-14d, indicated that the model no longer 

mis-detected the residual heat signature as an occupant. 

However, while this improvement resolved the specific issue of residual heat 

misdetection, it came at the cost of a decrease in overall accuracy. The accuracy dropped 

from 88% to 76%, indicating that the addition of these images may have impacted the 

model's ability to generalise across other scenarios. This suggests that while targeted 

additions to the training dataset can help address specific challenges, they may also 

introduce trade-offs in overall performance. Future work should explore ways to balance 

c d e 
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dataset specialization with generalization, such as fine-tuning models for specific tasks 

or employing advanced techniques to reduce the impact of dataset biases. 

 

Figure 5-15 The detection of overlapping people. The dataset of Experiment 2 added 

more images with people in different environment and Experiment 3 added crowed 

scenarios specifically. 

Overlapping occupants is always a challenge for vision-based occupancy detection 

because they create ambiguity in distinguishing individuals within the same region of 
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an image. For thermal imaging, the heat signatures of closely positioned occupants often 

merge, resulting in blended patterns that obscure individual outlines. Similarly, in 

standard camera footage, overlapping can cause visual features such as limbs or body 

contours to overlap, making it difficult for detection models to separate one person from 

another. These challenges affect both the labelling process during dataset creation and 

the model’s ability to generalise to real-world scenarios, especially in crowded 

environments or dynamic settings where occupants move or interact closely. 

As illustrated in Figure 5-15, in Cross-Video Experiment 1, both standard and thermal 

cameras struggled with overlapping occupants, failing to detect individuals separately 

in complex scenarios. However, as additional images containing overlapping occupants 

were incorporated into the training dataset for Experiment 3, the thermal camera 

demonstrated improvement, as shown in Video 5-1. It was able to detect overlapping 

individuals more accurately, with bounding boxes correctly identifying separate 

occupants. In contrast, while the standard camera performed relatively well in 

Experiment 1, its performance did not improve much in the following experiments, 

suggesting that it may have already reached its detection capability for overlapping 

scenarios, possibly due to the reliance on visual features that become ambiguous in such 

conditions. This highlights the limitations of standard cameras when dealing with visual 

overlap, as they rely on distinct body contours and visual details that are often obscured 

in crowded or overlapping situations. 

The improvement observed in the thermal camera underscores the importance of dataset 

diversity, particularly in addressing overlapping scenarios. By including more 

representative examples in the training data, the thermal camera was better equipped to 

generalise and separate overlapping heat signatures. These findings suggest that while 

standard cameras are effective under control or simpler conditions, thermal cameras, 

with adequate training, can offer another option for detecting occupants in complex and 

crowded environments.  
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Video 5-1 The comparison of ground truth, standard and thermal deep learning models 

in Cross-Video Experiment 3. The playable video is available at 

https://youtu.be/b6MnmFJNZ2E  

5.5 Summary 

This study explored and compared the performance of standard and thermal cameras for 

vision-based occupancy detection, both cameras can reach around 70% accuracy with 

sufficient dataset preparation employing YOLOv8 and around 80% accuracy with 

YOLOv10 models. Through Same-Video, Split-Video, and Cross-Video experiments, 

the findings demonstrated the strengths and limitations of both camera types in 

occupancy prediction, highlighting their ability to detect people in various positions, 

such as walking, sitting, and standing, across both simple and complex scenarios. 

The results revealed that both cameras achieved approximately 94% accuracy and a 

mean average precision (mAP) of 0.8 in controlled settings, which demonstrated their 

maximum potential, as in the Same-Video experiment, where the training data were 

duplicated with the validation video. However, in more challenging scenarios, such as 

https://youtu.be/b6MnmFJNZ2E
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the Cross-Video experiments, thermal cameras faced greater difficulties in 

distinguishing fine details, such as overlapping occupants, due to the blending of heat 

signatures. Despite these limitations, thermal cameras exhibited competitive 

performance, especially in privacy-sensitive applications, by effectively avoiding visual 

distractions like portrait images or facial features present in standard camera datasets. 

Key insights from this study include the critical role of dataset diversity and selection 

in improving model performance, particularly in scenarios involving overlapping 

occupants or residual heat imprints. The results demonstrated that increasing the size 

and complexity of training datasets significantly improved the model's ability to 

generalise and adapt to real-world conditions. For example, the inclusion of diverse 

overlapping scenarios in Experiment 3 enabled the YOLO model to accurately detect 

individual occupants, even in crowded environments, highlighting the importance of 

comprehensive training data in addressing complex challenges. 

Additionally, this study underscores the potential of cost-effective, higher-resolution 

thermal cameras, such as the FLIR ONE Pro, for enhancing vision-based occupancy 

prediction. With their privacy-preserving capabilities and improved detection of 

occupant behaviours, thermal cameras can expand the scope of applications in smart 

building management, energy efficiency, and occupant monitoring. However, 

challenges remain, particularly in achieving consistent accuracy across diverse and 

dynamic conditions, such as scenarios with overlapping occupants or residual heat 

imprints. 

In conclusion, while both standard and thermal cameras demonstrated comparable 

performance under optimal conditions, thermal cameras offer unique advantages in 

privacy-sensitive and low-light environments. This study contributes to bridging the 

research gap in thermal-based occupancy detection by highlighting the strengths and 

limitations of these cameras and providing a foundation for future research, for example, 

the next chapter explored occupancy thermal comfort prediction with the vision-based 
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deep learning method by using the comfort level in thermal image as detection 

objectives. To further enhance the performance and generalization of thermal imaging 

models, future efforts should focus on developing more diverse training datasets, 

advanced detection techniques, and methods to address challenges such as residual heat 

and overlapping occupants. By addressing these gaps, vision-based thermal occupancy 

detection can become a more reliable tool for real-world applications including more 

specific objectives.  
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6. DYNAMIC THERMAL COMFORT PREDICTION 

WITH THERMOGRAPHIC IMAGING 

6.1 Introduction 

In the last chapter, the deep learning model with thermal images showed good 

performance with appropriate datasets which provides potential for more specific 

applications. This chapter aims to develop a real-time, vision-based deep learning model 

for detecting thermal comfort levels in building environments using thermal imaging 

technology. The research focuses on utilising the YOLOv8 algorithm, a state-of-the-art 

single-shot object detection system renowned for its efficiency in real-time applications 

(Jocher, 2023). YOLO-based algorithms have demonstrated promising results in indoor 

settings, such as a 2022 study on occupancy counting with YOLOv4, which achieved 

an accuracy of 96–99% (Lee et al., 2022). Similarly, another study using YOLOv5 for 

occupancy counting in two office environments also reported high accuracy (Choi et al., 

2021). Building on this foundation, this research seeks to address existing limitations by 

developing a method that automates the analysis of thermal images, eliminating the need 

for manual input during feature extraction. Unlike traditional approaches that rely on 

manually defined ROIs, this method employs a vision-based deep learning model to 

automatically detect and process thermal patterns directly from raw data, offering a fully 

automated and adaptable solution. 

While traditional models such as the Predicted Mean Vote (PMV) and the adaptive 

model have formed the basis for thermal comfort assessment in buildings, their 

generalised nature often fails to reflect the diverse and dynamic responses of individual 

occupants. These models typically rely on steady-state environmental and metabolic 

assumptions, which limit their sensitivity to real-time changes in personal comfort. In 

response to these limitations, recent research has begun to explore dynamic thermal 
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comfort modelling, with real-time data and individual responses. This chapter 

developed a personalised thermal comfort prediction model using thermographic 

imaging and deep learning which aims to capture individual variability in comfort levels 

more accurately, providing a foundation for future occupant-centred and adaptive 

building control systems. Although this method is exploratory and still in development, 

it represents a shift towards more intelligent and responsive comfort modelling that can 

adapt to occupant needs in real time. 

Field experiments were conducted in a real-world office environment to collect thermal 

image data from multiple subjects, along with Thermal Sensation Votes (TSVs) recorded 

during controlled temperature variations. These thermal images were labelled with their 

corresponding TSVs, forming a dataset used to train a deep learning-based thermal 

comfort prediction model. The primary goal of this study is to assess the feasibility of 

using vision-based deep learning methods to predict individual thermal comfort in real-

time. To evaluate the feasibility of the model focusing on generalisability and accuracy, 

cross-validation techniques were also employed, including intra-subject and cross-

subject validation. Intra-subject validation tested the model on data from the same 

individuals included in the training, while cross-subject validation evaluated its ability 

to predict thermal comfort levels for unseen occupants. 

The model’s accuracy and performance will be compared to the traditional PMV 

approach, which typically relies on environmental measurements such as temperature, 

humidity, and air velocity. This comparison aims to provide initial insights into the 

potential of the vision-based method as a flexible and cost-effective alternative to 

traditional thermal comfort detection techniques. 

A novel method for detecting thermal comfort is introduced using a vision-based deep 

learning approach, addressing significant limitations in existing thermal comfort 

prediction techniques. The experimental setup involves 14 field experiments conducted 
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in an office environment, during which data were collected from subjects, including 

thermal images, TSVs, and environmental information. These thermal images, paired 

with their corresponding TSVs, form a foundational dataset for training the model, 

which predicts real-time occupancy thermal comfort levels and compares them with 

PMV values calculated from environmental data. 

A key contribution lies in the development of a fully automated vision-based method 

that eliminates the need for environmental sensors or manual feature extraction. Unlike 

traditional approaches, which require manually defining regions of interest (ROIs), the 

proposed model leverages a deep learning framework to process raw data from a low-

cost thermal camera, automatically identifying relevant patterns and extracting features. 

By automating these processes, the method reduces the reliance on specialised 

knowledge, offering a scalable, efficient, and cost-effective solution for real-time 

thermal comfort prediction. 

Additionally, this chapter advances the field by demonstrating a practical alternative to 

traditional PMV-based methods, which often depend on complex, multi-sensor setups. 

By relying solely on a low-cost thermal camera to capture the necessary data, the 

proposed approach simplifies the system, reduces costs, and enables broader application 

in real-world building environments. This chapter introduces a methodology that 

combines cutting-edge deep learning with accessibility and scalability, making real-time 

thermal comfort prediction feasible for diverse contexts. 

