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Abstract

The rate at which individuals in a population mix with one another can

have a large impact on how far a disease spreads among that population, as

well as what fraction of the population needs to be immune from infection

in order to protect the remaining susceptible population from a major out-

break. In this thesis we consider both deterministic and stochastic SEIR

(susceptible→ exposed→ infectious→ recovered) epidemic models. We

impose a household structure on the population, so that individuals mix

globally with the population at large and, at a higher rate, locally with

members of their household. We also consider an extension of this model

in which individuals are typed, making global contacts at different rates

dependent on their type. We investigate herd immunity for these mod-

els, providing a more realistic insight than the standard epidemic model in

which all individuals in the population mix at the same rate.

The disease-induced herd immunity level hD is the fraction of the pop-

ulation that must be infected by an epidemic to ensure that a new epidemic

among the remaining susceptible population is not supercritical. For a ho-

mogeneously mixing population hD equals the classical herd immunity

level hC, which is the fraction of the population that must be vaccinated

in advance of an epidemic so that the epidemic is not supercritical. A de-

tailed comparison of hD and hC is given for the households model, where

we also define an approximation h̃D of hD which is more amenable to

analysis. It is found that hD > hC unless the household size variability is

sufficiently large, in contrast to other models with heterogeneous mixing

of individuals, in which hD < hC typically occurs.

We obtain the asymptotic variance for hD as the population size goes

to infinity, using a Gaussian approximation. We then consider a model

with individual types and household structure, deriving several reproduc-

tion numbers and a central limit theorem for the final outcome under the

assumption of proportionate global mixing, which we show greatly sim-

plifies these calculations and results. We provide comparison of h̃D and hC

when these individual types correspond to activity levels, showing that the

ordering of these herd immunity levels is strongly dependent on the distri-



bution of the individuals of each activity level among the households.

Finally, we consider the impact of global restrictions on disease-induced

herd immunity in a model with household structure and types of individu-

als. We extend the approximation h̃D to account for local infection being

increased during times of global restrictions. We then consider a scenario

in which two supercritical epidemics can occur, the first with constant

control measures, and find an optimal control such that the number of in-

dividuals ever infected across the two epidemics is minimised.
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1 Introduction

In this chapter we provide contextualisation of this thesis by considering his-

torical advances in mathematical models of epidemics. We describe several

epidemic models, including those which we study in this thesis, omitting math-

ematical details and discussing their connection to our work. We begin in Sec-

tion 1.1 by discussing some of the most famous epidemics in history and the

impact they had on the suffering population, providing motivation to better un-

derstand disease spread. In Section 1.2 we discuss early mathematical models of

epidemics, noting the distinction between deterministic and stochastic epidemic

models. We also describe the introduction of threshold parameters for epidemic

models, which form a central interest of this thesis. In Section 1.3 we consider

the development of models for which not all individuals behave in the same way;

examples include multitype models, household models and network models. A

non-technical definition of herd immunity is provided in Section 1.4, where we

also discuss literature pertaining to mathematical models of vaccine action. In

Section 1.5 we discuss the estimation of parameters of epidemic models from

a statistical perspective, both for emerging epidemics and for epidemics where

final outcome data are available. We conclude the background discussion of this

thesis in Section 1.6 by considering recent literature regarding herd immunity,

in particular literature resulting from the COVID-19 pandemic. Finally, we give

an outline of the structure of the remainder of this thesis in Section 1.7.

1.1 Epidemics throughout history

Mankind has been afflicted by epidemics in various forms for thousands of

years, ranging from the plague of Athens and the Antonine plague of the past to

COVID-19, which we continue to combat in the present day. It is clear that ad-

vances in understanding of transmission and treatment of diseases have allowed

for better mitigation of large epidemic outbreaks. Despite these advances, the

ongoing COVID-19 pandemic is estimated to have taken tens of millions of lives

– see Mathieu et al. [2020]. Being able to understand and predict the transmis-

sion of disease thus remains of great importance and value.
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As scientific understanding of disease treatment and transmission has evolved,

our ability to mitigate the impact of infectious disease outbreaks has vastly im-

proved. For example, treatment methods such as bloodletting, which involved

removing blood in order to allegedly alleviate illness, are now merely consid-

ered pseudoscience, having been replaced by far more sophisticated medical

practices. It is natural to question how many lives would have been saved in

epidemics throughout history with better understanding of the nature of their

spread and the effectiveness of treatments. In conjunction with medical and

scientific advances through the years, mathematicians have developed models

which attempt to describe the spread of infection. Early examples of work us-

ing mathematical models include John Snow’s investigations into Cholera in

London in 1854, where Snow showed that contaminated water was triggering

epidemics. Similarly, William Budd was, in 1873, able to successfully establish

the source of typhoid fever. In these cases, the epidemic could be dealt with at

source, rendering further mathematical study obsolete. The emergence of germ

theory laid foundations from which mathematical models could be developed,

as well as aiding identification of organisms that cause disease – see, for exam-

ple, Susser and Stein [2009] for an overview. In cases where an epidemic cannot

be so easily isolated, mathematical models can be used to study how quickly the

epidemic will spread and what fraction of the population we may reasonably

expect it to infect.

Major epidemic outbreaks subject the afflicted population to several major

issues. The primary and most obvious of these are deaths; the Black Death of the

fourteenth century is estimated to have killed anywhere from 30−60 percent of

Europe’s population – see Alchon [2003], Table 1.1. Another stark example is

the so-called Spanish flu, which began around the end of World War 1, estimated

to have resulted in more deaths than even the Great War itself – see World Health

Organisation interim guidance [2013], Table 3. These examples highlight the

catastrophic impact epidemics can have on an unprepared population.

The speed of spread of an outbreak also has important consequences for

its effect on the population; during the height of COVID-19, infection rates in

the UK were very high, leading to drastically higher hospitalisation rates than
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normal and huge pressures on hospitals and healthcare services. This suggests

that actions to slow the spread of infection, even if they do not lower the number

ultimately infected, can still be beneficial to the population. Moreover, if mea-

sures such as global restrictions and social distancing have to be taken in order

to combat a disease, they incur their own costs socially and economically. It is

therefore of interest to determine how long such restrictions should be in place

whilst still providing adequate protection to the population. Through the height

of the COVID-19 pandemic, mathematical models received great attention as at-

tempts were made to predict the growing number of hospitalisations and deaths.

Moreover, strong consideration was given to estimating the point at which health

services might become overwhelmed, as well as the consequences of various in-

tervention strategies. This clearly highlights the important role mathematical

models have to play in epidemiological study.

Expecting to be able to accurately model every interaction in a popula-

tion is extremely ambitious and proves, mathematically, to be very unwieldy.

Moreover, complex models which attempt to model such interactions often suf-

fer from, inter alia, issues regarding identifiability and overfitting. In this thesis

we assume that the population of interest is closed, in the sense that no individ-

uals join or leave the population; whilst not fully accurate, this assumption is

reasonable for the present purposes owing to the fact that epidemics typically

spread at a much faster rate than individuals join or leave the population. Such

an assumption is not, however, reasonable for endemic diseases. The models we

use are of the form susceptible→ exposed→ infectious→ removed (SEIR), in

which an individual begins susceptible to the disease and, upon contact with an

infective, has a period in which they are infected but are unable to infect others

(latent period). When their latent period ends, this individual is able to infect

other susceptible individuals until the end of their infectious period. When they

recover, i.e. at the end of their infectious period, such an individual is assumed

to play no further role in the epidemic. Already this model represents a de-

parture from many real-world epidemics, in which subsequent reinfection can

occur after recovery. A central model of this thesis partitions the population into

households. Individuals are assumed to mix globally with all individuals in the

3



population at the same rate and, typically at a higher rate, mix with individuals

in their household. We develop this further into a model in which some indi-

viduals mix at a higher rate outside of their household than others. Despite the

models we use containing departures from reality, they represent a compromise

in which we attempt to model key features of an epidemic among a structured

population whilst maintaining mathematical tractability.

During the first wave of COVID-19 in the UK, there was considerable

discussion regarding delaying “the peak” of infection, referring to the point

where the number of infectives, and consequently the number of hospitalisa-

tions, would be at its highest, implying that there would only be a single wave

of infection. Such discussion has strong links to herd immunity. In simple

terms, an epidemic among a population which has achieved herd immunity will

not suffer a further major epidemic outbreak, but a population which has not

reached herd immunity is susceptible to subsequent waves of infection. In this

thesis we devote considerable attention to describing a mathematical framework

in which we can study herd immunity.

In the remainder of this section we outline the development of mathemati-

cal models for epidemics with a particular focus on models with heterogeneous

mixing. We also describe herd immunity in more detail and comment on med-

ical and mathematical studies regarding how a population can gain immunity

from infection.

1.2 Early mathematical models of epidemics

The first notable contribution to mathematical models of epidemics is due to the

work of Daniel Bernoulli in 1760, in order to justify inoculation as a means to

combat smallpox. In the late nineteenth century, P.D. En’ko collected data on

the spread of measles and sought a mathematical model by which the process

of infection could be understood. The work is written in Russian, but owing to

Dietz an abridged translation is available - see Dietz [1988]. In En’ko’s work

the chain-binomial model is used, foreshadowing the work of Reed and Frost

some forty years later.

The epidemic models which we study can be separated into two categories
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– deterministic and stochastic. (Hybrid models, which combine deterministic

and stochastic elements together in a single model, have been studied – see

Hwang et al. [2022], but we do not consider such models in this thesis.) Stochas-

tic models describe the probabilities with which events, such as the infection or

recovery of an individual, occur. Deterministic models, however, describe the

rates of transition between different states, often operating under the assumption

of mass action, in which the rate of infection is proportional to the current num-

bers of susceptibles and infectives. Deterministic models are often described

by a system of ordinary differential equations. In this thesis, we often obtain a

deterministic model by taking the limit of a suitably scaled stochastic model as

the population size becomes arbitrarily large.

Deterministic and stochastic epidemic models both received great attention

in the early twentieth century, from both a probabilistic and statistical perspec-

tive. Hamer [1906] supposed, in a discrete-time setting, that the probability an

individual becomes infected at the next time step is proportional to the num-

ber of susceptibles and infectives at the current time. Ross [1908] considered

the same idea in a continuous time setting. An example of such a statistical

study is the work of Brownlee [1906], in which the Pearson family of distribu-

tions was applied to epidemics. Perhaps the most revolutionary work to arise

regarding mathematical models of epidemics in the early 1900’s is the work on

compartmental epidemic models. Ross, in 1916, considered such a compart-

mental model with two groups labelled “affected” and “unaffected”, and used

differential equations in order to study the number of affected individuals – see

Ross [1916]. This work was later developed further in Ross and Hudson [1917]

with the help of Hudson.

Arguably the most famous development of compartmental models is thanks

to the much-celebrated work of Kermack and McKendrick, who used the sus-

ceptible, infectious, removed (SIR) framework which is still used to this day.

McKendrick [1926] proposed one of the earliest stochastic epidemic models.

Soon after, Kermack and McKendrick [1927] analysed a deterministic SIR model

and noted that, under their model, the epidemic would not necessarily end by

exhausting the entire susceptible population. As part of this work, they also
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noted a “critical population density”, below which no epidemic can occur. The

deterministic models used in this thesis can be viewed as an extension of their

model. Progress on stochastic epidemic models continued in the late 1920’s

with the work of Reed and Frost, who proposed a model involving generations

of infectives, viz. the Reed-Frost model. This work was presented soon after

its completion, but was only published much later thanks to Abbey [1952]. A

similar model – the Greenwood model – was proposed independently in 1931

by Major Greenwood. Over a decade later, the work of Bartlett [1949] studied

a continuous-time stochastic SIR epidemic model. In Bailey [1953], a stochas-

tic SIR epidemic with infection and recovery rates was defined in continuous

time, commonly referred to as the general stochastic epidemic, with final size

of the epidemic estimated by statistical methods. The book by Bailey [1975],

the first edition of which was published in 1957, concerns both deterministic

and stochastic epidemic models, discussing parameter estimation for quantities

such as transmission rates.

A crucial cornerstone in any epidemic analysis involves whether or not a

major outbreak, in which a non-negligible fraction of the population ever be-

come infected, can occur. Threshold theorems seek to quantify when such a

major outbreak can occur; the quantities which the occurrence of a major out-

break depend on are often referred to as threshold parameters. Perhaps the most

well known of these in the present day is the basic reproduction number R0,

often referring to the mean number of infections which will ensue from a typi-

cal infected individual in an otherwise susceptible population. The reproduction

number R0 has a rich history in epidemic study, although under several different

names. The note of Kermack and McKendrick [1927] regarding critical popu-

lation density is an early such example of the use of R0 to establish a threshold

theorem for the deterministic SIR model. A similar concept was first intro-

duced in Dublin and Lotka [1925] regarding the ratio of births and deaths in a

population. The central idea behind R0 is that a major epidemic outbreak can

occur if and only if R0 > 1; in such a scenario infection can be sustained in the

population. The work of Macdonald [1955] on Malaria noted such threshold be-

haviour when referring to a “critical level”, denoted z0 in his work. Many credit
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Dietz [1975] as the first instance in which a threshold parameter, with threshold

value one, is clearly defined for an epidemic model. The first threshold theo-

rem for stochastic SIR epidemics is thanks to Whittle, who used a removal ratio

introduced in Bailey [1953] to describe whether the final size of the epidemic

could exceed some predetermined fraction with positive probability – see Whit-

tle [1955].

The works of Bartlett [1955] and Kendall [1956] approximated the early

stages of the general stochastic epidemic in a large population using a lin-

ear birth and death process. Such an approximation, sometimes referred to as

Kendall’s approximation, provides a threshold theorem in which the epidemic

taking off corresponds to the approximating birth and death process not dying

out. This has strong parallels with the fact that an epidemic can only take off

if R0 > 1. Bartoszyński [1967] noted that, in the early stages of an epidemic,

infections can be equated to births of a branching process and studied the epi-

demic process via the associated branching process. In this thesis we derive and

use threshold parameters, including R0, making use of such a branching process

approximation in order to do so.

The models highlighted in this section demonstrate the rapid progress of

mathematical epidemiology in the first half of the twentieth century. These mod-

els typically assume that all individuals have the same infectivity and suscepti-

bility as each other, an assumption often referred to as homogeneous mixing.

In Section 1.3 we note a flurry of epidemic models with heterogeneous mixing

which were developed in the latter half of the twentieth century and the early

twenty-first century; such models assume a more complex mixing structure on

the population of study.

1.3 Development of models with heterogeneous mixing

The homogeneously mixing epidemic model assumes that each susceptible is

equally likely to be contacted by a given infectious individual. Epidemic mod-

els which assume no structure or heterogeneity on the population are relatively

easy to analyse, but often represent a large oversimplification of real-world pop-

ulations, which typically are not homogeneously mixing. There are two types
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of heterogeneity which this thesis is primarily concerned with - that of house-

hold structure and multiple types of individuals. Both of these involve dividing

the population into groups; for multitype models, individuals in different groups

can contact, and are contacted by, other individuals at typically different rates.

A model with household structure, however, typically assumes homogeneous

mixing between all individuals but with extra (local) mixing occurring between

individuals belonging to the same household. We highlight the development of

both such models in the sequel.

Perhaps the earliest epidemic model which does not assume homogeneous

mixing between all individuals is thanks to Rushton and Mautner [1955], who

considered a deterministic epidemic model among m communities, in the ab-

sence of removals and deaths. Communities in that model mix homogeneously,

with further homogeneous mixing occurring within a given community. Whilst

the assumption of no recoveries is unrealistic in practice, their work formed a

basis from which epidemic models with heterogeneous mixing could be studied.

Shortly afterwards, Haskey [1957] considered a stochastic epidemic model with

two classes. Watson [1972] extended the work of Rushton and Mautner, study-

ing a stochastic SIR version of their model. Billard [1976] provided an alterna-

tive formulation of Watson’s model and introduced a transformation technique

in an attempt to give the model more analytical tractability. Such a technique in-

volved an ordering of the possible states such that transitions happen in only one

direction, leading to a matrix-vector differential equation in which the matrix

present is lower triangular and thus the associated equation is more amenable to

analysis.

The models described previously work well for modelling a small number

of large groups or communities. In practice, however, a population may con-

sist of a large number of small groups. This is particularly true in the case of

a population partitioned into households - an often very important and realistic

assumption. The work of Bartoszyński [1972] was the first to consider a large

number of groups, in his case households, which need not be large themselves.

For a while a version of the threshold theorem for household models was not

forthcoming. Ball [1986] developed a stochastic epidemic model, in which the
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duration of the infectious period could have an arbitrary but specified distribu-

tion, and derived results pertaining to the final size distribution of that model.

This work included the proof of a version of Wald’s identity for epidemics,

which we apply several times in this thesis and provide in Appendix B. Addy

et al. [1991] extended the work of Ball to account for outside infection and also

derived equations for final size probabilities.

A particularly sought after result was the threshold theorem for the house-

holds model. Whilst the basic reproduction number R0 works well for describ-

ing whether an epidemic can take off in a homogeneously mixing population, it

relies on the assumption that infective individuals are not contacted by other in-

fective individuals in the early stages of an epidemic; such an assumption does

not hold for models with small mixing groups such as households, where re-

peated local contacts between individuals are likely to occur. This issue is noted

by Ball in his discussion in Mollison et al. [1994] and an alternative threshold

parameter, called there RT , was introduced. Becker and Dietz [1995] considered

such a threshold parameter, which they referred to as RH0, for the stochastic SIR

households model under the assumption of highly locally infectious disease.

The quantity RH0, labelled R∗ in this thesis, parallels R0 in the sense that R∗ > 1

is necessary for a major outbreak (i.e. an outbreak in which a non-negligible

fraction of the total number of households ever become infected) to occur. The

crucial idea regarding R∗ is to consider the proliferation of infected households

rather than of infected individuals. In a situation parallel to repeat infection in

the homogeneously mixing epidemic, it is unlikely that, in a population with

a large number of households, an infective individual will contact a previously

contacted household in the early stages of an epidemic. Independent work by

Ball [1996] proved a threshold theorem for the stochastic SIR households model

in which all households are the same size. Ball et al. [1997] also analysed the

SIR households model in detail, providing a version of the threshold theorem.

The ideas of having an epidemic such as the households model, with two

levels of mixing, as well as multiple types of individuals, need not be mutually

exclusive. Ball and Lyne [2001] provided a fully rigorous proof of the threshold

theorem for the multitype SIR households model, by coupling the epidemic to
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an appropriate branching process, and Ball et al. [2004] estimated secure vac-

cination coverage for that model. The threshold parameter R∗ for the multitype

SIR households model can be derived using similar arguments to those used in

the derivation of R∗ for the households model. We consider a special case of this

model, in the context of herd immunity, in this thesis. Epidemic models have

now broadened to include many other assumptions based on real-world factors.

Examples include the works of Ball and Neal [2002] and Pellis et al. [2011],

which pertained to a model with households and workplaces, and Neal [2016]

in which individuals were allowed to move between contact groups based on

the time of day. Several reproduction numbers can be defined for these models,

each having the threshold property, and a broad overview of these can be found

in Pellis et al. [2012] and Ball et al. [2016].

Network epidemic models have received considerable attention in recent

years. Such models use an undirected graph, with nodes corresponding to indi-

viduals, with disease being able to be spread along the edges of that graph. We

note that Newman [2002], Danon et al. [2011] and Pellis et al. [2015] provide

good overviews of epidemic models on networks. It is clear that the choice of

the degree of each individual will affect how an epidemic plays out on that net-

work, as some individuals may have far more contacts than others. The configu-

ration model, introduced by Bollobás [1980], is widely used and assumes either

that the degrees are determined deterministically (see Molloy and Reed [1998])

or that the degrees are each the realisation of a random variable, independent

and identically distributed for each individual. Ball and Neal [2008] consid-

ered a stochastic epidemic on a network model incorporating casual contacts,

defining R0 for that model and deriving a deterministic model as the population

size tends to infinity. Ball et al. [2019] considered a network model incorporat-

ing preventive dropping of edges, mimicking the behaviour of social distancing

upon becoming infected. Further work on epidemics on networks include Trap-

man [2007], House [2012] and Kiss et al. [2017].

Network models benefit from having a great deal of flexibility in the way

in which they can be constructed. A drawback, however, lies in the complexity

of constructing network models in terms of choosing the degree of each indi-
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vidual, as it is not necessarily always clear how to do this in a realistic manner.

Moreover, it is often difficult to replicate some aspects of real-world networks,

such as clustering of individuals and correlation of degrees between individuals.

The models used in this thesis can be seen as “fully complete” from a network

perspective, since all individuals are able to contact one another, albeit at a much

lower rate than at which they can contact members of their own household.

We conclude the review of models with heterogeneous mixing by providing

a hierarchy for the models which are considered in this thesis. All models in

this thesis can be viewed as an extension of the homogeneously mixing SIR

epidemic and, in most cases, as a simplification of the multitype households

epidemic model. Throughout this thesis, we strongly encourage the reader to

note and have in mind Figure 1.1 during model definition and model discussion.

Multitype households
model with

proportionate mixing

Multitype
households model

Activity level and
households model

Households model Activity level model

Homogeneously mixing model

Figure 1.1: Hierarchy of models used in this thesis. An arrow from one model to
another indicates that the latter model can be obtained (from the former model)
by making certain parameter choices. For example, the households model be-
comes homogeneously mixing if the common household size n = 1.

1.4 Disease control and herd immunity

A natural question that arises when confronted by a disease outbreak in which

R0 > 1 is how it can be mitigated or contained – see, for example, World Health

Organisation [2023]. If initial attempts such as quarantine of early cases are un-

successful, attention typically turns to attempts to restrict the transmission rate
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of the disease, thus reducing R0. These measures range from basic attempts such

as maintaining good hygiene and wearing masks, to more drastic measures such

as social distancing and lockdown. Throughout this thesis, when restrictions are

applied, we assume that they affect the ability of individuals to mix globally, but

not the ability for an individual to mix with members of their own household.

When we refer to preventative measures which cause a reduction in global mix-

ing, we have in mind measures such as masks, social distancing or lockdown as

opposed to vaccination.

In cases where reduction of disease transmission is not enough (or indeed

not feasible) to prevent an outbreak, the susceptible population must seek pro-

tection from the disease elsewhere. Owing to the threshold property of R0 we

see that, if the population susceptibility is reduced such that R0 < 1, a major out-

break can no longer occur, thus protecting the population. This is true for both

the deterministic model, as well as the stochastic model when the population

size N → ∞. The herd immunity level is then the proportion of the population

that must be immunised in order to prevent a major outbreak. We discuss the

two such forms of immunisation that are central to this thesis, beginning with

disease-induced herd immunity.

In the early 1900’s, American farmers and veterinarians struggled to deal

with epidemics of spontaneous miscarriage in their livestock. Their approach

was to destroy or sell the affected livestock and have them replaced, which at

first seems entirely reasonable. However, Eichorn [1917] noted that “Affected

cows do not abort indefinitely. Much more than 50 per cent abort but once, rela-

tively few abort twice. . . It is evident, therefore, that an immunity is produced”.

Contrary to initial beliefs, it was better to avoid taking in new livestock (who

themselves may also be susceptible to the disease) and instead to persist with

the current livestock, as suffering from the disease conferred immunity. It was

here that the concept of herd immunity, as it is referred to today, was born. We

note the distinction between herd immunity and acquired immunity; herd immu-

nity protects an individual because the population susceptibility is, after some

individuals have been infected and subsequently recovered, such that a major

outbreak can no longer occur. On the other hand, acquired immunity refers to
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an individual gaining immunity from infection by having been previously in-

fected.

Disease-induced immunity later became the subject of medical experiments.

Topley and Wilson [1923] performed experiments on rats in which herd immu-

nity was conferred, finding that “It appears that a degree of immunity, which

may save individual hosts when living among equally resistant companions, is

rendered of no avail when they are surrounded by highly susceptible individuals

of their own species”. This work speculated about the difference between a pop-

ulation with many weakly immunised individuals and a population with a few

highly resistant individuals. The concept of disease-induced immunity was then

extended to human populations owing to the experiments of Sheldon Dudley in

the 1920’s, considering infection from diptheria bacilli in a population of boys

in remote residence. In Dudley [1922] it was found that boys who had been in

residence for longer were far less susceptible than the new boys. In addition to

this, Dudley [1928] noted that “The production of human circulating antitoxin

by the injection of manufactured diphtherial antigens causes a far more rapid in-

crease in herd-immunity than can be produced by any immunizing stimuli which

may exist in the natural human environment”. Note that, in the examples above,

herd immunity and acquired immunity are used interchangeably; in this thesis

herd immunity always refers to protection of an individual owing to a reduction

in overall population susceptibility. As a consequence, disease-induced herd

immunity refers to a scenario in which enough of the population have recov-

ered from infection such that the remaining susceptible population has R0 < 1.

Thus, disease-induced herd immunity is obtained by the entire susceptible pop-

ulation, rather than particular individuals benefiting from the immunity of their

neighbours.

Vaccination against a disease is another widely used method in order to

defend a population from infection. Whilst vaccination and, prior to that, in-

oculation, have a rich history in epidemiology, we focus here on mathematical

models of vaccination, making a connection with disease-induced herd immu-

nity when relevant. Suppose that R0 > 1 and that, upon vaccination, a frac-

tion c of the population is made immune to infection in a population which is
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homogeneously mixing. Then, since a typical individual is unvaccinated with

probability 1− c, the value of R0 is reduced to RV = (1− c)R0, implying that

c > 1−R−1
0 will ensure RV < 1. This formula for c, a version of which was

introduced by Smith [1964], is sometimes called the critical vaccination cover-

age and is referred to in this thesis as the vaccine-induced herd immunity level.

(The above critical value typically differs from 1−R−1
0 for models with hetero-

geneous mixing.)

Smith’s work is one of the earliest examples of mathematical models of

vaccination (excluding that of Bernoulli’s work on inoculation). Another of the

earliest such examples is thanks to Neyman and Scott [1964], who used the the-

ory of branching processes to investigate the reduction in the mean final size of a

stochastic epidemic in discrete time. The use of a branching process to this end

was suggested by Bharucha-Reid [1956] and later developed by Becker [1972]

for a stochastic model, with the intention of providing a vaccination scheme

that was sufficient, but vaccinated as few individuals as possible. At the time

of Becker’s work vaccinations were considered potentially harmful to the pop-

ulation, which motivated this minimisation aim; we note that minimising the

number vaccinated in order to reduce R0 to one remains of interest at present,

particularly given vaccines are often difficult and expensive to produce. Heth-

cote and Waltman [1973] modified a deterministic model by allowing vaccina-

tion, with the aim of “prevention”, referring in their context to keeping the total

number ultimately infected, as well as the number currently infective at any one

time, below fixed values. Anderson and May [1982] considered similar ideas to

that of Hethcote and Waltman for a deterministic SEIR model. In doing so, they

note the importance of the quantity 1−R−1
0 in terms of protecting a population.

The aforementioned studies all highlight the importance of taking measures to

reduce R0 to one in order to protect a population.

Our discussion has, thus far, only covered vaccination of a homogeneously

mixing population, although the discussion regarding optimisation of vaccines

holds for heterogeneous populations. Hethcote later extended his work to a de-

terministic epidemic model with large mixing groups - see Hethcote [1978].

Longini et al. [1978] considered a heterogeneous model for Influenza A with in-
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dividuals stratified by age, forming optimal vaccine allocations for that model.

The work of Anderson and May [1984] considered spatial heterogeneity, high-

lighting that random vaccination in a population which is heterogeneously mix-

ing can fail to prevent an epidemic, even when vaccinating a proportion that

would be sufficient for a homogeneously mixing population, since some individ-

uals contribute more to infection than others. In conjunction with this, optimal

allocation of the vaccine in such a population can protect that population using

a lower coverage (proportion of the population which are vaccinated) than the

homogeneously mixing model would suggest. This work has links to disease-

induced herd immunity, which can be seen to act as a “targeted vaccine”, in

which the most active individuals are infected first, thus more quickly reducing

the population susceptibility. One such heterogeneity, which we consider and

later define in detail in this thesis, is that of proportionate mixing – see, for ex-

ample, Anderson et al. [1986] who considered such an assumption for a model

of HIV.

Households models have also received considerable attention in terms of

modelling vaccination. Becker and Dietz [1995] considered a post-vaccination

threshold parameter, Rv, in a model with households with the aim to reduce

Rv to one; their model assumes a highly locally infectious disease, in which a

household becomes fully infected as soon as one individual in that household

becomes infected. Hall and Becker [1996] compared immunisation strategies

for a model with different types of individuals as well as household structure.

They compared immunisation of individuals at random with immunisation of

whole households. Other allocations of a vaccine are available - one important

such example is that of the equalising strategy. In this strategy, a household

containing the largest number of susceptible individuals is the next to receive a

vaccination. Thus, the equalising strategy attempts to make all households the

same size, in terms of the remaining susceptible population in each household.

This strategy, introduced by Ball et al. [1997], is conjectured to be optimal for

the households model, with proof of optimality given in certain special cases

along with numerical support of the conjecture otherwise. Becker and Star-

czak [1997] similarly considered the allocation of vaccines for the households
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model, formulating this as a linear programming problem. The later work of

Ball and Lyne [2002] and Ball and Lyne [2006] also formulated optimal vacci-

nation in the households model as a linear programming problem.

We have outlined that there are multiple ways in which a population can

gather immunity. In this thesis we compare vaccine-induced and disease-induced

herd immunity and, in doing so, assume that these two immunities are not being

gathered simultaneously in the population. The disease-induced herd immu-

nity level hD is the proportion of the population that must be infected by an

epidemic such that a new epidemic among the remaining susceptible population

has threshold parameter less than or equal to one. An analogous definition holds

for the vaccine-induced herd immunity level hC under the assumption of random

vaccination, by a perfect vaccine, prior to an epidemic commencing. These herd

immunity levels coincide for a population which is homogeneously mixing; we

seek comparison of hD and hC for populations which are not homogeneously

mixing, viz. models with household structure and multiple types of individuals.

Owing to the use of SIR and SEIR models, we assume that individuals

are not susceptible to subsequent reinfection upon recovery. Moreover, we as-

sume that vaccinated individuals are granted complete immunity to infection,

often referred to as assuming a perfect vaccine. Becker and Starczak [1998]

considered how vaccination strategies change under the assumption of random

vaccine response, which confers partial immunity. This work is extended in

Becker [2002], where the results were applied to data on mumps. Ball and

Lyne [2002] provided detailed discussion of optimal vaccination in the case of

an imperfect vaccine. We defer our discussion of the assumption of perfect vac-

cine and lack of subsequent reinfection to the concluding comments in Chapter

7.

1.5 Parameter estimation

We now discuss some of the vast body of recent literature around epidemic

models, in particular regarding parameter estimation. We begin with a brief

review of analysis of data for emerging epidemics, before discussing some of

the work pertaining to analysis of final size data.
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A first question when confronted by a novel disease, such as upon the dis-

covery of COVID-19, is the rate at which the disease transmits, as well as how

long infected individuals remain latent before being able to infect others. We

note that quantities such as R0 depend on the epidemic model being used and

are usually estimated from epidemic data. We begin by discussing parameter

estimation for an emerging epidemic – see, for example, Lipsitch et al. [2003],

where the early stages of SARS in Singapore was analysed. Household data is

often available in such an emerging epidemic scenario; Cauchemez et al. [2009]

and House et al. [2012] provided analyses of such data for the transmission of In-

fluenza A in the United States and England respectively. Ball and Shaw [2015],

Ball and Shaw [2016] conducted inference for an emerging epidemic in the

SIR households model. They developed an asymptotically unbiased estimate

of the within-household infection rate, noting that data augmentation methods

would become computationally expensive for large household sizes. Trapman

et al. [2016] investigated the effect of population heterogeneity (such as net-

work structure and household structure) and show that often the assumption of

a homogeneously mixing population leads to overestimates of R0, thus provid-

ing conservative estimates for the herd immunity level. The very recent work

of Ball and Neal [2025] offers fast likelihood methods for emerging SEIR epi-

demics without the requirement for the aforementioned (computationally ex-

pensive) data augmentation methods.

Another quantity of interest for an emerging epidemic is the exponential

growth rate r. Ball et al. [2015] noted the calculation of r for an epidemic as

an open problem, although Fraser [2007] provided a closed-form approxima-

tion for calculating r for households models and further progress is made in

Ball et al. [2016]. Fraser’s work notes that “the exponential growth rate r for

an exponentially growing epidemic is the same whether measured for individ-

ual or household incidence”. This fact is useful when attempting to calibrate

household models with different household structures. We note that, for ho-

mogeneously mixing models, R0 is determined by r and the distribution of the

time between an infection and the infections that result from it (the so-called

generation interval), so there is a connection between estimation of R0 and r;
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see, for example, Ma et al. [2014] and Wallinga and Lipsitch [2007]. Indeed, an

estimate of r is often used to obtain an estimate of R0 in an emerging epidemic

– see Ball et al. [2016] for discussion of the connection of R0 and r for house-

holds models. Ross et al. [2010] consider the calculation of R0 and r for the

households model for an SIRS disease framework. In this thesis we calculate

herd immunity levels for a variety of model parameters, rather than estimating

these model parameters directly. The exception to this is in Section 2.5.3, where

we infer real-world household size distributions from data.

We now briefly discuss parameter estimation using final outcome data. The

process of infection is typically very difficult to estimate, owing to the times

of infection being unknown. Becker [1993] noted this problem and attempted

to resolve it by treating missing data as parameters in the framework of the

expectation-maximisation algorithm. Becker and Britton [1999] applied mar-

tingale methods in order to infer several epidemic parameters with both com-

plete and incomplete data. The work of Gibson and Renshaw [1998] (see also

O’Neill and Roberts [1999]) transformed this area by providing a Bayesian

framework for parameter estimation for the Reed-Frost model as well as the

general stochastic epidemic. Their approach involves Markov chain Monte

Carlo methods and variations of such methods remain widely used. O’Neill

et al. [2000] developed this further by considering data pertaining to final out-

comes in households. Demiris and O’Neill [2005] and Knock and O’Neill [2014]

are further such examples of inference pertaining to epidemic models with two

levels of mixing (such as households) using final outcome data.

1.6 Recent herd immunity studies

Herd immunity has received considerable study in light of the recent COVID-19

pandemic. We provide a few examples of its study amidst a great deal of litera-

ture. Fontanet and Cauchemez [2020] provided an early overview of estimates

of herd immunity levels for COVID-19. Kwok et al. [2020] provided further

such herd immunity estimates for several countries, and discussed whether pur-

suing disease-induced herd immunity as a primary means to combat COVID-19

could lead to unacceptable death tolls. Bernal et al. [2022] estimated R0 for
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COVID-19 in the UK between January and March 2020, using a model with

households and communities. Okell et al. [2020] discussed whether deaths due

to COVID-19 had reduced (at their time of writing) due to the population achiev-

ing herd immunity, concluding that the reduction was consistent with lockdown

being effective in curtailing transmission, rather than herd immunity having

been achieved.

An important question regarding a novel epidemic outbreak is what frac-

tion of the population must be infected in order to protect the remaining sus-

ceptible population from a major outbreak. Under the assumption of a homoge-

neously mixing epidemic this quantity is 1−R−1
0 independently of whether im-

munity is gathered by vaccination or by infection and subsequent recovery. Brit-

ton et al. [2020] considered a model in which the population is stratified by age

and activity level, showing that the disease-induced herd immunity level can be

much lower than the vaccine-induced level for such a model. Similarly, Gomes

et al. [2022] also found considerable reductions to the disease-induced herd im-

munity level for a model in which individual susceptibility varies. The work

of Britton et al. [2020] considered a novel approximation to the herd immunity

level which is obtained by applying restrictions, corresponding to reducing the

mixing rate by a multiplicative factor, such that a first epidemic terminates with

the population at herd immunity. We consider such an approximation for a pop-

ulation partitioned into households, and also for a model with activity levels and

household structure, in Chapter 2 and Chapter 5 respectively. In these models,

we assume that restrictions reduce the global mixing rate, but the within-house

mixing rate is left unaffected. In Chapter 6 we extend this to the case where

restrictions affect global and local mixing.

The multiplicative factor mentioned previously could, in practice, corre-

spond to non-pharmaceutical measures such as social distancing and wearing

masks. Flaxman et al. [2020] provided a broad overview of such interventions

across Europe for the early stages of COVID-19, promoting continued interven-

tion. Major intervention cannot last permanently owing to political, social and

financial implications, so it is important to be cautious when relaxing restrictions

where a population have not yet achieved herd immunity. Britton et al. [2021]
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warned of a new wave of COVID-19 under these conditions. They also, perhaps

counterintuitively, envisage a situation in which removal of strong restrictions

can lead to more individuals becoming infected than removal of weaker restric-

tions. We consider a similar situation in the framework of the households model

in Chapter 6, conjecturing that our findings generalise to a broader class of epi-

demic models.

This thesis primarily aims to develop a framework by which the disease-

induced and vaccine-induced herd immunity levels hD and hC can be compared

in a structured population. Whilst in practice vaccination is unlikely to be allo-

cated uniformly at random, such a strategy provides a good baseline for com-

parison with disease-induced herd immunity. In any case, disease-induced herd

immunity is of value to study; one may envisage a scenario where vaccination

attempts prove unsuccessful, so that the only option for protecting the popula-

tion (beyond constant, total lockdown) is that of disease-induced herd immunity.

We have provided a broad overview of this thesis in the context of wider

mathematical epidemiology, as well as motivating the use of a model with indi-

vidual types and household structure. The literature mentioned is a small subset

of such a vast area of study, some of which contains more complex models

than those used in this thesis. However, we note the benefit of models which

impose realistic assumptions regarding the population of interest, whilst main-

taining sufficient mathematical tractability that the models in question can still

be analysed.

1.7 Thesis outline

The remainder of this thesis is structured as follows. In Chapter 2 we define

the households epidemic model and give mathematical definitions of vaccine-

induced and disease-induced herd immunity. We define also an approximation

to the disease-induced herd immunity level, following Britton et al. [2020]. We

then compare these herd immunity levels in detail, obtaining several explicit

results in the case of a highly locally infectious epidemic. The main conclusion

of the chapter is that, for the households model, we find that the disease-induced

herd immunity level is typically higher than the vaccine-induced herd immunity
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level. Chapter 2 is strongly based on our published work - see Ball et al. [2023].

In Chapter 3 we again consider the households model, as well as introduc-

ing the multitype model with proportionate mixing. Our attention is focused on

establishing a Gaussian approximation to the disease-induced herd immunity

level, from which we deduce the asymptotic variance of the disease-induced

herd immunity level. In order to achieve this, we apply the theory of density

dependent population processes described in Ethier and Kurtz [1986], Chapter

11. We find that the asymptotic variance is typically small, corroborating this

with stochastic simulations.

We combine the multitype model with proportionate mixing with the house-

holds model in Chapter 4, in which we study the stochastic SIR multitype house-

holds model with proportionate global mixing. We first outline how the assump-

tion of proportionate mixing simplifies the calculation of reproduction numbers,

such as R∗. Our main result concerns a joint central limit theorem for random

variables associated with the final outcome of the epidemic. A result of this

form for the multitype households model is previously established in Ball and

Lyne [2001]. However, we show how the assumption of proportionate global

mixing greatly simplifies the both calculation and the resulting central limit the-

orem. We also provide a new method for analysing a major outbreak in this

model by modifying the embedding construction which underpins the analysis

of the epidemic process.

In Chapter 5 we define the activity level and households model as an im-

portant special case of the model studied in Chapter 4 and study it in the context

of herd immunity. Since heterogeneous mixing typically decreases the disease-

induced herd immunity level and household structure increases it, we investi-

gate how these two factors compare in a model which includes them both. We

show that the rate at which highly active individuals mix locally with less ac-

tive individuals can be crucial in determining which of the vaccine-induced and

disease-induced herd immunity levels is greater.

