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Abstract

Resilient infrastructure systems, particularly in safety-critical applications such

as offshore wind turbines (OWTs), demand advanced monitoring frameworks

that can accommodate complex dynamics and inherent uncertainties. Structural

Health Monitoring (SHM) is central to this goal, ensuring the operational in-

tegrity of OWT foundations while supporting safety, efficiency, and sustainability.

This thesis advances the field of SHM by integrating physics-based modelling with

data-driven techniques, combining the reliability of numerical simulations and the

adaptability of data-oriented methods. This hybrid approach overcomes the limi-

tations of purely data-driven methods, which can produce accurate but physically

inconsistent predictions, and purely physics-based models, which can be compu-

tationally expensive and sensitive to parameter uncertainties.

Focusing on soil-pile interaction (SPI), this work addresses key challenges in

estimating critical system parameters that influence the dynamic response and

structural integrity of pile foundations. The thesis develops and evaluates de-

terministic and stochastic model updating frameworks, each designed to handle

varying data availability and changing environmental or operational conditions.

The deterministic framework employs frequency-response functions (FRFs) using

input-output data, while the stochastic frameworks utilise output-only data and

Modal Assurance Criterion (MAC)-based updating. These frameworks are vali-

dated using numerical simulations, with field tests conducted in selected scenarios.

Throughout the thesis, numerous challenges are systematically addressed. These

include achieving both physical interpretability and computational feasibility, main-

taining accuracy under measurement uncertainties, ensuring robustness against

varying operational conditions, and promoting scalability to real-world OWT sys-

tems. Addressing these challenges requires careful selection of an appropriate

modelling approach, including model reduction strategies to balance accuracy and

efficiency. The choice of parameters to be estimated, objective function formula-

tion for robust performance, and selection or development of suitable optimisation

algorithms are also critical factors. Additionally, the frameworks are designed to

be applicable under operational conditions, where environmental and loading un-
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certainties must be accounted for.

This thesis demonstrates that hybrid SHM frameworks, integrating data-driven

and physics-based methods, enhance the predictive accuracy and reliability of

OWT foundation monitoring. The findings emphasise the role of vibration data

in model updating for estimating operating parameters while reducing uncertainty.

These frameworks offer a structured approach to quantifying uncertain parameters

and assessing the condition of pile foundations under dynamic uncertainties. By

bridging theoretical insights with practical frameworks, this research contributes

to the advancement of SHM for pile foundations.
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Chapter 1

Introduction

1.1 Background

1.1.1 Energy

Global climate change, rising energy demands, and the increasing costs of energy

generation have become pressing concerns for governments and societies world-

wide (Dı́az & Soares, 2020; Osman et al., 2023). Over the past few decades,

international agreements such as the Kyoto Protocol, the Paris Agreement, and

the European 2030 climate and energy framework have sought to reduce green-

house gas emissions, promote renewable energy adoption, and enhance energy ef-

ficiency (United Nations Framework Convention on Climate Change (UNFCCC),

1997, 2015). These initiatives highlight the urgency of transitioning away from

fossil fuels, which remain the dominant energy source, contributing significantly

to global emissions while posing environmental, economic, and geopolitical risks

(Tott-Buswell et al., 2024).

Renewable energy sources, including wind and solar power, are central to

achieving these ambitious climate goals due to their sustainability, availability,

and declining operational costs (Ibata-Arens et al., 2018). By 2050, it is estimated

that up to 90% of global energy could be derived from renewables, highlighting

their pivotal role in decarbonising energy systems (Osman et al., 2023). However,

the inherent variability of wind and solar resources, coupled with the harsh oper-

ating conditions in offshore and remote installations, present challenges for system

reliability. Addressing these issues requires complementary measures such as en-

ergy storage, resilient infrastructure, and advanced modelling techniques to ensure

long-term operational efficiency (Antoniadou et al., 2015; Zappa et al., 2019).

Offshore wind power plays a pivotal role in achieving renewable energy targets,
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benefiting from stronger and more consistent wind flows compared to onshore sites,

which result in higher capacity factors (Dı́az & Soares, 2020). Recent advance-

ments in turbine technology, coupled with the growing technological maturity and

cost competitiveness of wind energy, have further accelerated its adoption (Ciang

et al., 2008). The UK alone plans to design and install approximately 1200 offshore

wind turbines (OWTs), each rated at 10 MW, over the coming years, requiring

a capital expenditure of £30–45 billion (Byrne et al., 2019). These investments

reflect the global momentum for offshore wind, with similar ambitions across Eu-

rope, the USA, China, and Taiwan (DeCastro et al., 2019).

While offshore wind offers significant advantages, such as higher and more

consistent wind speeds, these benefits come with increased challenges and costs.

Offshore wind turbine (OWT) units can cost two to three times more than on-

shore turbines, primarily due to the complexities of installation equipment, vessel

mobilisation, and challenging environmental conditions (Wu et al., 2019).

Despite the higher costs, the resource potential is immense. For example, the

North Sea could theoretically generate 120 GW of electricity—more than double

the UK’s demand, if only one-third of its shallower seabed areas were utilised

(MacKay, 2016). However, with many shallow regions becoming saturated, the

industry is moving into deeper waters that require more advanced foundation

solutions and higher capital investment (Tott-Buswell et al., 2024). Foundations

themselves can account for 15% of the unit’s cost in shallower waters and up to

35% in deeper regions, emphasising the critical importance of selecting the most

suitable foundation type based on water depth, soil characteristics, and turbine

capacity (Kallehave et al., 2015; Tott-Buswell et al., 2024).

1.1.2 Infrastructure of offshore wind turbines

OWT foundations face unique challenges in inspection, maintenance, and repair,

particularly in inaccessible marine environments (Ciang et al., 2008). These foun-

dations must withstand dynamic wave loading, complex soil-structure interac-

tions, and environmental risks such as fatigue, corrosion, and scour, all of which

add significant complexity to their design and long-term performance. Structural

health monitoring (SHM) has emerged as a critical tool to address these chal-

lenges, enabling the early detection of damage, optimising maintenance strategies,

and ensuring the structural integrity of foundations under demanding conditions.

By integrating advanced monitoring technologies with data analysis, SHM sys-

tems provide actionable insights into foundation performance, helping to mitigate

risks that, if left unaddressed, could compromise the stability of turbines and sig-
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nificantly increase life-cycle costs (Ciang et al., 2008; Kamariotis et al., 2023).

As illustrated in Figures 1.1 and 1.2, the growing scale of wind installations un-

derscores the critical importance of optimised design and monitoring systems for

OWT foundations. SHM plays a pivotal role in ensuring the safe operation, struc-

tural reliability, and cost-effectiveness of foundations (Byrne et al., 2019; Kamar-

iotis et al., 2023).
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Figure 1.1: Total wind installations by country (Costanzo et al., 2023).
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Figure 1.2: New wind installations in the EU by year (Costanzo et al., 2023).

Fixed foundations are widely used for installations up to 50 m depths, with
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monopiles being the most dominant due to their simplicity and cost-effectiveness

(Byrne & Houlsby, 2003; Tott-Buswell et al., 2024). As water depths exceed 50 m,

floating structures like spar and semi-submersible platforms are gaining attention,

though their adoption is still limited due to technical and economic challenges

(Tott-Buswell et al., 2024). Figure 1.3 illustrates various foundation types, while

Figure 1.4 highlights the dominance of monopiles, which account for 76% of in-

stalled foundations. Jackets (9%) and gravity bases (5%) cater to deeper waters

or specific seabed conditions, while emerging floating foundations remain in early

stages of development (Komusanac et al., 2021).

Figure 1.3: OWT foundation types (Bailey et al., 2014).
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Figure 1.4: Distribution of OWT foundations (Komusanac et al., 2021).

The prevalence of monopile foundations underscores their critical role in off-

shore wind development, driven by their simplicity, ease of installation, and es-
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tablished design methodologies. Typically consisting of large-diameter steel tubes,

monopiles can measure up to 8–10 m in diameter, 30–50 m in length, and weigh

up to 1000 t (Byrne et al., 2019). Two primary physics-based modelling methods

are commonly used to simulate soil-pile systems: the direct continuum modelling

method, which employs detailed 3D continuum models to capture site-specific

soil conditions and complex interactions, and the indirect substructure approach,

which simplifies the system by representing soil-pile interaction (SPI) through

idealised models such as springs, dashpots, and masses.

While OWTs hold immense potential, challenges in foundation monitoring re-

main underexplored. The remote offshore environment, combined with dynamic

loading conditions, subjects the soil-pile system to risks that traditional inspec-

tion methods cannot fully address. These limitations underscore the need for

advanced, data-driven approaches to systematically evaluate structural integrity.

In this context, SHM emerges as a vital technology, offering continuous, in-depth

assessments that support proactive maintenance of foundations.

1.2 Structural health monitoring (SHM)

SHM is an interdisciplinary field aimed at ensuring the safety, reliability, and

long-term performance of structural systems. It leverages data from real struc-

tures to monitor the condition of infrastructure over time. Integrating expertise

from civil engineering, computer science, materials science, and other disciplines,

SHM enables the monitoring of structures, addressing the limitations of tradi-

tional maintenance strategies that often rely on periodic visual inspections or

manual testing.

SHM systems integrate structural data with computational tools to extract

actionable insights, supporting decisions related to prognosis, maintenance, and

repair. Recent advancements in sensor technology have made cost-effective de-

ployment feasible, enabling the collection of large, heterogeneous datasets. When

combined with advanced computational methods, these datasets serve as the foun-

dation for transitioning from traditional inspections to automated, “cradle-to-

grave” monitoring frameworks (Chatzi & Papadimitriou, 2016). Such frameworks

are particularly valuable for dynamically sensitive structures like OWT founda-

tions, which require continuous evaluation to optimise maintenance and ensure

structural integrity.
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1.2.1 Vibration-based SHM

Vibration-based SHM assesses the condition of a structure by analysing its dy-

namic behaviour through vibration response data. Sensors measuring quantities

such as accelerations, velocities, or strains enable monitoring of structural perfor-

mance under both operational and extreme loading conditions. This non-invasive

approach offers two primary benefits: (i) the ability to monitor structures during

normal operation without interruption, and (ii) reduced maintenance costs due to

minimal interference with functionality. The methodology typically involves two

steps: first, identifying modal properties (natural frequencies, damping ratios,

and mode shapes) from measured vibration data to characterise the structural

response; second, integrating data-driven methods with physics-based models to

update uncertain parameters, such as soil stiffness, material properties, and ge-

ometry.

This hybrid approach combines the strengths of data-driven frameworks and

physics-based models. It avoids the limitations of purely data-driven methods,

which may yield accurate but physically inconsistent predictions, and purely physics-

based models, which can be computationally intensive and sensitive to parameter

uncertainties. By leveraging this methodology, vibration-based SHM enables the

creation of a digital twin—a virtual representation of the structure that offers a

comprehensive understanding of its dynamic behaviour. This integration facili-

tates accurate diagnosis of current conditions and prognostic insights into future

performance (Cicirello, 2024; Greś, 2019).

Techniques like Operational Modal Analysis (OMA) enable the extraction of

these modal properties without requiring controlled excitations, making them es-

pecially effective for large, flexible structures such as wind turbines (Döhler &

Mevel, 2013; Ebrahimian et al., 2018; Greś et al., 2022b; Oliveira et al., 2021).

By tracking how modal properties evolve over time, engineers can detect early

signs of structural issues, including changes in soil stiffness, scouring, or damage

accumulation.

1.2.2 Model updating in SHM

Although physics-based models are essential for simulating large-scale structures

under various loads, they often incorporate simplifying assumptions and uncertain

parameters, leading to discrepancies between predictions and real-world behaviour

(Dhandole & Modak, 2010; Tedesco et al., 1999). Model updating addresses these

limitations by calibrating parameterised models against measured dynamic data,
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thereby improving the reliability of structural response predictions (Friswell &

Mottershead, 1995; Mottershead & Friswell, 1993; Papadimitriou et al., 2000).

The process can be approached through direct methods, which solve for param-

eters in a single step using modal relationships, or via iterative techniques that

progressively minimise the mismatch between measured and simulated responses

(Alkayem et al., 2018; Friswell & Mottershead, 1995; Sehgal & Kumar, 2016).

By refining uncertain parameters and reducing prediction errors, model updat-

ing enhances the reliability of SHM, supports damage identification, and informs

life-cycle management strategies.

Beyond refining structural simulations, model updating supports various prac-

tical applications. These include optimal sensor placement (Mehrjoo et al., 2022),

fatigue damage estimation (Giagopoulos et al., 2019), assessments of complex or

historic structures (Ferrari et al., 2019), and damage detection (An et al., 2019; Ou

et al., 2017). By integrating operational data with numerical models, model up-

dating enhances condition assessments, aids maintenance decisions, and improves

overall lifecycle management.

A consideration during model updating is parameter compensation, where er-

rors or uncertainties in one parameter are offset by adjustments in another. This

phenomenon can lead to non-unique solutions or parameter correlation, especially

when limited data or high model complexity is involved (Goulet et al., 2010).

Recognising and addressing such compensation effects is essential for obtaining

physically meaningful and robust parameter estimates.

1.3 Aims and objectives

The primary aim of this thesis is to advance the field of SHM by developing and

evaluating model updating frameworks capable of accurately estimating critical

SPI parameters, including embedded pile length and scour depth. This work

addresses the need for robust, data-driven approaches that can enhance the reli-

ability of numerical models and support the long-term monitoring, maintenance,

and design of OWT foundations.

To achieve this aim, the following objectives are pursued:

O1: Develop an FRF-based approach: Develop and validate an FRF-based

model updating framework for piles subjected to lateral impact loads, focus-

ing on identifying the embedded length and soil parameters (Chapter 3).

O2: Design a stochastic output-only framework: Employ stochastic sys-

tem identification and evolutionary optimisation to estimate the embedded
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length of pile foundations using output-only vibration data, thereby omitting

the need for measured input forces (Chapter 4).

O3: Compare deterministic and stochastic methods under varying con-

ditions: Investigate and benchmark multiple model updating strategies for

scour depth estimation, assessing trade-offs in accuracy, robustness, and

computational cost under both impact and ambient excitation (Chapter 5).

O4: Validate and assess performance: Apply the proposed methods to nu-

merical simulations and, where applicable, experimental data to evaluate

convergence properties, quantify uncertainties, and demonstrate their effec-

tiveness. Specifically, the FRF-based framework presented in Chapter 3 was

validated through numerical simulations, while the stochastic output-only

framework in Chapter 4 was validated both numerically and experimentally.

A comparative assessment, including a newly developed stochastic approach

for scour estimation in Chapter 5, was carried out using numerically gener-

ated data.

1.4 Challenges

Developing robust model updating frameworks for SPI presents a range of chal-

lenges, stemming from the inherent complexity of the problem and the limitations

of both data-driven and physics-based approaches. This section outlines the key

challenges addressed in this thesis.

Relying solely on data-driven methods can yield models that fit observed be-

haviour well but may lack physical interpretability. Conversely, physics-based

models, while grounded in physical principles, require parameter assumptions that

may not represent the actual SPI behaviour. Therefore, this work combines data-

driven and physics-based approaches to develop hybrid frameworks that leverage

the strengths of both methodologies. Iterative model updating methods are em-

ployed to ensure physically meaningful solutions that align with experimental data.

Selecting an appropriate SPI modelling method is critical for capturing the

complex dynamic behaviour of pile foundations. Additionally, choosing a com-

putationally efficient method is essential, as these frameworks require iteratively

refining the parameters and solving the problem multiple times. To assess the

model updating frameworks, a series of numerically generated target models is

created, representing pseudo-experimental datasets. These target models include

variations in geometrical, physical, and mechanical properties, such as pile diam-

eters, embedded lengths, and soil stiffness profiles. Noise and uncertainties are
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introduced into the models to simulate real-world conditions.

The dynamic response of SPI systems is influenced by key parameters such as

embedded pile length, scour depth, soil mass, and stiffness profiles. This thesis

investigates how these parameters affect the lateral response of the system. Modal

parameters, including natural frequencies and mode shapes, are extracted from

vibration data using frequency-domain peak picking for deterministic methods

and time-domain stochastic subspace identification for stochastic frameworks.

An effective objective function is crucial for model updating. In the determinis-

tic framework, peaks of the frequency response function (FRF) are used, while the

stochastic framework incorporates natural frequencies and mode shapes. These

objective functions are optimised to estimate parameters of interest with high

accuracy and reliability.

Operational turbines often provide acceleration data but lack load information,

necessitating the use of output-only methods. Stochastic frameworks are devel-

oped to address this challenge, enabling parameter estimation using vibration data

alone. Additionally, UQ techniques are employed to quantify uncertainties in the

vibration data, ensuring reliable and robust results.

To lower computational costs, numerical models are optimised using techniques

such as compressed sparse row (CSR) matrices in deterministic frameworks and

modal reduced-order models (ROMs) in stochastic approaches. High-performance

computing (HPC) resources further accelerate the model updating process, en-

abling the analysis of complex models within practical timeframes.

The accuracy, robustness, and computational efficiency of the developed frame-

works are systematically evaluated using both numerical simulations and field data

when feasible. Comparative analyses highlight the advantages, limitations, and

suitable applications of deterministic and stochastic methods, providing insights

into their deployment for real-world monitoring of OWT foundations.

1.5 Thesis structure

This thesis is organised into six chapters, as outlined below:

• Chapter 2: Literature review. Reviews the state-of-the-art in SPI

modelling, system identification, model updating methods, and uncertainty

quantification, highlighting existing gaps and open questions that form the

basis for this thesis.

• Chapter 3: Deterministic model updating for SPI. Proposes a two-
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stage FRF-based iterative framework to estimate the embedded pile length

and soil parameters for laterally impacted piles. The approach is tested

against numerically simulated piles to demonstrate convergence and accu-

racy.

• Chapter 4: Data-driven model updating using subspace identifica-

tion and evolutionary optimisation. Introduces a stochastic, output-

only identification framework to estimate embedded pile length and soil

parameters using measured vibration data. The method’s effectiveness is

validated first on numerical examples and subsequently on a full-scale field

test.

• Chapter 5: Comparative study of deterministic and stochastic

frameworks for scour detection. Evaluates three distinct methods, an

FRF-based deterministic approach and two stochastic approaches for esti-

mating scour depth in pile foundations. These frameworks are tested against

numerically generated datasets under impact load and ambient noise condi-

tions to compare accuracy, robustness, and computational costs.

• Chapter 6: Conclusions and future work. Summarises the findings

from Chapters 3–5, outlines limitations, and suggests directions for future

research, particularly in the context of real-world OWT foundation monitor-

ing.
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Chapter 2

Literature review

The literature review is organised into four interlinked parts that mirror the

methodological flow of the frameworks developed in this thesis. Section 2.1 reviews

physics-based models for dynamic soil-pile interaction, establishing the theoreti-

cal background for the modelling component of the model updating frameworks.

Section 2.2 surveys deterministic and stochastic system identification methods for

extracting modal properties from input-output and output-only measurements;

these methods form the basis for the identification components of the frameworks.

Section 2.3 reviews state-of-the-art deterministic and stochastic model updating

strategies. Finally, Section 2.4 examines uncertainty quantification methods ap-

plied to both the model updating process and the estimated modal parameters.

Together, these sections establish the foundation on which the model updating

frameworks developed in this thesis are built.

2.1 Dynamic modelling of soil-pile interaction

(SPI)

Monopiles supporting offshore wind turbines (OWTs) are dynamically sensitive

structures subjected to various excitations with differing amplitudes and frequen-

cies. These excitations include lateral loads from tidal forces, wave action, and

wind, along with dynamic loads that occur during ‘rotor stop’ events or faults

in the turbine or drivetrain (Prendergast et al., 2019; Zdravković et al., 2020).

Consequently, the system is dynamically sensitive, with an increased likelihood of

resonance.

Piles, particularly in offshore environments, are designed to resist dynamic lat-

eral loads applied on the structure. Their lateral load resistance exhibits linear be-

haviour under small-strain conditions and transitions to non-linear behaviour un-
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der larger loads. This resistance is typically characterised using load-displacement

relationships (Li et al., 2022) as it can be viewed in Figure 2.1. The response of

a pile foundation to dynamic loading is influenced by interactions among three

interconnected systems: the structure, the foundation, and the surrounding soil.

Soil-pile interaction (SPI) analysis evaluates the combined response of these sys-

tems to specified dynamic or ground motions, accounting for the linked interactions

between the pile, structure, and soil (Stewart et al., 2012).

Soil level

a(t)

f (t)

u(t)

p(t)

p(t)

p(t)

p(t)

p(t)

p(t)

p(t)

Figure 2.1: Laterally loaded SPI .

Modal analysis is fundamental to the design, monitoring, and maintenance of

pile foundations. By identifying modal parameters such as natural frequencies and

mode shapes, engineers can ensure that the operational frequency range avoids res-

onance with external loads, minimising the risk of amplified structural vibrations

and preserving the stability of the entire system. Additionally, the modal proper-

ties can be used to monitor pile foundations over time, enabling the detection of

changes in the system that may indicate structural issues.

In the context of structural health monitoring (SHM), modal analysis is used

to evaluate the condition of a structure by analysing its dynamic response. Specif-

ically, operational modal analysis (OMA) techniques enable the identification of

modal properties based solely on a structure’s natural dynamic response, mak-

ing them particularly effective for monitoring large, flexible structures like wind
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turbines and have been widely employed for a wide range of superstructure com-

ponents (Abdallah et al., 2018; Avendano-Valencia et al., 2020; Döhler & Mevel,

2013; Greś et al., 2022b; Oliveira et al., 2018). By tracking changes in modal

properties over time, potential issues such as scouring, soil stiffness degradation,

or structural degradation can be identified early, enabling proactive maintenance

interventions to ensure the structure’s reliability and safety.

Furthermore, OMA provides deeper insights into how structures respond to

operational and environmental loads, including harmonic excitations from rotor

rotation and wave loading (Oliveira et al., 2021). Monitoring tools, such as those

described in (Abdallah et al., 2018; Avendano-Valencia et al., 2020), have demon-

strated the effectiveness of tracking modal properties throughout a structure’s

lifecycle, offering a robust framework for long-term performance assessment.

To assess the dynamic SPI for monopile-supported systems, comprehensive

modelling of both the structure and the surrounding soil is essential. This mod-

elling allows for the accurate calculation of modal parameters, including natural

frequencies and mode shapes, which are crucial for monitoring and comparing the

modelled behaviour to the actual response of the structure. Two primary physics-

based modelling methods are commonly used to simulate the soil-pile system: the

direct continuum modelling method and the indirect substructure approach.

The standard method for calculating the natural frequency and mode shapes

of a structural system involves defining stiffness and mass matrices, followed by

eigenanalysis. However, for integrated OWT-monopile systems, the variability and

cyclic nature of environmental loads often require a time-domain analysis. This

approach enables the assessment of the structure’s dynamic response to fluctuating

loads, such as those induced by wind and waves (Arany et al., 2017; Bhattacharya,

2019). Furthermore, the dynamic responses of the soil and pile are particularly

sensitive to loading frequencies associated with rotor harmonics, specifically 1P

and 3P, which correspond to the frequencies of full blade rotation and blade-

passing events, respectively, in three-blade turbines as shown in Fig 2.2 (Tott-

Buswell et al., 2024).
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Figure 2.2: Excitation loads on OWTs and their power spectral density (PSD)
(Tott-Buswell et al., 2024).

To effectively model and simulate the dynamic behaviour of SPI, it is essential

to account for the complexities of the SPI problem. Detailed simulations are key

to developing models that capture the complex nature of these interactions and

enable the creation of digital twins capable of replicating the dynamic response

of the structure. These digital twins are invaluable for monitoring the condition

of the system over time, detecting changes in dynamic behaviour, and supporting

maintenance strategies to ensure the reliability and safety of the structure.

2.1.1 Direct modelling

Numerical physics-based methods aim to approximate continuous (infinite-dimensional)

problems with discrete (finite-dimensional) models, enabling their solution using

finite computational resources. In direct analysis, the soil is often represented us-

ing a continuous model that incorporates both foundation and structural elements,

with boundaries defined at the edges of the soil mesh and interface elements at

the foundation-soil interface. Figure 2.3 illustrates a direct three-dimensional FE

mesh, showcasing the discretisation of a domain into finite elements for numerical

analysis.
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Figure 2.3: Example of three-dimensional FE mesh (Zdravković et al., 2020).

The direct method provides a detailed representation of SPI, effectively cap-

turing the complexity of dynamic responses under variable loading. A critical

component of this method is the evaluation of site response, particularly wave

propagation through the soil. Wave propagation analyses are commonly performed

using equivalent linear soil property representations within finite element (FE), fi-

nite difference (FD), or boundary element methods (Lysmer et al., 1999; Wolf,

1985). These techniques allow direct analysis to address a range of soil-structure

interaction effects.

Direct solutions to the SPI problem are computationally intensive, particularly

when dealing with complex geometries or pronounced soil and material nonlinear-

ities. As a result, such analyses are sparingly used in industry and are typically

reserved for scenarios involving highly nonlinear soil behaviour or unique geo-

metric conditions, where detailed SPI simulations are essential to approximating

real-world responses accurately (Stewart et al., 2012; Zdravković et al., 2020).

Several studies have investigated the behaviour of laterally loaded piles in clay,

utilising both analytical or semi-analytical elastic methods (Basu et al., 2009;

Poulos & Davis, 1980) and advanced numerical approaches based on FE modelling

(Brown & Shie, 1990; Haiderali & Madabhushi, 2016; Jung et al., 2015; Yang &

Jeremić, 2002; Zdravković et al., 2020). These works often simulate the response

of clay using a total stress approach, applying failure criteria such as Tresca (Jung
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et al., 2015) or von Mises (Brown & Shie, 1990; Yang & Jeremić, 2002). Common

assumptions include treating the undrained shear strength (Su) as uniform (Yang

& Jeremić, 2002) or increasing with depth (Jung et al., 2015), while the Young’s

modulus is considered either constant (Brown & Shie, 1990), proportional to Su

(Jung et al., 2015), or dependent on the confining pressure (Yang & Jeremić,

2002).

The characterisation and modelling of sand behaviour present additional chal-

lenges due to the sensitivity of sand to confining pressure and void ratio, which

significantly influence its volume change and maximum shear strength (Been &

Jefferies, 1985; Bolton, 1986). For example Broms (1964) proposed a formulation

for the modulus of subgrade reaction that accounts for the density of the sand,

suggesting scaling factors of 0.75 and 0.5 for loose and dense sand, respectively.

Similarly, Rosquoet et al. (2007) conducted experimental studies on the ultimate

lateral soil resistance using centrifuge models under lateral cyclic loading and

compared the results with Broms’ theoretical predictions. As expected, Rosquoet

reported an increase of 800 kN in ultimate lateral resistance as the relative density

(Dr) increased from 53% to 86%, with values comparable to those predicted by

Broms.

Consequently, when modelling the response of laterally loaded piles in sands,

relatively simple constitutive models, such as Mohr–Coulomb models that pre-

dict constant strength and dilatancy, may require different parameter sets to ac-

count for variations in relative density (Achmus et al., 2009). This approach

has yielded consistent results, as seen in studies by Abdel-Rahman and Achmus

(2005), Achmus et al. (2009), and Stone et al. (2018). Such adjustments allow for

a more accurate representation of sand behaviour in numerical models, improving

the predictive capability of laterally loaded pile response simulations in various

soil conditions.

Although direct methods use advanced modelling techniques and can capture

the complex nature of the SPI problem, they are associated with high computa-

tional costs. Additionally, these methods require accurate characterisation of the

problem, often involving a large number of soil parameters that need to be carefully

accounted for. This complexity makes direct methods particularly challenging to

use in scenarios where iterative model updating techniques are employed, as these

approaches require iterative reanalysis and repeated comparisons with experimen-

tal data. Due to these limitations, this PhD focuses on indirect methods for

SPI modelling, which offer a more computationally efficient alternative while still

providing valuable insights into the dynamic response of soil-pile systems.
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2.1.2 Indirect modelling

In the substructure approach, a widely adopted model for analysing SPI is the

Beam-on-Winkler Foundation (BWF) model, commonly referred to as the Win-

kler model. This physics-based method represents the pile foundation within a

one-dimensional framework, simulating the surrounding soil as a series of discrete,

independent, and closely spaced springs, masses, and dashpots (Winkler, 1867).

By reducing the SPI problem to a one-dimensional representation, the BWF model

significantly simplifies computational requirements compared to complex three-

dimensional continuum models, offering an efficient yet sufficiently accurate ap-

proach for many engineering applications.

In the BWF model, the pile is typically modeled using Timoshenko beam the-

ory to account for lateral loading, while the surrounding soil is represented as

distributed lateral springs along the pile’s length. This configuration captures

key SPI characteristics by assuming that the displacement of each pile node cor-

responds directly to the soil’s reaction at that specific location, independent of

the behaviour of adjacent nodes. This simplification provides a computationally

efficient approach to analysing SPI while effectively representing the pile’s lateral

deformation under external forces (Winkler, 1867).

At the core of the Winkler model is the pressure-deflection relationship for

each point along the foundation element, described by:

p(x, t) = Ks ·w(x, t) (2.1)

where p(x, t) denotes the applied pressure (N/m2) at a given time t, w(x, t)

represents the deflection (m) at that point and time, and KS is the coefficient of

subgreade reaction (N/m3). Equation (2.1) assumes a linear-elastic relationship,

excluding energy dissipation and inertial effects.

For small-strain applications, a key component of the model is the representa-

tion of soil stiffness, derived from traditional p-y relationships. The initial (small-

strain) spring stiffness, expressed as k0 = Epy,0∆L, is calculated using p-y formu-

lations. Here, Epy,0 represents the initial stiffness of the soil, typically calibrated

using empirical data specific to soil types, such as API sand (Dührkop, 2009;

Kallehave et al., 2012). This relationship is visually illustrated in Figure 2.4.
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Figure 2.4: Derived Epy,0 from laterally loaded Winkler model based on p-y curves.

However, applying the Winkler model to dynamic scenarios introduces ad-

ditional complexities, particularly due to the nonlinear and inelastic behaviour

of soil at larger deformations. Accurately capturing soil behaviour under dy-

namic loading requires consideration of various dynamic parameters, including ini-

tial stiffness, load-displacement response curves, cyclic degradation, unload-reload

stiffness, and radiation and hysteretic damping coefficients. This area has gar-

nered significant interest, particularly in earthquake engineering, where beam-on-

nonlinear Winkler foundation (BNWF) models have been developed to better ad-

dress soil-structure response under large-strain dynamic conditions (Juirnarongrit

& Ashford, 2006; Prendergast & Gavin, 2016).

Non-linear SPI models are essential for accurately simulating the response of

pile foundations under dynamic and cyclic loading conditions, especially for large

offshore structures such as wind turbines. In practical applications, non-linear

models are employed to capture the intricate, cycle-dependent behaviour of soil,

which includes complex phenomena such as cyclic degradation, stiffness variation,

and energy dissipation.

The BNWF model builds on the traditional BWF approach but incorporates

non-linear springs that can represent more realistic soil behaviour under dynamic

loads. In BNWF models, the soil is idealised as a series of non-linear springs
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distributed along the pile length, each defined by load-displacement curves known

as p-y curves. These curves capture the non-linear relationship between lateral

soil resistance p and lateral pile displacement y at various depths. It is worth

noting that the p-y relationships can be adapted to reflect soil characteristics for

different depths and soil types, enabling the BNWF model to handle layered soil

profiles effectively.

Advanced non-linear SPI models also consider kinematic interaction effects,

which describe the response of the SPI system to ground motion, especially rel-

evant for seismic scenarios (Burd et al., 2020b). For example, Kampitsis et al.

(2013) developed a dynamic BNWF model based on Timoshenko beam theory,

incorporating features like geometrical non-linearity, rotary inertia, and shear de-

formation. Their model uses a series of p-y springs, including a non-linear p-y

spring connected in series with an elastic spring-damper element (Kelvin–Voigt

model), to simulate near-field soil plasticity and far-field confining stiffness effec-

tively.

The effectiveness of non-linear SPI models has been evaluated through exten-

sive comparisons with experimental data. For instance, Boulanger et al. (1999)

validated a BNWF model using dynamic centrifuge model tests with soil layers

of soft clay overlying sand. The dynamic p-y parameters were tuned based on

site response measurements, confirming the model’s capability in representing the

soil-pile response under earthquake loading.

In summary, non-linear SPI models, particularly the BNWF model, are in-

dispensable for accurately capturing the pile response under dynamic loads. By

combining the foundation’s flexibility with a realistic representation of soil non-

linearity, these models offer a comprehensive approach to understanding SPI and

have become a standard approach for assessing soil behaviour under complex load-

ing regimes.

This PhD focuses on developing frameworks for model updating of BWF small-

strain models. While the primary focus is on these simpler models, the model

updating frameworks are designed to be adaptable for application to non-linear

models such as those described above or the three-dimensional-FE models (FEMs),

offering the potential to handle more detailed and complex simulations. However,

the computational cost associated with such adaptations must be carefully con-

sidered.

The initial small-strain stiffness, commonly represented by the small-strain

shear modulus (GS), Young’s modulus (ES) or (Epy,0) when derived directly from

p-y relationships is fundamental for modelling the lateral elastic response of SPI

systems at low deformation levels. In static analyses, KS plays a significant role
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in both small-strain and large-strain applications. Accurately specifying this pa-

rameter can be challenging, as it depends on several factors, including the loading

scheme, foundation geometry, and subgrade material properties. Its precise repre-

sentation is therefore essential for achieving realistic simulations of SPI behaviour

under dynamic conditions.

A range of subgrade reaction theories (Biot, 1937; Elachachi et al., 2004;

Okeagu & Abdel-Sayed, 1984; Sadrekarimi & Akbarzad, 2009; Vesić, 1961) of-

fer different approaches to estimating this initial stiffness, each rooted in distinct

assumptions about soil properties, loading conditions, and foundation geometry.

Biot (1937) proposed an empirical equation to calculate the KS by equating

the maximum moments in an infinite beam resting on a three-dimensional elastic

soil continuum. Bending-moment and deflection curves were presented and values

for KS were proposed that allow the BWF models to produce acceptable results,

dependent on both the beam stiffness and the elasticity of the foundation.

KS =
0.95ES

D(1 − ν2S)

(
D4ES

(1 − ν2S)EI

)0.108

(2.2)

where ES is the small-strain Young’s modulus of the soil, D is the width of

the foundation, νS is the Poisson’s ratio of the soil, and EI represents the flexural

rigidity of the foundation.

Similarly, Vesić (1961) relates the subgrade reaction modulus to the soil’s small-

strain properties and pile dimensions. Vesic demonstrated that, for beams of

infinite length resting on an elastic-isotropic half-space, using the KS in analysis

leads to overestimated bending moments and underestimated contact pressures

and deflections. He proposed analytical procedures to address these discrepancies

for beams of various lengths, providing a more accurate foundation for calculating

SPI parameters.

KS =
0.65ES

D(1 − ν2S)

(
ESD

4

EI

)1/12

(2.3)

In alternative approaches, Meyerhof and Baikie (1963) (Okeagu & Abdel-

Sayed, 1984; Sadrekarimi & Akbarzad, 2009) derived an equation for circular

cross-sections, emphasising the relationship between soil stiffness and element

width. Their study investigated the ultimate load of curved steel sheets bearing

against dense sand backfill through scaled loading tests, which measured strains,

soil pressures, and deflections. The stress-deformation and strength characteristics

of the sand were evaluated using triaxial compression tests, from which represen-

tative values of the KS were calculated. These coefficients closely aligned with
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those deduced from the loading tests.

KS =
ES

D(1 − ν2S)
(2.4)

To investigate the variability in the KS for laterally loaded open-ended piles

a similar analysis to that of Prendergast and Gavin (2016) is conducted. Three

models are examined: Biot, Vesic, and Meyerhof & Baike (M&B). The analysis

is conducted by varying D and ES and choosing νS = 0.1, E = 200 GPa and

wall thickness (t0 = 0.1 m). The diameters considered range from 2 m to 6 m,

and the small-strain modulus is analysed for loose (ES = 50 MPa), medium dense

(ES = 100 MPa), and dense sand (ES = 150 MPa) conditions.

The results, presented in Figure 2.5, reveal an overestimation of the KS by

M&B: The M&B model consistently overestimates KS compared to Biot and Vesic.

This is because M&B does not account for the wall thickness, which is included

in the calculation of the moment of inertia (I) in both Biot and Vesic models.

Additionally, M&B neglects the pile’s material property E, which further reduces

its accuracy. For example, for ES = 50 MPa and D = 2.0 m, M&B predicts

KS = 25.3 MN/m3, which is approximately 66% higher than Biot prediction of

KS = 15.2 MN/m3 and 118% higher than Vesic prediction of KS = 11.6 MN/m3.