6.2 Thermal comfort prediction method 

The methodology involves evaluating the performance of a vision-based deep learning 

method for predicting thermal comfort levels in building environments and comparing 

its effectiveness to the traditional PMV model. Experiments were conducted with single 

occupants in an air-conditioned space during winter, beginning with the heating system 



149 

turned off. Each experiment lasted approximately two hours. The room gradually heated 

using an air conditioner (AC), causing the theoretical PMV to transition from cold to 

neutral to hot until the AC reached its heating limit. The AC was then switched to 

cooling mode, reversing the cycle from hot to neutral to cold. 

Indoor environmental data and TSVs were collected every five minutes, and thermal 

video footage was recorded throughout each experiment. According to the ASHRAE 

Standard-55 (Standard, 1992), the TSV scale was based on a 7-point system: “−3” = 

cold, “−2” = cool, “−1” = slightly cool, “0” = neutral, “+1” = slightly warm, “+2” = 

warm, and “+3” = hot. However, the thermal states of “cold” and “hot” were not 

observed in most cases, resulting in datasets that typically included only four or five 

categories. 

The thermal video recordings from the heating phase, encompassing cold-neutral-hot 

transitions, were segmented into frame-by-frame images. These images, paired with the 

corresponding TSVs, were labelled to create a dataset for training the deep learning 

model. The video data from the cooling phase were used to test the trained model using 

data from the same subject, representing the intra-subject test. The cross-subject test, 

which involves data from different individuals, is discussed later. The workflow for the 

intra-subject model is presented in Figure 6-1. 
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Figure 6-1 The workflow for the intra-subject thermal comfort detection model 

evaluation. 

This study includes 14 separate experiments, each involving a different subject, to 

develop and validate a deep-learning model for thermal comfort detection. Each 

experiment is treated as an individual case, with the data split into two parts: one half is 

used for training the model, while the other half is used for validation. This intra-subject 

analysis evaluates the model's ability to predict thermal comfort for the same subject 

under controlled conditions. 

In addition to intra-subject analysis, the study incorporates a cross-subject analysis. In 

this approach, data from multiple subjects are combined to train a generalised model, 

which is then tested on data from different, unseen subjects. This allows the preliminary 

evaluation of the model's capacity to predict thermal comfort levels across various 

individuals, providing insights into its adaptability for broader, real-world applications. 

By combining intra-subject and cross-subject approaches, the study investigates both 

subject-specific performance and the model’s potential to generalise across diverse 
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occupants in building environments. In total, 212 TSVs and environmental data points 

were collected from 14 subjects to build and test the models. The detailed procedure for 

the vision-based deep learning thermal comfort prediction workflow is presented in 

Figure 6-2. 

 

Figure 6-2 Detailed workflow for the proposed vision-based thermal comfort detection 

method. 

6.2.1 Case study room setup 

Experiments were conducted in an air-conditioned room within the Sustainable 

Research Building at the University of Nottingham, UK, which is located in a temperate 
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oceanic climate (Köppen: Cfb). The case study room, a meeting space accessible to staff 

and students in the Department of Architecture and Built Environment from 9:00 to 

18:00 is illustrated in Figure 6-3. The experiments took place between November 2023 

and February 2024, during typical winter weather in the UK. Outdoor temperatures 

ranged from -6°C to 16°C, with an average of 7°C, and humidity levels varied between 

48% and 100%. The building is constructed to a BREEAM Excellent standard, with a 

U-value of 0.15 W/m²K for the roof and floor, 0.17 W/m²K for the walls, and 1.92 

W/m²K for the windows. 

The case study room measures 8.85 meters in length, 5.6 meters in width, and 2.45 

meters in height. It features two windows on the east and west sides and one on the 

south. Further details of the room setup can be found in (Wei et al., 2022b). 
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Figure 6-3 (a) The Sustainable Research Building and (b) overview of the case study 

room. 

A split wall-mounted air conditioner with both cooling and heating capabilities (Fujitsu; 

Cooling Capacity: 7.1 kW, Heating Capacity: 8.0 kW) was installed to regulate the room 

temperature. The air conditioner’s temperature setpoint range is 18°C–30°C, with the 

actual room temperature during the experiments varying between 12°C and 30°C. 

During the heating period, the setpoint was maintained at 30°C, while it was adjusted to 

18°C during the cooling period. It is important to note that the air conditioner was 

operated at a low speed, and care was taken to ensure that the air outlet did not blow 

directly toward the occupant, minimising any potential influence on thermal sensation 

or comfort levels. 

6.2.2 Experimental setup and procedure 

Throughout the experiment, three primary categories of data were gathered: 

environmental data (including observations on clothing and activity), thermal videos 
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and images, and Thermal Sensation Votes (TSVs). The environmental data were used 

exclusively to calculate the PMV for comparison with the proposed vision-based 

method using thermal images. A global thermometer (Tenmars TM-188) and a hot-wire 

anemometer (Model 440i, Testo Inc.) were positioned at a height of 1.1 m (seating 

height). The global thermometer measured air temperature (Ta), globe temperature (Tg), 

and relative humidity (RH) with a measuring frequency of 1-minute, averaging data 

every 5 minutes. The hot-wire anemometer measured indoor air speed with a measuring 

frequency of 1 second and provided manual averages every 5 minutes. The experimental 

setup is shown in Figure 6-4, and the detailed range, resolution, and accuracy of the 

instruments are listed in Table 6-1. All participants were instructed to wear one layer of 

clothing. Consequently, when environmental data were acquired, the corresponding 

PMV was calculated and recorded. The detailed PMV calculation method is described 

in Section 6.3.1. 
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Figure 6-4 The thermal camera and environment sensors' location in the case study room. 

Table 6-1 Sensors for collecting environmental data in the field experiment. 

Measurement 

parameters 
Sensor Range Resolution Accuracy 

Air Temperature 

Heat Stress WBGT 

Meter (Tenmars TM-188) 

0-50°C 0.1°C ±0.8 °C 

Globe 

Temperature 0-80°C 0.1°C ±0.6 °C 

Relative 

Humidity 

1%-

99% 
0.1% ±3% 

Air Speed 
Air Flow Anemometer 

Testo 405i 

0 to 30 

m/s 
0.01 m/s 

± (0.1 m/s + 

5 % of mv) 

In each experiment, a thermal camera (FLIR ONE Pro) was positioned directly in front 

of the subject to capture thermal images of the subject’s body. The camera was kept in 

a fixed location throughout all experiments to ensure consistency in data collection. 

Subjects were free to stand, sit, or walk, provided they remained within the camera’s 

field of view. The FLIR ONE Pro was chosen for its availability and affordability 
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(costing approximately £300-400), which will be critical for the wider deployment of 

this technology in buildings. While the camera captures thermal images at a low 

resolution (160 × 120), this is advantageous for ensuring privacy while still capturing 

essential temperature variations and patterns. The camera operates within a spectral 

range of 8–14 μm and has a horizontal field of view of 50° ±1°. Its accuracy is ±3°C or 

±5%, with an object temperature range of -20°C to 120°C. The emissivity of the thermal 

camera was set to 0.98, which is suitable for human skin (Ammer and Ring, 2019), and 

the reflection temperature was set to 22°C, the default setting of the FLIR ONE Pro.  

The thermal camera has automated flat-field correction and is calibrated in the factory 

(Aryal and Becerik-Gerber, 2019). In this procedure, the shutter shuts off and the auto-

calibration is carried out every three minutes using a uniform thermal scene. The 

infrared (IR) scale was set to 5°C to 40°C across all experiments, as temperature changes 

in this range were of interest. The thermal camera recorded videos of temperature 

changes and occupant movements. Portions of the video were converted into individual 

images to create datasets for training deep learning models. The remaining video data 

were reserved for validation purposes.  

For this experiment, 14 healthy subjects were gathered, 8 of whom were female and 6 

of whom were male. They were all international students from Asia, Europe, and Africa, 

and their ages ranged from 25 to 35. All subjects had no prior history of skin or 

cardiovascular conditions, and they had to abstain from alcohol, stay up late, take 

medication, and engage in strenuous activities 12 hours before the experiment. (Yao et 

al., 2008). During the experiment, the participants were dressed in long levees and 

trousers, of which the clothing insulation was around 1.0 clo and in a sedentary state 

(metabolic rate was around 1.0 met). 

All participants were informed about the experiment and provided their consent to be 

recorded and complete the survey before the experiment. They were instructed to behave 



157 

as they normally would in their daily lives and were free to adopt any position within 

the camera’s field of view. The air conditioner (AC) began heating the room at the start 

of the experiment and switched to cooling mode once the temperature reached the AC’s 

upper limit. The questionnaire consisted of two parts. The first section introduced the 

research, explaining the concepts of PMV and TSV. The second section comprised the 

TSV survey, which the researcher reminded participants to complete every 5 minutes. 

Further details of the questionnaire are provided in the Appendix. The questionnaire was 

designed to focus solely on TSV, keeping the survey straightforward for participants. 

The TSV responses aligned directly with a seven-point scale ranging from cold (-3) to 

hot (+3), corresponding to the PMV index. To ensure the privacy and comfort of 

participants, no personal information or identifiable images were collected during the 

study. 

6.2.3 Thermal camera calibration experiment 

In this study, the FLIR ONE Pro thermal camera used for occupancy detection was 

factory-calibrated, ensuring baseline accuracy for temperature measurements. However, 

to further validate its performance and assess any potential deviations, an additional 

calibration experiment was conducted following the manufacturer-recommended 

method (Glavaš, 2024). This experiment aimed to compare the camera’s temperature 

readings with a Pico Technology high-temperature Type K Thermocouple, which served 

as the reference instrument for precise temperature measurements. The setup, as shown 

in Figure 6-5, included three different thermal conditions: ice (cold reference), hot water 

(hot reference), and ambient air (moderate reference). 
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Figure 6-5 Experimental setup for thermal camera calibration using high-temperature 

type k thermocouples. 