The impact of global restrictions on disease-induced herd immunity is in-

vestigated for the households model in Chapter 6. We determine a new disease-

induced herd immunity level under the assumption that global restrictions lead
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to heightened levels of local mixing. We also consider the scenario in which

global restrictions are lifted before herd immunity has been achieved, leading

to two waves of infection. In this context we prove that, in the homogeneously

mixing model, the optimal control, in terms of minimising the number of indi-

viduals infected, is to allow the first epidemic to end just as herd immunity is

achieved. We then generalise this result to the multitype households model with

proportionate global mixing. Finally, in Chapter 7 we provide some conclud-

ing comments, discuss model limitations and suggest extensions of this work as

well as potential avenues for future research.

We provide a definition of Multivariate Gontcharoff polynomials, which

are used several times in our analysis, in Appendix A, where we also define the

vector notation which is used throughout this thesis. In Appendix B we give

a definition of Wald’s identity for epidemics, which is used in several proofs

in this thesis. In Appendix C we provide details underpinning the numerical

results in this thesis, including stochastic simulations and solutions to ordinary

differential equations.
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2 Impact of household structure on disease-induced

herd immunity

2.1 Introduction

During the ongoing COVID-19 pandemic there has been considerable discus-

sion of herd immunity. For a very wide range of epidemic models, specifically

models for which the basic reproduction number R0 is given by the maximal

eigenvalue of a next-generation matrix, if R0 is greater than one, then vaccinat-

ing a fraction hC = 1−R−1
0 of the population, chosen uniformly at random, with

a perfect vaccine (i.e. one that necessarily renders its recipient immune to the

disease) in advance of an outbreak reduces the reproduction number to one and

thus prevents a large outbreak (see, for example, Diekmann et al. [2013], page

199). The quantity hC is the classical (or vaccination-induced) herd immunity

level. For a disease in which infection confers immunity to subsequent infec-

tion, herd immunity can also be attained by letting an epidemic run its natural

course, possibly with some restrictions in place, for example, lockdown or other

non-pharmaceutical interventions. The disease-induced herd immunity level hD

is the fraction of the population that needs to be infected before the effective

basic reproduction number (i.e. R0 for an epidemic among the remaining sus-

ceptible individuals) is reduced to one. For definiteness, we define hD assuming

no restrictions are in place and the epidemic simply runs its natural course.

For an epidemic among a homogeneously mixing population, the classical

and disease-induced herd immunity levels are equal. However, that typically

is not the case for epidemics among heterogeneous populations. For example,

Britton et al. [2020] showed that in a model for COVID-19 in which the popula-

tion was structured by age and activity level, when R0 = 2.5, the disease-induced

herd immunity level hD = 0.43, which is substantially lower than hC = 0.6, and

Gomes et al. [2022] obtained even lower values for hD in a model where in-

dividuals varied in susceptibility. These observations have a simple intuitive

explanation. For example, in the model with varying susceptibility, individuals

with higher susceptibility are more likely to be infected early in the epidemic
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and consequently the average susceptibility of the remaining susceptibles de-

creases as the epidemic progresses leading to hD < hC. It seems likely that

similar arguments hold for many other forms of heterogeneities, with the gen-

eral conclusion that introducing heterogeneity into a model has the effect of

reducing the disease-induced herd immunity level hD.

An important population structure for epidemics among human popula-

tions, which can have a significant impact on disease dynamics and the per-

formance of vaccination strategies, is that induced by households. The aim of

this chapter is to investigate the impact of household structure on the disease-

induced herd immunity level. We use an extension of the SIR (susceptible →

infective→ recovered) model introduced by Ball et al. [1997] to include an ex-

posed (latent) period. In this model, infective individuals make two types of

infectious contacts: local contacts with individuals chosen uniformly at random

from their household and, at a much lower rate, global contacts with individuals

chosen uniformly at random from the whole population. In sharp contrast to

most other forms of heterogeneity, we find that the effect of household structure

is generally to increase hD. Other examples of heterogeneity for which hD < hC

include spatial epidemics – see Rass and Radcliffe [2003] and network epidemic

models with significant transitivity – see Kiss et al. [2017].

For most models it is difficult to calculate hD as it requires knowledge of

the trajectory of the epidemic, which typically is not available in closed form.

Moreover, in a stochastic model the disease-induced herd immunity level is in

fact a random variable, as it depends on the realised trajectory, which converges

to hD as the population size converges to infinity. The following approximation

to hD, which we adapt to our model, is used in Britton et al. [2020] in the con-

text of a multitype SIR epidemic model. A new model is considered in which

all transmission rates are multiplied by a factor κ < 1 and its (limiting deter-

ministic) final outcome is determined. (Note that this factor is denoted by α in

Britton et al. [2020].) Let κ̂ be the value of κ so that the effective R0 among the

remaining susceptibles is one. Then the fraction of the population ultimately

infected by the epidemic with κ = κ̂ gives an approximation to hD, which we

denote by h̃D. Note that h̃D is not affected by the introduction of a latent pe-
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riod into the model, as the distribution of the final size of a stochastic SEIR

(susceptible → exposed → infective → recovered) model is invariant to very

general assumptions concerning the latent period. We adopt a similar approach

to obtain an approximation h̃D to hD for the above households model, except

that only global transmission rates are multiplied by κ , with local transmission

rates unchanged. (The modification of the global infection rate is used to mimic

global restrictions being imposed, which do not affect local mixing rates since

individuals remain free to mix within their household at their usual rate.)

The above definition of hD assumes that no restrictions are in place. Let

ĥD be a generic notation for the disease-induced herd immunity level under re-

strictions. In practice, ĥD may depend on the precise pattern of restrictions

imposed prior to herd immunity being reached (see, for example, Di Lauro et

al. [2021]). A commonly-made assumption in modelling restrictions is that at

time t ≥ 0 all transmission rates are multiplied by a factor κ(t). Under this as-

sumption, Britton et al. [2021] show that ĥD is independent of {κ(t) : t ≥ 0}

under the assumption of proportionate mixing. Moreover, for the examples in

Britton et al. [2020] and Britton et al. [2021], numerical studies showed that the

precise timings of restrictions had minimal, if any, effect on ĥD. The situation is

more subtle if restrictions are not applied uniformly, where for some models ĥD

can be highly dependent on the pattern of restrictions (Di Lauro et al. [2021]).

However, numerical studies indicate that is not the case for the present house-

holds model, with restrictions affecting only global transmission rates. Note

that h̃D = ĥD when such restrictions with factor κ̂ are applied throughout the

epidemic. Numerical studies suggest that, under many restrictions, h̃D is a bet-

ter approximation than hD to ĥD.

The usual definition of R0 as the maximal eigenvalue of a next-generation

matrix, or in non-mathematical terms as the mean number of infectious con-

tacts made by a typical infective in an otherwise susceptible population, does

not hold for the present households SEIR model, since even in the early stages

of an epidemic there are likely to be repeat local contacts within a household.

Pellis et al. [2012] give an alternative definition of R0 via a linear approximation

of the early phase of an epidemic in terms of generations of infections, which
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coincides with the usual definition when it is applicable but can also be extended

to models with small mixing groups such as the households SEIR model. Cal-

culation of R0 for the households SEIR model is quite complex. A simpler to

calculate reproduction number for the households SEIR model is R∗ (see Ball

et al. [1997]), which is based on the proliferation of infected households (rather

than infected individuals). The threshold values of R0 and R∗ are both one. The

reproduction number R∗ is useful for determining herd immunity levels, ow-

ing to its ease of calculation. However, it is not comparable between different

household structures, unlike R0, because it is a households-based rather than an

individual-based reproduction number.

Before describing the main results, we need some more notation. Let λL

denote the individual-to-individual local infection rate and λG denote the over-

all rate that an infective makes global contacts. Further, let H be a random

variable describing the size of a household chosen uniformly at random and

H̃, the size-biased version of H, be a random variable describing the size of

the household to which an individual chosen uniformly at random from the

population belongs (see Section 2.2.1). Let µH̃ = E[H̃]. For i = 1,2, . . . , let

µ
[i]
H̃ = E[H̃(H̃ − 1) . . .(H̃ − i + 1)] denote the ith factorial moment of H̃ and

µ̂
[i]
H̃ = i!µH̃ (µH̃−1)i−1 be the ith factorial moment of a geometric distribution

with success probability µ
−1
H̃ .

The complexities of the households model render analytical results com-

paring h̃D and hC hard to obtain in general. First, we consider epidemics which

are highly locally infectious, in that if one individual in the household becomes

infected then the whole household becomes infected. This assumption, which

was introduced in Becker and Dietz [1995], is obtained by letting λL = ∞ in our

model. Under this assumption, the following are our main results.

• Theorem 2.1. If all households have size n > 1 and R∗ > 1, then h̃D > hC.

• Theorem 2.2. Under the conditions of Theorem 2.1, h̃D−hC is maximised

as a function of λG when R0 = 2.

• Theorem 2.4. h̃D = hC for all λG such that R∗ > 1 if and only if H̃ follows

a geometric distribution, so H follows a logarithmic distribution.
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• Theorem 2.5. Suppose that the epidemic is only just above threshold

(i.e. R∗ is only just above 1) and l∗ = infk≥2{k : µ
[k]
H̃ ̸= µ̂

[k]
H̃ } < ∞. Then

h̃D > hC if µ
[l∗]
H̃ < µ̂

[l∗]
H̃ and h̃D < hC if µ

[l∗]
H̃ > µ̂

[l∗]
H̃ .

• Corollary 2.6. Under the conditions of Theorem 2.5, h̃D > hC if var(H̃)<

E[H̃]E[H̃−1] and h̃D < hC if var(H̃)> E[H̃]E[H̃−1].

• Theorem 2.7 gives an ordering of h̃D and hC for epidemics which are

both highly locally and highly globally infectious. The result is not given

explicitly here as it requires appreciable further notation.

• Theorem 2.8. Suppose that n > 1 and P(H̃ = n) = p = 1− P(H̃ = 1),

where 0 < p < 1, so a fraction p of individuals reside in households of

size n and the remainder in households of size 1. If n = 2, then h̃D > hC

for all p. For n ≥ 3, if p ≤ n−2
2(n−1) then h̃D < hC for all λG. If p > n−2

2(n−1)

then there exists λ ∗G(n, p) such that h̃D > hC for λG < λ ∗G(n, p) and h̃D < hC

for λG > λ ∗G(n, p).

• An expression for λ ∗G(n, p) involving the root of an algebraic equation is

given in Theorem 2.8. If p is close to 1 (i.e. the households are nearly

all of size n) then λG, and thus R0, must be exceedingly large in order to

obtain h̃D < hC.

Analysis is also possible for epidemics that are weakly locally infectious,

i.e. when λL is close to 0. We assume without loss of generality that the infec-

tious period TI has mean 1, and write h̃D(λL) and hC(λL) to show explicitly the

dependence of these herd immunity levels on λL. Note that the model reduces

to a standard homogeneously mixing SEIR epidemic when λL = 0, for which

R0 = λG since E[TI] = 1. Thus, h̃D(0) = hC(0) = 1−R−1
0 = 1−λ

−1
G . Suppose

that λG > 1, so R∗ > 1, and let π(0) = 1
λG

.

• Theorem 2.12. As λL ↓ 0,

h̃D(λL)−hC(λL) = 2λ
2
L π(0)2(1−π(0))

[
E[H̃−1]−var(H̃)

]
+o(λ 2

L ).

• Corollary 2.13. If var(H̃) < E[H̃ − 1] then h̃D > hC for all sufficiently
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small λL > 0. If var(H̃)> E[H̃−1] then h̃D < hC for all sufficiently small

λL > 0.

• Corollary 2.14. Suppose all households are the same size n > 1. Then, for

all sufficiently small λL > 0, we have h̃D > hC.

The final theorem concerns the case when 0 < λL < ∞ and all households

have the same size n.

• Theorem 2.15. For a common household size n = 2 or n = 3, and for any

λG and λL > 0 such that R∗ > 1, we have h̃D > hC.

We conjecture, supported by numerical studies, that Theorem 2.15 holds for all

n > 1.

In Section 2.2, we define the stochastic SEIR households model under-

lying our analysis, describe briefly its threshold behaviour, calculation of the

reproduction numbers, R∗ and R0, and of the final outcome in the event of an

epidemic taking off. We also present a deterministic model which approximates

epidemics that take off. In Section 2.3, we describe calculation of the vaccine-

induced herd immunity level hC, discuss the definition of the disease-induced

herd immunity level hD and describe in detail its approximation h̃D. Theorems

concerning comparison of h̃D and hC are given in Section 2.4, with some of the

longer proofs being deferred to Section 2.7 on account of their length. Numer-

ical comparisons of herd immunity levels are given in Section 2.5, including

illustration of theorems and study of herd immunity levels for real-world house-

hold size distributions. In Section 2.6, we give some concluding comments and

discuss possible directions for future research.

2.2 SEIR households model

2.2.1 Model definition

We consider an SEIR (susceptible→ exposed→ infective→ recovered) model

for an epidemic among a closed and finite population separated into households.

This is similar to the model in Ball et al. [1997] with an extra (exposed) state.

The household structure is given as follows. We suppose, for n = 1,2, . . . , there
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are mn households of size n. There are m = ∑
∞
n=1 mn households (with m < ∞),

and the total population size is N = ∑
∞
n=1 nmn.

The epidemic begins at time t = 0 with one initial infective (chosen uni-

formly at random from the population) and with all other members of the pop-

ulation susceptible. When a given susceptible is contacted by an infective, they

become exposed (latent infective) for a time that is distributed according to a

non-negative random variable TE , with an arbitrary but specified distribution

having finite mean. When their exposed period ends, an individual becomes

infectious for a time distributed according to a non-negative random variable

TI , with an arbitrary but specified distribution having finite mean. During their

infectious period any given infective makes global contacts with any given sus-

ceptible according to a Poisson process with rate λG
N . Further, any given infective

makes local contacts with any given susceptibles member of their household ac-

cording to a Poisson process with rate λL. Once their infectious period ends, an

infective recovers and has no further role in the epidemic. When there are no

infectives or exposed infectives remaining, the epidemic terminates. Finally, all

Poisson processes describing infectious contacts (whether or not either or both

of the individuals involved are the same), as well as the random variables for

exposed and infectious periods, are assumed to be mutually independent.

Many of the results in this chapter are based on approximations which be-

come exact in the limit as the number of households m→ ∞ in an appropriate

fashion. For n = 1,2, . . . , let α
(m)
n = mn

m be the (deterministic) fraction of house-

holds that have size n. Precise conditions for such asymptotic results are beyond

the scope of this chapter. We assume that lim
m→∞

α
(m)
n = αn (n = 1,2, . . .), where

∑
∞
n=1 αn = 1 and ∑

∞
n=1 nαn < ∞. To ease the presentation we suppress the de-

pendence on m of parameters such as α
(m)
n and just use their asymptotic values.

2.2.2 Threshold behaviour

Suppose that the number of households (m) is large. Since the epidemic begins

with one initial infective, the probability that an individual contacted globally

belongs to a previously infected household is small during the early stages of

the epidemic. Thus the early stages of the epidemic can be approximated by a
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branching process, describing the proliferation of infected households, in which

every global contact is with a previously uninfected household (see Ball [1996]).

The offspring mean R∗ of this branching process, i.e. the expected number of

global contacts occurring from a typical contacted household, is a threshold pa-

rameter for the households model. Standard branching process theory implies

that, in the limit as m→ ∞, the epidemic takes off with strictly positive proba-

bility if and only if R∗ > 1. In the event the epidemic takes off, a non-negligible

fraction (a large number of households) of the population becomes infected.

The derivation of R∗ is as follows. For n = 1,2, . . . , let α̃n = nmn
N be the

probability an individual chosen uniformly at random from the population re-

sides in a household of size n. Consider a globally contacted individual in an

otherwise fully susceptible household of size n. This individual begins a lo-

cal outbreak within their household with dynamics determined by local infec-

tion since, in the branching process, global contacts are with previously fully

susceptible households. Let µn(λL) denote the mean size, including the initial

infective, of a single-household epidemic with n members and local infection

rate λL with only the initial infective infected globally. Global contacts from a

given individual occur at rate λG, and such an individual has mean infectious

period E[TI]. Wald’s identity for epidemics (Lemma B.1) then gives the mean

number of global contacts from a given contacted household of size n to be

µn(λL)λGE[TI]. By conditioning on the size of a household of a contacted indi-

vidual, we have that

R∗ =
∞

∑
n=1

α̃nµn(λL)λGE[TI]. (2.1)

In Ball [1986] it is shown that

µn(λL) = n−
n−1

∑
k=1

(
n−1

k

)
βk(λL)φ(kλL)

n−k, n = 1,2, . . . , (2.2)

where φ(θ) = E[e−θTI ] and βk(λL) (k = 1,2, . . .) are defined recursively by

k

∑
i=1

(
k
i

)
βi(λL)φ(iλL)

k−i = k, k = 1,2, . . . .

30



As explained in Section 2.1, a drawback of R∗ is that it is not comparable

between models with different household structures. An alternative threshold

parameter, which does not suffer from that defect, is the basic reproduction

number R0. As also explained in Section 2.1, the usual definition of R0 does not

hold for households models. Instead, R0 can be defined by considering gener-

ations of infectives, via a directed graph associated with an epidemic (Pellis et

al. [2012] and Ball et al. [2016]). Such a graph is constructed by having pop-

ulation members as the vertices. If, during their infectious period, individual x

would contact x′, a directed edge is drawn from x to x′. The initial infective is

the only member of generation 0. The generation of a given individual x is the

shortest path length from the initial infective to x. Note that this may not coin-

cide with real-time generations of infectives. Then R0 is defined by the limit, as

the population size goes to infinity, of the asymptotic geometric growth rate of

the mean generation size (for a full definition, see Ball et al. [2016], Section 1).

For k = 1,2, . . . and i = 0,1, . . . ,k−1, let µ
(k)
i be the mean size of the ith gener-

ation for an epidemic in a household of size k with 1 initial infective. (For the

present SEIR model, these quantities can be computed using methods described

in Appendix A of Pellis et al. [2012].) Then R0 in the households model is the

unique positive solution λ of

1−λGE[TI]
∞

∑
i=0

µi

λ i+1 = 0, (2.3)

where µi = ∑
∞
n=1 α̃nµ

(n)
i ; see Ball et al. [2016], Section 2.2 for details.

Note that, like R∗, the critical value of R0 is 1. More precisely, R0 = 1 if

and only if R∗= 1; R0 > 1 if and only if R∗> 1; and R0 < 1 if and only if R∗< 1.

We use R∗ for calculating or proving results pertaining to herd immunity levels,

as it is far simpler to determine than R0. We use R0 when making comparisons

between models, owing to its improved interpretability. (For further discussion

of how R∗ is affected by changing household structures, see Ball et al [2010],

Section 4.4, which considers a random network model incorporating household

structure.)
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2.2.3 Early exponential growth rate r

The early exponential growth rate (Malthusian parameter) r of the SEIR house-

holds model is defined as follows. Consider the branching process of infected

households described in Section 2.2.2. Then the Malthusian parameter, r, for

the branching process satisfies

∫
∞

0
e−rt

β (t)dt = 1, (2.4)

where β (t) is the mean rate of global contacts emanating from a typical single-

household epidemic, t time units after the household is infected. For many

choices of distributions for TE and TI , the left-hand-side of (2.4) is not tractable;

in Ball et al. [2016], Section 2.8, ways to approximate it are considered. We

restrict attention to the case TE ∼ Exp(δ ) and TI ∼ Exp(γ), in which case the

dynamics are Markovian and the left-hand side of (2.4) can be computed as

outlined below, cf. Pellis et al. [2011], Section 4.2, which considers an SIR

model. This problem is treated, in a more general setting, by Pollett and Ste-

fanov [2002].

In the branching process in Section 2.2.2, individuals correspond to in-

fected households, and an individual gives birth whenever a global contact arises

from the corresponding single-household epidemic. We extend Ball and Shaw [2015],

Section 4.1, to include an exposed state. For n = 1,2, . . . , let Ẽ(n)
H denote a typi-

cal single-household epidemic in a household of size n, initiated by one member

becoming exposed at time t = 0. For t ≥ 0, let S(n)H (t), E(n)
H (t) and I(n)H (t) denote

respectively the number of susceptibles, exposed and infected individuals in Ẽ(n)
H

at time t. Let F (n) = {(s,e, i) ∈ Z3
+ : s+e+ i≤ n} be the set of possible house-

hold states for a household of size n. For (s,e, i) ∈F (n) and t ≥ 0, let p(n)s,e,i(t) =

P
(
(S(n)H (t),E(n)

H (t), I(n)H (t)) = (s,e, i)
)

. Let Sn =
∣∣∣F (n)

∣∣∣= n
6

(
n2 +6n+11

)
. For

a given household of size n, we have, in an obvious notation,

β
(n)(t) = λG ∑

(s,e,i)∈F (n)

ip(n)s,e,i(t),

which after conditioning on the size of a typical household in the approximating
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branching process yields

β (t) = λG

∞

∑
n=1

α̃n ∑
(s,e,i)∈F (n)

ip(n)s,e,i(t).

Hence, using (2.4), r satisfies

λG

∞

∑
n=1

α̃n ∑
(s,e,i)∈F (n)

ip̃(n)s,e,i(r) = 1, (2.5)

where

p̃(n)s,e,i(r) =
∫

∞

0
e−rt p(n)s,e,i(t)dt.

To calculate p̃(n)s,e,i(r), let Q(n) =
[
q(n)i, j

]
be the Sn× Sn transition-rate ma-

trix of Ẽ(n)
H , with states labelled such that (n− 1,1,0) is state 1. Suppose

k ∈ {1,2, . . . ,Sn} corresponds to the state (s,e, i) ∈F (n). Then

p(n)s,e,i(t) =
(

etQ(n)
)

1,k
,

where eA = ∑
∞
i=0

Ai

i! denotes the matrix exponential, which always converges –

see Bhatia [2013]. Hence, for r > 0,

p̃(n)s,e,i(r) =
(
[rISn−Q(n)]−1

)
1,k

, (2.6)

which exists since the matrix
[
rISn−Q(n)

]
is diagonally dominant for all r > 0.

We then compute r using using (2.5) and (2.6).

Further, if δ ,γ,λL and the household structure are known and fixed then,

for a given value of the early growth rate r, the corresponding λG is readily

obtained using (2.5) and (2.6).

2.2.4 Final outcome

Consider an epidemic initiated by one initial infective in a population of size

N (m households). Let Zm denote the proportion of individuals infected in the

epidemic. Provided R∗ > 1, as m→∞, Zm converges in probability to a discrete
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random variable Z with probability mass function

P(Z = z) = 1−P(Z = 0),

for some 0 < z < 1 defined below. (The mass at zero in the random variable Z

corresponds to the branching process in the previous section going extinct.) We

define a major outbreak to have occurred if Zm ≈ z and it follows that the sum of

the infectious periods of all infected individuals in a major outbreak, Sm, is ap-

proximately NzE[TI]. Hence, the probability that a randomly chosen individual

avoids global infection during the course of a major outbreak is approximately

π = exp(−λGE[TI]z), since to avoid global infection there must be no points in

a Poisson process of intensity λG/N run for time Sm ≈ NzE[TI].

Let µ̃n(λL,π) denote the mean size of a single-household epidemic in a

household of size n with local infection rate λL and Bin(n,1−π) initial (glob-

ally infected) infectives; using the standard Bin(n, p) notation to denote the bi-

nomial distribution. Denote this epidemic model, which is considered in Addy

et al. [1991], by Ẽn(λL,π). Returning to the households model, suppose that a

major outbreak occurs and let T̃n denote the total number of individuals infected

in a typical household of size n, all of whom are initially susceptible. In the limit

as m→ ∞, individuals independently avoid global infection with probability π .

Thus in a household of size n, Bin(n,1−π) will be infected globally and hence

E[T̃n] = µ̃n(λL,π). Then equation (3.10) of Ball et al. [1997] yields

µ̃n(λL,π) = n−
n

∑
k=1

(
n
k

)
φ(kλL)

n−k
π

k
βk(λL).

The probability that a given individual in an initially susceptible household of

size n is infected during the epidemic is approximately µ̃n(λL,π)/n. Condition-

ing on the household size of a randomly chosen individual then establishes

z =
∞

∑
n=1

α̃n
µ̃n(λL,π)

n
. (2.7)

Note that for large m the effect of the atypical behaviour of the household con-

taining the initial infective becomes negligible and disappears in the limit as
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m→ ∞. Thus, since π = exp(−λGE[TI]z), (2.7) admits an implicit equation

for z, whereby z = 0 is always a solution and a second solution z ∈ (0,1) ex-

ists if and only if R∗ > 1. A similar argument can be used to establish, in the

event of a major outbreak, the proportions (Pn,v) (n = 1,2, . . . ;v = 0,1, . . . ,n) of

households of size n with v members ultimately infected. For n = 1,2, . . ., (Pn,v)

satisfies the system of equations (see Addy et al. [1991], equation 4)

v

∑
i=0

(
n− i
v− i

)
Pn,i

φ((n− v)λL)iπn−v =

(
n
v

)
, v = 0,1, . . . ,n. (2.8)

The above arguments are made rigorous in Ball et al. [1997], Section 4.2 and

hold with or without the inclusion of a latent period, see Ball et al. [1997],

Section 3.1.

2.2.5 Deterministic model

In House and Keeling [2008], Section 2, a system of ordinary differential equa-

tions (ODEs) is derived for the evolution over time of the SIR epidemic model

with households, assuming that TI ∼ Exp(γ), i.e. the infectious period distribu-

tion is exponential with mean γ−1. House and Keeling’s ODEs represent the

deterministic limit of the stochastic process defined in Section 2.2.1 as m→ ∞,

under the assumptions that all households are the same size and there is no latent

period. We extend the system of ODEs to allow for variable household size and

a latent period TE ∼ Exp(δ ).

Consider the model in Section 2.2.1 with maximum household size nmax.

Let

H (nmax) = {(s,e, i,r) ∈ Z4
+ : 1≤ s+ e+ i+ r ≤ nmax}, (2.9)

where Z+= {0,1, . . .}, and for t ≥ 0 and (s,e, i,r)∈H (nmax), denote by H(m)
s,e,i,r(t)

the number of households with s susceptible, e exposed, i infectious and r re-

covered members at time t. For n = 1,2, . . . ,nmax, let

Hn = {(s,e, i,r) ∈H (nmax) : s+ e+ i+ r = n}.

35



Then, ∑(s,e,i,r)∈Hn H(m)
s,e,i,r(t) = mn for all t ≥ 0. Let

H
(nmax)
+ = {(s,e, i,r) ∈H (nmax) : e+ i > 0} (2.10)

be the set of states in which there is at least one infective or exposed indi-

vidual. For (s,e, i,r) ∈H (nmax), we assume the deterministic initial condition
1
mH(m)

s,e,i,r(0)→ hs,e,i,r(0) as m→ ∞, where ∑
(s,e,i,r)∈H (nmax)

+
hs,e,i,r(0) > 0, so a

strictly positive fraction of the population is initially either exposed or infective

in the limit as m→ ∞. Then, under the Markovian assumption, we have that
1
mH(m)

s,e,i,r(t) converges in probability to a deterministic process hs,e,i,r(t) as m→

∞; see Ethier and Kurtz [1986], Theorem 11.2.1. Clearly, for n = 1,2, . . . ,nmax,

we have ∑(s,e,i,r)∈Hn hs,e,i,r(t)=αn for all t. Let ī(t)=∑(s,e,i,r)∈H (nmax) ihs,e,i,r(t).

The deterministic model (cf. Black et al [2014], equation (B.5)) can be obtained

by considering the possible transition rates between household states and yields,

for (s,e, i,r) ∈H (nmax),

d
dt

hs,e,i,r =δ (−ehs,e,i,r +(e+1)hs,e+1,i−1,r)

+ γ (−ihs,e,i,r +(i+1)hs,e,i+1,r−1)

+λGī(t)(−shs,e,i,r +(s+1)hs+1,e−1,i,r)

+λL (−sihs,e,i,r +(s+1)ihs+1,e−1,i,r) ,

(2.11)

where, on the right-hand side, hs′,e′,i′,r′(t) = 0 if (s′,e′, i′,r′) /∈H (nmax).

2.3 Herd immunity in SEIR households model

In this section we outline the various versions of herd immunity that we con-

sider. We start by recapping vaccine-induced herd immunity; we then describe

and explore the details of the disease-induced herd immunity level hD and its ap-

proximation h̃D which are outlined in Section 2.1. In this section, and through-

out the remainder of the manuscript, we assume that R∗ > 1, since if this is not

the case then herd immunity is already achieved.
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2.3.1 Vaccine-induced herd immunity level hC

Suppose some members of the population are vaccinated before an epidemic

occurs. Assume that such a vaccine is given to each member of the population

independently with probability c, and is perfect, so that vaccinated individuals

are completely immune to infection. Then, for v = 0,1, . . . ,n, a given house-

hold of size n has v members vaccinated according to the (binomial) probabil-

ity
(n

v

)
cv(1− c)n−v. We obtain a post-vaccination threshold parameter R̂U(c)

by considering a branching process of potential global contacts. If a potential

global contact is with a susceptible individual then it triggers a local epidemic;

if the contact is with a vaccinated individual then nothing happens.

The mean number of potential global contacts emanating from a single-

household epidemic for a household in state (n,v) that is contacted globally,

with the initial infective chosen uniformly at random from members of the

household (µn,v, say) is given by

µn,v =

(
n− v

n

)
µn−v(λL)λGE[TI],

for n = 1,2, . . . and v = 0,1, . . . ,n. This is because a vaccinated member being

contacted leads to no global contacts at all, and an unvaccinated member being

contacted initiates a single-household epidemic amongst the n− v non-immune

members. Such an unvaccinated individual is contacted with probability n−v
n .

Conditioning on the vaccination status of an individual’s household, as well as

the individual’s household size, and using the same argument as for equation

(2.1) yields a post-vaccination threshold parameter

R̂U(c) =
∞

∑
n=1

α̃n

n

∑
v=0

(
n
v

)
cv(1− c)n−v

(
n− v

n

)
µn−v(λL)λGE[TI], (2.12)

with µ0(λL) = 0. The function R̂U(c) is continuous and strictly decreasing, with

R̂U(0) = R∗ > 1 and R̂U(1) = 0. (To show that R̂U(c) is strictly decreasing,

let fn(c) = ∑
n
v=0
(n

v

)
cv(1− c)n−v(n− v)µn−v(λL). Then fn(c) = E[g(X)], where

g(x)= xµx(λL) and X ∼Bin(n,1−c). The function g is strictly increasing and X

is stochastically decreasing in c. Thus, fn(c) is strictly decreasing in c, whence

37



so is R̂U(c).) This implies there is a critical value, hC say, such that R̂U(hC) = 1

and a major outbreak can be avoided. The quantity hC is the vaccine-induced

herd immunity level. Note that by ensuring R̂U(c)≤ 1, the whole population is

considered protected as a major outbreak is no longer possible. This argument

regarding uniform vaccination is considered (among other vaccination strate-

gies) in Ball and Lyne [2006].

As noted at the start of Section 2.1, for epidemic models in which R0 is

given by the maximal eigenvalue of a next generation matrix, hC = 1−R−1
0 . For

the present households model, R0 is computed differently, see Section 2.2.2; if

λL ∈ (0,∞) then it follows from Ball et al. [2016], Theorem 1, that hC ≥ 1−

R−1
0 with equality if and only if nmax ≤ 3. In the highly locally infectious case

(λL =∞), hC = 1−R−1
0 for all nmax; see Remark 2 following the aforementioned

Theorem 1. If λL = 0, the model reduces to a standard homogeneously mixing

SEIR epidemic and hC = 1−R−1
0 .

2.3.2 Disease-induced herd immunity

Limiting disease-induced herd immunity level hD

An alternative method of achieving herd immunity in a population arises from

the spread of a first wave of infection, in which infected members from the first

wave are considered immunised thereafter.

Consider the SIR version of the households model described in Section

2.2.1, with TI ∼ Exp(γ) and assume this epidemic takes off. As the epidemic

progresses some members of the population are infected, lowering the over-

all susceptibility of the population. Suppose that the first epidemic is stopped

(i.e. all infectious spread, including that within households, is stopped) at time

t > 0. Consider a second epidemic initiated at time t with one initial infec-

tive and all those individuals infected by time t in the first epidemic immune

to infection in the second. Recalling that m is the number of households in the

population, let R(m)
V (t) be the threshold parameter (R∗) for this second epidemic,

which is a random variable owing to its dependence on the trajectory of the first

epidemic. If R(m)
V (t) ≤ 1, then the second epidemic is not supercritical and a

major outbreak cannot occur. Disease-induced herd immunity is achieved when
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the trajectory of R(m)
V (t) crosses one. Write T (m)

∗ = inf{t ≥ 0 : R(m)
V (t) ≤ 1}

and denote the fraction of the population that is still susceptible at time t in the

first epidemic by S(m)(t). Then the disease-induced herd immunity level H(m)
D is

given by H(m)
D = 1− S(m)

(
T (m)
∗
)

and is also a random variable determined by

the trajectory of the first epidemic. We conjecture that H(m)
D

p−→ hD as m→ ∞,

where hD is a constant, and in the presence of a latent period TE ∼ Exp(δ ), that

H(m)
D

p−→ hL
D as m→∞. Moreover, we conjecture that under suitable conditions,

these convergence results hold also when TI and TE follow non-exponential dis-

tributions.

To compute hL
D when TI ∼ Exp(γ) and TE ∼ Exp(δ ), we use the deter-

ministic model in Section 2.2.5. Recall the definitions of H (nmax) and H
(nmax)
+

at (2.9) and (2.10). Let h(t) =
(

hs,e,i,r(t) : (s,e, i,r) ∈H (nmax)
)

and suppose

that h(0) = ε . Then the deterministic model given by (2.11) can be used in

the obvious fashion to define a disease-induced herd immunity level hL
D(ε).

Let H0rec = {(s,e, i,r) ∈ H (nmax) : r = 0}. We conjecture that hL
D(ε

(k)) →

hL
D as k→ ∞ for any sequence (ε(k)) satisfying ∑

(s,e,i,r)∈H (nmax)
+

ε
(k)
s,e,i,r ↓ 0 and

∑(s,e,i,r)∈H0rec ε
(k)
s,e,i,r ↑ 1 as k→∞. Unless explicitly stated otherwise, when com-

puting hL
D, we assume that initially a fraction ε = 10−5 of households are in state

(nmax−1,0,1,0), with all other households being fully susceptible. An equiva-

lent assumption is made when computing hD. Note that, if the largest household

is of size n, the system in (2.11) contains exact order n4/24 equations (or n3/6 in

the SIR case) and becomes computationally expensive to solve when n is large.

Convergence of H(m)
D to hD

The proofs of the conjectures in Section 2.3.2 require extending the theory of

Barbour and Reinert [2013] to the households model and are beyond the in-

tentions of this chapter. Instead, we comment briefly on a possible approach

to proving the conjecture in Section 2.3.2 that H(m)
D

p−→ hL
D as m→ ∞. We also

present some numerical evidence in support of that conjecture for the SIR model

and for the conjecture underlying the calculation of hD in that model.

A possible proof of H(m)
D

p−→ hL
D as m→ ∞ is to extend the theory of Bar-

bour and Reinert [2013] to the households SEIR model. (Recall that in the calcu-
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lation of H(m)
D there is one initial infective, so the proportion of initially infected

individuals converges to zero as m→∞; the convergence of H(m)
D to hL

D must be

treated carefully as a consequence.) Briefly, such an extension would imply that,

as m→ ∞, in the event of a major outbreak, the process
{

m−1H(m)(t) : t ≥ 0
}

,

where

H(m)(t) =
(

H(m)
s,e,i,r(t) : (s,e, i,r) ∈H (nmax)

)
(see Section 2.2.5), converges in probability to a random time translation of a

deterministic process {h̃(t) :−∞ < t < ∞} in which the fraction of the popula-

tion that is either exposed or infective converges to 0 as t →−∞. The random

time translation arises from the randomness in the initial behaviour of the ap-

proximating branching process (see Section 2.2.2) before it settles into its expo-

nentially growing regime. One can use h̃(t) to define (deterministic) analogues

of R(m)
V (t) and S(m)(t) above, R̃V (t) and s̃(t) say, and hL

D = 1− s̃(t̃∗), where

t̃∗ = inf{t ∈ (−∞,∞) : R̃V (t)≤ 1}.

In Table 2.1 we present an example showing empirical evidence in support

of this conjecture for the households SIR model when TE ∼ Exp(γ). We also see

in the bottom row of Table 2.1 evidence that mvar(H(m)
D ) converges to a constant

as m→ ∞, which is consistent with a central limit theorem for H(m)
D .

m 102 103 104 105

H̄(m)
D 0.533495 0.532459 0.532260 0.532240

σ̂ (m) 1.70×10−2 1.67×10−3 5.29×10−4 1.67×10−4

m(σ̂ (m))2 2.90×10−2 2.78×10−3 2.80×10−3 2.80×10−3

Table 2.1: Empirical evidence for the convergence of H(m)
D to a limiting value

as m → ∞, using 10000 simulations of major outbreaks with (λG,λL,γ) =
(2,0.25,1) and an equal number of households of size 1 and size 2. The sample
mean (H̄(m)

D ) and sample standard deviation (σ̂ (m)) of H(m)
D are given for various

total number of households (m). The mean appears to converge toward a fixed
value, with the standard deviation appearing to decrease toward 0 as m→ ∞.

Recall from Section 2.3.2 that we calculate hL
D by considering a sequence

of deterministic epidemics in which the initial fraction of the population that is

infected tends to 0. Further, we conjecture that hL
D(ε

(k))→ hL
D as k→ ∞ for any

sequence (ε(k)) satisfying ∑
(s,e,i,r)∈H (nmax)

+
ε
(k)
s,e,i,r ↓ 0 and ∑(s,e,i,r)∈H0rec ε

(k)
s,e,i,r ↑ 1

as k→ ∞. We give an example for an SIR model in Table 2.2.
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ε 10−2 10−3 10−4 10−5

Initially Size 1 0.532274 0.532242 0.532238 0.532239
infected Size 2 0.532032 0.532218 0.532237 0.532239

households Sizes 1 & 2 0.532312 0.532246 0.532237 0.532239

Table 2.2: Empirical evidence of convergence of hD(ε) to hD, using
(λG,λL,γ) = (2,0.25,1) and an equal number of households of size 1
and size 2, with an initial fraction ε of infected households, where ε =

∑
(s,e,i,r)∈H (nmax)

+
εs,e,i,r. The different rows correspond to different choices of

initial condition in terms of which household sizes contain initial infectives. In
the first row, all initial infectives reside in size 1 households, and in the second
row all initial infectives reside in size 2 households. In the third row, a fraction ε

2
households contain one initial infective and a fraction ε

2 households contain two
initial infectives. As ε ↓ 0, hD(ε) approaches a value consistent with Table 2.1.
Smaller values of ε give the same value as hD(10−5) to this level of accuracy.

Tables 2.1 and 2.2 suggest that lim
m→∞

H(m)
D can be computed as the solution

of the appropriate corresponding deterministic equations, along with the stop-

ping condition RV (t) = 1.