Nevertheless, these estimates will prove to have an important role in the sub-

sequent analysis, serving as the initial estimates of the soil stiffness profile for the

model updating methods discussed in Sections chapters 3 to 5.

21



2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
D (m)

5

10

15

20

25

K S
 (M

N/
m

3 )

(a) Loose sand E0=50 MPa
Biot
Vesic
M&B

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
D (m)

10

20

30

40

50

K S
 (M

N/
m

3 )

(b) Medium dense sand E0=100 MPa
Biot
Vesic
M&B

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
D (m)

20

30

40

50

60

70

K S
 (M

N/
m

3 )

(c) Dense sand E0=150 MPa
Biot
Vesic
M&B

Figure 2.5: Variation of the KS with pile diameter (D) for loose, medium dense,
and dense sands using Biot, Vesic, and M&B models.

The ES or GS profile for a given site can be estimated using shear wave velocity

measurements or data from site investigation tests such as the Cone Penetration

Test (CPT) (Liu et al., 2021a; O’Neill & Murchison, 1983; Suryasentana & Lehane,

2016).

CPT data provide insights into soil stiffness and density, making them partic-

ularly useful for deriving parameters such as the ES and GS. In a CPT, a cone is

pushed into the ground at a steady rate using a rig connected to a series of rods
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equipped with an electronic measuring system. As the cone penetrates the soil, it

records data on the soil’s resistance to penetration (qc), which can subsequently

be used to estimate the (GS).

Similarily, the Multichannel Analysis of Surface Waves (MASW) offers a non-

invasive method to measure in situ shear wave velocity, which is directly indicative

of small-strain stiffness (Donohue et al., 2004). This technique has been widely

applied in geotechnical engineering, including quality control for ground improve-

ment, due to its ability to generate detailed shear wave velocity profiles for as-

sessing soil stiffness. MASW works by using surface waves, specifically Rayleigh

waves, whose dispersion characteristics are analysed to infer stiffness profiles at

various depths, enabling immediate field assessments. This method is particularly

useful for evaluating soil properties in heterogeneous or disturbed conditions and

serves as a practical alternative to intrusive tests, especially when direct access to

deeper strata is limited.

In combination, MASW and CPT provide a comprehensive dataset for devel-

oping initial stiffness profiles essential for modelling SPI. While these methods are

effective for estimating the GS, their results are subject to geotechnical uncertain-

ties due to spatial variability, particularly in deeper offshore locations where soil

properties can vary significantly. Furthermore, the characteristics of the soil may

evolve over time, making initial test results less accurate for long-term modelling.

Parameter transformations, such as those involving the rigidity index (ratio of GS

to σ′
v tanϕ), and the selection of subgrade reaction models further contribute to

uncertainties, potentially influencing key predictions such as system natural fre-

quencies (Reale et al., 2021). Therefore, while MASW and CPT are valuable as

initial estimators, their outputs must be refined using data from operational SPI

systems to account for in situ conditions and temporal changes, ensuring reliable

and accurate modelling.

The natural frequencies and mode shapes of an SPI system depend on the

global stiffness and mass matrices, which can be computed through time-domain

or frequency-domain analyses (Tedesco et al., 1999). Frequency-domain analysis

is computationally efficient for linear systems, as vibration modes are derived by

solving the system’s eigenvalue problem. The eigenvalue problem is expressed as:

(K −ΛM)Φ = 0 (2.5)

where K and M are the global stiffness and mass matrices, Λ is a diagonal

matrix of eigenvalues, Φ is the matrix of eigenvectors, and 0 is the zero vector. Vi-

brational modes are represented in the columns of Φ as eigenvectors ϕn, and modal
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frequencies are stored in Λ as eigenvalues ω2
n. The derivation of Equation (2.5)

from the undamped equation of motion is detailed in Section B.1.1.

While the stiffness matrix K is extensively studied in the literature, challenges

persist in accurately defining the mass matrix M for soil-pile systems. These diffi-

culties arise primarily from the complexity of quantifying the soil mass contribut-

ing to modal vibrations, which can lead to inaccuracies in analyses (Fitzgerald

et al., 2019).

Furthermore, the application of small-strain stiffness models presents several

challenges. The initial stiffness of the soil-pile system can change significantly

after pile installation due to soil consolidation and disturbance, which modify the

soil properties around the pile. Accurate parameter selection in these models is

essential, as even minor deviations can influence predictions of dynamic response,

impacting the estimation of modal properties—an important factor in SHM. By

estimating suitable mass and stiffness matrices within small-strain models, it is

possible to simulate small-strain vibrations, providing valuable insights into the

actual state of the soil-pile system. When combined with model updating methods

that align estimated modal responses with observed data, small-strain modelling

becomes a powerful tool for identifying issues such as scour and soil degradation.

Model updating is a process that refines mass and stiffness matrices by match-

ing numerical model responses with empirical data (Dezi et al., 2012; Prendergast

et al., 2019; Wu et al., 2018) and which will be reviewed in Section 2.3. When

applied in SHM, it facilitates the detection of structural damage by comparing

a structure’s frequency responses to baseline measurements (Domaneschi et al.,

2013; OBrien & Malekjafarian, 2016). These methods are particularly useful for

identifying geotechnical phenomena such as scour and gapping (Fitzgerald et al.,

2019; Giordano et al., 2020). While numerical physics-based modelling provides

valuable initial estimates of mass and stiffness matrices, the actual in situ be-

haviour of SPI systems can differ due to factors like soil degradation, structural

wear, and changes in system dynamics over time (Darvishi-Alamouti et al., 2017;

Ziegler et al., 2015). To address these effects, data from actual SPI systems must

be integrated into model updating methods to refine the matrices and accurately

extract parameters that reflect the real state of the system.

2.1.3 Embedded pile length

One property that is particularly important for SPI models is the accurate de-

termination of foundation pile embedded length. This parameter is critical in

SHM, where accurate modelling of geometrical properties is necessary for devel-
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oping digital twins, which are consecutively used for damage detection and other

monitoring applications. To address this need, numerous non-destructive methods

have been developed in the literature to assist in determining pile length.

Early research primarily focused on applying stress-wave propagation tech-

niques to timber piles. Holt et al. (1994) introduced a nondestructive testing

method that utilised dispersive stress-wave propagation alongside specialised signal-

processing techniques. By analysing bending waves generated through impact

loading, their Short Kernel Method (SKM) enabled the estimation of pile length

with an accuracy of approximately ±10%. This approach demonstrated that

guided waves could provide practical insights into both the pile embedment depth

and its physical condition, laying the groundwork for further advancements in

wave-based pile length estimation.

Subsequent theoretical research explored wave propagation in cylindrical piles

embedded in soil. Hanifah (1999) derived a three-dimensional elasticity-based

frequency equation for longitudinal guided waves in a cylindrical pile embedded

in soil with varying stiffness and density. The study demonstrated that lower-

order longitudinal modes, experience less attenuation and are therefore more eas-

ily induced, facilitating a straightforward interpretation of pile properties. These

findings highlighted the potential of guided waves to capture subtle interactions

between the pile and surrounding soil, shaping subsequent experimental and the-

oretical research in this area.

Building on these theoretical advancements, Chao (2002) expanded the guided

wave approach to practical settings by integrating both laboratory and field tests.

Using conventional impulse response tests and newly developed frequency-controlled

tests on small-scale prototype piles, the research validated the applicability of

three-dimensional guided wave theory to real-world conditions. By identifying

bulk shear wave velocities and mode attributes, Chao’s work demonstrated that

guided wave interpretations could surpass traditional impulse response methods,

enabling the detection of defects that would otherwise remain invisible to simpler

time-domain analyses.

In parallel, further theoretical developments targeted various structural con-

figurations and wave types. Wang (2004) investigated Rayleigh-Lamb waves in

embedded plate-like structures, such as diaphragm walls, and flexural waves in

solid cylindrical piles. The study established relationships between phase velocity,

group velocity, and attenuation across a wide range of frequencies. These theo-

retical insights demonstrated that examining an extended frequency range could

uncover smaller-scale defects and provide a more nuanced understanding of pile

conditions, thereby enhancing the detection capabilities of wave-based methods.
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Experimental testing came from Lynch Jr (2007), who developed two experi-

mental methods to induce flexural waves in accessible portions of concrete piles.

By comparing measured velocities and frequencies with theoretical values for flex-

ural branches, the study validated guided wave propagation predictions for real

piles under varying boundary conditions, ranging from traction-free to fully em-

bedded states. Lynch’s results highlighted the robustness of guided wave theory

when properly implemented and interpreted, paving the way for more advanced,

field-ready techniques.

More recently, Samu and Guddati (2019) proposed an advanced signal-processing

and dispersion analysis technique to enhance estimation accuracy and practical

applicability. By accounting for the inherent dispersion in wave propagation and

reflections from the pile tip, EDAR provides a robust mapping from measured

signals to embedded depth. This technique avoids the often unreliable time-

domain peak-picking process for dispersive signals, instead delivering highly ac-

curate depth estimates (within approximately 5% error) in controlled laboratory

settings. However, initial field validations revealed that further refinements are

required for broader applicability. In response, Samu and Guddati (2020) intro-

duced a refined EDAR methodology. The study revealed that initial arrivals in

field signals were dominated by transverse waves, while reflections were primar-

ily governed by longitudinal waves due to differential attenuation in the soil. By

carefully incorporating both wave types, the improved EDAR approach achieved

accurate embedded depth estimation under field conditions. A typical configura-

tion of the test and the experimental setup is shown in Figure 2.6

(a) (b)

Figure 2.6: (a): setup of pile for axial and lateral impact (Samu & Guddati, 2020),
(b): experimental setup of concrete filled steel tube (Samu & Guddati, 2019)

Further advancements came from Cui et al. (2022), who integrated a three-

dimensional guided wave model and a modified Ridders’ root-searching algorithm
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into the EDAR framework. By constructing a spectral element model of the

cylindrical pile and analysing the phase difference of signals acquired from multi-

ple sensors, Cui et al. achieved over 95% accuracy in pile length estimation. This

approach utilised a broader frequency range and more sophisticated dispersion re-

lationships, demonstrating that the integration of advanced modelling, numerical

algorithms, and wave theory can significantly enhance reliability while minimising

the need for multiple sensor configurations.

Wave-based methods for pile length estimation have advanced significantly,

demonstrating high accuracy in controlled settings. By leveraging longitudinal

and transverse wave interactions with advanced signal processing, they offer ro-

bust tools for assessing pile conditions. However, challenges such as unaddressed

mobilised mass, the requirement for impact testing and the need for multiple re-

ceivers underscore the importance of developing hybrid frameworks that integrate

operational data with numerical modelling approaches for improved SHM of SPI

systems.

2.1.4 Pile scour

Scour is a complex erosional phenomenon involving the removal of seabed mate-

rial caused by the action of flowing water. In the context of OWTs supported by

monopile foundations, scour occurs when local flow accelerations and vortex for-

mations around the pile induce localised sediment transport and removal (Briaud

et al., 2005; Prendergast & Gavin, 2014). As seabed sediments erode, the effec-

tive embedment depth and lateral support provided by the surrounding soil are

reduced. This loss of material and stiffness decreases the load capacity of the foun-

dation, potentially compromising the stability and longevity of the OWT. With

the increasing deployment of OWTs in marine environments globally, the need

to understand, predict, and mitigate scour has grown substantially. A schematic

representation of a vibration-based scour sensor is illustrated in Figure 2.7.
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Figure 2.7: Schematic representation of scour sensor (Prendergast & Gavin, 2014)

Scour mechanisms in offshore environments are influenced by various factors,

including currents, waves, tidal actions, and sediment properties. Unlike riverine

conditions, where scour typically develops under relatively steady flow, marine

scour is shaped by the more complex and variable hydrodynamic loading from

combined waves and currents (Negro et al., 2014; Prendergast et al., 2018). While

the presence of waves can sometimes reduce ultimate scour depths compared to

current-only conditions (Sumer et al., 1992), the interaction remains highly site-

and environment-dependent, introducing uncertainty in predicting scour depths.

Furthermore, the backfilling and re-densification of eroded sediments under wave

action can partially or fully restore the soil stiffness around the pile, adding another

layer of complexity to scour characterisation (Prendergast et al., 2018; Sørensen

& Ibsen, 2013).

A body of research has investigated the impacts of scour on marine structures,

building on insights initially developed for bridges and other infrastructure (Foti &

Sabia, 2011; Klinga & Alipour, 2015; Prendergast & Gavin, 2016; Prendergast et

al., 2013). In the offshore wind sector, significant uncertainties remain regarding

how scour affects soil properties such as stiffness, cyclic load response, lateral

response, and long-term bearing capacity. Backfill material deposited into scour

holes under wave action may exhibit altered stiffness characteristics, potentially

restoring or even increasing stiffness relative to pre-scour conditions (Prendergast

et al., 2018; Sørensen et al., 2010). Consequently, the precise nature of this soil-

structure interaction remains an active area of research.

The complexities of scour prediction are compounded by site-specific condi-
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tions, soil variability, and evolving seabed morphologies caused by seabed migra-

tion and seasonal changes (Matutano et al., 2013; Reale et al., 2021). Ongoing

research has sought to reduce these uncertainties. For example, Li et al. (2020)

and Chortis et al. (2020) examined how different scour hole geometries affect the

lateral load-displacement behaviour and p–y curves for monopiles. Their findings

highlight that not only the depth but also the shape and extent of the scour hole

influence the effective stiffness and bearing capacity of the soil. Similarly, Wang

et al. (2020) employed advanced numerical simulations to study scour effects on

large-diameter monopiles, illustrating how nonlinearities in pile head displace-

ments evolve with increasing scour depth.

Monopiles are highly sensitive to changes in boundary conditions that affect

their embedded length and lateral support. As scour progresses, the free length of

the pile above the supporting soil layer increases, reducing foundation stiffness and

the natural frequencies of the OWT system. Studies by Prendergast et al. (2015)

and Sørensen and Ibsen (2013) have demonstrated that scour can cause measurable

decreases in the system’s natural frequencies. This shift is particularly critical

given the narrow operational frequency windows OWTs must maintain to avoid

resonance with excitation frequencies from wind and waves (Figure 2.2). Changes

in frequency due to scour are more pronounced in looser soils (Abhinav & Saha,

2017; Prendergast et al., 2015), making natural frequency shifts a key indicator in

SHM frameworks. Furthermore, research has shown that higher vibration modes

exhibit greater sensitivity to scour (Mayall et al., 2018; Prendergast et al., 2018),

suggesting that a multi-modal assessment could enhance the detection of changes

in foundation conditions.

Research has increasingly focused on leveraging changes in dynamic character-

istics—such as shifts in natural frequencies and mode shapes—to detect and quan-

tify scour-related damage. Building on principles initially developed in bridge en-

gineering (Prendergast & Gavin, 2016; Prendergast et al., 2013), where vibration-

based techniques have been used to detect scour by observing reductions in natural

frequencies, similar methods are being adapted and validated for offshore monopile

foundations. Mayall et al. (2018) emphasised the importance of understanding

the interaction between scour depth, soil-foundation stiffness, and the dynamic

response of OWTs. By developing an integrated framework that combines one-

dimensional and three-dimensional FE modelling, experimental testing, and field

monitoring, they demonstrated how scour alters the dynamic behaviour of turbine

structures.

SHM strategies can benefit from coupling advanced numerical models with

data-driven analysis to assess and monitor scour-induced frequency changes. Prob-
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abilistic approaches, such as Monte Carlo simulations and spatially correlated soil

profiles modeled using random field theory, provide a comprehensive understand-

ing of the uncertainty inherent in scour predictions and the probable range of

changes in natural frequencies and load-resisting capacities (Prendergast et al.,

2018; Reale et al., 2021). Experimental and field data further help calibrate and

validate these models, ensuring reliability. In practice, operators can use readily

available vibration data from standard turbine instrumentation or dedicated mon-

itoring systems to infer scour progression. A significant decrease in key natural

frequencies or shifts in higher-mode frequencies beyond predefined thresholds can

trigger maintenance interventions or adjustments in operational load management

strategies.

As the offshore wind industry advances and turbine capacities increase, man-

aging scour risk and its associated uncertainties becomes critical. There is a need

for improved prediction methods and advanced SHM strategies that make use

of OMA data to manage the challenges scour imposes on monopile foundations.

These models use trusted physics-based modes coupled with operating vibrational

data to estimate actual scour depth, rather than relying solely on natural fre-

quency shifts to trigger interventions. By incorporating both natural frequencies

and mode shapes, these models provide more reliable and robust predictions.

2.2 System identification

Identification of linear systems from the measured data forms an interdisciplinary

research domain that integrates mathematical modelling, control systems, statis-

tics, and signal processing. In structural engineering, these techniques—commonly

referred to as modal identification—have gained significant attention for their abil-

ity to determine vibration modal properties such as natural frequencies, mode

shapes and damping ratios, as well as to identify changes in structural vibration

characteristics under extreme or operational conditions.

Advancements in data acquisition technologies, including low-cost sensors,

fiber optic sensors, and wireless sensor networks, have significantly improved the

monitoring of large and complex structural systems. Accurate vibration mode

identification is essential for ensuring the safety and serviceability of structures

subjected to dynamic loads such as wind, waves, and earthquakes. In the context

of SPI, system identification is applied to vibration sensor data—such as acceler-

ations, velocities, or strains—collected along the length of pile foundations. The

primary objective is to extract modal parameters, including natural frequencies

and mode shapes, through free vibration analysis. These identified modal proper-
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ties serve as essential inputs for applications such as model updating and damage

identification.

Vibration-based modal identification methods are generally categorised into

two main approaches: frequency-domain methods and time-domain methods.

While debates persist regarding their relative strengths and limitations, these ap-

proaches are theoretically equivalent (Pintelon & Schoukens, 2012). Therefore,

the choice of identification method should be guided by practical considerations,

including the expected structural characteristics (e.g., the density of closely spaced

modes, the magnitude of damping ratios, or the presence of nonlinear behaviour),

the specific objectives of the analysis (e.g., achieving a complete and accurate rep-

resentation of the modal model or focusing on a subset of modes critical to the

structure’s performance), and the nature and quality of the available data (e.g.,

noise levels, sampling rates, or data completeness) (Aktan et al., 1997; Maia &

Silva, 2001).

System identification methods can also be classified as either deterministic or

stochastic. Deterministic methods require full set of inputs and outputs and as-

sume noise-free data. In contrast, stochastic methods are particularly useful in

cases where the structure is excited by unmeasurable or unknown forces, such as

ambient vibrations, and only output measurements such as accelerations are avail-

able. These methods operate under the assumption that the input is a realisation

of a stochastic process, often modelled as ambient noise. The choice between de-

terministic and stochastic methods depends on the nature of the excitation, the

available data, and the specific requirements of the system under study (Peeters,

2000).

In this literature review, an overview of both frequency-domain and time-

domain methods is provided, discussing their historical development, key tech-

niques, and applications in structural engineering.

2.2.1 Frequency-domain methods

Frequency-domain methods have been widely used in structural engineering owing

to their algorithmic straightforwardness and robustness. These approaches anal-

yse the spectrum plots of structures subjected to known or unknown excitations

(Ghanem & Shinozuka, 1995; Pintelon et al., 1994). The strengths of frequency-

domain methods include their ability to perform partial modelling within limited

frequency bands, effective noise reduction, simple merging of data from different

experiments, and the elimination of the need for initial model estimates (Ghanem

& Shinozuka, 1995; Pintelon et al., 1994).
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Peak picking (PP)

One of the earliest and simplest frequency-domain methods is the peak picking

method, which identifies natural frequencies as peaks in the amplitude of spectrum

plots such as the frequency response function (FRF) or power spectral density

(PSD) functions (Bendat & Piersol, 1993; Bishop & Gladwell, 1963). This method

is widely used in civil engineering due to its simplicity of implementation and

computational efficiency, as it primarily relies on the fast Fourier transform (FFT)

(Felber, 1994). The core process involves locating eigenfrequencies by detecting

peaks in the spectrum plot. The FRF matrix H(ω) = F(H(t)) is the Fourier

transform of the impulse response function and it is described in Equation (2.6)

by Peeters and Ventura (2003):

H(jω) =
nm∑
i=1

1

jω − λi
ϕil

T
i , (2.6)

where ω is the circular frequency (rad/s), nm is the number of modes, ϕi ∈ Cl

are the mode shapes, lTi ∈ Cni are the modal participation vectors, l is the number

of outputs, ni is the number of inputs, and λi are the continuous-time eigenvalues.

The eigenvalues λi are directly related to the eigenfrequencies ωi and the damping

ratios ξi in (2.7)

λi, λ
∗
i = −ξiωi ± jωi

√
1 − ξ2i . (2.7)

When damping is small and eigenfrequencies are sufficiently distinct, the FRFs

exhibit a local maximum around the eigenfrequency ωi and can be approximated

as (2.8)

H(jω) ≈ 1

ξiωi
ϕil

T
i , (2.8)

from which the mode shapes and modal participation factors can be identified

once the eigenfrequency and damping ratio are identified.

In the case where the structure is weakly damped with distinct natural fre-

quencies and proportional damping, the half power bandwidth method can be

employed to estimate the damping ratio in Equation (2.9) (Reynders, 2012):

ξj ≈
f2j − f1j

fj
, (2.9)

where f1j and f2j are the closest frequencies on the left and right to fi.
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To improve peak identification accuracy, several refinements have been pro-

posed. Inspecting the coherence function between two channels can assist in se-

lecting eigenfrequencies, as coherence approaches one at resonance frequencies due

to a high signal-to-noise ratio (Bendat & Piersol, 1993). Similarly, analysing the

phase angles of the cross spectra helps confirm the presence of real modes, where

phase angles are expected to be either 0◦ or 180◦ at resonance. Felber (1994) imple-

mented the peak picking method by computing an averaged normalised PSD from

the diagonal elements of the spectrum matrix, offering a comprehensive view of the

eigenfrequencies. This method also allows the identification of mode types, such as

torsion or bending, by adding or subtracting signals from symmetric points of the

structure. Furthermore, Felber’s output-only approach demonstrated that select-

ing a suitable reference sensor enables efficient computation of spectra between all

sensors and the reference directly from time-domain data, reducing computational

effort.

Despite its advantages, the peak picking method relies on the assumptions of

low damping and well-separated modes (Peeters, 2000). Nevertheless, it remains

popular in civil engineering applications due to its ease of implementation and

computational efficiency. The method has been successfully applied to a wide

range of structures, including bridges and pile foundations (Ioakim & Prendergast,

2024; Prendergast et al., 2019).

Complex mode indicator function (CMIF)

To enhance modal identification beyond the capabilities of peak picking, the com-

plex mode indicator function (CMIF) and frequency domain decomposition (FDD)

methods were developed (Brincker et al., 2001b; Prevosto, 1982). Both techniques

employ singular value decomposition (SVD) of spectral matrices, such as the FRF

or PSD matrices in Equation (2.10), to overcome limitations of earlier methods,

including the presence of multiple closely spaced modes (Reynders, 2012). Specif-

ically, the CMIF method applies SVD to the FRF matrix at each spectral line

(peak), with the resulting eigenvalues representing the squares of the singular val-

ues (Shih et al., 1988). Peaks in the CMIF correspond to the proximity of the

frequency axis to an eigenvalue, indicating potential modal frequencies and pro-

viding a measure of the physical magnitude of each mode and its damped natural

frequency (Shih et al., 1988). Similarly, the FDD method adapts CMIF prin-

ciples by applying SVD directly to the PSD matrix, offering a computationally

efficient approach to extract modal parameters in stochastic environments (Reyn-

ders, 2012) in Equation (2.10) by Peeters and Ventura (2003).
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Sy(jω) = U(jω)Σ(jω)UT (jω), (2.10)

where U ∈ Cl×l represents a complex matrix whose columns are the singular

vectors. The diagonal matrix Σ ∈ Rl×l contains the real positive singular values

arranged in descending order.

Building upon CMIF, the FDD method (Brincker et al., 2001a, 2001b) operates

in an output-only context by utilising PSD functions instead of FRFs. By apply-

ing SVD to the PSD matrix, FDD effectively isolates closely spaced modes that

are difficult to resolve with simpler methods. The singular values highlight signif-

icant modal contributions, with peaks corresponding to distinct modes. FDD was

proved to identify harmonic components and provide a clear separation of the re-

sponse spectra initially into single degree-of-freedom (SDOF) systems, even under

noisy conditions (Brincker et al., 2001b). However, accurate association of sin-

gular value peaks with specific modal frequencies often requires user interaction,

particularly in complex or noisy datasets (Döhler, 2011; Gattulli, 2016).

Recent advancements have enhanced FDD’s robustness and accuracy in multi-

dataset output-only modal analysis. Amador and Brincker (2021) introduced two

new scaling approaches to merge mode shape components from different datasets.

The first approach re-scales the PSDs before constructing a global PSD matrix,

followed by FDD application. The second approach directly forms the global

PSD matrix and subsequently re-scales mode shape components using reference

singular vectors. These methods streamline the extraction of global mode shapes,

increasing FDD’s effectiveness in scenarios with multiple datasets and complex

structural systems.

Prediction error methods (PEM) and maximum likelihood

Prediction error methods (PEM) and maximum likelihood approaches are iter-

ative, optimisation-based techniques designed to minimise the discrepancy be-

tween predicted and measured system outputs (Åström & Bohlin, 1965; Åström &

Eykhoff, 1971). PEM operates by employing a predictor filter to estimate outputs

based on past inputs and outputs, minimising the prediction error and providing

parameter estimates that are statistically consistent and efficient under appropri-

ate conditions (Ljung, 1999). PEM is an adaptable framework that encompasses

several special cases, including linear least squares regression, maximum likelihood

identification, and Bayesian inference (Reynders, 2012). These methods leverage

statistical and numerical optimisation tools, enabling robust system identification

across diverse modelling contexts.
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PEM and maximum likelihood methods are not restricted to frequency-domain

systems. Recursive PEM algorithms enable real-time updates of parameter esti-

mates, making them particularly suitable for identifying time-varying systems

(Döhler, 2011). These methods are valued for their flexibility, theoretical robust-

ness, and ability to deliver precise parameter estimates in dynamic environments.

However, the iterative optimisation process involved in PEM and maximum likeli-

hood methods can be computationally intensive, especially when applied to com-

plex or large-scale systems. Their performance is highly dependent on the quality

of the input data and the chosen model structure. Challenges such as ensuring

convergence reliability and avoiding local minima require careful consideration

during implementation (Guillaume et al., 1998).

The least-squares complex frequency-domain (LSCF) method offers a reliable

approach to modal parameter estimation by fitting a transfer function model to

measured FRFs using a least-squares criterion (Guillaume et al., 1998; Van der

Auweraer et al., 2001). The method is effective in separating closely spaced modes

and provides stable identification of system poles across varying system orders,

visualised through stabilisation diagrams for distinguishing physical and spurious

poles (Huang et al., 2017; Van der Auweraer et al., 2001). This stability makes

LSCF well-suited for challenging estimation problems, including mistuned bladed

rotor systems, where it has demonstrated high accuracy in identifying eigenvalues

from both computational and experimental forced response data (Huang et al.,

2017).

The PolyMAX algorithm, an extension of the LSCF method, enhances modal

analysis by addressing challenges such as closely spaced modes and multiple-input

systems (Guillaume et al., 2003; Peeters et al., 2004). By fitting a right matrix

fraction description (RMFD) model to FRFs, PolyMAX produces fast-stabilising

stabilisation diagrams and improves mode separation, making it particularly ef-

fective for structures with closely spaced natural frequencies (Peeters et al., 2004).

This method has demonstrated advantages in stability and accuracy, particularly

for high-order or highly damped systems with large modal overlap, enabling its

application to complex estimation cases (Guillaume et al., 2003; Peeters et al.,

2004).

PolyMAX can also be adapted for output-only modal analysis. For instance,

Devriendt et al. (2010) generalised transmissibility measurements to a multivari-

able context, showing how combining measurements under varying loading condi-

tions can provide accurate estimates of modal parameters. However, limitations

remain, such as the potential underestimation of damping ratios (Döhler, 2011).
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2.2.2 Time-domain methods

Time-domain methods are widely employed in experimental modal analysis, es-

pecially in scenarios where only output measurements are available, and input

forces are unknown or impractical to measure. By operating directly on time-

series data, these methods offer advantages such as eliminating spectral leakage

biases, improving modal uncoupling, and providing superior spectral resolution

(Gattulli, 2016; Peeters & De Roeck, 1999).

Ibrahim time domain (ITD)

The Ibrahim time domain (ITD) method (Ibrahim, Mikulcik, et al., 1976) iden-

tifies modal parameters by analysing free vibration response data. The method

constructs matrices from response measurements at multiple time steps to extract

the system’s eigenvalues and mode shapes, assuming that all modes are adequately

excited. In its original formulation, the ITD method requires that the number of

sensors be at least half the system order to ensure all modes are captured in the re-

sponse data. This constraint is particularly useful for systems with closely spaced

natural frequencies and heavy damping, where some frequency-domain methods

often struggle due to their reliance on SDOF approximations (Ibrahim, Mikulcik,

et al., 1976). Despite its strengths, the ITD method has certain limitations. The

requirement for a specific sensor-to-system order ratio can be restrictive for large

and complex structures. Additionally, the method assumes that all modes are

sufficiently excited and accurately captured, which may not hold true for modes

that are weakly excited, heavily damped, or inadequately represented due to sen-

sor placement. These factors can compromise the accuracy of modal parameter

estimation, particularly in practical scenarios involving large or complex systems.

Random decrement (RD)

The random decrement (RD) technique, introduced by Cole (1968), is a widely

used time-domain method for extracting free decay responses from random vibra-

tion data. It transforms complex system responses into signatures resembling free

vibrations, enabling modal parameter estimation. Originally developed for SDOF

systems, RD operates by averaging response segments that meet specific trigger-

ing conditions, effectively reducing noise and enhancing modal identifiability. This

method simplifies the interpretation of random vibrations, even in challenging con-

ditions such as combined buffet and flutter tests (Cole, 1968). However, potential

biases and the need to satisfy underlying assumptions must be carefully addressed

36



to ensure reliable parameter estimation.

Eigensystem realisation algorithm (ERA)

The eigensystem realisation algorithm (ERA) (Juang & Pappa, 1985) is a widely

used identification method in modal analysis, initially developed for impulse re-

sponse data. ERA constructs a Hankel matrix from the system’s impulse re-

sponse data and applies SVD to extract the dominant dynamic modes. This

process enables ERA to construct a balanced state-space model, minimising vi-

brational energy loss during modal reduction and ensuring accurate identification

of modal parameters. Later, the algorithm was extended to include data cor-

relations (ERA/DC), which uses correlations of response data instead of direct

response values, significantly reducing noise-induced bias errors without requiring

model overspecification (Juang et al., 1988).

To adapt ERA for output-only applications, the natural excitation technique

(NExT) (James et al., 1995) was introduced. NExT treats cross-correlation func-

tions between output measurements as equivalent to free decay responses, allowing

ERA to extract modal parameters from ambient vibration data. This enables the

identification of modal parameters under operating conditions, such as wind tur-

bines, where damping characteristics vary significantly.

The combination of ERA and its extensions (NExT, ERA/DC) makes it a

robust tool for modal analysis, applicable across a range of structural and en-

vironmental conditions. In the NExT/ERA framework, a reference signal is se-

lected, and cross-correlation functions with other measurements are computed.

These cross-correlation functions serve as the system’s response estimates, which

are then arranged into a Hankel matrix. Applying Singular SVD to this matrix

extracts the system’s dominant dynamic characteristics. Solving the resulting

eigenproblem yields the natural frequencies and mode shapes of the structure

(Döhler, 2011).

Recent advancements include an improved stabilisation-diagram technique that

integrates Monte Carlo sampling, fuzzy C-means clustering, and sifting manipu-

lations to eliminate spurious modes. This method enables the ERA to identify

modal parameters automatically with higher accuracy and efficiency, making it

suitable for real-time structural health monitoring (Feng et al., 2023).

Auto-regressive (AR)

Auto-regressive (AR) methods, including ARMA (auto-regressive moving average)

and ARMAX (auto-regressive moving average with exogenous inputs) models, are
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fundamental tools for identifying linear time-invariant (LTI) systems. These mod-

els describe the system’s output as a function of past outputs, inputs, and noise

terms, providing a straightforward framework for capturing structural dynamics

(Gattulli, 2016; Peeters, 2000).

ARMAX models extend ARMA by incorporating input effects alongside noise,

making them particularly suited for scenarios where both deterministic and stochas-

tic dynamics interact. These models are expressed in Equation (2.11) by Döhler

(2011):

yk =

p∑
i=1

Aiyk−i +

q∑
i=0

Biek−i +
s∑
i=0

Ciuk−i, (2.11)

where yk is the system output, uk the input, ek the noise term, and Ai,Bi,Ci

the model coefficients related to the outputs, the noise and the external inputs

respectively. ARX models, a simplified subset of ARMAX, omit the moving av-

erage noise component, making them easier to estimate using linear least squares

methods (Reynders, 2012). However, this simplicity comes at the cost of reduced

accuracy in capturing unmeasured inputs or noisy data.

Methods such as Instrumental Variables (IV) which account for noise correla-

tions by leveraging external instruments have been developed to address practical

challenges in estimating AR parameters, such as model order selection and bias

reduction (Söderström & Stoica, 1981).

Due to their computational efficiency and versatility in both time and frequency

domains, ARX and ARMA models remain widely used for system identification

across various applications. Recent literature demonstrates applications of AR

methods in civil structural health monitoring. For example, a damage identifica-

tion approach leverages continuously extracted time series of AR coefficients from

strain data under moving train loads, using these coefficients as highly sensitive

damage features (Anastasia et al., 2023). These advancements underscore the

versatility of AR-based methods in integrating system identification with damage

detection, under complex loading conditions.

Subspace identification

Subspace identification methods were formalised into a unified framework in the

1990s by Van Overschee and De Moor (1996) and Viberg (1995), building on

foundational principles shared with realisation techniques (e.g., ERA) and IV

methods. Compared to maximum likelihood approaches, subspace methods of-

fer greater robustness and computational efficiency, making them well-suited for
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system identification (Reynders, 2012). These methods excel in identifying LTI

systems by directly extracting state-space models from input-output or output-

only data. They apply numerical techniques such as QR decomposition and SVD

to the response data, along with statistical properties like covariances and spectral

estimates, to extract modal parameters (Van Overschee & De Moor, 1996).

The state-space representation provides a mathematical framework for these

methods, described by:

xk+1 = Axk + Buk + wk,

yk = Cxk + Duk + vk (B.26)

where xk ∈ Rn is the state vector, uk ∈ Rm the input vector, yk ∈ Rr the output

vector, and wk and vk represent process and measurement noise, respectively

(Döhler, 2011). In deterministic cases where uk are known and wk, vk are equal

to zero, subspace methods identify the system matrices A and C directly from

data. In purely stochastic scenarios, where inputs are unknown, the algorithms

rely on correlations within the measured output data. A representation of the

different variations of the State-Space formulation can be viewed in Figure 2.8.

uk + yk

uk + yk + (wk & vk)

yk + (wk & vk)

Deterministic

Deterministic-

Stochastic

Stochastic

State-Space Estimates

Figure 2.8: Representation of state-space variations

Many scenarios, such as OMA, involve unknown or poorly determined input

loads, necessitating output-only subspace identification techniques where only the

yk is available and the input matrices B and D are assumed to be zero. In cases

where partial input data uk is observed, combined deterministic-stochastic sub-

space identification algorithms can be applied. For purely output-only scenarios,

stochastic subspace identification (SSI) methods are widely used, with two main

algorithms being: covariance-driven (SSI-COV) and data-driven (SSI-DATA).

Deterministic-stochastic subspace identification methods extend the applica-

bility of subspace techniques to systems where both input data and noise are

present. These algorithms balance robustness and efficiency, with extensions in-
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corporating IV to address challenges such as biases introduced by colored noise

(Verhaegen, 1993). Subspace algorithms such as the Past Input Multi-variable

Output Error State Space (PI-MOESP) method (Verahegen & Dewilde, 1992;

Verhaegen, 1993; Verhaegen & Dewilde, 1992) and Canonical Variate Analysis

(CVA) project the input-output data into Hankel matrices to isolate observabil-

ity matrices. Applying SVD to these Hankel matrices enables the extraction of

dominant system modes while filtering out noise. PI-MOESP, in particlular, fo-

cuses on the deterministic subsystem by projecting data onto the row space of

available inputs, ensuring robust identification even with uncorrelated stochastic

outputs (Reynders, 2012). This characteristic makes it highly effective for systems

with measurable inputs and noise. Studies, such as Bauer’s survey (Bauer, 2005),

have further analysed the statistical properties of subspace methods, providing

insights into their asymptotic behaviour and identifying open research questions

for improving accuracy and reliability.