In this experiment, the thermal camera was positioned to capture all three objects while 

the thermocouple simultaneously recorded their actual temperatures. The ice was placed 

in a sealed bottle to maintain a stable low temperature, while the hot water served as the 

high-temperature reference. The thermocouple was in contact with the ice and the hot 

water to provide precise measurements, while the thermal camera relied on infrared 

radiation emitted by the surfaces of the objects. Both devices recorded temperature 

values every minute for a total duration of nine minutes, capturing any changes over 

time to assess consistency and potential drift in readings. 
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Figure 6-6 Comparing thermal camera and thermocouple measurements over time. 

The results of the experiment, illustrated in Figure 6-6, reveal differences between the 

thermal camera and thermocouple measurements. For hot water, the thermocouple 

recorded higher temperatures than the thermal camera throughout the test. Although 

both measurements showed a gradual decline due to natural heat dissipation, the thermal 

camera readings tended to be lower, likely due to differences in emissivity settings and 

the way infrared sensors detect radiative heat. The air temperature readings displayed 

closer agreement between the two devices, with only minor fluctuations observed in the 

thermal camera data.  

For the ice condition, the thermal camera measured lower temperatures compared to the 

thermocouple. This discrepancy is primarily attributed to the reflective nature of the ice 

bottle, which affects how infrared radiation is detected. Unlike the thermocouple, which 

provides a direct-contact measurement, the thermal camera captures infrared radiation 

that may be influenced by emissivity settings and reflections from nearby surfaces. 

Several factors contribute to the observed discrepancies between the two measurement 

methods. First, emissivity and surface reflectivity play a crucial role in thermal imaging 

accuracy, particularly for materials with low emissivity, such as water and ice. The 

0

10

20

30

40

50

60

0:00:00 0:01:00 0:02:00 0:03:00 0:04:00 0:05:00 0:06:00 0:07:00 0:08:00 0:09:00

T
em

p
er

at
u
re

(C
)

Time

Thermocouple Ice Thermocouple Air

Thermocouple Hot water Thermal camera Ice

Thermal camera Air Thermal camera Hot water



160 

thermal camera relies on detecting emitted infrared radiation, which may vary based on 

the object's surface properties, leading to potential underestimations. In contrast, the 

thermocouple provides direct-contact measurements that are not affected by emissivity 

variations. Additionally, the field of view and measurement approach differ between the 

two methods. The thermocouple captures temperature from a single precise point, 

whereas the thermal camera averages temperature values across a broader detection area.  

It can be concluded that the FLIR ONE Pro thermal camera does not provide precise 

absolute temperature values but rather captures temperature differences and heat 

distribution patterns. From the calibration experiment, slight discrepancies were 

observed between the thermal camera and the thermocouple. These deviations suggest 

that thermal imaging is more effective in detecting relative temperature variations rather 

than providing exact temperature readings. 

This limitation is particularly relevant in thermal comfort prediction, where extracting 

raw temperature values from thermal cameras may introduce inaccuracies due to 

emissivity variations, sensor calibration, and environmental influences. Instead of 

relying on absolute temperature readings, this research employs thermal images as direct 

input for deep learning-based thermal comfort prediction. By using image-based 

analysis rather than numerical temperature values, the model leverages thermal patterns, 

ensuring a more adaptable approach. 

6.2.4 Deep learning model 

The thermal comfort prediction method in this study uses a vision-based deep learning 

approach, akin to an object detection problem in computer science. In traditional object 

detection, the objective is to identify and locate objects within an image. Similarly, this 

method applies to thermal comfort prediction by treating different comfort levels as 

categories to classify rather than physical objects to locate. This transforms thermal 
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comfort prediction into a classification task, making it more adaptable to dynamic 

indoor environments and individual variability. 

This study utilises YOLOv8 (ultralytics, 2023), a state-of-the-art single-shot object 

detection model known for its speed and accuracy in real-time applications. YOLO-

based models have been extensively used in tasks such as occupancy detection (Zhang 

et al., 2024) and object recognition (Bakana et al., 2024). They predict bounding boxes 

and class probabilities in a single forward pass through the network, offering high 

efficiency, particularly for real-time scenarios. Unlike traditional two-stage detectors, 

YOLO-based models avoid the computational overhead of region proposal networks. 

YOLOv8, the most recent version, features an enhanced architecture, improved feature 

extraction, and optimised post-processing techniques, delivering superior detection 

performance compared to its predecessors (Paszke et al., 2019). 

As illustrated in Figure 6-7, YOLOv8’s architecture comprises four main components: 

a backbone network for feature extraction, a neck for feature aggregation, a head for 

final predictions, and a loss function to optimise model performance. The backbone uses 

convolutional layers to extract hierarchical features from input thermal images, 

capturing key patterns in thermal distribution across the body. The neck employs a path 

aggregation network (PAN) to combine low-level and high-level features, enhancing the 

model's ability to detect subtle variations in thermal data that correspond to different 

comfort levels. The head generates predictions for each thermal comfort class, enabling 

precise classification. The loss function minimises the error between predicted and 

actual thermal comfort levels, ensuring the model's accuracy. 
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Figure 6-7 The architecture of the YOLOv8 algorithm, which is divided into four parts, 

including backbone, neck, head, and loss (Ju and Cai, 2023). 

In this study, the deep learning model for thermal comfort detection was trained using 

PyTorch 2.0 (Paszke et al., 2019), a widely recognised open-source deep learning 

framework. The training process was implemented in Google Colab, leveraging access 

to an NVIDIA T4 Tensor Core GPU with 2,560 CUDA cores and 16 GB of memory. A 

workstation running Ubuntu 20.04 with GPU acceleration served as the operating 

system for the virtual machine, while Python was utilised for coding and implementation. 

The dataset for the deep learning model was created from thermal images collected 

during the experiments. These images were labelled with corresponding TSVs ranging 

from "-3" (cold) to "+3" (hot). The cooling phase provided the data for training, while 

video recordings from the heating phase were reserved for validation. Each TSV 

category represented a distinct class in the deep learning model, resulting in a maximum 

of seven categories. To ensure sufficient representation, approximately 100 images per 

category were included in the dataset for each experiment, adhering to YOLO’s 

guidelines (Jocher, 2023). 

As the duration of thermal conditions (ranging from cool to hot) varied across subjects, 

the video recordings were divided into segments of different time intervals. This 

approach ensured that the number of thermal images within each category remained 

balanced, despite individual differences in how quickly subjects transitioned through 

the thermal sensations. By segmenting the videos based on thermal comfort phases, a 
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uniform dataset was generated. This dataset served as the foundation for training the 

deep learning model using thermal images. 

All images are labelled with bounding boxes by the LabelImg annotation tool (Tzutalin, 

2018) and are displayed in a resolution of 1440×1080 pixels. The subject is separated 

from the background and focuses on the thermal patterns and temperature variations of 

the subject's body, excluding irrelevant background information. The dataset created 

contains clean, focused thermal images of the person, which simplifies the input data, 

removing distractions and allowing the model to concentrate on heat distribution on the 

subject's body, which is directly related to thermal sensation (Choi and Loftness, 2012). 

The image annotations generated were saved in a .txt file format for the input of the 

YOLO algorithm. 70% of the picture datasets are used for training, 20% are used for 

validation, and the remaining portion is used for testing. All datasets are uploaded and 

available at Roboflow, a web-based application for objection detection datasets 

(Roboflow, 2023). Figure 6-8 shows two examples of subject 3 and subject 7 of the 

images and categories gathered and labelled in the dataset. 

 

Figure 6-8 Example pictures in the dataset of different classfication for subject 3 and 

subject 7. 
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Each model for the corresponding subject was trained to establish an individual thermal 

comfort model using thermal images and associated TSV labels. This approach allowed 

the model to learn unique thermal patterns and temperature variations specific to each 

subject, enabling accurate detection of their thermal comfort levels. All models were 

fully trained, with detailed information on the training datasets provided in Table 6-2. 

Training continued until no further improvement was observed or when the loss function 

consistently dropped below a predefined threshold. This process ensured efficient 

training by avoiding both underfitting (where the model fails to learn enough from the 

data) and overfitting (where the model learns excessive noise from the training data). 

To evaluate the performance of the models, the Mean Average Precision (mAP) was 

measured at an Intersection over Union (IoU) threshold of 0.5 for each experiment, 

using both the training and validation datasets, as shown in Table 6-2. 

Table 6-2 Detailed information about the deep learning model for each subject. 

Subject Category Images 
Training 

time 
Epochs 

mAP50 

(%) 

(Train) 

mAP50 

(%) 

(Validate) 

1 
“-2”, “-1”, “0”, 

“+1” 
385 1.4h 259 0.94 0.94 

2 
“-1”, “0”, “+1”, 

“+2” 
367 1.03h 199 0.98 0.81 

3 
“-2”, “-1”, “0”, 

“+1”, “+2” 
415 1.45h 247 0.98 0.81 

4 
“-1”, “0”, “+1”, 

“+2” 
472 1.47h 206 0.99 0.99 

5 
“-1”, “0”, “+1”, 

“+2” 
360 1.07h 215 0.98 0.98 

6 “-1”, “0”, “+1” 276 0.79h 214 0.97 0.97 

7 
“-2”, “-1”, “0”, 

“+1”, “+2” 
608 1.15h 271 0.98 0.78 

8 
“-2”, “-1”, “+1”, 

“+2” 
398 1.64h 300 0.99 0.85 

9 
“-2”, “-1”, “0”, 

“+1” 
360 0.89h 275 0.98 0.73 
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10 
“-2”, “-1”, “+1”, 

“+2” 
488 1.88h 269 0.99 0.99 

11 
“-1”, “0”, “+1”, 

“+2” 
488 1.63h 169 0.99 0.99 

12 
“-2”, “-1”, “0”, 

“+2” 
488 1.18h 161 0.98 0.86 

13 
“-1”, “0”, “+1”, 

“+2”, “+3” 
608 0.97h 226 0.97 0.76 

14 
“-2”, “-1”, “0”, 

“+2” 
488 1.15h 149 0.99 0.86 

All models for the corresponding subjects demonstrated good performance, with 

validation mAP values ranging from 0.73 to 0.99. Subjects 4, 10, and 11 achieved the 

highest validation mAP of 0.99, highlighting the model’s ability to accurately capture 

the thermal comfort levels of the corresponding subjects. The performance of these 

models will be further discussed in subsequent sections. 