Figure 2.1 gives an example showing that, as m increases, the trajectories

{S(m)(t)} and {R(m)
V (t)} become smoother, with a random time translation cap-

turing the time it takes for the stochastic epidemic to take off. As a result, the

trajectories of R(m)
V (t) and 1−S(m)(t) against t can, for large m, be thought of as

random time shifts of the corresponding deterministic trajectories. The random

time shift is absent, however, when considering R(m)
V (t) against 1−S(m)(t), since

the time shifts of R(m)
V (t) and 1−S(m)(t) are the same for a given realisation of

the process. In light of the definition above of H(m)
D , we thus find, for large m,

that H(m)
D ≃ lim

ε→0
hD(ε). Owing to the random time shift, however, it is not the

case that T (m)
∗ ≃ t∗ even for large m.
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Figure 2.1: Realised trajectories of R(m)
V (t) and 1− S(m)(t) for m = 100 (left

column) and m = 10000 (right column), with (λG,λL,γ) = (2,0.25,1) and an
equal number of households of size 1 and size 2 with a single initial infective
residing in a household of size 2. The top row plots the trajectories of 1−S(m)(t)
against t. The second row plots the trajectories of R(m)

V (t) against t. The final
row plots the trajectories of R(m)

V (t) against 1− S(m)(t), with the epidemic pro-
gressing from left to right and with the corresponding deterministic trajectory
superimposed.

Approximate disease-induced herd immunity level h̃D

Calculation of hD requires deterministic limiting equations, which are not tractable

in general; in the Markovian setting, for example, hD can be found numeri-

cally. For other infectious period distributions, such a calculation is generally

not available – such a calculation requires studying the trajectory of the epi-

demic in real time in order to calculate the time at which disease-induced herd

immunity is achieved. We hence consider an approximation (h̃D) to hD. We
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adapt the approach taken in Britton et al. [2020] to the households setting, using

the final outcome of an epidemic with reduced global infection rate to approx-

imate the state of the population at the time herd immunity is achieved. The

method of approximation is as follows: Let κ ∈
(
R−1
∗ ,1

)
. Run to its conclusion

an epidemic in which the global infection parameter λG is replaced by κλG and

all other parameters are unchanged, i.e. an epidemic with prevention measure

applied to global infection only. Then expose the population to a second epi-

demic with κ = 1, with members infected in the first epidemic now immune.

The threshold parameter R∗ for this second epidemic is a function of κ , which

we denote by R̂DI(κ). Determine κ̂ , the smallest value of κ such that R̂DI(κ)≤ 1

by solving R̂DI(κ̂) = 1. Then h̃D is the fraction of the population infected in the

first epidemic with κ = κ̂ . In summary, we adjust the global infection rate in the

first epidemic to force criticality in the second, and then consider the final size

of the first epidemic. Note that this method relies on final size results, which are

more amenable to study than time-dependent results.

Accuracy of the approximation of hD by h̃D

The disparity between hD and its approximation h̃D depends on the distribu-

tion of susceptibles inside households when herd immunity is achieved. When

λL = 0, there is no within-household spread; this distribution is the same under

hD as under h̃D. The same conclusion holds when λL → ∞, since all single-

household epidemics end immediately (everyone in a contacted household be-

comes infected as soon as that household is contacted). Thus, when λL = 0 or

λL = ∞, we have hD = h̃D and the approximation is exact, since the disparity

between h̃D and hD is driven by how local epidemics play out. For epidemics

with 0 < λL < ∞, local epidemics are run to termination under h̃D, but not un-

der hD. This, coupled with a lower global infection rate under h̃D, leads to h̃D

being more strongly governed by within-household spread. A consequence of

this is the distribution of susceptibles among households being more clumped

under h̃D than hD, leading to a larger proportion of households with no suscep-

tible individuals than under hD, which often results in both h̃D > hD and the

approximation becoming worse as nmax increases (cf. the discussion following
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Theorem 2.1 in Section 2.4.2).

The above-mentioned clumping is illustrated in Figure 2.2, which consid-

ers the case of a common household size n = 4, with pL varying in [0,1] and

λG being chosen so that R0 = 2. When pL = 0, there is no within-household

spread and the distribution of the number of susceptibles in a typical household

when herd immunity is reached is Bin(4,0.5) under both hD and h̃D. Note the

agreement in the two distributions of susceptibles when pL = 1. (When pL = 1

households become fully infected upon being contacted globally; we need not

use Poisson processes to model local infection in this case.) For pL ∈ (0,1),

the distribution has greater mass at the extremes 0 and 4 under h̃D than hD.

We suspect that h̃D > hD holds generally for a common household size n > 1

(with 0 < λL < ∞) and give numerical examples supporting this claim in Sec-

tion 2.5.2. It is possible (but atypical) for h̃D < hD to occur, and the difference is

small in the cases we have met. An example is a household structure comprised

of households of size 1 and n > 1 only; see Figure 2.11 in Section 2.5.2.

Figure 2.2: Distribution of the number of susceptibles in a typical household
when herd immunity is achieved under hD and h̃D when all households have
size 4. For each pL, λG is chosen so that R0 = 2.

The accuracy of the approximation of hD by h̃D is explored in Figure 2.3,
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which shows heat maps of the percentage error 100
∣∣h̃D−hD

∣∣/hD as a func-

tion of (pL,R0) for common household sizes n = 2,3,4 and 5. Observe that

the percentage errors are all small, increase with n and are greatest for inter-

mediate values of pL. The maximum percentage error as (pL,R0) varies over

[0,1]× (1,25] for each choice of n and for some other household size distribu-

tions are given in Table 2.3. Note that the value of pL at which this maximum

is attained tends to decrease with mean household size µH = ∑
∞
n=1 nαn. This

may be a consequence of the fact that for fixed pL the fraction infected by a

single-household epidemic increases with household size. The maximum per-

centage errors are small, except for countries with large mean household sizes.

Moreover, these are maximum errors and even if they are not small, the error is

small for many choices of parameter values, as illustrated by the n = 5 heat map

in Figure 2.3. Thus, h̃D is generally a very good approximation of hD.

Figure 2.3: Heat maps of the percentage error 100
∣∣h̃D−hD

∣∣/hD as a function
of (pL,R0) for common household sizes n = 2,3,4 and 5.
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Household µH Max error (%) R0 pL λG λL
n = 2 2 2.051 3.711 0.718 3.109 2.547
n = 3 3 4.019 3.509 0.629 2.555 1.698
n = 4 4 5.711 3.332 0.551 2.167 1.226
n = 5 5 7.161 3.179 0.484 1.883 0.939

α̃1 = α̃4 = 0.5 1.6 1.269 1.646 0.517 1.057 1.068
Sweden 2.0 1.859 2.135 0.566 1.418 1.306

UK 2.3 2.533 2.401 0.566 1.585 1.306
Argentina 3.3 4.236 2.479 0.495 1.386 0.979
Morocco 4.6 7.367 2.633 0.393 1.293 0.649

Chad 5.8 7.350 2.350 0.343 0.990 0.521
Pakistan 6.8 8.444 2.528 0.338 1.103 0.511

Table 2.3: The maximum percentage error for h̃D approximating hD when
(pL,R0)∈ [0,1]×(1,25], together with the parameter values for which the max-
imum is attained. The first four rows correspond to a common household of size
n. The fifth row corresponds to α̃1 = α̃4 = 0.5 and the remaining rows corre-
spond to real-world household size distributions (see Section 2.5.3).

Overall, the approximation of hD by h̃D is generally good. The approxi-

mation is exact in the limits λL → 0 and λL → ∞. We have observed that the

approximation is typically worse when the mean household size µH increases,

as well as for intermediate values of λL. The performance of the approximation

is particularly poor in cases where the resulting household structures at the end

of the first epidemic, under hD and h̃D respectively, differ most. (Note the dis-

parity between red and green bars in Figure 2.2, which illustrates an example in

which h̃D and hD differ.) Typically h̃D overestimates hD, due to the inefficient

effective household structures that result from the extra clumping of infectives

under h̃D. Such clumping arises since, under h̃D, the epidemic is more strongly

driven by local infection.

Impact of restrictions

Note that the parameter κ corresponds to restrictions being placed on the popu-

lation which affect only the global infection rate; the severity of such restrictions

increases as κ decreases. Since κ̂ is chosen such that the second epidemic is at

criticality, κ̂ corresponds to the most severe restrictions that can be placed for the

whole duration of the first epidemic, such that the second epidemic is not super-

critical; more severe restrictions will leave the second epidemic supercritical, so
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herd immunity will not be achieved. Recall that ĥD denotes the disease-induced

herd immunity level when restrictions are in place. Numerical investigations

suggest that as κ increases from κ̂ to 1, ĥD decreases; see Figure 2.4. In this

example, which uses the UK and Morocco household size distributions (see Sec-

tion 2.5.3), such restrictions have only a small effect on the herd immunity level

ĥD, with the effect being larger for Morocco. Moreover, when λL is fixed, we

observe that κ̂ decreases as R0 increases. Repeating these calculations for other

values of λL (not shown) reveals similar patterns and suggests that the effect is

largest when λL is around 0.5. All of these observations regarding the UK and

Morocco household size distribution are also seen with larger and more variable

household size distributions: the effect of κ on ĥD remains small but becomes

slightly larger if the household size distribution is more variable, κ̂ decreases

with increasing R0 and the effect of varying κ seems greatest when λL ≈ 0.5.

Figure 2.4: Values of ĥD with global restrictions scaled by a factor κ for the
duration of the first epidemic, using the UK household size distribution (solid
lines) and Morocco’s household size distribution (dashed lines), taking λL = 0.5
and considering several values of R0.
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2.4 Comparison of h̃D and hC

2.4.1 Outline

This section presents results concerning orderings of h̃D and hC. Since both of

these quantities depend only on final outcome properties of the epidemic, they

are invariant to the distribution of the latent period and we therefore take TE = 0,

corresponding to the SIR setting, in this section. The problem of solving for h̃D

is not analytically tractable when 0 < λL < ∞. We hence begin with the highly

locally infectious case where λL = ∞, considered in Becker and Dietz [1995],

for which a framework for comparison of h̃D and hC is established and explicit

progress is made. This is then applied to several household size distributions,

beginning with all households being the same size, where h̃D > hC is established

(Theorem 2.1). Further, we show that for a common household size n, the maxi-

mum of h̃D−hC as a function of λG occurs when λG = 4
(1+n)E[TI ]

, corresponding

to R0 = 2 (Theorem 2.2). A necessary and sufficient condition for h̃D = hC

in the highly locally infectious case (Theorem 2.4) is also derived, leading to

study of h̃D and hC for epidemics just above criticality (Theorem 2.5, as well

as highly locally and globally infectious epidemics (Theorem 2.7. We conclude

the highly locally infectious case by deriving a result for household structures

with only households of size 1 and n > 1 (Theorem 2.8). The weakly locally

infectious case λL→ 0 is treated in Section 2.4.3 and a condition for h̃D > hC is

derived (Corollary 2.13).

We consider the general case 0 < λL < ∞, both analytically and numeri-

cally, when all households are of the same size. In Section 2.4.4, we prove that

h̃D > hC for a common household size n = 2 and n = 3 (Theorem 2.15). We

conjecture that h̃D > hC holds for common household size n ≥ 4; supporting

evidence for this conjecture is provided in Section 2.5.2.

2.4.2 Highly locally infectious case

General framework

In the highly locally infectious case (λL→∞) explicit analytical progress is pos-

sible, as any infected individual will infect their whole household. We therefore
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have µn(λL) = n for n = 0,1, . . . . Using (2.1), we find that R∗ = λGE[TI]µH̃ ,

where µH̃ = E[H̃] = ∑
∞
n=1 nα̃n is the mean size of the household of an individual

chosen uniformly at random from the population. Thus, R∗ > 1 if and only if

λG > 1
µH̃E[TI ]

. Substituting µn(λL) = n into (2.12) and solving R̂U(c) = 1 gives

hC as the unique solution of

∞

∑
n=1

α̃n

n

∑
v=0

(
n
v

)
cv (1− c)n−v (n− v)2

n
λGE[TI] = 1. (2.13)

The inner sum in (2.13) can be evaluated using the second moment of a Bin(n,1−

c) random variable. Using the definition of µH̃ , it follows that hC is given by the

unique solution in (0,1) of the quadratic equation

hC(1−hC)+µH̃(1−hC)
2− 1

λGE[TI]
= 0, (2.14)

yielding

hC = 1−

√
1+ 4(µH̃−1)

λGE[TI ]
−1

2(µH̃−1)
. (2.15)

As noted at the end of Section 2.3.1, hC = 1−R−1
0 in the present highly locally

infectious case.

Turning to the disease-induced herd immunity level h̃D, consider the first

epidemic with global infection rate κ̂λG, where κ̂ solves R̂DI(κ̂) = 1 as de-

scribed in Section 2.3.2. Let z(κ̂) be the fraction of the population infected

by that epidemic and π = exp(−κ̂λGE[TI]z(κ̂)), the probability that any given

susceptible avoids global contact during that epidemic. For n = 1,2, . . . and

v= 0,1, . . . ,n, let xn,v(π) be the proportion of households with n members which

have v infected in this epidemic and thus immune to the second epidemic.

Letting RDI(π) = R̂DI(κ̂), we have

RDI(π) =
∞

∑
n=1

α̃n

n

∑
v=0

xn,v(π)
(n− v)2

n
λGE[TI]. (2.16)

In the highly locally infectious case, a given individual escapes infection if

and only if their whole household avoids global infection. Thus xn,0(π) = πn,
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xn,n(π) = 1−πn, and xn,v(π) = 0 for v /∈ {0,n}. Substitution into (2.16) yields

RDI(π) =
∞

∑
n=1

nα̃nπ
n
λGE[TI]. (2.17)

Note that µ̃n(∞,π) = n(1− πn), so equation (2.7) implies that the final

proportion infected in the first epidemic is h̃D = z(κ̂) = 1−∑
∞
n=1 α̃nπn. Thus,

h̃D = 1− fH̃(π), (2.18)

where fH̃(π) = ∑
∞
n=1 α̃nπn is the probability-generating function of H̃. Setting

RDI(π) = 1 in (2.17) yields

π f ′H̃(π) =
1

λGE[TI]
. (2.19)

Combined with (2.14), we have a framework to compare h̃D and hC. Note, how-

ever, that the system given by (2.18) and (2.19) does not always allow closed-

form calculation of h̃D.

Note that in this subsection dealing with the highly local infectious case,

the distribution of TI only enters our results through its mean E[TI].

Common household size

Suppose that all households are of size n. When n = 1 the model reduces to

the standard homogeneously mixing model, so h̃D = hC = 1−R−1
0 . Therefore

assume that n > 1. Using (2.15),

hC = 1−

√
1+ 4(n−1)

λGE[TI ]
−1

2(n−1)
. (2.20)

Note that fH̃(π) = πn, so (2.18) and (2.19) yield

h̃D = 1− 1
nλGE[TI]

. (2.21)

Theorem 2.1. Consider the highly locally infectious case with common house-

hold size n > 1. Then h̃D > hC if R∗ > 1.
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Proof. The claim is established by subtracting equation (2.20) from (2.21), and

letting x = 1
λGE[TI ]

for ease of exposition, so R∗ = nλGE[TI] =
n
x . Expressing

explicitly the dependence of h̃D and hC on x, we obtain

h̃D(x)−hC(x) =

√
1+4x(n−1)−1

2(n−1)
− x

n
=

n
√

1+4x(n−1)−n−2x(n−1)
2n(n−1)

.

(2.22)

The result then follows by elementary manipulations of (2.22), since R∗ > 1

implies x ∈ (0,n).

A heuristic justification for Theorem 2.1 is as follows. In disease-induced

herd immunity, after the first epidemic, households contain either 0 or n suscep-

tibles, depending on whether that household was infected. Consider a randomly

chosen individual contacted globally in the second epidemic. If this individual is

immune, this contact contributes no further infection. Otherwise, they begin an

epidemic within their household which, in the highly locally infectious case, will

infect all non-immune members. Hence, under disease-induced herd immunity,

the potential for within-spread is as high as possible (the rest of the household

is susceptible). Thus disease-induced herd immunity corresponds to the worst

possible vaccination strategy for a given coverage, resulting in h̃D > hC. Note

that, in this case, disease-induced herd immunity is equivalent to vaccination of

whole households, which corresponds to the worst possible vaccination strategy.

A further result provides a link between the highly locally infectious case

and R0 for the households model, in which we treat h̃D−hC as a function of λG.

Theorem 2.2. Under the same assumptions as Theorem 2.1, h̃D − hC has a

unique maximum as a function of λG which is attained when λG = 4
(1+n)E[TI ]

,

corresponding to R0 = 2.

Proof. We show that h̃D(x)−hC(x) has a unique stationary point, which must be

a maximum since, from (2.22), h̃D(x)−hC(x)→ 0 as x ↓ 0 and x ↑ n, correspond-

ing to R∗→∞ and R∗→ 1, respectively, and by Theorem 2.1, h̃D(x)−hC(x)> 0

for x ∈ (0,n). Then we find the value of x which yields the maximum and com-

pute the corresponding R0 value.

Ignoring the denominator in (2.22), differentiation with respect to x and
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equating to 0 leads us to solve

4n(n−1)
2
√

1+4x(n−1)
−2(n−1) = 0⇐⇒ x̂ =

n+1
4
⇐⇒ λ̂G =

4
(1+n)E[TI]

.

In the highly locally infectious case, all secondary infections in a household

are attributed to the primary case, so µ
(k)
0 = 1, µ

(k)
1 = k− 1 and µ

(k)
j = 0 for

j /∈ {0,1}. Setting λG = λ̂G in (2.3) gives that R0 is the unique positive root of

gn(λ ) = 0, where

gn(λ ) = 1− 4
1+n

(
1
λ
+

n−1
λ 2

)
.

Now gn(2) = 0, so the maximum of h̃D−hC is attained when R0 = 2, as claimed.

Intuitively, we would expect that for calibrated models (i.e. models with

the same R0) increasing the household size would increase the disease-induced

herd immunity level. We consider this in the following result.

Theorem 2.3. Under the same assumptions as Theorem 2.1, let h̃(n)D denote the

disease-induced herd immunity level, supposing that R0 > 1 is held fixed. Then

h̃(n)D is increasing with n. Moreover, we have lim
n→∞

h(n)D = 1−R−2
0 .

Proof. Using the definition of R0 in the highly locally infectious case in (2.3),

we have

λ
(n)
G =

R2
0

R0 +n−1
.

Then, since h̃(n)D = 1− 1

nλ
(n)
G

, we have

h̃(n+1)
D − h̃(n)D =

R0−1
n(n+1)R2

0
> 0,

which establishes the result. Direct computation yields lim
n→∞

h̃(n)D = 1−R−2
0 , so

that h̃(n)D ∈ [1−R−1
0 ,1−R−2

0 ) for all n≥ 1.

Necessary and sufficient condition for h̃D = hC for all λG

The framework given in Section 2.4.2 for the highly locally infectious case en-

ables proof of the following result. For θ ∈ (0,1], we write H̃ ∼ Geom(θ) if H̃
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has a geometric distribution with probability mass function

P(H̃ = x) = θ(1−θ)x−1, x = 1,2 . . . .

Theorem 2.4. In the highly locally infectious case, h̃D = hC for all λG such that

R∗ > 1 if and only if H̃ ∼ Geom(µ−1
H̃ ).

Proof. Recall that R∗ > 1 if and only if λG > 1
µH̃E[TI ]

. We begin by assuming

h̃D−hC = 0 for all λG > 1
µH̃E[TI ]

and solving for H̃. Equations (2.14) and (2.18)

give

fH̃(π)(1− fH̃(π))+µH̃( fH̃(π))
2 =

1
λGE[TI]

.

Equation (2.19) implies that

G(π) := fH̃(π)(1− fH̃(π))+µH̃( fH̃(π))
2−π f ′H̃(π) = 0, π ∈ [0,1). (2.23)

Further, fH̃(1) = 1 since fH̃(π) is a probability-generating function. This sepa-

rable ODE can be solved to yield, for 0≤ π ≤ 1,

fH̃(π) =
πµ
−1
H̃

1−π

(
1−µ

−1
H̃

) , (2.24)

which is precisely the probability-generating function of a Geom(µ−1
H̃ ) random

variable. This establishes the only if part of the equivalence claim. For the

converse, assume that H̃ follows a geometric distribution with parameter µH̃ .

Then (2.23) holds and the logic for the above proof is reversible thereafter, so

the result follows.

If H̃ ∼ Geom(θ), then H follows a logarithmic distribution having proba-

bility mass function

P(H = k) =
−1

logθ

(1−θ)k

k
, k = 1,2, . . . .

Note that real-life household size distributions will have a finite maximum size,

so for any realistic household size distribution h̃D = hC will not hold for all λG

in the highly locally infectious case. We typically observe h̃D > hC for real-life
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household size distributions and comment upon this further in Section 2.5.2.

Just supercritical epidemics

We can use the framework provided in Section 2.4.2 to give an ordering of

h̃D and hC for epidemics which are just above threshold, i.e. when R∗ is just

above 1, so π is just below 1. We hence establish an ordering of h̃D and hC

by considering G(π), given in (2.23), in the neighbourhood of π = 1. As-

suming a fraction z(π) of individuals are infected in the first epidemic gives

a threshold parameter RDI(π) for the second epidemic, as given in (2.16). Vac-

cinating the same proportion uniformly at random gives a threshold parameter

RU(π) = R̂U(z(π)). Here, RU(π)−RDI(π) = λGE[TI]G(π). Clearly we have

G(1) = 0, since fH̃(1) = 1 and f ′H̃(1) = µH̃ . Let G(k) be the kth derivative of G

and define

k∗ = inf
k≥1
{k : G(k)(1) ̸= 0}. (2.25)

Suppose that G(k∗)(1) > 0. Then G(π) < 0 for π just below 1, so RU(π) <

RDI(π) for such π . Hence, RU(π)< 1 if RDI(π) = 1 and it follows that h̃D > hC

for epidemics which are just above threshold. A similar argument shows that

h̃D < hC if G(k∗)(1)< 0. If H̃ follows a geometric distribution then G(k)(1) = 0

for all k≥ 1, otherwise h̃D ̸= hC. Determining the ordering of h̃D and hC reduces

to comparing factorial moments of H̃ to those of a geometric distribution with

parameter µ
−1
H̃ . For a random variable H̃ define, for i = 1,2, . . . , the factorial

moments µ
[i]
H̃ = E[H̃(H̃−1) . . .(H̃− i+1)], with µ

[0]
H̃ = 1. Note that µ

[1]
H̃ = µH̃ .

Theorem 2.5. Let H̃ be a given size-biased household size distribution with

mean µH̃ and factorial moments µ
[i]
H̃ (i = 0,1, . . .). Suppose that l∗ = inf

k≥2
{k :

µ
[k]
H̃ ̸= k!µH̃(µH̃ −1)k−1} < ∞. Then h̃D > hC for highly locally infectious epi-

demics which are just above threshold if µ
[l∗]
H̃ < l∗!µH̃(µH̃ − 1)l∗−1, otherwise

h̃D < hC for such epidemics.

Proof. For i = 0,1,2 . . . , let µ̂
[i]
H̃ be the ith factorial moment of H̃ when H̃ ∼

Geom(µ−1
H̃ ). Then µ̂

[0]
H̃ = 1 and

µ̂
[n]
H̃ = n!µH̃ (µH̃−1)n−1 , n = 1,2, . . . .
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We compute G(k)(1) using the general Leibniz rule. For k = 1,2, . . . we

have

G(k)(π) = (1− k) f (k)H̃ (π)+(µH̃−1)
k

∑
i=0

(
k
i

)
f (i)H̃ (π) f (k−i)

H̃ (π)−π f (k+1)
H̃ (π),

(2.26)

leading to

G(k)(1) = (1− k)µ [k]
H̃ +(µH̃−1)

k

∑
i=0

(
k
i

)
µ
[k−i]
H̃ µ

[i]
H̃ −µ

[k+1]
H̃ . (2.27)

Note that G(k)(1) ≡ δn− µ
[k+1]
H̃ , where δk depends only on µ

[0]
H̃ ,µ

[1]
H̃ , . . . ,µ

[k]
H̃ .

Recall that G(k)(1) = 0 for all k = 0,1, . . . when H̃ ∼Geom(µ−1
H̃ ). Now suppose

that l∗< ∞ and µ
[l∗]
H̃ < l∗!µH̃(µH̃−1)l∗−1. Then G(k)(1) = 0 for k = 0,1, . . . l∗−

1, since µ
[k]
H̃ = µ̂

[k]
H̃ for k = 0,1, . . . , l∗− 1, and G(l∗)(1) > 0 since µ

[l∗]
H̃ < µ̂

[l∗]
H̃ .

Hence, h̃D > hC by the observation following (2.25). A similar argument holds

when µ
[l∗]
H̃ > l∗!µH̃(µH̃−1)l∗−1.

In many cases (i.e. when the second factorial moment of H̃ differs from

that of a geometric distribution with parameter µ
−1
H̃ ) only the first derivative

of G is required. The following corollary, which involves only the mean and

variance of H̃, is an immediate consequence of Theorem 2.5 in the case l∗ = 2.

Corollary 2.6. If var(H̃)< E[H̃]E[H̃−1] then h̃D > hC for highly locally infec-

tious epidemics which are just above threshold. If var(H̃)> E[H̃]E[H̃−1] then

h̃D < hC for highly locally infectious epidemics which are just above threshold.

Highly locally and globally infectious epidemics

The framework in Section 2.4.2 can also be used to consider highly locally and

highly globally infectious epidemics. This corresponds to the case where π ,

the global escape probability, is small. Considering π ↓ 0 yields the following

theorem. (Recall that, for n = 1,2, . . . , α̃n = P(H̃ = n).)

Theorem 2.7. Suppose that n∗ = infn≥2{n : G(n)(0) ̸= 0} < ∞. Then h̃D > hC

for all sufficiently small π > 0 if α̃n∗ < α̃n∗
1 (µH̃−1)n∗−1, otherwise h̃D < hC for

such π .
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Proof. Note that, for i = 0,1, . . . , we have f (i)H̃ (0) = i!α̃i, with α̃0 = 0. Substi-

tuting π = 0 into (2.26) yields, after elementary algebra, that G(1)(0) = 0 and,

for n≥ 2,

G(n)(0) = n!

(
(1−n)α̃n +(µH̃−1)

n−1

∑
k=1

α̃n−kα̃k

)
. (2.28)

Suppose that G(n)(0) = 0 for n = 1,2, . . . . Iterating (2.28) gives α̃n = α̃n
1 (µH̃ −

1)n−1. Then α̃1 = µ
−1
H̃ (since ∑

∞
n=1 α̃n = 1), so H̃ ∼ Geom(µ−1

H̃ ). With n∗ as in

the statement of the theorem, we have that G(n∗)(0) > 0 implies h̃D < hC, and

G(n∗)(0)< 0 implies h̃D > hC, from which the result follows.

Similarly to the just supercritical case, the only distribution for H̃ which

has G(n)(0) = 0 for all n is the geometric distribution with parameter µ
−1
H̃ . The-

orem 2.7 then reduces the ordering of h̃D and hC to iterative comparison of the

probability mass function of H̃ with the relevant geometric distribution.

Households of size 1 and n > 1

Theorem 2.1 in Section 2.4.2 shows that, in the highly locally infectious case,

h̃D > hC for all λG when the households all have the same size. We now con-

sider the simplest setting when there is variability in household size, i.e. the

case where there are only two household sizes, 1 and n > 1. For 0 < p < 1,

let p denote the proportion of individuals who belong to a household of size n.

Thus α̃n = p and α̃1 = 1− p. We consider how h̃D− hC varies with p, with a

view towards obtaining different orderings of h̃D and hC as the household struc-

ture changes. The following theorem, proved in Section 2.7.1, shows that the

ordering of h̃D and hC is less straightforward when household size is variable.

Theorem 2.8. Suppose that α̃n = p = 1− α̃1, where n > 1 and 0 < p < 1,

and R∗ > 1. If n = 2, then h̃D > hC for all p. For n ≥ 3, if p ≤ n−2
2(n−1) then

h̃D < hC for all λG. If p > n−2
2(n−1) then there exists λ ∗G(n, p) such that h̃D >

hC for λG < λ ∗G(n, p) and h̃D < hC for λG > λ ∗G(n, p). Further, λ ∗G(n, p) =[
E[TI]π̂n(p)

(
1− p+npπ̂n(p)n−1

)]−1
, where π̂n(p) is the unique root in (0,1)
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of

π
n
2−1− pπ

n−1− (1− p) = 0. (2.29)

One can solve (2.29) for π̂ numerically and thereby determine λ ∗G(n, p),

and the corresponding value R∗0(n, p) of R0 (which is independent of E[TI]),

such that the change in the ordering of h̃D and hC occurs. Figure 2.5 shows

R∗0(n, p) as a function of p for various n, with h̃D < hC above the plotted line

and h̃D > hC below it. If p ≤ (n− 2)/2(n− 1) then no change of sign occurs

and h̃D > hC for all values of R0 > 1.

Figure 2.5: The value of R∗0(n, p) (on a logarithmic scale) as a function of p for
n ∈ {3,4,5,6}.

We see immediately that R∗0(n, p) decreases with n and increases with p.

One can also show that, for fixed n, limp↑1 R∗0(n, p) = ∞. Further, var(H̃) =

(n− 1)2 p(1− p), so the variability in household size is small when p is close

to one. Thus Theorem 2.8 shows that, even with low variability in household

size, we can have h̃D < hC; however, in this example, R0 has to be unrealistically

large for this to happen.
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False infectives model

Consider the households epidemic model, with common household size n > 1

in the highly locally infectious case, adapted as follows. Suppose that indi-

viduals, upon being infected, have infectious period TI satisfying P(TI = 0) =

1−P(TI = 1) = p. Thus an infected individual is a “false infective” with prob-

ability p ∈ (0,1). Denote this epidemic model by En(p). The mean size of a

single-household outbreak in this model is given by µn(p) = p+n(1− p), since

an individual is either a false infective (with probability p) or infects all n mem-

bers of their household (with probability 1− p). We first consider the final size

of En(p), beginning with an elementary lemma.

Lemma 2.9. Suppose n > 1. For π, p ∈ (0,1), let x = π + p(1− π). For i ∈

{0,1,2}, let

ai(p) =
n

∑
v=0

(
n
v

)
pv(1−π)v

π
n−vvi.

Then

a0(p) = xn,

a1(p) = np(1−π)xn−1 and

a2(p) = np(1−π)(np(1−π)+π)xn−2.

Proof. Consider the random variable X ∼ Bin(n,1−π), which has probability-

generating function

φX(p) = E[pX ] =
n

∑
v=0

(
n
v

)
pv(1−π)v

π
n−v = xn = a0(p), 0 < p < 1.

Differentiation of φX(p) shows that a1(p) = pa′0(p) and that a2(p) = p2a′′0(p)+

a1(p). The result follows by elementary manipulations of ai(p) (i ∈ {0,1,2}).

We next consider the final size of the false infectives model under the as-

sumption that a major outbreak occurs.

Lemma 2.10. Assume a major outbreak occurs in the false infectives model

En(p), where p∈ (0,1). Let π denote the probability an individual avoids global
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infection. The final size z(p) of En(p) is given by

z(p) = 1−π(π + p(1−π))n−1.

Proof. We note that, in the notation of Section 2.2.2, we have lim
λL→∞

φ(λL) = p

and lim
λL→∞

βi(∞) = i(1− p)i−1 for i = 0,1, . . . . Then, using (2.7),

z(p) =1− 1
n

n

∑
i=1

(
n
i

)
(1− p)i−1 pn−i

π
ii

=1− 1
n(1− p)

n

∑
i=1

(
n
i

)
(1− p)i pn−i

π
ii

=1− π

n(1− p)
d

dπ

n

∑
i=1

(
n
i

)
(1− p)i pn−i

π
i

=1−π(π + p(1−π))n−1,

where the final line follows by applying Lemma 2.9 with p and π interchanged.

We conclude this section by proving an ordering for h̃D and h̃C in the false

infectives model.

Theorem 2.11. Let R∗ > 1 in the false infectives model. We have h̃D > hC.

Proof. Let p∈ (0,1) be given. We proceed by comparison of reproduction num-

bers. If a fraction c ∈ (0,1) of individuals are vaccinated uniformly at random

with a perfect vaccine prior to the epidemic, the proportion of households with

v members vaccinated (P(v)
U (c),v = 0,1, . . . ) satisfies

P(v)
U (c) =

(
n
v

)
cv(1− c)n−v.

Conversely, if a fraction z are infected in the false infectives model with global

infection rate κλG and corresponding global escape probability π(z), the pro-

portion of households with v members vaccinated (P(v)
D ,v = 0,1, . . . ) is given

by

P(v)
D (z) =

(
n
v

)
pv(1−π(z))v

π(z)n−v.
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Hereafter we suppress the dependence of π on z. The corresponding threshold

parameters are then given by

RU(c) = λGE[TI]
n

∑
v=0

P(v)
U (c)

(
1− v

n

)
µn−v(p) (2.30)

and

RD(z) = λGE[TI]
n

∑
v=0

P(v)
D (z)

(
1− v

n

)
µn−v(p). (2.31)

We assume that λGE[TI] = 1 without loss of generality. Expanding (2.30), we

find that

RU(c) = c2(n−1)(1− p)+ c[(1−2n)(1− p)− p]+n(1− p)+ p. (2.32)

Suppose now that π ∈ (0,1) is chosen such that z(π) = c, so that both strate-

gies leave the same proportion of the population immune. We consider the re-

production numbers as functions of π , which we denote by R̃U(π) and R̃D(π)

respectively. Using Lemma 2.10 and substituting z(π) = c into (2.32), we find

R̃U(π) = (n−1)(1− p)π2(π + p(1−π))2n−2 +π(π + p(1−π))n−1. (2.33)

Turning to R̃D(π), we recall the definition of ai(p) (i ∈ {0,1,2}) in Lemma 2.9.

Then, after elementary manipulation of (2.31), we have

R̃D(π) =
n

∑
v=0

(
n
v

)
pv(1−π)v

π
n−v
(

1− v
n

)
(p+(n− v)(1− p))

=

(
1− p

n

)
a2(p)+

(
2p−2− p

n

)
a1(p)+(n+ p−np)a0(p)

= π(nπ + p(1−nπ))[π + p(1−π)]n−2. (2.34)

Let x = π + p(1−π) and note that 0 < x < 1. Subtracting (2.33) from (2.34),

we find that

R̃D(π)− R̃U(π) = (n−1)(1− p)π2xn−2(1− xn)> 0,

which establishes that h̃D > hC.
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2.4.3 Weakly locally infectious case

Consider now the case when the extra local infection is small but non-zero,

corresponding to λL→ 0, with R∗ > 1, E[TI] = 1 and var(TI)< ∞. Assume also

that nmax < ∞.

Theorem 2.12. Let π(0) = 1
λG

. We have

h̃D(λL)−hC(λL) = 2λ
2
L π(0)2(1−π(0))

[
E[H̃−1]−var(H̃)

]
+o(λ 2

L ).

The proof of Theorem 2.12 involves computing the first three terms of the

Maclaurin expansion of h̃D(λL)− hC(λL) and is given in Section 2.7.2, where

the assumption that nmax < ∞ is also explained. The assumption that E[TI] = 1

involves no loss of generality (since time can be rescaled appropriately) and is

made to simplify the presentation of the proof. The assumption var(TI) < ∞ is

required for the third term in the above-mentioned Maclaurin expansion. Note

that when λL = 0, R∗ = R0 = λG, whence hC = h̃D = 1−π(0). The following

corollary is an immediate consequence of Theorem 2.12.

Corollary 2.13. If var(H̃) < E[H̃ − 1] then h̃D > hC for all sufficiently small

λL > 0. If var(H̃)> E[H̃−1] then h̃D < hC for all sufficiently small λL > 0.

If var(H̃) = E[H̃−1], higher terms in the Maclaurin expansion of h̃D(λL)−

hC(λL) are required in order to give an ordering. Note that Corollaries 2.6

and 2.13 produce contrasting orderings of h̃D and hC if E[H̃]− 1 < var(H̃) <

E[H̃](E[H̃]−1). (See Section 2.5.3 for a numerical exploration of this.)

A result for a common household size n > 1 follows immediately from

Corollary 2.13.

Corollary 2.14. Suppose all households are the same size n > 1. For all suffi-

ciently small λL > 0, we have h̃D > hC.

Proof. When the common household size is n > 1, we have var(H̃) = 0 and

E[H̃−1]> 0. Applying Corollary 2.13 then establishes the claim.

61



2.4.4 Common household size with 0 < λL < ∞

We have shown that, for a common household size n and any λG such that

R∗ > 1, we have h̃D > hC when λL → 0 and λL = ∞. The following theorem

considers λL ∈ (0,∞).

Theorem 2.15. For a common household size n = 2 or n = 3, and for any λG

and λL > 0 such that R∗ > 1, we have h̃D > hC.

Proof. Suppose a fraction z of the population is infected by a first epidemic in

the households model with the above parameters. This leads to a threshold pa-

rameter R̂DI(z) for the second epidemic. Further, assuming the same proportion

are vaccinated uniformly at random gives threshold parameter R̂U(z). We show

that R̂DI(z)− R̂U(z)> 0, from which h̃D > hC is immediate.

Let PD
i (i = 0,1, . . . ,n) be the proportion of households with i members

immune owing to the first epidemic and let PU
i (i = 0,1, . . . ,n) be the analogous

quantity with uniformly at random vaccination, both assuming a fraction z of

the population is immune. Then we can write

R̂U(z) = λGE[TI]
n

∑
v=0

(
1− v

n

)
PU

v µn−v(λL)

and

R̂DI(z) = λGE[TI]
n

∑
v=0

(
1− v

n

)
PD

v µn−v(λL).

Assuming n = 2 and considering the proportion of susceptibles remaining after

vaccination also yields

2PD
0 +PD

1 = 2PU
0 +PU

1 .

Now A := PD
0 − PU

0 = π2− (1− z)2 > 0, since the probability an individual

avoids global infection π is larger than the overall probability it avoids infection

1− z. We then find

R̂DI(z)− R̂U(z) = λGE[TI]

[(
PD

0 −PU
0
)

µ2(λL)+
1
2
(PD

1 −PU
1 )µ1(λL)

]
= AλGE[TI] [µ2(λL)−µ1(λL)]> 0,

since µ2(λL)> µ1(λL) and A> 0. The result follows and the claim is established

62



for n = 2. The proof for n = 3 uses a similar (but more involved) argument and

is deferred to Section 2.7.3.

A proof for n > 3 has not been forthcoming, but we make the following

conjecture, which is supported by numerical evidence (Figure 2.10) in Sec-

tion 2.5.2.

Conjecture 2.16. For any common household size n > 1, and for any λG and

λL such that R∗ > 1, we have h̃D > hC.

In Theorem 2.2 we show that for a common household size in the highly

locally infectious case, the difference h̃D−hC is maximised at R0 = 2. We show

numerically that this does not hold when λL < ∞. For ease of visualisation

we work in terms of the probability that an infectious individual makes local

infectious contact with a given individual in their household, pL = pL(λL) =

1− φ(λL), instead of λL directly. Note that pL is a monotonic function of λL,

with pL(0)= 0 and pL(∞)= 1. Taking TI ∼Exp(1), we have pL = λL(1+λL)
−1.

In Figure 2.6 we fix n∈ {2,3,4,5,6} and pL(λL), determine λ̂G = argmax
λG

(h̃D−

hC), the global infection rate which maximises the difference (assumed to be

positive on the basis of Conjecture 2.16) between the herd immunity levels,

then calculate the resulting value of R0.
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Figure 2.6: Plot of R0 such that h̃D − hC is maximised, where the common
household size n ∈ {2,3,4,5,6} and TI ∼ Exp(1).