In SSI-COV, the identification process begins with estimating covariance func-

tions of the measured outputs. A block Hankel matrix is constructed from these

covariances, and system matrices are extracted using SVD (Van Overschee &

De Moor, 1996). SSI-COV is robust in handling noise and unmeasured inputs by

modelling them as stochastic processes, making it particularly suitable for output-

only modal analysis (Peeters, 2000). Under specific assumptions about statistical

consistency and noise characteristics (Reynders, 2012, Assumptions 5.1–5.3), SSI-

COV provides robust and asymptotic estimates, ensuring accurate identification

of system dynamics (Döhler, 2011).

In SSI-DATA, raw time-series data is directly used to construct the block

Hankel matrix, bypassing the intermediate step of covariance estimation. This

approach projects the row space of future outputs onto the row space of past

outputs, removing deterministic state-space dynamics while reducing the influ-

ence of uncorrelated noise (Van Overschee & De Moor, 1996) under specific as-

sumptions(Reynders, 2012: Assumption 5.3). SSI-DATA is computationally more

efficient than SSI-COV, particularly for large datasets, making it advantageous

in practical engineering applications (Peeters & De Roeck, 1999). Advancements

in SSI-DATA address challenges such as positive realness using techniques like

Tikhonov regularisation, improving the robustness and accuracy of system matrix

estimates (Goethals, 2005; Goethals et al., 2003).

Both SSI-COV and SSI-DATA methods rely on a state-space model of the
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form:

xk+1 = Axk + wk,

yk = Cxk + vk (B.28)

where xk is the state vector, yk the output vector, and wk and vk represent process

and measurement noise, respectively (Döhler, 2011). The goal is to estimate the

system matrices A and C, which characterise the dynamics of the observed system.

SSI-COV and SSI-Data, which operate in an output-only setting, are partic-

ularly well-suited for civil engineering applications where controlled excitations

are often impractical (Peeters & De Roeck, 1999). Notably, SSI algorithms have

been proven consistent under conditions of nonstationary noise and varying system

dynamics (Benveniste & Mevel, 2007). Further developments, such as reference-

based SSI methods (Peeters & De Roeck, 1999; Reynders, 2012), make use of

overlapping reference sensors to improve computational efficiency and global mode

shape estimation. A pseudocde for SSI-COV is shown in Algorithm 1.

Literature has focused on enhancing the robustness and accuracy of SSI meth-

ods. For instance, advancements in stabilisation diagram techniques have been

proposed to automate the identification of true system modes and eliminate spu-

rious ones (Brincker et al., 2000). SSI methods have been successfully applied in

various engineering fields. In civil engineering, they are widely used for modal

analysis and SHM (Greś et al., 2021d, 2022b; Reynders, 2021).

Greś et al. (2023) proposed a statistical methodology for model order selection

in covariance-driven subspace identification. This method actively selects the dy-

namic signal subspace by statistically analysing the eigenvalue condition numbers

of the output covariance Hankel matrix. By separating the signal subspace from

the noise subspace using user-defined thresholds, the framework enhances robust-

ness in identifying system dynamics. The methodology demonstrated improved

damage detection on a medium-size wind turbine blade by increasing sensitivity

to small damage and reducing false alarms. In another study, Greś et al. (2021c)

addressed challenges in subspace identification caused by periodic inputs from

rotating machinery, such as those present in wind turbines.

Subspace algorithms have been successfully applied to identify state-space

models in systems ranging from industrial processes to complex civil engineer-

ing structures (Van Overschee & De Moor, 1996). Moreover, their ability to

integrate frequency- and time-domain data provides flexibility for diverse iden-

tification problems. Despite these strengths, challenges remain, particularly SSI

methods face challenges such as determining the optimal model order and ensuring
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adequate sensor placement (Döhler, 2011). The accuracy of the identified mod-

els heavily depends on data quality, presence of noise and the appropriateness of

the chosen parameters. Furthermore, SSI-COV may be computationally intensive

due to covariance estimation, while SSI-DATA requires careful handling of data

to prevent bias from noise and unmeasured inputs. Research now has turned to

the UQ within the SSI frameworks which will be reviewed in Section 2.4.

Peeters and Ventura (2003) conducted a benchmark study to evaluate various

system identification methods for extracting the dynamic properties of bridges.

The Z24-Bridge, a three-span reinforced concrete bridge located in Switzerland,

served as the case study. This structure was extensively monitored under various

environmental conditions before being demolished, making it an ideal benchmark

for modal analysis.

Figure 2.9: Longitudinal section and top view of the Z24-Bridge (Krämer et al.,
1999).

The study engaged excitation techniques, including ambient, free, and forced

vibrations. The study applied a diverse set of system identification methods rang-

ing from traditional techniques like the Peak-Picking and Complex Mode Indica-

tor Function to more advanced approaches such as SSI-COV and SSI-DATA. The

study was conducted by six different research teams and aimed to assess the rel-

ative performance of the system identification methods in accurately identifying

modal parameters such as natural frequencies, damping ratios, and mode shapes.

One key finding was the consistent reliability of subspace-based methods (SSI-

COV and SSI-DATA) in accurately capturing dynamic properties across all exci-

tation types. These methods were particularly robust in handling noisy data and
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closely spaced modes. Additionally, stabilisation diagrams allowed distinction of

physical modes from spurious modes effectively. Furthermore, the use of SVD

enhanced the accuracy and computational efficiency of these methods, illustrating

their suitability to large-scale civil engineering structures.

Simpler methods, like Peak-Picking and CMIF, were found to be more sensitive

to noise and required significant manual intervention, particularly in scenarios

involving ambient excitation. While these methods offered quick insights, their

limitations became evident in scenarios requiring high precision or dealing with

overlapping modes.

Another critical aspect of the study was the comparison of excitation tech-

niques. Forced vibration tests, such as shaker and drop-weight impacts, provided

clearer input-output relationships, enhancing the accuracy of traditional methods.

However, ambient excitation data, often encountered in operational conditions,

demonstrated the necessity of advanced techniques like SSI for reliable system

identification without the need for controlled inputs.

The tables presented below illustrate the comparative results of eigenfrequen-

cies, damping ratios, and MAC values extracted by various identification methods

and research teams using shaker and ambient data. Tables 2.1 and 2.2 report the

relative eigenfrequencies obtained from shaker and ambient data, highlighting the

consistency and variability across different methods, including PP, CMIF, refined

frequency domain polyreference (RFP), and subspace approaches. Similarly, Ta-

bles 2.3 and 2.4 detail the relative damping ratios, emphasising the sensitivity of

methods like SUBSP 2 to certain modes and the stability of results for CMIF

and PP approaches. Finally, Table 2.5 compares the MAC values between mode

shapes derived from shaker and ambient data, providing insights into the accuracy

of mode shape correlations across methods.

Table 2.1: Relative eigenfrequencies extracted by different identification methods
and research teams from the shaker data.

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

PP 3 1.000 1.000 1.000 1.000 1.008

CMIF 2 0.992 0.996 0.991 - 1.008

RFP 1 1.000 1.000 1.003 1.000 1.000

SUBSP 2 0.994 1.033 1.005 0.990 1.016

SUBSP 6 0.994 1.002 0.996 1.000 0.991
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Table 2.2: Relative eigenfrequencies extracted by different identification methods
and research teams from the ambient data.

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

PP 1 1.000 1.000 1.000 1.000 0.984

CMIF 2 0.998 0.998 1.006 1.000 1.016

RFP 1 1.000 1.000 0.997 - -

SUBSP 2 1.000 1.002 1.003 - 0.992

SUBSP 6 0.997 1.002 0.999 1.000 0.992

Table 2.3: Relative damping ratios extracted by different identification methods
and research teams from the shaker data.

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

PP 3 - - - - -

CMIF 2 1.004 1.355 1.881 - 1.637

RFP 1 0.877 0.273 0.428 0.672 0.896

SUBSP 2 1.228 4.94 0.673 1.052 1.218

SUBSP 6 1.208 1.000 1.159 1.140 0.887

Table 2.4: Relative damping ratios extracted by different identification methods
and research teams from the ambient data.

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

PP 1 - - - - -

CMIF 2 0.889 1.076 1.376 1.208 2.416

RFP 1 0.777 0.861 0.674 - -

SUBSP 2 1.104 2.284 1.451 - 0.964

SUBSP 6 1.348 1.067 1.095 1.151 1.189

Table 2.5: MAC values between mode shapes extracted from shaker data and
ambient data.

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

RFP-PP 1 0.993 0.882 0.801 - 0.698

RFP 1 0.962 0.846 0.469 - -

CMIF 2 0.983 0.964 0.891 - -

SUBSP 6 1.000 1.000 0.956 0.837 0.948

SUBSP 7 1.000 1.000 0.912 0.886 0.880
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Tables 2.1 and 2.2 indicate that most methods provide consistent eigenfre-

quency estimates across the shaker and ambient data, with minor deviations ob-

served in SUBSP 2 and CMIF 2 for certain modes. Damping ratios, shown in

Tables 2.3 and 2.4, exhibit greater variability across methods, particularly for

SUBSP 2, which shows high sensitivity in a specific mode.

Finally, Table 2.5 presents the MAC values between mode shapes extracted

from shaker and ambient data, with SUBSP methods achieving the highest corre-

lation, indicating strong consistency across excitation sources. In contrast, RFP-

based methods show lower MAC values, especially for higher modes, reflecting

challenges in capturing mode shape consistency. Overall, the results suggest that

subspace-based methods, particularly SUBSP 6 and 7, demonstrate robust perfor-

mance in capturing modal properties across different excitation scenarios, while

methods like CMIF exhibit variability in damping ratio estimation and mode

shape consistency. These findings underscore the importance of selecting appro-

priate identification techniques based on the target properties and operational

conditions.

Overall, the study highlighted the advantages of subspace-based methods for

SHM and dynamic property identification in large-scale civil structures. It also

underscored the importance of proper excitation and data processing techniques,

particularly for methods that rely on ambient vibrations. The benchmark findings

reinforced the need for robust identification frameworks in bridge monitoring and

paved the way for adopting subspace methods in similar applications.
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Algorithm 1 Covariance-Driven SSI for Modal Parameter Estimation (SSI-COV)

Require: Output data matrix y ∈ RN×r, block size p, block size q, maximum

model order nmax, sampling interval ∆t

Ensure: Identified frequencies, damping ratios, and mode shapes {fi, ξi, ϕi}nmax
i=0

Step 1: Form Covariance Hankel Matrices. Use the measured output y

to form a block covariance (Hankel) matrix T.

Step 2: Perform SVD on T.

[U, S, V T ] = SVD(T), U1 = U [:, 0:nmax].

Step 3: Construct Observability Matrix.

O = U1

√
S[0:nmax, 0:nmax], C = O[0:r, :].

Step 4: Partition O into Shifted Blocks.

Gup = O[0:(pr), :], Gdn = O[r:(qr), :].

Step 5: Identify System Matrix A.

A = G†
upGdn.

Step 6: Compute Continuous-Time Poles and Modal Parameters.

Avi = λivi, νi =
ln(λi)

∆t
, fi =

√
Re(νi)2 + Im(νi)2

2π
,

ξi =
− Re(νi)√

Re(νi)2 + Im(νi)2
× 100%, ϕi = Cvi.

Step 7: Return Modal Parameters. Return {fi, ξi, ϕi}nmax
i=0 .

2.3 Model updating methods

Physics-based models such as those reviewed in 2.1 for SPI are essential for simu-

lating complex systems that cannot be easily described analytically. In structural

engineering, these models are used to analyse forces, displacements, and vibra-

tion responses under various loading conditions, including operational, wind and

wave loads. However, the accuracy of these models is often limited by simpli-

fying assumptions, unknown system properties (e.g., material or geometric char-

acteristics), structural damage and uncertain boundary conditions can introduce
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significant errors.

To address these issues, model updating methods also known as finite ele-

ment model updating (FEMU), parameter estimation or parameter identification

techniques—have been developed (Friswell & Mottershead, 1995; Mottershead &

Friswell, 1993). These techniques aim to reconstruct or calibrate unknown sys-

tem properties using observed system behaviour, thereby improving the predictive

capability of the numerical models towards the actual expected behaviour. Es-

sentially, model updating methods are designed to address discrepancies between

the predicted behaviour of physics-based models and the observed behaviour of

real systems by calibrating model parameters using data from vibration tests on

actual structures. This process typically involves solving an inverse problem to

adjust some or all system matrices, such as mass, stiffness, and damping (Dhan-

dole & Modak, 2010). Once updated, these models can serve various purposes,

including structural design support, SHM, and damage assessment. For instance,

by incorporating experimentally derived natural frequencies and mode shapes,

an updated numerical model can act as a baseline for detecting and evaluating

structural changes over time. In this thesis, the focus is on updating physics-based

models. These models are based in fundamental physical laws and provide a frame-

work for predicting structural behaviour. Model updating is employed to refine

these models, ensuring that the estimated parameters not only fit the observed

data but also remain consistent with physical laws. This is particularly critical in

scenarios such as SPI, where accurate representation of soil-structure interaction

is necessary for assessing the stability and reliability of foundation systems.

The definition of model updating varies across the literature. Some authors

define it as an optimisation process wherein the deviation between the predicted

and measured structural behaviour is minimised (Schommer et al., 2017), while

others emphasise the gradual adjustment of numerical model parameters to better

match the actual structural response (Friswell & Mottershead, 1995; Mottershead

& Friswell, 1993). In this thesis, the model updating framework is not considered

merely as an optimisation procedure. Instead, it follows the definition proposed by

Mottershead and Friswell (1993), which describes model updating as the process

of modifying a numerical model to better reproduce the measured response of an

actual structure.

Friswell and Mottershead (1995) classify model updating methods into two

broad categories: (i) direct methods and (ii) iterative methods. Direct methods

reviewed in Section 2.3 utilise the equations of motion and modal orthogonality

properties to compute a closed-form solution (Sehgal & Kumar, 2016). While

these methods are effective in reproducing measured data, they are highly sensi-
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tive to noise and require accurate, spatially complete modal data, which is rarely

available for large-scale structures. Additionally, updated mass and stiffness ma-

trices generated through direct methods may not be Symmetric-Positive-Definite

(SPD), potentially rendering the model physically meaningless (Alkayem et al.,

2018; Sehgal & Kumar, 2016). These limitations often make direct methods un-

suitable for large-scale systems. Iterative approaches, on the other hand, address

these challenges by iteratively minimising an error function to update model pa-

rameters based on experimental results (Alkayem et al., 2018; Sehgal & Kumar,

2016).

In the context of uncertainty, iterative model updating methods can be broadly

classified into deterministic and stochastic approaches. The deterministic ap-

proaches does not account for uncertainties associated with the inferred parame-

ters. It calibrates a single model using a specific set of test data, yielding precise

parameter values and a single model prediction with maximum fidelity for that

dataset (Faes & Moens, 2020). These methods are systematic, benefiting from

decades of development and relatively straightforward implementation (Motter-

shead & Friswell, 1993). However, they face challenges such as high computational

costs during global optimisation of parameters, an inability to address uncertain-

ties in test data or model assumptions, and reliance on a single-point solution that

neglects alternative, equally plausible solutions. This reduces their robustness in

scenarios requiring uncertainty quantification (Simoen & Lombaert, 2016).

In contrast, stochastic approaches address both modelling and output uncer-

tainties. Unlike deterministic methods that treat model parameters as unknown-

but-fixed constants, stochastic model updating requires the model parameters to

be characterised by comprehensive descriptions, including constants, intervals,

and precise or imprecise probabilities (Bi et al., 2023). These methods provide

interval-based or probabilistic distributions for parameters, offering a comprehen-

sive representation of uncertainty in model predictions. In stochastic model updat-

ing, maximum accuracy regarding a single test is not the only objective; instead,

the focus is on guaranteeing the robustness of the model while acknowledging

inevitable output uncertainty and reducing modelling uncertainty in the experi-

mental process (Bi et al., 2023).

The classification of uncertainties into modelling and output uncertainties has

been widely accepted (Simoen et al., 2015). Modelling uncertainty arises from the

lack of knowledge, which is expected to be reduced by model updating. Output

uncertainty derives from the inherent randomness of the system and cannot be

reduced; however, an appropriate representation is still required by performing

UQ. Recent advancements in stochastic model updating have explored methods
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that combine stochastic system identification techniques with evolutionary op-

timisation algorithms to estimate model parameters under uncertainty. These

approaches leverage output-only data to identify modal parameters and use opti-

misation algorithms to calibrate numerical models accordingly (Azam et al., 2015;

Ebrahimian et al., 2018; Greś et al., 2021d; Ioakim et al., 2025). Such methods

have shown promise in handling large-scale structures and complex systems where

uncertainties play a significant role.

Direct methods

Direct model updating methods, established in the late 1970s, reconstruct sys-

tem matrices in single step (Friswell & Mottershead, 1995). Early works, such as

Baruch and Itzhack (1978), focused on correcting stiffness matrices under known

mass assumptions. Later, Berman (1979) and Berman and Nagy (1983) intro-

duced techniques to update mass and stiffness together, demonstrating applicabil-

ity to large models with incomplete modal data. Variations of these approaches

included updating of damping matrix (Friswell et al., 1998), ensuring structural

connectivity (Kabe, 1985), and accommodating measurement errors (Beattie &

Smith, 1992). Methods like the cross-model cross-mode (CMCM) (Hu et al., 2007)

performed simultaneous mass-stiffness updates but still required complete modal

data. More recently, Modak (2014) applied direct updating to vibro-acoustic

FEMs.

Despite these contributions, direct methods face challenges with noise sensi-

tivity, data completeness, and preserving physical interpretability (Alkayem et

al., 2018; Modak, 2014). Consequently, this thesis emphasises on iterative deter-

ministic and stochastic updating methods, which are better suited for uncertain,

incomplete data and complex, large-scale structures.

2.3.1 Iterative methods

Due to the aforementioned disadvantages and challenges of direct methods, they

don’t tend to find application in large-scale structures in practice. Instead, iter-

ative and indirect approaches have been developed to address these issues more

effectively (Augustyn et al., 2020; Friswell & Mottershead, 1995).

Sensitivity-based methods

Sensitivity-based methods iteratively adjust mass and stiffness matrices to min-

imise discrepancies between measured and analytical results. Collins et al. (1974)
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introduced an iterative approach employing Taylor series expansions to relate

eigenvalues and modal displacements, achieving effective convergence on bench-

mark models. Chen and Garba (1980) proposed a matrix perturbation method

for updating matrices without requiring explicit parameter relationships, and vali-

dated the method using data from the Viking Orbiter spacecraft. Kim et al. (1983)

extended this approach with a nonlinear penalty function, improving convergence

on a uniform cantilever beam.

Subsequent developments refined these techniques. Lin et al. (1995) advanced

the inverse eigen-sensitivity method for faster convergence with incomplete data,

while Nehete et al. (2015) introduced a coupled eigen-sensitivity method enhancing

accuracy in vibro-acoustic contexts. Sensitivity-based strategies have also proven

effective in practical scenarios—Sarvi et al. (2014) successfully detected damage

in dome models, and Saidou et al. Saidou Sanda et al. (2018) applied a similar

method for bridge damage detection under traffic-induced vibrations.

The sensitivity method is based on the linearisation of the generally non-

linear relationship between measurable outputs, such as natural frequencies, mode

shapes, or displacement responses, and the selected model parameters (θ) (Mot-

tershead et al., 2011). This method is developed from a Taylor series expansion

truncated after the linear term:

ϵz = zm − z(θ) ≈ ri −Gi(θ − θi), (2.12)

where the residual, ri, is defined at the i-th iteration as:

ri = zm − zi, (2.13)

such that the linearisation is carried out at θ = θi. The measured and ana-

lytically predicted outputs are denoted by zm and zi = z(θ), respectively. These

typically represent eigenfrequencies, mode shapes, or FRFs. The sensitivity ma-

trix Gi is defined as:

Gi =

[
∂zj
∂θk

]
θ=θi

, (2.14)

where j = 1, 2, . . . , q denotes the output data points and k = 1, 2, . . . , p is the

parameter index. The sensitivity matrix Gi is computed at the current value of

the complete vector of parameters θ = θi. The error, ϵz, is assumed to be small

for parameters θ in the proximity of θi.

At each iteration, Equation (2.14) is solved for:
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∆θi = θ − θi, (2.15)

and the model is then updated to give:

θi+1 = θi + ∆θi (2.16)

This procedure continues until consecutive estimates θi and θi+1 are sufficiently

converged.

Hansen et al. (2017) investigated a sensitivity-based approach for detecting

damage scenarios through numerical simulations and experimental validation. A

simple beam model with predefined mass perturbations was used in the numer-

ical study to evaluate the framework’s accuracy. Modal parameters, including

natural frequencies and mode shapes, were derived using FE modelling for both

undamaged and damaged states. An experimental validation was conducted on a

T-shaped steel structure shown in Figure 2.10 subjected to localised mass changes,

with modal parameters extracted via OMA under random excitation conditions.

Figure 2.10: T-shaped structure with sensor locations and orientations, illustrating
the physical test setup and sensor configuration (Hansen et al., 2017).

Response surface method (RSM)

The response surface method (RSM) provides an iterative approach to FEM up-

dating by replacing computationally expensive FEMs with surrogate response sur-

faces, enabling efficient calculations without requiring FEM evaluations at ev-

ery iteration. In RSM, updating parameters serve as inputs for constructing

n-dimensional response surfaces, while model responses are treated as outputs.
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These surrogate models minimise an error function to approximate the relationship

between parameters and responses, ultimately yielding updated model parameters

(Sehgal & Kumar, 2016).

Ren and Chen (2010) demonstrated the effectiveness of RSM in updating FEMs

for civil engineering structures. Using a quadratic polynomial surrogate, they ap-

proximated the relationship between structural parameters and natural frequen-

cies, significantly reducing computational costs while maintaining convergence.

The method was validated on a simulated beam and a full-size precast box girder

bridge, showcasing rapid convergence and efficiency. However, the accuracy of the

approach was found to depend on the quality of the surrogate response surface. De

Munck et al. (2008) applied RSM to calculate fuzzy envelope FRFs for structures

with uncertain properties, achieving a reduction in computational costs by a fac-

tor of 50 compared to traditional methods. Their approach enabled scalable fuzzy

analysis for large-scale models, such as the GARTEUR benchmark aircraft, but

similarly highlighted the importance of accurately capturing nonlinear parameter

interactions for reliable results.

Bayesian-based methods

Bayesian theory-based methods rely on Bayes’ theorem, which incorporates a

probability distribution to reflect the uncertainties in FEM parameters (Alkayem

et al., 2018). These methods offer significant advantages over sensitivity-based ap-

proaches, including the ability to provide statistical confidence intervals, flexibility

in parameter selection, and resistance to overfitting (Marwala, 2010). Sohn and

Law (1997), introduced a Bayesian framework for damage detection in multistorey

frame structures. They demonstrated success under conditions like low noise lev-

els and limited DOFs but noted computational demands and non-uniqueness of

solutions due to similar modal responses. The approach was later extended to

experimental data from reinforced concrete bridge columns (Sohn & Law, 2000)

and plate-type structures such as ship hulls (Kurata et al., 2012), validating its ap-

plicability but highlighting challenges such as modelling uncertainties and loading

effects.

Lye et al. (2021) provided a tutorial on Bayesian model updating, focusing

on its application in engineering contexts. The paper explored three advanced

sampling techniques—Markov Chain Monte Carlo (MCMC), Transitional Markov

Chain Monte Carlo (TMCMC), and Sequential Monte Carlo (SMC)—and their

effectiveness in sampling from posterior distributions. These techniques were ap-
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plied to case studies, ranging from a simple one-dimensional problem to an 18-

dimensional parameter estimation challenge, to assess their computational perfor-

mance and robustness.

The findings highlighted distinct trade-offs between the methods. TMCMC

demonstrated superior robustness, consistently sampling from complex posteri-

ors, including high-dimensional cases, but required longer computation times due

to the need to generate samples for every transitional distribution. In contrast,

MCMC and SMC offered faster computation but exhibited limitations in handling

more challenging posterior distributions.

Kamariotis et al. (2023) proposed a Bayesian decision analysis framework to

quantify the economic benefits of vibration-based SHM systems. By leveraging

the Value of SHM (VoSHM) metric, the framework evaluates life-cycle cost savings

compared to traditional inspection-based maintenance strategies. The approach

integrates probabilistic models of deterioration with SHM outputs, incorporat-

ing environmental variability, such as temperature-dependent changes in material

properties, to enhance prediction accuracy. Gradual and shock deterioration are

modelled stochastically, with particle filtering used to update structural reliability

and deterioration states in real time, enabling adaptive inspection and mainte-

nance planning.

Numerical investigations validated the framework on a two-span bridge model

subject to environmental variability and scour-induced deterioration. Continuous

SHM proved effective in reducing costs and improving decision-making. Case stud-

ies demonstrated its versatility, showing benefits in scenarios of gradual, observed,

and unobserved shock deterioration, as well as in near real-time diagnostics to

avoid unnecessary closures after extreme events. While robust, the framework as-

sumes uninterrupted SHM functionality and does not account for potential system

failures or modelling errors, providing an upper limit to the economic benefits of

SHM adoption.

Bayesian inference also plays a critical role in UQ, as elaborated by Simoen

and Lombaert (2016), who emphasised its capability to address both modelling

and output uncertainties.

Optimisation-based updating methods

As previously mentioned, physics-based models are numerical representations

of physical phenomena. In this context, we consider the numerical models dis-

cussed in Chapter 2.1 that are able to represent SPI modelling. Simoen et al.
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(2015) explained that these models describe the relationship between the input

and output variables of a system, encapsulated by their model or transfer oper-

ator, GM. The transfer operator is defined using a finite set of numerical model

parameters, θM , allowing the system’s output response, y, to be expressed gener-

ally as:

y = GM(x, θM) (2.17)

for any input vector x. The outputs of these models include vibration data such

as accelerations, displacements, or strains. It is often more practical to work with

outputs that are independent of the input x, such as FRFs or modal properties,

since the input is frequently unknown and contains its own errors in real-world

applications. To identify the modal properties, it is essential to apply the system

identification methods reviewed in Section 2.2.

It is essential to note that as the parameter vector θM varies over a domain

DM ⊆ RNM , the transfer operator GM(θM) represents not a single model but

rather a set or class of models denoted as MM . This means that each specific

choice of θM corresponds to a unique model within this class, capturing different

possible behaviours of the SPI system. In stochastic updating methods, this set

of models embodies the uncertainties and variability in the model parameters,

allowing us to represent and propagate uncertainty through the model. Conversely,

in deterministic updating, the transfer operator GM corresponds to a single model

M which holds a specific θM , focusing on finding the best-fit parameters that

minimise the discrepancy between the model predictions and observed data.

Selecting an appropriate set of model parameters θM is a critical and nontrivial

task. The parameters must be capable of accurately representing the unknown

physical properties of the actual system and should be sensitive to changes in the

outputs of interest, such as modal properties or dynamic responses. For example,

parameters like mobilised mass, soil stiffness, and the pile’s length significantly

influence the vibrational behaviour of the SPI system and therefore should be

included.

By carefully selecting a finite set of significant parameters, we can create a

robust model that is both accurate and efficient for iterative model updating. This

updated model can then be used to monitor the soil-pile system (diagnosis) or to

predict the behaviour of the soil-pile system under various conditions (prognosis).

Parameter estimation involves determining an optimal set of model parameters

θ∗M that minimises the misfit between experimental data, denoted as d̄, and the

model predictions y = GM(θM). This discrepancy is represented by the objective
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F or cost function L, making the parameter estimation problem equivalent to the

following optimisation problem:

θ∗M = arg min
θM∈DM

F
(
GM(θM), d̄

)
= arg min

θM∈DM

F (θM) (2.18)

Here, the latter equality acknowledges that for a given model class and a fixed

set of experimental data d̄, the objective function F depends solely on the model

parameters θM . The optimisation problem may include constraints based on the

nature of the parameter estimation problem and any prior information about the

model parameters. For instance, inequality constraints can be applied when it is

known that parameters should lie within certain ranges, such as physical limits of

material properties.

The objective function F is often formulated in terms of residuals, with the

most commonly used indicators being the structural dynamic properties—natural

frequencies and mode shapes. These properties are reliable indicators of a struc-

ture’s behaviour, as any changes in the structure typically alter its stiffness (or

flexibility), leading to shifts in its dynamic properties.

In the context of SPI, the vibration data d̄ might consist of measured accelera-

tions along the pile obtained from field tests, laboratory experiments or operating

structures, leading to identified natural frequencies or mode shapes. The model

predictions GM(θM) compute these quantities based on the current parameter es-

timates. The objective function F aims to quantify the discrepancy between the

identified and computed output. A common formulation of the objective function

F is the sum of squared differences between the identified and predicted values:

F (θM) =
N∑
i=1

(
yi − d̄i

)2
(2.19)

where N is the number of measured data points, yi are the model predictions,

and d̄i are the corresponding experimental data.

The optimisation seeks the parameter values that minimise F (θM), effectively

reducing the discrepancy between the model and the data. Constraints are es-

sential to ensure that the solution is physically meaningful, for example, in this

PhD thesis, the mobilised mass and stiffness, as well as the embedded length, need

to be positive numbers. Additionally, the scour depth must be positive but also

smaller than the embedded length of the pile.

By solving this optimisation problem, we obtain an updated set of model pa-

rameters θ∗M that provide the best fit to the experimental data within the specified
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constraints. This calibrated model enhances the accuracy of the predictions and

can be used for diagnostic purposes, such as identifying changes in the system’s

properties over time, or for prognostic purposes, such as predicting the system’s

response to future loading conditions.

One of the earliest optimisation-based model updating methods was developed

by Levin and Lieven (1998), who introduced two FEM updating approaches: one

based on the Genetic Algorithm (GA) and the other on the Simulated Annealing

(SA) algorithm. These methods were applied to model updating problems us-

ing measured data and various objective functions. However, their sensitivity to

parameter selection and computational inefficiency limited their applicability to

large-scale structures. Similarly, Marwala (2002) employed a GA to minimise dis-

crepancies between measured and FEM-predicted data, demonstrating its ability

to identify global minima but with the drawback of high computational cost.

Hao and Xia (2002) applied these approaches and combined GA with SA in

a hybrid algorithm for damage detection in beam-type structures. Using static

response displacements and natural frequencies from FEM software, the method

was validated through case studies of damaged cantilever beams. This hybrid ap-

proach proved more computationally efficient than standard GAs and was effective

under varying boundary conditions, even with incomplete or sparse data.

Another contribution was with the development of Particle Swarm Optimisa-

tion (PSO) by Kennedy and Eberhart (1995) which is widely used in SHM, more

recently applied to SHM by Gui et al. (2017) for damage detection. Their study

compared the performance of PSO, GA, and Grid Search (GS) algorithms in opti-

mising the penalty parameters and Gaussian kernel function parameters of support

vector machines (SVMs). Using a benchmark dataset with 17 damage scenarios,

they demonstrated that all three optimisation-based SVM methods significantly

improved sensitivity, accuracy, and effectiveness over conventional methods. Al-

though the GA-based SVM achieved higher average accuracy than PSO, PSO

was noted for its computational efficiency, particularly when dealing with larger

datasets.

Optimisation algorithms

This section reviews two evolutionary optimisation algorithms employed in Chap-

ters 4, 5 to solve the optimisation problem described in Section 2.3.1 by viewing the

key concepts and the underlying philosophy of the algorithms. Detailed review

of the optimisation algorithms is available by Igel et al. (2007) for the covari-

ance matrix adaptation evolution strategy (CMA-ES) and by Das and Suganthan
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(2010) for the differential evolution (DE). Key concepts and reference example

pseudo-codes can be found in Algorithms 2–4 to aid basic understanding.

Covariance matrix adaptation evolution strategy (CMA-ES)

Igel et al. (2007) provide an in-depth exploration of the CMA-ES, a robust algo-

rithm for solving complex optimisation problems. The algorithm generates can-

didate solutions using multivariate normal distributions and iteratively adapts its

covariance matrix to enhance search efficiency. This dynamic adaptation allows

the method to explore the search space effectively and converge to optimal solu-

tions.

The algorithm employs a parent solution that is iteratively updated by gener-

ating λ new candidate solutions. The parent solution is replaced if a candidate

outperforms it. To improve the search process, the step size σcmaes and covariance

matrix Ccmaes are adjusted at each iteration. The step size adaptation depends on

the success rate (psucc) relative to a predefined target (ptargetsucc ), with adjustments

ensuring stability through a damping parameter, d. The update rule for the step

size is expressed as:

σcmaes = σcmaes · exp

(
1

d
· psucc − ptargetsucc

1 − ptargetsucc

)
.

The covariance matrix Ccmaes is iteratively updated to reflect the evolving

search distribution. This process incorporates an evolution path, pc, which sta-

bilises the search by smoothing successive updates. To prevent over-scaling, up-

dates to the evolution path are paused when the smoothed success rate exceeds a

threshold (pthresh). The covariance matrix is updated as a weighted combination

of the previous matrix and the outer product of the evolution path, maintaining

a balance between exploration and convergence.

This iterative adaptation of both σcmaes and Ccmaes underpins the CMA-ES’s

effectiveness in navigating complex search spaces and achieving high optimisation

performance.
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Algorithm 2 CMA-ES

Require: Stopping criterion, population size λ

Initialise generation count g = 0, parent solution a
(g)
parent

while the stopping criterion is not met do

a
(g+1)
parent = a

(g)
parent

for k = 1, . . . , λ do

x
(g+1)
k ∼ N (x

(g)
parent, σ

(g)2
cmaesC(g))

end for

updateStepSize(a
(g+1)
parent,

λ
(g+1)
succ

λ
)

if f(x
(g+1)
1:λ ) ≤ f(x

(g)
parent) then

x
(g+1)
parent = x

(g+1)
1:λ

updateCovariance(a
(g+1)
parent,

x
(g+1)
parent−x

(g)
parent

σ
(g)
cmaes,parent

)

end if

Increment generation count: g = g + 1

end while

Algorithm 3 updateStepSize

procedure updateStepSize(a = [x, psucc, σcmaes, pc, C], psucc)
psucc = (1 − cp)psucc + cppsucc

σcmaes = σcmaes · exp
(

1
d
· psucc−p

target
succ

1−ptargetsucc

)
end procedure

CMA-ES has been effectively applied to parameter estimation problems in

diverse domains, demonstrating its robustness and adaptability in model updating.

For instance, Mao et al. (2022) used an auxiliary model-based CMA-ES (AM-

CMA) algorithm to estimate parameters in Hammerstein nonlinear systems with

colored noise, achieving high efficiency and accuracy. Additionally, Aghmasheh

et al. (2017) employed CMA-ES in the identification of parameters for gray box

models used in power transformer analysis. These applications highlight CMA-

ES capacity to handle complex, nonlinear systems, offering robust solutions in

scenarios where traditional methods fall short.

Differential evolution (DE)

Das and Suganthan (2010) provides a comprehensive review of the DE algorithm,

a population-based optimisation method. This version of DE algorithm with bi-

nomial crossover operates in four main steps: initialisation, mutation, crossover,

and selection.

The algorithm begins by defining its control parameters, which include the

scale factor (FDE), the crossover rate (Cr), the population size (NP ), and the
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initial generation count (G = 0). A population of NP individuals is randomly

initialised within the search space, where each individual is represented as a vector

in D-dimensional space.

In the mutation step, a donor vector is generated for each individual by com-

bining three randomly selected vectors from the population. The donor vector is

computed as:

Ṽi,G = Xr1,G + F · (Xr2,G −Xr3,G),

where r1, r2, and r3 are distinct indices randomly chosen from the population such

that r1 ̸= r2 ̸= r3 ̸= i. This step introduces diversity and promotes exploration

of the search space.

In the crossover step, a trial vector is created by combining elements of the

donor vector and the target vector. This process is governed by the crossover rate

(Cr) and is formalised as:

uj,i,G =

vj,i,G, if rand(0, 1) ≤ Cr or j = jrand,

xj,i,G, otherwise.

This ensures that trial vectors retain variability while incorporating features from

the original target vector.

The selection step compares the fitness of the trial vector with that of the

target vector. If the trial vector performs better or equally, it replaces the target

vector in the next generation:

Xi,G+1 =

Ũi,G, if f(Ũi,G) ≤ f(Xi,G),

Xi,G, otherwise.

The algorithm iterates through these steps until a stopping criterion, such as a

maximum number of generations or achieving a desired fitness level, is met. This

iterative process allows DE to balance exploration and exploitation of the search

space effectively.
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Algorithm 4 Differential Evolution Algorithm with Binomial Crossover

Require: Scale factor F , crossover rate Cr, population size NP , stopping crite-

rion

Initialise generation count G = 0

Randomly initialise a population PG = {X1,G,X2,G, . . . ,XNP,G}, where

Xi,G = [x1,i,G, x2,i,G, . . . , xD,i,G]

and each individual is uniformly distributed in the range [Xmin,Xmax].

while the stopping criterion is not met do

for i = 1, . . . , NP do

Mutation Step: Generate a donor vector Ṽi,G = [v1,i,G, . . . , vD,i,G] us-

ing:

Ṽi,G = Xr1,G + F · (Xr2,G −Xr3,G),

where r1, r2, r3 are distinct random indices chosen from {1, . . . , NP} such that

r1 ̸= r2 ̸= r3 ̸= i.