To evaluate the performance of the deep learning models, Accuracy was used as one of 

the primary metrics for classification performance (Sokolova et al., 2006). This metric 

is calculated as the ratio of correctly classified samples to the total number of samples, 

as defined in the equations below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
(5 − 5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5 − 6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5 − 7) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5 − 8) 

True Positive (TP) indicates the correct results of thermal level were predicted, False 

Positive (FP) stands for the incorrect results of thermal level were predicted, False 

Negative (FN) represents the correct results of thermal level were not predicted, and 

True Negative (TN) illustrates the correct results of thermal level of the undesired 

conditions were predicted. A confusion matrix, which compares actual target values with 
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predicted values, includes counts of true positives (correctly predicted positive cases), 

true negatives (correctly predicted negative cases), false positives (negative cases 

incorrectly predicted as positive), and false negatives (positive cases incorrectly 

predicted as negative).  

The normalised confusion matrix transforms raw counts into proportions or percentages, 

facilitating performance comparison across different classes, where higher values 

indicate better accuracy. Across all models for the 14 subjects, the classes “-2” and “-1” 

consistently perform well, often achieving accuracy values approaching or reaching 

1.00. This indicates that the model is highly reliable in capturing cold-related thermal 

comfort states. However, the performance for the warm class shows greater variability, 

particularly for the neutral class (“0”). The model appears to struggle with maintaining 

clear distinctions between neutral comfort and warmer states, especially for subjects 

whose perception of warmth deviates from the average. 

The experiments conducted during winter likely influenced the model's performance. In 

cooler indoor environments, heating systems typically aim to maintain conditions close 

to neutral or slightly warm, aligning with seasonal expectations. As a result, subjects 

tend to be more sensitive and accurate in reporting cold discomfort, whereas their 

perception of warmer conditions may be less pronounced. This seasonal influence has 

been noted in other research studies, as highlighted in (Qiao and Yan, 2022) and (Fang 

et al., 2022). 

In the intra-subject experiments, some subjects, such as those represented in the 

confusion matrices for Subjects 1 and 3, demonstrate high accuracy across most classes. 

However, other subjects exhibit more frequent misclassifications. Appendix.B provides 

the normalised confusion matrix for 14 models, offering detailed insights into model 

performance. These results suggest that the model may be overfitting to certain subjects 
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or that individual differences, such as environmental adaptation, are influencing its 

accuracy. 

For the cross-subject training phase, three experiments were conducted using different 

subsets of participant data. The results of these experiments are summarised in Table 

6-3, which details the training data configuration, the number of images used, the 

training time, the number of epochs, and the mAP at 50% IoU for both training and 

validation datasets. 

Table 6-3 The training details for the multi-people dataset. 

Experiment Subject Images 
Training 

time 
Epochs 

mAP50 

(%) 

(Train) 

mAP50 

(%) 

(Validate) 

1 1-4 and 7-14 4977 14.69h 194 0.98 0.98 

2 1-8 and 11-14 5027 15.13h 206 0.98 0.97 

3 1-10 and 13-14 4667 13.45h 193 0.98 0.97 

In the first experiment, the model was trained with 4,977 images over 14.69 hours, 

distributed across 194 epochs, achieving a mean Average Precision (mAP50) of 98% for 

both the training and validation sets. This indicates robust model training and excellent 

generalisation to unseen validation data from Subjects 5 and 6. The second experiment 

involved a slightly larger dataset of 5,027 images and a marginally longer training 

duration of 15.13 hours across 206 epochs. While the training accuracy remained high 

at 98%, there was a slight decrease in validation accuracy to 97%, tested on Subjects 9 

and 10. This suggests that while the model effectively learned from a broader range of 

training data, slight discrepancies in subject-specific thermal responses may affect its 

universal applicability. In the third experiment, the model was trained using 4,667 

images for 13.45 hours over 193 epochs, achieving a training accuracy of 98% and a 

validation accuracy of 97% when evaluated against Subjects 11 and 12. 
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In addition to these metrics, a normalised confusion matrix was generated for the 

training and validation data of the cross-subject model. Appendix.C presents the 

normalised confusion matrix for all cross-subject models with different subject data, 

providing a detailed breakdown of the model's performance across different thermal 

comfort classes. Similar to the intra-subject test, the warm classes exhibit slight 

confusion compared to the colder classes. This could be attributed to humans generally 

being more sensitive to cold (Yamazaki et al., 2023). Furthermore, as the experiments 

were conducted in winter, participants may have expected cooler temperatures and 

underreported sensations of warmth (Qiao and Yan, 2022). 

6.3 Results and discussions 

6.3.1 Comparison between PMV and TSV 

The most common method for predicting thermal comfort is the PMV, which estimates 

the thermal comfort level of a group of individuals based on a seven-point thermal 

sensation scale (Fanger, 1970b). However, actual occupant comfort is subjective, varies 

among individuals, and is influenced by various factors such as building structure and 

indoor and outdoor thermal conditions. In this study, three groups of data were collected 

during the case study to facilitate comparisons: indoor environmental data for PMV 

calculation (including indoor air temperature, globe temperature, relative humidity, and 

airspeed); thermal video to test the proposed deep learning method; and TSVs obtained 

from the occupants. To ensure consistency in clothing insulation and metabolic rate, all 

subjects were instructed to wear a single layer of clothing throughout the experiment. 

The PMV method is widely adopted by researchers and practitioners globally and is 

included in several national building codes and international standards, such as 

ASHRAE 55–2023 (Standard, 1992), EN 16798–1:2022 (CEN, 2019), and ISO 

7730:2005 (AC08024865, 2005). According to Fanger's thermal comfort equation [63], 



169 

human thermal comfort can be determined using four environmental factors—air 

temperature (𝑇𝑎), relative humidity, mean radiant temperature (𝑇𝑚𝑟), and air velocity 

(V)—along with two personal factors: clothing insulation (𝐼𝑐𝑙) and metabolic rate (M). 

Equations (1), (2), (3), and (4) detail the calculation process. 

𝑃𝑀𝑉 =  [0.303𝑒𝑥𝑝(−0.036𝑀) + 0.0275]

{(𝑀 − 𝑊) − 3.96 ∙ 10−8 ∙ 𝑓𝑐𝑙[(𝑇𝑐𝑙 + 273)4 − (𝑇𝑚𝑟 + 273)4] − 𝑓𝑐𝑙 ∙ ℎ𝑐(𝑇𝑐𝑙 − 𝑇𝑎) − 𝐶1 − 𝐶2}(5 − 1)

Where 

𝐶1 = 3.05 ∙ 10−3[5733 − 6.99(𝑀 − 𝑊) − 𝑃𝑎] 

𝐶2 = 0.42[(𝑀 − 𝑊) − 58.15] − 1.7 ∙ 10−5𝑀(5867 − 𝑃𝑎) − 0.0014 ∙ 𝑀(34 − 𝑇𝑎) 

Where 

W represents heat generated by external work, W/m2; 

𝑃𝑎 is vapour pressure in ambient air, kPa; 

𝑓𝑐𝑙  and ℎ𝑐  are clothing factor and convective heat transfer coefficient with units of 

W/(m2·K); 

𝑇𝑐𝑙 is the temperature of the clothing surface, °C. 

And,

𝑇𝑐𝑙 = 35.7 − 0.0275 ∙ (𝑀 − 𝑊) − 0.155 ∙ 𝐼𝑐𝑙 ∙ [(𝑀 − 𝑊)] − 𝐶1 − 𝐶2 (5 − 2)

And  

ℎ𝑐 = 𝑚𝑎𝑥 [
[2.38(𝑇𝑐𝑙 − 𝑇𝑎)]0.25

12.1 ∙ √𝑉
]  

𝑓𝑐𝑙 = {
1.0 + 0.2 ∙ 𝐼𝑐𝑙       𝑖𝑓 𝐼𝑐𝑙 < 0.5𝑐𝑙𝑜
1.05 + 0.1 ∙ 𝐼𝑐𝑙      𝑖𝑓 𝐼𝑐𝑙 > 0.5𝑐𝑙𝑜

(5 − 3)

The mean radiant temperature was determined with the measured data at the 



170 

site.

𝑇𝑚𝑟 = [(𝑇𝑔𝑡 + 273.15)
4

+
1.1∙108∙𝑉0.6

𝜀∙𝐷0.4 (𝑇𝑔𝑡 − 𝑇𝑎)]

1

4
− 273.15 (5 − 4)

where  

D, the diameter of the globe was 0.05 mm; 

ε, the emissivity of the surface was 0.9; 

𝑇𝑔𝑡 is the globe temperature, °C. 

The PMV was obtained using the CBE thermal comfort tool (Tartarini et al., 2020), a 

tool for thermal comfort indices calculation and visualisation for the standard ASHRAE 

55–2023, EN 16798–1:2022 and ISO 7730:2005 with the equations above. Air 

temperature (Ta), relative humidity (RH), mean radiant temperature (Tmr）and air 

velocity (V) were collected from the case study experiment and used for PMV 

calculation. The clothing insulation 𝐼𝑐𝑙 and metabolic rate M were consistent since the 

subjects were asked to wear one layer of cloth in all tests. 

Figure 6-9 illustrates the changes in PMV values over time for 14 experiments. At the 

start of the experiments, most subjects reported experiencing cold discomfort due to the 

AC being off—an expected condition during winter. Once the AC was set to heating 

mode (temperature setpoint: 30°C), PMV values generally trended toward neutrality or 

slightly positive comfort levels. However, the time taken for each subject to achieve this 

state varied. For instance, subjects like 1 and 5 transitioned to more comfortable PMV 

levels relatively quickly, while others, such as 5 and 6, required significantly longer to 

reach neutrality. This variation in response time can be attributed to factors such as the 

effectiveness of the heating system and the individual thermal sensations of each 

participant. Participants who achieved comfort more quickly may exhibit a higher 
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sensitivity to incremental increases in temperature, while others may have different 

physiological or psychological thresholds for perceiving thermal comfort. 

 

Figure 6-9 The PMV values over time in 14 tests. 