We see that the ‘optimal’ value of R0 broadly increases with pL and tends

to 2 as pL → 1, consistent with Theorem 2.2. The dip near pL = 0 becomes

more pronounced as n increases. Similar observations regarding the ‘optimal’

value of R0 and the dip at pL = 0 hold for other choices of infectious period

distribution which are not presented here.

When pL = 0 we have h̃D = hC. As such, the value of R0 when λL = 0 is not

well-defined, since there is not a unique value of λG maximising h̃D−hC. This

leads to instability when solving numerically. However, in the general setting

with variable household sizes we can proceed analytically using Theorem 2.12.

We have, as λL ↓ 0,

h̃D(λL)−hC(λL) = 2λ
2
L π(0)2(1−π(0))

[
E[H̃−1]−var(H̃)

]
+o(λ 2

L ), (2.35)

where π(0) = 1
λG

. If E[H̃− 1] > var(H̃) (E[H̃− 1] < var(H̃)), the right-hand-

side of (2.35), ignoring the o(λ 2
L ) term, is maximised (minimised) at π̂0 = 2

3 ,

yielding λ̂G = 1.5. The value of R0 maximising
∣∣h̃D(λL)−hC(λL)

∣∣ then satisfies

R0→ 1.5 as λL→ 0.
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2.5 Numerical comparisons of herd immunity levels

2.5.1 Effect of infectious period

By taking TI ∼ exp(γ) in Section 2.3.2 we are able to write down ODEs, describ-

ing the deterministic epidemic, for the purposes of calculating hD. In principle

this can be extended to TI ∼Gamma(k,k) for k ∈N using the method of stages,

however this quickly gives rise to an unmanageable number of ODEs. Calcu-

lation of h̃D requires no such assumption on TI , since h̃D relies only upon final

size results. We briefly investigate how the choice of infectious period affects

h̃D, showing that the effect is very small for appropriately calibrated models.

We assume for the purposes of this exposition that E[TI] = 1. In order to

study the effect of the infectious period, we consider TI ∼ Gamma(k,k), where

k ≥ 1 is allowed to vary. When k = 1 we recover an exponential random vari-

able with rate 1 and when k→ ∞ the infectious period distribution converges to

a degenerate distribution with all its mass at one, so that large k closely resem-

bles a constant infectious period; we write k = ∞ when referring to a constant

infectious period with mean one.

In Figure 2.7 we plot h̃D and hC, for several values of k, as functions of pL

for fixed R0. That is, for a given value of pL, we choose λG so that R0 is fixed.

In Figure 2.8 we fix R0 but instead plot h̃D and hC as functions of λL.
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Figure 2.7: Herd immunity levels h̃D and hC with R0 = 2 as functions of pL,
taking k ∈ {1,2,10,∞} and with common household size n ∈ {2,3,4,5}.

Figure 2.8: Herd immunity levels h̃D and hC with R0 = 2 as functions of λL,
taking k ∈ {1,2,10,∞} and with common household size n ∈ {2,3,4,5}.

66



Figure 2.9: Comparison of hC for various values of k, taking R0 = 2, k ∈
{1,2,10,∞} and with common household size n ∈ {2,3,4,5}. Top panel: hC
as a function of pL for fixed R0. Bottom panel: hC as a function of λL.

In an obvious notation, we have h̃(k)D = h̃(1)D for fixed pL when the com-

mon household size n = 2; this follows from the fact that µ2(λL) = 1+ pL. In

Figure 2.7 we observe that h̃(∞)
D − h̃(1)D is typically small; the maximum percent-

age difference in this example when n = 5 is 4.18%. We also observe that the

infectious period has more of an impact when the household sizes are larger.

In Figure 2.8 the discrepancy between h̃(k)D for different values of k is larger,

owing to the lack of calibration of the models used; when TI ∼Gamma(k,k) we

have

pL = 1−
(

k
k+λL

)k

> 1− 1
1+λL

.

Thus, a given value of λL implies a smaller value of pL when k = 1 compared

to k > 1. The lack of calibration then leads to quite different values for h̃(k)D as k

varies.

In Figure 2.9 we provide a more detailed comparison of hC from Figure 2.7

and Figure 2.8. The cases n = 2 and n = 3 are omitted, since hC = 1−R−1
0 is

constant in these cases – see Ball et al. [2016], Theorem 1. We note the scale on
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the y-axis, which shows very small deviation from y = 1−R−1
0 . Again using an

obvious notation, the difference between h(k)C and 1−R−1
0 increases both with k

and with the common household size n, although not by a substantial amount.

We have seen that, for models calibrated by pL, the disease-induced herd

immunity level h̃D is not strongly affected by the choice of infectious period

distribution. Moreover, we have observed that typically h̃D > hD, with the above

examples suggesting that this inequality would still hold, since h̃(k)D increases

with k. The lack of monotonicity in the above illustrations is not surprising,

since in those examples R0 is being held fixed, so λG is implicitly changing to

account for the increase in λL or pL.

In Section 2.5.2 we numerically illustrate some of the results from Section

2.4, then in Section 2.5.3 we explore how our findings play out in the context

of realistic household size distributions. Owing to the above discussion we,

throughout the remainder of this section, restrict attention the case where TI ∼

Exp(γ), with TE ∼ Exp(δ ) when a latent period is present.

2.5.2 Illustrative examples

In this subsection we assume that γ = 1 and, where applicable, δ = 1 also.

We begin by plotting in Figure 2.10 how hD, hL
D, h̃D and hC vary with pL for a

common household size n when λG is chosen so that R0 = 2 is fixed. (For details

pertaining to the numerical solution of (2.11), see Appendix C.2.)
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Figure 2.10: Herd immunity levels for fixed R0 = 2 with common household
size n ∈ {2,3,4,5} and δ = γ = 1.

Figure 2.10 provides an illustration of Theorem 2.15 and support for its

extension in Conjecture 2.16; we observe h̃D > hC throughout Figure 2.10. We

also observe from Figure 2.10 that we have hD > hL
D. Analytical comparison

of hL
D and hD is often not tractable, however we can show that hD > hL

D for pL

sufficiently close to 1 as follows. When pL = 1, under the SIR model disease-

induced herd immunity leaves households either fully susceptible or fully non-

susceptible. As noted in the discussion following Theorem 2.1, this corresponds

to the worst possible vaccination strategy for a given coverage, implying hD >

hL
D, since under the SEIR model there may be households in which only the

initial case in that household is non-susceptible.

In Figure 2.11 we consider the same comparisons as in Figure 2.10, but

with a variable household size distribution. Specifically, we take α̃1 = α̃n = 0.5

for some n > 1; half the individuals in the population are in households of size 1

and the other half are in households of size n. This implies that α1 = n/(n+1)
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and αn = 1/(n+1).

Figure 2.11: Herd immunity levels for fixed R0 = 2 with household size distri-
bution such that α̃1 = α̃n = 0.5 for n ∈ {2,3,4,5}.

A first observation based on Figure 2.11 is that the behaviour near pL = 0

is consistent with the predictions of Section 2.4.3. Specifically, since E[H̃] =

(n− 1)/2 and var(H̃) = (n− 1)2/4, Theorem 2.12 predicts that hC > h̃D near

pL = 0 if and only if n≥ 4. There is contrasting behaviour in terms of the shape

of the herd immunity levels as n increases. When n = 2 and n = 3, hC is the

smallest of the considered herd immunity levels for all pL. By contrast, when

n = 4 or n = 5 there are values of pL such that hC is the largest of the considered

herd immunity levels. As n increases in Figure 2.11, the approximation h̃D

for hD gets worse. Introducing a latent period does not necessarily lead to a

reduction in the disease-induced herd immunity level; we observe that hL
D > hD

when n = 4 and n = 5.

Note that in Figures 2.10 and 2.11 we have hC ≥ 1− 1/R0, with strict

inequality unless all households are of size 3 or less; this follows from Theorem
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1 of Ball et al. [2016].

2.5.3 Real-world household size distributions

This section is motivated by the study in Britton et al. [2020], which considers

the influence of population heterogeneity on the disease-induced herd immunity

level for the COVID-19 pandemic. Britton et al. [2020] uses a Markov SEIR

model in a population that is structured by age and activity level, in which for all

individuals the exposed and infectious periods follow Exp(1/3) and Exp(1/4)

distributions, respectively, with the unit of time being a day. Thus, the mean

exposed and infectious periods are 3 and 4 days, respectively. Using the ap-

proximation to hD described in Section 2.1, Britton et al. [2020] find that, when

R0 = 2.5, hD for a homogeneously mixing model and hC are both 60%; for the

model with both age and activity structure, hD is reduced to 43.0%.

The aim of the present numerical study is to investigate the effect of house-

hold structure on hD, using a model with the above values of δ and γ and a range

of real-world household size distributions. In order to achieve that we need a

way of calibrating models with different choices of (λL,λG). One possibility is

to keep the basic reproduction number R0 fixed. However, R0 is not uniquely de-

fined for household models. The definition in Section 2.2.2 uses so-called rank

generations and a different value for R0 would typically be obtained if real-time

generations were used instead, as for example in Neal and Therapod [2019].

In practice, for an emerging epidemic, R0 is often estimated indirectly, via an

estimate of the epidemic’s early exponential growth rate r; see, for example,

Wallinga and Lipsitch [2007]. For the multitype SEIR model used in Britton et

al. [2020], R0 and r satisfy

R0 =
(

1+
r
δ

)(
1+

r
γ

)
; (2.36)

see Sections 1.3.1 and 1.5 of the supplementary material of Trapman et al. [2016].

Note that the relationship (2.36) between R0 and r is the same for all models in

this class of multitype Markov SEIR epidemics and in particular matches that

for the homogeneously mixing Markov SEIR model (Trapman et al. [2016]).
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We adopt the following method of calibrating models with different (λL,λG),

based on the early exponential growth rate r. For a given choice of R0 in Britton

et al.’s model, which we denote by RBBT
0 , we use (2.36) to calculate the corre-

sponding value of the early exponential growth rate r under a multitype SEIR

model. Then for a given value of λL ∈ [0,∞), we choose λG so that the early ex-

ponential growth rate of our households SEIR model equals r; see Section 2.2.3

for details. As previously, we use the local infection probability pL = 1−φ(λL)

in the figures.

We consider real-world household size distributions from demographically

diverse countries. Note that the exact distribution is not available for some coun-

tries we consider and hence is estimated by maximum likelihood estimation us-

ing the available data (mean household size and summaries of the household

size distribution). The household structures, their corresponding sources and

estimation procedures are given in Section 2.5.4.

We begin by considering weakly locally infectious epidemics and just su-

percritical epidemics in Figure 2.12, which illustrates Corollaries 2.6 and 2.13.

This implicitly gives orderings of h̃D and hC for such epidemics, for a range of

realistic household size distributions. Countries with (µH̃ ,σ
2
H̃) below (above)

the solid curve have h̃D > hC (h̃D < hC) for just supercritical epidemics in

the highly locally infectious case; those below (above) the dashed curve have

h̃D > hC (h̃D < hC) in the weakly locally infectious case.
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Figure 2.12: Critical values of (µH̃ ,σ
2
H̃) from Corollaries 2.6 and 2.13, together

with values of these quantities for several countries’ household size distribu-
tions.

The region enclosed between the solid and dashed black curves in Fig-

ure 2.12 represents the set of values of (µH̃ ,σ
2
H̃) for which Corollary 2.6 and

Corollary 2.13 give different orderings of h̃D and hC. We see that all coun-

tries considered have household size distributions in this set; though some are

very close to the critical line E[H̃−1] = var(H̃) in the weakly locally infectious

case. The scatterplot then indicates that the ordering of h̃D is indeed sensitive to

the parameter choices, in terms of (λG,λL) and the household size distribution.

Differing estimates of the global and local infection rates can lead to different

conclusions in terms of whether vaccine-induced or disease-induced herd im-

munity are preferable.

We now explore the various herd immunity levels in our SIR and SEIR

models, using the household size distributions of the UK (Figure 2.13) and Mo-

rocco (Figure 2.14) as exemplars. These countries are chosen because of their

quite different household size distributions (cf. Figure 2.12). The computation
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of hL
D is omitted for Morocco as its calculation becomes numerically infeasible,

since the dimension of the system of ODEs (2.11) becomes too large owing to

the high maximum household size.

Figure 2.13: Herd immunity levels maintaining a fixed growth rate r implied by
a given value of RBBT

0 , for the UK household size distribution.

Considering the UK household size distribution, which has µH̃ = 3.02 and

σ2
H̃ = 2.26, we see that hD > hC, which is as expected given we have observed

hD < hC only in cases where household sizes have very high variability. We also

observe less variation in hL
D than in the other herd immunity levels. Increasing

RBBT
0 leads to the growth rate r being fixed at a higher value, in turn causing

higher herd immunity levels. We also observe that hL
D and hD are very close for

fixed r as pL increases from 0, until around pL = 0.6.

We observe very similar qualitative behaviour for other household size dis-

tributions, as shown for the Morocco household size distribution (which has

µH̃ = 5.74 and σ2
H̃ = 6.12) in Figure 2.14.
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Figure 2.14: Herd immunity levels maintaining a fixed growth rate r implied by
a given value of RBBT

0 , for Morocco’s household size distribution.

We now explore the quantitative differences between the herd immunity

levels in detail for a wider range of countries’ household size distributions.

Specifically, in Figure 2.15 we compare the various herd immunity levels be-

tween several countries in the absence of a latent period, with RBBT
0 = 3. (Es-

timates of R0 for COVID-19 vary greatly even for the same country, but other

choices for RBBT
0 produce qualitatively similar results.)
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Figure 2.15: Comparison of hD, h̃D, h̃D−hD and hC respectively by country for
RBBT

0 = 3 (with r held fixed) comparing Iraq, Chad, Morocco, UK, Japan and
Finland.

We observe h̃D > hD in Figure 2.15, as well as h̃D = hD at pL = 0 and

pL = 1. For countries with generally smaller household sizes (i.e. Finland, Japan

and the UK), h̃D and hD are very close in value. Countries with a larger value

of µH̃ give larger values for hD and h̃D but lower values of hC. We generally

observe h̃D > hC; the exceptions to this are for Morocco, Finland and Japan

when pL is close to zero, and even then the difference between h̃D and hC is

very small. We see hC decreases monotonically with pL, whereas h̃D and hD are

not monotone in their dependence on pL. Finally, considering the last plot in

Figure 2.15, we find that the difference h̃D−hD is maximised at a smaller value

of pL, with a larger maximum difference, when µH̃ is larger.
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2.5.4 Household data

We briefly explain the data on which the analysis in Section 2.5.3 is based. The

household data used for Finland, Sweden, Italy and the UK are taken from a Eu-

rostat EU-SILC survey [2022]. The remaining data are from the United Nations

household composition dataset [2017] and for these countries the proportion

of households of each type is not readily available; the information available is

E[H] as well as P(H = 1), P(H = 2 or H = 3), P(H = 4 or H = 5) and P(H > 5).

For these countries we then wish to estimate, for x = 1,2, . . . , P(H = x), from

which we can also estimate P(H̃ = x) = α̃x. To do so, we use maximum likeli-

hood estimation assuming H has a shifted negative binomial distribution having

probability mass function

fr,p(x) =
Γ(x)

Γ(r)Γ(x− r+1)
pr(1− p)x−1, x = 1,2, . . . ,

where r ∈ (0,∞) and p ∈ (0,1) are parameters to be estimated. Since E[H] is

known, this reduces to a one-parameter maximisation (for r, say) using E[H] =

1+ r(1−p)
p . Then, letting p̃ = p̃(r) = r

E[H]+r−1 and xi be the proportion of house-

holds of size i (i = 1,2, . . . ), we have the likelihood

L(r) =[ fr,p̃(1)]
x1 [ fr,p̃(2)+ fr,p̃(3)]

x2+x3 [ fr,p̃(4)+ fr,p̃(5)]
x4+x5

×

[
1−

5

∑
i=1

fr,p̃(i)

]1−∑
5
i=1 xi

,

which can be optimised numerically over r to find the maximum likelihood es-

timate of r.

We note also that calculating any herd immunity level when the household

size distribution has unbounded support requires truncation of that distribution.

The truncation point must be chosen carefully to ensure that results are insensi-

tive to the precise choice. For the household size distributions that we use we

find that the approximation α̃15 = 1−∑
14
n=1 α̃n is sufficient.
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2.6 Discussion

We have presented a general framework for investigating disease-induced herd

immunity in epidemic models with household structure. Calculating the disease-

induced herd immunity level hD for such models is not straightforward and we

have introduced a useful approximation h̃D, which is more amenable to analysis.

In sharp contrast to most forms of heterogeneous mixing, for which hD is less

than the vaccine-induced herd immunity level hC, the imposition of household

structure generally leads to hD being greater than hC, unless the variability in

the household size distribution is sufficiently large. This is proved using h̃D for

epidemics which are either highly or weakly locally infectious, and numerical

studies support the conjecture that it holds more generally.

The results in this chapter have shown that imposing heterogeneous pop-

ulation structures can increase the disease-induced herd immunity level. This

should be kept in mind by organisations undertaking pandemic preparation, par-

ticularly among populations that contain large groups of individuals which mix

locally. Whilst it is typically true that highly active individuals are infected

more quickly, which helps to “speed up” disease-induced herd immunity, the

opposing effect caused by household structure should also be kept in mind.

It would be worthwhile to consider more fully the impact of restrictions,

such as lockdown, on ĥD, the disease-induced herd immunity level when restric-

tions are in place. In Section 2.3.2, we give an example where such restrictions

affect only the global infection parameter λG, for which the impact of the re-

strictions on ĥD is minimal; moreover, the approximation of ĥD by h̃D improved

with increasing restrictions. Similar results were found with other examples.

However, in that example restrictions were applied uniformly with time which

is unlikely to be the case in practice. Further, in practice restrictions may also

affect the local infection rate λL; indeed it is not hard to envisage scenarios in

which λL might increase. Another worthwhile avenue for future research is to

consider models which combine household structure with other forms of hetero-

geneous mixing. This can be done using the multitype households model and

a similar approximation to h̃D for the disease-induced herd immunity level can
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be calculated using results in Ball and Lyne [2001]. In Chapter 5 we investi-

gate this for a model with activity levels, as in Britton et al. [2020], and also

household structure.

We have assumed throughout that the individual-to-individual local infec-

tion rate λL is independent of household size n. Although this assumption is

often made with household models and is usually reasonable for small n, such

as in the UK, Sweden and Finland household size distributions, it is less eas-

ily justified for countries with large household sizes, such as Iraq, Pakistan and

Chad. One would expect λL to decrease with n and it would be interesting to

explore the consequent impact on hD. Note that the results of Section 2.4.2 con-

cerning the highly locally infectious case are unaffected but other results may

change.

Throughout a large part of this work we have used h̃D as an approximation

to hD. The only models in which we have computed hD are those in which the

infectious and latent periods follow exponential distributions. In real-life epi-

demics, the distributions of these quantities are usually far from exponential.

Moreover, the impact of departures from exponential distributions on epidemic

properties is usually greater in models incorporating small mixing groups, such

as households. Although it is possible in principle to use the method of stages

to extend the deterministic model in Section 2.2.5 to include Erlang distributed

infectious and latent periods, and to allow for varied local and global infection

rates between stages of infection, in practice, the number of ODEs soon be-

comes infeasible. However, it is straightforward to calculate h̃D for such models,

and indeed for models in which individuals have infectivity profiles (for exam-

ple, Goldstein et al. [2009]), since such calculation only requires final outcome

properties of an epidemic. We have found that h̃D > hD in most of our numerical

studies with exponentially distributed infectious and latent periods, and that the

difference is typically small unless the mean household size is large. We expect

a similar conclusion to hold for models with other, more realistic, choices of

infectious and latent period distributions.
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2.7 Proofs

2.7.1 Proof of Theorem 2.8

Proof. Let π ∈ (0,1). Using (2.17), RDI(π) = λGE[TI][(1− p)π +npπn]. Note

that the proportion z infected in the first epidemic satisfies z = 1− (1− p)π −

pπn. We compare RDI(π) with the corresponding reproduction number RU(π),

when this fraction z of the population is vaccinated uniformly at random. Us-

ing (2.13) (cf. (2.14)),

RU(π) = λGE[TI][1− z+ p(n−1)(1− z)2]

= λGE[TI]
{
(1− p)π + pπ

n + p(n−1)[(1− p)π + pπ
n]2
}
.

Hence,

RU(π)−RDI(π) = p(n−1)λGE[TI]
(
[(1− p)π + pπ

n]2−π
n
)
.

Let hn(π)= π
n
2−1− pπn−1. Elementary algebra shows that RU(π)−RDI(π)<

0 if hn(π)> 1− p, RU(π)−RDI(π) = 0 if hn(π) = 1− p, and RU(π)−RDI(π)>

0 if hn(π)< 1− p. Now h2(π)= 1− pπ > 1− p for all π ∈ (0,1), so when n= 2,

RU(π) < RDI(π) for all π ∈ (0,1), whence h̃D > hC for all λG (more precisely

all λG such that the epidemic is supercritical). Suppose n ≥ 3. Now hn(0) = 0,

hn(1) = 1− p and

h′n(π) =
(n

2
−1
)

π
n
2−2− p(n−1)πn−2.

If p ≤ n−2
2(n−1) then h′n(π) > 0 for all π ∈ (0,1), so hn(π) < 1− p for all π ∈

(0,1), leading to h̃D < hC for all λG. Suppose that p > n−2
2(n−1) and let π∗n (p) =(

n−2
2p(n−1)

) 2
n . Then h′n(π)> 0 for π ∈ (0,π∗n (p)) and h′n(π)< 0 for π ∈ (π∗n (p),1).

Hence, hn(π) = 1− p has a unique solution, π̂n(p) say, in (0,1). Further,

hn(π) < 1− p for π ∈ (0, π̂n(p)), implying RU(π) > RDI(π), and hn(π) >

1− p for π ∈ (π̂n(p),1), implying RU(π) < RDI(π). It follows that there ex-

ists λ ∗G(n, p) such that h̃D > hC if λG < λ ∗G(n, p), and h̃D < hC if λG > λ ∗G(n, p).

The change in behaviour occurs when RDI(π̂n(p)) = RU(π̂n(p)) = 1. Substitut-
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ing π̂n(p) into the above expression for RDI(π) yields

λ
∗
G(n, p) =

[
E[TI]π̂n(p)

(
1− p+npπ̂n(p)n−1

)]−1
,

as required.

2.7.2 Proof of Theorem 2.12

For k = 0,1, . . . ,n, let n[k] = n!/(n−k)! denote the falling factorial. Consider the

single-household epidemic Ẽn(λL,π) described in Section 2.2.4. Let S̃n = n− T̃n

be the number of susceptibles remaining at the end of the epidemic. Define

µn(λL) as in Section 2.2.2 and also define, for k = 1,2,

µ̂n,k(λL,π) = E[(S̃n)[k]].

Recall we assume that E[TI] = 1 and var(TI) < ∞. We start with a preliminary

lemma.

Lemma 2.17. For n = 1,2, . . . , we have µn(0) = 1 and µ ′n(0) = n− 1. Let

π = π(λL). For n = 1,2, . . . and k = 1,2, we have µ̂n,k(0,π(0)) = n[k]π(0)k,
∂

∂λL
µ̂n,k(0,π(0))=−kn[k+1]π(0)k(1−π(0)) and ∂

∂π
µ̂n,k(0,π(0))= n[k]kπ(0)k−1.

Further, ∂ 2

∂π2 µ̂n,1(0,π(0)) = 0 and ∂ 2

∂λL∂π
µ̂n,1(0,π(0)) =−n(n−1)(1−2π(0)),

where all derivatives are evaluated at λL = 0. For example, ∂

∂λL
µ̂n,k(0,π(0)) =

∂

∂λL
µ̂n,k(λL,π)

∣∣∣∣
(λL,π)=(0,π(0))

.

Proof. We make use of Gontcharoff polynomials; see Picard and Lefèvre [1990],

Section 2, for details. For a given sequence U = u0,u1, . . . of real numbers, the

corresponding Gontcharoff polynomials, G0(x | U),G1(x | U), . . . , are defined

by
n

∑
i=0

n[i]u
n−i
i Gi(x |U) = xn (n = 0,1, . . .). (2.37)

We consider the real sequence with ui = φ(iλL). For k = 1,2 and i = 0,1, . . . , let

Gi,k(λL) = Gi(1 | EkU), where EkU denotes the sequence uk,uk+1, . . . . Using
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Ball [2019], Proposition 3.1 and Properties 2.1 and 2.2, gives

µn(λL) = n−
n−1

∑
i=1

(n−1)[i]φ(iλL)
n−iGi−1,1(λL) (2.38)

and

µ̂n,k(λL,π) =
n

∑
i=k

n[i]φ(iλL)
n−i

π
iGi−k,k(λL) (k = 1,2). (2.39)

Consider Gi,k(0) for k= 1,2. Substituting λL = 0 into (2.37) implies that ∑
n
i=0 n[i]Gi,k(0)=

1. Recalling n[0] = 1 then gives G0,k(0) = 1, leading to Gi,k(0) = δi,0 for i =

0,1, . . . , where

δi, j =

1 if i = j

0 if i ̸= j.

Differentiating (2.37) with respect to λL and setting λL = 0 yields

n

∑
i=0

n[i]
(
G′i,k(0)−Gi,k(0)(n− i)(i+ k)

)
= 0.

Using Gi,k(0) = δi,0 then gives G′i,k(0) = kδi,1, for i = 0,1, . . . and k = 1,2.

We now take the appropriate partial derivatives of (2.38), (2.39) and substitute

λL = 0, noting that φ(0) = 1 and φ ′(0) = −E[TI] = −1. Differentiating (2.38)

with respect to λL gives

µ
′
n(λL) =−

n−1

∑
i=1

(n−1)[i](n− i)iφ(iλL)
n−i−1

φ
′(iλL)Gi−1,1(λL)

−
n−1

∑
i=1

(n−1)[i]φ(iλL)
n−iG′i−1,1(λL).

(2.40)

Substituting λL = 0 into (2.38), (2.40) and (2.39) respectively then establishes

that µn(0) = 1, µ ′n(0) = n−1 and µ̂n,k(0,π(0)) = n[k]π(0)k.

Differentiating (2.39) with respect to λL, we find

∂

∂λL
µ̂n,k(λL,π) =

n

∑
i=k

n[i](n− i)iφ(iλL)
n−i−1

φ
′(iλL)π

iGi−k,k(λL)

+
n

∑
i=k

n[i]φ(iλL)
n−i

π
iG′i−k,k(λL),

(2.41)

from which letting λL = 0 gives ∂

∂λL
µ̂n,k(0,π(0)) = −kn[k+1]π(0)k(1− π(0)).
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Next, taking the derivative of (2.39) with respect to π yields

∂

∂π
µ̂n,k(λL,π) =

n

∑
i=k

n[i]φ(iλL)
n−iiπ i−1Gi−k,k(λL), (2.42)

which gives ∂

∂π
µ̂n,k(0,π(0)) = n[k]kπ(0)k−1 by setting λL = 0. For the second

derivatives, we require further differentiation. Firstly, differentiating (2.41) with

respect to π , we have

∂ 2

∂λL∂π
µ̂n,k(λL,π) =

n

∑
i=k

n[i](n− i)i2φ(iλL)
n−i−1

φ
′(iλL)π

i−1Gi−k,k(λL)

+
n

∑
i=k

n[i]φ(iλL)
n−iiπ i−1G′i−k,k(λL).

(2.43)

Taking λL = 0 and k = 1 in (2.43), we find ∂ 2

∂λL∂π
µ̂n,1(0,π(0)) =−n(n−1)(1−

2π(0)). Finally, differentiating (2.42) with respect to π gives

∂ 2

∂π2 µ̂n,k(λL,π) =
n

∑
i=k

n[i]φ(iλL)
n−ii(i−1)π i−2Gi−k,k(λL). (2.44)

Letting λL = 0 and k= 1 in (2.44) causes all terms to vanish, so that ∂ 2

∂π2 µ̂n,1(0,π(0))=

0, which then establishes the final result of Lemma 2.17.

We are now in a position to prove Theorem 2.12. For ease of exposition in

the following proof, we denote hC(λL) by c(λL). Similarly, we denote hD(λL)

by z(λL). Recall that nmax < ∞, so all sums in the proof contain only finitely

many terms and hence are easily differentiated.

Proof. of Theorem 2.12 Suppose a fraction c(λL) are vaccinated prior to an

epidemic, such that the epidemic becomes critical. Note c(0) = 1− 1
λG

(recall

E[TI] = 1). Now considering disease-induced herd immunity, assume that a

fraction z(λL) are infected in a first epidemic such that the second epidemic

is critical. Let π(λL) be the proportion who avoid global infection in the first

epidemic. Then z(0)= 1− 1
λG

and π(0)= 1
λG

. We show that c′(0)= z′(0)= µH̃−1
λ 2

G

and that

z′′(0)− c′′(0) = 4π(0)2(1−π(0))
(
E[H̃−1]−var(H̃)

)
,
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from which Theorem 2.12 follows immediately by Taylor’s theorem.

We begin by considering the derivatives of c(λL) at λL = 0. The post-

vaccination threshold parameter R̂U(c) defined at (2.3.1) satisfies R̂U(c(λL)) =

1, so by substituting i = n− v in the inner sum in (2.3.1) we have that

λG

∞

∑
n=1

α̃n

n

∑
i=1

i
n

(
n
i

)
(1− c(λL))

ic(λL)
n−i

µi(λL) = 1. (2.45)

Let qn,i(c) = i
n

(n
i

)
(1−c)icn−i. Then ∑

n
i=1 qn,i(c) = 1−c, ∑

n
i=1 q′n,i(c) =−1 and

∑
n
i=1 q′′n,i(c) = 0, by exchanging the order of derivative and summation. We also

have ∑
n
i=1(i−1)qn,i(c) = (n−1)(1−c)2, so ∑

n
i=1(i−1)q′n,i(c) =−2(n−1)(1−

c). Differentiating (2.45) gives

∞

∑
n=1

α̃n

n

∑
i=1

[
q′n,i(c(λL))c′(λL)µi(λL)+qn,i(c(λL))µ

′
i (λL)

]
= 0. (2.46)

Substituting λL = 0 in (2.46) and recalling c(0) = 1− 1
λG

yields c′(0) = µH̃−1
λ 2

G
.

Differentiating (2.46) gives

∞

∑
n=1

α̃n

n

∑
i=1

[
q′′n,i(c(λL))c′(λL)

2 +q′n,i(c(λL))c′′(λL)
]

µi(λL)

+
∞

∑
n=1

α̃n

n

∑
i=1

2q′n,i(c(λL))c′(λL)µ
′
i (λL)

+
∞

∑
n=1

α̃n

n

∑
i=1

qn,i(c(λL))µ
′′
i (λL) = 0.

(2.47)

Let An = ∑
n
i=1 qn,i(c(0))µ ′′i (0). Then we set λL = 0 in (2.47) which yields

c′′(0) =
∞

∑
n=1

α̃nAn−4c′(0)(1− c(0))µH̃−1. (2.48)

Turning now to z(λL), let P̃n,i(λL,π(λL)) = P(S̃n = i) be the probability i

members of a household avoid infection in the epidemic Ẽn(λL,π(λL)). Suppose

all individuals infected (no longer susceptible) in the first epidemic are immune

to infection in the second epidemic. Suppose the second epidemic is critical, so
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that RDI(π(λL)) = 1. Then considering the remaining susceptibles yields

λG

∞

∑
n=1

α̃n

n

∑
i=1

i
n

P̃n,i(λL,π(λL))µi(λL) = 1. (2.49)

Further, the proportion of the population infected in the first epidemic is

given by (cf. (2.7))

z(λL) = 1−
∞

∑
n=1

α̃n
1
n

µ̂n,1(λL,π(λL)). (2.50)

Differentiating (2.49) gives

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
µi(λL)

{
∂

∂λL
P̃n,i(λL,π(λL))+

∂

∂π
P̃n,i(λL,π(λL))π

′(λL)

}]
+

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
µ
′
i (λL)P̃n,i(λL,π(λL))

]
= 0,

(2.51)

which can be used to solve for π ′(0) by setting λL = 0. Applying Lemma 2.17

and noting that µ̂n,k(λL,π(λL)) =∑
n
i=1 i[k]P̃n,i(λL,π(λL)) yields π ′(0) = (π(0)−

2π(0)2)µH̃−1. Differentiating (2.50), we have

z′(λL) =−
∞

∑
n=1

α̃n
1
n

{
∂

∂λL
µ̂n,1(λL,π(λL))+

∂

∂π
µ̂n,1(λL,π(λL))π

′(λL)

}
.

(2.52)

Substituting λL = 0 in (2.52), we find that z′(0) = µH̃−1
λ 2

G
= c′(0). Before pro-

ceeding with further differentiation, let Bn =
1
n

∂ 2

∂λ 2
L

µ̂n,1(0,π(0)). Differentiating

(2.51), we reach

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
2µ
′
i (λL)

{
∂

∂λL
P̃n,i(λL,π(λL))+

∂

∂π
P̃n,i(λL,π(λL))π

′(λL)

} ]
+

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
µi(λL)

{
∂ 2

∂λ 2
L

P̃n,i(λL,π(λL))+2π
′(λL)

∂ 2

∂λL∂π
P̃n,i(λL,π(λL))

}]
+

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
µi(λL)

{
π
′′(λL)

∂

∂π
P̃n,i(λL,π(λL))+ [π ′(λL)]

2 ∂ 2

∂π2 P̃n,i(λL,π(λL))

}]
+

∞

∑
n=1

α̃n

n

∑
i=1

i
n

[
µ
′′
i (λL)P̃n,i(λL,π(λL))

]
= 0,

from which substituting λL = 0 and applying Lemma 2.17 as well as the defini-
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tion of Bn gives

−π
′′(0) =

∞

∑
n=1

α̃n
[
An +Bn−4(n−1)(n−2)π(0)2(1−π(0))

]
+

∞

∑
n=1

α̃n
[
4(n−1)π(0)π ′(0)+2(n−1)π ′(0)(2π(0)−1)

]
.

(2.53)

Differentiating (2.52), we find

z′′(λL) =−
∞

∑
n=1

α̃n
1
n

{
∂ 2

∂λ 2
L

µ̂n,1(λL,π(λL))+2π
′(λL)

∂ 2

∂λL∂π
µ̂n,1(λL,π(λL))

}
−

∞

∑
n=1

α̃n
1
n

{
[π ′(λL)]

2 ∂ 2

∂π2 µ̂n,1(λL,π(λL))+π
′′(λL)

∂

∂π
µ̂n,1(λL,π(λL))

}
.

We hence observe that

z′′(0) =
∞

∑
n=1

α̃n
[
2(n−1)π ′(0)(1−2π(0))−Bn−π

′′(0)
]
. (2.54)

Combining (2.53) and (2.54) establishes that

z′′(0) =
∞

∑
n=1

α̃n
[
An +4(n−1)π(0)π ′(0)−4(n−1)(n−2)π(0)2(1−π(0))

]
.

(2.55)

Finally, noting that c(0) = 1− π(0) and that c′(0) + π ′(0) = µH̃−1π(0)(1−

π(0)), we subtract (2.48) from (2.55) to reach

z′′(0)− c′′(0) = 4π(0)2(1−π(0))

[
µ

2
H̃−1−

∞

∑
n=1

α̃n(n−1)(n−2)

]
= 4π(0)2(1−π(0))

[
(E[H̃−1])2−E[(H̃−1)(H̃−2)]

]
= 4π(0)2(1−π(0))

[
E[H̃−1]−var(H̃)

]
.

This establishes Theorem 2.12.

2.7.3 Proof of Theorem 2.15 (n = 3)

We begin by making the notation in Theorem 2.15 explicit for the case n = 3.

For i ∈ {0,1,2,3}, PD
i is the probability of i members being infected in a house-
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hold of size 3 during an epidemic in the households model in which a propor-

tion z are infected in the first epidemic. Similarly, PU
i is the probability of a

household containing i vaccinated individuals, assuming vaccination uniformly

at random with probability z. Note that PD
i ,PU

i and z are considered as func-

tions of π ∈ (0,1). We begin with a preliminary lemma. Write q1 = φ(λL)

and q2 = φ(2λL) and observe that 0 < q2 < q1 < 1 for all λL > 0. Further,

PU
0 = (1− z)3, PU

1 = 3z(1− z)2 and PU
2 = 3z2(1− z). The system in (2.8),

or direct calculation, gives PD
0 = π3, PD

1 = 3π2(1− π)q2 and PD
2 = 3π(1−

π)q1 (2π(q1−q2)+(1−π)q1).

Lemma 2.18. Let A = 3(PD
0 −PU

0 ), B = 2(PD
1 −PU

1 ) and C = PD
2 −PU

2 . Then

A−C > 0.

Proof. Considering the remaining susceptibles, note that

3PD
0 +2PD

1 +PD
2 = 3(1− z) and 3PU

0 +2PU
1 +PU

2 = 3(1− z). (2.56)

Hence, A+B+C = 0, so

A−C = 2A+B = 6
(
π

3 +π
2(1−π)q2− (1− z)2) .

Using the first equation in (2.56),

1− z = π
(
π

2 +2π(1−π)[q2(1−q1)+q2
1]+ (1−π)2q2

1
)
≡ πh(π),

so A >C if and only if f (π)> 0, where

f (π) = π +(1−π)q2−h(π)2.

Jensen’s inequality gives q2 > q2
1, so f (0) = q2−q4

1 > 0. Further, f (1) = 0, so

f (π)> 0 for π ∈ (0,1) if f is concave on [0,1]. Now,

f ′′(π) =−2[h(π)h′′(π)+h′(π)2],
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whilst we also have h(π)> 0 and

h′′(π) = 2(1−q1)(1+q1−2q2)> 0.

Thus f ′′(π)< 0 for π ∈ [0,1], so f is concave on [0,1] and A >C, as required.

We now prove Theorem 2.15 in the case n = 3.

Proof. We show that R̂DI(z)> R̂U(z), from which the desired result follows. We

have that

3
λGE[TI]

(
R̂DI(z)− R̂U(z)

)
=Aµ3(λL)+Bµ2(λL)+Cµ1(λL)

=A[µ3(λL)−µ2(λL)]−C[µ2(λL)−µ1(λL)].

(2.57)

Using (2.2) gives µ1(λL) = 1, µ2(λL) = 2−q1, and µ3(λL) = 3−2q1(q1−

q2)−2q2. Therefore

µ3(λL)−µ2(λL)− [µ2(λL)−µ1(λL)] = 2(q1−q2)(1−q1)> 0. (2.58)

Since (by Lemma 2.18) A > C, it follows from (2.57) and (2.58) that R̂DI(z) >

R̂U(z).
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3 Gaussian approximation of disease-induced herd

immunity level

3.1 Introduction

For many epidemic models we can write down a system of equations (typically

ODEs) for a suitably scaled epidemic process as the population size N → ∞.

In this chapter we consider approximating the epidemic process by Gaussian

fluctuations about a deterministic process. In order to do so, we borrow from

the ideas of density dependent population processes described in Ethier and

Kurtz [1986], Chapter 11. Our interest lies in a Gaussian approximation of

the disease-induced herd immunity level and its corresponding asymptotic vari-

ance, which we calculate by considering the distribution of appropriate hitting

times. Throughout this chapter we assume that the deterministic epidemic of

interest has threshold parameter greater than one, as otherwise herd immunity

would already have been achieved.

This chapter is structured as follows. In Section 3.2 we outline the general

framework for the calculations that follow by briefly introducing density de-

pendent population processes, following Ethier and Kurtz [1986], Chapter 11.