Crossover Step: Generate a trial vector Ũi,G = [u1,i,G, . . . , uD,i,G]:

uj,i,G =

vj,i,G, if rand(0, 1) ≤ Cr or j = jrand

xj,i,G, otherwise.

Selection Step: Evaluate the trial vector f(Ũi,G):

if f(Ũi,G) ≤ f(Xi,G) then

Xi,G+1 = Ũi,G

else

Xi,G+1 = Xi,G

end if

end for

Increment generation count: G = G+ 1

end while

DE has proven effective in handling complex optimisation problems in struc-

tural health monitoring and model updating. For instance, Liu et al. (2021b)

employed DE in a hybrid framework for localising low-velocity impacts on com-

posite plate structures. By optimising multi-domain feature extraction and impact

localisation, the approach demonstrated high accuracy and feasibility in challeng-

ing scenarios. Similarly, Liu and Mao (2017) applied DE to a nonprobabilistic UQ

enhanced damage diagnosis method, addressing uncertainties in real-world SHM

applications. The DE algorithm converted variable fluctuations into uncertainty
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intervals for damage-sensitive features, successfully detecting and localising dam-

ages in numerical and laboratory-scale models. These studies underscore DE’s

robustness in optimising complex, high-dimensional problems in structural analy-

sis and monitoring.

2.3.2 Frequency response function (FRF)-based model up-

dating

FRFs effectively capture the dynamic properties of structures, ensuring that

the physics-based model accurately reproduces the observed behaviour. By mak-

ing use of FRFs directly, the model updating approach minimises the errors asso-

ciated with modal fitting and eliminates the necessity for direct alignment between

predicted and measured mode shapes (D’Ambrogio & Zobel, 1994; Ereiz et al.,

2022; Friswell & Mottershead, 1995). This attribute is particularly beneficial for

structures with densely distributed modes, where modal fitting can become error-

prone (Shadan et al., 2016, 2018; Wu et al., 2020) as well as for structures that

have only a limited number of sensors not adequate for building the mode shapes

appropriately. Furthermore, one of the primary advantages of using FRF data

over modal data is that it negates the need to extract modal parameters from

measurements, which can introduce additional errors due to the modal identifi-

cation process (Lee & Shin, 2002). FRF-based model updating has been applied

across various approaches, including sensitivity, Bayesian, and optimisation-based

model updating methods. In this section, we will review literature where it has

been utilised within these three frameworks.

Extensive research has been conducted to develop and refine FRF-based model

updating methods. Imregun et al. (1995) proposed a sensitivity-based approach

using simulated experimental frequency data, initially applied to a free-free beam

with known modelling inaccuracies. The study examined challenges such as the

impact of noisy and incomplete data, coordinate mismatches, and numerical sta-

bility. The method was later extended to update proportional damping matrices

using experimentally measured FRFs, addressing issues like convergence sensitiv-

ity and noise-induced instability.

Lin and Ewins (1990) incorporated experimental FRF datasets, enabling si-

multaneous updating of damping, mass, and stiffness matrices. The method was

validated on the GARTEUR structure, demonstrating accuracy for both propor-

tional and non-proportional damping systems, with potential for application in

more complex structures (Lin & Zhu, 2006). Later, Lin and Zhu (2007) intro-
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duced a method utilising FRFs under base excitation to update FEMs. This

technique effectively identified mass and stiffness errors in multi-beam structures,

maintaining accuracy even with measurement noise up to 3%.

Pradhan and Modak (2012) proposed an FRF-based method specifically tar-

geting the damping matrix. By minimising the discrepancy between measured and

model FRFs, this approach independently updates the damping matrix, thereby

preventing the inadvertent transfer of mass and stiffness errors into the damping

parameters. The method demonstrated robust performance in fixed-fixed beam

structures under various data conditions, including complete, incomplete, and

noisy datasets. Further advancements in sensitivity-based FRF model updating

have been explored to enhance parameter selection and updating efficiency.

Fathi et al. (2020) introduced a Bayesian model updating framework utilising

incomplete FRF data, specifically targeting the structural integrity monitoring of

jacket platforms. Instead of traditional model reduction or data expansion meth-

ods, this framework increases the number of data points in the objective function

by incorporating FRF data across different excitation frequencies. Experimental

validation on a scaled 2D fixed platform revealed the method’s effectiveness in

damage detection and model updating. Additionally, simulations involving noisy

data, FEM uncertainties, and incomplete measurements demonstrated the frame-

work’s resilience to uncertainties and noise levels.

In deterministic optimisation-based model updating methods more recently,

Wu et al. (2018) introduced an iterative model updating approach that uses FRF

data to estimate mobilised soil stiffness and mass profiles in beam-Winkler models.

This method iteratively adjusted the soil mass and stiffness parameters to align

the model’s FRF with target data, successfully addressing uncertainties in soil-pile

systems. Numerical simulations demonstrated the approach’s reliability across di-

verse pile geometries, soil densities, and stiffness distributions. Although noise

and inaccuracies in damping specification introduced errors, the method consis-

tently converged toward unique and accurate solutions. However, the study noted

potential challenges when extending the method to real piles due to uncertainties

in geometrical and material properties and discrepancies between numerical ref-

erence models and real-world pile behaviour. Figure 2.11, demonstrates how the

framework is able to converge to the target model FRF iteratively.
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Figure 2.11: Comparison of numerical FRF and target FRF throughout the iter-
ative convergence process (Wu et al., 2018).

Building upon Wu’s approach, Prendergast et al. (2019) validated the FRF-

based model updating method using experimental pile data. The study targeted

laterally impacted piles with varying length-to-diameter (L/D) ratios and incor-

porated five subgrade reaction formulations to initialise soil stiffness parameters.

Experimental results showed the method’s robustness in estimating mobilised soil

stiffness and mass across different initial conditions. However, variations in FRF

peak heights due to experimental noise and impact intensity introduced inconsis-

tencies in the results. The study also highlighted the influence of the active soil

depth, noting that stiffness and mass contributions beyond 20% of the pile’s em-

bedded length had limited impact on the first vibration mode. Challenges such as

signal processing errors and limitations in higher mode evaluations were identified,

suggesting the need for longer time signals and refined experimental protocols.

Ioakim and Prendergast (2024) further advanced the FRF-based model up-

dating methodology by developing a two-stage iterative approach to estimate the

pile’s embedded length, as well as the soil stiffness and mass profiles of the SPI

system, detailed in Chapter 3.

These advancements underline the growing importance of FRF-based optimi-

sation methods in tackling SPI challenges, offering robust tools for damage detec-

tion and dynamic parameter estimation in complex engineering systems. However,

addressing limitations related to experimental noise, higher mode effects, and non-

linear SPI remains a critical area for future research.
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2.3.3 Modal assurance criterion (MAC)-based model up-

dating

The modal assurance criterion (MAC) serves as an important tool in model

updating, offering a quantitative measure of the consistency between modal vectors

derived from experimental data and those predicted by numerical models. The

MAC emerged from the necessity to assess the quality of experimental modal

vectors obtained from measured FRFs (Allemang, 2003).

Mathematically, the MAC between two modal vectors v(p) and v(q) is defined

in Equation (2.20) (Peeters & De Roeck, 2001).

MAC(p, q) =
|v(p)Tv(q)|2

(v(p)Tv(p))(v(q)Tv(q))
(2.20)

where v(p)T denotes the conjugate transpose of the modal vector v(p). By def-

inition, the MAC value ranges from 0 to 1, where 0 indicates no consistent corre-

spondence and 1 signifies perfect linear correspondence between the modal vectors.

This normalisation ensures that the MAC is bounded, facilitating straightforward

interpretation of modal consistency. A graphical representation of a three DOF

system can be viewed in Figure (2.12)
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Figure 2.12: Graphical representation of a MAC for a 3 DOF system.

Unlike the orthogonality checks prevalent in the late 1970s, which combined
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errors from analytical model development, model reduction, and modal vector es-

timation into a single indicator, the MAC provides a more isolated and reliable

measure of modal consistency. The normalisation by the magnitudes of the modal

vectors ensures that the MAC is a bounded scalar quantity between 0 and 1,

avoiding the confusion associated with unbounded or non-normalised measures.

Secondly, as a least squares-based measure, the MAC is particularly sensitive to

significant discrepancies between modal vectors, effectively minimising large er-

rors while remaining relatively insensitive to minor variations. This characteristic

enhances the robustness of the model updating process by mitigating the impact

of noise and estimation errors inherent in FRF measurements (Allemang, 2003).

In practical applications, researchers have combined natural frequencies and

mode shapes using the MAC for damage detection. Zhao and Zhang (2012) utilised

changes in natural frequencies and mode shapes for structural damage identifica-

tion. They employed the MAC to analyse the sensitivity of mode shapes between

different orders, selecting mode shapes with high sensitivities to damage to cal-

culate a damage index that improved localisation and quantification accuracy.

Numerical validation on a six-span planar truss beam demonstrated the method’s

effectiveness in detecting single and multiple damage locations and quantifying

the extent of damage.

Radzieński et al. (2011) compared six modal-based damage detection methods,

including the MAC, COMAC, and wavelet transformation (WT). While gener-

alised FD and WT indicators successfully located damage in noisy environments,

the MAC and others struggled. To address these limitations, they proposed a

hybrid damage indicator combining changes in natural frequencies and a single

mode shape, demonstrating its effectiveness for localising damage in beam-like

structures. Capecchi et al. (2016) integrated natural frequencies, mode shapes,

and modal curvature squares (MCS) for damage identification in a parabolic arch.

By incorporating MCS into the objective function alongside frequency and dis-

placement differences, they improved the convexity of the optimisation process

and enhanced convergence. This approach effectively pre-localised damage and

reduced the ill-conditioning of the inverse problem, demonstrating the utility of

combining modal parameters for accurate damage detection in complex structural

forms.

Maes et al. (2022) used the MAC and natural frequencies to construct an objec-

tive function for damage detection in a railway bridge in Leuven, Belgium. This

study emphasised the importance of eliminating the influence of environmental

variations on natural frequencies obtained from long-term monitoring campaigns.

To achieve this, two black-box modelling techniques were explored without the
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use of physics-based modelling: linear regression and robust principal component

analysis (PCA). The MAC was used alongside natural frequencies to evaluate

the alignment of modal vectors, ensuring an effective representation of structural

dynamics in the objective function. The integration of MAC with frequencies

allowed for improved sensitivity to structural changes, facilitating the identifi-

cation of small modifications introduced during retrofitting or other structural

alterations.

2.4 Uncertainty quantification (UQ)

As already mentioned model updating inherently involves solving inverse prob-

lems, where the objective is to determine the model parameters that produce a

given output by inverting the standard forward relationship between these param-

eters and the system response. Optimisation-based parameter estimation aims to

find the optimal parameter set that minimises discrepancies between computed

and measured data. However, this inverse problem is frequently ill-posed and

ill-conditioned, implying that small errors in measured data or modelling assump-

tions can lead to large uncertainties in the estimated parameters. Such sensitivity

underscores the importance of uncertainty quantification (UQ) in the model up-

dating process (Friswell & Mottershead, 1995; Simoen et al., 2015; Steenackers &

Guillaume, 2006).

UQ provides a framework for evaluating how uncertainties in inputs (e.g., mea-

surements, model assumptions, and environmental conditions) and outputs (e.g.,

measurement noise) propagate through the identification process and impact final

estimates of model parameters, predicted responses, and reliability indices. Over

the past decades, diverse UQ methodologies have been developed and are broadly

categorised into probabilistic, non-probabilistic, and hybrid approaches. Proba-

bilistic methods use statistical models to derive confidence bounds or probability

distributions for parameter estimates (Simoen et al., 2015). Non-probabilistic

methods employ frameworks like interval analysis, evidence theory, and fuzzy

sets, which avoid strict assumptions about underlying probability distributions.

Hybrid approaches combine elements of both, enabling the comprehensive treat-

ment of complex and heterogeneous uncertainty sources (Simoen et al., 2015).

These methods collectively enhance the robustness and reliability of structural

model updating and damage assessment.
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UQ of modal parameters

By looking at non-probabilistic methods in system identification, SSI approaches

have laid the theoretical groundwork for understanding estimation uncertain-

ties, showing that under suitable assumptions (e.g., zero-mean white noise dis-

turbances, sufficiently rich inputs), parameter estimates converge in a statistical

sense. Early foundational research provided asymptotic covariance expressions for

the estimated state-space parameters (Bauer & Jansson, 2000; Chiuso & Picci,

2004; Peeters, 2000; Verhaegen, 1993; Viberg et al., 1997), demonstrating how the

conditioning of inputs and system properties affects the accuracy of the identi-

fied model. While these studies focused on theoretical systems, the translation of

uncertainty from state-space parameters to modal parameters was initially less de-

veloped. Addressing this gap, subsequent works introduced methods to propagate

the uncertainties of the identified system matrices directly into modal parameters.

For instance, Pintelon et al. (2007) addressed a critical gap in OMA by propos-

ing a methodology to calculate uncertainty bounds on estimated modal parame-

ters, which were previously unavailable. Their approach was demonstrated through

both simulations and real measurement examples, such as the OMA of a bridge.

Reynders et al. (2008) developed a methodology to estimate variance errors from

a single ambient vibration test using the first-order sensitivity of modal parameter

estimates to perturbations in the measured output-only data. Additionally, they

proposed a bias removal procedure employing a stabilisation diagram to enhance

the accuracy of the modal parameters. Both studies demonstrated the effective-

ness of these approaches through simulations and real measurement examples,

highlighting the practicality of using first-order sensitivity methods for UQ in

modal analysis.

For a broader discussion of variance computation in SSI algorithms, includ-

ing both output-only and input/output methods, Mellinger et al. (2016) intro-

duced new schemes for estimating the variances of frequencies, damping ratios,

and mode shapes. Their methodology covers four subspace algorithms, consider-

ing the stochastic nature of input data in input/output methods. Monte Carlo

simulations validated the accuracy of the proposed variance estimations, and the

algorithms were applied to real-world vibration tests, such as the in-flight mon-

itoring of aircraft, demonstrating their robustness and applicability in practical

scenarios. More recently, Reynders (2021) presented a methodology for assessing

the accuracy of system matrices identified using SSI methods, specifically focusing

on the data-driven implementation.

Greś et al. (2022a) provided a comprehensive review and practical framework
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for uncertainty propagation in subspace-based system identification methods. The

study specifically addressed the estimation of covariance related to the state-space

matrices B and D, which are associated with input measurements. Using explicit

first-order perturbation-based schemes, they developed covariance expressions for

the B and D matrices and applied them to quantify the uncertainty of the result-

ing parametric transfer function. Their proposed approach was validated through

simulations of a mechanical system and laboratory experiments on a plate, of-

fering valuable insights into uncertainty quantification for both output-only and

input/output subspace methods.

In another study, Greś et al. (2022b) validated the statistical Delta method for

UQ in the context of several input/output and output-only subspace identification

algorithms. Their study focused on assessing the accuracy of Delta method-based

approximations of uncertainty in modal parameters and modal indicators, using

statistical distance measures to compare these approximations against results from

Monte Carlo simulations. The research included experimental data from a wind

turbine blade tested in a laboratory environment. The findings demonstrated that

the Delta method provides a reliable characterisation of the distributions of modal

parameter estimates, including eigenfrequencies, damping ratios, and MAC, based

solely on data from a single dataset.

Recent research has extended UQ frameworks to the MAC and Modal Phase

Collinearity (MPC), which are used for evaluating mode shape consistency and

complexity, respectively (Greś et al., 2021a, 2021b). For the MAC, UQ addresses

the challenges posed by its bounded nature between 0 and 1. When the MAC is

close to 1, indicating nearly identical mode shapes, its distribution deviates from

Gaussian, requiring a scaled and shifted the quadratic χ2 approximation for ac-

curate confidence intervals. This framework reduces the risk of misinterpreting

spurious modes or missing subtle structural changes. Similarly, UQ for the MPC,

designed to assess whether mode shapes are real or complex, provides a Gaussian

approximation for its distribution when the corresponding mode shapes are com-

plex. Validation through Monte Carlo simulations and experimental studies, such

as those on the S101 Bridge and offshore structures, demonstrates the reliability

of these UQ methods in monitoring structural health and identifying damage.

Greś et al. (2021d) proposed a series of refinements to traditional modal-based

objective functions for structural model updating. Their work addressed uncer-

tainties in both natural frequency and mode shape estimates. By integrating

statistical uncertainties, they improved the robustness of the objective function

used in optimisation tasks. Here, the work of Greś et al. (2021b) and Greś et al.

(2021d) is reviewed, which is relevant to Chapters 4 and 5; the complete study
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can be accessed in the original papers.

Originally, the parameter-based objective function depended on normalised

differences between model-predicted and measured natural frequencies and MAC

values. This standard approach was subsequently enriched by incorporating con-

fidence intervals for the natural frequency estimates (Wahab & De Roeck, 1999).

The normalised difference between the estimated natural frequency f̂i and the

model’s natural frequency f θi , under a certain parameter θ, is defined in Equa-

tion (2.21).

∆θ
fi

= 1 − f θi

f̂i
. (2.21)

For mode shape comparisons, the MAC is employed to assess the consistency

between the identified mode shape ϕ̂i (estimated from measurements that corre-

spond to the true but unknown system parameter θ∗) and the physics-based model

mode shape ψθi . When θ matches the true system parameter θ∗, the MAC value

approaches unity as the data length N → ∞, indicating highly consistent mode

shape estimates. Deviations of the MAC value from unity signal discrepancies

between measured and model-predicted mode shapes. This difference from unity

can be expressed in Equation (2.22).

∆θ
MACi

= 1 − MAC(ϕ̂i, ψ
θ
i ). (2.22)

The traditional objective function quantifies discrepancies between measured

and model-generated modal parameters (natural frequencies and mode shapes).

Combining the terms ∆θ
fi

and ∆θ
MACi

, the overall objective function F (θ) was

formulated to represent the total discrepancy between measured and numerical

modal parameters across all modes:

F (θ) =
m∑
i=1

∆θ
fi

+
m∑
i=1

∆θ
MACi

, (2.23)

where m is the number of considered modes. This objective function maps the

parameter space into a multidimensional objective space, providing a quantitative

measure of how closely the model parameters match the measurements.

To further enhance this framework, the study developed an objective function

that accounts for uncertainties in both natural frequencies and MAC estimates. By

using a second-order Taylor expansion, the bounded and asymmetric distribution

of MAC values was accurately modelled. This improved statistical integration of

MAC into the optimisation process ensures that the objective function better rep-
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resents the true discrepancies, while also acknowledging the inherent uncertainty

in modal parameter estimation.

For SSI methods, the modal parameter estimates (natural frequencies and

mode shapes) have been shown to be asymptotically Gaussian (Bauer et al., 1999;

Mellinger et al., 2016). As stated in Equation (2.24):

f̂i ≈ N
(
fi,∗,

1

N
σ2
fi

)
, and

[
ℜ(ϕ̂i)

ℑ(ϕ̂i)

]
≈ N

([
ℜ(ϕi,∗)

ℑ(ϕi,∗)

]
,

1

N
Σϕi

)
, (2.24)

where ℜ(·) and ℑ(·) denote the real and imaginary parts of a complex variable,

N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ, and

σ2
fi

∈ R, Σϕi ∈ R2r×2r are the asymptotic covariances of f̂i and ϕ̂i, respectively.

The computation of these covariance estimates is performed using the SSI methods

reviewed in Section 2.2.2.

Confidence intervals for natural frequency estimates are derived under the as-

sumption that these estimates are approximately Gaussian. Such intervals provide

a credible range around the computed estimates. For instance, a confidence level

γ = 0.9544 corresponds to the ±2σ bounds. Thus, for the ith natural frequency:

cfi =
[
fmin
i , fmax

i

]
, (2.25)

with

fmin
i = f̂i − 2 · 1√

N
σfi , fmax

i = f̂i + 2 · 1√
N
σfi . (2.26)

Here, f̂i is the estimated frequency, σfi is its standard deviation, and N is

the data length. If the model-predicted frequency f θi lies within cfi , then θ is

statistically close to the true system parameter θ∗. Otherwise, f θi lying outside cfi
indicates a significant discrepancy. This concept is illustrated in Figure 2.13.
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Figure 2.13: Confidence intervals for frequency estimates

In addition to frequency uncertainties, the study also incorporated MAC un-

certainties into the stopping criteria of the objective function. This ensures that

the optimisation process can terminate efficiently while still maintaining statistical

rigor. Unlike frequencies, for which Gaussian confidence intervals are straightfor-

ward, MAC estimates are more complex due to their bounded nature and the

possibility of non-Gaussian behaviour as MAC approaches unity.

When the MAC is not close to unity, first-order approximations and Gaussian-

based UQ for MAC can be effectively applied (Mellinger et al., 2016; Reynders et

al., 2008). However, in model updating problems where the goal is to achieve high

consistency between measured and numerical mode shapes, MAC(ϕ̂i, ψ
θ
i ) → 1

as N → ∞. Under these idealised conditions, the MAC distribution no longer

resembles a Gaussian form.

To address this challenge, higher-order approximations are required. Greś et al.

(2021b) developed a framework that uses the quadratic form of the MAC function

and propagates the covariance of mode shapes into the MAC distribution. By

employing first-order and, when necessary, second-order Taylor expansions, the

approach captures the asymptotic behaviour of MAC as it approaches unity.

The uncertainty in the mode shapes (ϕ̂ − ϕ∗)Re can be expressed by Equa-

tion (2.24).

Since ϕ̂ and ψ̂ represent mode shapes estimated from different datasets, their

perturbations are independent. The MAC depends on these Gaussian variables,

and the first-order delta method linearises the MAC around (ϕ∗, ψ∗) in Equa-

tion (2.27).

MAC(ϕ̂, ψ̂) ≈ MAC(ϕ∗, ψ∗) + JMAC
ϕ∗,ψ∗ X̂, (2.27)

71



where X̂ combines the real and imaginary parts of (ϕ̂− ϕ∗) and (ψ̂ − ψ∗).

When the MAC approaches unity, the linear approximation breaks down be-

cause JMAC
ϕ∗

→ 0 as MAC(ϕ∗, ψ∗) → 1. In this scenario, a second-order Taylor

expansion is applied:

MAC(ϕ̂, ψ∗) ≈ MAC(ϕ∗, ψ∗) + JMAC
ϕ∗ (ϕ̂− ϕ∗)Re

+1
2
(ϕ̂− ϕ∗)

⊤
Re H

MAC
ϕ∗ (ϕ̂− ϕ∗)Re, (2.28)

where HMAC
ϕ∗

is the Hessian matrix representing second derivatives and MAC(ϕ∗, ψ∗),

JMAC
ϕ∗

(ϕ̂ − ϕ∗)Re have values of 1 and 0 respectively. This second-order term ac-

counts for the curvature of the MAC function near unity, yielding a more accurate

statistical description of the MAC distribution in such regimes.

The methodology outlined in Section 4 builds upon the approaches presented

in (Greś et al., 2021b; Greś et al., 2021d). These methodologies were adapted and

tailored for SPI modelling, enabling the estimation of the studied parameters.

2.5 Limitations of the state of the art

The review in Chapter 2 highlights several key limitations that continue to hin-

der reliable simulation and monitoring of soil-pile systems. This thesis addresses

these challenges by integrating physics-based modelling with data-driven system

identification and optimisation frameworks. The most critical limitations are sum-

marised below.

Static soil-property assumptions: Small-strain stiffness profiles obtained

from field tests such as CPT or MASW are typically incorporated directly into

Winkler-type formulations. However, soil properties, particularly stiffness, damp-

ing, and mobilised mass, evolve under the influence of loading history, cyclic degra-

dation, ageing, and scour. Chapters 3 to 5 demonstrate that iterative calibration

of a digital twin using measured vibration data can capture these effects in situ.

Dependency on known embedded length: Conventional physics-based

models require the embedded pile length to be specified in advance, and any

mis-specification introduces significant bias in the computed modal properties.

Chapters 3 and 4 propose deterministic (FRF-based) and stochastic (CMA-ES-

based) frameworks that estimate soil parameters and embedded length from either

impact or ambient vibration data, eliminating the need for guided-wave testing or

physical exposure.
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Unknown input forces: Many pile length estimation techniques require

knowledge of both input and output signals, which is unrealistic in most opera-

tional monitoring scenarios. Input forces are often unknown or cannot be measured

directly in situ. Chapter 4 addresses this limitation by introducing an output-only

model updating framework that estimates embedded length, soil stiffness, and soil

mass profiles using stochastic system identification and evolutionary optimisation.

This significantly enhances the practical applicability of model updating by re-

moving the reliance on known excitations.

Limitations in uncertainty quantification: Most system identification ap-

plications provide limited treatment of uncertainty, often neglecting the variability

in estimated modal parameters. Chapter 4 addresses this limitation by incorpo-

rating covariance information from subspace identification directly into both the

objective function and the stopping criteria of the optimisation framework.

Ambiguity in scour detection: Natural-frequency-based alarms are widely

used for scour detection but exhibit low specificity. Changes in soil stiffness and

mass, or boundary conditions can also induce frequency shifts. Chapter 5 intro-

duces three model updating frameworks (one deterministic and two stochastic)

that incorporate mode shapes or FRFs to estimate scour depth with improved

reliability.

Taken together, these limitations motivate the hybrid model updating ap-

proaches developed throughout this thesis.
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3.1 Introduction

Dynamic soil-structure interaction is an important field in civil engineering with

applications in earthquake engineering, structural dynamics, and structural health

monitoring (SHM). There is an ongoing need for the development of numerical

methods that can accurately estimate soil-pile interaction (SPI) parameters to

model these systems. In this work, a Frequency Response Function (FRF)-based

model updating method is developed, which can estimate the embedded length of

foundation piles, in addition to the mobilised soil mass and stiffness, when a lateral

impact load is applied. Knowledge of the embedded length of piles is essential for

modelling foundation behaviour, and may not be readily available from as-built

construction information. For example, if developing reference damage models or

digital twins of foundation structures, complete knowledge of the pile geometry

is required. This study develops a two-stage iterative model updating method,

which utilises FRF data obtained at the pile’s head as a result of an applied lat-

eral impact load. The method uses information from the 1st mode of vibration to

estimate the mobilised soil mass and stiffness, and subsequently uses information

from the 2nd mode of vibration to estimate the embedded length. To appraise the

approach, impact tests are numerically simulated on a number of ‘piles’ (numerical

spring-beam systems) with varying length/diameter (L/D) ratios to derive FRFs,

whereby the models have known length and dynamic properties. These FRFs are

then used as targets in the model updating approach, which iteratively varies the

properties of a numerical model of a pile to obtain a match in the FRF data, and

subsequently estimates the mobilised mass, stiffness, and embedded length. The

results of the analyses illustrate that by minimising the difference in the first and

second FRF peaks between the estimated target and numerical model FRF, the

method can accurately estimate the mass, stiffness and embedded length proper-

ties of the test ‘piles’. The performance of the approach against numerical case

applications is assessed in this research work, as the properties of these systems are

known in advance, facilitating quantification of the errors and performance. The

developed method requires further validation through full-scale testing to confirm

its effectiveness in real-world scenarios.

In the current chapter, a two-stage iterative model updating approach for esti-

mating the embedded length of piles is presented. The study builds upon a method

originally developed by Wu et al. (2018) which estimates the soil mass and stiff-

ness of soil-pile systems using the first mode of vibration. The novel contribution

of this work is the incorporation of both the first and second modes of vibration

in the FRF, enabling simultaneous estimation of the embedded length, soil mass,
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and soil stiffness. The proposed method is validated against numerically simulated

pile models to assess its convergence behaviour and overall accuracy. The results

indicate that the approach can reliably recover the SPI parameters with minimal

instances of false convergence.

The remainder of the chapter is outlined as follows: Section 3.2 presents the

numerical modelling used to simulate the piles and obtain dynamic responses;

Section 3.3 presents the FRF-based model updating approach for estimating pile

embedment lengths; and Section 3.4 demonstrates the approach against numeri-

cally generated example cases. Finally, Section 3.5 presents the conclusions of the

study.

3.2 Numerical modelling

In this section, the numerical model used as the basis of the FRF-based model

updating approach is described. A model of a linear Winkler-beam pile foundation

is programmed in Python, and the general parameters are described in this section.

Specific values are provided for the target (test case) models in Section 3.4.1, which

are used in the analyses to appraise the performance at estimating the embedded

lengths of a range of piles. The model is composed of 6 degree-of-freedom (DOF)

Euler-Bernoulli beam elements to represent the pile, and a series of 2-DOF springs

(and masses) to represent the soil, and therefore transforms the 3-D continuous

problem of a pile foundation in soil into a simpler 1-D discrete problem.

For the embedded portion of the pile, the 2-DOF spring elements are attached

to the lateral (x-direction) DOF of each embedded pile node, and the other end

of each spring is fixed to represent the connection with the ground. The base

of the pile is constrained in the vertical z-direction as axial deformations are not

considered. A schematic of the pile model is shown in Figure 3.1.
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Figure 3.1: Schematic of pile model, (a) physical model, (b) numerical represen-
tation.

The pile model is assumed to be embedded into a single layer of cohesionless

sand, and the groundwater table is assumed to be well below the tip of the pile

(i.e. pore pressures are not simulated). To capture the flexural rigidity of the

pile to which the springs are attached, Biot (1937), Okeagu and Abdel-Sayed

Okeagu and Abdel-Sayed, 1984, and Vesić Vesić, 1961 (among others) provided

relationships between the subgrade reaction modulus, and the material properties

in the elastic problem, to calculate the coefficient of subgrade reaction KS(z). In

this chapter, the relation provided by Vesić (1961) is used, which matches the

maximum displacements of the infinite beam to compute the subgrade reaction

KS(z) (Equation (2.3)).

KS(z) =
0.65ES(z)

D(1 − ν2s )

12

√
ES(z)D4

EI
(2.3)

where ES(z) is the small-strain Young’s modulus of the soil elements (N m−2),

νs is the soil’s Poisson’s ratio, D is the width of the pile (m), and E and I are the

pile’s Young’s modulus (N m−2) and moment of inertia (m4), respectively. The

small-strain Young’s modulus of the soil is calculated in Equation (3.1).
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ES(z) = 2GS(z)(1 + νs) (3.1)

where GS(z) is the shear modulus of the sand (N m−2). Since KS(z) is in N

m−3 and the springs allow stiffness in one dimension (N m−1), the stiffness of the

ith spring element is given in Equation (3.2).

ki = KS(z)DiLi (3.2)

where Di and Li are the ith pile element’s diameter and tributary length, and

KS(z) is defined in Equation (2.3).

The pile nodes in the embedded portion are attached to the lateral springs

while those above the ground level are free. The mass of soil contributing to the

dynamic motion is simulated by adding lumped masses to the soil springs. The

amount of mobilised soil mass is unknown and so is represented as the pile mass

multiplied by a weighting factor and distributed among the active springs. The

active springs are assumed to be those predominately contributing to the first

mode of vibration and are assumed to be distributed along the upper quarter of

the embedded length (Prendergast et al., 2019; Wu et al., 2018). This is because

masses at lower depths have limited influence on the first mode shape and are

therefore omitted (Wu et al., 2018). This is a result of laterally impacting the

pile head whereby the mobilised soil mass at depth is assumed negligible and

only near-surface soil is mobilised, which is a simplifying approximation. The ith

spring’s mass is defined as a function of the pile’s mass in Equation (3.3).

Mi =
MPile

Q
(3.3)

where MPile is the pile’s mass and Q is the number of springs in the top quarter

of the pile.

The pile model used in the current application is assumed to be open-ended,

and therefore the presence of soil inside the pile requires consideration. The contri-

bution of the internal soil within the pile to the dynamic response is incorporated

by changing the effective cross-sectional area of the pile elements up to the plug

length to consider the influence of the internal soil density. This ensures that the

internal soil adds mass to the system but does not affect the pile stiffness, in keep-

ing with the physics of real piles. It should be noted that the method is equally

applicable to closed-ended piles.

A dynamic impact load is simulated at the pile’s head by applying a Dirac-delta

type load to the lateral DOF at the pile head node, and the resulting acceleration
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is derived. This is representative of an impact test from a modal hammer to

excite the structure, and is undertaken to remain in keeping with the physics

of testing real pile structures. Numerically, to obtain the acceleration data, the

dynamic response of the pile (spring-beam system) can be obtained by solving

Equation (3.4).

Mθq̈(t) + Dθq̇(t) + Kθq(t) = u(t) (3.4)

where Mθ, Dθ, and Kθ ∈ Rn2×n2 denote the mass, damping, and stiffness

matrices of the system, respectively, and θ represents the system parameters. The

vector q(t) describes the displacement profile at each timestep, while vectors u(t),

q̇(t), and q̈(t) represent the external loading, velocity, and acceleration profiles as

functions of time (t). Such problems that evolve in time, with all their boundary

conditions provided at t0 = 0, are often posed as initial value problems. Therefore,

predictions of a system’s behaviour can be conducted if knowledge of the conditions

at t0 = 0 is available.

The computation of eigenvalues and eigenvectors for Equation (3.4) in the

undamped case is discussed in Section B.1.1, while the derivation for Rayleigh

damping is covered in Section B.1.2. For cases where the assumption of propor-

tional damping is not valid, the eigenvalue problem requires a more generalised

approach involving the reformulation of the governing equation into a first-order

state-space system. A detailed derivation and discussion of this approach are

provided in Section B.1.3.

A special case of proportional damping where the damping matrix Dθ is defined

using the two-term Rayleigh damping formulation (Clough & Penzien, 1975; Liu &

Gorman, 1995), as a linear combination of the mass and stiffness matrices, where

two damping coefficients are specified as shown in Equation (3.5).

Dθ = α0Mθ + α1Kθ, (3.5)

where the coefficients α0 and α1 are the proportionality constants for the mass

and stiffness, respectively, and are calculated in Equation (3.6):

[
α0

α1

]
=

2ω0 ω1

ω2
1 − ω2

0

[
ω1 −ω0

1/ω1 1/ω0

][
ξ0

ξ1

]
, (3.6)

where ξ0 and ξ1 are the Rayleigh damping ratios for the first and second modes,

and ω0 and ω1 are the first and second circular frequencies (rad s−1). The imple-

mentation of a Rayleigh damping model may deviate in behaviour from that of
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real pile systems, and is intended to represent a basic model for energy dissipation.

This is deemed sufficiently accurate for small-strain soil-pile applications (Prender-

gast & Gavin, 2016), whereas for larger nonlinear SPI, hysteretic damping would

also potentially be present.

To solve Equation (3.4), the Newmark-Beta method (Bathe, 2006; Newmark,

1959) is implemented, which is a direct solver for second-order differential equa-

tions. The Newmark-Beta method is capable of solving the dynamic ordinary

differential equation in Equation (3.4) without the need to separate it into a cou-

pled pair of first-order differential equations.

Equations (3.7) and (3.8) were derived for the acceleration, velocity, and dis-

placement profiles:

q̇r+1 = q̇r + ∆t(1 − γ)q̈r + ∆tγq̈r+1 (3.7)

qr+1 = qr + ∆tq̇r +
(1 − 2β)(∆t)2

2
q̈r + β(∆t)2q̈r+1 (3.8)

The scalars γ and β represent the effect of the acceleration in calculating the

velocity and displacement, respectively, and can be defined to gain integration

accuracy and stability. When γ = 1
2

and β = 1
6
, the linear acceleration method is

implemented. Newmark originally proposed, as an unconditionally stable scheme,

the constant-average-acceleration method or trapezoidal scheme, where γ = 1
2

and

β = 1
4
. For this particular problem, the unconditionally stable scheme is selected.

To optimise the performance of the solver, the SPD structural matrices were

converted into the compressed sparse row (CSR) format. Because the Mθ, Dθ,

and Kθ matrices of Equation (3.4) are highly sparse, meaning that most of their

elements are zero, it is beneficial to store them in a sparse format. Sparse tech-

niques essentially store only the non-zero elements of such matrices along with

the indices required to perform matrix operations efficiently (Tewarson & Tewar-

son, 1973). Although axial deformations are not considered in the final numerical

implementation, the initial formulation includes axial degrees of freedom to allow

future extensibility. These degrees of freedom are systematically excluded dur-

ing the matrix assembly and conversion to CSR format, ensuring that only the

lateral and rotational components relevant to this study are retained. Further

details about the CSR format, along with an illustrative example, are presented

in Section B.2.1.