The PMV method is designed to describe the overall thermal conditions of space, 

whereas TSV is targeted at capturing individual perceptions of thermal comfort. In this 

study, TSVs were recorded every five minutes through questionnaires, while PMVs 

were calculated using environmental data collected at the same intervals. This dual 

approach provides an objective prediction of thermal comfort based on physical 

parameters while also capturing subjective individual responses. 

Figure 6-10 illustrates the relationship between PMV and TSV across 14 experiments, 

revealing a general correlation between the two measures. However, notable deviations 

were observed, with some subjects reporting stronger sensations of cold or warmth 

(TSV) than those suggested by the PMV values. This disparity indicates that while PMV 
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is a valuable tool for predicting thermal comfort, it does not always fully reflect 

individual perceptions—a limitation noted in previous studies (Laouadi, 2022). 

 

Figure 6-10 Comparison of a) TSV against temperature and b) TSV against PMV in 14 

experiments. 
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Despite the overall alignment, there are clear discrepancies between PMV and TSV 

across subjects. It is worth noting that PMV is not designed for individual-level 

predictions but is being used here for comparison purposes. For example, Subjects 1 and 

5 align fairly with PMV and TSV as temperatures increase. However, Subject 1’s TSV 

is slightly more negative than the corresponding PMV values at certain points while the 

TSV for Subject 5 indicates slight warmth than the PMV. Subject 3 shows a more 

pronounced divergence between PMV and TSV, especially at lower temperatures, this 

person might have a slower physiological adaptation to changes in environmental 

conditions, or possibly a preference for warmer environments, which the PMV model 

doesn’t fully capture. Subjects 9 and 10’s TSV remains lower when PMV predicts 

neutral or slightly warm conditions, indicating that they perceive more discomfort than 

expected. 

The comparison between PMV and TSV highlights the limitations of the PMV model 

in accurately predicting individual thermal comfort, especially in cases where there are 

significant variations between subjective sensations and objective predictions. While 

PMV can serve as a general predictor of comfort, it often fails to account for the 

complexities of individual thermal perceptions, particularly at the extremes of the 

temperature scale (Yau and Chew, 2012). 

6.3.2 Deep learning prediction of thermal comfort based on the intra-

subject dataset 

To evaluate the effectiveness of the deep learning model in detecting indoor thermal 

comfort from thermal images, two tests were conducted: one using intra-subject datasets 

for individuals and another using cross-subject datasets for multiple people. 

The intra-subject tests aim to assess the accuracy of the model in predicting individuals’ 

unique thermal comfort responses, with both the training dataset and validation video 
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coming from the same subject. In these experiments, deep learning detection results 

were collected every 1 minute, and their 5-minute averages were compiled to provide a 

clearer picture of the model's performance over time. The differences between PMV, 

TSV, and deep learning detection results over the validation video for the 14 subjects 

are visualised in Figure 6-11. According to ASHRAE 55–2023 (Standard, 1992), 

thermal neutrality is defined as −0.5 < PMV < +0.5. In this study, the range -1 < PMV 

< +1 was classified as Neutral, while -2 was defined as Cold and +2 as Hot, as the 

extreme values of -3 and +3 were rarely observed during the experiment. Figure 6-11 

illustrates the detailed results of the personal vision-based deep learning models, along 

with the corresponding TSV values from the survey and PMV values calculated from 

environmental data across 14 tests. 

 

Figure 6-11 Comparison between TSV, PMV and deep-learning model results for 14 

subjects. 

The duration of the validation video varies between 10 and 40 minutes due to differences 

in how quickly the room’s heating or cooling system reaches stable conditions and 

individual differences in how subjects adapt to temperature changes, with some 
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requiring more time to feel comfortable or uncomfortable. For most subjects, PMV 

aligns well with TSV when temperatures are close to neutral conditions (typically 

between 20–26°C). For example, in Subject 1 at 16:30, the PMV is -0.22, which 

corresponds closely with a TSV of 0, indicating that the PMV model accurately reflects 

the subject’s neutral thermal sensation. Similarly, for Subject 9 at 14:05, the PMV of -

0.36 aligns well with a TSV of 2, suggesting that the model captures the subject's 

perception of slight warmth. 

However, TSV values often diverge from PMV under extreme conditions when PMV 

exceeds 2 or falls below -2, or during sudden temperature changes. For instance, in 

Subject 2 at 15:40, the PMV of -1.89 corresponds to a TSV of 0, suggesting that PMV 

underestimates the subject's thermal tolerance. Similarly, Subject 3 at 17:11 has a PMV 

of -3.32 but a TSV of -1, indicating that the subject may not experience the extreme 

discomfort predicted by PMV. The deep learning method provides additional insights, 

with some instances where its predictions closely match TSV, even when PMV does not. 

For example, in Subject 7 during the first 5 minutes, the deep learning model predicts a 

value of 0.4, which is closer to the TSV of 0, whereas PMV predicts 1.19. However, in 

other cases, such as Subject 5 at 15:50 (PMV of -0.79, TSV of 0, deep learning 

prediction of 2), the deep learning model diverges significantly, potentially indicating 

overfitting or sensitivity to noise in the data. 

As an example, Figure 6-12 and  

Video 6-1 present the deep learning model validation result for subject 2 from 15:30 to 

15:35. The TSV from the survey was 2 while PMV was -1.34 from 15:30 to 15:35 and 

the deep learning model correctly predicted a TSV of 2 for most of the 5 mins. The video 

demonstrates the model’s ability to provide real-time thermal comfort detection.  But 

during the interval between 15:31 and 15:32 the model's results briefly fluctuated, 

predicting 0 and 1 instead of the actual TSV of 2. 
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Figure 6-12 The screenshots of the validation video from 15:30-15:35 for every 1 

minute in the experiment of Subject 2. The first number indicates the TSV, and the 

second number is the PMV. 

 

Video 6-1 The video from 15:30-15:35 (accelerated) in the experiment for subject 2 in 

which the TSV was 2, PMV was -1.34 and deep learning result varied from 0 to 2. The 

playable video is available at https://youtube.com/shorts/4sNOew4Dqo0?feature=share  

https://youtube.com/shorts/4sNOew4Dqo0?feature=share
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In this study, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) (Chai 

and Draxler, 2014) were used to evaluate the accuracy of the thermal comfort prediction 

models, including both the PMV model and the deep learning model, in comparison to 

the actual TSV from the subjects. These metrics were chosen due to their 

complementary abilities to assess model performance in a way that is directly applicable 

to real-time thermal comfort prediction. 

Mean Absolute Error (MAE) captures the average magnitude of errors between model 

predictions and actual TSV values, representing how far the model’s predictions are, on 

average, from the true thermal comfort values perceived by the occupants. The formula 

for MAE is: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖|𝑛

𝑖=1 (5 − 5)

Where 𝑛 is the total number of observations, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 is the model’s prediction for 

the i-th observation, and 𝐴𝑐𝑡𝑢𝑎𝑙𝑖 represents the actual TSV. In this study, a lower MAE 

indicates that the model’s predictions align more closely, on average, with the occupants' 

reported comfort levels, suggesting reliable predictive accuracy in real-time applications. 

Root Mean Square Error (RMSE) places more emphasis on larger errors by squaring 

each error before averaging, which makes it sensitive to significant deviations. In the 

thermal comfort detection model, where large errors can lead to uncomfortable 

conditions and inefficient HVAC performance, RMSE helps to highlight any tendency 

of the model to produce substantial outliers. By penalising larger errors more heavily, 

RMSE indicates whether the model occasionally produces significant deviations from 

actual TSVs, which could negatively impact system stability and climate control 

reliability. The formula for RMSE is: 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2

𝑛

𝑖=1

 (5 − 6) 

Table 6-4 The MAE and RMSE of the PMV and deep learning method results for 14 

subjects. 

Subject 
PMV Deep Learning 

MAE RMSE MAE RMSE  

1 0.13 0.16 0.3 0.42 

2 2.68 2.73 0.25 0.36 

3 0.8 0.88 1.2 1.29 

4 0.76 0.91 0.3 0.51 

5 0.97 0.98 1.1 1.24 

6 1.04 1.07 0.65 0.77 

7 0.55 0.71 0.47 0.62 

8 1.44 1.86 0.93 1.62 

9 2.51 2.52 0.2 0.26 

10 0.96 0.97 0.5 0.71 

11 0.94 1.29 1.33 1.52 

12 1.1 1.27 0.07 0.12 

13 0.53 0.64 0.4 0.57 

14 0.32 0.33 0 0 

Table 6-4 summarises the MAE and RMSE values for both the PMV and deep learning 

methods across 14 subjects. Overall, the deep learning model demonstrates superior 

performance on average compared to the PMV model. It aligns more closely with actual 

TSV values, showcasing its adaptability to individual thermal responses. For example, 

with Subjects 2, 4, 6, 7, 9, 10, 12, and 14, the deep learning model exhibited both lower 

MAE and RMSE compared to the PMV model. This reflects not only the model's 

accuracy in aligning with the actual TSV but also its reduced susceptibility to large 

deviations, as indicated by the RMSE. The relatively small RMSE values across most 

subjects suggest the deep learning model’s ability to maintain consistent predictions, a 

critical requirement for real-time HVAC adjustments, where large prediction errors 
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could result in discomfort or inefficiency. Conversely, the PMV model, as evidenced in 

Subjects 7, 8, and 11, struggled with occasional large deviations from the TSV, reflected 

in higher RMSE values. This highlights the static nature of the PMV method, which is 

less effective at capturing individual variability. In contrast, the deep learning model 

provides a more dynamic and accurate alternative, particularly in scenarios where 

individual thermal responses vary significantly. 

This study highlights the promising potential of the deep learning model for thermal 

comfort detection, particularly in real-time, personalised, and adaptable applications. 

The model effectively captures specific temperature distributions and body heat patterns 

without relying on individual environmental sensors or extensive manual input. 

Furthermore, the deep learning approach is less intrusive and respects privacy by using 

low-resolution thermal images that reveal only temperature patterns, without 

identifiable details of occupants. This feature makes it especially advantageous for 

workplaces or public buildings, where real-time comfort monitoring is needed without 

compromising privacy. 