We apply the framework to the homogeneously mixing case in Section 3.3 as

an initial example, showing in Section 3.4 that analytical progress is possible

by applying a random time change to the epidemic process. In Section 3.5 we

define the multitype model with proportionate mixing and compute a Gaussian

approximation of hD for that model. In Section 3.6 we apply the same meth-

ods to the households model with a common household size. For both models

we find that asymptotic variance of the herd immunity level is small; the de-

terministic approximation to the herd immunity level is good for even modest

population sizes. We demonstrate the small asymptotic variance by calculating

approximate confidence intervals and verify our results with stochastic simu-

lations. Finally, in Section 3.7 we briefly discuss possible extensions of this

work.
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3.2 General framework

We begin by outlining the framework of density dependent jump processes in

which we will operate; we then interpret this framework in the present epidemic

setting. Consider a population process with population size n and dimension d.

Let E ⊂ Rd and let βl (l ∈ Zd) denote a collection of non-negative functions

defined on E. We define the set

En = E ∩{n−1k : k ∈ Zd}

and we assume that for all x ∈ En, βl(x)> 0 implies x+n−1l ∈ En. A density

dependent family refers to a sequence {X̂n} of jump Markov processes such

that X̂n has state space En and the following transition law holds:

q(n)x,y = nβn(y−x)(x), x,y ∈ En,

where q(n)x,y is the transition rate from state x to state y. The quantity βl(x) is

the rate at which jump l occurs when the process is in state x. In the present

epidemic setting, n refers to either the number of individuals or the number of

households in the population and is the quantity by which we scale the process;

the states are vectors of dimension d which describe the epidemic. In the homo-

geneously mixing epidemic, for example, these state vectors are of dimension

2, and contain the number of susceptible and infectious individuals respectively.

In order to proceed with the desired calculations we require more notation.

We define the drift function

F (x) = ∑
l

lβl(x) (3.1)

as the expected increment when the process is in state x. We let Yl (l ∈ Zd)

denote independent standard Poisson processes and Ỹl(u) = Yl(u)− u. Writing

Xn = n−1X̂n and letting t ≥ 0, we note the representation

Xn(t) = Xn(0)+∑
l

ln−1Ỹl

(
n
∫ t

0
βl(Xn(s))ds

)
+
∫ t

0
F(Xn(s))ds. (3.2)
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We assume that Xn = {Xn(t) : t ≥ 0} satisfies (3.2). Further, we assume that

lim
n→∞

Xn(0) = x0 and that the (deterministic) process x = {x(t) : t ≥ 0} satisfies

x(t) = x0 +
∫ t

0
F(x(s))ds, t ≥ 0. (3.3)

Theorem 3.1 (Ethier and Kurtz [1986], Theorem 11.2.1). Suppose that F is

Lipschitz continuous on all compact K ⊂ E and that

∑
l

|l| sup
x∈K

βl(x)< ∞.

Then, with Xn as in (3.2) and x as in (3.3) we have, for every t ≥ 0,

lim
n→∞

sup
s≤t
|Xn(s)−x(s)|= 0 a.s.

Theorem 3.1 provides a strong law of large numbers for the convergence of

the process Xn to x. It follows from (3.3) that the process x evolves according

to
dx

dt
= F (x(t)), x(0) = x0, (3.4)

so that the drift function corresponds to the right-hand side of the ODE system

describing the limiting behaviour of Xn as n→ ∞. Our main interest is in a

central limit theorem for the herd disease-induced herd immunity level, so we

require a central limit theorem for Xn. We define the infinitesimal variance

function

G(x) = ∑
l

ll⊤βl(x). (3.5)

We also write F = ( f1, f2, . . . , fd) and let ∂F =

[
∂ fi

∂x j

]
(i, j = 1,2, . . . ,d) denote

the d × d matrix of partial derivatives of F . Finally, we let ⇒ denote weak

convergence in the space of right-continuous functions f : [0,∞)→ Rd having

limits from the left (i.e. càdlàg functions), endowed with the Skorohod metric –

see Ethier and Kurtz [1986], Chapter 3.5.

Theorem 3.2 (Ethier and Kurtz [1986], Theorem 11.2.3). Suppose that, for each

compact K ⊂ E, we have
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(i) ∑
l

|l|2 sup
x∈K

βl(x)< ∞;

(ii) Each jump rate βl is continuous;

(iii) All partial derivatives of F are continuous.

Suppose further that Xn satisfies (3.2) and x satisfies (3.3), and let Vn(t) =
√

n(Xn(t)−x(t)), such that lim
n→∞

Vn(0) = V (0) is constant. Then

Vn⇒ V as n→ ∞,

where V = {V (t) : t ≥ 0} is a Gaussian process with mean H(t,0)V (0) and

covariance function

cov(V (t),V (r)) =
∫ min(t,r)

0
H(t,s)G(x(s))H(r,s)⊤ds, (3.6)

with H the solution to the matrix ODE

∂H(t,s)
∂ t

= ∂F (x(t))H(t,s), H(s,s) = I, (3.7)

and where I denotes the identity matrix of appropriate dimension.

In our setting we are interested in the state of the population at the time

when herd immunity is achieved, i.e. where the threshold parameter for the

epidemic crosses one. We are thus interested in the distribution of the hitting

time (τn, say) corresponding to the time at which herd immunity is achieved.

Suppose ϕ(x) is such that ϕ(x(0)) > 0, and that ϕ(x(t)) = 0 corresponds to

herd immunity being achieved. Define

τn = inf{t : ϕ(Xn(t))≤ 0}

and

τ = inf{t : ϕ(x(t))≤ 0}

as the corresponding stopping times for the processes Xn(t) and x(t) respec-

tively. We note the following theorem which underpins a Gaussian approxima-

tion for the disease-induced herd immunity level.
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Theorem 3.3 (Ethier and Kurtz [1986], Theorem 11.4.1). Suppose that Xn, x,

Vn, V and F are as in Theorem 3.2, and that the conditions of Theorem 3.1 and

Theorem 3.2 are satisfied. Suppose further that the following conditions hold:

(i) τ < ∞;

(ii) ϕ is continuously differentiable on Rd , with first partial derivatives given

by ∇ϕ ;

(iii) ϕ(x(0))> 0;

(iv) ∇ϕ(x(τ)) ·F (x(τ))< 0.

Then, as n→ ∞,

√
n(Xn(τn)−x(τ))⇒ V (τ)− ∇ϕ(x(τ)) ·V (τ)

∇ϕ(x(τ)) ·F (x(τ))
F (x(τ)). (3.8)

Note that conditions (iii) and (iv) of Theorem 3.3 ensure that τ corresponds

to the time of a proper crossing of ϕ(x(t)) = 0. In the present epidemic setting

we are interested in the asymptotic distribution of the disease-induced herd im-

munity level, which is a linear combination of elements of Xn. This motivates

the following result.

Theorem 3.4. Under the same assumptions as Theorem 3.3, let w ∈ Rd and

suppose that yn(τn) = w ·Xn(τn) and y(τ) = w ·x(τ). Let Σ(t) denote the

covariance matrix of V (t). Then, as n→ ∞,

√
n(yn(τn)− y(τ)) D−→ N

(
0,wAΣ(τ)A⊤w⊤

)
,

where

A = I− F (X(τ))
⊗

∇ϕ(X(τ))

∇ϕ(X(τ)) ·F (X(τ))
, (3.9)

with
⊗

denoting the outer vector product.

Proof. Using the fact that yn(τn)−y(τ) = w ·(Xn(τn)−x(τ)), we apply Theo-

rem 3.3 to reach the desired asymptotic distribution. The variance term is readily

obtained upon right-factorising V (τ) in (3.8) and using standard properties of

covariance matrices.
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Note that we can compute the covariance matrix Σ(t) by using (3.6) and

(3.7) to find that Σ(t) satisfies the matrix ODE

dΣ
dt

= G(X)+∂F (X)Σ+Σ∂F (X)⊤, Σ(0) = 0. (3.10)

We then (typically numerically) solve (3.4) and (3.10) simultaneously in order

to calculate Σ(t). (For details pertaining to the numerical solution of (3.4) and

(3.10), see Appendix C.2.) In Section 3.4 and Section 3.5 we give examples

where Σ(t) can be calculated analytically. Hence, for a suitably chosen epidemic

process Xn, we can use Theorem 3.4 to establish the asymptotic variance of the

disease-induced herd immunity level.

3.3 Homogeneously mixing case

We briefly describe the application of the general framework outlined previ-

ously to the homogeneously mixing epidemic with infection rate λ > 1 and

recovery rate γ . In this model, we have states in the scaled process of the

form x(t) = (x(t),y(t)) corresponding to the proportions of susceptibles and

infectives respectively at time t. The possible jumps in the original process are

l1 = (−1,1) with associated jump rate λxy, and l2 = (0,−1) with rate γy. From

this we can readily compute F , ∂F and G. The stopping rule is given by

ϕ(x,y) = λx− γ,

since R0 among the remaining susceptibles is equal to one when ϕ(x,y) = 0.

Applying Theorem 3.4 with w = (1,0) and solving numerically allows us to

find that the asymptotic variance of the disease-induced herd immunity level is

zero in this case. This is to be expected, as in this case the disease-induced herd

immunity level is given by 1− x(τ) and the stopping condition is equivalent to

x = γλ
−1. We demonstrate this behaviour in the following section by consider-

ing a random time change for the epidemic, which enables analytical progress

to be made.
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3.4 Random time change for homogeneously mixing epidemic

The differential equations for x(t) = (x(t),y(t)) in the homogeneously epidemic

are given by

dx
dt

=−λxy

dy
dt

= λxy− γy, (3.11)

subject to y(0) = 1−x(0) = µ , where µ > 0 is small and corresponds to a small

amount of initial infection. We consider a random time change of this process,

as in Watson [1980], in which we divide the right-hand side of the above system

by y(t), yielding equations which are more amenable to study. In doing so, we

speed up the clock by a factor equal to the current proportion of infectives y(t).

This results in the process (x̃(t), ỹ(t)) which has the same final outcome as the

original process. Moreover, we may consider initialising this process with the

proportion of initial infectives equal to zero - we cannot do this with (3.11) as

the system would remain at (x(t),y(t)) = (1,0) for all t ≥ 0.

The original epidemic has infinite duration with y(t)→ 0 as t → ∞; in the

time-changed process, the epidemic concludes in finite time (i.e. ỹ(t) = 0 for

some t < ∞). The time-changed system is then

dx̃
dt

=−λ x̃

dỹ
dt

= λ x̃− γ,

subject to (x̃(0), ỹ(0)) = (1,0). Solving, we find

x̃(t) = exp(−λ t)

ỹ(t) = 1− γt− exp(−λ t),

for t ≥ 0. The two possible jumps are the same as in the original process, and
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we find that F̃ = (−λ x̃,λ x̃− γ), so that

∂ F̃ =

−λ 0

λ 0


and

G̃ =

 λ x̃ −λ x̃

−λ x̃ λ x̃+ γ

 .

Substituting these into (3.10) we find, in an obvious notation, that

dσ11

dt
= λ exp(−λ t)−2λσ11,

so that, after imposing the initial condition σ11(0) = 0, we have

σ11(t) = exp(−λ t)− exp(−2λ t).

Similar calculations yield that σ12(t) = σ21(t) = −σ11(t), and σ22(t) = γt +

σ11(t).

Consider the asymptotic variance of the proportion of infectives in the ho-

mogeneously mixing epidemic when the proportion of remaining susceptibles

reaches a certain attainable level, α , say, where α < 1. The stopping rule is

ϕα(x̃, ỹ) = x̃−α , so that ∇ϕα = (1,0) and

A =

 0 0

1− γ

λα
1

 .

We thus have

AΣ(τ)A⊤ =

0 0

0 vα(τ)

 ,

where

vα(τ) =
(

1− γ

λα

)2
σ11(τ)+σ12(τ)

(
1− γ

λα

)
+σ21(τ)

(
1− γ

λα

)
+σ22(τ)

=
(

γ

λα

)2
σ11(τ)+ γτ.
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In this case we can solve for the stopping time τ directly to find that

τ =− 1
λ

log(α)< ∞.

It is clear that ϕα is continuously differentiable on R2. Moreover, we have

ϕα(x̃(0)) = 1−α > 0 and

∇ϕα(x̃(τ)) ·F (x̃(τ)) = (1,0) · (−λ x̃(τ),λ x̃(τ)− γ) =−λ x̃(τ)< 0,

whence the conditions of Theorem 3.4 are satisfied. The asymptotic variance of

the proportion of infectives when the susceptible proportion reaches level α is
σ2

n
, where

σ
2 = α−α

2− γ

λ
log(α). (3.12)

Substituting α = γλ
−1 into (3.12) yields the asymptotic variance of the propor-

tion of infectives at the point where herd immunity is achieved and, as noted in

Section 3.3, the asymptotic variance for the proportion of susceptibles at herd

immunity is zero in this example.

3.5 Multitype model with proportionate mixing

We now consider the multitype model with proportionate mixing which is stud-

ied, for example, in Britton et al. [2021], Section 2. In a population of size n, the

model has dynamics as follows. Each individual in the population is one of J

types, with the possible types belonging to the set {1,2, . . . ,J}=J . The popu-

lation begin fully susceptible, excluding the initial infective. If a type-i individ-

ual becomes infectious they contact type- j individuals at rate
βiκ j

n
(i, j ∈J ),

where βi, κi ∈ [1,∞) are parameters controlling the rate of activity of each type

of individual. All individuals who become infected are infectious for a random

period of time, according to a realisation of an Exp(γ) random variable, where

we take γ = 1 without loss of generality. Individuals are removed when their in-

fectious period ends, after which they play no further role in the epidemic. The

epidemic terminates when there are no infectious individuals remaining. This

epidemic is a special case of the more general multitype households model with
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proportionate global mixing, later studied in detail in Chapter 4 , in the absence

of household structure. It is also a generalisation of the homogeneously mixing

epidemic.

We apply a random time change in order to reach a closed-form expres-

sion for the asymptotic variance. For the original process, we write x∗ =

(x1,x2, . . . ,xJ,y1, . . . ,yJ), with the first J elements containing the proportion of

susceptibles of each type and the final J elements the proportion of infectives

of each type. For i ∈J , let l∗i (l̃∗i ) denote the jump corresponding to a type-i

infection (recovery). Letting ei denote the unit vector with 1 in the ith position,

we have l∗i = eJ+i−ei and l̃∗i =−eJ+i. The associated jump rates are given by

β
∗
l∗k
(x∗) = κkxk

J

∑
j=1

β jy j, k ∈J ,

and

β
∗
l̃∗k
(x∗) = yk, k ∈J .

Instead of considering the above jump rates, we apply a random time change

to the process, dividing each jump rate by ∑
J
j=1 β jy j. Under this random time

change, we recover independent linear death processes for the proportions of

susceptibles of each type, which do not depend on the infectivity processes.

Thus, as in Section 3.4, we may initialise the process with the entire population

being susceptible. Moreover, the stopping rule is a function of the susceptibility

processes only. As a result, we restrict attention to the time-changed process

x = (x̃1, x̃2, . . . , x̃J) and apply the framework of Section 3.2 to this process in

order to calculate the asymptotic variance of the disease-induced herd immunity

level. Written explicitly, due to the random time change, we now consider only

the infectious jumps li = −ei with associated jump rate κix̃i. This yields drift

function F (x) = ( f1(x), f2(x), fJ(x)) with

fk(x) =−κkx̃k, k ∈J . (3.13)
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The matrix of partial derivatives of F , ∂F , has elements

∂ fk

∂ x̃m
=−δkm, k,m ∈J . (3.14)

Using (3.5), the infinitesimal variance function G(x) is given by

G(x) = diag{κ1x̃1,κ2x̃2, . . . ,κJ x̃J}.

The stopping rule corresponding to the population reaching herd immunity is

given by

ϕ(x) =
J

∑
i=1

βiκix̃i−1.

The following theorem demonstrates a Gaussian approximation to the disease-

induced herd immunity level in the multitype model with proportionate mixing.

Theorem 3.5. Let H(n)
D denote the disease-induced herd immunity level in the

mulitype model with proportionate mixing with a population of size n with rates

β1,β2, . . . ,βJ and κ1,κ2 . . . ,κJ and with R0 > 1. Then, as n→ ∞,

√
n
(

H(n)
D −hD

)
D−→ N(0,σ2), (3.15)

where

σ
2 =

J

∑
i=1

γi (exp{−κiτ}− exp{−2κiτ})

[
1−

βiκi ∑
J
k=1 κkγk exp(−κkτ)

∑
J
k=1 βkκ2

k exp(−κkτ)

]2

and where τ is the unique solution in (0,∞) of

J

∑
i=1

βiκiγi exp(−κit)−1 = 0. (3.16)

Proof. We consider the time-changed process defined above, noting that

var
(

H(n)
D

)
= var(1−1J ·Xn(τn)) = var(1J ·Xn(τn)) .

It is clear from (3.14) that F has bounded derivatives in this case, from which it

follows that F is Lipschitz continuous on any compact subset of [0,1]J . It is also
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clear that all partial derivatives of F are continuous. There are J possible jumps

in this model, which are all unit vectors. Recall that βlk = κkx̃k for k ∈J , from

which it is evident that

∑
l

|l|2 sup
x∈K

βl(x)≤ J max{κ1,κ2 . . . ,κJ}< ∞,

so that the conditions of Theorem 3.1 and Theorem 3.2 are satisfied. We next

consider the conditions of Theorem 3.3 in turn. The deterministic equations

implied by (3.4) give that

dx̃i

dt
=−κix̃i, x̃i(0) = γi, i ∈J ,

from which we find

x̃i(t) = γi exp(−κit), i ∈J , t ≥ 0.

Then ϕ(x(t)) = 0 is equivalent to (3.16), which one can easily show has a

unique solution τ ∈ (0,∞) when R0 > 1. (We are implicitly assuming that R0 > 1

at the beginning of the epidemic, otherwise herd immunity would have already

been achieved.) Moreover, it is clear that ϕ(x) is continuously differentiable on

RJ , with ϕ(x(0)) = R0−1 > 0. Lastly, we have

∇ϕ(x(τ)) ·F (x(τ)) =−
J

∑
i=1

βiκ
2
i x̃i(τ)< 0,

so that conditions (i)-(iv) of Theorem 3.3 (and hence of Theorem 3.4) are satis-

fied. Taking w = 1J in Theorem 3.4 shows that (3.15) holds for some σ2, which

we now calculate.

In the notation of Theorem 3.4 we require wA and Σ(t), where w = 1J .

Letting A = [ai j], we use (3.9) to find

ai j = δi j−
β jκ jκix̃i(τ)

∑
J
k=1 βkκ2

k x̃k(τ)
, i, j ∈J .
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Then

[wA]i = 1−
βiκi ∑

J
k=1 κkx̃k(τ)

∑
J
k=1 βkκ2

k x̃k(τ)
, i ∈J .

We solve (3.10) to find Σ(t), noting that all off-diagonal elements of Σ(t) are

equal to zero. Letting σ
2
k (t) = Σkk(t) (k ∈J ), we have

σ
2
k (t) = κkx̃k(t)−κkσ

2
k (t), k ∈J , t ≥ 0,

which can be solved subject to the initial condition σ2
k (0) = 0 to give

σ
2
k (t) = γk (exp{−κkt}− exp{−2κkt}) , k ∈J , t ≥ 0.

Then

Σ(τ) = diag{σ2
1 (τ),σ

2
2 (τ), . . . ,σ

2
J (τ)}.

The asymptotic variance σ2 is then, by Theorem 3.5, equal to

σ
2 =

J

∑
i=1

σ
2
i (τ)

[
1−

βiκi ∑
J
k=1 κkγkx̃k(τ)

∑
J
k=1 βkκ2

k x̃k(τ)

]2

=
J

∑
i=1

γi (exp{−κkτ}− exp{−2κkτ})

[
1−

βiκi ∑
J
k=1 κkγk exp(−κkτ)

∑
J
k=1 βkκ2

k exp(−κkτ)

]2

,

as required.

In Britton et al. [2020], the above model is considered with J = 3 activity

levels, with 50% of individuals having standard activity, and 25% of individu-

als having half and double activity respectively. This corresponds to κ1 = 0.5,

κ2 = 1 and κ3 = 2 and proportions γ1 = 0.25, γ2 = 0.5 and γ3 = 0.25. We

take βi = cκi (i = 1,2,3), where the constant c is chosen to fix R0 to a desired

value. In Table 3.1 we give the results of implementing Theorem 3.5 numeri-

cally, reporting the value of hD, the asymptotic variance σ2 and the width wn

of the corresponding 95% confidence interval. We also provide ĤD and σ̂2,

simulation-based estimates of mean disease-induced herd immunity level and

asymptotic variance respectively.
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R0 hD ĤD σ2 σ̂2 w103 w106

1.5 0.24300 0.24257 0.09978 0.09884 0.03916 0.00124
2 0.37672 0.37661 0.13405 0.13393 0.04539 0.00144

2.5 0.46332 0.46328 0.14638 0.14659 0.04743 0.00150
3 0.52485 0.52488 0.14967 0.14970 0.04796 0.00152
4 0.60784 0.60791 0.14592 0.14611 0.04735 0.00150
5 0.66221 0.66222 0.13779 0.13771 0.04602 0.00146

Table 3.1: Herd immunity level hD and corresponding asymptotic variance σ2,
with the width wn of a 95% confidence interval for n = 103 and n = 106 respec-
tively, considering the activity level model of Britton et al. [2020] for several
values of R0. The simulated mean disease-induced herd immunity level ĤD and
asymptotic variance σ̂2 are also given, where for each R0 we take 106 simula-
tions of a major outbreak among a population of size 103. Values are rounded
to 5 decimal places.

Note that the first column of Table 3.1 simply gives the disease-induced

herd immunity level (cf. Britton et al. [2020], Table 1). It is clear that the

asymptotic variance is low for this model. The herd immunity level established

from deterministic equations is very accurate even for modest population sizes,

and the fluctuation about the deterministic herd immunity level is small. It is

clear from comparing σ2 and σ̂2 that stochastic simulations of this model agree

well in terms of the asymptotic variance from Theorem 3.5.

3.6 Households model with common household size

We now consider the Gaussian approximation to the disease-induced herd im-

munity level for the households model of 2.2.1 in the case of a common house-

hold size m > 1 and infectious period distribution TI ∼ Exp(1), with no latent

period (TE = 0). For this model we take n as the number of households in the

population, rather than the number of individuals, during the exposition. This

choice is consistent with the framework of Section 3.2, but contrasts the notation

of, for example, Section 2.4.4, which used n to denote the common household

size. We again provide the jumps, their associated rates, and the stopping rule,

so that the methods of Section 3.2 can be applied. There are H =
1
2

m(m+3)

possible states that a household can be in. We order states analogously to Sec-

tion 2.2.3, so that the first state is (m,0) and the final state is (1,0). The first

(second) element sk (ik) of the state with linear index k corresponds to the num-
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ber of susceptibles (infectives) in that state. The set of possible household states

is given by H = {(sk, ik) : k = 1,2, . . . ,H}. It is useful to additionally define

Hsusc = {k ∈ {1,2, . . . ,H} : sk > 0}

and

Hinf = {k ∈ {1,2, . . . ,H} : ik > 0}

as the set of states corresponding to households with at least one susceptible

and at least one infective respectively. We assume that, initially, all but a small

fraction of households are in state 1; we thus assume that the epidemic begins

with a small fraction of households which are not fully susceptible. The process

of interest is x = (x1,x2 . . . ,xH) corresponding to the fractions of households

in each in state. In this case a closed-form expression of the asymptotic vari-

ance is not available; we show that the conditions of Theorem 3.4 hold, before

implementing it numerically.

A household in a given state can move to one of at most two other states,

corresponding to infection and recovery respectively occurring in that house-

hold. In order to construct the jumps, we let t(n) =
n(n+1)

2
denote the nth

triangular number (n ∈ Z+). We define g : N→ N by

g(i) =min{v ∈ N : t(v)≥ i}

=

⌈
−1

2
+

√
1
4
+2i

⌉
,

with the property that an infection in a household with linear index i gives rise

to a household with linear index i+g(i). The infectious jump li associated with

state i is

li = ei+g(i)−ei, i ∈Hsusc, (3.17)

with the recovery jumps given by

l̃i = ei+1−ei, i ∈Hinf. (3.18)
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The infectious jump associated with state k, lk, has jump rate

βlk(x) = λGIskxk +λLskikxk, k ∈Hinf, (3.19)

where I =
1
m

H

∑
k=1

ikxk is the proportion of infectives in the population. The rates

associated to recovery jumps are given by

βl̃k
(x) = γikxk, k ∈Hrec. (3.20)

Then

F (x) = ∑
k∈Hinf

lkβlk(x)+ ∑
k∈Hrec

l̃kβl̃k
(x), (3.21)

and G(x) can be calculated using (3.5). The stopping rule corresponds to

R∗(x) = 1, where R∗(x) denotes R∗ among the remaining susceptible popu-

lation. Now

R∗(x) =
1
γ

m

∑
v=0

pv(x)
(

1− v
m

)
µm−v(λL)λG,

where pv(x) is the proportion of households with v non-susceptible members

(v = 0,1, . . . ,m). We note that

pv(x) =
t(v+1)

∑
k=1+t(v)

xk (v = 0,1, . . . ,m),

so that

ϕ(x) =
λG

γ

[
m

∑
v=0

(
1− v

m

)
µm−v(λL)

t(v+1)

∑
k=1+t(v)

xk

]
−1. (3.22)

In order to apply Theorem 3.4 to the present households setting, we must con-

firm that the required conditions hold, which motivates the following sequence

of lemmas. The bounds used in the following lemmas are coarse, but sufficient

for the required results to hold.

Lemma 3.6. All of the jump rates βl(x) defined in (3.19) and (3.20) are contin-
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uous and, for each compact K ⊂ [0,1]J , we have

∑
l

|l|2 sup
x∈K

βl(x)< ∞.

Proof. The continuity of each jump rate is clear from the definition after re-

calling that I =
1
m

H

∑
k=1

ikxk. There are at most 2H possible transitions, although

some of these have a jump rate of zero associated to them. Since each jump

has at most two non-zero elements, and by appropriately bounding (3.19) and

(3.20), we find

∑
l

|l|2 sup
x∈K

βl(x)≤
2H

∑
i=1

2max{λGm+λLm2,γm}

= 4H max{λGm+λLm2,γm}

< ∞,

as required.

Lemma 3.7. The function F (x) defined in (3.21) is Lipschitz continuous on any

compact subset of [0,1]J and has continuous partial derivatives.

Proof. We compute ∂F and show that all elements of ∂F are bounded and

continuous, which is sufficient to establish the above claim. First, note that

∂βlk

∂x j
= λGIskδ jk +

λG

m
i jskxk +λLskikδ jk, k ∈Hinf, j = 1,2 . . . ,H,

and

∂βl̃k

∂x j
= γikδ jk, k ∈Hrec, j = 1,2 . . . ,H,

from which we can calculate ∂F . For ease of exposition, we write lu for the

infectious jump from state u, with the convention that lu = 0H if u /∈Hinf. We
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treat recovery jumps analogously. Then the columns of ∂F are given by

∂F

∂x j
=

H

∑
u=1

lu

(
λGIsuδu j +

λG

m
i jsuxu +λLiusuδ ju

)
+

H

∑
u=1

l̃uγiuδ ju

= l j
(
λGs jI +λLs ji j

)
+

λG

m
i j

H

∑
u=1

lusuxu + l̃ jγi j, j = 1,2, . . . ,H. (3.23)

Then ∂F = [ fi j] can be computed by considering the ith element of (3.23) and

recalling (3.17) and (3.18). It is clear that all of these partial derivatives are

continuous. Moreover, each element fi j of ∂F satisfies

| fi j| ≤ 2λGm+λLm2 + γm < ∞, i, j = 1,2, . . . ,H,

so that all first partial derivatives of F are bounded. This is sufficient to establish

that F is Lipschitz continuous.

Lemma 3.8. Let ϕ(x) be defined as in (3.22) and let τ be such that ϕ(x(τ))= 1.

Then ϕ(x) is continuously differentiable on RH and

∇ϕ(x(τ)) ·F (x(τ))< 0.

Proof. Letting ϕ
′
j =

∂ϕ

∂x j
, we differentiate (3.22) to find

ϕ
′
j =

λG

γ

m

∑
v=0

(
1− v

m

)
µm−v(λL)

t(v+1)

∑
k=t(v)+1

δ jk

=
λG

γ

m

∑
v=0

(
1− v

m

)
µm−v(λL)1{t(v)+1≤ j≤t(v+1)}, j = 1,2, . . . ,H,

from which it is clear that ϕ(x) is continuously differentiable on RH . Note that

ϕ ′1 > ϕ ′2 and ϕ ′j ≥ ϕ ′j+1 for j = 1,2, . . . ,H−1. Taking the required dot product
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and using (3.21), we have

∇ϕ(x(τ)) ·F (x(τ)) = ∑
k∈Hinf

βlk(x(τ))∇ϕ(x(τ)) · lk + ∑
k∈Hrec

βl̃k
(x(τ))∇ϕ(x(τ)) · l̃k

= ∑
k∈Hinf

βlk(x(τ))∇ϕ(x(τ)) · (ek+g(k)−ek)

+ ∑
k∈Hrec

βl̃k
(x(τ))∇ϕ(x(τ)) · (ek+1−ek)

= ∑
k∈Hinf

βlk(x(τ))
{

ϕ
′
k+g(k)−ϕ

′
k

}
+ ∑

k∈Hrec

βl̃k
(x(τ))

{
ϕ
′
k+1−ϕ

′
k
}

< 0,

as required.

We now apply the above lemmas with a view toward a Gaussian approx-

imation for the disease-induced herd immunity level in the households model

with common household size.

Theorem 3.9. Consider the households epidemic model with n households of

size m (m > 1) and with (λG,λL) such that R∗ > 1. Let H(n)
D denote the disease-

induced herd immunity level for this model and let hD denote the corresponding

quantity for the limiting deterministic model. Let τ ∈ (0,∞) denote the unique

solution to ϕ(x(t)) = 0 and let Σ(t) denote the solution to (3.10). Then, as

n→ ∞,
√

n
(

H(n)
D −hD

)
D−→ N(0,σ2), (3.24)

where

σ
2 =

1
m2 ∑

i∈Hinf

∑
j∈Hinf

sis jσ
2
i j, (3.25)

and

σ
2
i j = Σi j(τ), i, j = 1,2, . . . ,H.

Proof. We apply the framework of Section 3.2 to the present model, using the

jumps and jump rates defined by (3.17) - (3.20). It is clear that τ < ∞, since any

epidemic run to termination always leaves the remaining susceptible population

subcritical. Since the population begin supercritical by assumption, we have
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ϕ(x(0))=R∗−1> 0. The other conditions of Theorem 3.3 (and hence of Theo-

rem 3.4) are satisfied owing to Lemmas 3.6 - 3.8, which establishes (3.24). Note

that Σ(τ) must be computed numerically in this case. The proportion of suscep-

tibles S(t) at time t satisfies S(t) = ∑
i∈Hinf

sixi(t), and hD = 1− S(τ). Applying

Theorem 3.4 with [w]i =
1
m

si (i = 1,2, . . . ,H) then establishes the asymptotic

variance given in (3.25).

In this case we cannot derive an explicit expression for the asymptotic vari-

ance of the disease-induced herd immunity level, although we can still compute

it numerically - see Table 3.2. When λL→ ∞, households jump rapidly from a

single member being infected to all members being infected. Thus λL→ ∞, as

well as λL = 0, can be viewed as homogeneously mixing epidemics, implying

that the asymptotic variance is zero in both of these cases.

m σ2
max σ̂2 R∗0 p∗L

2 0.00755 0.00767 3.52 0.72
3 0.00999 0.01062 3.18 0.64
4 0.01132 0.01069 2.92 0.57
5 0.01221 0.01215 2.71 0.51

Table 3.2: The largest asymptotic variance σ2
max of the disease-induced herd im-

munity level achieved in the case of a common household size m ∈ {2,3,4,5}
when (pL,R0) ∈ [0,1]× (1,25], together with the parameter values (p∗L,R

∗
0) at

which this maximum is attained. Additionally provided are stochastic realisa-
tions σ̂2 of the variance of the disease-induced herd immunity level, taking 103

simulations of 103 households with (pL,R0) = (p∗L,R
∗
0). Variances are rounded

to 5 decimal places and parameter values are rounded to 2 decimal places.

We draw two main conclusions from Table 3.2. The first is that the asymp-

totic variance of the disease-induced herd immunity level is small, which can be

seen in the first column (which gives the largest asymptotic variance as R0 and

pL vary). Comparing the first and second columns of Table 3.2, we note good

agreement between the asymptotic variance from numerical calculations and

stochastic simulations; we expect these values to agree more closely for a larger

population size, i.e. a larger number of households, although such simulations

are still subject to Monte Carlo error.
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3.7 Discussion

We have computed a Gaussian approximation to the disease-induced herd im-

munity level in the multitype model with proportionate mixing and in the house-

holds model with common household size. For the multitype model with pro-

portionate mixing we have derived an explicit expression for the asymptotic

variance, using a random time change. The calculated asymptotic variances

agree with the corresponding Monte Carlo estimates from simulations and, for

both models we consider, we have observed that the asymptotic variance is

small.

Comparing Table 3.1 and Table 3.2, we observe that the asymptotic vari-

ance is small in both cases. In particular, the asymptotic variance for the house-

holds model is even smaller than that of the multitype model with proportionate

mixing, for models calibrated by R0. It appears, therefore, that the introduc-

tion of multiple types has a greater influence on the asymptotic variance of the

disease-induced herd immunity level than the introduction of household struc-

ture. In any case, it is clear that the deterministic approximation to the disease-

induced herd immunity level is good, even for modest population sizes (observe,

for example, the confidence intervals provided in Table 3.1).

There are several natural extensions to the work outlined above. It is pos-

sible to extend the theory of Section 3.6 to the case of unequal household sizes,

although the number of ODEs required would grow sharply. We expect that the

asymptotic variance would be larger for a model with variable household size

than for a model with common household size, although we still expect this

variance to be small. It is also possible, in principle, to extend this calculation

to the multitype households model with proportionate global mixing; note that

the number of ODEs required would soon become very large, and we would

again expect the asymptotic variance to be small. Whilst the use of a random

time change to reach a closed-form expression for the asymptotic variance is

not available, we could implement the calculations numerically and explore the

asymptotic variance via that means.
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4 Multitype households model with proportionate

global mixing

4.1 Introduction

In this chapter we consider the stochastic SIR (susceptible → infective → re-

covered) multitype households epidemic model of Ball and Lyne [2001] with

a further assumption on global contact rates, known as proportionate mixing.

We assume that each individual in the population has a type, belonging to

J = {1,2, . . . ,J}, and mixes at two levels: globally and locally, the rates at

which they mix being dependent on their type. The assumption of proportion-

ate global mixing is made explicit in the model definition. Such an assumption

gives rise to a reduction in the type space of associated branching processes

and limiting equations, leading to more explicit expressions for quantities such

as reproduction numbers. Using an embedding construction, we derive a cen-

tral limit theorem for the final outcome of an epidemic which takes off. All

of the calculations that follow are made simpler under the assumption of pro-

portionate global mixing, owing to the underlying processes being effectively

one-dimensional rather than J-dimensional.

In a model with proportionate global mixing, the type of an infectious in-

dividual does not affect the probability that they contact an individual of a given

type (given that they make a global contact). The type of an infectious indi-

vidual does, however, affect the rate at which these global contacts are made.

Models with proportionate mixing are of interest for several reasons. A main

motivation in the context of herd immunity is that, under proportionate global

mixing, certain individuals mix more with the population at large than others. In

this sense, a first wave of an epidemic can be thought of as a “targeted vaccine”,

in which more active individuals are immunised first, more quickly reducing the

overall population susceptibility - see Britton et al. [2020]. Detailed study of the

multitype households model with proportionate global mixing could, therefore,

inform questions pertaining to herd immunity. Some vaccine action models, in-

cluding that of Becker and Starczak [1997], Section 3.1, can be viewed in the
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context of proportionate mixing. In such a model, individuals have their suscep-

tibility and infectivity reduced by factors A and B respectively. In general (A,B)

is a random vector but, under the non-random vaccine assumption (see Ball and

Lyne [2006]), one assumes that all vaccinated individuals have their infectivity

and susceptibility rates reduced by the same amount, i.e. P((A,B) = (a,b)) = 1

for some vector (a,b). Another example of interest is that of the leaky vaccine,

in which b = 1; vaccinating a given individual helps to protect them from infec-

tion, but does not limit their ability to infect others in the event that they become

infected – see Halloran et al. [1992].

It has been established previously that, for deterministic epidemic models,

model analysis becomes simpler under the assumption of proportionate mixing

– see, for example, Gart [1968], Section 3. In this chapter, we show that the anal-

ysis of the stochastic multitype households SIR epidemic model is considerably

simpler if the global (between-household) infection rates follow proportionate

mixing. No such constraint is placed upon the local (within-household) infec-

tion rates. Under the assumption of proportionate global mixing, the branching

process that approximates the early stages of an epidemic is effectively single-

type, leading to considerable simplification in the calculation of reproduction

numbers, the probability of a major outbreak and the early exponential growth

rate of a major outbreak. (The branching process approximating the early stages

of an epidemic becomes single-type by applying standard results pertaining to

aggregation and superposition of the Poisson processes which govern global

infection.) The assumption of proportionate global mixing also simplifies the

calculation and proof of properties of the final outcome of a major epidemic,

since the index set in key processes in the embedding argument is scalar rather

than J-dimensional. We prove a multivariate central limit theorem for a vector of

final state random variables (see Ball and O’Neill [1999]) in the event of a major

outbreak. These final state random variables may be quite general and include,

for example, the number of individuals of each type infected by the epidemic

and the number of households infected (see Section 4.6 for further examples).

We also fill, in the present proportionate global mixing setting, a couple

of gaps in Ball and Lyne [2001]. First, the definition of a major outbreak in
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that paper, referred to there as a global epidemic, is not fully satisfactory in

that it is based on the limiting branching process. Here, an epidemic among

a population of m households is defined to be a major outbreak if it infects at

least log(m) households. The choice of log(m) is just for convenience; log(m)

can be replaced by any function f (m) satisfying f (m)→ ∞ and m−1 f (m)→ 0

as m→ ∞. Indeed, for any specific parameter values, we can replace log(m)

by cm but the choice of the constant c > 0 depends on those parameter values.

Secondly, the proof of the central limit theorem for the outcome of a major

outbreak in Ball and Lyne [2001] ignores the conditioning on a major outbreak

when solving the crossing problem for the embedded process, though it yields

the correct asymptotic mean and variance. Here, we exploit a lack-of-memory

property in the process underlying the embedding, which gives a simple, novel

and widely applicable solution to this conditioning problem.

This chapter is structured as follows. We begin in Section 4.2 with a de-

scription of the multitype households epidemic model, before defining the as-

sumption on global mixing rates which represents proportionate global mixing.

In Section 4.3 we consider the threshold behaviour of the model, demonstrating

the type space reduction in the branching processes associated with the calcula-

tions of several reproduction numbers (viz. R∗,RI and R0), as well as the early

exponential growth rate r. We then, in Section 4.4, find, in the event of a global

outbreak, limiting equations for the fractions of individuals of each type that

are ultimately infected as the population size goes to infinity. The key quantity

we study is the severity (sum of infectious periods of those infected in the epi-

demic) in order to be able to consider a univariate process in this derivation. As

a result, we reduce the calculation of the final size from a J-dimensional system

of nonlinear equations to a single nonlinear equation.

In Section 4.5 we provide an embedding construction (following Sellke [1983])

of the epidemic process; such a construction differs from the “true” epidemic in

how the epidemic is initiated. We derive convergence results for the severity pro-

cess under this construction. In Section 4.6 these convergence results are used

to establish a multivariate central limit theorem for so-called general final state

random variables, first introduced in Ball and O’Neill [1999], for the embedded
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process. In Section 4.7 we define a major outbreak for the multitype SIR house-

holds model and show that the probability of a major outbreak converges to the

non-extinction probability of an appropriate approximating branching process.