The acceleration profile obtained from Equations (3.7) and (3.8) is analysed

using a Fast Fourier Transform (FFT) to calculate the frequency content, and a
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peak detection algorithm is used to detect the first n frequencies of the system,

where n is the number of desired frequencies.

The FRF can then be calculated in Equation (3.9) directly, by taking the ratio

for the FFT of the output acceleration to that of the input force, as would be

required in tests on real structures.

FRF =
F(q̈(t))

F(u(t))
(3.9)

3.3 FRF-based model updating to estimate em-

bedded length

The formulation of an iterative model updating approach to ascertain the mo-

bilised soil mass and stiffness profiles from an impact test on a pile using the

FRF of the 1st mode of vibration was presented by Wu et al. (2018), for simu-

lated numerical target models, and later expanded in an experimental application

by Prendergast et al. (2019). The method works by updating the properties of

a numerical model of a pile until the numerical model’s FRF matches that of a

target model (either a numerically simulated target model or a real experimental

pile), using an iterative procedure based on linear projection. The target models

developed in Wu et al. (2018) used numerically generated data, so it was known a

priori what the stiffness and mass properties were, and this information was used

to ascertain the model performance. For application on real piles, as per Prender-

gast et al. (2019), the only available data are the output acceleration and loading

data of the piles, and certain pile geometry information, which are used to update

the numerical model to estimate mobilised soil mass and stiffnesses through the

generation of a target FRF. The properties are updated by means of estimating

weighting factors to be applied to estimated soil mass and stiffness profiles acting

on the piles. A hypothesised stiffness profile, estimated from geotechnical site

data for example, is used as the initial estimate, and this is weighted by a factor

wk(stiffness weighting) in the updating process until the numerical model matches

the response of the target system. Similarly, soil mass as a proportion of pile mass

is assumed distributed along a certain length of the pile, which is weighted by a

factor wm (mass weighting) in the updating process. Note, the method estimates

the weightings to be applied to profiles of stiffness and mass, wk and wm, rather

than the stiffness and mass profiles directly. Readers are referred to Wu et al.

(2018) for more information on the approach implementing stage one of the two-

stage method. The two-stage method for estimating the pile length is described
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in detail below.

The previously developed model (Wu et al., 2018) is capable of estimating the

soil mass and stiffness for a linear mechanical system with linear material proper-

ties (small-strain criterion for Winkler springs). A pseudocode representation of

the model updating approach developed to estimate the mobilised soil mass and

stiffness acting along a pile is shown in Algorithm 5

Algorithm 5 Mass and Stiffness Weighting Calculation - Stage 1 of The Model
Updating Method

Require: Initial numerical model model0,1, target acceleration and loading data,

convergence criteria em, ek

Ensure: Optimised mass and stiffness weightings wm,wk

Initialise j = 0

Compute FRF for the target model

Compute FRF for the initial numerical model model0,1

Calculate rmj
and rkj using Equations (3.10)–(3.12)

while |rmj
− 1| > em or |rkj − 1| > ek do

j = j + 1

Compute FRF for the j-th numerical model modelj,1

Calculate rmj
and rkj using Equations (3.10)–(3.12)

Update wmj+1
,wkj+1

using linear projection (Mode 1)

end while

return wmj
,wkj

By enhancing the method originally proposed by Wu et al. (2018), and lever-

aging the first two modes of vibration, it is hypothesised that the pile embedded

length can be estimated in addition to the mobilised mass and stiffness. The

graphical representation of this enhanced methodology is depicted in Algorithm 6.
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Algorithm 6 Pile Length Estimation - Stage 2 of The Model Updating Method

Require: Initial pile length L0, convergence criteria eF , ef , initial numerical

model model0,2, and initial step size dL

Ensure: Optimised pile length Li

Initialise i = 0

Calculate wm and wk for model0,2 using model updating (Stage 1)

Compute FRF for modeli,2

Calculate rFi
and rfi using Equations (3.16)–(3.17)

while |rFi
− 1| > eF or |rfi − 1| > ef do

if i = 0 then

Li+1 = L0 + dL

else

Li+1 = Li−Li−1

ri−ri−1
(1 − ri) + Li

end if

i = i+ 1

Calculate wm and wk for modeli,2 using model updating (Stage 1)

Calculate rFi
and rfi using Equations (3.16)–(3.17)

end while

return Li

The process works as follows. A target FRF is formulated from the target

model’s acceleration and load data in Equation (3.9), assumed to have been ob-

tained from impact testing a target structure. For the cases in this chapter, this

data is numerically generated so that the operational mass, stiffness, and length

are known. The FRF data from the target model is used in the method to update

the properties of a numerical model to estimate the target properties of interest

(mass, stiffness, and length).

The model updating approach for estimating the embedded pile length operates

in two stages. In Stage 1, the soil mass and stiffness profiles are estimated utilising

the first mode of vibration in the FRF only. As elaborated above, it is the soil mass

and stiffness weightings that are estimated, which are applied to initial guesses

of soil mass and stiffness profiles, informed from geotechnical data such as Cone

Penetration Tests (CPT).

Stage 2 subsequently employs the second mode of vibration from the FRF to

refine the embedded pile length estimate. The process is iterated in several steps

and is described herein. It is assumed that a user of the method would know

certain physical and mechanical properties of the target pile, such as diameter

and wall thickness, but the embedded length and mobilised soil mass and stiffness
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are assumed unknown or uncertain.

An initial length guess L0 is user-defined, and initial values for the springs’

mass and stiffness are calculated using Equations (3.3) and (3.2). The initial

stiffness profile guess should be informed by geotechnical estimates using sources

such as CPT data, where the shape of the stiffness profile is known, but the actual

magnitudes of stiffness might be incorrect due to testing and model transformation

errors.

The initial mass profile guess is considered as some multiple of the pile mass

acting as an added soil mass, as there are limited methods in the literature to

propose soil mass that contributes to dynamic motion in SPI. This process results

in an initial guess numerical model, denoted as model0,1, where initial mass and

stiffness weightings wm0 and wk0 are applied to the postulated soil stiffness and

mass profiles. Subsequently, the initial FRF estimate, FRF0, is obtained by solving

the dynamic equation in Equation (3.4).

In the notation model0,1, the first index (0) indicates that this is the initial

model, while the second index (1) specifies whether this is part of Stage 1 or Stage

2 of the model updating approach.

For the initial guess model, model0,1, the mass and stiffness profiles are ini-

tialised by selecting wm0 from a uniform distribution ranging between 0 and 30

and multiplying it by the distributed pile mass as defined in Equation (3.3). wk0

is set equal to 1 times the postulated stiffness profile, following the methodology

of Wu et al. (2018), assumed to be available by correlation to site data such as

CPTs or multi-channel analysis of surface waves (Vasconcelos et al., 2018). The

range [0, 30] for the mass weighting is arbitrary. The developed iterative model

updating algorithm aims to minimise the difference between the FRF peak of the

first mode of vibration for both the numerical and target models, by updating

the mass and stiffness weightings, yielding the converged stiffness and mass pro-

file estimates. Peak detection is automated using the SciPy library (Virtanen et

al., 2020), which identifies numerical indices of local FRF peaks based on defined

parameters and neighbouring values.

For the initial guess model, the relationships between mass ratio, frequency

ratio, and stiffness ratio between the initial guess and target models are formalised

in Equations (3.10), (3.11), and (3.12), respectively. The criteria for obtaining the

converged mass and stiffness weighting estimates are specified in Equation (3.13).

rmj
=

Ftarget1

Fnumericalj,1

(3.10)
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rωj
=
fnumericalj,1

ftarget1
(3.11)

rkj = r2ωj
× rmj

(3.12)

|rmj
− 1| < em and |rkj − 1| < ek (3.13)

The convergence criteria are established with tolerances em and ek, both set

to 0.001 for mass and stiffness, respectively. Should the initial guess ratios fail

to meet these criteria, a subsequent model, referred to as model1,1, is generated.

This model retains the geometric and mechanical properties of the initial model

(model0,1) but incorporates new mass and stiffness weightings, wm1 and wk1 . These

new weightings are selected from a predefined range and employed to recalculate

the mass, frequency, and stiffness ratios using Equations (3.10), (3.11), and (3.12).

Based on these recalculated ratios, and employing linear projection techniques, a

new set of mass and stiffness weightings for the next iteration model, denoted as

model2,1, are calculated using Equations (3.14) and (3.15).

wmj+1
=

(wmj
− wmj−1

)

(rmj
− rmj−1

)
(1 − rmj

) + wmj
(3.14)

wkj+1
=

(wkj − wkj−1
)

(rkj − rkj−1
)

(1 − rkj) + wkj (3.15)

In the iterative process, j represents the current iteration number. The algo-

rithm continues to iterate until the first numerical FRF peak (mode 1) aligns with

the first target FRF peak, causing the mass and stiffness ratios (rm and rk) to fall

within the predefined tolerances. Upon convergence, the algorithm yields a set

of mass and stiffness weightings wm and wk that correspond to a model with the

initially specified length (L0). In this converged model, the numerical and target

first FRF peaks essentially match.

It is important to note that while a matching FRF peak is an indicator of

model convergence, it does not guarantee the accuracy of the embedded length

guess. Consequently, the process advances to Stage 2, which involves examining

the FRF peak of the second mode of vibration. Here, the goal is to align the second

FRF peak between the numerical and target models (in addition to the first peak),

following the algorithm detailed in Algorithm 6. For this stage, an initial guess

model (model0,2) is adopted, inheriting the properties of the converged model from

Stage 1 (initial length L0 and converged mass and stiffness weightings wmj
and
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wkj). The corresponding ratios for the second FRF peak are then calculated using

Equations (3.16) and (3.17), as shown in Algorithm 6.

rFi
=
Fnumericali,2

Ftarget2

(3.16)

rfi =
fnumericali,2

ftarget2
(3.17)

In this context, rF and rf represent the second FRF and frequency peak ratios

between the numerical and target models, respectively. The variable i marks the

current iteration in the updating process for the second mode of vibration. The

terms Fnumericali,2 and Ftarget2 refer to the amplitudes of the second mode’s FRF

peak for the numerical and target models, respectively. Similarly, fnumericali,2 and

ftarget2 indicate the corresponding peak frequencies.

Initially, the ratios rF0 and rf0 are computed for a given pile length L0 and are

compared against tolerances eF and ef . If these ratios do not meet the specified

tolerances, it suggests that the initial length L0 is incorrect. An arbitrary length

L1 is then considered for the first iteration, and the method goes back to Stage 1.

The mass and stiffness weightings wm0 and wk0 , originally calculated for the

pile length L0, are employed as the starting values for the model1,2. A new set of

weightings, wm1 and wk1 , is calculated using the first mode of vibration, following

the procedure previously described for Stage 1. With these two models in place,

linear projection is then implemented for the second mode of vibration in Stage

2, employing Equation (3.18) to compute the new length estimate Li+1.

Li+1 =
(Li − Li−1)

(ri − ri−1)
(1 − ri) + Li (3.18)

where

r = max
(
|rFi

− rFi−1
|, |rfi − rfi−1

|
)

The process repeats iteratively between Stage 1 and 2, whereby the previously

converged weightings wmi−1
and wki−1

are applied to the new model, with Li =

Li+1 and a new pair of weightings wmi
and wki is calculated by matching the

1st mode of vibration. This process is repeated until the ratios rFi
and rfi fall

within the tolerance defined for the 2nd mode of vibration, indicating that the

correct length is estimated. By focusing on the maximum difference, the algorithm

prioritises the correction of the largest error in each iteration. This approach

tends to drive the solution more efficiently towards a state where both errors are

minimised. Once both the first and second FRFs match, the method ceases and
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the correct weightings for mass and stiffness, as well as the correct length, are

assumed satisfied.

3.4 Numerical demonstration

The two-stage model updating method to estimate the embedded length of piles is

appraised in this section. Firstly, an analysis is conducted to investigate the effect

of the embedded length on the lateral dynamic response of piles, as well as the

error introduced in the first-mode updating method proposed by Wu et al. (2018)

when an assumed embedded length different from the actual length is used in the

numerical model. Secondly, the two-stage approach is tested against a range of

target pile models to ascertain its performance at successfully estimating the em-

bedded length. It is important to note that in these synthetic tests, the updating

model is identical to the target model, and only the soil mass, soil stiffness, and

embedded length are treated as unknowns. This isolates the influence of those

parameters and avoids complications related to uncertain boundary conditions,

which would arise in real field applications. For efficient execution of the repeated

length influence analysis, the code was parallelised using joblib (Varoquaux &

Grisel, 2009), which is a thread-based parallelism library. This parallelised code

was then executed on a High-Performance Computer (HPC).

3.4.1 Development of target models

The performance of the model updating method to estimate pile lengths is assessed

by applying it to a number of numerically-generated target models. Specific values

for the various parameters for generating the target models are provided herein.

These target models are effectively pseudo-experimental datasets, whereby the

operating mass and stiffness, and pile lengths, of these models are varied and an

FRF is generated, which is used as the target in the model updating method to

ascertain if convergence occurs. The target models are created using the procedure

from Section 3.2 and have varied geometrical, physical, and mechanical properties.

In order to investigate the application to both flexible and rigid piles, two pile di-

ameters (D) are studied with annular cross-section and wall thickness (t0) (D = 1

m, t0 = 0.025 m, and D = 4 m, t0 = 0.1 m) and three embedded lengths (L1 = 10

m, L1 = 20 m, and L1 = 30 m). The models are generated by discretising the pile

into a finite number of pile elements, each taken arbitrarily as a length of 0.1 m,

and for all target models the pile length (L0) is defined as the embedded length

of the pile with a 1 m stick-up (L0 = L1 + 1 m). These properties were chosen to
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model a range of foundation geometries encountered across various applications,

including simulating monopiles commonly used as offshore wind turbine founda-

tions. These types of foundations are a potentially significant area of application

for the developed method, and therefore it is of interest to assess the relevance to

such practical, real-world scenarios.

A total of 22 target models are created, and their FRFs are obtained for a

given simulated impact load. A 10 kN impact is applied on the pile head in each

model for an arbitrarily short time and the pile model is then left to oscillate freely

for a period of 50 seconds, where the timestep (∆t) of the analysis is predefined as

0.005 seconds. The springs’ stiffnesses in target models 1–12 (see Table 3.1) follow

a constant profile with depth (analogous to an over-consolidated soil deposit)

and models 12–16 follow a parabolic profile (analogous to normally-consolidated

soil deposit). The soil’s shear modulus for the constant stiffness profile is taken

as 50 MPa, and for the parabolic stiffness profile, the bulk unit weight (γ) and

the relative density (Dr) of the soil are taken to be 18 kN m−3 and 50% for a

medium dense sand (see (Wu et al., 2018) for details). Figures 3.2(a) and (b)

illustrate the shear modulus of two different target models: a constant profile and

a parabolic profile. The Poisson’s ratio is taken as 0.1 for small-strain applications

(Prendergast et al., 2013), and the steel pile’s Young Modulus and density are 200

GPa and 7850 kg m−3 respectively. The postulated stiffness profiles for each

target model are weighted by multiplying by a pre-defined stiffness weighting, and

soil masses are applied by weighting Equation (3.3) by different amounts. The

damping ratios for the 1st and 2nd modes are taken as 3% and 5%, to reasonably

model the energy dissipation from fully embedded piles. The 5% damping ratio

for the 2nd mode of vibration is used as a simplification to suppress higher modes

and is based on experimental and empirical observations from real piles (Wu et al.,

2018). The target piles are assumed to be open-ended and fully coring (internal soil

at same level as external ground level) and the internal sand’s density is assumed

as 2000 kg m−3.

Noise is added to the acceleration data of target models 17 and 18 to simulate

realistic conditions where sensors may encounter interference, simulating scenarios

encountered in the field. In order to produce the signal with noise, the method

developed by Lyons (1997) is used to incorporate noise using a signal-to-noise

ratio (SNR). This incorporation of noise can be observed by the oscillations on

the acceleration signal, and it allows the analysis to encompass the challenge of

peak detection when those oscillations exist (Wu et al., 2018). In this work, signals

with an SNR of 20 are used for target models 17 and 18.

In target models 19 to 22, uncertainty is introduced into the stiffness distribu-
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tion, adopting a constant mean profile for models 19 and 21 and a parabolic mean

profile for models 20 and 22, as depicted in Figures 3.2(c) to (f). The purpose of

introducing uncertainty is to reflect the situation whereby there would be errors

in estimating the stiffness distribution from a CPT profile in the real case, due to

measurement and transformation errors (Reale et al., 2021). It is of interest to

assess the influence of this error on the estimated embedded length. To introduce

this uncertainty, random values are added from a Gaussian distribution to the

shear modulus values at each depth. For models 19 and 20, random values with

a standard deviation of the distribution equal to 5 × 105 Pa are added, and for

models 21 and 22, random values with a standard deviation of the distribution

equal to 20 × 105 Pa are added. This uncertainty then influences the stiffness

profile at each spring’s depth, which results in uncertainty in the spring stiffness

value used in the model-updating method.

To help interpret the table structure, rows 1 and 2 are briefly explained. Model

1 represents a pile with radius r = 0.5 m and wall thickness t0 = 0.025 m, em-

bedded in a constant-stiffness soil profile with mass and stiffness weightings of 5

and 0.5, respectively, and an embedded length of 10 m. Model 2 is identical in

geometry and soil profile but uses higher weightings (15 and 1.5), enabling com-

parison under controlled conditions. This structure is consistent across the table,

supporting systematic evaluation of model performance under varied geometries,

material properties, noise, and soil uncertainty. Table 3.1 presents information

related to all 22 target models.
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Figure 3.2: Shear modulus of soil profiles used in the analysis: (a) constant profile,
(b) parabolic profile, (c) constant profile with moderate uncertainty, (d) parabolic
profile with moderate uncertainty, (e) constant profile with high uncertainty, (f)
parabolic profile with high uncertainty.
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Table 3.1: Target models

Model Profile Mass

Weigh-

ting

Stiffness

Weigh-

ting

r (m) t0 (m) L1

(m)

L/D SNR Uncer-

tainty

(Y/N)

1 Const. 5 0.5 0.5 0.025 10 10 - N

2 Const. 15 1.5 0.5 0.025 10 10 - N

3 Const. 5 0.5 0.5 0.025 20 20 - N

4 Const. 15 1.5 0.5 0.025 20 20 - N

5 Const. 5 0.5 0.5 0.025 30 30 - N

6 Const. 15 1.5 0.5 0.025 30 30 - N

7 Const. 5 0.5 2 0.1 10 2.5 - N

8 Const. 15 1.5 2 0.1 10 2.5 - N

9 Const. 5 0.5 2 0.1 20 5 - N

10 Const. 15 1.5 2 0.1 20 5 - N

11 Const. 5 0.5 2 0.1 30 7.5 - N

12 Const. 15 1.5 2 0.1 30 7.5 - N

13 Parab. 5 0.5 0.5 0.025 10 10 - N

14 Parab. 15 1.5 0.5 0.025 30 30 - N

15 Parab. 5 0.5 2 0.1 10 2.5 - N

16 Parab. 15 1.5 2 0.1 30 7.5 - N

17 Const. 15 1.5 2 0.1 10 5 20 N

18 Const. 15 1.5 2 0.1 20 5 20 N

19 Const. 5 0.5 0.5 0.025 20 5 - Y

20 Parab. 5 0.5 0.5 0.025 20 5 - Y

21 Const. 5 0.5 0.5 0.025 20 5 - Y

22 Parab. 5 0.5 0.5 0.025 20 5 - Y

3.4.2 Influence of pile length on FRF

In this section, the influence of the pile length on the estimated mobilised stiffness

and mass contribution of piles is assessed with a view to demonstrating how incor-

rect lengths can result in false predictions of soil mass and stiffness contributing

to dynamic motion. The length of a pile, which generates significant soil reaction

under lateral loading, is termed the active length La (Poulos & Davis, 1980). Piles

with lengths greater than the active length do not experience significant changes

in the lateral pile head displacements under applied loads, i.e., further increases

of the length beyond the active length have limited to no further effects on the

pile head lateral resistance properties. The active length is mostly affected by the

pile-soil stiffness ratio and is typically 10 to 15 times larger than the diameter of

the pile, but it also varies for static and dynamic loads (Randolph, 1981; Velez

et al., 1983).

The active length influences the perceived dynamics of the soil-pile system.

Figure 3.3 illustrates the magnitude of the first peak in the acceleration FRF for

a 2 m diameter pile with varying embedded lengths. To construct these figures,

a series of models were developed with embedded lengths ranging from 2 m to

100 m in increments of 0.1 m. Each model was subjected to a unit impulse load,
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and the magnitude of the first peak in the acceleration FRF at the pile head was

recorded. This procedure quantifies the sensitivity of the dynamic response to pile

length and facilitates comparison with analytical predictions of active length.

Figure 3.3(a) corresponds to a pile exhibiting coring behaviour (internal soil

fully present up to ground level) with an external soil mass applied over the top

quarter of the pile, equal in magnitude to the pile mass. Figure 3.3(b) shows

results for a pile with no internal soil and no external masses on the springs. These

different assumptions significantly affect the dynamic response, which explains the

difference in the vertical (Y-axis) scale between the two subfigures. Specifically,

the Y-axis scale in (a) is smaller than in (b) due to the presence of additional

external soil mass attached to the springs, which increases the overall inertia and

therefore lowers the acceleration response under the same applied force.

It can be seen that the acceleration FRF peak stabilises for piles longer than

approximately 25 m, indicating convergence towards the system’s active length.

This threshold aligns well with analytical expressions for active length found in

the literature (Gazetas & Dobry, 1984; Pender, 1993; Poulos & Davis, 1980; Ran-

dolph, 1981). In contrast, the simplified case without internal soil or external

mass reaches a plateau at a shorter length due to the reduced effective inertia and

stiffness distribution.

Sample acceleration time signals, along with their corresponding FRFs, used

to compute such peaks can be found later in Figures 3.9 and 3.10.
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Figure 3.3: (a) Effect of pile length on the response of laterally loaded piles with
masses distributed on the top quarter and with internal soil mass, (b) Effect of pile
length on the response of laterally loaded piles without any soil mass distributed
in the springs and without internal soil.

Figure 3.4(a) shows how the acceleration FRF peak varies with mass weighting

and pile length, and Figure 3.4(b) shows how the acceleration FRF peak varies
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with the stiffness weighting and pile length. To generate these plots, a stiffness

weighting equal to 1 is considered in Figure 3.4(a), and a mass weighting equal

to 1 in Figure 3.4(b). From Figures 3.4(a) and (b), it can be observed that

a smaller length results in larger accelerations; for example, decreasing the pile

length from 30 m to 10 m (wk = 1, wm = 5.5) results in a peak value increasing

from 5.25 × 10−6 (ms−2 N−1) to 1.54 × 10−5 (ms−2 N−1) which as a percentage

change is approximately 193%. Furthermore, the plots confirm the known theory

that increased system mass (by higher applied weightings) results in lower accel-

eration FRF peaks, and that the acceleration FRF peaks are affected predomi-

nately by the mass weightings and the pile length, and less so from the stiffness

weightings (which would affect the displacement FRF). As seen in Figure 3.4(b),

increasing the stiffness weighting from 1 to 7 results in a slight increase in FRF

peaks, 6.39 × 10−5 (ms−2 N−1) to 7.48 × 10−5 (ms−2 N−1), a change of 10% for a

17 m pile with wm = 1. Conversely, for the same pile and with wk = 1 in Figure

3.4(a), a significant decrease in FRF peak is observed when the mass weighting is

increased from 1 to 7, from 2.87 × 10−5 (ms−2 N−1) to 3.25 × 10−6 (ms−2 N−1), a

change of almost -89%.
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Figure 3.4: (a) Acceleration FRF peak as a function of the embedded length and
mass weightings, (b) Acceleration FRF peak as a function of the embedded length
and stiffness weightings.

The influence of an incorrect length on the converged mass and stiffness weight-

ings relative to the target values is investigated in Figures 3.5–3.8. The numerical

pile length is varied within a range of 60% to 140% of the original target length

with a length step equal to 1% of the target length, and the converged mass and

stiffness weightings (using the 1st mode model updating algorithm (Wu et al.,

2018)) were compared against the target corresponding weightings for the target
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models 1 - 12 (Table 3.1). For example, for Target 1, which is a 10 m pile, the

lengths investigated vary from 6 m to 14 m with a step of 0.1 m. Each model is

run 10 times using a HPC, and the mean value of the converged mass and stiffness

weightings and their standard deviation is depicted against the relative percentage

difference (DL %) of the length between the numerical and the target models. In

general, Figures 3.5–3.8 demonstrate that when a numerical model has an embed-

ded length that differs from the target model, it results in converged weightings

that are associated with an error that is proportional to the error in pile length.

Figure 3.5 illustrates the mass and stiffness weighting errors for target models

1, 3, and 5, which have the same diameter (D = 1 m) and target weightings

(wm = 5, wk = 0.5). The results show that in the shortest pile (Target 1), when

modelled with a length smaller than the target pile’s length, a larger error occurs

as compared to longer piles (Targets 3 and 5). Furthermore, it is observed that

the error is larger in the region where the pile is modelled with a smaller length

than the target pile’s length, compared to the region where the pile is modelled

with longer lengths than the target length. This is not unexpected as longer piles

approach the active length, and the errors tend towards a plateau. Additionally,

by comparing the errors in mass and stiffness weightings of target models 1, 3, and

5 in the region where the numerical models are modelled with smaller lengths than

the target model’s length, it is observed that the error in the shorter piles is greater

than the corresponding error in longer piles for the same DL %. However, when

comparing the error in converged mass and stiffness weightings of the same models

in the region where the numerical models have a greater length than the target

model’s length, a different error trend is observed in which the magnitude of the

error cannot be associated with the pile length. This behaviour may be explained

by the fact that the numerical models in Figure 3.5 (D = 1 m) have lengths greater

than their active length, which is approximately 10 m long according to analytical

equations (Gazetas & Dobry, 1984; Pender, 1993; Poulos & Davis, 1980; Randolph,

1981). Therefore, in such cases where the piles are modelled with lengths greater

than their active length, the errors due to the internal soil or the distribution of

the mass on the top quarter of springs could play a more significant role in the

lateral behaviour than the length of the pile.

Figure 3.6 illustrates the error in mass and stiffness weightings for target models

2, 4, and 5, which have the same diameter (D = 1m) and target weightings (wm =

15, wk = 1.5). A similar behaviour is observed as in Figure 3.5, with the difference

that greater mass and stiffness weightings (wm = 15, wk = 1.5) result in smaller

errors compared to smaller mass and stiffness weightings (wm = 5, wk = 0.5).

Figures 3.7 and 3.8 present the results of the analysis performed on the remain-
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ing target models, which consist of more rigid piles with a diameter of 4 m and

L/D ratios of 2.5, 5, and 7.5. Compared to the flexible piles, the rigid piles exhibit

greater errors, especially in the case of shorter piles. In both figures, the active

length of the 4 m diameter pile is estimated at 40 m using analytical equations

(Gazetas & Dobry, 1984; Pender, 1993; Poulos & Davis, 1980; Randolph, 1981),

and the graphs demonstrate that the errors of the shorter piles are larger than

those of the longer piles across the entire range.

In summary, Figures 3.5–3.8 demonstrate that, when the embedded length in

the numerical model is shorter than that in the target model, larger errors result.

This is because as the length of the pile increases, it approaches or exceeds the

active length beyond which any further increase in length results in a minimal

change in the lateral response of the pile. This brief study demonstrates that an

incorrect length can result in a significantly inaccurate estimate of the mobilised

soil mass and stiffness in an FRF-based model updating framework.
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Figure 3.5: (a) Mass weighting error for target models 1, 3 and 5, (b) Stiffness
weighting error for target models 1, 3 and 5 (DL = % difference in length between
target and numerical model).
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Figure 3.6: (a) Mass weighting error for target models 2, 4 and 6, (b) Stiffness
weighting error for target models 2, 4 and 6 (DL = % difference in length between
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Figure 3.7: (a) Mass weighting error for target models 7, 9 and 11, (b) Stiffness
weighting error for target models 7, 9 and 11 (DL = % difference in length between
target and numerical model).
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Figure 3.8: (a) Mass weighting error for target models 8, 10 and 12, (b) Stiffness
weighting error for target models 8, 10 and 12 (DL = % difference in length
between target and numerical model).

3.4.3 Estimation of length

The two-stage algorithm is used in this section to estimate the stiffness and mass

of the target models, as well as the embedded lengths. Figure 3.9 illustrates a

comparison of the acceleration profiles of target model 2 obtained after completing

stage 1 of the updating process, i.e., to match the mass and stiffness weightings,

but where the length may not be correct. The purpose of this analysis is to show

that a match can be obtained to the first mode of vibration even when the lengths

do not match, but the second mode of vibration will not match in this case.

The figure compares two numerical models against the target model; the initial

guess model with an embedded length of 20 m, and the converged model with

an embedded length of 10.1 m. The model responses are evaluated against the

monitored (calculated) acceleration profile of Target 2, which has an embedded

length of 10 m. In order to compare the time-domain data for different modes, the

acceleration signals are filtered using a low and band-pass Butterworth filter to

separate the responses into modes 1 and 2. Specifically, Figure 3.9(a) presents the

acceleration profiles for frequencies up to 6 Hz, with the first monitored frequency

being 3.33 Hz, and Figure 3.9(b) displays the acceleration profiles after applying a

filter for the frequency bands from 6 to 30 Hz, as the second natural frequency of

the target model is 15.86 Hz. As expected, after completing stage 1 of the model

updating, both models match the acceleration profiles of the target model in the

first mode (3.33 Hz) in Figure 3.9(a). However, when examining the acceleration
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for the second mode (15.86 Hz) in Figure 3.9(b), it is evident that the response of

the initial guess model with a length of 20 m does not match that of the target

model, whereas the response of the converged model with a length of 10.1 m closely

matches the monitored acceleration of the target model.
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Figure 3.9: Comparison of acceleration profiles for initial (20 m) and converged
(10.1 m) models against a target model (10 m). (a) First mode, (b) Second mode.

The use of the two-stage model updating approach is investigated herein against

the target models in Table 3.1, whereby the first and second modes of vibration

of the target model are used to estimate the pile length along with the mass and

stiffness weightings of the pile. Figure 3.10 demonstrates the FRF after each iter-

ation whereby the first mode is used to estimate the stiffness and mass weightings,

and the second mode updates the pile length estimate. In this example, target

model 2 is used, which has an embedded length of 10 m, and mass and stiffness

weightings wtarget
m = 15 and wtarget

k = 1.5, respectively, while the guess model has

an initial length of 20 m and randomly applied weightings. The model successfully

converges to the correct length and weightings after 9 iterations (only 4 iterations

are shown for clarity; 1, 3, 6, and 9), when both the first and second peaks of the

converged models match the first and second peaks obtained in the target model.

The figures show that the algorithm can only work efficiently in light to medium
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damped structures for the peak algorithm to be able to identify the second peak.

In the FRF-based updating algorithm described, the initial model’s properties and

a length step are defined. The length step is used only for the first iteration and is

set to 1 m by default. Using the initial guess and the first model, the next length

steps are updated using linear projection until the correct length is estimated.
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Figure 3.10: Estimation of the embedded length for target model 2 – Stage 2
Updating.

Figure 3.11 provides a visual representation of the iterative process used to

optimise the length of the numerical model for the same analysis as in Figure

3.10. The graph shows that the algorithm converges to the correct length after
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several iterations. The algorithm iterates until both the target and numerical

models’ peaks fall within the tolerance range. Eventually, the algorithm finds a

solution that satisfies the tolerance criteria, resulting in a final length of 10.1 m.

This demonstrates that the proposed approach is effective in optimising the length

of the numerical model and achieving the desired level of accuracy. It is worth

noting that the number of iterations required for convergence may vary depending

on the parameters of the model and the desired level of accuracy. Nonetheless,

the presented results show that the iterative optimisation approach can produce

accurate numerical models that closely match the geometry of the target models.
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Figure 3.11: Length estimation after each iteration for target model 2.

Figure 3.12 illustrates the obtained mass and stiffness weightings after each

iteration until the model reaches convergence. The figure shows that the algo-

rithm adjusts the mass and stiffness weightings in each iteration until the first two

peaks of the numerical and target models match. The convergence of the model

indicates that the iterative procedure used for optimising the numerical model

was successful. Ultimately, the final mass and stiffness weightings are shown to

be very close to the target values, further demonstrating the effectiveness of the

proposed approach.
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Figure 3.12: (a): Mass weighting after each iteration, (b) Stiffness weighting after
each iteration, for target model 2.

Table 3.2 summarises the results from running all the target models one time.

As can be seen, the percentage error in the calculated length is at most 3% (Tar-

get 18), which contained added noise. It is interesting to note that the models

incorporating uncertainty in the derived stiffness profile (Targets 19 - 22) exhib-

ited minimal errors regarding estimated length, indicating that the approach may

not be overly sensitive to uncertainties in geotechnical characterisation for the

scenarios evaluated in this study. However, in target models 21 and 22, slightly

larger errors are observed in the model-updating approach, necessitating the use

of a larger tolerance in the optimisation process to achieve convergence. For these

simulations, the tolerance was increased from 0.1% to 3%. Additionally, target

model 22, which features a parabolic mean stiffness profile with large added un-

certainty, showed that while the optimisation accurately converged on the correct

length and mobilised mass, there was a larger error in the converged stiffness

weighting. This is sensible when one considers the error introduced to the model

related to a mismatch in the stiffness profiles between the target and numerical

model.

The high accuracy observed here is partly attributed to the fact that the target

and updating models are identical in all aspects except for the three parameters

being estimated. In practical applications involving experimental data, discrepan-

cies are expected to be larger due to modelling assumptions, unknown boundary

conditions, and additional sources of uncertainty.
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Table 3.2: Updated parameters for all target models

Target Ltarget (m) Lnum (m) Ldiff (%) wmnum wknum wmtarg wktarg

1 10 10.0 0.00 5.000 0.497 5 0.5

2 10 10.1 1.00 14.982 1.497 15 1.5

3 20 20.1 0.50 4.961 0.500 5 0.5

4 20 19.7 1.50 15.116 1.522 15 1.5

5 30 30.4 1.33 4.947 0.498 5 0.5

6 30 29.9 0.33 15.0584 1.498 15 1.5

7 10 10.0 0.00 4.982 0.498 5 0.5

8 10 10.0 0.00 15.098 1.498 15 1.5

9 20 20.3 1.50 4.965 0.499 5 0.5

10 20 20.0 0.00 15.077 1.503 15 1.5

11 30 29.8 0.66 5.017 0.504 5 0.5

12 30 29.9 0.33 14.907 1.465 15 1.5

13 10 10.1 1.00 4.997 0.493 5 0.5

14 30 30.1 0.33 14.952 1.503 15 1.5

15 10 10.0 0.00 5.045 0.496 5 0.5

16 30 30.2 0.66 15.255 1.568 15 1.5

17 10 10.2 2.00 17.241 1.715 15 1.5

18 20 20.6 3.00 17.150 1.702 15 1.5

19 20 20.0 0.00 5.003 0.502 5 0.5

20 20 19.8 1.00 5.046 0.513 5 0.5

21 20 20.1 0.50 4.934 0.487 5 0.5

22 20 20.0 0.00 5.000 0.541 5 0.5

Figure 3.13 illustrates the repeatability of the application of the model updat-

ing method, in order to show how it can reliably calculate the properties when run

a number of times. The method was run for target model 2 a total of 200 times,

each model beginning with initial pile lengths sampled from a uniform distribution

ranging from 5 m to 40 m. The purpose is to demonstrate that the approach works

for a range of starting estimates of the initial pile length and weighting guesses.

These bounds were selected to capture the range of realistic cases for pile lengths

given the specific parameters defined for the properties of Target 2. As seen in

Figure 3.13, the 200 runs converge to values of mass and stiffness weightings, and

length values, that are close to the target values. The repeated procedure high-

lights the robustness of the method, and the results suggest that the initial guess

of pile length does not impact the model’s ability to converge accurately. This

consistency underscores the reliability of the updating method, demonstrating its
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effectiveness in adjusting the model to the target specifications irrespective of the

starting values.
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Figure 3.13: Histograms for parameters of target model 2 over 200 simulations. (a)
Converged pile lengths, (b) converged mass weightings, and (c) converged Stiffness
weightings. Red dashed lines show target values.

3.5 Conclusion

In this chapter, a two-stage model updating approach for estimating the embedded

length, mobilised soil stiffness, and mass in laterally impacted foundation piles is

presented. The approach is an enhancement of a previously developed method that

uses simulated and experimental data to identify the mobilised mass and stiffness

of the soil contributing to dynamic motion of laterally-impacted foundation piles.

The method is extended in this study to estimate the embedded length by using the

first two modes of vibration of the system, through a two-stage iterative approach.