As an initial study, the thermal images were collected from a single occupant under 

controlled conditions. However, real-world indoor environments are dynamic, often 

involving multiple occupants with varying thermal responses, which could affect the 

model’s accuracy. Additionally, the dataset used in this study is relatively small, 

comprising only 14 subjects, which limits the model’s ability to accommodate diverse 

comfort profiles and environmental conditions. Expanding the dataset to include a 

broader range of subjects and environmental conditions would enhance the model’s 

training, improving its accuracy and adaptability for more generalised applications. 
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6.3.3 Deep learning-based detection of thermal comfort based on cross-

subject dataset 

In the cross-subject phase, datasets from multiple subjects initially used in the intra-

subject models were combined to create a comprehensive training set. This approach 

aimed to develop a more generalised thermal comfort model. Three different training 

configurations were employed to capture a wide range of thermal responses. In the first 

configuration, data from subjects 1–4 and 7–14 were used for training, with subjects 5 

and 6 reserved for testing. The second configuration combined data from subjects 1–8 

and 11–14 for training, leaving subjects 9 and 10 for testing. The third configuration 

trained the model on data from subjects 1–10 and 13–14, using subjects 11 and 12 for 

validation. Cross-subject testing on unseen subjects offers insights into the model’s 

potential for real-world thermal comfort prediction, assessing its adaptability and 

effectiveness across broader applications. The detailed results of these tests are 

presented in Figure 6-13. 
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Figure 6-13 The result comparison of the cross-subject models with corresponding 

TSV and PMV. 

The cross-subject model’s performance exhibits variability across different subjects, 

reflecting both its potential and its limitations. For Subject 9, the deep learning model 
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achieved an accuracy of 84.62%, while the PMV model only had 15.38% accuracy, 

demonstrating that the deep learning model can effectively capture complex, 

individualised thermal comfort responses under certain conditions. In contrast, for 

Subject 10, the deep learning model's accuracy dropped to 50%, while the PMV model 

outperformed it with 80% accuracy. The deep learning model relies on patterns from its 

training data and can struggle when faced with unseen individuals whose thermal 

comfort responses diverge from those patterns (Zhang et al., 2019). In such cases, the 

PMV model can perform better due to its nature of generalised assumptions, providing 

stable but less personalised predictions. 

In addition, Subject 5’s accuracy was 43.48% for the deep learning model, less than the 

PMV model’s 69.56% accuracy. Subject 6 showed a higher accuracy (76.2%) for the 

deep learning model compared to the PMV model, which had the same performance 

(76.2%). For both Subjects 11 and 12, the deep learning model performed better than 

the PMV model, the deep learning accuracy reached 62.5% for Subject 11 and 70% for 

12 while PMV only had 12.5% and 20%. The deep learning model likely captured 

individual-specific thermal response patterns and unique environmental interactions, 

enabling higher accuracy. In contrast, the PMV model's generalised assumptions failed 

to account for these subjects' distinct variations, leading to poor performance. 

The results suggest that the limited diversity of the training dataset may affect the cross-

subject model’s ability. Subjects may differ in metabolic rates, clothing insulation, or 

even thermal sensitivity, which impact how they experience thermal comfort. The deep 

learning model can identify complex, subject-specific features. Still, this strength can 

lead to overfitting, where it performs well on familiar data but struggles with new data 

from different individuals. This explains why the model performed well for some intra-

subject models but failed to generalise effectively across others. 
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Moreover, these results reflect the trade-off between personalised and generalised 

models. The PMV model, while static and less adaptive, sometimes achieves higher 

accuracy, as seen with Subject 10, due to its broad applicability based on standardised 

equations. However, the deep learning model demonstrates better adaptability when 

trained on diverse data, as with Subject 9. This variability indicates that the model's 

effectiveness is tied to the characteristics of the individuals included in the training 

dataset. 

As an example of the detail performance of the deep learning model, Figure 6-14 

illustrates the progression of the experiment of Subject 5 from cold to hot and then back 

to cold, showcasing the changes throughout the test as an example. While these images 

visually appear quite different between the cold and hot phases, the deep learning model 

effectively captures the comfort level by extracting detailed information from the 

thermal images that may not be immediately apparent to the human eye. It allows the 

deep learning model to capture subtle changes in temperature patterns and body heat 

distribution critical to assessing thermal comfort but may be missed through traditional 

visual analysis or simpler models. 
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Time 0:00-0:05 0:00-0:10 0:10-0:15 0:15-0:20 0:25-0:30 

DL -2 -1 0 1 2 

TSV -1 -1 -1 0 0 

PMV -2.41 -1.91 -1.31 -0.98 -0.7 

 

    

Time 0:50-0:55 0:55-1:00 1:25-1:30 1:30-1:35 

DL 0 1 1 -2 

TSV 1 1 0 0 

PMV 0.06 0.32 -1.07 -1.09 

Figure 6-14 The screenshots of results in a cross-subject test for Subject 5 with the 

dataset from Subjects 1 to 4 and 7 to 14. 

Over the past few years, some studies that perform well have been employed to forecast 

the thermal comfort of occupation (Gao et al., 2020b). The majority rely on complex 

sensing platforms that use many devices and advanced technical abilities for feature 

selection and data processing (Aryal and Becerik-Gerber, 2019). The quality of the 

features that are obtained to train the model typically affects accuracy, requiring 

extensive data engineering skills (Aryal and Becerik-Gerber, 2020). This study, while 

initial, demonstrates potential by employing a more straightforward and cost-effective 

approach using a single thermal camera and a deep learning model. Further development 

should focus on enhancing the deep learning model by expanding the training dataset to 

include a broader range of subjects and environmental conditions, enabling the model 

to generalise more effectively across diverse occupants. 

This chapter demonstrates the potential of a vision-based deep learning model for 

thermal comfort prediction but also uncovers several limitations. In intra-subject tests, 

while the deep learning model consistently outperformed the PMV model, its accuracy 



185 

varied across individual subjects, suggesting a degree of overfitting due to the limited 

dataset. This variability highlights the need for more personalized modelling approaches 

and a broader representation of thermal comfort patterns in the training data. In cross-

subject tests, the model's performance was inconsistent, with better performance for 

subjects like 11 and 12. Although the deep learning model performed better than the 

PMV model for these subjects, its inability to generalise effectively across unseen 

individuals indicates challenges in capturing inter-subject differences, likely due to the 

narrow range of physiological, behavioural, and environmental conditions present in the 

dataset. Moreover, the controlled indoor environment during winter further constrained 

the diversity of conditions encountered, limiting the model's applicability to real-world 

scenarios that include extreme temperatures, varying humidity, and dynamic outdoor 

environments. Additionally, the study focused exclusively on single-occupant scenarios, 

leaving the model's performance in multi-occupant settings unexplored, where complex 

interactions between occupants and the environment significantly influence thermal 

comfort. To address these limitations, future research should incorporate larger, more 

diverse datasets, expand the range of environmental conditions tested, and evaluate 

multi-occupant dynamics. Furthermore, strategies such as transfer learning, model 

personalization, or incorporating adaptive mechanisms should be explored to enhance 

the model's robustness, adaptability, and scalability for broader, real-world applications. 

6.4 Summary 

This chapter explored the deep learning model for real-time thermal comfort prediction 

based on thermal images with a single-shot detection algorithm, YOLOv8, 

demonstrating its potential as a promising alternative to traditional models like the PMV. 

The results showed that while the intra-subject deep learning model generally achieved 

better average performance in terms of predictive accuracy and adaptability, its cross-

subject performance highlighted challenges related to generalisation. 
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Experiments were conducted with 14 individual subjects in a controlled indoor 

environment, resulting in a dataset comprising 4,977 thermal images and corresponding 

environmental data points. These were collected to evaluate the model's performance in 

predicting thermal comfort levels. The result indicated that the deep learning model 

outperformed the PMV model in several cases, particularly during intra-subject analysis, 

where it achieved an overall accuracy of 68.49%. Specific subjects, such as Subjects 2, 

4, and 6, reached near-perfect accuracy, highlighting the model's capability to capture 

individual thermal responses effectively. However, for the cross-subject model, the deep 

learning model's accuracy varied, from the best result of 84.6% for Subject 9 to 43.5% 

for Subject 5 which demonstrated the challenge of generalising to unseen individuals. 

Additionally, subjects like Subject 10 (50% accuracy for deep learning compared to 80% 

for PMV) showed that while the deep learning model has the potential to identify 

complex thermal comfort patterns, its performance can be compromised when applied 

to new individuals whose responses differ from the training data. 

Despite these challenges, the initial method showed advantages, including its ability to 

directly process thermal images and extract complex information without the need for 

extensive and intrusive sensor setups. This capability simplifies the data collection 

process and offers an adaptable solution for real-time HVAC control, enhancing 

occupant comfort and energy efficiency. 

For future work, one promising direction is the collection of a more extensive and 

diverse dataset that incorporates various demographics and climate zones. By including 

data from individuals of different ages, genders, occupations, and geographical locations, 

the model can capture a broader thermal comfort response. Individuals living in different 

climate zones may exhibit distinct thermal comfort preferences due to varying weather 

patterns and seasonal changes. By incorporating climate-specific parameters into the 

model, it can more accurately predict and adjust indoor thermal conditions based on 

regional climate characteristics. This adaptation would improve the model's 
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effectiveness across different geographical areas and seasonal variations, ensuring 

optimal comfort levels year-round. 

Importantly, this technology has significant potential to benefit individuals who may not 

be able to communicate their thermal comfort needs or adjust their environment, such 

as those with disabilities, the elderly, young children, or people who are sleeping. The 

ability to automatically adjust the indoor climate to maintain comfort without requiring 

user input can improve the quality of life for these individuals, ensuring they remain in 

a comfortable environment. This aspect highlights the model's potential for inclusive 

design, making it an invaluable tool in creating more accessible and supportive living 

and working spaces.  
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7. CONCLUSION AND FUTURE WORK 

7.1 Conclusions 

This thesis investigated key challenges and opportunities in vision-based occupancy 

detection and thermal comfort prediction using deep learning methods, with a focus on 

advancing smart building technologies. Through a series of experiments and analyses, 

the research explored multiple dimensions of vision-based detection, including 

algorithm performance, camera modality comparisons, and thermal imaging for thermal 

comfort prediction.  