In Section 4.8 we connect the embedding construction to our model, deriving

a central limit theorem (Theorem 4.23) for final outcome quantities conditional

upon a major outbreak. The index set of the underlying processes are one-

dimensional, owing to proportionate mixing. Moreover, the mean vector and

covariance matrix of Theorem 4.23 are analogous to, but more explicit than,

that of Ball and Lyne [2001], Theorem 5.3, and the related proofs are more eas-

ily presented. In Sections 4.9 and 4.10 we highlight the special cases of highly

locally infectious disease and all households size one respectively, providing ex-

pressions for the asymptotic variance matrix in those cases in terms of the root

of a nonlinear equation. We conclude this chapter in Section 4.11 by briefly

discussing these results as well as possible extensions of this work.

4.2 Model definition

We consider a multitype SIR model, denoted by E , with household structure in

a closed population. We begin by defining the population structure. Suppose

that households contain at most nmax individuals, where nmax < ∞. Suppose

further that there are J types of individuals in the population, with types be-

longing to J = {1,2, . . . ,J}. Define the household category n as the J-tuple

containing the number of members of each type in that household. Then, with

Z+ = {0,1, . . .}, let

N = {n = (n1,n2, . . . ,nJ) ∈ ZJ
+ : 1≤

J

∑
j=1

n j ≤ nmax} (4.1)

denote the (finite) collection of possible household categories. Suppose that

there are mn households of category n (n ∈N ) with m = ∑n∈N mn house-

holds in total. The collection m = {mn : n ∈N } is referred to as the house-

hold category distribution. Writing ∥n∥ = ∑
J
i=1 ni, the population size (N) is

then given by

N = ∑
n∈N

∥n∥mn,
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with the number of type-i individuals given by

Ni = ∑
n∈N

nimn, i ∈J .

The probability an individual chosen uniformly at random from the population is

type i is then γi =Ni/N (i∈J ). We assume that mini∈J γi > 0. The proportion

of households of category n given by θn =mn/m (n∈N ). Finally, we denote,

by αi(n), the probability an individual chosen uniformly at random among all

type-i individuals resides in a household of category n, which satisfies

αi(n) =
nimn

Ni
, i ∈J ,n ∈N .

The model has infectious dynamics as follows. Individuals begin suscep-

tible (other than a small number of initial infectives which we specify more

precisely when necessary) until they are contacted by an infective, at which

point they immediately become infective; there is no latent period in the model.

(Most of our results are concerned with the final outcome, the distribution of

which is invariant to the introduction of a latent period.) For i ∈J , a type-i

individual, upon being infected, remains infectious for a random time T (i)
I , hav-

ing an arbitrary but specified distribution, with mean infectious period length

µ
(i)
I . During their infectious period, a type-i individual globally contacts any

given type- j individual according to the points of a Poisson process with rate

λ G
i j /N (cf. λ G

i j /N j in Ball and Lyne [2001]). Local contacts occur from a type-i

individual to any given type- j individual within their household according to

the points of a Poisson process with rate λ L
i j. Let ΛG = [λ G

i j ] and ΛL = [λ L
i j].

Individuals recover at the end of their infectious period and play no further role

in the epidemic. Finally, the Poisson processes governing infections, as well as

the random variables governing infectious period lengths, are all assumed to be

mutually independent.

We make a further assumption on global mixing rates, by assuming that

β1,β2, . . . ,βJ > 0 and κ1,κ2, . . . ,κJ > 0 exist such that λ G
i j = βiκ j. This is re-

ferred to as proportionate mixing; under this assumption certain derivations, of

quantities of interest such as reproduction numbers, growth rates and the final
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size of the epidemic, are greatly simplified. The βi quantities can be interpreted

as varying infectivity of individuals, with larger βi giving rise to a higher rate of

infecting others. Similarly, a higher value for κi indicates greater susceptibility

to infection. We concatenate these susceptibility and infectivity rates into vec-

tors κ and β respectively. We suppress the dependence of E on m, β and κ for

ease of exposition throughout this Chapter.

It is helpful to also introduce a single-household epidemic model for a

category-n household (n ∈N ), in which there are Bin(ni,1−πi) initial (glob-

ally infected) infectives of type i (i ∈J ) and with local infection governed

by ΛL. This epidemic, which we denote by En(Λ
L,π), is studied in Addy et

al. [1991] and the joint generating function for the size and severity of this epi-

demic is derived in Ball and Lyne [2001], Section 3. Letting a= (a1,a2, . . . ,aJ),

we also introduce the epidemic model En,a(Λ
L) in which there are ai initial in-

fectives of type i (i ∈J ) in a category-n household with no outside infection

and with local infection governed by ΛL. Letting ei denote the ith standard basis

vector of RJ , we write µn,i, j(Λ
L) for the mean number of type- j individuals in-

fected in En,ei(Λ
L), including the initial infective if i = j. The epidemic model

En,ei(Λ
L) corresponds to the case of a single initial infective of type i.

We proceed by considering some properties and important quantities asso-

ciated to E , making the connection back to the general multitype households

model where appropriate.

4.3 Threshold behaviour

We now consider several reproduction numbers associated to the epidemic, as

well as the early exponential growth rate. The calculation of each of these

reproduction numbers involves considering an appropriate branching process,

coupled to the early stages of the epidemic process. In the following deriva-

tions, we assume there is one initial infective, chosen uniformly at random from

the population, and that the number of households (m) is large. Before turning

attention to the quantities of interest, we introduce a supporting lemma which

will be applied regularly in the derivations that follow.

Lemma 4.1. Assuming m is large, a typical individual who is contacted globally
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in the early stages of E has type j with probability Pj given by

Pj =
κ jγ j

∑
J
k=1 κkγk

, j ∈J .

Proof. Consider a typical type-i infective in the early stages of the epidemic.

This individual will contact type- j individuals at rate ρi j = βiκ jN j/N = βiκ jγ j.

Their total rate of infection, ρi, calculated by aggregating the Poisson processes

associated with infection to type- j members of the population is then given by

ρi j =
J

∑
j=1

βiκ jγ j, i, j ∈J .

We have J Poisson processes which run concurrently, with the points in these

Poisson processes corresponding to the type-i infective infecting individuals of

each type. For j ∈J , the probability that a type- j individual is infected (Pj,

say) is given by the probability that the jth Poisson process is the first to produce

a point. Thus, by the superposition of Poisson processes (see Kingman [1993],

Section 2.2) we have

Pj =
∫

∞

0
ρi je−ρi js×∏

k ̸= j
e−ρiksds

=
∫

∞

0
ρi je−ρi js× e−∑k ̸= j ρiksds

=
∫

∞

0
ρi je−∑

J
k=1 ρiksds

=
ρi j

∑
J
k=1 ρik

=
βiκ jγ j

∑
J
k=1 βiκkγk

=
κ jγ j

∑
J
k=1 κkγk

,

which is independent of i and establishes the lemma.

An immediate consequence of Lemma 4.1 is that we may assume ∑
J
j=1 κ jγ j =

1 without loss of generality - an assumption we make in the sequel. In the origi-

nal statement for proportionate mixing λ G
i j is defined up to a multiplicative con-

stant; the above assumption ensures that the model is fully parameterised and

116



specifies the scaling used.

4.3.1 Households-based reproduction number R∗

We consider a single-type branching process approximation for the proliferation

of infected households in the early stages of the epidemic as follows. Each in-

dividual in the branching process corresponds to an infected household in the

epidemic. Provided m is sufficiently large, every global contact made in the

early stages of E is with a previously uninfected household. The mean of the

offspring distribution of this branching process, R∗, is a threshold parameter for

the present epidemic model. This is because, analogously to the households

epidemic model, in the limit m→ ∞, the epidemic takes off (infecting at least

log(m) households) with non-zero probability if and only if R∗ > 1. We hence-

forth refer to this situation as a major outbreak.

Each individual in the branching process corresponds to an infected house-

hold in the epidemic, with the first generation of the branching process corre-

sponding to the household in the epidemic in which the initial infective resides.

Consider a fully susceptible household which is contacted globally by one of its

individuals becoming infected. The probability this individual is type j is κ jγ j,

by Lemma 4.1 (which facilitates the use of a single-type branching process and

requires the proportionate mixing assumption in order to hold). Given that the

individual is type j, they will reside in a household of category n with prob-

ability α j(n). In the approximating branching process, every global contact

is assumed to be with an individual in an otherwise fully susceptible house-

hold. This infected individual then begins a single-household epidemic which

infects, on average, µn, j,k(Λ
L) type-k individuals. These type-k individuals then

each mix globally for random time with mean µ
(k)
I at rate ∑

J
l=1 βkκlγl = βk.

Putting this together and applying Wald’s identity for multitype SIR epidemics

(Lemma B.2) yields that the expected number of households arising from a sin-

gle newly-infected household (corresponding to the mean number of offspring
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from a given individual in the approximating branching process) is

R∗ =
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
k=1

µn, j,k(Λ
L)

J

∑
l=1

βkκlγlµ
(k)
I

=
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk

J

∑
l=1

κlγl (4.2)

=
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk,

where the final line follows from ∑
J
j=1 κ jγ j = 1. This expression for R∗ coin-

cides exactly with the trace of the matrix defined in Ball et al. [2004], Section

2.2, which becomes a matrix of rank one under the assumption of proportionate

global mixing. We thus reach the same expression for R∗, but using a single-type

branching process rather than a J-type branching process.

4.3.2 Individual-based reproduction number RI

Define the primary case in a household as the initial (globally contacted) in-

fective and define secondary cases as any individuals infected locally in the

ensuing single-household epidemic. We next calculate the individual-based re-

production number RI , in which we assume that there is one primary case in

any infected household, so all other individuals infected in that household are

secondary cases and are attributed to the primary case. This approach is used to

calculate RI in the households model in Becker and Dietz [1995], as well as in

Ball et al. [1997]. In the general multitype households model, such an approach

requires a multitype branching process and, consequently, a mean matrix with

dimension 2J× 2J, corresponding to primary and secondary infectives of each

type. Under proportionate global mixing, however, this reduces to a matrix with

dimension (J + 1)× (J + 1) and sufficient structure such that the eigenvalues

can be calculated explicitly.

We begin by defining the multitype branching process of interest in more

detail. Class-0 individuals in the branching process correspond to primary cases

within a household (viz. the first member of the household to be infected glob-

ally). For i ∈J , class-i individuals in the branching process correspond to
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secondary cases in the epidemic who are type i. We calculate the mean ma-

trix (MI) for this multitype branching process. As convention, we assume that

the first row and column of MI refer to primary cases. The remaining J rows

and columns refer to secondary cases, which must be typed as the proportion-

ate mixing assumption applies only to global infection. Let MI = [mi j]. Since

secondary cases do not result in further secondary cases, we have mi j = 0 when

i, j ≥ 2. Then MI takes the partitioned form

MI =

a u⊤

v 0J×J

 .

Here a is the mean number of primary cases generated by a typical primary case.

The vector u = (u1,u2, . . . ,uJ)
⊤ has ith element given by the mean number of

secondary cases of type i generated by a typical primary case. Similarly, the

ith element of v = (v1,v2, . . . ,vJ)
⊤ contains the mean number of primary cases

generated by a typical secondary case of type i.

We now calculate the quantities in MI in turn, beginning with a. A type- j

individual will infect type-k individuals globally according to points of a Poisson

process, with rate β jκkγk, run for mean time µ
( j)
I . The mean number of type-

k individuals created by a typical type- j individual is thus β jκkγkµ
( j)
I . Each

globally contacted individual is type j with probability κ jγ j (owing to Lemma

4.1), whence

a =
J

∑
j=1

κ jγ j

J

∑
k=1

β jκkγkµ
( j)
I

=
J

∑
j=1

β jκ jγ jµ
( j)
I

J

∑
k=1

κkγk

=
J

∑
j=1

β jκ jγ jµ
( j)
I .

We calculate v similarly. Consider a typical type-k secondary infective, who

will generate primary cases by mixing globally. Then
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vk =
J

∑
j=1

βkκ jγ jµ
(k)
I

= βkµ
(k)
I , k ∈J .

We next compute u by considering the mean number of secondary cases gen-

erated by a typical primary case. A typical type- j individual in a category-n

household will have all secondary cases attributed to them; such an individ-

ual contributes µn, j,k(Λ
L)− δ jk type-k secondary cases on average. (Here δ jk

denotes the usual Kronecker delta and accounts for the case where the initial

infective is also type k.) Applying Lemma 4.1 and the definition of α j(n) then

yields

uk =
J

∑
j=1

κ jγ j ∑
n∈N

α j(n){µn, j,k(Λ
L)−δ jk}, k ∈J ,

which concludes the calculation of the mean matrix MI . We make use of this

matrix to calculate the individual-based reproduction number RI , recalling that

u = (u1,u2, . . . ,uJ)
⊤ and v = (v1,v2, . . . ,vJ)

⊤.

Theorem 4.2. The dominant eigenvalue RI of MI is given by

RI =
a+
√

a2 +4u⊤v

2
.

Proof. Note that a ̸= 0 so that MI is of rank at least one. Further, since vk > 0

for all k∈J , the first column of MI is linearly independent from the remaining

columns, whence MI is of rank at least two. The remaining columns can all be

written as linear combinations of one another, since uk > 0 for k ∈J . As a re-

sult, none of the final J columns are linearly independent from one another. We

conclude that MI is of rank 2 and that MI has at most 2 non-zero eigenvalues.
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In order to compute the eigenvalues of MI , we notice the decomposition

MI =


a u1 . . . uJ

v1 0 . . . 0
...

... . . . ...

vJ 0 . . . 0

=


a 0

v1 −v1
...

...

vJ −vJ


1 u1

a . . . uJ
a

0 u1
a . . . uJ

a

= AB, say.

The non-zero eigenvalues of AB and BA are identical – see Williamson [1954].

Computing BA, we find

BA =

a+ u⊤v
a −u⊤v

a
u⊤v

a −u⊤v
a

 .

It follows that the eigenvalues must satisfy

x2−ax−u⊤v = 0. (4.3)

Selecting the largest solution of (4.3), we find that

RI =
a+
√

a2 +4u⊤v

2
,

as required.

We connect R∗ and RI for the present model in the following result.

Theorem 4.3. We have R∗ = 1 if and only if RI = 1. Further, if R∗ > 1 (R∗ < 1)

then R∗ > RI (R∗ < RI).

Proof. The reproduction number RI is the unique positive solution to gI(x) = 0,

where

gI(x) = 1− a
x
− u⊤v

x2 ,

and where a, u, and v are defined in Section 4.3.2. Recalling the definition of
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R∗ in (4.2), we have

u⊤v =
J

∑
l=1

ulvl

=
J

∑
l=1

βlµ
(l)
I

J

∑
j=1

κ jγ j ∑
n∈N

α j(n){µn, j,l(Λ
L)−δ jl}

=
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
l=1
{µn, j,l(Λ

L)−δ jl}µ
(l)
I βl

= R∗−
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
l=1

δ jlµ
(l)
I βl

= R∗−
J

∑
j=1

β jκ jγ jµ
( j)
I

= R∗−a.

We define the function sign(x) to be −1, 0 and 1 for x < 0, x = 0 and x > 0

respectively. Now gI(x) is an increasing function on (0,∞) and

sign(gI(1)) = sign(1−a−u⊤v) = sign(1−R∗).

It follows, since RI is the unique positive root of gI(x), that R∗ = 1 if and only if

RI = 1, and R∗ > 1(R∗ < 1) if and only if RI > 1 (RI < 1). Suppose that R∗ > 1.

Then

gI(R∗) = 1− a
R∗
− u⊤v

R2
∗

> 1− a
R∗
− u⊤v

R∗

= 0,

which implies that R∗>RI as gI(x) is increasing on (0,∞) and gI(RI)= 0. When

122



R∗ < 1, we have

gI(R∗) = 1− a
R∗
− u⊤v

R2
∗

< 1− a
R∗
− u⊤v

R∗

= 0.

Applying the same argument as above results in R∗ < RI when R∗ < 1, conclud-

ing the proof.

4.3.3 Basic reproduction number R0

We now derive the basic reproduction number R0 for this model. This requires

a generation-based branching process similar to that of Ball et al. [2016], Sec-

tion 2.2, extended to the present multitype setting. Owing to the proportionate

global mixing assumption, we require only a single-type branching process for

the derivation. Consider a discrete-time branching process using the rank gener-

ations of infectives. Each individual in the branching process corresponds to an

infected household, whose generation is given by the global generation of the

corresponding primary infective in that household. If infected at “time” k, such

a household produces further infected households at “times” k+1,k+2, . . . . A

typical household produces ṽk further infected households (on average) at time

k+ 1. The basic reproduction number R0 is then given by the unique positive

solution ψ of the discrete-time Lotka-Euler equation

1−
∞

∑
k=0

ṽk

ψk+1 = 0. (4.4)

(To show that ψ is unique define g : (0,∞)→ R by g(x) = 1−
∞

∑
k=0

ṽk

xk+1 . Then

g(x) is continuous with g(x)→−∞ as x ↓ 0, g(x)→ 1 as x ↑ ∞ and g′(x)> 0.)

Note that R0 is the asymptotic geometric growth rate of the above branch-

ing process, augmented to include within-spread in households. This definition

of R0 coincides with the usual definition (see, for example, Heesterbeek and Di-

etz [1996]) when all households have size 1. We assume, in the derivation that
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follows, that λ L
i j = λL for all i, j ∈J . This corresponds to the case where indi-

viduals are heterogeneous in terms of global contacts, but mix homogeneously

within their household - a sensible assumption, for example, for calculations

pertaining to herd immunity levels. We also assume, for ease of exposition, that

T (i)
I

D
= T ( j)

I for all i, j ∈J .

It remains to compute ṽk for k ≥ 0. When k = 0 we need only consider the

offspring of the primary case of a typical infected household. A typical type- j

individual in a category-n household will produce, on average, β jµ
( j)
I global

infections. Applying Lemma 4.1 then gives

ṽ0 =
J

∑
j=1

β jκ jγ jµ
( j)
I .

We now turn attention to the case k ≥ 1. It is beneficial to define the set of all

household categories with at least two members as

N2 = {n = (n1,n2, . . . ,nJ) ∈ ZJ
+ : 2≤

J

∑
j=1

n j ≤ nmax}.

If, in the process described above, the globally contacted individual is in a

household of size 1, then vk = 0 for k ≥ 1. Suppose now that the household

category of such a contacted individual is n ∈N2, and that the initial infective

is type j ∈J . For k ≥ 1, let µ
(n)
k (λL) denote the mean number of members

in generation k of a single-household epidemic in a category-n household. By

the assumption regarding ΛL, this can be computed via n = ∥n∥ along with the

methods Ball et al. [2016], Appendix A. For k≥ 1, let µ̃
(n)
k,i (λL) denote the mean

number of type-i individuals in generation k in this household. Let u denote a

typical individual who does not belong to generation 0. Since local infection

happens uniformly at random within the household, we have

µ̃
(n)
k,i (λL) =E

[
ni−δi j

∑
l=1

1{Individual l belongs to generation k}

]
=(ni−δi j)P(Individual u belongs to generation k).
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We also have

µ
(n)
k (λL) =E

[
∥n∥−1

∑
l=1

1{Individual l belongs to generation k}

]
=(∥n∥−1)P(Individual u belongs to generation k).

Then, since ∥n∥ ≥ 2, it follows that

µ̃
(n)
k,i (λL) =

ni−δi j

∥n∥−1
µ
(n)
k (λL).

Applying Lemma 4.1 as well as the definition of α j(n) yields

ṽk =
J

∑
j=1

κ jγ j ∑
n∈N2

α j(n)µ
(n)
k (λL)

J

∑
i=1

ni−δi j

∥n∥−1
βiµ

(i)
I , k ≥ 1,

where households of size 1 are excluded in order to make the definition of ṽk

robust. We can then compute R0 by taking the unique positive solution of (4.4).

The basic reproduction number R0 does not typically attribute all secondary

cases in a household to the primary case in that household; the following result

connects R0 and RI in the highly locally infectious case, where the initial infec-

tive infects the whole household.

Theorem 4.4. In the highly locally infectious case, we have RI = R0.

Proof. In the highly locally infectious case, all local epidemics infect the entire

household, and all secondary infection in the household is attributed to the pri-

mary infective in that household. As a result, we have µ
(n)
0 = 1, µ

(n)
1 = ∥n∥−1

and µ
(n)
k = 0 for k ≥ 2. The defining equation for R0 then reduces to

ψ
2−ψ ṽ0− ṽ1 = 0, (4.5)

with ṽ0 = ∑
J
i=1 βiκiγiµ

(i)
I and

ṽ1 =
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
i=1

(ni−δi j)βiµ
(i)
I .

Note that equations (4.3) and (4.5) are equivalent; we have R0 = RI in the highly
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locally infectious case.

It is clear from the proof of Theorem 4.4 that the result extends to a more

general model. Indeed, the assumption of proportionate mixing and the restric-

tions on T ( j)
I ( j ∈J ) are not necessary in order for Theorem 4.4 to hold – see

Ball et al. [2016], Remark 2.

4.3.4 Perfect vaccine-associated reproduction number RV

We conclude our discussion of reproduction numbers by defining the perfect

vaccine-associated reproduction number RV , introduced for the single-type house-

holds model by Goldstein et al. [2009]. Letting R∗(c) denote the value of R∗

after a proportion c ∈ (0,1) of the population are vaccinated uniformly at ran-

dom and assuming pC is such that R∗(pC) = 1, we define RV = (1− pC)
−1. The

critical vaccination coverage is then pC = 1−R−1
V , in an analogous manner to

pC = 1−R−1
0 for the homogeneously mixing epidemic. We note that, by an

identical argument to that of Ball et al. [2016], Theorem 1, we have RV = R0 if

ṽ4 = 0 and RV >R0 otherwise. It follows immediately that RV =R0 in the highly

locally infectious case. In the non-highly-locally-infectious case, pC = 1−R−1
0

if nmax ≤ 3, otherwise 1−R−1
0 < pC ≤ 1−R−1

I .

4.3.5 Early exponential growth rate r

The early exponential growth rate r is derived by calculating the Malthusian

parameter of the branching process, which approximates the proliferation of

infected households, outlined in Section 4.3.1. In the absence of the assump-

tion regarding proportionate global mixing, calculating r requires calculating the

Malthusian parameter for a multitype branching process, following Doney [1976].

Such a calculation is rather unwieldy, as well as being difficult to implement

computationally. Using the single-type process, however, makes the calculation

of r more convenient and presentable – see the discussion following Pellis et

al. [2011], Section 3.1. The computation we give is an extension of the calcula-

tions in Ball and Shaw [2015], Section 4.1, and Ball et al. [2023], Appendix C,

to the present setting: a multitype households epidemic model with proportion-

ate global mixing and no latent period.
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The early exponential growth rate (r) for the process defined in Section

4.3.1 satisfies ∫
∞

0
e−rt

β (t)dt = 1, (4.6)

where β (t) is the (instantaneous) mean number of global contacts arising from

a typical household in the branching process, t time units after it was contacted

globally. The left-hand side of (4.6) corresponds to the Laplace transform of

β (t) and is not tractable in general; we restrict attention to the case where T ( j)
I ∼

Exp(χ j)
(

with χ j = 1/µ
( j)
I

)
so that a Markov chain approach can be used.

We follow a method similar to that of Ball and Shaw [2015], Section 4.1, in

order to calculate the left-hand side of (4.6), beginning with the necessary nota-

tion for a single household of category n ∈N . Consider the single-household

epidemic model En,a(e j) defined in Section 4.2, with j ∈J . Let F
(n)
j be the

set of possible states that the household can reach as the epidemic progresses.

The possible states can be characterised by (s,i), where s = (s1,s2, . . . ,sJ) is a

vector of the number of susceptibles of each type. We define i analogously for

the number of infectives of each type and note that, for every k ∈J , we have

sk+ ik ≤ nk. Let S(n)
j = |F (n)

j | be the number of possible states. Since the initial

infective is type j, the states including s j = n j are not possible and are excluded.

It follows, for n ∈N and j ∈J , that

S(n)
j =

n j(n j +3)
2

×∏
i ̸= j

(
(ni +1)(ni +2)

2

)
.

Let p(n)
s,i, j(t) be the probability that, at time t ≥ 0, the within-household epidemic

among a household of category n, having an initial infective of type j, is in

state (s,i) ∈ F
(n)
j . The mean number of global contacts at time t to type-k

individuals, which emanate from a typical household of category n with an

initial infective of type j, is then given by

β
(n)
j,k (t) = ∑

(s,i)∈F (n)
j

p(n)
s,i, j(t)

J

∑
l=1

ilβlµ
(l)
I κkγk, t ≥ 0.
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Totalling the rates of infection to each type, we have

β
(n)
j (t) = ∑

(s,i)∈F (n)
j

p(n)
s,i, j(t)

J

∑
l=1

ilβlµ
(l)
I , t ≥ 0.

Applying Lemma 4.3 as well as the definition of α j(n) yields

β (t) =
J

∑
j=1

κ jγ j ∑
n∈N

α j(n) ∑
(s,i)∈F (n)

j

p(n)
s,i, j(t)

J

∑
k=1

ikβkµ
(k)
I , t ≥ 0.

With a view toward calculating r via (4.6), we make use of the Markovian as-

sumption in order to calculate

p̃(n)
s,i, j(r) =

∫
∞

0
e−rt p(n)

s,i, j(t)dt

as follows. Let state 1 refer to the initial state with sk = nk−δk j and ik = δk j for

all k ∈J (the ordering of the remaining states is not crucial). Then, for each

j ∈J there exists a bijection

g j : F
(n)
j →

{
1,2, . . . ,S(n)

j

}
,

so each (s,i) ∈F
(n)
j corresponds to a unique state d ∈

{
1,2, . . . ,S(n)

j

}
. The

within-household epidemic is a Markov chain with state space F
(n)
j and transi-

tion matrix Q(n)
j , say. Thus

p(n)
s,i, j(t) =

(
etQ(n)

j

)
1,d

, (4.7)

where eA = ∑
∞
k=0 Ak/k! denotes the usual matrix exponential. We take the

Laplace transform of (4.7) to find

p̃(n)
s,i, j(r) =

([
rIS j

n
−Q(n)

j

]−1
)

1,d
. (4.8)
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Then, by substitution into (4.6), we have

J

∑
j=1

κ jγ j ∑
n∈N

α j(n) ∑
(s,i)∈F (n)

j

p̃(n)
s,i, j(r)

J

∑
k=1

ikβkµ
(k)
I = 1, (4.9)

so that r can be computed, typically only numerically, using (4.8) and (4.9).

4.4 Final outcome

We now turn attention to the final outcome of E , supposing that N is large, there

are few initial infectives, and a major outbreak occurs. In Ball and Lyne [2001]

a system of J equations are presented for the final outcome. These equations

couple the global escape probabilities for each type, which we denote by

π = (π1,π2, . . . ,πJ),

with the probability of ultimate infection for an individual of each type, which

we denote by

z̃ = (z̃1, z̃2, . . . , z̃J).

In the context of proportionate global mixing, we can instead consider a single

univariate equation for the (weighted) sum of the infectious periods of those

ultimately infected in the epidemic, referred to as the severity of the epidemic.

The weights are given by β1,β2, . . . ,βJ . As a consequence, this definition of

severity differs from the standard definition (viz. the sum of infectious periods

of those ultimately infected – see, for example, Ball and Lyne [2001], Section

3). Upon calculating the severity, π and z̃ are readily computed. To proceed,

we calculate the contribution to the severity from each household in order to

establish a univariate equation for the severity, which we scale by the population

size N. Explicit definitions for terms including products and powers of vectors

are provided in Appendix A.

Theorem 4.5. Supposing a major outbreak occurs, the scaled severity δ satis-
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fies the implicit equation

δ = ∑
n∈N

α̃n∥n∥−1
n

∑
r=0

(
n

r

)
(1−π)rπn−r

J

∑
j=1

µn−r,r, jµ
( j)
I β j, (4.10)

where π j = exp(−δκ j) and α̃n (n ∈N ) is the proportion of individuals which

reside in a household of category n.

Proof. Let ϒi (i ∈J ) be the sum of the infectious periods of infected type-i

individuals (the severity owing to type-i individuals). The weighted severity of

the epidemic is given by ϒ = ∑
J
j=1 ϒ jβ j and δ = ϒ/N is the scaled weighted

severity; we derive a single balance equation for δ . Firstly, let j ∈J and note

that a typical type- j individual will avoid infection from all type-i individuals if

there are no points in a Poisson process with rate λ G
i j /N run until time ϒi. Then,

using independence of the different Poisson processes giving rise to contacts

with a given individual of type j, we have

π j =P(typical type- j individual avoids global infection)

=
J

∏
i=1

P(typical type- j individual avoids global infection from all type-i members)

=
J

∏
i=1

exp

(
−

λ G
i j

N
ϒi

)

=
J

∏
i=1

exp
(
−

βiκ jϒi

N

)
=exp

(
−κ j

J

∑
i=1

βiϒi

N

)
=exp(−δκ j),

which expresses the global escape probabilities in terms of the severity. Now

consider calculating the total severity by aggregating the contribution from each

household category, recalling that there are mn households of category n. In

the limit N→∞, individuals of type i avoid global infection independently with

probability πi. Thus the ultimate spread of infection in a category-n household

is that of the single-household outbreak En(Λ
L,π). Let ϒn,r be the total severity

(weighted sum of infectious periods among all types) from a single-household
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outbreak with n initial susceptibles and r initial infectives. Then we have

ϒ = ∑
n∈N

mn

n

∑
r=0

(
n

r

)
(1−π)rπn−r

ϒn−r,r.

Applying Lemma B.2, we find

ϒ = ∑
n∈N

mn

n

∑
r=0

(
n

r

)
(1−π)rπn−r

J

∑
j=1

µn−r,r, jµ
( j)
I β j.

Recalling that N = ∑n∈N mn∥n∥, letting α̃n denote the probability that a ran-

domly chosen individual resides in a household of category n, and dividing by

the population size N gives

δ = ∑
n∈N

α̃n∥n∥−1
n

∑
r=0

(
n

r

)
(1−π)rπn−r

J

∑
j=1

µn−r,r, jµ
( j)
I β j, (4.11)

as required.

Note that δ = 0 is always a solution to (4.11) and a second solution δ ∗ ∈

(0,∞) exists if and only if R∗ > 1. We show this fact later by considering an

equivalent equation – see Theorem 4.8. Solving numerically then allows π to

be calculated, and thus the final size z̃ can be determined. By the above argu-

ment regarding the ultimate spread of infection, a typical category-n household

will have, on average, µn,i(Λ
L,π) type-i members infected by the epidemic.

Conditioning on the household category of a typical type-i individual then gives

z̃i = ∑
n∈N :ni>0

αi(n)µn,i(Λ
L,π)/ni, i ∈J , (4.12)

with π j = exp(−δκ j) for j ∈J .

The derivation of the univariate equation at (4.11) is only possible owing to

the proportionate mixing assumption; in general z̃i must be computed by solving

a J-dimensional system of equations – see Ball et al. [2004], Section 2.2.
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4.5 Severity process

We next derive results with a view toward a central limit theorem for the sever-

ity of the multitype households model with proportionate global mixing. We

make use of a construction introduced by Sellke – see Sellke [1983]. As a

consequence of the proportionate mixing assumption, the resulting severity pro-

cess is a single-type process (cf. the multitype severity process in Ball and

Lyne [2001]). We also make the assumption of a finite number of household

categories, which is not made in Ball and Lyne [2001]. The single-type severity

process then yields more explicit covariance matrices, as well as more easily

implemented numerical calculations, which are not immediately apparent from

Ball and Lyne [2001]. We study the severity process in detail before making the

connection to E .

4.5.1 Sellke construction

In order to establish the desired convergence results, we use a Sellke construc-

tion (see Sellke [1983]) for calculating the final size of an epidemic, extended to

the present setting of the multitype households model with proportionate global

mixing. To do so, we first establish a construction of the epidemic En(Λ
L,π)

defined in Section 4.2. We begin the construction by introducing the relevant

random variables, closely following Ball and Lyne [2001], Section 4.1. These

random variables are all mutually independent and defined on an underlying

probability space (Ω,F ,P). Let Li j (i ∈J , j = 1,2, . . . ,ni) be independent

random variables having an exponential distribution with rate κi. Define L̃i j

(i∈J , j = 1,2, . . . ,ni) similarly, but instead having an exponential distribution

with rate 1. Finally, let I( j)
i (i ∈J , j = 1,2, . . . ,ni) each be realisations of T (i)

I .

Let (i, j) denote the jth individual of type i (i ∈J , j = 1,2, . . . ,ni). We

use the triple (Li j, L̃i j,I
( j)
i ) associated with each individual (i.e. for i ∈J ,

j = 1,2, . . . ,ni) in order to form the desired construction. Initially, all individuals

in the population are susceptible. The epidemic is initiated by each individual

being exposed to t units of external (global) infectious pressure. Individual (i, j)

becomes infected globally if and only if Li j ≤ t. The globally infected individu-
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als begin local epidemics, in which a typical susceptible (i′, j′), say, accumulates

exposure to local infection at rate
J

∑
k=1

λ
L
ki′yk, where yk is the number of type-k

infectives in the household at the given time. If this exposure exceeds L̃i′ j′ , then

(i′, j′) is infected locally. If individual (i, j) is infected, locally or globally, then

their infectious duration is given by I( j)
i . This construction gives a realisation of

En(Λ
L,π) with πi = exp(−κit) (i ∈J ). Once there are no infectives present in

the household, the process terminates.

The epidemic Ê (t), with t units of initial global infectious pressure applied

to each individual, is then defined by taking, for each n ∈N , mn independent

copies of En(Λ
L,π), which are identically distributed for the same n, with πi =

exp(−κit) (i ∈J ). Note that, in this construction of Ê (t), individuals do not

make global contacts.

4.5.2 The severity process - description

We now outline the (single-type) severity process of interest. Note that in the

sequel t ≥ 0 refers to global infectious pressure and not to time. Let Ã( j,n)(t)

denote the sum of the infectious periods of all type- j individuals ever infected

in En(Λ
L,π(t)), with πi(t) = exp(−κit). The severity of En(Λ

L,π(t)) is then

given by

A(n)(t) =
J

∑
j=1

β jÃ( j,n)(t), t ≥ 0,n ∈N .

Consider now the multitype households epidemic Ê (t) which is initiated by ex-

posing each individual to t units of global infectious pressure. Writing A(n,k)(t)

(k = 1,2, . . . ,mn) for the mn independent and identically distributed copies of

A(n)(t), we define the total severity A•(t) by

A•(t) = ∑
n∈N

mn

∑
k=1

A(n,k)(t), t ≥ 0,

where we have summed the contributions to the severity from each household.

This defines a process A• = {A•(t) : t ≥ 0}.

Now consider the epidemic Ẽ (t), defined similarly to Ê (t), but without

disregarding subsequent global infection. Following Scalia-Tomba [1985], we
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embed the epidemic in the A•(t) process using sampling “times” T0,T1, . . . as

follows. Assume that the population as a whole are exposed to T0 units of ini-

tial global infectious pressure, with each individual exposed to T̄0 = T0/N units.

This will cause some individuals to be globally infected, and they may also gen-

erate an infectious clump within their household by infecting other members of

their household locally. This will give rise to A•(T̄0) further units of global infec-

tion, so that the total amount of global infection is T1 = T0 +A•(T̄0). Applying

the same argument to the following generation then yields T2 = T0 +A•(T̄1),

and further iteration of this argument gives a sequence T0,T1, . . . satisfying

Tk+1 = T0 +A•(T̄k)(k = 0,1, . . .). Since the population is finite, there must be

an iterative step which yields no further pressure. We define

k∗ = min{k ≥ 0 : Tk+1 = Tk}

to be the first generation at which no further subsequent infection is created, i.e.,

where the process terminates. Letting T∞ = Tk∗ denote the terminal infectious

pressure, observe that

T∞ = inf{t > 0 : t = T0 +A•(t)}.

Scaling by the population size, we let T̄k = Tk/N for k = 0,1, . . . . Then

T̄∞ = inf{t > 0 : t = T̄0 +N−1A•(t)} (4.13)

corresponds to the scaled terminal pressure. If Z•(t) (Z̃E(t)) is the number of

households infected in Ê (t) (Ẽ (t)), then Z̃E = Z•(T̄∞). Other properties of the

final outcome of Ẽ (t) are given by the corresponding properties of Ê (T̄∞)

We now consider the sequences of epidemics E (v), Ẽ (v) and Ê (v) for v =

1,2, . . . as follows. There are N(v) individuals in the population, and the infec-

tious pressure on each individual used to initiate Ẽ (v) is given by T̄ (v)
0 = T0/N(v).

There are m(v) households in total, comprised of m(v)
n category-n households,

with m(v)
H = N(v)/m(v) denoting the mean household size. The proportion of

category-n households is given by θ
(v)
n and, for i ∈J , the proportion of type-
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i individuals is given by γ
(v)
i > 0 with γi = lim

v→∞
γ
(v)
i > 0. Values not indexed

by v are assumed to be their corresponding asymptotic values (for example,

mH = lim
v→∞

m(v)
H ). Finally, we let an(t) = E[A(n,1)(t)], a(t) = ∑n∈N θnan(t) and

a(v)(t) = ∑n∈N θ
(v)
n an(t).

The corresponding scaled terminal infectious pressure of Ẽ (v) is then given

by T̄ (v)
∞ , defined analogously to T̄∞ – see (4.13). We define the severity process

for Ê (v), denoted A(v)
• (t), by

A(v)
• (t) = ∑

n∈N

m(v)
n

∑
k=1

A(n,k)(t), t ≥ 0.

We note at this stage the disparity between E (v) and Ẽ (v), viz. the way in which

the epidemic is initiated. It is fruitful to first consider the embedding construc-

tion in detail; in Section 4.8 we make explicit the connection between E (v) and

Ẽ (v).

4.5.3 The severity process - analysis

In this section we prove a series of results pertaining to the behaviour of A(v)
• (t)

and T̄ (v)
∞ as t → ∞. We make use of multivariate Gontcharoff polynomials –

see Appendix A for further details. We derive limiting results for the severity

process, beginning with a supporting lemma regarding properties of a(t).

Lemma 4.6. The function a(t) is a non-decreasing and concave function on

[0,∞).

Proof. Recall that a(t) = ∑n∈N θnan(t). It is sufficient to show, for all t ≥ 0,

that a′n(t) > 0 and a′′n(t) < 0 for every household category n ∈N . Consider

the epidemic En(Λ
L,π) with π(t) = (π1(t),π2(t), . . . ,πJ(t)) such that πi(t) =

exp(−κit) (i ∈J ). Let a(i)n (t) denote the mean severity from type-i individ-

uals in En(Λ
L,π(t)), so an(t) = ∑

J
i=1 a(i)n (t). Let zi(t) denote the mean num-

ber of type-i individuals infected in En(Λ
L,π(t)), with si(t) the mean num-

ber of remaining type-i susceptibles. Applying Lemma B.2, we have a(i)n (t) =

βiµ
(i)
I zi(t) = βiµ

(i)
I (ni− si(t)). It remains to show that s′i(t) < 0 and s′′i (t) > 0.