The embedded length is an important parameter, and estimating it correctly can

improve the accuracy of damage detection models requiring accurate foundation

data.

The previously developed updating method based on the 1st mode of vibration

is initially used in this chapter to quantify the error when an incorrect pile length is
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assumed in the reference numerical model. Simulated impact tests are performed

on three piles with varying L/D ratios to derive FRFs, which are used as a target

in an algorithm to estimate the updating parameters. The initial stiffness guess

is informed using the subgrade reaction formulation, and the soil mass is assumed

to be distributed in the upper quarter of the pile’s embedded length. The results

showed that the pile length has a critical role in the FRF, leading to changes in

the obtained acceleration of the soil-pile system. When the assumed length of the

pile does not match the length of the actual (target) pile, significant errors arise

in the estimated soil mass and stiffness contributing to the dynamic motion. This

signifies the need to develop a technique for estimating pile embedded length.

To address this need, an iterative two-stage model updating method is devel-

oped, which uses both the first and second mode of vibration peaks in the FRF to

update the parameters of interest (mass, stiffness, and length). The method es-

sentially tries to minimise the difference between the numerical and target model’s

FRF by matching both first and second frequency peaks. The updating method

has been demonstrated in this chapter against numerically simulated data and

has been shown to successfully converge on the correct pile length, as well as mo-

bilised soil mass and stiffness, for each case application considered. It should be

noted that for application to real piles, the mobilised soil stiffness and mass are

not known beforehand, and only the FRF would be measured. It is also impor-

tant to highlight that the approach requires a clear detection of both the first

and second lateral vibration modes from embedded piles, and may not work well

in heavily damped systems. While the numerical testing in this chapter shows

promise, the method should be appraised against real experimental results before

firm conclusions on its performance can be provided in this respect.

It should be noted that the method may only work effectively for cases where

the pile length does not significantly exceed the active length of the system. This

is because, as the pile length extends beyond a certain critical point, its impact on

the lateral response becomes progressively less significant. Consequently, distin-

guishing changes in the pile’s dynamic behaviour due to further length increases

becomes more difficult, potentially affecting the accuracy of the estimation method

in such scenarios.

Further enhancements to the approach include incorporating nonlinearity in

the soil-pile interaction response, by enabling strain-related reductions in soil shear

modulus to be estimated. Furthermore, the updating method holds strong poten-

tial to be modified for different mechanical systems and parameters beyond the

application to pile foundations, as presented in this work.
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4.1 Introduction

This chapter presents a data-driven model updating framework to estimate the

operational parameters of a laterally-impacted pile. The goal is to facilitate the

estimation of soil-pile interaction (SPI) parameters such as the mobilised mass and

stiffness, as well as geometrical data such as embedded pile length, using output-

only information. Accurate knowledge of mass, stiffness, and pile embedded length

is essential for understanding foundation behaviour when developing digital-twin

models of structures for the purpose of damage detection. The method first em-

ploys subspace identification to determine modal parameters and quantifies their

uncertainties using output-only data. The covariance matrix adaptation evolution

strategy (CMA-ES), a stochastic evolutionary algorithm, is subsequently used to

update the model. The effectiveness of the approach is demonstrated through its

application to numerical models in this chapter, to quantify errors, and subse-

quently to data from a documented full-scale field test of a pile subjected to an

impact load. The work underscores the potential of statistical updating in advanc-

ing the accuracy and reliability of soil-structure interaction parameter estimation

for systems where only output data might exist.

In this study, the parameters of interest are the embedded length of the pile, as

well as the distribution of soil stiffness and mass along its depth. As demonstrated

in Chapter 3, deterministic model updating is feasible when both the input and

output signals are known. However, in operational structures, input forces are

often unknown or difficult to measure, making such methods inapplicable. The

framework introduced in this chapter addresses this limitation by enabling param-

eter estimation using only output measurements, without requiring knowledge of

the input force. This significantly broadens the applicability of model updating

techniques to real-world structural monitoring scenarios.

The structure of the chapter is as follows: Section 4.2 provides an overview of

the model updating framework. This section details the monopile system mod-

elling using 1-D modelling, followed by the formulation of the objective function

for model updating and the CMA-ES optimisation strategy. Section 4.3 presents

a numerical application to test the framework. Section 4.4 evaluates the model

updating procedure using data from a documented large-scale field test on a pile

foundation. Final remarks on the effectiveness of the framework are discussed in

Section 4.5.
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4.2 Methodology

The objective of this work is to develop an approach that can estimate the phys-

ical properties of both the soil and the pile in a SPI problem, where the exci-

tation applied is assumed unknown. The estimates of physical parameters are

obtained through stochastic optimisation of an objective function that confronts

the modal parameter estimates of the pile within their estimation uncertainties to

the corresponding parameters of the pile model. This is based on the evolutionary

optimisation strategy devised in Greś et al. (2021d).

The model updating framework proposed in this chapter is considered stochas-

tic for two main reasons. Firstly, the system identification is performed using

output-only Stochastic Subspace Identification (SSI), in contrast to the determin-

istic input-output identification via FRF peak picking used in Chapter 3. SSI

accounts for noise in the data and does not require knowledge of the input exci-

tation, making it particularly suitable for operational structures. Secondly, the

model updating is carried out using a stochastic evolutionary optimisation algo-

rithm (CMA-ES), which explores a population of models and incorporates random-

ness into the search process. This is fundamentally different from the deterministic

updating method employed in Chapter 3, where a single model is iteratively ad-

justed using a linear projection-based approach. Therefore, the term stochastic

in this context refers both to the nature of the system identification (noise-aware,

output-only) and the optimisation method (population-based, randomised search),

distinguishing it from the deterministic framework previously introduced.

Hereafter the parametric model of the pile foundation is described and the

optimisation procedure is outlined.

4.2.1 Physics-based SPI modelling

The dynamics of the monitored parametric linear time-invariant system with d de-

grees of freedom (DOF) are described by the differential equation of motion. The

governing differential equation (3.4) is linear in nature, as the system’s response de-

pends linearly on the external forces and state variables. The assumption of time-

invariance is appropriate because the system matrices do not explicitly change

with time during the analysis (Burd et al., 2020a; Doherty & Gavin, 2012a).

Mθq̈(t) + Dθq̇(t) + Kθq(t) = u(t) (3.4)

where t denotes continuous time, Mθ, Dθ, and Kθ ∈ Rd×d denote the mass,
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damping, and stiffness matrices, respectively and θ is the system parameter. For

the considered problem, the system parameter θ holds the embedded pile length

L1, which is the geometrical data of interest, and the mass and stiffness weight-

ings (wm) and (wk) that scale the soil mass and stiffness profiles, respectively.

These weightings are used to define the soil mobilised mass and stiffness profiles

(Wu et al., 2018). The vectors q(t) and u(t) ∈ Rd denote the continuous-time

displacements and the unknown external forces, respectively.

The soil-pile system is modelled using a linear Winkler model, which utilises 6

DOF Euler-Bernoulli beam/pile elements to characterise the pile, paired with 2-

DOF mass-spring elements to represent the soil behaviour. The model is capable of

simulating the behaviour of SPI at low strains, whereby the response of the system

can be assumed linear (Kallehave et al., 2012; Prendergast & Gavin, 2016). This

is appropriate to systems oscillating with low-amplitude vibrations. The local

mass and stiffness matrices for the pile elements can be calculated by simplifying

the Timoshenko beam theory by ignoring the effects of shear deformation and

rotatory inertia (Timoshenko, 1983). The 2-DOF soil springs are connected to the

lateral DOF of each node within the embedded section of the pile. The pile’s base

is fixed in the vertical direction to exclude axial deformations from the system.

This boundary condition effectively eliminates axial DOF contributions, while

preserving the intended lateral behaviour of the system. Each pile element of the

pile is associated with two corresponding mass-spring elements that simulates the

lateral mass and stiffness provided by the soil, extending up to the Nsth spring,

which represents the topmost spring element. Specifically, the pile is discretised

into a finite number of pile elements, and each mth pile element has an associated

nth and (n+1)th mass-spring element. A schematic of the system is illustrated in

Figure 4.1, which illustrates the physical system and the numerical spring-beam

model representation. This figure is identical to Figure 3.1 shown in Chapter 3,

with the key distinction that here the input force is considered unknown, and no

known lateral impact is simulated. This reflects the output-only nature of the

system identification approach applied in this chapter.
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Figure 4.1: Schematic of the pile model. (a) Physical model, (b) Numerical rep-
resentation.

The pile is assumed to be embedded in a single layer of cohesionless sand.

The model captures the pile’s flexural rigidity by incorporating the relationships

between the subgrade reaction modulus and the pile material’s elastic properties

after Vesić (1961).

KS(z) =
0.65ES(z)

D(1 − ν2S)

√
12(ES(z)D4)

EI
, (4.1)

where, ES(z) represents the soil small-strain Young’s modulus (N m−2) as a func-

tion of the depth z, νs is the soil’s Poisson’s ratio, D is the pile’s width (m), and

E and I denote the pile’s Young’s modulus (N m−2) and moment of inertia (m4),

respectively. The small-strain Young’s modulus of the soil is calculated as

ES(z) = 2GS(z)(1 + νS), (4.2)

where GS(z) is the shear modulus of the soil (N m−2) as a function of z. Given

that KS(z) has units of N m−3 and the springs provide one-dimensional stiffness

(N m−1), the stiffness for each nth spring element is determined as

kn = KS(z)DLm, (4.3)

where Lm is the tributary length of the associated mth pile element, and KS(z) is

defined in Equation (4.1). In the embedded layer, the pile nodes are attached to
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lateral springs, while those above ground remain free. To simulate the dynamic

influence of the mobilised mass of soil, lumped masses calculated as a fraction of

the pile mass are distributed along the soil springs. Masses are added along the

upper quarter of the embedded length, which is based on the premise that deeper

masses exert a negligible effect on the first mode shape of a laterally-oscillating

pile, leading to their exclusion (Wu et al., 2018). The mass for each nth spring is

therefore a function of the pile’s mass

Mn =
MPile

Q
, (4.4)

where MPile is the pile’s mass, and Q represents the number of springs in the top

quarter of the pile.

4.2.2 Design of the objective function

The true modal parameters of system described in Equation (3.4) are obtained

from the eigenvalues µθi ∈ C and eigenvectors Ψθ
i ∈ Cd, which are the solution of

the eigenvalue problem

(
(µθi )

2Mθ + µθiDθ + Kθ
)

Ψθ
i = 0 , (4.5)

and yield the natural frequencies f θi =
|µθi |
2π

and the mode shapes ψθi = LΨθ
i ∈

Cr at the observed DOF for a given sensor type, where L ∈ Cr×d maps the

eigenvectors to the mode shapes that can be obtained from measurements at r

sensors, respectively.

f̂i and φ̂i are denoted as the respective estimates of the i-th natural frequency

and the i-th mode shape. The deployed system identification method is assumed

consistent, i.e., f̂i and φ̂i converge to their true values fi,∗ and φi,∗ when the

data length N goes to infinity. This assumption is leveraged by multiple system

identification methods, for example SSI methods (Döhler & Mevel, 2013; Döhler &

Mevel, 2012; Peeters & De Roeck, 1999), where these parameters can be identified,

e.g., from acceleration, velocity, displacement, or strain measurements. There is an

inherent assumption that the system is subject to ambient white noise excitation.

It should be noted that depending on the physical case considered, this assumption

might not be fully valid. For example, this assumption might not be exactly true

in the case of operating offshore wind turbines supported on monopiles. The

modal parameter estimates have been proved to be asymptotically Gaussian for
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SSI methods (Bauer et al., 1999; Mellinger et al., 2016), satisfying

f̂i ≈ N
(
fi,∗,

1
N
σ2
fi

)
, and

[
ℜ(φ̂i)

ℑ(φ̂i)

]
≈ N

([
ℜ(φi,∗)

ℑ(φi,∗)

]
, 1
N

Σφi

)
, (4.6)

where ℜ(·) and ℑ(·) express the real and imaginary parts of a complex variable,

N (µ,Σ) denotes a Gaussian distributed variable with mean µ and covariance Σ,

and σ2
fi
∈ R and Σφi

∈ R2r×2r are the asymptotic covariance of f̂i and φ̂i, respec-

tively. The computation of the respective covariance estimates σ̂2
fi

and Σ̂φi
from

the same data set as the modal parameter estimates can be found, e.g., in Döhler

and Mevel (2013), Mellinger et al. (2016), and Reynders et al. (2008). Since f̂i is

approximately Gaussian distributed, its confidence interval is symmetric and can

be centred around the computed estimate. As such, it will cover a range of plausi-

ble values that include the true value of the parameter with some given confidence

level γ, e.g., γ = 0.9544 for the ±2σ bound. At this value, the corresponding

confidence interval

cf̂i = [f̂min
i , f̂max

i ] (4.7)

encompasses the true value fi,∗, where f̂min
i = f̂i−2· 1√

N
σ̂fi and f̂max

i = f̂i+2· 1√
N
σ̂fi

with 95.44% probability, which is hereafter denoted as the 95% confidence interval.

If the natural frequency of the model f θi is inside cf̂i , then it can be inferred that

both θ and θ∗ are statistically close. Conversely, when θ is different from θ∗, the

corresponding model frequency f θi is likely to lie outside the confidence interval of

the estimated frequency.

An objective function for the model optimisation is expressed by the difference

between the modal parameter estimates and their model-based counterparts. It is

hereafter assumed that the modal parameter pairing is accomplished with statis-

tical criteria (Reynders, 2012). Denote ∆θ
fi

as the normalised difference between

the estimated natural frequency f̂i and the natural frequency f θi from the model

under parameter θ, with

∆θ
fi

=

1 − fθi
f̂i
, if f̂min

i ≤ f θi ≤ f̂max
i

1, otherwise ,
(4.8)

where a penalty of 1 is introduced when f θi is outside the 95% confidence interval

of f̂i. For the comparison of the mode shape estimate φ̂i and model-based mode

shape ψθi , the Modal Assurance Criteria (MAC) is used. If θ = θ∗, the MAC

between both mode shapes is close to 1 and tends to 1 when the data length

N → ∞, since φ̂i is a consistent estimate. Consequently, if the MAC between

both mode shapes tends to 1, the parameter vector θ is a valid candidate for θ∗.
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Let ∆θ
MACi

be the difference between 1 and the respective MAC, defined as

∆θ
MACi

= 1 − MAC(φ̂i, ψ
θ
i ) , (4.9)

where

MAC(φ̂i, ψ
θ
i ) =

|φ̂Hi ψθi |
2

φ̂Hi φ̂iψ
θ
i
H
ψθi
.

The objective function F (θ) is expressed as the sum of the respective differences

∆θ
fi

and ∆θ
MACi

for all considered modes i = 1, . . . , nmodes, as

F (θ) =

nmodes∑
i=1

∣∣∣∣∆̃θ
fi

∣∣∣∣+

nmodes∑
i=1

∆θ
MACi

. (4.10)

Based on the confidence intervals (4.7), the acceptance region

Θ̃ = {θ : f θi ∈ cf̂i for all i = 1, . . . , nmodes} (4.11)

can be defined, which comprises all parameter vectors θ that yield model fre-

quencies within the confidence intervals of their estimated counterparts. Thus,

Θ̃ comprises the statistically acceptable solutions for θ∗ with regards to the con-

sidered frequencies, and a stopping criterion of the optimisation search can be

formulated as θ ∈ Θ̃.

4.2.3 Model optimisation strategy

The solution θsol is obtained via minimisation of F (θ)

θsol = arg min
θ

F (θ), (4.12)

which is achieved with an application of the CMA-ES (Hansen & Ostermeier,

2001). Starting with some initial value θ = θinit, the CMA-ES algorithm consists in

generating λ model candidates θgj , j = 1, . . . , λ, in each population g, by sampling

a multivariate Gaussian distribution. The sampling is carried out as

(θj)
g+1 = mg + εj, εj ∼ σgN (0, Cg) , (4.13)

where j = 1, . . . , λ and mg is a weighted mean of the model candidates (θj)
g in

the parent generation. Equation (4.13) represents a mutation and recombination

into offspring, for which the CMA-ES algorithm adapts the parameters Cg and σg

in each generation. The covariance matrix Cg denotes the covariance of the search

distribution and σg denotes the scaling factor adapted (minimised) in the optimi-
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sation procedure. Consequently, the optimisation continues and the best parent

solutions replace the offspring until it converges to a solution. For CMA-ES, the

covariance matrix Cg is incrementally updated with rank-one matrices represent-

ing the direction between the best parent solutions at two consecutive generations,

such that the likelihood of previously successful search steps is increased (Hansen

& Ostermeier, 2001). For the convergence to a solution, a stopping criterion is

included in the algorithm that is adapted to the acceptance region (4.11), which

is defined by the confidence intervals of the modal parameter estimates obtained

from the sensor data. Once inside the acceptance region, there is no need to further

minimise the objective function, avoiding unnecessary additional computations.

Figure 4.2 presents a flowchart of the model updating framework, demon-

strating how the measurement data are linked with the SSI to obtain identified

frequencies and mode shapes, coupled with their uncertainties. These identified

modal properties are then combined with the computed modal properties from

the numerical model to formulate the objective function used in the CMA-ES

optimisation.

Measurement data under θ∗ Numerical model: Kθ, Mθ, Dθ

System identification

Objective function

Model optimisation

f θi and φθif̂i, σ̂
2
fi

, φ̂i, Σ̂φi

Figure 4.2: Model updating flowchart.

4.3 Numerical application

In this section, the efficacy of the proposed framework in estimating SPI param-

eters, including mobilised soil mass and stiffness, and embedded pile length, is

evaluated. To undertake this demonstration, known values of soil mass and a pro-

file of soil stiffness are altered by applying weightings wm and wk, and assessing

how well the method can estimate these weightings, i.e. converge on the actual soil

mass and stiffness profiles (see Wu et al. (2018) for more details on this approach).

Weightings wm and wk are defined as scalars that adjust a given spring’s mass and

stiffness values. The optimisation methodology is applied to a set of target pile

models (with varying geometries and soil profiles) to assess its accuracy in param-
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eter estimation. For more information on the development of models for this type

of application, see Ioakim and Prendergast (Ioakim & Prendergast, 2024).

Three target models (pseudo-experimental piles subjected to simulated impact

tests) are developed to represent various types of piles, which are referred to as

target models throughout this study. The schematic of the pile configuration

is shown in Figure 4.3. As mentioned earlier, the mobilised mass of the soil

is assumed as concentrated in the top quarter of the pile, in keeping with the

mobilisation expected under vibration in the first mode. For simplicity, only some

nodes are displayed in the schematic, with intervals of 1 meter. Table 4.1 provides

specific parameter values used to create these models. To examine applications to

both flexible and rigid piles, two diameters (D) with annular cross-sections and

corresponding wall thicknesses (t0) are explored: D = 1 m with t0 = 0.025 m,

and D = 4 m with t0 = 0.1 m. Each model is constructed by discretising the

pile into finite elements of 0.1 m in length. For all target models, the total pile

length (L0) is defined as the sum of the embedded length plus an additional 1

m stick-up (L0 = L1 + 1 m). These parameters are chosen to represent a range

of foundation geometries typically found in various applications, including the

simulation of monopiles used in offshore wind turbine foundations (Tott-Buswell

et al., 2024). Additionally, to simulate real field scenarios where sensor data might

be influenced by environmental factors, noise is introduced into the acceleration

data.
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Figure 4.3: Pile configuration for numerical application.

The soil shear modulus profile is assumed as constant, analogous to an over-

consolidated soil deposit, and is set at 50 MPa. Figure 4.4 illustrates the shear

114



modulus for target models 1 and 3, showing conditions for an exact constant

profile, and a profile with some inherent variability, respectively. The Poisson’s

ratio is set to 0.1 for small-strain applications (Prendergast et al., 2013). For the

steel piles, Young’s modulus and density are specified as 200 GPa and 7850 kg m−3,

respectively. The stiffness profiles for each target model are adjusted by applying

wk, and soil masses are determined through wm applied to Equation (4.4). A

damping ratio of 1% is adopted to represent energy dissipation in the target piles.

These piles are considered to be open-ended and fully coring, with the internal soil

level matching the external ground level. Additionally, the internal sand’s density

is assumed to be 2000 kg m−3.

In each model, a 10 kN impact load is applied to the pile for a short, arbitrary

duration, following which the pile model is allowed to oscillate freely for 50 seconds.

The time step (∆t) for this analysis is set at 0.005 seconds. Each target pile

is equipped with five accelerometers positioned along its length (node points in

numerical model), starting from the pile’s head at 1 m intervals. Data from these

five ‘sensors’ are subsequently utilised in the subspace identification process to

determine four natural frequencies of the pile, along with their corresponding

mode shapes. These identified parameters serve as the basis for formulating the

objective function.

Table 4.1: Target models

Target Model wm wk D (m) t0 (m) L1 (m) L/D Variability
in G0

(Y/N)

1 5 0.5 1 0.025 20 20 N
2 5 0.5 4 0.1 20 5 N
3 5 0.5 4 0.1 20 5 Y
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Figure 4.4: Shear modulus for (a) target 1 and (b) target 3. Target 1 represents
a constant profile, where target 3 shows variability in the profile.

As an initial investigation, the objective function was plotted in Figure 4.5 for a

number of parameter combinations to examine whether a global minimum existed.

Specifically, wk was set to 0.5 for target model 1, while L1 and wm were varied. As

expected, the objective function, formulated based on the frequencies and mode

shapes derived from the five sensors, was minimised for the target parameters,

where wm = 5 and L1 = 20 m.

Figure 4.5: Objective function for the parameter pair L1 and wm in the numerical
application for target model 1.

To assess the optimisation’s performance to estimate wm, wk and L1 effec-
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tively, 100 Monte-Carlo simulations were conducted for each target model. The

histograms illustrating the distributions of the estimated parameters are shown

in Figures 4.6, 4.7, and 4.8 for target models 1, 2, and 3, respectively. These

histograms represent the probability density functions (PDFs) of the estimated

parameters, providing insight into how frequently certain parameter values occur

across the simulations. A summary of the results, including the means and stan-

dard deviations of the estimated parameters, is presented in Table 4.2, providing

a quantitative assessment of the optimisation’s performance. From the results,

it can be observed that the optimisation consistently converges to the expected

values for all three parameters. It is noteworthy that in target model 3, where the

stiffness has variability, the convergence results in a slightly increased stiffness.

This can be explained by the fact that variability in the stiffness generates some

bias, causing the actual wk to shift slightly to the right.

Figure 4.6: Histograms for target 1 showing the distribution of converged values
for the three key parameters: (a) L1, (b) wm, and (c) wk. The distributions are
obtained from Monte-Carlo simulations and are plotted against the actual values
of the corresponding parameters.

Figure 4.7: Histograms for target 2 showing the distribution of converged values
for the three key parameters: (a) L1, (b) wm, and (c) wk. The distributions are
obtained from Monte-Carlo simulations and are plotted against the actual values
of the corresponding parameters.
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Figure 4.8: Histograms for target 3 showing the distribution of converged values
for the three key parameters: (a) L1, (b) wm, and (c) wk. The distributions are
obtained from Monte-Carlo simulations and are plotted against the actual values
of the corresponding parameters.

Table 4.2: Mean values and standard deviations of the parameters for target
models 1, 2 and 3.

Target Parameter µ σ Actual Value

Target 1

L1 (m) 20.0 0.017 20.0

wm 5.0 0.003 5.0

wk 0.5 0.0003 0.5

Target 2

L1 (m) 20.0 0.029 20.0

wm 5.0 0.048 5.0

wk 0.5 0.001 0.5

Target 3

L1 (m) 20.0 0.023 20.0

wm 5.0 0.037 5.0

wk 0.502 0.0009 0.502

4.4 Field application

Data from a field test reported by Prendergast and Gavin (2016) and Prendergast

et al. (2019) are employed to assess the performance of the optimisation approach

when applied to real data from impact tests conducted on piles. This assessment

utilises small-strain soil stiffness data, including shear wave velocity measurements

and the derived G0 profile. The field test was executed at a quarry in Blessington,

southwest of Dublin, Ireland and a general schematic of the pile and soil arrange-

ment is shown in Figure 4.1. The experiment involved lateral impact testing of a

7.2 m open-ended steel pile with a diameter of 0.34 m and wall thickness of 0.014

m, embedded in dense, over-consolidated sand. Prior to testing, the soil was exca-

vated leading to an embedment of 3.1m. In the experiment, the pile is impacted

118



laterally and accelerations are measured using three accelerometers placed near

the top of the pile. For more information on the field testing, refer to Prendergast

and Gavin (2016) and Prendergast et al. (2019).

The quarry at Blessington has undergone extensive characterisation in prior

research (Doherty & Gavin, 2012b) and has been used to assess the performance

of various model, prototype, and full-scale foundation installations, over a number

of years. Comprehensive details on the geotechnical properties of the site can be

found in several studies (Gavin et al., 2009; Gavin & Lehane, 2007; Prendergast et

al., 2013). This field application relies on the site’s small-strain stiffness properties,

which were measured using Multi-Channel Analysis of Surface Waves (MASW) as

detailed in Donohue et al. (2004). The shear wave velocity profile, depicted in

Figure 4.9(a), is used to calculate the small-strain Young’s modulus profile, shown

in Figure 4.9(b). This calculation begins with the small-strain shear modulus

(G0) using the formula G0 = ρv2s , where vs represents the shear wave velocity.

Subsequently, the small-strain Young’s modulus (E0) is calculated using E0 =

2G0(1+νS), where ρ is the soil density (kg m−3) and νS is the small-strain Poisson

ratio, assumed here to be 0.1. The site profile data begins at approximately 4.1

m below ground level due to the excavation process as described above, prior to

dynamic testing (Prendergast & Gavin, 2016).
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Figure 4.9: Small-strain MASW data. (a) Shear wave velocity profile. (b) Derived
small-strain shear modulus profile.

The pile was equipped with three accelerometers along the exposed section of

the pile, each set to record at a frequency of 1000 Hz. The testing protocol involved

subjecting the pile to lateral impacts with a PCB Piezotronics 086D50 model

sledgehammer-type modal hammer (PCB Piezotronics, 2018), which features a
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tip mass of 5.5 kg and recording the resultant impact force time-history. Multiple

impacts were performed to assess the repeatability of the results.

The procedure outlined in Section 4.2.1 is followed to construct the numerical

model for the purpose of model-updating, and Equation (4.1) is applied to convert

the G0 profile into discrete spring stiffness values Kn. The response output data

from two impact tests, 1 and 2, are presented in Figure 4.10, which shows the

acceleration recorded by the three accelerometers located along the pile.
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Figure 4.10: Acceleration profiles recorded at the three sensor locations. (a) Re-
sponse following the first impact. (b) Response following the second impact.

The response output data under impact allows for application of different iden-

tification methods for modal parameter estimation. To this end, the modal pa-

rameters and their variances are identified using the output information-only with

the covariance driven subspace identification method (Döhler & Mevel, 2013). The

estimates are obtained for model orders ranging from 20 to 100, 25 time lags to

compute the block Hankel matrix and 200 blocks to evaluate its sample covari-

ance. The stabilisation diagram of the natural frequency estimates for impacts

1, 2 and 3 is depicted in Figure 4.11 alongside the singular value decomposition

(SVD) plot, which displays the singular values of the cross power spectral den-

sity (CPSD) matrices derived from the acceleration data for impact 2. It can be

viewed that among the spurious estimates, two modal alignments at around 12 Hz

and 62 Hz can be distinguished, whose frequencies correspond the first and third

bending modes for each pile.
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Figure 4.11: Stabilisation plot to identify excited modes from the field data across
impacts 1 to 3 against a power spectral density (PSD) plot from the acceleration
data of impact 2.

The function F (θ) is plotted for the parameter pair (wm, L0) within the in-

tervals {0.5 − 30} and {5 − 12}, respectively, and can be seen in Figure 4.12.

The objective function is derived from the 1st and 3rd modes of vibration, with

mode shapes based on the three accelerometers positioned on the pile. From the

objective function, we observe a global minimum around the expected value for

the total pile length, which is 7.2 m. This value corresponds to the full length of

the pile, including both embedded and exposed segments. The embedded length,

which is often the parameter of practical interest, can be directly obtained by sub-

tracting the known exposed length of 4.1 m, yielding an embedded length of 3.1 m.

In this analysis, the parameter wk was set to the mean value obtained from the

Monte Carlo simulations of Impact 1, as shown in Table 4.3. The resulting global

minimum forms a ridge, rather than a well-defined minimum, likely due to the

inclusion of only two modes and data from three sensors. This theory is reinforced

by the objective function plot for target 1 in Figure 4.5, where four modes and

data from five sensors are taken into account in the objective function, showing a

clearly defined global minimum. This comparison highlights the impact of limited

modal information on the optimisation landscape.
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Figure 4.12: Objective function for the parameter pair L0 and wm in the field
application.

To assess the performance of the optimisation to estimate wm, wk and L0

with real data, Monte Carlo simulations were conducted, similar to the approach

described in Section 4.3. The statistics for L0, wm, and wk are summarised in

Table 4.3. The analysis reveals that L0 converges to approximately 7.8 m for

Impact 1, 7.7 m for Impact 2, and 7.8 m for Impact 3, with standard deviations

of 0.48 m, 0.56 m, and 0.55 m, respectively. Similarly, wm has a mean value of

6.35 with a standard deviation of 2.32 for Impact 1, a mean value of 6.18 with a

standard deviation of 3.17 for Impact 2, and a mean value of 6.4 with a standard

deviation of 2.65 for Impact 3. For wk, the mean value is 1.73 with a standard

deviation of 0.48 for Impact 1, a mean value of 1.59 with a standard deviation of

0.28 for Impact 2, and a mean value of 1.68 with a standard deviation of 0.22 for

Impact 3.
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Table 4.3: Mean values and standard deviations of the parameters for Impact 1,
2 and 3.

Impact Parameter µ σ Actual Value

Impact 1

L0 (m) 7.8 0.48 7.2

wm 6.35 2.32 -

wk 1.73 0.48 -

Impact 2

L0 (m) 7.7 0.56 7.2

wm 6.18 3.17 -

wk 1.59 0.28 -

Impact 3

L0 (m) 7.8 0.55 7.2

wm 6.4 2.65 -

wk 1.68 0.22 -

The parameter that can be validated is the pile’s length, with the exact value

being 7.2 m. Although the most likely length as predicted from the procedure is

7.8 m, this is still a good approximation given that the objective function is based

on only two modes and three accelerometers positioned close to each other. If

more accelerometers were placed along the shaft of the pile and more modes were

excited, the objective function would be better defined. This would likely result in

the solution converging more closely to the global minimum and the exact value.

Similarly, for wm and wk, it is observed that the mean values of the converged

results are close for impacts 1, 2, and 3. The convergence of all three tests in the

same region with similar mean values is significant, as it indicates that different

load cases do not interfere with the subspace identification process. More specif-

ically, the identified frequencies and mode shapes for modes 1 and 3 across all

impacts yield similar optimisation values, reinforcing the robustness and validity

of the proposed method.

4.5 Conclusions

This study successfully demonstrates the coupling of model updating, here ef-

fectuated via a stochastic evolutionary scheme, the CMA-ES, with a subspace

identification method in a robust framework to determine operational mass, stiff-

ness, and embedded length of a number of numerical and experimental piles. The

framework adeptly addresses the challenge of estimating critical SPI parameters,

such as pile length and the associated mobilised mass and stiffness, which are

pivotal for accurate foundation behaviour modelling. The presented framework

combines modal parameter determination through subspace identification with
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the robustness of the CMA-ES for model updating. While the CMA-ES was cho-

sen due to its practical ability to converge in rugged search landscapes, which may

include discontinuities, sharp bends, ridges, noise, local optima, or outliers, any

optimisation method featuring similar characteristics could be used. Addition-

ally, CMA-ES features a covariance matrix, reflecting the algorithm’s estimate of

the variance in the search space. A larger covariance matrix indicates a broader

exploration, while a smaller covariance matrix suggests the convergence toward

a narrower region, typically near the minimum. Although this feature was not

exploited in the current study, it presents a potential for the uncertainty quantifi-

cation of the delivered estimates in the future work. The analysis was conducted

in MATLAB on the High-Performance Computing (HPC) system of the Univer-

sity of Nottingham, specifically utilising a high-memory compute node equipped

with 2 × 48-core AMD CPUs, 1536 GB of RAM . Under this configuration, the

approximate convergence time for the optimisation of every target 1 model was

around 12 minutes, with a variance of 1–2 minutes depending on the initial con-

ditions. This approach effectively quantifies uncertainties using output-only data,

enhancing the model’s accuracy, especially for existing piles under operational

loads. The framework’s effectiveness has been validated through numerical model

applications and via data reported from a real full-scale field test, demonstrat-

ing its practical applicability and potential to significantly improve soil-structure

interaction parameter estimation. Ultimately, this research introduces a frame-

work for estimating pile parameters using output-only data and highlights the

significant potential of statistical updating techniques in advancing the accuracy

and reliability of SHM systems in geotechnical and structural engineering. The

approach might be useful for digital twin applications such as for offshore wind

turbine structures.
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5.1 Introduction

The rapid expansion of the offshore wind industry demands more reliable methods

for assessing the integrity of monopile foundations, particularly under scour con-

ditions that can significantly affect the dynamic behaviour and lateral capacity of

the soil-pile system. To address this need, this chapter introduces and compares

three distinct model updating frameworks for scour depth estimation in laterally

loaded piles: a deterministic frequency response function (FRF)-based method,

and two stochastic approaches.

The FRF-based method employs controlled lateral input-output data to ex-

tract vibration modes, enabling the estimation of scour depth, as well as the soil

mass and soil stiffness interacting with the pile. In contrast, the two stochastic

frameworks, based on Differential Evolution (DE) and Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) respectively, use output-only acceleration

data and stochastic subspace identification (SSI) to derive modal properties, fol-

lowed by evolutionary optimisation to estimate the SPI parameters. Furthermore,

the CMA-ES framework incorporates uncertainty quantification (UQ), enhancing

robustness in parameter estimation.

These three model updating frameworks are tested against a series of numer-

ically generated datasets, which simulate various soil-pile properties and loading

conditions. Two primary loading scenarios are considered: input-output data

from impact testing and output-only data under ambient noise. This system-

atic evaluation explores the performance of the frameworks in terms of accuracy,

robustness, and computational efficiency. By analysing the advantages and chal-

lenges associated with the frameworks, the study provides valuable insights into

the applicability and limitations of each approach for real-world offshore wind

turbine foundation monitoring.

The remainder of this chapter is structured as follows. Section 5.2 presents the

methodology, beginning with the development of physics-based soil-pile interaction

(SPI) modelling and simulation of scour conditions. This is followed by an expla-

nation of the three model updating frameworks: the deterministic FRF-based ap-

proach, which uses controlled input-output data; the DE-based framework, which

combines SSI and DE for parameter estimation from output-only data; and the

CMA-ES-based framework, which enhances the output-only approach with UQ for

robust parameter estimation. Results are presented in Section 5.3 for both impact

testing and ambient noise scenarios, followed by a comparative evaluation of the

methods. Section 5.4 concludes with key findings and practical recommendations

for implementing these frameworks in monitoring offshore monopile foundations.
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5.2 Methodology

5.2.1 Objective and problem description

The primary objective of this study is to develop and compare optimisation-based

model updating frameworks for estimating the scour depth (Ds) of pile foundations

using vibration-based structural health monitoring (SHM) techniques. Vibration-

based SHM methods are particularly advantageous for Ds estimation due to their

sensitivity to changes in the dynamic properties of the soil-pile system (Ioakim

et al., 2025; Prendergast et al., 2018). Building on previously developed meth-

ods (Ioakim & Prendergast, 2024; Ioakim et al., 2025), this study refines both

the FRF and CMA-ES-based frameworks for scour estimation, while also intro-

ducing a newly developed DE-based framework. Beyond quantifying scour depth,

these frameworks estimate key parameters related to soil-pile interaction (SPI). To

achieve this, measured vibration responses of the pile, obtained under either known

(impact) or unknown (ambient) external excitations, are analysed to extract the

governing system parameters. The main motivation is to compare a deterministic

FRF-based approach with two stochastic optimisation methods, evaluating their

accuracy, computational efficiency, and robustness against measurement uncer-

tainty.

The system dynamics can be represented by the continuous-time equation of

motion:

Mθq̈(t) + Dθq̇(t) + Kθq(t) = u(t) (3.4)

where t denotes continuous time; Mθ,Dθ, and Kθ ∈ Rd×d are the mass, damping,

and stiffness matrices, respectively; and θ is a vector of system parameters. In

this study, θ includes a mass weighting factor wm, a stiffness weighting factor wk,

which scale the soil mass and stiffness profiles (Wu et al., 2018), in addition to

Ds. The vector q(t) ∈ Rd represents the system displacements, while u(t) ∈ Rd

denotes the unknown external forces acting on the pile.