The evaluation of eight deep learning models, including YOLO variants, SSD, and 

Faster R-CNN, for real-time occupancy detection revealed differences in their 

performance based on accuracy, speed, and computational efficiency. YOLOv8x 

demonstrated the highest accuracy (77%) but with increased inference time, while 

YOLOv8n achieved a balance between speed and accuracy, making it suitable for 

dynamic and crowded scenarios. In contrast, models like SSD showed limited 

performance, struggling with occupant detection in complex or crowded settings. It also 

highlighted the impact of camera placement and multi-camera setups in addressing 

occlusion issues, though these approaches increase system complexity and costs. The 

ability of deep learning models to reduce the gap between predicted and actual energy 

consumption, with a maximum error reduction of 6.72% compared to conventional 

methods, underscored their potential for improving demand-driven building energy 

management. Furthermore, the deep learning models demonstrated the ability to align 

CO2 concentration trends more accurately than traditional approaches, highlighting their 

applicability in real-time energy performance prediction. 
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The comparison between standard and thermal cameras revealed that both camera types 

could achieve occupancy detection accuracies of approximately 70% with YOLOv8 and 

80% with YOLOv10, given sufficient dataset preparation and diverse training images. 

In the Same-Video experiment, both cameras achieved approximately 94% accuracy 

and a mean average precision (mAP) of 0.8 in controlled settings, which demonstrated 

their maximum potential. Standard cameras performance better in controlled settings 

with high resolution but faced challenges in privacy-sensitive applications and scenarios 

involving distractions like portrait images. Thermal cameras, while initially less precise 

due to lower resolution, offered advantages in privacy protection and low-light 

conditions. The highest accuracy observed was 88% for normal cameras and 83% for 

thermal cameras in Cross-Video Experiment 3, indicating that dataset complexity 

influenced model generalization. The results demonstrated that thermal cameras could 

effectively decrease issues like visual distractions and residual heat signatures with 

diverse and targeted training datasets. For instance, overlapping occupants, a major 

challenge in earlier experiments, were detected in later experiments as dataset diversity 

improved.  

Given the strengths and limitations of both camera types, this research extended the 

vision-based approach to thermal comfort prediction as an alternative to the Predicted 

Mean Vote (PMV) model. It demonstrated the potential of thermal cameras to directly 

process thermal images and predict individual comfort levels in real time. Experiments 

were conducted with 14 individual subjects in a controlled indoor environment, 

resulting in a dataset comprising 4,977 thermal images and corresponding 

environmental data points. The deep learning model achieved an overall accuracy of 

68.49% in intra-subject analysis, surpassing the traditional PMV model in several cases. 

However, when applied across multiple subjects, model accuracy varied from 84.6% for 

Subject 9 to 43.5% for Subject 5, underscoring the high variability in individual thermal 

responses and the difficulty in developing a generalised thermal comfort model. These 
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findings emphasize the challenge of generalization when applying models to unseen 

subjects. Despite this limitation, the ability to process thermal images directly simplifies 

data collection and offers an adaptable approach for real-time HVAC control, improving 

both occupant comfort and energy efficiency. 

This thesis has addressed its overarching aim: to explore the application of vision-based 

deep learning frameworks for improving occupancy prediction and thermal comfort 

modelling in building environments. Each of the stated objectives has been 

systematically met. First, a comprehensive review of existing literature on machine 

learning applications in building systems was conducted, with a particular focus on 

occupancy detection, indoor air quality, thermal comfort, and energy consumption 

optimisation. Second, diverse datasets were collected, annotated, and tested—featuring 

both thermal and RGB imagery in realistic indoor scenarios—to support model 

development. Third, multiple deep learning algorithms, including SSD, Faster R-CNN, 

and YOLO variants, were evaluated for their performance in real-time occupancy 

prediction. Fourth, the study conducted a comparative analysis of standard and thermal 

cameras, highlighting key trade-offs in accuracy, privacy, and application context. Fifth, 

the integration of occupancy prediction into energy simulation allowed for the 

quantification of its impact on heating energy demand and CO₂ levels. Finally, a novel, 

non-intrusive thermal comfort prediction model was developed using thermal imaging 

and deep learning techniques, demonstrating the feasibility of personalised comfort 

modelling. Collectively, these achievements contribute to the development of adaptive, 

occupant-aware building systems that align with the thesis aim and address existing gaps 

in the literature. 

Here’s the key findings of this thesis: 

⚫ YOLOv8n provided the best balance between speed and accuracy for real-time 

occupancy detection in building environments. YOLOv8x achieved the highest 
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detection accuracy (77%) but had longer inference times, making it less practical 

for real-time use. 

⚫ SSD and Faster R-CNN performed less effectively in complex and crowded indoor 

settings. 

⚫ Diverse datasets significantly improved model generalisation, particularly for 

overlapping occupants and varied lighting conditions. 

⚫ Thermal and RGB cameras both achieved around 94% detection accuracy in 

controlled environments with sufficient training data. 

⚫ Thermal cameras outperformed RGB cameras in privacy-sensitive and low-light 

conditions, while RGB cameras offered better resolution and detail recognition. 

⚫ Deep learning-derived occupancy profiles reduced energy simulation errors by up 

to 6.72% compared to fixed occupancy schedules. 

⚫ CO₂ concentration trends predicted using occupancy-informed profiles were more 

accurate than traditional static assumptions. 

⚫ A thermal comfort model using deep learning and thermal images achieved 68.49% 

accuracy in intra-subject tests, often outperforming the PMV model. 

⚫ Cross-subject thermal comfort prediction varied widely (43.5%–84.6%), 

confirming strong individual differences in thermal sensation. 

⚫ The deep learning model enabled non-intrusive, real-time thermal comfort 

assessment without the need for wearable sensors. 
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⚫ Several new datasets were created, including RGB and thermal image sets 

annotated for occupancy and comfort under varying environmental conditions. 

⚫ The research introduced the concept of dynamic thermal comfort using image-

based modelling, advancing personalised HVAC control. 

⚫ A novel vision-based framework was proposed, integrating detection, modelling, 

and energy simulation, offering a pathway to intelligent building management 

systems. 

7.2 Contribution to Knowledge 

This thesis makes several contributions to the field of vision-based occupancy prediction 

and thermal comfort modelling, addressing critical gaps identified in the literature and 

aligning with the study's objectives. 

Several new datasets were developed including occupancy prediction in indoor 

environments, corresponding normal and thermal camera images captured under diverse 

environmental conditions and occupant scenarios, and individual thermal images with 

corresponding TSVs. These datasets include annotated images from multiple 

experiments, covering simple and complex occupancy scenarios, as well as challenging 

cases such as overlapping occupants and thermal residual heat imprints. They provide 

an essential resource for training and evaluating vision-based deep learning models, 

facilitating further advancements in building management 

A deep learning-based framework was developed to conduct vision-based occupancy 

prediction in indoor spaces. The performance of Shot MultiBox Detector (SSD), Faster 

Region-based Convolutional Neural Networks (Faster R-CNN), and different versions 

of You Only Look Once (YOLO were tested with real-world datasets, demonstrating 

their strengths and limitations in terms of accuracy, inference time, and generalization 
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across different building environments. This research contributes a comprehensive 

evaluation of deep learning algorithms, identifying the optimal trade-offs between 

model complexity and performance for real-time applications in smart buildings. 

A comparative study of vision-based sensors was conducted, systematically analysing 

the performance of standard and thermal cameras for occupancy prediction. The 

findings highlight the advantages and limitations of each sensor type, demonstrating that 

while standard cameras provide higher accuracy and resolution, they suffer from privacy 

concerns and visual distractions, whereas thermal cameras offer privacy protection and 

strong performance in low-light conditions but face challenges with overlapping 

occupants and thermal residual heat imprints. This research establishes a benchmark for 

vision-based sensor selection, providing a framework for integrating these technologies 

into building energy management systems. 

A new approach to thermal comfort prediction was proposed, with thermal imaging and 

deep learning to estimate occupant comfort levels without relying on traditional PMV 

models. By analysing thermal images instead of direct temperature values, the model 

demonstrated an accuracy of 68.49% in personalized thermal comfort prediction, 

outperforming PMV-based methods in capturing individual thermal preferences. This 

approach presents a novel, non-intrusive alternative for real-time occupant comfort 

assessment, with potential applications in adaptive HVAC control and personalized 

thermal comfort optimization. 

Compared to existing research in the field, this thesis offers several notable 

advancements in both methodology and application. Many previous studies on 

occupancy detection have been conducted in highly controlled laboratory environments 

using static images or manually annotated datasets. In contrast, this research utilised 

real-time video data collected from multiple field experiments across diverse, naturally 



194 

occupied spaces. This allowed for the development and validation of models under 

realistic conditions, enhancing the ecological validity of the findings. 

Furthermore, while most prior work focused on either RGB or thermal cameras in 

isolation, this thesis presented a systematic comparison between the two modalities. The 

results provide clear guidance on their relative strengths—highlighting the superior 

resolution and detection capability of RGB cameras in well-lit conditions, as well as the 

advantages of thermal cameras in privacy-sensitive and low-light settings.  

In the domain of thermal comfort, conventional models such as PMV have been widely 

adopted, often generalising thermal perception across populations without accounting 

for personal variability. Recent developments have begun to explore personalised 

comfort modelling using physiological sensors; however, these typically rely on 

wearable devices that limit practical deployment. This thesis moves beyond these 

approaches by introducing a vision-based, non-intrusive method using thermal imaging 

and deep learning, enabling real-time prediction of individual thermal comfort responses 

without physical contact or user intervention. 

Importantly, while many existing studies remain theoretical or proof-of-concept, this 

thesis demonstrated the integration of occupancy detection outputs into a simulation 

environment (IESVE), enabling the assessment of energy consumption and indoor 

environmental quality based on modelled occupancy profiles. This bridges the gap 

between machine learning research and practical building management applications—

an area that remains underdeveloped in the literature. 