Denote by q(k)i the probability a type-k infective fails to infect anyone in a group
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of i susceptibles (i1 type-1 susceptibles, i2 type-2 susceptibles,. . . , iJ type-J sus-

ceptibles) and let qi =
(

q(1)i ,q(2)i , . . . ,q(J)i

)
. Using Ball [2019], Theorem 4.1,

we have

E
(
S[j]

)
=

n

∑
i=0

n[i]q
n−i
i πi(t)G(j)

i (1|U) (j ∈ ZJ
+), (4.14)

where U is given by U = (qk,k ∈ ZJ
+) and n[k], denotes the vector falling

factorial - see Appendix A. We now consider the right-hand side of (4.14) as

a function of t. Extending Ball [2019], Remark 3.2, to the multivariate case,

we have G(j)
i (1|U) ≥ 0. Now πk(t) = exp(−t ∑

J
i=1 κiki), which clearly has

a negative first derivative and positive second derivative. Then, since s1(t) =

E
(
S[(1,0,...,0)]

)
, we have s′1(t) < 0 and s′′1(t) > 0; a similar argument holds for

each i ∈J . Consequently, an(t) is non-decreasing and concave for every n ∈

N , so a(t) is non-decreasing and concave also.

Our next result concerns the almost sure convergence of the scaled severity

process as v→ ∞; we show that this convergence occurs uniformly in t.

Theorem 4.7. We have

sup
t≥0

∣∣∣∣ 1
m(v)

A(v)
• (t)−a(t)

∣∣∣∣ a.s.−→ 0 as v→ ∞.

Proof. The strong law of large numbers can be applied to each household cate-

gory separately to give that, for each t ∈ [0,∞),

1
m(v)

m(v)
n

∑
k=1

A(n,k)(t) = θ
(v)
n

1

m(v)
n

m(v)
n

∑
k=1

A(n,k)(t) a.s.−→ θnan(t) as v→ ∞

for every n ∈N . Since there are a finite number of household categories, we

sum these to find that

1
m(v)

A(v)
• (t) a.s.−→ a(t) as v→ ∞. (4.15)

It remains to show that this convergence holds uniformly in t. Firstly, note that

A(v)
• (t) is non-decreasing in t and that A(v)

• (∞) is well-defined. In particular,

since A(v)
• (∞) is a weighted sum of the infectious periods of all individuals in

the population, we have that A(v)
• (∞) is almost surely finite and a(∞) < ∞, so
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(4.15) holds when t = ∞ also. Then (c.f Ball and Britton [2005], Lemma 1) we

have that, for each t ∈ [0,∞], there exists a set Ft ∈F with P(Ft) = 1 such that,

for all ω ∈ Ft , we have

lim
v→∞

1
m(v)

A(v)
• (t,ω) = a(t).

Here A(v)
• (t,ω) denotes the random variable A(v)

• (t) evaluated at ω . Now take

F =
⋂

t∈T
Ft , where T = (Q∩ [0,∞))∪{∞}. Then F ∈F (the intersection taken

is countable) and

P(Fc) = P

(⋃
t∈T

Fc
t

)
≤ ∑

t∈T
P(Fc

t ) = 0.

Consequently, there exists a set F ∈F with P(F) = 1 such that, for all ω ∈ F ,

we have

lim
v→∞

1
m(v)

A(v)
• (t,ω) = a(t), t ∈T .

Now a(t) is non-decreasing in t (by Lemma 3.1) with a(∞)< ∞. Fix an ω ∈ F

and an ε > 0. We can partition the set [0,∞] by selecting k ∈ N and t0 = 0 <

t1 < t2 · · ·< tk < tk+1 = ∞ such that t1, t2, . . . , tk ∈Q and

a(ti+1)−a(ti)<
ε

2
, i = 0,1, . . . ,k.

The almost sure convergence of A(v)
• (t) implies that there exists ν0 ∈N such that∣∣∣∣ 1

m(v)
A(v)
• (ti,ω)−a(ti)

∣∣∣∣< ε

2
, i = 0,1, . . . ,k+1;v≥ ν0.
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Let ti ≤ t < ti+1. Then, assuming that 1
m(v) A

(v)
• (t,ω)−a(t)> 0, we have

∣∣∣∣ 1
m(v)

A(v)
• (t,ω)−a(t)

∣∣∣∣= 1
m(v)

A(v)
• (t,ω)−a(t)

≤ 1
m(v)

A(v)
• (ti+1,ω)−a(ti)

=
1

m(v)
A(v)
• (ti+1,ω)−a(ti+1)+a(ti+1)−a(ti)

<
ε

2
+

ε

2
= ε.

A similar argument holds for the case where 1
m(v) A

(v)
• (t,ω)− a(t) < 0. Conse-

quently, we have

∣∣∣∣ 1
m(v)

A(v)
• (t,ω)−a(t)

∣∣∣∣≤ ε, v≥ ν0, t ≥ 0

and therefore

sup
t≥0

∣∣∣∣ 1
m(v)

A(v)
• (t,ω)−a(t)

∣∣∣∣≤ ε, v≥ ν0.

Then

lim
v→∞

sup
t≥0

∣∣∣∣ 1
m(v)

A(v)
• (t,ω)−a(t)

∣∣∣∣= 0,

since the choice of ε > 0 is arbitrary. Then, since P(F) = 1, we have

sup
t≥0

∣∣∣∣ 1
m(v)

A(v)
• (t)−a(t)

∣∣∣∣ a.s.−→ 0 as v→ ∞,

as required.

In the remainder of this section we assume that T̄ (v)
0

a.s.−→ 0 as v→ ∞, not-

ing stronger assumptions (on T̄ (v)
0 or other quantities) where they are necessary.

There are two possibilities for the scaled terminal infectious pressure T̄ (v)
∞ , de-

pending on whether a major outbreak occurs. We first consider the possible so-

lutions of a related equation, before connecting these solutions to the behaviour

of T̄ (v)
∞ .

Theorem 4.8. If R∗ ≤ 1, then t = 0 is the only solution in [0,∞) of the equation

t = m−1
H a(t).
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If R∗ > 1 then there is a unique solution, τ say, in (0,∞). Moreover, we have

R∗ = m−1
H a′(0).

Proof. If t = 0 then there is no global infection (πi = 1 for all i ∈J ) and so

clearly m−1
H a(0) = 0. Now m−1

H a(t) is concave, which follows from Lemma

4.6, so the equation t = m−1
H a(t) has at most two solutions. Since a(∞) < ∞, a

second solution exists if and only if m−1
H a′(0)> 1, which we show is equivalent

to R∗ > 1.

We first calculate a′n(0) for arbitrarily chosen n ∈N . Consider a typical

household of category n. The probability of a single type- j individual being

infected globally in En(Λ
L,π) (denoted Pj(t)) satisfies

Pj(t) = n j(e−tκ j)n j−1(1− e−tκ j)×∏
i̸= j

e−tκini

= n jκ jt +o(t),

where o(t) denotes any function satisfying t−1o(t)→ 0 as t → 0. The proba-

bility that more than one individual is infected globally is given by o(t). If no

individuals are infected globally, then there will be no contribution to the sever-

ity. Then, by Lemma B.2, the mean severity arising from a typical epidemic

En(Λ
L,π) satisfies

an(t) = t
J

∑
j=1

n jκ j

J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk +o(t).

Then, using the definition of the derivative, we have

a′n(0) = lim
t→0

an(t)
t

=
J

∑
j=1

n jκ j

J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk.

Then, recalling the definition of R∗ in (4.2) and noting that m−1
H n jθn = γ jα j(n)
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(i ∈J , n ∈N ), we have

a′(0)
mH

=
1

mH
∑

n∈N
θna′n(0)

=
1

mH
∑

n∈N
θn

J

∑
j=1

κ jn j

J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk

=
J

∑
j=1

κ j ∑
n∈N

θnn j

mH

J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk

=
J

∑
j=1

κ jγ j ∑
n∈N

α j(n)
J

∑
k=1

µn, j,k(Λ
L)µ

(k)
I βk

= R∗.

Hence a′(0)/mH > 1 if and only if R∗ > 1, which establishes the result.

The next result connects R∗ to the possible limiting values of T̄ (v)
∞ .

Theorem 4.9. If R∗ ≤ 1, then T̄ (v)
∞

a.s.−→ 0 as v→ ∞. If R∗ > 1, then

min{T̄ (v)
∞ , |T̄ (v)

∞ − τ|} a.s.−→ 0 as v→ ∞,

where τ > 0 satisfies

τ = m−1
H a(τ). (4.16)

Proof. The result of Theorem 4.7 clearly holds for m(v)
H
−1 1

m(v) A
(v)
• (t). Conse-

quently, there exists an F ∈F with P(F) = 1 such that, for all ω ∈ F , we have

lim
v→∞

sup
t≥0

∣∣∣∣ 1
m(v)

A(v)
• (t,ω)m(v)

H
−1
−a(t)m−1

H

∣∣∣∣= 0 and

lim
v→∞

T̄ (v)
0 (ω) = 0. (4.17)

Writing T̄ (v)
∞ = T̄ (v)

0 + 1
N(v) A

(v)
• (T (v)

∞ ) (cf. (4.13)), we use m(v)
H = N(v)

m(v) to find

T̄ (v)
∞ = T̄ (v)

0 +
1

m(v)
A(v)
• (T̄ (v)

∞ )m(v)
H
−1
.

Consider first the case where R∗ ≤ 1. Then, by Theorem 4.8, the only crossing

point (where t =m−1
H a(t)) occurs at t = 0. Fix an ω ∈F and let t > 0 be arbitrary,

with ∆t = t−m−1
H a(t)> 0. Since T̄ (v)

0
a.s.−→ 0 as v→ ∞, there exists ν1 ∈N such
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that T̄ (v)
0 (ω) < ∆t/4 for all v ≥ ν1. By Theorem 4.7 there exists ν2 ∈ N such

that, for all v≥ ν2,

1
m(v)

A(v)
• (t,ω)m(v)

H
−1
≤ m−1

H a(t)+
∆t

2
.

Then, for all v≥ ν3 = max{ν1,ν2}, we have

T̄ (v)
0 (ω)+

1
m(v)

A(v)
• (t,ω)m(v)

H
−1
≤ ∆t

4
+m−1

H a(t)+
∆t

2

= t−∆t +
3∆t

4

= t− ∆t

4
< t,

which implies that T̄ (v)
∞ (ω)< t for all v≥ ν3. Since t > 0 is arbitrary, it follows

that T̄ (v)
∞ (ω)→ 0 as v→∞; this holds for all ω ∈F . Noting that P(F) = 1 then

gives T̄ (v)
∞

a.s.−→ 0 as v→ ∞, which proves the result for the case R∗ ≤ 1.

We next consider the case R∗ > 1 in which, by Theorem 4.8, there are

two crossing points (at t = 0 and t = τ). Let ε > 0 be small, such that the

set [ε,τ − ε] is non-empty, and let t be an arbitrary member of [ε,τ − ε], with

∆̄t = m−1
H a(t)− t. By Theorem 4.7, there exists ν4 ∈ N such that, for all v≥ ν4,

we have
1

m(v)
A(v)
• (t,ω)m(v)

H
−1
≥ m−1

H a(t)− ∆̄t

2
.

Then

T̄ (v)
0 (ω)+

1
m(v)

A(v)
• (t,ω)m(v)

H
−1
− t ≥ m−1

H a(t)− ∆̄t

2
− t

= ∆̄t−
∆̄t

2

=
∆̄t

2
.

Noting that min
t∈[ε,τ−ε]

∆̄t =min{m−1
H a(τ−ε)−τ +ε,m−1

H a(ε)−ε}> 0, we there-

fore have

min
t∈[ε,τ−ε]

{
T̄ (v)

0 (ω)+
1

m(v)
A(v)
• (t,ω)m(v)

H
−1
− t
}
> 0 (4.18)

for v≥ ν4.
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Now consider the case where t > τ + ε is arbitrary. Let ∆̂t = t−m−1
H a(t),

which is positive since t > τ . Applying Theorem 4.7, there exists ν5 ∈ N such

that, for all v≥ ν5, we have

1
m(v)

A(v)
• (t,ω)m(v)

H
−1
≤ m−1

H a(t)+
∆̂t

2
.

The fact that T̄ (v)
0

a.s.−→ 0 establishes the existence of ν6 ∈ N such that, for all

v≥ ν6, we have T̄ (v)
0 (ω)≤ ∆̂t

4
. Then, for v≥ ν7 := max{ν5,ν6}, we have

t−
(

1
m(v)

A(v)
• (t,ω)m(v)

H
−1

+ T̄ (v)
0 (ω)

)
≥ t−m−1

H a(t)− ∆̂t

2
− ∆̂t

4

=
∆̂t

4
.

Now inf
t>τ+ε

{∆̂t}= τ + ε−m−1
H a(τ + ε)> 0 so, for v≥ ν7, we have

inf
t>τ+ε

{
t−
(

T̄ (v)
0 (ω)+

1
m(v)

A(v)
• (t,ω)m(v)

H
−1
)}

> 0. (4.19)

Combining (4.18) and (4.19), we find that

min
{

T̄ (v)
∞ (ω),

∣∣∣T̄ (v)
∞ (ω)− τ

∣∣∣}≤ ε

for v≥ ν7. Then, as ε > 0 can be made arbitrarily small, we have

lim
v→∞

min
{

T̄ (v)
∞ (ω),

∣∣∣T̄ (v)
∞ (ω)− τ

∣∣∣}= 0,

for arbitrary ω ∈ F . Finally, noting that P(F) = 1 gives

min
{

T̄ (v)
∞ ,
∣∣∣T̄ (v)

∞ − τ

∣∣∣} a.s.−→ 0 as v→ ∞,

establishing the claim in the case R∗ > 1.

We next consider the case where the terminal infectious pressure is greater

than some positive constant; for ε ∈ (0,τ), define T̄ (v)
∞,ε as the smallest solution in

[ε,∞) of t = T̄ (v)
0 +

1
N(v)

A(v)
• (t), provided one exists, with T̄ (v)

∞,ε = T̄ (v)
∞ otherwise.

Theorem 4.9 gives rise to the following corollary.
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Corollary 4.10. Suppose that R∗ > 1. Then

T̄ (v)
∞,ε

a.s.−→ τ as v→ ∞.

Proof. By the argument in the proof of Theorem 4.9, the solutions to

t = T̄ (v)
0 +

1
N(v)

A(v)
• (t)

get arbitrarily close to 0 or τ as v becomes sufficiently large; for δ > 0 the

solutions are contained in [0,δ )∪ (τ−δ ,τ +δ ) for sufficiently large v. But δ

can be arbitrarily small, in particular smaller than ε , so that, in the same notation

as the proof of Theorem 4.9, T̄ (v)
∞,ε(ω) ∈ (τ − δ ,τ + δ ), from which the result

follows.

4.6 Joint central limit theorem for final state random vari-

ables

We now consider a multivariate central limit theorem for final state random vari-

ables defined on Ẽ (v), first introduced for multitype SIR epidemics in Ball and

O’Neill [1999]. For t ≥ 0 and n ∈N denote, by R(n)
1 (t),R(n)

2 (t), . . . ,R(n)
p (t),

a collection of p final outcome quantities associated to the epidemic En(Λ
L,π)

with πi = exp(−κit) (i∈J ). These may be any quantities which are summable

over households; examples include the number of type-1 individuals infected

and the number of households with more than 2 members infected. Further ex-

amples may, in an inferential setting, include quantities such as score statistics

for parameters of interest, such as λ L
11. Note that the severity is another such

example, although we often denote this quantity separately due to the important

role it plays in the analysis; we make use of the severity in the sequel in or-

der to establish a multivariate central limit theorem for these final state random

variables.

We consider the sequence of epidemics Ẽ (v), as in Section 4.5.2. For

j = 1,2, . . . , p and k = 1,2, . . . ,m(v)
n let R(n,k)

j (t) (t ≥ 0) denote independent and
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identically distributed copies of R j(t). We then define, for t ≥ 0,

R(v)
• j (t) = ∑

n∈N

m(v)
n

∑
k=1

R(n,k)
j (t), j = 1,2, . . . , p. (4.20)

Of interest is a joint central limit theorem for

R̃•(T̄ (v)
∞ ) = (R(v)

•1 (T̄
(v)

∞ ),R(v)
•2 (T̄

(v)
∞ ), . . . ,R(v)

•p (T̄ (v)
∞ ),A(v)

• (T̄ (v)
∞ )).

In order to establish this, we require further notation. For j = 1,2, . . . , p and n∈

N , suppose that r(n)
j (t) = E[R(n,1)

j (t)] < ∞. This corresponds to the finiteness

of the mean contribution from a category-n household (in which each individual

is exposed to t units of global infectious pressure) to the jth final state random

variable. Write r(v)j (t) = ∑n∈N θ
(v)
n r(n)

j (t) and r j(t) = ∑n∈N θnr(n)
j (t). Let

C(n)(t,s) =
[
C(n)

i j (t,s)
]

be the (symmetric) covariance function such that

C(n)
i j (t,s) = cov

(
R(n,1)

i (t),R(n,1)
j (s)

)
, i, j = 1,2, . . . , p,

and

C(n)
i,p+1(t,s) =C(n)

p+1,i(t,s) = cov
(

R(n,1)
i (t),A(n,1)(s)

)
, i = 1,2, . . . , p,

with

C(n)
p+1,p+1(t,s) = cov

(
A(n,1)(t),A(n,1)(s)

)
.

We assume that, for j = 1,2, . . . , p, the process R(n,1)
j (t) only has jumps when

an individual becomes infected. Finally, we assume the existence of ζ > 0 such

that

E

(sup
t≥0

∣∣∣R(n,1)
j (t)

∣∣∣)2+ζ
< ∞ (4.21)

for every n ∈N and j = 1,2, . . . , p. The condition in (4.21) ensures that all

elements of C(n)(t,s) are finite for any t,s ≥ 0. We begin with convergence

results for final state random variables.
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Theorem 4.11. For j = 1,2, . . . , p and t ≥ 0, we have

1
m(v)

R(v)
• j (t)

a.s.−→ r j(t) as v→ ∞.

Proof. The result follows by applying the strong law of large numbers as well

as noting that there are a finite number of household categories.

In order to establish the following result, we let T > 0 and write

R̃
(v)
• (t) = (R(v)

•1 (t),R
(v)
•2 (t), . . . ,R

(v)
•p (t),A

(v)
• (t)),

where the severity process is included explicitly due to the important role it

plays in the analysis. We let w−→ denote weak convergence on the space of

bounded functions from [0,T ] to Rp+1, endowed with the supremum metric.

We use this topology, rather than the weaker Skorohod topology, since in the

present application more easily checkable conditions for asymptotic tightness

are available.

Theorem 4.12. Let T > 0 and R̃
(v)
•,T = {R̃(v)

• (t) : 0≤ t ≤ T}. Then

1√
m(v)

(
R̃

(v)
•,T −E[R̃(v)

•,T ]
)

w−→XT as v→ ∞,

where XT = {(X1(t),X2(t), . . . ,Xp(t),XA(t)) : 0≤ t ≤ T} is a zero-mean Gaus-

sian process with covariance function given by C(t,s) = ∑n∈N θnC(n)(t,s)

(t,s ∈ [0,T ]).

Proof. To show that the finite-dimensional distributions of
1√
m(v)

(
R̃

(v)
•,T −E[R̃(v)

•,T ]
)

converge to those of XT , we use the Cramér-Wold device. For i= 1,2, . . . , p+1,
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let qi ∈ N and, for j = 1,2, . . . ,qi, let λi j ∈ R and ti j ≥ 0. We have

1√
m(v) ∑

n∈N

m(v)
n

∑
k=1

p+1

∑
i=1

qi

∑
j=1

λi j

(
R̃(n,k)

i (ti j)−E[R̃(n,k)
i (ti j)]

)

= ∑
n∈N

√
θ
(v)
n

1√
m(v)

n

m(v)
n

∑
k=1

{
p+1

∑
i=1

qi

∑
j=1

λi j

(
R̃(n,k)

i (ti j)−E[R̃(n,k)
i (ti j)]

)}
D−→ X , as v→ ∞, where

X ∼ N

(
0,

p+1

∑
i=1

qi

∑
j=1

p+1

∑
a=1

qa

∑
b=1

λi jλab ∑
n∈N

θncov
(

R̃(n,1)
i (ti j), R̃

(n,1)
a (tab)

))
,

since all terms in the inner (braced) sum on the second line are independent and

identically distributed. It is then clear by considering linear combinations of

XT (ti j) that the desired convergence holds.

It remains to check asymptotic tightness which, by Van Der Vaart and Well-

ner [1996], Lemma 1.4.3, can be checked for each component of R̃T separately;

we are required to prove tightness for a typical general final state random vari-

able, R, say.

In order to establish asymptotic tightness, define

∥ f∥T = sup
0≤t≤T

| f (t)|.

Further, for ε > 0, define the bracketing number N(v)
[]

(ε,T ) as the minimum

number of sets Nε in a partition [0,T ] =
⋃Nε

i=1 A
(v)

ε j such that, for each set A
(v)

ε j ,

we have

∑
n∈N

m(v)
n

∑
k=1

E

 max
t,s∈A (v)

ε j

∣∣∣∣ 1√
m(v)

(
R(n,k)(t)−R(n,k)(s)

)∣∣∣∣2
≤ ε

2. (4.22)

Applying Van Der Vaart and Wellner [1996], Theorem 2.11.9, the sequence

(m(v))−
1
2

(
R(v)−E

[
R(v)
])

(v = 1,2, . . . ) is asymptotically tight provided the

following conditions hold:
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(i) For any d > 0, we have

∑
n∈N

m(v)
n

∑
k=1

E

∥∥∥∥ 1√
m(v)

R(n,k)
∥∥∥∥

T
1{∥∥∥∥ 1√

m(v)
R(n,k)

∥∥∥∥
T
>d
}
→ 0 as v→ ∞.

(ii) For any sequence (δv) satisfying δv ↓ 0 as v→ ∞, we have

sup
s,t∈[0,T ]:|s−t|<δv

∑
n∈N

m(v)
n

∑
k=1

1
m(v)

E
[(

R(n,k)(t)−R(n,k)(s)
)2
]
→ 0 as v→ ∞.

(iii) For any sequence (δv) satisfying δv ↓ 0 as v→ ∞, the bracketing number

N(v)
[]

(ε,T ) satisfies

∫
δv

0

√
logN(v)

[]
(ε,T )dε → 0 as v→ ∞.

To show (i), let Xn =
1√
m(v)

sup
t≥0

∣∣∣R(n,1)(t)
∣∣∣. Then

∑
n∈N

m(v)
n

∑
k=1

E

∥∥∥∥ 1√
m(v)

R(n,k)(t)
∥∥∥∥

T
1{∥∥∥∥ 1√

m(v)
R(n,k)(t)

∥∥∥∥
T
>d
}


= ∑
n∈N

m(v)
n

∑
k=1

E
[
Xn1{Xn>d}

]
= ∑

n∈N
m(v)

n E
[
Xn1{Xn>d}

]
= d−(1+ζ )

∑
n∈N

m(v)
n E

[
Xn1{Xn>d}d

(1+ζ )
]

≤ d−(1+ζ )
∑

n∈N
m(v)

n E
[
X2+ζ̃

n

]

≤ d−(1+ζ )
∑

n∈N

m(v)
n

m(v)1+ ζ

2

E

(sup
t≥0

∣∣∣R(n,1)(t)
∣∣∣)2+ζ


= d−(1+ζ )

∑
n∈N

θ
(v)
n m(v)−

ζ

2 E

(sup
t≥0

∣∣∣R(n,1)(t)
∣∣∣)2+ζ


→ 0 as v→ ∞,

where the fifth line follows using the same argument as a proof of Markov’s
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inequality. Thus, condition (i) is satisfied.

Turning to condition (ii), let (δv) be any sequence satisfying δv ↓ 0 as v→

∞. Assume, without loss of generality, that 0 < s < t and consider a typical

household of category n ∈ N . We attach, to each type-i individual in this

household, an independent Poisson process having rate κi. The first point in this

individual’s Poisson process corresponds to them becoming globally infected,

and points thereafter are disregarded. Denote by Fn(s, t) the event that there is at

least one point in the collection of Poisson processes, in a category-n household,

occurring in the time interval (s, t]. Then, since R(n,k)(t) only jumps when an

infection occurs, we have

E
[(

R(n,k)(t)−R(n,k)(s)
)2
]
≤ 4E

(sup
t≥0

∣∣∣R(n,k)(t)
∣∣∣)2

1{Fn(s,t)}


= 4E

(sup
t≥0

∣∣∣R(n,k)(t)
∣∣∣)2
(1−P(Fc

n(s, t)))

= 4E

(sup
t≥0

∣∣∣R(n,k)(t)
∣∣∣)2
(1− exp

(
−

J

∑
i=1

niκi(t− s)

))

≤ 4E

(sup
t≥0

∣∣∣R(n,k)(t)
∣∣∣)2
 J

∑
i=1

niκi(t− s)

= (t− s)Kn, say,

from which it is clear that condition (ii) is satisfied. Moreover, a partition of

[0,T ] into sets A
(v)

ε j , intervals of length Lε = ε2

∑n∈N Kn
(the final interval may

have shorter length) is sufficient to ensure that (4.22) holds. Then N(v)
[]

(ε,T )≤
c

ε2 , where c = 2T ∑n∈N Kn, giving

∫
δv

0

√
logN(v)

[]
(ε,T )dε ≤

∫
δv

0

√
log
( c

ε2

)
dε

=

√
c

2

∫
∞

log
(

c
δ2v

)√uexp
(
−u

2

)
du

≤
√

c
2

∫
∞

log
(

c
δ2v

) exp
(
−u

4

)
du→ 0 as v→ ∞,
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which follows by taking the substitution u = log
( c

ε2

)
and noting that

√
u≤ exp

(u
4

)
for u≥ 0. Hence condition (iii) is satisfied, concluding the proof of asymptotic

tightness and of the theorem.

We next derive a joint central limit theorem for the general final state ran-

dom variables and the severity in the embedding process.

Theorem 4.13. Assume that R∗ > 1 and, as v→ ∞,

(i)
√

m(v)
(

θ
(v)
n −θn

)
→ 0 (n ∈N ),

(ii)
√

m(v)T̄ (v)
0

p−→ 0 ,

(iii)
√

N(v)
(

m(v)
H −mH

)
→ 0.

Then, for any ε ∈ (0,τ),

(m(v))−
1
2



R(v)
•1 (T̄

(v)
∞,ε)−m(v)r1(τ)

R(v)
•2 (T̄

(v)
∞,ε)−m(v)r2(τ)

...

R(v)
•p (T̄

(v)
∞,ε)−m(v)rp(τ)

A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)


D−→ N(0p+1,HC(τ,τ)H⊤) as v→ ∞,

where r′(τ) = (r′1(τ),r
′
2(τ), . . . ,r

′
p(τ))

⊤ and

H =

Ip
1

mH−a′(τ)r
′(τ)

0⊤p
mH

mH−a′(τ)

 . (4.23)

Proof. Consider first the severity process. Recalling that a(v)(t) = ∑
n∈N

θ
(v)
n an(t),

we have

(m(v))−
1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)
]
=(m(v))−

1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(v)(T̄ (v)
∞,ε)
]

+(m(v))
1
2

[
a(v)(T̄ (v)

∞,ε)−a(T̄ (v)
∞,ε)
]

+(m(v))
1
2

[
a(T̄ (v)

∞,ε)−a(τ)
]

=Ã(v)+ B̃(v)+C̃(v), say. (4.24)
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Now T̄ (v)
∞,ε

a.s.−→ τ as v→ ∞ by Corollary 4.10. Using Theorem 4.12 as well as

the continuous mapping theorem (Van Der Vaart and Wellner [1996], Theorem

1.3.6) implies that Ã(v) D−→ XA(τ) as v→ ∞. Further, since an(t) is continuous

for every n ∈N , we have an(T̄
(v)

∞,ε)
a.s.−→ an(τ) as v→ ∞. Combining this with

condition (i) yields B̃(v) a.s.−→ 0 as v→ ∞ and, in particular, that B(v) p−→ 0 as

v→ ∞. The mean value theorem implies that C̃(v) satisfies

C̃(v) =(m(v))
1
2

[
a(T̄ (v)

∞,ε)−a(τ)
]

=(m(v))
1
2 a′(ξ (v))

(
T̄ (v)

∞,ε − τ

)
for some ξ (v) lying between T̄ (v)

∞,ε and τ . Recalling that τ = m−1
H a(τ) as well as

the definition of T̄ (v)
∞,ε yields

(m(v))
1
2

[
T̄ (v)

∞,ε − τ

]
=(m(v))

1
2 T̄ (v)

0 +(m(v))
1
2

(
1

N(v)
A(v)
• (T̄ (v)

∞,ε)− τ

)
=(m(v))

1
2 T̄ (v)

0 +(m(v))−
1
2

(
m(v)

N(v)
A(v)
• (T̄ (v)

∞,ε)− τm(v)

)

=(m(v))
1
2 T̄ (v)

0 +(m(v))−
1
2

(
1

m(v)
H

A(v)
• (T̄ (v)

∞,ε)−a(τ)m−1
H m(v)

)
=(m(v))

1
2 T̄ (v)

0 +(m(v))−
1
2

(
A(v)
• (T̄ (v)

∞,ε)−a(τ)m(v)
)

m−1
H

+(m(v))−
1
2

(
A(v)
• (T̄ (v)

∞,ε)
)( 1

m(v)
H

− 1
mH

)
. (4.25)

We denote by op(1) any random variable Xv satisfying Xv
p−→ 0 as v→ ∞. The

first term of (4.25) is op(1) by condition (ii). Considering the final term of

(4.25), we have

(m(v))−
1
2

(
A(v)
• (T̄ (v)

∞,ε)
)( 1

m(v)
H

− 1
mH

)
= (m(v))−1A(v)

• (T̄ (v)
∞,ε)(m

(v))
1
2

(
mH−m(v)

H

mHm(v)
H

)

= (m(v))−1A(v)
• (T̄ (v)

∞,ε)

√
N(v)(mH−m(v)

H )

mH(m
(v)
H )

3
2

= op(1).

This follows by first using Theorem 4.7 to observe that (m(v))−1A(v)
• (T̄ (v)

∞,ε) is
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bounded almost surely (and therefore bounded in probability) and then by ap-

plying condition (iii).

Combining (4.24) with (4.25) and using Slutsky’s theorem (Van Der Vaart

and Wellner [1996], Example 1.4.7) yields

(m(v))−
1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)
]
= (m(v))−

1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(v)(T̄ (v)
∞,ε)
]

+(m(v))−
1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)
]

m−1
H a′(ξ (v))

+op(1). (4.26)

Further, for j = 1,2, . . . , p, we have

(m(v))−
1
2

[
R(v)
• j (T̄

(v)
∞,ε)−m(v)r j(τ)

]
=(m(v))−

1
2

[
R(v)
• j (T̄

(v)
∞,ε)−m(v)r(v)j (T̄ (v)

∞,ε)
]

+(m(v))
1
2

[
r(v)j (T̄ (v)

∞,ε)− r j(T̄
(v)

∞,ε)
]

+(m(v))
1
2

[
r j(T̄

(v)
∞,ε)− r j(τ)

]
= Â(v)

j + B̂(v)
j +Ĉ(v)

j , say.

Now Â(v)
j

D−→ X j(τ) as v→ ∞, using Theorem 4.12, the continuous mapping

theorem, and the fact that T̄ (v)
∞

a.s.−→ τ as v→ ∞. We also have B̂(v)
j

p−→ 0 (cf.

B̃(v) p−→ 0) as v→ ∞, since r(n)
j (t) is continuous for every n ∈ N and j =

1,2, . . . , p and by applying condition (i). Rewriting Ĉ(v)
j (cf. C̃(v)) we use the

mean value theorem to find

Ĉ(v)
j =(m(v))

1
2

[
r j(T̄

(v)
∞,ε)− r j(τ)

]
=(m(v))

1
2 r′j(ξ

(v)
j )
(

T̄ (v)
∞,ε − τ

)
, j = 1,2, . . . , p,

for some ξ
(v)
j lying between T̄ (v)

∞,ε and τ . Arguing as in the derivation of (4.26)
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then yields, for j = 1,2, . . . , p,

(m(v))−
1
2

[
R(v)
• j (T̄

(v)
∞,ε)−m(v)r j(τ)

]
= (m(v))−

1
2

[
R(v)
• j (T̄

(v)
∞,ε)−m(v)r(v)j (T̄ (v)

∞,ε)
]

+(m(v))−
1
2

[
A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)
]

m−1
H r′j(ξ

(v)
j )

+op(1). (4.27)

Using (4.26), (4.27) and Slutsky’s theorem, we reach

(m(v))−
1
2 G



R(v)
•1 (T̄

(v)
∞,ε)−m(v)r1(τ)

R(v)
•2 (T̄

(v)
∞,ε)−m(v)r2(τ)

...

R(v)
•p (T̄

(v)
∞,ε)−m(v)rp(τ)

A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)


D−→



X1(τ)

X2(τ)
...

Xp(τ)

XA(τ)


as v→ ∞,

where G =

Ip −m−1
H r′(τ)

0⊤p 1−m−1
H a′(τ)

. Then

(m(v))−
1
2



R(v)
•1 (T̄

(v)
∞,ε)−m(v)r1(τ)

R(v)
•2 (T̄

(v)
∞,ε)−m(v)r2(τ)

...

R(v)
•p (T̄

(v)
∞,ε)−m(v)rp(τ)

A(v)
• (T̄ (v)

∞,ε)−m(v)a(τ)


D−→ N(0p+1,HC(τ,τ)H⊤) as v→ ∞,

with H = G−1 =

Ip
1

mH−a′(τ)r
′(τ)

0⊤p
mH

mH−a′(τ)

, which establishes the result.

4.7 Branching process approximation and probability of a

major outbreak

In this section we define a branching process approximation for the epidemic

model E (v) among N(v) members in which there is one individual initially in-

fected, chosen in a manner which we specify in the sequel, as well as a limiting
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branching process as v→ ∞. The initial construction of E (v) and of the ap-

proximating branching processes follow Ball and Lyne [2001], Section 4.1; we

include this construction below for completeness, beginning with the relevant

quantities.

We begin by defining a linear ordering≺ on N as follows. For n,n′ ∈N ,

n≺ n′ provided

(i) |n| ≤ |n′| and,

(ii) if |n|= |n′| and n ̸= n′, then ni < n′i with i = min{ j : n j ̸= n′j}.

We use ≺ to list the household categories in increasing order. Let n(i) de-

note the household category of household i (i = 1,2, . . . ,m(v)). We label the

individuals in the ith household (i, j,1),(i, j,2), . . . ,(i, j,n( j)). We also, for i =

1,2, . . . ,m(v), j∈J and k= 1,2, . . . ,n(i)j assign to individual (i, j,k) the population-

based label ∑
i−1
i′=1 |n

(i′)|+∑
j−1
j′=1 n(i)j′ +k and the type- j-based label ∑

i−1
i′=1 n(i

′)
j +k,

with the relevant sums being zero if vacuous. Let g(v)j ( j ∈J ) be the map which

takes an individual’s type- j-based label to their corresponding population-based

label.

It is helpful to also define, for v = 1,2, . . . ,

F(v)
j =

∑
j
i=1 κiγ

(v)
i

∑
J
i=1 κiγ

(v)
i

, j ∈J ,

and

F̃(v)
j (n) = ∑

r≺n

α
(v)
j (r) n ∈N , j ∈J ,

where, for completeness, F̃(v)
j (0) = 0 ( j ∈J ).

For n∈N and for j,k∈J , let η
( j,k)
G denote a homogeneous Poisson pro-

cess with intensity κ jβkγ
(v)
k . Such a process gives the times, relative to the time

of infection of a given type- j individual, at which that individual makes contacts

globally with type-k individuals. Similarly, let η
(n,i, j)
L denote a homogeneous

Poisson process, with intensity nkλ L
jk, analogous to η

( j,k)
G but instead giving the

times of local contacts with the individuals in the category-n household. Then

define the infectious career of a typical type- j individual in a category-n house-
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hold by writing

H (n, j) = {T ( j)
I ,η

( j,k)
G ,η

(n, j,k)
L (k ∈J )}.

We now define, for n ∈N and j ∈J , the following independent sets of ran-

dom quantities:

(i) H
(n, j)

ik (i= 1,2, . . . ;k= 1,2, . . . ,n j) independent and identically distributed

according to H (n, j);

(ii) C
(n, j)
ik (i = 1,2, . . . ;k = 1,2, . . . ) independent and uniformly distributed

on {1,2, . . . ,n j};

(iii) U jk ( j ∈J ,k = 0,1, . . . ) independent and uniformly distributed on (0,1);

(iv) Uk and Ũk (k = 0,1, . . . ) independent and uniformly distributed on (0,1).

We then construct E (v) as follows. The initial infective is chosen, for conve-

nience, in a manner such that the initial generation of the approximating branch-

ing process is consistent with all of the subsequent generations of the branching

process. Other choices of initial infective are possible, although they complicate

the exposition. Thus, the initial infective is assumed to be type j with probability

P(v)
j given by

P(v)
j =

κ jγ
(v)
j

∑
J
j′=1 κ j′γ

(v)
j′

, j ∈J .

Consequently the initial infective, assuming they are type j, receives the type- j-

based label ⌊N(v)
j U j0⌋+1 and population-based label g(v)j (⌊N(v)

j U j0⌋+1). Con-

sider the kth individual of type j to be infected in the ith household of category n

(i = 1,2, . . . ,m(v), j ∈J ,n ∈N , and k = 1,2 . . . ,n j). This individual adopts

the infectious career H
(n, j)

i,k . The individual contacted by the kth type- j local

contact in household i′ has household-based label (i′, j,C (n, j)
i′k ) ( j ∈J ,k =

1,2, . . . ). Finally, for j ∈J and k = 1,2 . . . , the individual contacted at the kth

type- j global contact receives the individual- j-based label ⌊N(v)
j U jk⌋+ 1. De-

note by Z(v)
E the total number of households infected in E (v).

The aforementioned collection of quantities can also be used to form re-

alisations of a multitype single-household epidemic in a household of category
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n ∈N with a single initial infective of type j ∈J (provided n is such that

n j > 0). Denote such a typical realisation by E
(n, j)
i , which is formed using the

points of H
(n, j)

ik ( j ∈J ;k = 1,2, . . . ,n j) pertaining to local contacts to decide

the times of local contacts. The lth individual of type k is labelled (k, l), the ini-

tial infective being ( j,1). Which individuals become contacted is determined by

C
(n, j)
ik ( j ∈J ;k = 1,2, . . . ), i.e. by sampling among individuals of the relevant

type uniformly at random. For the purposes of constructing this local epidemic,

the points of the global contact process are ignored. Let D(n, j)
i denote the dura-

tion of E
(n, j)
i . Turning to the global contacts, let η

(n, j)
i denote the point process

of all global contacts emanating from E
(n, j)
i , i.e. the times (relative to the be-

ginning of E
(n, j)
i ) at which individuals would make global contacts if permitted

to do so.

We now define the approximating (single-type) branching process B(v)

(v = 1,2, . . . ). All individuals in the process (including, by construction, the

initial ancestor) have the same distribution. We outline this distribution for the

initial individual. First, sample a type from J by choosing type j if and only

if U0 ∈ [F(v)
j−1,F

(v)
j ). Next, sample a household category among the households

containing type- j individuals by choosing n if and only if Ũ0 ∈ [F̃
(v)
j (n′), F̃(v)

j (n))

(here n′ is the immediate predecessor of n, with the convention that 0 imme-

diately precedes (1,0, . . . ,0)). A typical individual, given the pair (n, j), lives

until age according to D(n, j) and reproduces at the points of η(n, j), cf. the du-

ration and global contact points of E (n, j). The collection of random variables

(Uk,Ũk) (k = 1,2, . . . ) can be used to describe the behaviour of all descendants

of the initial ancestor in an analogous manner. The limiting branching pro-

cess B is defined in the same fashion, but instead using the asymptotic values

Fj = lim
v→∞

F(v)
j and F̃(n) = lim

v→∞
F̃(v)(n). Let Z(v) (Z) and D(v) (D) denote respec-

tively the total progeny and the offspring distribution of the branching process

B(v) (B).