5.2.2 Physics-based SPI modelling

To capture SPI dynamics at low strain levels, a linear Winkler foundation model is

adopted due to its simplicity and effectiveness. In this approach, soil behaviour is

approximated using lumped masses and linear springs at discrete points along the

pile length. The SPI model follows the procedure described in Chapters 3 and 4,

where the pile is treated as a 6-DOF Euler-Bernoulli beam element coupled with

2-DOF lateral soil elements (Prendergast & Gavin, 2016; Timoshenko, 1983).
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The soil vertical profile is discretised into multiple layers, each associated with a

spring-mass element pair attached to the pile nodes. By stacking these pairs along

the embedded length of the pile, the model can represent the gradual stiffness and

mass distribution of the soil. The topmost soil layer is represented by the Ns-th

spring and mass element. Figure 5.1 illustrates the physical soil-pile system and

its numerical representation using pile and spring elements.

Section 3.2 provides a detailed explanation of how specific SPI parameters are

calculated. The model incorporates the small-strain Young’s modulus of the soil

(ES(z)), the shear modulus (GS(z)), and the subgrade reaction modulus (KS(z)).

For the pile, key parameters include the Young’s modulus (E), the moment of

inertia (I), and the stiffness (kn) and mass (Mn) of individual nth spring elements.

The damping ratio for the ith mode (ξi) is set to 2%. Unless explicitly stated

otherwise, parameter values not specified in this section are consistent with those

detailed in Section 3.2.
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Figure 5.1: Schematic of the SPI model: (a) Physical system; (b) Numerical
representation.

5.2.2.1 Modelling of scour

Scour around the pile reduces the effective embedded length of the pile within

the supporting soil matrix. In the proposed model, the presence of scour is directly

incorporated by removing the soil springs and lumped masses corresponding to

the scoured region. This adjustment effectively shifts the boundary between the
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supported and unsupported pile segments, altering the dynamic characteristics of

the system. As scour depth increases, fewer soil elements remain attached, leading

to reduced lateral stiffness and mass contribution from the soil. By systematically

modifying the distribution of spring and mass elements, the model can simulate

the effects of varying scour depths on the pile’s dynamic response (Prendergast

et al., 2018).

The pile is discretised into segments of length 0.1 m, and spring-mass elements

above the specified scour depth are excluded to simulate the effects of scour on

the pile’s dynamic response. For all target models, an embedded pile length of

L0 = 10 m and a scour depth of Ds = 2 m are selected. The steel pile is modeled

with a diameter of 4 m, a wall thickness of 0.1 m, and a Young’s modulus of

200 × 109 Pa.

Different soil stiffness profiles are considered, including constant, parabolic,

and those derived from in situ CPT data (Figure 5.2). To account for varying

soil properties, the model scales spring stiffnesses and masses using user-defined

parameters wk and wm.

The two loading scenarios reflect either an impact test, where a load is applied

over the first 0.015 s followed by free vibrations, or a persistent ambient excitation,

such as wind or wave loading. For the ambient case, only output-only methods

are applicable, as no direct force measurements are available. Gaussian noise

is added to the acceleration signals at varying signal-to-noise ratios (SNR) to

assess the robustness of each method. Numerical target models are generated by

systematically varying the soil profile type, wm and wk, and loading conditions.

This physics-based foundation model, combined with the appropriate repre-

sentations of mass and stiffness system matrices, provides the underlying platform

for the subsequent optimisation-based frameworks for scour depth estimation.

Table 5.1 summarises the key parameters used in the target models, including

combinations of wm, wk, different stiffness profiles, SNR levels, and load types.

These configurations ensure that the study covers a wide range of realistic scenarios

and enables a thorough evaluation of the model updating frameworks.
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Table 5.1: Target models

Target

model

wm wk Stiffness profile SNR

(accel-

era-

tion)

Load

type

1 5 0.5 Constant - Impact

2 10 2 Constant (with perturbations) - Impact

3 10 2 Constant (with perturbations) 20 Impact

4 5 0.5 Parabolic - Impact

5 10 2 Parabolic (with perturbations) - Impact

6 10 2 Parabolic (with perturbations) 20 Impact

7 5 0.5 Real profile - Impact

8 10 2 Real profile 20 Impact

9 5 0.5 Constant 20 Ambient

10 5 0.5 Parabolic (with perturbations) 20 Ambient

11 5 0.5 Real profile 20 Ambient

Figures 5.2a–5.2e compare the stiffness profiles along the pile embedment for

Ds of 2 m. The red dashed line in each figure marks the scour depth. Figure 5.2a

and 5.2b depict a constant stiffness profile without and with variability around

the mean, respectively, while figures 5.2c and 5.2d illustrate a parabolic stiffness

distribution without and with variability around the mean. In all cases, the simu-

lated variability involves random perturbations around the nominal profile to more

realistically approximate potential heterogeneities in the soil. Finally, figure 5.2e

shows a real cone penetration test (CPT) profile, featuring an irregular distribu-

tion of stiffness with depth. The shaded regions below the red dashed line in each

plot correspond to the remaining soil elements after accounting for the 2 m scour.

Overall, these visualisations illustrate the different KS(z), that characterise the

target models.
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Figure 5.2: Comparison of KS(z) profiles for different scenarios: (a) and (b) con-
stant profile without and with variability, (c) and (d) parabolic profile without
and with variability, and (e) real CPT profile.
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5.2.3 Application of deterministic FRF-based model up-

dating framework for scour depth estimation

The FRF-based model updating framework builds upon a previously developed

two-stage iterative approach intended to estimate the embedded length of pile

foundations from measured vibration data (Ioakim & Prendergast, 2024). In the

original methodology in Chapter 3, an impact load is applied laterally to the pile,

and the resulting FRF, capturing the first and second vibration modes is employed

to estimate the soil stiffness and mass profile, as well as the pile’s embedment

length. In the present work, this procedure is adapted to estimate scour depth,

which effectively reduces the embedment length of the pile.

As described in Section 5.2.2.1, the removal of soil springs and masses in the

scoured zone shifts the system’s dynamic characteristics, which are reflected in its

FRF. Controlled impact tests, capturing both acceleration and loading data at the

pile head, provide the required information for constructing the FRF required to

identify the modal properties. Figure 5.3 illustrates the effect of the scour depth

on the FRF, and shows the framework’s convergence to the actual FRF as the

parameters Ds, wm and wk are iteratively refined.
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Figure 5.3: Comparison of the updated FRF with the actual FRF for target model
1, using the deterministic FRF-based framework.

5.2.3.1 Two-stage model updating procedure

Hereafter the procedure for the two-stage approach is outlined:

In the first stage, the first mode of vibration is used to determine the scaling

weightings wm and wk. Starting with initial guess for Ds, wm and wk an iterative
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procedure adjusts wm and wk until the numerical model’s first-mode FRF peak

closely matches that of the target (measured) FRF. This step ensures the correct

calibration of the weightings based on the first mode of vibration. A detailed

description of this procedure is provided in Chapter 3 and Algorithm 5.

Once the mass and stiffness parameters are satisfactorily matched using the

first mode, the second mode of vibration is employed to estimate Ds. Similar

to the embedded-length estimation process, the algorithm iteratively updates the

assumed Ds while re-applying the first-stage mass and stiffness calibration at each

step. By ensuring that the first and second mode FRF peaks of the numerical

model align with those of the target model, the algorithm converges on the cor-

rect Ds (Ioakim & Prendergast, 2024). Using linear projection techniques, the

second-mode FRF peak of the updated model is incrementally adjusted to align

with the target FRF. The algorithm terminates when the difference in the second-

mode peak falls below a predefined tolerance, yielding the estimated Ds. A similar

procedure for estimating the embedded length is outlined in Chapter 3, with im-

plementation details provided in Algorithm 6.

Similarly to Chapter 3, the Stage 2 objective function is defined via two residual

terms:

r0 =
Ftarget2 − Fmodel2

Ftarget2

, (5.1)

r1 =
ftarget2 − fmodel2

ftarget2
, (5.2)

where Ftarget2 and Fmodel2 denote the second peak FRF amplitudes, while ftarget2
and fmodel2 represent the corresponding frequencies of the target and physics-based

model. The objective function is:

L = max (|r0|, |r1|) , (5.3)

which ensures the largest discrepancy between numerical and target FRFs is min-

imised.

5.2.3.2 Implementation and considerations

Algorithm 7 provides the pseudocode for the FRF-based scour depth estimation

method. Peak picking isolates the peaks of interest from the FRF which are sub-

sequently used for parameter calibration. In practice, success relies on accurately

identifying these modal peaks, which can be challenging when damping is sig-
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nificant or the peaks are closely spaced. Additionally, the method requires both

input and output data, limiting its applicability to scenarios with well-controlled

loading conditions. Nevertheless, numerical results demonstrate the robustness of

the framework in estimating the soil mass and stiffness contributions and scour

depth by iteratively matching the first and second vibration modes.

Algorithm 7 FRF-Based Framework for Scour Depth Estimation

Require: Initial parameters x = {wm,wk, Ds}, measured target acceleration and

loading data, convergence criterion ϵ

Ensure: Optimised parameters x∗ = {w∗
m,w

∗
k, D

∗
s}

Compute target FRF from acceleration and loading data

Construct the initial numerical model using the initial soil and pile properties

(wm, wk and Ds).

Simulate the FRF of the initial model.

while Objective function (L) > ϵ and maximum iterations not reached do

Stage 1: First Mode Matching

Identify the first-mode peak in the target FRF.

Iteratively adjust wm and wk to minimise the discrepancy between the nu-

merical model’s first-mode FRF peak and the target first-mode FRF peak.

Update the numerical model and recompute the FRF.

Stage 2: Second Mode Matching

Identify the second-mode peak in the target FRF.

Iteratively adjust the Ds and re-calibrate wm and wk (Stage 1) to minimise

the discrepancy between the numerical model’s second-mode FRF peak and the

target second-mode FRF peak.

Update the numerical model and recompute the FRF.

end while

return x∗ = {w∗
m,w

∗
k, D

∗
s}

5.2.4 Application of stochastic optimisation frameworks

for scour depth estimation

While the deterministic FRF-based approach described above relies on known

input-output data from impact testing, many structural systems—especially in

offshore environments—are subjected to operational or ambient excitations where

the input force cannot be readily measured. To address such output-only scenar-

ios, two stochastic optimisation frameworks are presented. Both methods estimate

Ds along with wm and wk, but they differ in how the physics-based (interrogated)

model’s modal properties are obtained (via subspace identification or via eigen-
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decomposition of the system matrices) and in the choice of evolutionary opti-

misation algorithm (DE or CMA-ES). These stochastic frameworks build on the

authors’ previous work in Ioakim et al. (2025), where a data-driven model updat-

ing framework for length estimation was proposed and tested against numerical

and field test data.

5.2.4.1 DE-based framework

In the DE-based framework, the key model parameters (Ds, wm and wk) are

optimised through a DE evolutionary algorithm. At each iteration, the soil-pile

system is simulated in the time domain under impact or ambient excitation to gen-

erate synthetic acceleration responses. These responses are then analysed with the

covariance-driven SSI method (SSI COV) (Peeters, 2000) outlined in Algorithm 1

to extract the model’s frequencies and mode shapes. To ensure a comprehensive

capture of the system dynamics and mitigate the effects of noise or modelling in-

accuracies, SSI COV is applied with a larger number of modes, followed by mode

stabilisation to identify and discard any spurious modes. Only the stable modes

are retained for comparison with the target modal properties, which are also ob-

tained via SSI COV from the measured data. The mismatch between these modal

features forms the objective function minimised by the DE. Although robust, this

approach can be computationally demanding due to the need for full time-domain

simulations and subsequent SSI at each iteration.

Convergence is achieved when the modal property discrepancies—such as fre-

quency deviations and modal assurance criterion (MAC) values—fall below a spec-

ified threshold or when consecutive DE generations yield no further improvement.

MAC values, which quantify the consistency between mode shapes, are used along-

side frequency deviations to assess the accuracy of the model. This dual criterion

ensures that both the natural frequency and mode shape alignment are accurately

captured.

The MAC error is defined as:

Lmac = nmodes −
nmodes∑
i=1

MACii, (5.4)

where nmodes is the number of modes considered, and MACii is the diagonal entry

of the MAC matrix comparing the i-th mode shapes of the target and physics-

based model.
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The frequency error is computed as:

Lf =

nmodes∑
i=1

∣∣∣∣ftargeti − fmodeli

ftargeti

∣∣∣∣ , (5.5)

where ftargeti and fmodeli refer to the i-th mode frequencies of the target and

physics-based model, respectively.

The combined objective function is:

L = Lmac + Lf, (5.6)

where L represents the combined error metric that DE seeks to minimise. This

formulation ensures that both the frequency alignment and the mode shape sim-

ilarity are optimised simultaneously, facilitating convergence towards an accurate

representation of the target modal properties.

Algorithm 8 provides a high-level pseudocode description of the DE-based

framework. Although computationally intensive due to repeated SSI analyses

and stochastic optimisation, reduced order modelling (ROM), parallelisation and

high-performance computing (HPC) can accelerate iterations.

For the physics-based model, a state-space formulation is adopted to accommo-

date the output-only scenario through the inclusion of stochastic noise terms: wk

and vk. As detailed in Section B.1.4, the equation of motion (3.4) is reformulated

into a first-order discrete state-space representation. By incorporating process and

measurement noise to account for unmeasured inputs and sensor inaccuracies, the

stochastic state-space model is derived, as given in Equation (B.28):

xk+1 = Axk + wk (B.28)

yk = Cxk + vk,

Here, xk ∈ Rn is the state vector, and yk ∈ Rl is the output vector, with the

remaining terms as defined in Section B.1.4.

Building on the ROM approach mentioned earlier, the process begins by ex-

tracting dominant modal parameters through eigen-value decomposition and merg-

ing these with the corresponding mode shapes. By mapping continuous-time poles

to a discrete-time formulation, the system’s principal dynamics are retained in a

significantly smaller state-space. This reduced-order model enables more compu-

tationally efficient simulations. A pseudocode is provided in Algorithm 10.

136



Algorithm 8 DE-based Framework for Scour Depth Estimation

Require: Initial bounds for parameters x = {wm,wk, Ds}, measured target ac-

celeration data, convergence criterion ϵ

Ensure: Optimised parameters x∗ = {w∗
m,w

∗
k, D

∗
s}

Step 1: Initialise a population of candidate solutions X0 within prescribed

bounds.

Step 2: Extract target modal properties {f target
n ,Φtarget} using SSI COV coupled

with mode stabilisation on the measured acceleration data.

while Objective function (L) > ϵ and maximum iterations not reached do

for each candidate xi in the population do

Simulate the reduced order time-domain response of the numerical model

with xi.

Apply SSI COV coupled with mode stabilisation to the simulated response

to extract modal properties {f in,Φi}.

Compute the objective function Li (5.6).

end for

Update population using DE operators (mutation, crossover).

end while

return Best candidate x∗ = {w∗
m,w

∗
k, D

∗
s} with minimal L

5.2.4.2 CMA-ES-based framework

The second stochastic optimisation framework leverages the CMA-ES evolution-

ary algorithm to estimate Ds and soil parameters wm and wk in an output-only

setting. The CMA-ES-based framework compares the modal properties of the

interrogated model with the target modal estimates obtained through SSI. The

resulting discrepancies define the objective function to be minimised. Furthermore,

the uncertainties associated with the identified modal parameters are quantified

using the methodology described in Chapter 4, ensuring a robust assessment of

the parameter estimates under measurement noise.

CMA-ES iteratively refines a multivariate Gaussian distribution over the pa-

rameter space, adjusting its mean vector and covariance matrix based on candidate

solution performance. The algorithm terminates when the predicted frequencies

fall within specified confidence intervals and the MAC values meet acceptable

thresholds, or the search distribution becomes sufficiently narrow.

The main idea is to examine how small perturbations in the estimated sub-

space translate into variations in the identified modal parameters (i.e., frequen-

cies, damping ratios, and mode shapes). First, the original dataset is divided into
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resampled subsets. Each subset independently undergoes the covariance-driven

SSI procedure (outlined in Algorithm 1), resulting in slightly different subspace

estimates. Comparing these estimates reveals variations that capture the data-

induced uncertainty.

These subspace variations are then mapped to the system matrices A and C

using Jacobians, which quantify the sensitivity of A and C to changes in the sub-

space basis. Once A and C are perturbed, their eigenvalues and eigenvectors are

recomputed to obtain updated estimates of frequencies, damping ratios, and mode

shapes. Repeating this process across all subspace subsets generates a distribution

of modal parameters whose spread serves as an indication of reliability.

Finally, statistical indices such as standard deviations or confidence intervals

(e.g., ±2σ bounds) are derived from these distributions to assess the robustness of

the identified modal parameters. For MAC uncertainties, additional expansions

(e.g., first-order or second-order Taylor series) can account for near-unity MAC

values. This systematic UQ framework propagates data-level variability through to

the final modal parameters, enhancing the reliability of subsequent model updating

tasks (Greś et al., 2021b).

To guide the CMA-ES procedure, an objective function L is defined to quantify

the discrepancy between the numerical model’s modal predictions and those of the

target system, as described in Section 4.2.2. This function penalises inaccuracies in

both frequency estimates and mode shapes, evaluated using the Modal Assurance

Criterion (MAC). The detailed formulation of L is presented in Equation (4.10).

Algorithm 9 provides a high-level overview of the CMA-ES-based workflow for

Ds estimation.
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Algorithm 9 CMA-ES-Based Framework for Scour Depth Estimation

Require: Initial parameters x = {wm,wk, Ds}, measured target acceleration

data, convergence criterion ϵ

Ensure: Optimised parameters x∗ = {w∗
m,w

∗
k, D

∗
s}

Step 1: Estimate reference modal properties {f target
n ,Φtarget} and uncertainties

from measured target acceleration data using SSI COV coupled with UQ of the

estimates (f̂n, σ̂2
fn

, φ̂n, Σ̂φn).

Step 2: Initialise CMA-ES (mean vector, covariance matrix) within parameter

bounds.

while Objective function (L) > ϵ and maximum iterations not reached do

for each candidate xi in the current CMA-ES population do

Update the mass and stiffness matrices of the physics-based model with

xi.

Compute {f in,Φi} for the interrogated model.

Compute objective Li (4.10).

end for

Update CMA-ES mean and covariance using the best Li candidates.

end while

return Best parameters x∗ that minimise L

5.2.4.3 Summary of deterministic and stochastic frameworks

The main differences between the deterministic and stochastic approaches pre-

sented in this chapter lie in the system identification and optimisation strategies.

The stochastic frameworks employ output-only SSI, which accounts for measure-

ment noise and does not require input excitation signals, making them particularly

suitable for operational conditions. In contrast, the deterministic framework re-

lies on FRFs derived from known input-output data. Regarding optimisation, the

deterministic approach applies an iterative update to a single model, whereas the

stochastic frameworks use population-based algorithms that incorporate random-

ness, enabling broader exploration of the parameter space and improved robustness

against local minima.

Both the DE-based and CMA-ES-based stochastic frameworks facilitate scour

depth estimation without requiring direct input measurements, enhancing their

practicality for in situ monitoring of offshore wind turbine foundations. The key

distinctions between the two lie in the choice of evolutionary algorithm and the

integration of UQ. By accounting for variability and uncertainty, both frameworks

provide robust and realistic estimates of scour depth and soil properties under
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operational offshore conditions.

Table 5.2 summarises the primary differences between the three approaches.

The FRF-based method relies on input-output data to construct a deterministic

update procedure, where the two stochastic methods (DE-based and CMA-ES-

based) operate in an output-only setting and leverage evolutionary algorithms to

optimise soil-pile parameters. Each framework extracts modal properties from the

physics-based model differently, relies on varied optimisation strategies, and offers

unique strengths and weaknesses in terms of computational cost, required data,

and sensitivity to modelling assumptions.

Table 5.2: Comparison of deterministic (FRF-based) and stochastic optimisation
frameworks (DE and CMA-ES) for scour depth estimation.

FRF-based DE-based CMA-ES-based

Data Type Input-output Output-only Output-only

Modal Extraction Peak picking in

FRF

SSI & stablilisation

at each iteration

Eigen-

decomposition

of the system ma-

trices.

Optimisation Method Linear projection DE CMA-ES

Primary Advantage Deterministic ap-

proach

Handles complex

objective functions

from time-domain

data

Integrated UQ

Challenge Input load knowl-

edge and sensitivity

to damping

Repeated time-

domain simulations

and sensitivity to

stopping criteria

Potential sensitivity

to model matrix

construction

5.3 Comparative analysis

This section presents a comparative analysis of the deterministic FRF-based frame-

work, the DE-based framework, and the CMA-ES-based framework. The compar-

ison evaluates their performance in estimating key parameters, such as Ds and soil

weightings (wm and wk), as well as their computational efficiency and robustness

to noise and complex soil profiles. The analysis is supported by histograms and

a table showing the distribution of converged parameter values across the target

models. While a subset of the histograms is included in this chapter, the remain-
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der is provided in Appendix C for convenience. Additionally, objective function

convergence plots and computational runtime distributions are presented. The

unique characteristics and trade-offs of each framework are discussed, including

their handling of uncertainties, reliance on prior knowledge, and computational

demands.

5.3.1 Convergence across independent simulations

Deterministic FRF-based framework

Figure 5.4 presents histograms of the converged parameter values for target model

1 using the deterministic FRF-based framework, based on 100 simulations. The

estimated Ds, wm, and wk align reasonably well with the target values, although

errors become more pronounced in scenarios with variable soil profiles. Histograms

for target models 2–7 are provided in Appendix C for further reference.

In the target model 1, the estimated parameters wm, and wk appear to follow

a normal distribution, with their mean values aligning closely with the actual pa-

rameter values, as expected. This indicates that the framework is able to reliably

recover the true parameters. In particular, for the scour depth Ds, all simulations

converge to a single discrete value. This is a consequence of the pile being dis-

cretised in increments of 0.1 m, limiting the resolution of the estimated depth.

However, employing a finer discretisation is expected to yield a similar normal

distribution pattern, with the estimated values converging to the actual scour

depth.

Notably, the deterministic method failed to converge for target model 8, which

incorporated a real CPT profile and noisy acceleration data (non-zero SNR). This

highlights the method’s sensitivity to input data quality. Furthermore, high vari-

ability in the data necessitated adjustments to the stopping criterion to achieve

reliable convergence.
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Figure 5.4: Histograms showing the distribution of the converged parameters for
target 1 obtained using the FRF-based framework. (a), (b), and (c) correspond
to Ds, wm, and wk, respectively. The actual parameter values are shown as red
dashed lines.

Stochastic DE-based framework

Figure 5.5 and Figure 5.6 present histograms of the converged parameter val-

ues for target models 1 and 9, respectively, using the DE-based framework, each

based on 100 independent runs. Target model 1 corresponds to an impact load

scenario, while target model 9 is subjected to ambient noise. Unlike the deter-

ministic FRF-based approach, the DE-based method employs SSI for both the

target data and the interrogated model. As shown in the histograms, the DE-

based strategy achieved robust convergence across both cases, with the estimated

parameter values aligning closely with the actual parameters.

For further reference, histograms for target models 2–8 and 10–11 are provided

in Appendix C. These results further illustrate the performance of the DE-based

framework across a range of soil profile variations and loading conditions. The

proximity of the converged distributions to the red dashed lines in the histograms

indicates the strong agreement between the estimated and actual parameter values.

In target model 1, the estimated parameters wm, and wk exhibit a normal dis-

tribution, with their mean values closely matching the actual parameter values.

Similar to the deterministic FRF-based method, the scour depth Ds consistently

converges to a single discrete value due to the 0.1 m discretisation of the pile

model. In contrast, for target model 9, where ambient excitation is considered,

the estimated Ds shows increased variability, with deviations of up to 5% from

the actual value. This variability stems from the inherent challenges of identify-

ing modal parameters under unknown loading conditions, where lower excitation

amplitudes can introduce greater uncertainty in the parameter estimation process.

Despite this success, several practical considerations warrant attention. Firstly,
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UQ was not incorporated into the DE framework, necessitating fine-tuning of

the convergence criteria on a case-by-case basis to ensure reliability. And sec-

ondly, the parameters of the SSI algorithm itself—such as model order and block

size—required careful selection to ensure consistent mode extraction across vary-

ing numerical models. These constraints underscore the importance of expertise

in managing the optimisation process and interpreting results effectively.
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Figure 5.5: Histograms showing the distribution of the converged parameters for
target 1 obtained using the DE-based framework. (a), (b), and (c) correspond
to Ds, wm, and wk, respectively. The actual parameter values are shown as red
dashed lines.

Notably, even for target models 9-11 (Figures 5.6, C.9, C.10), where ambient

excitations resulted in less distinct modal peaks, the DE-based framework con-

verged to the expected parameter values with minimal deviation from the true

scour depth, mass weighting, and stiffness weighting. This robustness highlights

the framework’s applicability to operational monitoring scenarios where excitation

measurements are unavailable.
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Figure 5.6: Histograms showing the distribution of the converged parameters for
target 9 obtained using the DE-based framework. (a), (b), and (c) correspond
to Ds, wm, and wk, respectively. The actual parameter values are shown as red
dashed lines.
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Stochastic CMA-ES-based framework

Figure 5.7 and Figure 5.8 display histograms of the estimated parameters for target

models 1 and 9 using the CMA-ES-based framework, based on 100 independent

runs. Target model 1 represents an impact load scenario, while target model 9 is

characterised by ambient noise conditions. The CMA-ES framework integrates UQ

for both identified frequencies and MAC estimates, eliminating the need for user-

defined tolerance thresholds. This UQ strategy enhances convergence stability,

ensuring reliable parameter estimation across different loading conditions.

For a broader assessment of performance, histograms for target models 2–8 and

10–11 are provided in Appendix C. Overall, the CMA-ES framework demonstrated

robust performance for all tested configurations, including scenarios with noisy

data or variable soil profiles. Although it remains a stochastic method and has a

higher computational cost than deterministic schemes, it was notably faster than

the DE-based alternative.

In target model 1 and 9, the estimated parameters Ds, wm and wk exhibit a

normal distribution, with their mean values closely matching the actual parame-

ter values. Compared to the previous frameworks, the CMA-ES-based approach

demonstrates slightly larger standard deviations in the estimated parameters. This

is attributed to the incorporation of UQ and the use of a robust objective function,

which account for variability in frequency identification and MAC estimates.
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Figure 5.7: Histograms showing the distribution of the converged parameters for
target 1 obtained using the CMA-ES-based framework. (a), (b), and (c) corre-
spond to Ds, wm, and wk, respectively. The actual parameter values are shown as
red dashed lines.

Furthermore, the CMA-ES framework achieved high accuracy in estimating

Ds, wm, and wk for target models 9-11 (Figures 5.8, C.9, C.10), underscoring its

potential as a robust and efficient tool for offshore foundation monitoring under

ambient or operational loads.
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Figure 5.8: Histograms showing the distribution of the converged parameters for
target 9 obtained using the CMA-ES-based framework. (a), (b), and (c) corre-
spond to Ds, wm, and wk, respectively. The actual parameter values are shown as
red dashed lines.

Quantitative comparison of frameworks

Table 5.3 provides a comprehensive comparison of the three frameworks in esti-

mating key parameters (Ds, wm, and wk) across target models 1-11. The table

reports the mean (µ) and standard deviation (σ) of parameter estimates over

100 independent simulations, highlighting the accuracy and consistency of each

framework under varying soil heterogeneity and noise conditions.

Key observations for specific target models include:

For target 1, all three frameworks demonstrate high accuracy, with mean values

for Ds, wm, and wk aligning closely with true values. The FRF-based method

exhibits the lowest standard deviations, indicating consistent performance under

noise-free conditions. The DE- and CMA-ES-based frameworks also show strong

agreement but with slightly higher variability.

For target 5, which features a variable parabolic stiffness profile, the FRF-based

framework accurately captures Ds and wk, while the DE- and CMA-ES-based

methods exhibit small deviations. This discrepancy arises from the output-only

nature of the DE and CMA-ES methods and challenges posed by complex soil

profiles.

For Target 7, which incorporates a real CPT profile the three frameworks

again exhibit strong agreement with the true values for all parameters. The FRF-

based method maintains low variability, while the DE-based and CMA-ES-based

frameworks achieve comparable accuracy with slightly higher σ values for wm.

Overall, The FRF-based framework demonstrates high accuracy and low vari-

ability in input-output scenarios, as indicated by consistently low σ values. How-

ever, it faces challenges in capturing FRF amplitude peaks when damping or input
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forces are unknown.

In contrast, the DE- and CMA-ES-based frameworks are effective across all tar-

get models, including output-only scenarios with ambient noise. These stochastic

methods exhibit slightly higher standard deviations, reflecting their exploration

of the parameter space and robustness in handling uncertainties. The CMA-

ES-based framework integrates UQ, which enhances exploration but introduces

additional variability.

CMA-ES’s ability to quantify uncertainties offers valuable insights into param-

eter reliability, making it especially useful for real-world scenarios with noise and

complex models. This statistical understanding supports risk-informed decision-

making and enhances robustness in practical engineering applications.
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Table 5.3: Mean values (µ) and standard deviations (σ) of the parameter esti-
mates for target models 1-11 using FRF-based, DE-based, and CMA-ES-based
frameworks, with target values included.

Target Parameter Target Value
FRF-based DE-based CMA-ES-based

µ σ µ σ µ σ

Target 1

Ds (m) 2.00 2.00 0.00 2.00 0.00 2.00 0.02

wm 5.00 4.98 0.03 5.00 0.01 5.01 0.04

wk 0.50 0.50 0.01 0.50 0.00 0.50 0.00

Target 2

Ds (m) 2.00 2.00 0.00 2.00 0.00 2.00 0.00

wm 10.00 9.95 0.02 9.97 0.03 9.95 0.04

wk 2.00 2.01 0.01 2.01 0.00 2.00 0.00

Target 3

Ds (m) 2.00 1.91 0.02 2.00 0.00 2.00 0.02

wm 10.00 10.86 0.22 9.96 0.03 9.95 0.04

wk 2.00 2.17 0.04 2.01 0.00 2.00 0.00

Target 4

Ds (m) 2.00 2.00 0.00 2.00 0.00 1.99 0.07

wm 5.00 4.99 0.02 5.00 0.01 4.99 0.13

wk 0.50 0.50 0.00 0.50 0.00 0.50 0.00

Target 5

Ds (m) 2.00 2.00 0.00 1.90 0.00 1.90 0.03

wm 10.00 10.00 0.02 9.31 0.03 9.24 0.16

wk 2.00 2.03 0.01 1.91 0.00 1.90 0.02

Target 6

Ds (m) 2.00 1.90 0.02 2.00 0.00 1.89 0.03

wm 10.00 11.12 0.25 9.34 0.06 9.24 0.16

wk 2.00 2.28 0.05 1.91 0.01 1.90 0.02

Target 7

Ds (m) 2.00 2.00 0.00 2.00 0.00 2.00 0.02

wm 5.00 5.04 0.03 5.00 0.01 5.00 0.04

wk 0.50 0.51 0.00 0.50 0.00 0.50 0.00

Target 8

Ds (m) 2.00 - - 2.00 0.00 2.00 0.00

wm 10.00 - - 10.01 0.04 10.00 0.05

wk 2.00 - - 2.00 0.01 2.00 0.00

Target 9

Ds (m) 2.00 - - 1.99 0.04 2.00 0.02

wm 5.00 - - 5.00 0.06 5.00 0.04

wk 0.50 - - 0.50 0.01 0.50 0.00

Target 10

Ds (m) 2.00 - - 1.88 0.05 1.87 0.07

wm 5.00 - - 4.79 0.09 4.75 0.12

wk 0.50 - - 0.49 0.00 0.49 0.00

Target 11

Ds (m) 2.00 - - 2.00 0.03 2.00 0.01

wm 5.00 - - 5.00 0.06 5.01 0.04

wk 0.50 - - 0.50 0.01 0.50 0.00
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5.3.2 Convergence behaviour of frameworks

Figures 5.9–5.11 illustrate the progression of the objective function toward conver-

gence for three representative target models, comparing the deterministic FRF-

based, DE-based, and CMA-ES-based frameworks. This comparison highlights

their respective strengths, weaknesses, and suitability for different types of sce-

narios.

Deterministic FRF-based framework

Figure 5.9 illustrates the convergence behaviour of the two-stage deterministic

algorithm. Each run begins with an initial guess of {wm = 1, wk = 1, Ds = 0}.

In Stage 2, Ds is updated, followed by a re-calibration of wm and wk in Stage 1.

The figure depicts five Stage 2 iterations for each target model, with each itera-

tion involving multiple Stage 1 updates. The objective function (5.3) (denoted by

r) decreases consistently and meets the convergence criterion (dashed line) within

these iterations. For Models 1, 5, and 7, the deterministic method demonstrates

rapid and predictable convergence, provided the input assumptions are accurate.
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Figure 5.9: Objective value progression until convergence at each iteration of the
deterministic FRF-based algorithm for (a) target model 1, (b) target model 5 and
(c) target model 7.

Stochastic DE-based framework

Figure 5.10 shows the progression of the objective function for the DE-based frame-

work. Unlike the deterministic approach, DE employs population-based mutation

and crossover, leading to a more gradual and occasionally irregular convergence

pattern. Models 1 and 7 converge within approximately 30 generations, reflecting
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the relative simplicity of their soil profiles. In contrast, Model 5, which features

parabolic stiffness with variability around the mean value, requires over 300 gen-

erations to converge due to the added noise in the data. However, in this case,

convergence is achieved due to a larger threshold, allowing the algorithm to toler-

ate greater variations in the objective function.

The DE-based framework, while operating in an output-only setting, demon-

strates robustness in handling noisy scenarios. However, this flexibility comes

at the expense of computational efficiency, as repeated time-domain simulations

and SSI computations within each DE generation significantly increase runtime.

Furthermore, the lack of integrated UQ necessitates careful parameter tuning to

ensure reliable convergence.
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Figure 5.10: Objective value progression until convergence at each iteration of the
stochastic DE algorithm for (a) target model 1, (b) target model 5 and (c) target
model 7.

Stochastic CMA-ES-based framework

Figure 5.11 illustrates the convergence behaviour of the CMA-ES-based frame-

work. This algorithm converges to the true parameter sets within approximately

13 generations for all three target models. Unlike the DE-based framework, CMA-

ES incorporates UQ for both frequencies and MAC estimates, eliminating the need

151



for user-defined tolerance thresholds. Instead, uncertainties derived from modal

properties directly inform the stopping condition, enhancing robustness and re-

ducing manual intervention.

The CMA-ES-based approach achieves similar accuracy to the deterministic

and DE-based method while requiring fewer iterations than DE. The UQ makes

CMA-ES particularly effective in scenarios involving noisy data or complex param-

eter spaces, as evidenced by its performance on model 5. While CMA-ES remains

computationally more expensive than deterministic methods, its integration of

UQ and rapid convergence demonstrate its potential as a reliable and efficient

framework for real-world offshore foundation monitoring.
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Figure 5.11: Objective value progression until convergence at each iteration of the
stochastic CMA-ES algorithm for (a) target model 1, (b) target model 5 and (c)
target model 7.

5.3.3 Runtime comparison of frameworks

Figures 5.12 and 5.13 show the distribution of convergence times for target mod-

els 1, 5, and 7, evaluated over 100 independent runs. As expected, the determinis-

tic FRF-based framework converges more quickly, with most executions complet-

ing within approximately 70–140 s. In comparison, the CMA-ES method typically
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requires 260–600 s, reflecting the additional computational overhead associated

with stochastic evolutionary optimisation and UQ.
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Figure 5.12: Histograms showing the distribution of the convergence time for
target models (a) 1, (b) 2, and (c) 3 with the two-stage FRF-based algorithm.
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Figure 5.13: Histograms showing the distribution of the convergence time for tar-
get (a) model 1, (b) model 5, and (c) model 7 using the CMA-ES-based algorithm
executed in serial.

The stochastic CMA-ES framework benefits significantly from parallel execu-

tion. Figure 5.14 shows the distribution of convergence times when the CMA-ES

optimisation algorithm is executed in parallel using 50 threads. Compared to the

serial implementation, parallelisation reduces runtime significantly, with most runs

completing in 75-170 s, making the CMA-ES framework more competitive for near-

real-time monitoring applications. This improvement is achieved by parallelising

the evaluation of candidate solutions, significantly reducing the computational

cost for each generation.
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Figure 5.14: Histograms showing the distribution of the convergence time for tar-
get (a) model 1, (b) model 5, and (c) model 7 using the CMA-ES-based algorithm
executed in parallel with multiple threads.