Finally, the thesis addresses the emerging concept of dynamic thermal comfort by 

modelling personalised, time-sensitive comfort responses. While a growing number of 

studies are beginning to explore adaptive comfort, few have applied deep learning to 

thermographic data in this way.  
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This thesis makes a comprehensive contribution to the advancement of intelligent 

building management by integrating vision-based deep learning methods with 

occupancy detection, thermal comfort prediction, and energy simulation. It establishes 

a framework that connects real-time visual sensing, individual comfort modelling, and 

operational HVAC performance through a sequence of methodologically rigorous 

experiments. The research introduces practical solutions to limitations in existing 

approaches—namely, the reliance on static occupancy assumptions, generalised thermal 

comfort models, and intrusive sensing techniques. By developing and validating non-

contact, image-based models for both occupancy and thermal comfort, and 

demonstrating their application within a building simulation environment, the work 

moves beyond isolated model development to system-level integration. It contributes 

novel datasets, experimental workflows, and evaluation metrics that support both 

academic and industry applications. Collectively, the findings provide a foundation for 

occupant-aware, adaptive control systems that balance energy efficiency, occupant 

comfort, and privacy—offering a meaningful step towards the realisation of next-

generation smart buildings. 

7.3 Overall Study Limitations 

This section outlines the key limitations related to data, experimental design, model 

generalisability, real-world application, and system integration. 

 

Dataset size and diversity present a primary limitation. Although the research involved 

the creation of several new datasets for occupancy detection and thermal comfort 

prediction, the overall scale remains not enough compared to large-scale benchmarks in 

the computer vision domain. The experiments were conducted across a limited number 

of indoor environments—mainly within the University of Nottingham's campus—

restricting the environmental, architectural, and demographic diversity represented in 
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the data. As a result, the trained models may not generalise well to other building types 

(e.g., open-plan offices, residential dwellings) or to users with different physical or 

behavioural profiles. This limitation is particularly relevant for the thermal comfort 

modelling component, where individual variation plays a significant role. 

Thermal comfort experiments were limited to single-occupant settings, chosen to 

simplify the initial model development and allow for clearer analysis of individual 

thermal responses. However, shared indoor environments—such as classrooms, offices, 

or waiting areas—often involve multiple occupants with different comfort preferences. 

The current experimental design does not account for the thermal interaction effects or 

the need for group-based comfort balancing strategies. Consequently, the findings may 

not directly translate to multi-occupant control scenarios without further development. 

Another notable limitation lies in cross-subject model performance. While intra-subject 

results for thermal comfort prediction were promising, cross-subject generalisability 

proved challenging. Substantial variability was observed in prediction accuracy across 

different individuals, ranging from over 80% to below 45%. This confirms prior 

literature findings that thermal sensation is highly subjective and influenced by a range 

of personal factors, including metabolism, clothing, age, and health status. The current 

model, although non-intrusive and real-time, still requires further refinement to 

accommodate broader population diversity. 

From a practical implementation perspective, the research did not include real-time 

deployment or continuous monitoring over extended periods. All video recordings and 

environmental data were collected in discrete sessions, and model inference was 

conducted offline. This limits the assessment of model fitness under operational 

variability such as changes in lighting, occupant behaviour, seasonal temperature shifts, 

or hardware degradation. Future work should aim to implement and evaluate these 

models in live settings to test their stability and responsiveness in real-time applications. 
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Additionally, while the integration of occupancy profiles into IESVE simulations 

demonstrated the potential for more accurate HVAC control strategies, the system was 

not connected to an active HVAC unit for closed-loop feedback. Thus, the energy impact 

assessments remain theoretical, and real-world performance—including HVAC 

response time, control accuracy, and user feedback—has not been evaluated. 

Finally, ethical and privacy considerations were partially addressed through the use of 

thermal cameras, which avoid facial identification and visible imagery. However, 

broader concerns around data governance, consent, and user trust were not extensively 

studied. As vision-based systems become more prevalent in smart buildings, it will be 

essential to develop guidelines for ethically responsible deployment that respect 

occupant privacy while still delivering meaningful energy and comfort benefits. 

Despite these limitations, the findings of this thesis establish a solid foundation for 

future work in intelligent, vision-based building systems. They demonstrate clear 

technical feasibility and uncover important challenges that must be addressed to ensure 

generalisability, robustness, and practical integration into real-world environments. 

7.4 Recommendations for Future Work 

Building behaviours andgs of this thesis, several areas for future research emerge, 

particularly in dataset diversity, model generalization across different environments and 

occupant behaviours, and addressing privacy concerns in vision-based occupancy 

detection. A focus of future work should be on increasing the size and diversity of 

training datasets. The experiments showed that dataset expansion played a critical role 

in improving model performance, particularly in addressing issues such as overlapping 

occupants and residual heat misclassification. However, the datasets used in this study 

were limited in terms of environmental diversity, occupant demographics, and activity 

variations. Future research should aim to collect larger and more diverse datasets across 

different building types, occupancy densities, and lighting conditions.  



198 

While deep learning models performed well in controlled settings, their effectiveness 

when applied to unseen environments and individuals. To improve adaptability, future 

research should explore advanced training techniques such as domain adaptation, semi-

supervised learning, and synthetic data augmentation. Leveraging transfer learning 

approaches with pre-trained models could also help reduce the need for extensive 

labelled datasets while improving generalization to new scenarios. 

Privacy concerns remain a major barrier to deploying vision-based occupancy detection 

in real-world applications. Standard cameras, while effective in capturing high-

resolution images, raise ethical and legal concerns regarding personal data collection. 

This study demonstrated that thermal cameras offer a promising privacy-preserving 

alternative, as they do not capture identifiable facial features. Future research should 

refine thermal-based models to further enhance their accuracy and usability. Exploring 

privacy-aware machine learning techniques, such as federated learning and differential 

privacy, could also help reduce concerns while ensuring effective real-time occupancy 

detection. 

The application of deep learning models for thermal comfort prediction is another 

promising direction. While this study demonstrated the feasibility of using thermal 

imaging for real-time thermal comfort estimation, the dataset used for training was 

relatively small and focused on a controlled indoor environment, which may not fully 

capture the variability in individual thermal preferences. Future research should expand 

the dataset to include a larger and more diverse group of participants, incorporating 

variations in age, gender, metabolic rate, and clothing insulation. Additionally, 

investigating differences in thermal comfort across different climate zones could 

provide valuable insights for developing region-specific comfort prediction models. 

Another potential application of thermal comfort modelling is for individuals who have 

difficulty expressing their comfort preferences, such as young children, the elderly, or 
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individuals with disabilities. By developing more personalized and adaptive comfort 

models, future research could explore how thermal imaging, and deep learning can be 

integrated into assistive technologies to improve occupant well-being. This may require 

refining models to detect subtle physiological indicators of discomfort, such as changes 

in skin temperature or posture, and integrating them with intelligent HVAC systems for 

automated control. 

Finally, while this study focused on controlled experimental setups, future research 

should conduct large-scale field deployments in real-world buildings. Implementing 

vision-based occupancy detection and thermal comfort models in diverse environments, 

such as offices, residential spaces, and healthcare facilities, would provide valuable 

insights into their long-term performance and practicality. 
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APPENDICES 

Appendix.A . 

This appendix presents the training loss curve results for Faster R-CNN, SSD, YOLOv5n, 

YOLOv5x, YOLOv7, YOLOv7w6, YOLOv8n, and YOLOv8x in Chapter 3.
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Figure A-1 The FasterRCNN result metrics for the training sets: Total loss, Clone loss, 

Box classifier classification loss, Box classifier localization loss, RPN classification 

loss, and RPN objectless loss. 

 

Figure A-2 The SSD result metrics for the training sets: Total loss, Clone loss, 

Classification loss and Localization loss. 
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Figure A-3 The YOLOv5n result metrics for the training and validation sets: box loss, 

classification loss, objectness loss, precision, recall and mAP. 
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Figure A-4 The YOLOv5x result metrics for the training sets: box loss, classification 

loss, objectness loss, precision, recall and mAP. 
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Figure A-5 The YOLOv7 result metrics for the training sets: box loss, classification 

loss, objectness loss, precision, recall and mAP. 
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Figure A-6 The YOLOv7w6 result metrics for the training sets: box loss, classification 

loss, objectness loss, precision, recall and mAP. 
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Figure A-7 The YOLOv8n result metrics for the training sets: box loss, classification 

loss, objectness loss, precision, recall and mAP. 
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Figure A-8 The YOLOv8x result metrics for the training sets: box loss, classification 

loss, objectness loss, precision, recall and mAP. 
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Appendix.B . 

This appendix presents the normalized confusion matrix in training and validation for 

14 intra-subject experiments in Chapter 5. 

 

Figure B-1 The normalized confusion matrix in training and validation for Subject 1. 

 

Figure B-2  The normalized confusion matrix in training and validation for Subject 2. 
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Figure B-3 The normalized confusion matrix in training and validation for Subject 3. 

 

Figure B-4 The normalized confusion matrix in training and validation for Subject 4. 

 

Figure B-5  The normalized confusion matrix in training and validation for Subject 5. 
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Figure B-6 The normalized confusion matrix in training and validation for Subject 6. 

 

Figure B-7  The normalized confusion matrix in training and validation for Subject 7. 

 

Figure B-8 The normalized confusion matrix in training and validation for Subject 8. 
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Figure B-9 The normalized confusion matrix in training and validation for Subject 9. 

 

Figure B-10 The normalized confusion matrix in training and validation for Subject 

10. 

 



232 

Figure B-11 The normalized confusion matrix in training and validation for Subject 

11. 

 

Figure B-12 The normalized confusion matrix in training and validation for Subject 

12. 

 

Figure B-13 The normalized confusion matrix in training and validation for Subject 

13. 
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Figure B-14 The normalized confusion matrix in training and validation for Subject 

14. 
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Appendix.C . 

This appendix presents the normalized confusion matrix in training and validation for 6 

cross-subject experiments in Chapter 5. 

 

Figure C-1 The normalized confusion matrix in training and validation with the cross-

subject dataset from subjects 1-4 and 7-14. 

 

Figure C-2 The normalized confusion matrix in training and validation with the cross-

subject dataset from subjects 1-8 and 11-14. 
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Figure C-3 The normalized confusion matrix in training and validation with the cross-

subject dataset from subjects 1-10 and 13-14. 
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Appendix.D . 

This appendix presents the questionnaire for the participants in the experiment in 

Chapter 5. 
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