The DE-based framework, though not explicitly shown in Figures 5.12–5.14,

requires significantly longer runtimes. This is due to its reliance on repeated

time-domain simulations, SSI computations, and the intentional overestimation of

system order to extract stable modes within each generation. For example, com-

plex scenarios like target model 5 require hundreds of generations, substantially

increasing computational time. While parallel execution could reduce these costs

by distributing population evaluations, the framework’s inherent overhead makes

it less suitable for applications requiring rapid responses. As a reference, target

model 1 typically requires 550–1900 s to converge.

All simulations were performed on the University of Nottingham’s HPC cluster,

specifically a high-memory node configured with 2 × 48-core AMD CPUs and

1.5 TB of RAM.

5.4 Conclusions

This study developed and compared three model updating frameworks for esti-

mating the scour depth of pile foundations: a deterministic FRF-based method,

and two stochastic approaches (DE-based and CMA-ES-based).

The deterministic FRF-based framework uses input-output data from impact

testing to match first- and second-mode FRF peaks through a two-stage itera-

tive algorithm. It demonstrated robust performance under noise and varying soil

conditions, provided damping assumptions and load measurements were accurate.

While it is computationally faster than the stochastic methods, significant vari-

ability in soil stiffness or noise required fine-tuning of the stopping criteria to

ensure reliability.

In contrast, the DE-based approach operates in an output-only setting, relying
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on repeated time-domain simulations and SSI to iteratively update key parame-

ters in each generation. This approach demonstrated robustness to uncertainties

in input loads and soil heterogeneity but demanded significant computational re-

sources, especially for complex soil profiles. Its consistent performance across all

target models, including those with ambient load conditions, underscores its ap-

plicability for in-service structures. However, the need to carefully configure SSI

parameters and stopping criteria highlights the importance of user expertise.

The CMA-ES-based framework also operates in an output-only setting but

avoids repeated time-domain simulations. By integrating UQ for frequencies and

MAC estimates into the objective function, it eliminates the need for manual toler-

ance adjustments. This led to faster convergence than DE under noisy or variable

conditions. Parallelisation further reduced runtime, enhancing its practicality. In-

corporating a ROM for time-domain analyses could preserve these performance

gains, although further studies are needed to confirm this.

Each framework can be selected based on load measurement availability, com-

putational resources, and uncertainty in soil properties. While the study explored

various SPI configurations and load scenarios, additional research involving field

experiments could further validate these methods. Future work on integrating

non-linear soil models and refining UQ schemes could enhance real-world applica-

bility. Nonetheless, the three frameworks presented here offer viable solutions for

scour monitoring in pile foundations.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has developed and demonstrated three model updating frameworks

aimed at estimating critical parameters in soil-pile interaction (SPI) systems. Each

framework was designed with specific constraints in mind, such as data availability

and the practical realities of monitoring offshore foundations. Together, these

approaches advance structural health monitoring (SHM) by integrating physical

insight with data-driven methods, enhancing both interpretability and predictive

accuracy.

The work is structured around three central contributions, each detailed in its

respective chapter:

• A deterministic framework based on frequency response functions (FRFs)

for estimating the embedded length and soil parameters of piles subject to

controlled lateral impact (Chapter 3).

• A stochastic, output-only method that uses stochastic subspace identifica-

tion (SSI) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

optimisation to estimate SPI parameters when input forces are unknown

(Chapter 4).

• A comparative evaluation of three frameworks, namely FRF-based, Dif-

ferential Evolution (DE)-based, and CMA-ES-based, for estimating scour

depth in monopile foundations under various soil and loading conditions

(Chapter 5).
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The key findings of each chapter are summarised below, with a focus on their

practical implications and performance under different conditions.

FRF-based estimation of embedded length (Chapter 3)

This chapter presents a two-stage FRF-based framework for estimating the em-

bedded length and dynamic soil parameters of laterally loaded piles. Extending

the method of Wu et al. (2018), the approach uses both the first and second vibra-

tion modes to improve accuracy. In Stage 1, soil mass and stiffness are iteratively

adjusted to match the first-mode FRF peak. Stage 2 refines the embedded length

by calling Stage 1 while aligning the second-mode peak. Numerical studies across

different geometries and soil profiles show that ignoring the second mode leads

to biased estimates, underscoring the need for both stages. The method is com-

putationally efficient and converges reliably under moderate damping and known

excitation, making it particularly suited to controlled loading environments.

Output-only model updating using SSI and CMA-ES (Chap-

ter 4)

To address scenarios with unknown excitations, this chapter introduces a stochas-

tic, output-only model-updating framework using SSI and CMA-ES. SSI extracts

modal frequencies and mode shapes with associated uncertainty, which guides

CMA-ES in refining SPI parameters by minimising the mismatch between mod-

elled and measured modal properties. The framework incorporates uncertainty

quantification (UQ) directly into the optimisation, improving robustness and elim-

inating the need for user-defined tolerance thresholds. Monte Carlo simulations

and a full-scale field test confirm its accuracy and resilience to sensor limitations

and noise, making it well suited for operational monitoring of pile foundations.

Scour depth estimation using deterministic and stochastic

frameworks (Chapter 5)

This chapter compares three model updating frameworks for estimating scour

depth: an FRF-based deterministic method, and two stochastic output-only ap-

proaches using DE and CMA-ES. The FRF-based method, effective under known

impact loading, converges rapidly using a two-stage model updating framework.

However, it is sensitive to damping and requires accurate force measurements.

The DE-based and CMA-ES-based methods use time-domain identification (SSI)
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to estimate modal properties, offering flexibility and noise tolerance at the cost

of increased computational effort. A key distinction between the two stochastic

methods lies in how they handle the physics-based model: the DE-based frame-

work solves the model numerically during each optimisation iteration, allowing

it to address problems where analytical solutions are unavailable, but incurring

higher computational cost. In contrast, the CMA-ES-based framework derives

modal properties directly from pre-assembled system matrices, enabling more ef-

ficient evaluations. The CMA-ES framework further improves performance by in-

corporating UQ into the optimisation loop, reducing manual tuning and enabling

faster, more stable convergence. Numerical studies with various soil profiles and

excitation types demonstrate that while all methods can estimate scour depth reli-

ably, CMA-ES offers the best balance between robustness, efficiency, and practical

applicability in output-only conditions.

6.2 Future work

In light of the results and methodologies presented throughout this thesis, several

paths remain open for further investigation and development. While the founda-

tions of data-driven and physics-based approaches have been established, their full

potential in handling complex, real-time applications and uncertain environments

has yet to be fully examined. The section below outlines prospective research

directions that can broaden the impact and applicability of the current work.

A natural next step involves extending the underlying numerical formulations

to better capture nonlinear soil-structure interactions. Although the Winkler-

based assumptions are effective for small-strain or quasi-linear conditions, prac-

tical offshore wind turbine foundations often face varying degrees of nonlinearity

due to large-amplitude excitations or changing soil properties (e.g., cyclic densifi-

cation, scouring). Incorporating higher-fidelity soil models—possibly via nonlinear

beam on Winkler models or advanced finite-element implementations—could im-

prove the robustness and predictive accuracy of digital twins developed for pile

foundations.

Machine learning models, such as neural networks and Gaussian processes, have

demonstrated strong predictive capabilities but can struggle when extrapolating

beyond their training domains. Embedding fundamental physics-based modelling

into the learning architecture offers a means to regularise these models, thereby

achieving better generalisation and interpretability. A promising extension of this

approach is the use of Physics-Informed Neural Networks (PINNs), where an ODE

similar to Equation (3.4) describing SPI informs the model structure. This inte-
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gration would result in Physics-Enhanced Machine Learning (PEML) frameworks

that maintain consistency with engineering principles while adapting to various

operational and environmental conditions.

For sustained offshore monitoring, it is crucial that model updating and di-

agnostics are computationally efficient. Future research can capitalise on model

reduction techniques to decrease the complexity of full-scale models without sac-

rificing accuracy. When combined with parallel computing or dedicated high-

performance architectures, model reduction can provide near-real-time SHM capa-

bilities. This would enable operators to promptly respond to structural differences,

thereby enhancing the reliability and safety of offshore wind turbine foundations.

UQ proved invaluable for validating the reliability of model-updated predic-

tions under noisy and incomplete measurements. Nonetheless, many additional

UQ methods remain underexplored, ranging from Bayesian approaches to polyno-

mial chaos expansions. Future studies could extend these strategies to incorporate

multi-source data fusion by integrating measurements not only from accelerom-

eters but also from strain gauges, hydrodynamic observations, and other sensor

types. By merging diverse sensor data with robust UQ, the updated models would

provide a more holistic and statistically justified view of the system’s health.

Another promising direction involves further refining methods for minimal sen-

sor placement. Future work could incorporate observability metrics—quantifying

how effectively a certain sensor layout captures global modes and structural states—into

the sensor configuration design process. Combining advanced optimisation algo-

rithms with structural observability criteria might yield automated, cost-effective

sensor deployment plans, especially relevant for large offshore wind farms.

Although advanced algorithms and numerical models are essential, the ultimate

value of SHM lies in the decisions made by engineers, operators, and stakeholders.

Future research can enhance transparency by integrating explainable artificial in-

telligence (AI) tools into the model updating workflow, ensuring that predictions,

warnings, and recommendations are conveyed with interpretable rationales and

confidence levels. Incorporating intuitive user interfaces and visual analytics can

help non-experts understand and act upon the outputs of model updates in a

timely and informed manner.

Finally, expanding the scope from monitoring individual foundations to entire

wind farms represents a significant and achievable goal. Integrating comprehensive

monitoring systems across multiple structures can enhance overall operational

efficiency and structural integrity. This approach aligns with broader industry

trends aimed at developing unified monitoring solutions for large-scale offshore

energy assets, facilitating proactive maintenance, informed decision-making, and
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sustained performance throughout the infrastructure’s lifecycle.

Collectively, these directions illustrate how the methods, tools, and concepts

presented in this thesis can evolve to tackle increasingly complex, data-rich, and

operationally demanding applications. By merging detailed physics, advanced

machine learning, UQ, and real-time capabilities, future research is well positioned

to further enhance the reliability and efficiency of monitoring methods.
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A.1 Introduction

Offshore wind turbines are complex structures subjected to significant dynamic

forces, including wind and wave loads, which can substantially influence the struc-

tural response of supporting monopiles. Accurate modelling of soil-pile interaction

(SPI) systems is essential, yet obtaining precise SPI parameters remains challeng-

ing, especially in inaccessible offshore environments. This study examines how

variations in soil stiffness affect displacement and acceleration responses in exam-

ple pile structures and quantifies the influence of key parameters. To address these

challenges, an FRF-based model updating method is implemented to estimate the

soil stiffness profile. In addition, the method is applied to identify a random soil

stiffness distribution using acceleration data collected at multiple nodes along the

pile. The findings provide valuable preliminary insights into characterising the

behaviour of monopiles supporting offshore wind turbines, offering potential im-

provements for future designs and enhancing the safety and efficiency of offshore

wind energy production.

This preliminary work presents an enhancement to an existing FRF-based

model updating method, which updates the embedded length, soil mass, and stiff-

ness by calculating a weighting factor based on the acceleration of the pile head.

This weighting is applied to an initial stiffness guess when the profile is known

(Ioakim & Prendergast, 2024; Wu et al., 2018). The enhanced method extends

the approach to facilitate the estimation of depth-dependent stiffness profiles. It

begins with a random initial profile and employs multiple nodes to iteratively com-

pute the depth-dependent stiffness when the profile is unknown, assuming the soil

mass is already known. The performance of a preliminary version of this model is

presented in this appendix.

A.2 Numerical modelling of the soil-pile system

This section provides a description of the numerical model used in the analysis.

A visual representation of the pile model is shown in Figure A.1.
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Figure A.1: (a) Schematic of the soil-pile system, and (b) Equivalent Winkler
model

The soil mass is represented by attaching lumped masses to the pile nodes,

which are connected to Winkler springs. The equation of motion for this dynamic

system is given in Equation (3.4).

Mθq̈(t) + Dθq̇(t) + Kθq(t) = u(t) (3.4)

At a specific time step in the numerical model, the vector u represents the

external forces acting on each degree of freedom, while q denotes the displacement

profile as a function of time t. The damping matrix D is constructed using a two-

term Rayleigh damping approach, which expresses D as a linear combination of

the mass matrix M and stiffness matrix K, as described in Equation (3.5).

Dθ = α0Mθ + α1Kθ, (3.5)

The example system in this appendix consists of a pile with a total length of

11 m, embedded 10 m into the soil. An impulse force of 10 000 N is applied for

an arbitrary duration of 0.010 s in each case, simulating the impact of a modal

hammer on the pile. Acceleration and velocity measurements are recorded at
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multiple locations along the pile to facilitate depth-dependent stiffness updating.

The pile model is assumed to be embedded in a sand layer with depth-dependent

stiffness variations. In this study, the equation provided by Vesic is utilised to cal-

culate the coefficient of subgrade reaction KS(z), which varies with depth. This

equation determines KS(z) by matching the maximum displacements of an infinite

beam, as shown in Equation (2.3) (Vesić, 1961).

KS(z) =
0.65ES(z)

D(1 − ν2s )

12

√
ES(z)D4

EI
(2.3)

The stiffness of the ith spring is given by Equation (3.2)

ki = KS(z)DiLi (3.2)

Figure A.2 presents a small-strain stiffness profile generated through numerical

simulation to test the depth-dependent model updating approach.
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Figure A.2: Numerical generated E0 profile

A.3 Effect of the soil stiffness on the lateral re-

sponse of piles

This section evaluates the impact of soil stiffness on the lateral response charac-

teristics of piles, illustrating how stiffness variations influence the displacement
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and acceleration FRFs of monopiles subjected to dynamic lateral loading. Fig-

ure A.3(a) shows the amplitude of the first peak in the displacement frequency

response function (FRF) for a 11 m long, 4 m diameter pile. These results were

obtained by developing and analysing models with a mean stiffness (E0) ranging

from 110 000 kPa to 1 100 000 kPa, while applying an external soil mass equal to

the pile’s mass, distributed across the top quarter of the pile’s length.

Similarly, Figure A.3(b) illustrates the magnitude of the first peak in the accel-

eration FRF for the same pile. The results align with the well-established principle

that stiffness has a greater influence on the displacement FRF than on the acceler-

ation FRF (Wu et al., 2018). It is important to note that these stiffness values are

not intended to represent real soil conditions; rather, they serve to demonstrate

their effect on the resulting FRF peaks.
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Figure A.3: (a) Effect of stiffness on the lateral displacement FRF of the top node
in soil, (b) Effect of stiffness on the lateral acceleration FRF of the top node in
soil

A.4 Depth-dependent stiffness updating

This section evaluates the performance of a preliminary iterative solution approach

for estimating the depth-dependent stiffness of a beam-Winkler model using FRF

data from multiple depths along the pile. This approach is a modified version of

the method developed by Wu et al. (2018), which determined the weightings of

operating mass and stiffness across an entire soil stiffness profile. In this enhanced

method, accelerometers are assumed to be placed at various depths along the pile

to independently compute the operating stiffness at each node.

Figure A.4 illustrates how the algorithm iteratively converges for three ran-

domly selected degrees of freedom (DOFs) in the system: one near the top, one

near the middle, and one near the bottom. Once the FRFs of all nodes converge

to the target model, the extracted spring data are compared to the target val-

ues to assess convergence accuracy. Since the stiffness values of the target model
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are unknown in real piles, this analysis relies on numerically simulated data to

evaluate the effectiveness of the method.

Figure A.5 compares the initial guessed stiffness values and the converged stiff-

ness values against the target model. The results presented in Figures A.4, A.5

demonstrate that the FRF-based model updating method successfully converges

to stiffness values significantly closer to the target stiffness, highlighting its effec-

tiveness in estimating the random stiffness profile of the soil.

However, further optimisation is required to improve convergence and accuracy,

as discrepancies remain in the lower part of the stiffness profile. For instance, at a

depth of 7 m, the target model indicates a spring stiffness of 48 000 kN m−1, while

the initial model has a stiffness of 30 600 kN m−1. After convergence, the final

model achieves a stiffness of 48 600 kN m−1, corresponding to a relative error of

36.25 % for the initial model and 1.25 % for the converged model.

Similarly, at a depth of 4 m, the target stiffness is 26 100 kN m−1, while the ini-

tial and converged models exhibit stiffness values of 16 000 kN m−1 and 25 700 kN m−1,

respectively, yielding relative errors of 38.70 % and 1.53 % for the initial and con-

verged models, respectively.
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Figure A.4: Comparison of target, initial and converged model FRF
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Figure A.5: Comparison of stiffness of converged numerical model to target model

A.5 Conclusion

In summary, this study investigated the influence of soil stiffness on the FRFs

of laterally loaded piles. A preliminary version of a newly developed FRF-based

model updating method was employed to estimate the depth-dependent soil stiff-

ness profile and analyse its effect on the displacement and acceleration of an ex-

ample SPI model. This enhanced FRF-based method-building on the approach

by Wu et al. (2018), was used to identify the random stiffness profile of the soil

based on acceleration measurements obtained at multiple nodes along the pile.

The findings of this study provide valuable insights and lay the groundwork

for a finalised depth-dependent stiffness estimation method, which can be applied

to real piles when acceleration data are available at multiple locations. Future

work will incorporate real-world experimental conditions into the analysis to gain a

comprehensive understanding of the applicability and performance of the updating

approach in practical scenarios. Additionally, efforts will focus on extending the

method to models with a higher number of degrees of freedom, further enhancing

its accuracy and robustness.
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Appendix B

Dynamic modelling of vibrating

structures

This appendix provides a comprehensive examination of vibrational analysis

techniques (Peeters & De Roeck, 1999) and the statistical evaluation of modal pa-

rameter variances (Greś, 2019). It begins with the analysis of undamped systems,

followed by discussions on proportional and general viscous damping scenarios.

The appendix further explores the state-space representation of system parame-

ter identification and outlines model reduction strategies for developing efficient

reduced-order models. Additionally, it delves into the assessment of modal pa-

rameter uncertainties using the Delta method and first-order perturbation theory.

Together, these sections offer the theoretical and methodological foundations that

support the main research presented in this thesis.

B.1 Vibrational analysis

B.1.1 Undamped case

The computation of eigenvalues and eigenvectors from Equation (3.4) is a stan-

dard approach commonly found in modal analysis textbooks. This derivation be-

gins by considering the simplest case where damping is neglected. The solutions

of the homogeneous model differential equations take the form shown in Equa-

tion (B.1):

Mθq̈(t) + Kθq(t) = 0 (B.1)
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Assuming a solution of the form q(t) = ϕn e
λnt, substituting into Equation (B.1)

leads to a generalised eigenvalue problem described in Equation (2.5), which can

be written as:

Kθϕn = Mθϕn (−λ2n) (B.2)

where ϕn ∈ Rn2 represents the eigenvectors, and −λ2n is a real eigenvalue.

These eigenvalues are often expressed as the square of an eigenfrequency ω2
n, such

that λn = jωn where j is the imaginary unit, defined by j2 = −1. The generalised

eigenvalue problem from Equation (B.2) can be reformulated into a matrix form

as follows:

KθΦ = MθΦΩ2 (B.3)

where Φ ∈ Rn2×n2 is a matrix containing the eigenvectors also referred as

mode shapes ϕn as its columns, and Ω = diag([ωn]) ∈ Rn2×n2 is a diagonal ma-

trix containing the eigenfrequencies ωn in radians per second. The orthogonality

properties of the eigenvectors can then be expressed as:

ΦTMθΦ = Mmodal, ΦTKθΦ = Kmodal, (B.4)

where Mmodal and Kmodal are diagonal matrices containing the modal masses

mn and modal stiffnesses kn, respectively. Using this property, the eigenfrequencies

ωn can be related to the modal parameters as:

ω2
n =

kn
mn

.

B.1.2 Proportional damping

Mθq̈(t) + Dθq̇(t) + Kθq(t) = Bu(t) (B.5)

By multiplying Equation (B.5) (where B ∈ Rn2×m, u ∈ Rm, and m repre-

sents the number of inputs) by ΦT, and introducing the coordinate transformation

q(t) = Φqm(t), the equation is reformulated in modal coordinates.

q(t) = Φqm(t),
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the second-order finite element model equation, Equation (B.5), can be trans-

formed into modal coordinates:

ΦTMθΦ q̈m(t) + ΦTDθΦ q̇m(t) + ΦTKθΦqm(t) = ΦT B u(t). (B.6)

The vector qm(t) ∈ Rn2 contains the modal displacements. Using the orthog-

onality properties of the eigenvectors as defined in Equation (B.4), the first and

third terms in the left-hand side of Equation (B.6) simplify. Additionally, un-

der the assumption of proportional damping, the eigenvectors also diagonalise the

damping matrix Dθ, leading to:

ΦTDθΦ = ΓMmodal, Γ = diag
(
[2 ξn ωn]

)
, (B.7)

where ξn are the modal damping ratios, defined as ξn = dn
2mn ωn

. Substituting

these results into Equation (B.6) yields a fully decoupled set of modal equations,

with diagonal left-hand-side matrices:

I q̈m(t) + Γ q̇m(t) + Ω2 qm(t) = M−1
modal Φ

T B u(t). (B.8)

The solutions of the homogeneous model differential equations with propor-

tional damping retain the form q(t) = ϕn e
λnt.

It can be shown that the eigenvectors ϕn remain unchanged compared to the

undamped case. From Equation (B.8), the eigenvalues λn are determined as solu-

tions of the characteristic equation:

λ2n + 2 ξn ωn λn + ω2
n = 0,

which yields the following solutions:

λn, λ
∗
n = −ξn ωn ± j ωn

√
1 − ξ2n ,

where the superindex ∗ denotes the complex conjugate. In cases where a damp-

ing description is required in physics-based modelling, modal damping ratios ξn

are typically specified for the modes of interest. These ratios are often determined

experimentally using system identification techniques applied to vibration data

(reviewed in section 2.2). Using these modal damping ratios, a complete damping

matrix Dθ can be reconstructed as:
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Dθ = Φ−T Mmodal ΓΦ−1 = MθΦM−1
modal diag

(
[2 ξn ωn]

)
ΦT Mθ, (B.9)

B.1.3 General viscous damping

When the assumption of proportional damping is not valid, the eigenvalue

problem becomes more complex. In such cases, the eigenvalues of the undamped

system (Kθ and Mθ) do not correspond to the eigenvalues of the damped system

(Dθ). A reformulation of the governing equation is required to address general

non-proportional damping. This reformulation involves expressing the second-

order equation as a first-order state-space system.

Defining the state vector x(t) ∈ Rs and:

x(t) =

(
q(t)

q̇(t)

)
, P =

(
Dθ Mθ

Mθ 0

)
, Q =

(
Kθ 0

0 −Mθ

)
, (B.10)

the original second-order system is transformed into a first-order system:

Pẋ(t) + Qx(t) =

(
B
0

)
u(t) (B.11)

The eigenvalue problem for this system can be written as:

PΨΛc + QΨ = 0. (B.12)

Here, Ψ ∈ Cs×s represents the s = 2n2 complex eigenvectors, and Λc ∈ Cs×s is the

diagonal matrix containing the s complex eigenvalues λn. The eigenvalue matrix

Λc and eigenvector matrix Ψ can be written as:

Λc =

(
Λ 0

0 Λ∗

)
, Ψ =

(
Θ Θ∗

ΘΛ Θ∗Λ∗

)
, (B.13)

where Λ and Θ are the eigenvalues and eigenvectors of the original second-

order system. These eigenvalues satisfy the following equation:

MθΘΛ2 + DθΘΛ + KθΘ = 0. (B.14)

Unlike the case of proportional damping, where the eigenvectors diagonalise
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Mθ,Dθ,Kθ, in non-proportional damping, the matrices are not fully diagonaliz-

able. The eigenvalues for this case are given by:

λn, λ
∗
n = −ξnωn ± jωn

√
1 − ξ2n, (B.15)

where ξn and ωn represent the modal damping ratios and natural frequencies,

respectively.

To compute the modal matrices, orthogonality conditions are utilised:

Ψ⊤PΨ = diag
(
an
)
, Ψ⊤QΨ = diag

(
bn
)
, (B.16)

where diag
(
an
)

and diag
(
bn
)

represent the modal mass and stiffness matrices.

The eigenvalue matrix Λc can be further expressed as:

Λc = diag(λn) − diag

(
1

an
bn

)
. (B.17)

B.1.4 State-space representation of SPI

The State Equation

Starting from the second-order equation of motion given in (B.5), one can recast

these into a first-order system. By multiplying (B.11) by P−1, a normalised state-

space representation is achieved. The normalisation itself involves the matrix

P−1 =

(
0 Mθ−1

Mθ−1 −Mθ−1DθMθ−1

)
, (B.18)

and applying it to (B.11) leads to the system in the form

ẋ(t) = Ac x(t) + Bc u(t), (B.19)

where x(t) is the state vector in first-order form, Ac ∈ Rs×s is the continuous-

time state matrix, and Bc ∈ Rs×m is the input matrix. In particular, (B.20)

defines
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Ac = −P−1Q =

(
0 I

−Mθ−1Kθ −Mθ−1Dθ

)
,

Bc = P−1

(
B
0

)
,=

(
0

Mθ−1B

)
, (B.20)

with the precise structure of these matrices governed by how P and Q are formed

from the underlying mass, damping, and stiffness operators (M,D,K).

One can show that Ac can be decomposed through a modal transformation

(B.16) and property (B.17). Specifically, if Ψ is the matrix of eigenvectors and Λc

is the diagonal matrix of eigenvalues, then (B.21) can be written as:

Ac = ΨΛcΨ
−1, (B.21)

indicating that finding Λc and Ψ is essentially a standard eigenvalue problem.

This diagonalisation highlights that Λc contains the system’s eigenvalues, while Ψ

contains the corresponding eigenvectors of Ac.

The observation equation

In a practical experiment, not all degrees of freedom (DOFs) of the structure are

directly measured. Instead, measurements may be taken at only a subset of DOFs

at locations (l). Equation (B.22) introduces an output equation of the form

y(t) = Ca q̈(t) + Cv q̇(t) + Cd q(t), (B.22)

where y(t) ∈ Rl contains the measured outputs, and Ca, Cv, Cd ∈ Rl×n2 are

output location matrices for acceleration, velocity, and displacement respectively.

Equation (B.22) can be re-written using (B.5) and the definition of the state in

(B.10), to express the outputs in terms of the state x(t). This yields (B.23),

y(t) = Cc x(t) + Dc u(t), (B.23)

where Cc ∈ Rl×n and Dc ∈ Rl×m are typically derived from the physics-based

model matrices.
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The state-space model

By combining the normalised first-order system (B.19) with the output equation

(B.23), the classic continuous-time state-space system is obtained in Equation

(B.24)

ẋ(t) = Ac x(t) + Bc u(t),

y(t) = Cc x(t) + Dc u(t) (B.24)

where in the discrete time-space it can be re-written as (B.25).

xk+1 = Axk + Buk,

yk = Cxk + Duk (B.25)

Finally when noise is added, then the stochastic components have to be in-

cluded in the model in Equation (B.26)

xk+1 = Axk + Buk + wk,

yk = Cxk + Duk + vk (B.26)

Where wk ∈ Rn represents the process noise arising from disturbances and mod-

elling errors, while vk ∈ Rl denotes the measurement noise resulting from sensor

inaccuracies. Both wk and vk are unobservable vector signals, assumed to be

zero-mean, white, and characterised by the following covariance matrices:

E

[[
wp

vp

]
(wT

q vT
q )

]
=

(
Q S

ST R

)
δpq, (B.27)

where E is the expected value operator; δpq is the Kronecker delta (p = q

implies δpq = 1, otherwise δpq = 0); and p, q are two arbitrary time instants. Q

and R represent the covariance of wk and vk, respectively, while S represents the

cross-covariance between wk and vk.

In an output-only system, the available vibration information consists solely

of the response of a structure subjected to unmeasurable inputs. Due to the

absence of input data, it becomes impossible to distinguish between the input

terms uk and the noise terms wk and vk in Equation (B.26). Consequently, the
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system is represented using the purely stochastic state-space model defined by

Equation (B.28).

xk+1 = Axk + wk,

yk = Cxk + vk (B.28)

The input is implicitly represented by the noise terms. However, the assump-

tion that these noise terms are white cannot be disregarded, as it is essential for

validating the system identification methods discussed in the next chapter. If this

white noise assumption is violated—such as when the input includes dominant fre-

quency components alongside white noise—these frequency components cannot be

distinguished from the system’s eigenfrequencies. As a result, they may manifest

as spurious poles in the state matrix A.
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B.2 Model optimisation

B.2.1 Compressed sparse row (CSR) matrices

When solving large-scale systems of equations arising from physics-based mod-

els, a significant fraction of the matrix elements are often zero. As a result, it is

computationally inefficient and memory-intensive to store the entire matrix in a

dense format. The CSR format addresses this challenge by storing only the non-

zero elements and the indices required to locate them (Tewarson & Tewarson,

1973).

Overview of CSR Structure

The CSR format represents a sparse matrix A ∈ Rn×n with three arrays:

• val: Contains the non-zero values of the matrix, stored row-by-row.

• col ind: Specifies the column indices corresponding to each non-zero ele-

ment in val.

• row ptr: Records the cumulative count of non-zero elements up to the be-

ginning of each row. This array has a length of (n + 1), where row ptr[ i ]

gives the index in val (and col ind) where row i begins.

Matrix-vector multiplications, forward/backward substitutions, and other lin-

ear algebraic operations can then be carried out efficiently by traversing only the

non-zero entries.

Illustrative 10×10 Example

In this section, we demonstrate CSR formatting using the 10×10 matrices Mθ,

Dθ, and Kθ from Equation (3.4). For compactness, we display three characteristic

sparse matrices that might arise in structural dynamics.
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A simple diagonal mass matrix is given by:

Mθ =



1 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 6 0 0 0 0

0 0 0 0 0 0 7 0 0 0

0 0 0 0 0 0 0 8 0 0

0 0 0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 0 0 10



.

Only the main diagonal has non-zero entries. Hence, to store this matrix in CSR:

• val = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

• col ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

• row ptr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

A banded damping matrix might look like:

Dθ =



0.1 0.05 0 0 0 0 0 0 0 0

0.05 0.1 0.05 0 0 0 0 0 0 0

0 0.05 0.1 0.05 0 0 0 0 0 0

0 0 0.05 0.1 0.05 0 0 0 0 0

0 0 0 0.05 0.1 0.05 0 0 0 0

0 0 0 0 0.05 0.1 0.05 0 0 0

0 0 0 0 0 0.05 0.1 0.05 0 0

0 0 0 0 0 0 0.05 0.1 0.05 0

0 0 0 0 0 0 0 0.05 0.1 0.05

0 0 0 0 0 0 0 0 0.05 0.1



.

In this tridiagonal band structure, each row has at most three non-zero elements

(the main diagonal and the off-diagonals at ±1). Thus, the non-zero entries and

their positions can be stored similarly in CSR arrays.
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Finally, a tri-diagonal stiffness matrix is given by:

Kθ =



50 −10 0 0 0 0 0 0 0 0

−10 50 −10 0 0 0 0 0 0 0

0 −10 50 −10 0 0 0 0 0 0

0 0 −10 50 −10 0 0 0 0 0

0 0 0 −10 50 −10 0 0 0 0

0 0 0 0 −10 50 −10 0 0 0

0 0 0 0 0 −10 50 −10 0 0

0 0 0 0 0 0 −10 50 −10 0

0 0 0 0 0 0 0 −10 50 −10

0 0 0 0 0 0 0 0 −10 50



.

This structure also lends itself to an efficient CSR representation, as each row has

at most three non-zero entries.

By converting Mθ, Dθ, and Kθ to CSR format, one can significantly reduce

the memory footprint and accelerate numerical operations (e.g., factorisation, it-

erative solves) by accessing only the relevant, non-zero elements. This conversion

is particularly advantageous in large finite element models where the structural

matrices are often highly sparse.
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B.2.2 Modal reduced order modelling (ROM)

Building an efficient ROM begins by extracting dominant modal parameters

through eigen-value decomposition and merging these with the corresponding

mode shapes. By mapping continuous-time poles to a discrete-time formulation,

the system’s principal dynamics are retained in a significantly smaller state-space.

This reduced-order model enables more computationally efficient simulations. A

pseudocode is provided in Algorithm 10

Algorithm 10 Modal Reduced-Order Model (ROM) Construction

Require: Natural frequencies {fi} and damping ratios {ξi}, i ∈ [0, . . . , nmode),

mode shapes of interest ϕ (size: nDOF × nmode), sampling time-step dt, sensor

and input node indices (sensors, inputs)

Ensure: A reduced order discrete-time state-space model

Step 1: Compute Discrete Poles

For each mode:

µi = − ξi(2πfi) + i (2πfi)
√

1 − ξ2i , λi = eµi·dt

Step 2: Partition Mode Shapes

ϕsens = ϕ(sensors, :) ▷ sensor rows

ϕinp = ϕ(inputs, :) ▷ input rows

Step 3: Assemble Real Matrices for Acceleration

In the acceleration case, construct C such that

C ≈ ϕsens · diag(µ2
i )

Construct D based on input locations

Step 4: Form Discrete-Time State-Space

Convert λi to real-valued A-matrix (real-imag form)

Compute B-matrix using transform of input shape ϕinp

state-space(A, B, C, D, dt)

return Return Reduced-Order State-Space Model
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B.3 Variance of modal parameters

During the process of determining system matrices and their associated modal

parameters from experimental measurements, two primary types of statistical er-

rors are commonly encountered: variance and bias. Variance errors arise due to

inherent statistical fluctuations caused by limited data samples and the presence

of measurement noise. Conversely, bias errors are introduced by modelling deci-

sions, such as the selection of the system order, and can result in the emergence

of spurious modes. These erroneous modes are often mitigated through the use of

stabilisation diagrams or other model validation techniques.

To evaluate the variance of the estimated modal parameters, a statistical frame-

work can be employed that provides explicit formulations for quantifying their

uncertainties. When the distribution of an estimator is sufficiently characterised,

confidence intervals serve as an effective tool for representing the associated uncer-

tainty. For instance, Figure B.1 schematically depicts a 95% confidence interval

surrounding a parameter estimate assumed to follow a Gaussian distribution.

4 6 8 10 12 14 16
Estimates

Mean estimate
95% Confidence bounds

4 6 8 10 12 14 16
Estimates

PD
F

95% Confidence bound

Histogram of estimates
Approximation of distribution function

Figure B.1: Conceptual depiction of confidence intervals for a Gaussian estimate.

B.3.1 The delta method and first-order perturbation the-

ory

A widely adopted technique for propagating measurement uncertainties to the

estimated modal parameters involves the integration of the Delta method with
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first-order perturbation theory. This methodology essentially linearises the rela-

tionship between the observed data and the parameter estimates by expanding the

target functions (such as the modal parameters) around a nominal operating point.

These linear approximations facilitate the examination of how minor variations in

the measured data influence the resulting modal parameter estimates.

This approach enables the derivation of analytical expressions for the variances

of the parameters of interest. Provided that certain regularity conditions are met,

the propagation of variance can be directly calculated using the covariance matrix

of the original estimates in conjunction with the Jacobian matrix of the pertinent

transformation. Figure B.2 schematically represents this variance propagation

process.

By implementing this procedure, a systematic linkage is established between

measurement uncertainties and the variability inherent in the identified model.

This connection offers a more transparent understanding of the reliability and

robustness of the estimated modal parameters, thereby enhancing the credibility

of the modal identification process.

Figure B.2: Illustration of uncertainty propagation based on the Delta method
and first-order perturbation theory (Greś, 2019).
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Appendix C

Supplementary material
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Figure C.1: Comparison of converged parameter distributions for target 2 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.2: Comparison of converged parameter distributions for target 3 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.3: Comparison of converged parameter distributions for target 4 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.4: Comparison of converged parameter distributions for target 5 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.5: Comparison of converged parameter distributions for target 6 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.6: Comparison of converged parameter distributions for target 7 across
FRF-based (left), DE-based (middle), and CMA-ES-based (right) frameworks.
Each row corresponds to a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.7: Comparison of converged parameter distributions for target 8 across
DE-based (left) and CMA-ES-based (right) frameworks. Each row corresponds to
a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.8: Comparison of converged parameter distributions for target 9 across
DE-based (left) and CMA-ES-based (right) frameworks. Each row corresponds to
a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.9: Comparison of converged parameter distributions for target 10 across
DE-based (left) and CMA-ES-based (right) frameworks. Each row corresponds to
a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Figure C.10: Comparison of converged parameter distributions for target 11 across
DE-based (left) and CMA-ES-based (right) frameworks. Each row corresponds to
a parameter: (top) Ds, (middle) wm, and (bottom) wk.
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Greś, S., Riva, R., Süleyman, C. Y., Andersen, P., &  Luczak, M. (2022b). Uncer-

tainty quantification of modal parameter estimates obtained from subspace

identification: An experimental validation on a laboratory test of a large-

scale wind turbine blade. Engineering Structures, 256, 114001.
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