Lemma 4.14. We have D(v) D−→ D as v→ ∞.

Proof. Consider a typical individual in the branching process B(v). It is clear

that, given the same pair (n, j), their offspring distribution will be the same

as a corresponding individual (i.e. with the same pair) in B. Let X (v) denote
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a random variable which takes value j with probability F(v)
j −F(v)

j−1 ( j ∈J ).

Ordering the household categories (omitting 0) according to ≺ and labelling

them {1,2, . . . ,}, let Y (v) correspond to the label of a household chosen by the

procedure in B(v). Consider a typical n ∈N and suppose its associated label

is i. Then

P(Y (v) ≤ i) = ∑
j∈J

P(Y (v) ≤ i,X (v) = j)

= ∑
j∈J

P(Y (v) ≤ i|X (v) = j)P(X (v) = j)

= ∑
j∈J

F̃(v)
j (n)(F(v)

j −F(v)
j−1). (4.28)

Defining X and Y in the obvious fashion, an identical argument yields

P(Y ≤ i) = ∑
j∈J

F̃j(n)(Fj−Fj−1).

Taking the limit of (4.28) as v→ ∞, it is clear that Y (v) D−→ Y as v→ ∞, from

which the result follows.

We note the following corollary which follows from Lemma 4.14.

Corollary 4.15. Let p(v)ext = P(Z(v) <∞) denote the extinction probability of B(v)

and define pext as the extinction probability of B. We have p(v)ext→ pext as v→∞.

Proof. By Lemma 4.14 we have that D(v) D−→ D as v→ ∞. Using Britton et

al. [2007], Lemma 4.1, then establishes the result.

We next consider a calculation which underpins the coupling of B(v) to

E (v).

Lemma 4.16. Suppose m(v) is such that m(v)→ ∞ as v→ ∞. We have

P(Z(v) ≤ log(m(v)))→ pext as v→ ∞.
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Proof. Recalling the definition of pext and p(v)ext in Corollary 4.15, we have

limsup
v→∞

P(Z(v) ≤ log(m(v)))≤ limsup
v→∞

P(Z(v) < ∞)

= limsup
v→∞

p(v)ext = pext. (4.29)

Next, letting k ∈ N, we have

liminf
v→∞

P(Z(v) ≤ log(m(v)))≥ liminf
v→∞

P(Z(v) ≤ k),

since log(m(v))> k for all sufficiently large v. There are a finite number of paths

of the branching process B(v) along which Z(v) ≤ k. The probabilities of these

paths converge to the probabilities of the corresponding paths in B, by Lemma

4.14, whence

liminf
v→∞

P(Z(v) ≤ k) = P(Z ≤ k).

Further, we have

P(Z ≤ k) ↑ P(Z < ∞) = pext as k ↑ ∞,

which together with (4.29) establishes the result.

We next make the connection between the construction of the epidemic

E (v) to the approximating branching process B(v). By the properties of Poisson

processes which are also used in, for example, the proof of Lemma 4.1, it is

clear that the method for choosing the type of the individual infected globally

in E (v) is the same as that of the process for choosing types in B(v). Then

the number of infected households in E (v) and the number of individuals in the

branching process B(v) agree exactly until there is a repeat global contact (i.e. a

global contact with a previously infected household) in E (v). We let K(v) denote

the number of global contacts in E (v) that have occurred by the first time that a

previously infected household in E (v) is contacted globally, noting the following

useful result regarding K(v).
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Lemma 4.17. We have

P
(

K(v) ≤ log(m(v))
)
→ 0 as v→ ∞.

Proof. Let H(v)
i (i = 1,2, . . . ) denote the household contacted by the ith global

contact in E (v), with the convention that H(v)
0 is the household in which the

initial infective resides. The probability that a global contact is with any given

household is bounded above by

max
i∈J

max
n∈N

ni

N(v)
i

≤ nmax

N(v)mini∈J γ
(v)
i

Then, noting the connection with the birthday problem, we have

P
(

K(v) ≤ log(m(v))
)
= P

⌊log(m(v))⌋⋃
i=0

⌊log(m(v))⌋⋃
j=i+1

{Hi = H j}


≤
⌊log(m(v))⌋

∑
i=0

⌊log(m(v))⌋

∑
j=i+1

P
(

H(v)
i = H(v)

j

)

≤

(
log(m(v))+1

)(
log(m(v))

)
P
(

H(v)
1 = H(v)

2

)
2

,

(4.30)

where

P
(

H(v)
1 = H(v)

2

)
≤ nmax

N(v)mini∈J γ
(v)
i

(4.31)

Substituting (4.31) into (4.30) and taking the limit as v→∞ then establishes the

result.

Lemma 4.18. We have

P(v)
E =

∣∣∣P(Z(v)
E ≤ log(m(v)))−P(Z(v) ≤ log(m(v)))

∣∣∣→ 0 as v→ ∞.

Proof. We establish the result by conditioning on whether or not the event
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{K(v) ≤ log(m(v))} occurs. We have

P(Z(v)
E ≤ log(m(v))) = P(Z(v)

E ≤ log(m(v)),K(v) ≤ log(m(v)))

+P(Z(v)
E ≤ log(m(v)),K(v) > log(m(v)))

and

P(Z(v) ≤ log(m(v))) = P(Z(v) ≤ log(m(v)),K(v) ≤ log(m(v)))

+P(Z(v) ≤ log(m(v)),K(v) > log(m(v))).

By the discussion above, the epidemic E (v) and the branching process B(v)

agree until we have a repeated global contact in a household. Thus

P(v)
E =

∣∣∣P(Z(v)
E ≤ log(m(v)),K(v) ≤ log(m(v))

)
−P

(
Z(v) ≤ log(m(v)),K(v) ≤ log(m(v))

)∣∣∣
≤ P

(
K(v) ≤ log(m(v))

)
→ 0,

by applying Lemma 4.17.

We denote the occurrence of a major outbreak by the event

G(v) =
{

Z(v)
E > log(m(v))

}
.

The probability that, in the limit v→ ∞, the event G(v) occurs is then readily

obtained.

Theorem 4.19. We have

P(G(v))→ 1− pext as v→ ∞.

Proof. The result follows immediately by applying Lemma 4.16 and Lemma

4.18.

4.8 Connecting results

We now make the connection between the epidemic model E (v) and the em-

bedded process Ẽ (v) to derive a multivariate central limit theorem for final state
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random variables, conditional upon a major outbreak. We begin with a result

that connects the solutions to the crossing problem in the embedding construc-

tion to the scaled severity δ of Section 4.4.

Theorem 4.20. The equation t = m−1
H a(t) is equivalent to

t = ∑
n∈N

α̃n∥n∥−1
n

∑
r=0

(
n

r

)
(1−π)rπn−r

J

∑
j=1

µn−r,r, jµ
( j)
I β j,

where π j = exp(−tκ j) and α̃n (n ∈N ) is the proportion of individuals which

reside in a household of category n.

Proof. Throughout the proof, we suppress the explicit dependence of π on t

for ease of exposition. Firstly note that, for j ∈J and n ∈N , the expected

severity arising from type- j individuals in En(Λ
L,π) is, by Lemma B.2, given

by

sn, j(t) = µ
( j)
I

n

∑
r=0

(
n

r

)
(1−π)rπn−r

µn−r,r, j.

Secondly, note that m−1
H θn = α̃n∥n∥−1 for each n ∈N . Then

m−1
H a(t) = m−1

H ∑
n∈N

θnan(t)

= m−1
H ∑

n∈N
θnE

[
A(n,1)(t)

]
= m−1

H ∑
n∈N

θn

J

∑
j=1

β jE
[
Ã( j,n)(t)

]
= m−1

H ∑
n∈N

θn

J

∑
j=1

β jsn, j(t)

= m−1
H ∑

n∈N
θn

J

∑
j=1

β jµ
( j)
I

n

∑
r=0

(
n

r

)
(1−π)r(π)n−r

µn−r,r, j

= ∑
n∈N

α̃n∥n∥−1
J

∑
j=1

β jµ
( j)
I

n

∑
r=0

(
n

r

)
(1−π)r(π)n−r

µn−r,r, j

= ∑
n∈N

α̃n∥n∥−1
n

∑
r=0

(
n

r

)
(1−π)rπn−r

J

∑
j=1

µn−r,r, jµ
( j)
I β j,

which completes the proof.

Considering the original epidemic model E (v), let ϒ
(v)
i (cf. ϒi in Section

4.4) denote the sum of the infectious periods of all type-i individuals ultimately
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infected in E (v) (i ∈J ). Let ϒ
(v) =

J

∑
j=1

ϒiβi and ϒ̃(v) = ϒ(v)/N(v), and suppose

that R(v) = (R(v)
1 ,R(v)

2 , . . . ,R(v)
p ) (v = 1,2, . . . ) denotes a collection of p typical

final state random variables associated to E (v), with R̃(v) = R(v)/m(v).

We use an adapted embedding construction in order to achieve a joint cen-

tral limit theorem for the severity and final state random variables, conditional

upon a major outbreak. A similar method is used in Ball et al. [2024], who

run an epidemic until log(m) communities are infected, before switching to the

embedding construction and considering appropriate bounding constructions.

Instead, we use the embedding construction throughout, defining the epidemic

on all m(v) households as follows. Pick one individual to have threshold equal

to zero, with all other individuals having thresholds as in Section 4.5.1, and set

T (v)
0 = 0 (v = 1,2, . . . ). The individual with threshold set to zero is the initial in-

fective, and they can be chosen in the same manner as the initial infective in E (v)

is chosen. Denote by Z(v)
• (t) the number of households infected in the embed-

ding construction when each individual is exposed to t units of global infection.

We run the epidemic until log(m(v)) households are infected. If the construc-

tion does not reach log(m(v)) households infected, we begin a new construction

(independent of any previous constructions) until we reach an epidemic which

does not die out before infecting log(m(v)) households. The above construction

yields the correct final size for a major outbreak in E (v) among m(v) households,

so that R
(v)
• (T̄ (v)

∞ ) is a realisation of the final state random variables R(v) condi-

tional upon a major outbreak. We then define

T ′(v) = inf
{

t > 0 : Z(v)
• (t)≥ log(m(v))

}
,

and note that T ′(v) is almost surely finite since Z(v)
• (t)→m(v) as t→∞. The em-

bedding construction continues after the population has been exposed to T ′(v)

units of global infection. In order to do this, we must account for the infected

individuals and the accumulation of infectious pressure from the first construc-

tion. Let (i, j) correspond to the jth type-i individual in the population. We set

L̃i j = ∞ as the threshold for individual (i, j) if they were infected in the first part

of the construction, otherwise we set L̃i j = Li j− T ′(v). These new thresholds
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have the required distribution, owing to the memoryless property of the expo-

nential distribution. We can study the remaining epidemic spread by considering

an embedding construction with these new thresholds and with initial pressure

given by setting

T̄ (v)
0 =

1
N(v)

A(v)
•
(

T̄ ′(v)
)
− T̄ ′(v). (4.32)

We provide an upper bound for T̄ (v)
0 by considering an upper bounding

construction as follows. Let T̄ (v,U)
0 = T̄ (v)

0 +
1

N(v)
A(v,U)

0 , where A(v,U)
0 is defined

as follows. Let s
(v)
1 ,s

(v)
2 , . . . ,s

(v)
⌈log(m(v))⌉ denote vectors containing the number

of remaining susceptibles of each type in the ⌈log(m(v))⌉ infected households,

with s(v)i j denoting the jth element of s
(v)
i (i= 1,2, . . . ,⌈log(m(v))⌉, j ∈J ). Then

define

A(v,U)
0,i =

⌈log(m(v))⌉

∑
j=1

s(v)i j I(i)j , i ∈J ,

independently of the rest of the construction, with

A(v,U)
0 =

J

∑
i=1

A(v,U)
0,i .

Thus T̄ (v,U)
0 is the initial infectious pressure on each individual for an upper

bounding process in which all individuals in the first log(m(v)) households be-

come infected. Let A(i,n) denote the severity of En,ei in the highly locally in-

fectious case, with Ã j ( j = 1,2, . . . ) denoting independent and identically dis-

tributed copies of

Ã = ∑
i∈J

∑
n∈N

A(i,n).

It is clear that E[A(i,n)]< ∞ for each i ∈J and n ∈ N , whence E[Ã] < ∞.
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Then

√
m(v)T̄ (v)

0 =

√
m(v)

N(v)
T (v)

0

≤ 1√
m(v)

T (v)
0

≤ 1√
m(v)

T (v,U)
0

≤ 1√
m(v)

⌈log(m(v))⌉

∑
j=1

Ã j

=
⌈log(m(v))⌉√

m(v)

1
⌈log(m(v))⌉

⌈log(m(v))⌉

∑
j=1

Ã j

p−→ 0 as v→ ∞,

by using the law of large numbers and the fact that
⌈log(m(v))⌉√

m(v)
→ 0 as v→ ∞.

Then
√

m(v)T̄ (v)
0

p−→ 0 as v→ ∞, so that the conditions of Theorem 4.13 hold

with this new T̄ (v)
0 .

We run the embedding process after the reset on all households, with in-

dividual thresholds suitably adjusted and with initial infectious pressure given

by (4.32). Let Â(v)
• =

{
Â(v)
• (t) : t ≥ 0

}
denote the severity process for this reset

epidemic, defining R̂(v)
• j ( j = 1,2, . . . , p) analogously. A consequence of using

this approach is a discrepancy between Â(v)
• and A(v)

• ; the contributions from pre-

viously infected households will, due to the individual threshold changes, have

a different distribution. For n ∈N , let m̃(v)
n denote the number of households

of category n uninfected in the first construction (i.e. before the reset). Then

Â(v)
• (t) = ∑

n∈N

m(v)
n −m̃(v)

n

∑
k=1

Â(n,k)(t)+ ∑
n∈N

m̃(v)
n

∑
k=1

A(n,k)(t),

where Â(n,k)(t) is the contribution from the kth category-n household that con-

tains a reset individual. We treat this discrepancy in the following lemma.

Lemma 4.21. We have

1√
m(v) ∑

n∈N

m(v)
n −m̃(v)

n

∑
k=1

A(n,k)(t) a.s.−→ 0 as v→ ∞.

163



Proof. We have

1√
m(v) ∑

n∈N

m(v)
n −m̃(v)

n

∑
k=1

A(n,k)(t)≤ 1√
m(v) ∑

n∈N

⌈log(m(v))⌉

∑
k=1

A(n,k)(t)

= ∑
n∈N

1√
m(v)

⌈log(m(v))⌉

∑
k=1

A(n,k)(t)

= ∑
n∈N

⌈log(m(v))⌉√
m(v)

1
⌈log(m(v))⌉

⌈log(m(v))⌉

∑
k=1

A(n,k)(t)

a.s.−→ 0 as v→ ∞,

which follows from the strong law of large numbers and the fact that
⌈log(m(v))⌉√

m(v)
→ 0

as v→ ∞.

An immediate consequence of Lemma 4.21 is that Theorem 4.7 and The-

orem 4.12 apply to the Â(v)
• process. Moreover, a similar result holds for each

R̂(v)
• j process; we use this to derive the law of large numbers and central limit

theorems of interest. In the following result, R̃(v) denotes a typical element of

R̃(v).

Theorem 4.22. Suppose that R∗ > 1. We have, as v→ ∞,

(i) ϒ̃(v)|G(v) p−→ τ ,

(ii) R̃(v)|G(v) p−→ r(τ).

Proof. We begin by showing that, for any ε > 0, there exists δ > 0 and ν2 ∈ N

such that, for all v≥ ν2, we have

P
(

Z(v)
E > δm(v)|G(v)

)
≥ 1− ε

2
. (4.33)

Suppose that, for some δ ∈ (0,1), the number of households infected by E (v) is

not more than δm(v). Then, using (4.31), the probability that a global infectious

contact is with a previously uninfected household is at least 1−δ ∗, where

δ
∗ = min

{
1,

δnmax

mini∈J γ
(v)
i

}
.
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Now consider the branching process B(v)(δ ), in which descendants are born

as in B(v), but are deleted at birth with probability δ ∗. (Individuals who are

deleted at birth have no offspring and do not contribute to the total progeny.)

Define the branching process B(δ ) in a similar fashion. Let Z(v)(δ ) denote

the total progeny of B(v)(δ ) and denote by p(v)ext(δ ) the extinction probability of

B(v)(δ ). Then, noting that B(v) is a lower-bounding process for E (v) whilst the

number of infected households in E (v) is not more than δm(v), we find

P
(

Z(v)
E ≥ δm(v)

)
≥ P

(
Z(v)(δ )≥ δm(v)

)
≥ 1− p(v)ext(δ ).

We then have

p(v)ext(δ )→ pext(δ ) as v→ ∞,

where pext(δ ) is the extinction probability of B(δ ) (see Britton et al. [2007],

Lemma 4.1). Now pext(δ ) ↓ pext as δ ↓ 0, so δ can be chosen such that

1− pext(δ )

1− pext
≥ 1− ε

4
. (4.34)

For any δ > 0 there exists ν0 ∈ N such that δm(v) ≥ log(m(v)) for v ≥ ν0. The

facts that p(v)ext(δ )→ pext(δ ) and P(G(v))→ 1− pext imply the existence of ν1 ∈

N such that, for all v≥ ν1,

P
(

Z(v)
E > δm(v)|G(v)

)
=

P
(

Z(v)
E ≥ δm(v),G(v)

)
P
(
G(v)

)
=

P
(

Z(v)
E ≥ δm(v)

)
P
(
G(v)

)
≥ 1− p(v)ext(δ )

P
(
G(v)

)
≥ 1− pext(δ )

1− pext
− ε

4
. (4.35)

Setting ν2 = max{ν0,ν1} and combining (4.34) and (4.35) then establishes

(4.33).

We next show that, provided a major outbreak occurs, the scaled terminal
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infectious pressure exceeds a positive fraction, i.e. we demonstrate that for any

ε > 0 there exists ε1 > 0 such that

P
(

T̄ (v)
∞ ≥ ε1|G(v)

)
≥ 1− ε, (4.36)

for sufficiently large v.

For t ≥ 0, let Z̃n,i(t) denote the number of individuals infected in the em-

bedding construction in the ith category-n household (i ∈J , n ∈N ) and let

Y (v)
• (t) =

1
m(v) ∑

n∈N

m(v)
n

∑
i=1

1{Z̃n,i(t)>0}

denote the proportion of households infected in the embedding construction

with m(v) households. Then, for t ≥ 0, (cf. Theorem 4.11)

Y (v)
• (t) a.s.−→ y(t) = 1− ∑

n∈N
θn exp

(
−t

J

∑
i=1

niκi

)
as v→ ∞.

Let ε1 =−
1

JnmaxκJ
log

(
1− δ̃

2

)
, where δ̃ satisfies (4.33). Then

P
(

T̄ (v)
∞ < ε1|G(v)

)
= P

(
T̄ (v)

∞ < ε1,Z
(v)
E ≥ δ̃ m̃(v)|G(v)

)
+P

(
T̄ (v)

∞ < ε1,Z
(v)
E < δ̃ m̃(v)|G(v)

)
= A(v)+B(v), say.

Considering A(v), we have

A(v) = P
(

T̄ (v)
∞ < ε1,Z

(v)
E ≥ δ̃ m̃(v)|G(v)

)
=

P
(

T̄ (v)
∞ < ε1,Z

(v)
E ≥ δ̃ m̃(v),G(v)

)
P(G(v))

≤
P
(

Y (v)
• (ε1)≥ δ̃

)
P(G(v))

,
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since Y (v)
• (t) is non-decreasing in t. We also have, as v→ ∞,

Y (v)
• (ε1)

a.s.−→1− ∑
n∈N

θn exp

(
−ε1

J

∑
i=1

niκi

)
≤ 1− ∑

n∈N
θn exp(−ε1JnmaxκJ)

=
δ̃

2
< δ̃ .

This, in conjunction with P(G(v))→ 1− pext as v→ ∞, implies that A(v) can be

made arbitrarily small for sufficiently large v; in particular, there exists ν3 ∈ N

such that A(v) ≤ ε

2
for all v≥ ν3. From (4.33), there exists ν4 such that B(v) ≤ ε

2
for all v≥ ν4. Setting ν5 = max{ν3,ν4}, we have that, for all v≥ ν5,

P
(

T̄ (v)
∞ ≥ ε1|G(v)

)
≥ 1− ε,

which establishes (4.36). Thus, conditional upon a major outbreak, we have

T̄ (v)
∞ = T̄ (v)

∞,ε1 with large probability for sufficiently large v.

To prove (i), first note that ϒ̃(v) = m(v)
H
−1 1

m(v) ϒ
(v) and that m(v)

H
−1
→ m−1

H

as v→ ∞. Consider the embedding process beginning when ⌈log(m(v))⌉ house-

holds are infected. Then, for sufficiently large v, with probability at least 1− ε ,

1
m(v)

ϒ
(v) =

1
m(v)

Â(v)
•
(

T̄ (v)
∞,ε1

)
.

Now
1

m(v)
Â(v)
•
(

T̄ (v)
∞,ε1

)
p−→ a(τ), which follows immediately from Corollary

4.10. Then

ϒ̃
(v)|G(v) p−→ m−1

H a(τ) = τ as v→ ∞

which establishes (i). A similar argument establishes (ii).

The final result of this section concerns a joint central limit theorem for

the severity and the final state random variables (R(v)
1 ,R(v)

2 , . . . ,R(v)
p ,ϒ(v)), con-

ditional upon a major outbreak. In the notation of Theorem 4.13, let Σ =

HC(τ,τ)H⊤ .
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Theorem 4.23. Suppose that R∗ > 1. We have

(m(v))−
1
2



R(v)
1 −m(v)r1(τ)

R(v)
2 −m(v)r2(τ)

...

R(v)
p −m(v)rp(τ)

mH

(
m(v)

H
−1

ϒ(v)−m(v)τ

)


|G(v) D−→ N(0p+1,Σ) as v→ ∞.

Proof. Firstly, recall that
√

m(v)T̄0
a.s.−→ 0, and that Theorem 4.13 can be applied

to the embedding process with T̄ (v)
0 units of initial infectious pressure to each

individual, replacing A(v)
• (t) by Â(v)

• (t) and R(v)
• j (t) by R̂(v)

• j (t). Next, we have, for

v≥ v0 and with probability at least 1− ε ,

√
m(v)

(
ϒ̃
(v)− τ

)
=
√

m(v)m−1
H

(
1

m(v)
Â(v)
• (T̄ (v)

∞,ε1)−a(τ)
)
+op(1).

Finally, arguing as in the proof of Theorem 4.22, there exists v1 ∈ N such that,

for v≥ v1, with probability at least 1− ε ,

(m(v))
1
2



R̃(v)
1 − r1(τ)

R̃(v)
2 − r2(τ)

...

R̃(v)
p − rp(τ)

mH

(
ϒ̃(v)− τ

)


= (m(v))−

1
2



R̂(v)
•1 (T̄

(v)
∞,ε1)−m(v)r1(τ)

R̂(v)
•2 (T̄

(v)
∞,ε1)−m(v)r2(τ)

...

R̂(v)
•p (T̄

(v)
∞,ε1)−m(v)rp(τ)

Â(v)
• (T̄ (v)

∞,ε1)−m(v)a(τ)+op(1)


.

The result follows by applying Theorem 4.13 to the aforementioned embedding

process and using Slutsky’s theorem.

4.9 Highly locally infectious epidemics

We illustrate Theorem 4.23 by considering the special case of a highly locally

infectious disease, in which infection of a member of a household necessarily

results in the whole household becoming infected (see, for example, Becker

and Dietz [1995] and in a multitype setting, Becker and Hall [1996]). For

v = 1,2, . . . , let Z(v) = (Z(v)
1 ,Z(v)

2 , . . . ,Z(v)
J )⊤, where Z(v)

i is the total number
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of type-i individuals infected in an epidemic with m(v) households. We derive

a central limit theorem for Z(v), conditional upon a major outbreak (G(v)), with

an explicit expression for the (asymptotic) covariance matrix.

For n∈N , t ≥ 0 and i∈J , let R(n)
i (t) be the number of type-i individuals

infected in the epidemic En(Λ
L,e−tκ). With this choice of final outcome quanti-

ties, Theorem 4.23 yields a central limit theorem for Z(v) conditional upon G(v).

The highly locally infectious assumption implies that, for n ∈N ,

(R(n)
1 (t),R(n)

2 (t), . . . ,A(n)(t)) D
= D(n)(t)

(
n1,n2, . . . ,nJ,

J

∑
j=1

β j

n j

∑
k=1

I( j)
k

)
,

where D(n)(t)∼ Bin(1,1− etnκ⊤) and I( j)
k

D
= T ( j)

I ( j ∈J ,k = 1,2, . . . ,n j) are

independent random variables. For n ∈ N , let b1(n) = ∑
J
k=1 βknkµ

(k)
I and

b2(n) = ∑
J
k=1 β 2

k nkσ2
I,k, where σ2

I,k = var(I(k)). Elementary calculations yield

that, for n ∈N and t ≥ 0,

r(n)
i (t) = E[R(n)

i (t)] = ni(1− e−tnκ⊤), i ∈J ,

a(n)(t) = E[A(n)(t)] = b1(n)(1− e−tnκ⊤),

cov(R(n)
i (t),R(n)

j (t)) = nin j(1− e−tnκ⊤)e−tnκ⊤, i, j ∈J , (4.37)

cov(R(n)
i (t),A(n)(t)) = nib1(n)(1− e−tnκ⊤)e−tnκ⊤, i ∈J , (4.38)

var(A(n)(t)) = b2(n)(1− e−tnκ⊤)+b2
1(n)(1− e−tnκ⊤)e−tnκ⊤.

(4.39)

Then

a(t) = ∑
n∈N

θna(n)(t) = ∑
n∈N

θnb1(n)(1− e−tnκ⊤), t ≥ 0

and, by Theorem 4.8, R∗ = m−1
H a′(0) = ∑n∈N θnb1(n)nκ⊤.

Suppose that R∗ > 1 and, using Theorem 4.8, let τ be the unique solution
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in (0,∞) of t = m−1
H a(t). For t ≥ 0 and i ∈J , let

ri(t) = ∑
n∈N

θnr(n)
i (t) = ∑

n∈N
θnni(1− e−tnκ⊤)

and, setting p = J, let

r(t) = ∑
n∈N

θn(1− e−tnκ⊤)ñ,

where ñ=(n1,n2, . . . ,nJ,b1(n))⊤. Let ẽ denote the (J+1)×1 vector (0,0, . . . ,1)⊤.

In the notation of Theorem 4.23, we have C(τ,τ) =∑n∈N θnC(n)(τ,τ) where,

by (4.37)-(4.39),

C(n)(τ,τ) = (1− e−tnκ⊤)e−tnκ⊤ññ⊤.

Let z = (z1,z2, . . . ,zJ)
⊤, where zi = ri(τ) (i ∈J ). Note that zi = γiz̃i, where z̃i

is defined at (4.12). Let H be given by (4.23). Note that, for n ∈N ,

Hñ =

n⊤+b1(n)(mH−a′(τ))−1r̃′(τ)

b1(n)mH(mH−a′(τ))−1

 and Hẽ =

r̃′(τ)

mH

 ,

where r̃′(τ) = (r′1(τ),r
′
2(τ), . . . ,r

′
J(τ))

⊤. It follows from Theorem 4.23 that

(m(v))−
1
2

(
Z(v)−m(v)z(v)

)
|G(v) D−→ N(0J,Σ) as v→ ∞, (4.40)

where

Σ = ∑
n∈N

θn(1− e−tnκ⊤)(S
(n)
1 + e−tnκ⊤S

(n)
2 ), (4.41)

with

S
(n)
1 =

b2(n)

(mH−a′(τ))2 r̃′(τ)r̃′(τ)
⊤
,

S
(n)
2 = n⊤n+

b1(n)

mH−a′(τ)
(n⊤r̃′(τ)

⊤
+ r̃′(τ)n)+

(
b1(n)

mH−a′(τ)

)2

r̃′(τ)r̃′(τ)
⊤
.
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4.10 Standard SIR multitype epidemics

If all households have size 1, the model reduces to a special case of the standard

SIR multitype epidemic epidemic model (see Andersson and Britton [2000],

Chapter 6) in which mixing is proportionate. We apply the notation and results

of Section 4.9 to this setting. There are J distinct household categories and

N = {e1,e2, . . . ,eJ}. For k ∈J , θek = γk, b1(ek) = βkµ
(k)
I , b2(ek) = β 2

k σ2
I,k

and r(ek)
i (t) = δki(1− e−κit) (i ∈J ). Hence, ri(t) = γi(1− e−κit) (i ∈J ) and

a(t) = ∑
J
k=1 γkβkµ

(k)
I (1− e−κkt). Since mH = 1, we have

R0 = R∗ = a′(0) =
J

∑
k=1

γkβkκkµ
(k)
I .

Suppose that R0 > 1 and let τ be the unique solution in (0,∞) of t = a(t).

For i ∈J , let zi = ri(τ) = γi(1− e−κiτ) and ρi = γi− zi. Then r′i(τ) = κiρi (i ∈

J ) and a′(τ) = ∑
J
k=1 βkκkρkµ

(k)
I . For k ∈J , note that θek(1− e−ekκ⊤τ) = zk,

θek(1− e−ekκ⊤τ)e−ekκ⊤τ = γ
−1
k zkρk and

[
ek
⊤r̃′(τ)

⊤
+ r̃′(τ)ek

]
i j
= δikκ jρ j +δ jkκiρi, i, j ∈J .

It then follows from (4.40) and (4.41), and a little algebra, that

(m(v))−
1
2

(
Z(v)−m(v)z

)
|G(v) D−→ N(0J,Σ) as v→ ∞,

where z = (z1,z2, . . . ,zJ)
⊤ and Σ = [σi j]i, j∈J with

σi j = δi j
ziρi

γi
+

ρiρ j

1−∑
J
k=1 βkκkρkµ

(k)
I

(
βiµ

(i)
I ziκ j

γi
+

β jµ
( j)
I z jκi

γ j

)

+
κiρiκ jρ j(

1−∑
J
k=1 βkκkρkµ

(k)
I

)2

J

∑
k=1

β
2
k zk

[
σ

2
I,k +

ρk(µ
(k)
I )2

γk

]
.

4.11 Discussion

We have shown that the assumption of proportionate global mixing leads to con-

siderable simplification in the proof and calculation of asymptotic properties of
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stochastic multitype SIR epidemics among a population of households. For ease

of exposition, we have not presented the results in full generality. For exam-

ple, we can allow the overall rate that an individual makes contacts to depend

also on household category, i.e. replace the proportionate mixing assumption

λ G
i j = βiκ j by λ G

i j (n) = βi(n)κ j and let λ L
i j = λ L

i j(n). Under these generali-

sations, the approximating branching process B is still effectively single-type

and the process {R(n,k)(t)}, defined at (4.20), still has a one-dimensional index

set, so the given proofs and results continue to hold with minor modification.

The assumption of a maximum household size nmax < ∞ can also be relaxed,

in which case N is countably finite. In order to do so, stronger assumptions

are required on the convergence of θ
(v)
n to θn (n ∈N ) and on the moments of

R(n)
j (t) (n ∈N , j = 1,2, . . . , p), cf. (4.21).

The multitype households model is very general and by suitable choice

of the type space includes, for example, models with more than two levels of

mixing, such as a population of villages, each partitioned into households (cf.

Britton et al. [2011] and Ouboter et al. [2016]). More complex structures can

also be incorporated, provided the sizes of all structures except households con-

verge to infinity as v→ ∞.

The central limit theorem for final state random variables is also very gen-

eral and is applicable to more complex SIR models, following suitable modi-

fication of the type space of the individuals in the model. For example, in the

carrier-borne model of Downton [1968], infected susceptibles are detected im-

mediately independently with a specified probability, so in a single-type setting

the effective infectious period distribution is a mixture of a point mass at zero

and a strictly positive random variable I. This can be extended to the present

multitype households model setting, with the detection probability possibly de-

pending on both an individual’s type and the category of their household. Suit-

ably defined final state random variables can be used to obtain a multivariate

central limit theorem for the numbers infected and the numbers detected im-

mediately of the J types of individuals. The model can be extended further so

that infected susceptibles are split into more than just two types of infectives, cf.

Picard and Lefèvre [1990]. Another extension to the standard SIR model, con-
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sidered in Picard and Lefèvre [1990], concerns models in which infectives pass

through stages of infection, having possibly different levels of infection. Again

this can be extended to the multitype households model setting and, under suit-

able conditions, Theorem 4.23 can be used to obtain for example a multivariate

central limit theorem for the total severity in the different stages of infection for

the J types of individuals. See Ball [2019] for further detail about such exten-

sions in the context of exact results for the final outcome of SIR epidemics in

populations without household structure.
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5 Herd immunity in the activity level and house-

holds model

5.1 Introduction

In this chapter we consider herd immunity for a model with both activity levels

and household structure. As discussed in Section 2.1, introducing individual

heterogeneity typically causes the disease-induced herd immunity level to de-

crease. Examples can be seen in Britton et al. [2020] in the case of age and

activity levels, and in Gomes et al. [2022] in the case of variable individual sus-

ceptibility. In contrast, the results of Chapter 2 show that household structure

typically causes the disease-induced herd immunity level to increase. The aim

of this chapter is therefore to consider, in the context of herd immunity, a model

which combines activity level and household structure.

The model with activity levels and household structure is a slight simplifi-

cation of the multitype households model described in Section 4.2; we borrow

all of the relevant notation from that section, providing further details in Section

5.2. It is possible, in principle, to compute hD for this model, although the num-

ber of ODEs required soon becomes infeasible owing to the large number of

household categories, and thus the large number of potential states (in terms of

the numbers of susceptible, infected and removed individuals) that each house-

hold can be in. We instead consider the approximation h̃D of hD defined in

Section 2.3.2. The calculation of h̃D in this chapter has strong parallels with the

corresponding calculation for the households model.

As discussed in Section 2.4, the complexities of the households model

make analytical progress comparing h̃D and hC difficult to achieve. The in-

troduction of individual activity levels into the model further complicates the

analysis. As a result, we restrict our analytical results to the highly locally infec-

tious case, where λL→ ∞. We show that the amount of local mixing which can

occur between individuals of different types is a key factor controlling whether

h̃D > hC, providing a heuristic justification for this behaviour. We also provide

and discuss numerical comparisons of h̃D and hC.
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It is clear that, even under the assumption of proportionate global mix-

ing, the model of Chapter 4 is quite general. As a result, it is not feasible to

consider all parameter choices and household category distributions in our anal-

ysis. As such, we focus in the highly locally infectious case on distributions

where orderings of h̃D and hC are available. For our numerical analysis we con-

sider extending the parameters used in Britton et al. [2020] to the households

setting. We also consider briefly how herd immunity plays out in this model

using real-world household size distributions, including the UK household size

distribution. The parameters chosen are for the purposes of exposition and are

not intended to replicate real-world mixing rates, but instead to demonstrate the

sensitivity of h̃D and hC to activity levels and household structure.

This chapter is structured as follows. In Section 5.2 we the model with

activity levels and household structure. In Section 5.3 we provide a framework

for comparison of h̃D and hC, noting how the relevant quantities simplify in

the highly locally infectious case. In Section 5.4 we show that h̃D < hC in the

activity level model in the absence of household structure, motivating further

comparison of h̃D and hC. We then, in Section 5.5, prove orderings of h̃D and hC

in some special cases, such as when all individuals in a given household have

the same type or when all households are the same category. In Section 5.6

we remove the highly locally infectious assumption and provide further com-

parisons of h̃D and hC, where we also consider some real-world household size

distributions. Finally, in Section 5.7, we discuss how this model could be used

to estimate real-world herd immunity levels, some possible extensions of our

work, and how realistic activity rate parameters might be chosen.

5.2 Model definition

In order to obtain the (deterministic) activity level and households model we,

using the model and notation of Section 4.2, take κi = λβi for all i ∈J , where

λ is a positive constant which can be chosen to set a threshold parameter (viz.

R∗, R0 or RI) for the epidemic to a desired value. We consider the deterministic

model obtained by allowing the number of households m to tend to infinity. We

assume, without loss of generality, that 1 = β1 ≤ β2 · · · ≤ βJ and β1 < βJ , so
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that type-1 individuals are the least active and type-J individuals are the most

active. Note that, in terms of global mixing, individuals with higher activity rate

associated to them both infect and are infected at a higher rate than those with

lower activity. Finally, we assume that µ
(i)
I = 1 and ΛL

i j = λL for all i, j ∈J .

This corresponds to the case where differently typed individuals mix globally

at different rates, but local epidemics are unaffected by the types of individuals

among which they occur.

5.3 Herd immunity

5.3.1 General framework

Recall the vaccine-induced herd immunity level hC, obtained by vaccinating

uniformly at random with a perfect vaccine, such that the remaining susceptible

population has R∗ = 1. Recall also the disease-induced herd immunity level

h̃D, obtained by calculating the final size of an epidemic, with adjusted global

infection rates, such that the epidemic terminates at R∗ = 1. We outline the

calculations of the herd immunity levels h̃D and hC for the activity level and

households model, which are extensions of Section 2.3.

In order to proceed, we first consider the effect of a vaccination profile on

the remaining susceptible population. Suppose some individuals in the popu-

lation are made immune from infection and let vn,r denote the proportion of

category-n households with r members immune from infection. The vaccina-

tion profile

v = {vn,r : n ∈N ,0≤ r ≤ n}

provides the effective household category distribution as a result of some indi-

viduals achieving immunity. We say that a household is in state (n,r) if it is a

category-n household with r members immune. (Throughout this Chapter we

write r members immune as short-hand for r1 type-1, r2 type-2, . . . , rJ type-J

members being immune.)

We calculate R∗(v), the threshold parameter for an epidemic assuming the

vaccination profile v. A randomly chosen type- j individual in a state-(n,r)

household is susceptible with probability
n j− r j

n j
and, upon being infected, trig-
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gers a local epidemic which infects µn−r,i, j(Λ
L) type-i individuals on average.

The mean number of global contacts ensuing from a type-i individual who was

infected locally is λβi. Combining these, as well as conditioning on an individ-

ual’s type and household category, as in Section 4.3.1, yields

R∗(v) = λ

J

∑
j=1

β jγ j ∑
n∈N

α j(n)
n

∑
r=0

vn,r

(
n j− r j

n j

) J

∑
i=1

µn−r,i, j(Λ
L)βi. (5.1)

During vaccine-induced immunity we assume that vaccination occurs uniformly

at random, so that vn,r =
(n

r

)
cr(1−c)n−r, with c = (c,c, . . . ,c) for some vac-

cination coverage c ∈ (0,1). Then hC is the unique c ∈ (0,1) which yields

R∗(v)= 1. Calculating h̃D requires computing vn,r (typically numerically) using

the final size results in Section 4.4, by calculating the final size of the epidemic

which terminates when R∗(v) = 1. In the sequel we denote by RD (RU ) the

threshold parameter corresponding to disease-induced herd immunity (uniform

vaccination).

5.3.2 Simplification in highly locally infectious case

In the highly locally infectious case (λL→ ∞) any globally infected individual

infects their whole household. As a result, both the vaccination profile and (5.1)

can be simplified, as we now outline.

During disease-induced herd immunity, households are either rendered fully

immune to infection or fully susceptible to infection from a subsequent epi-

demic. Throughout the remainder of this chapter, we let π denote the probability

a type-1 individual avoids global infection in the first epidemic and write π =

(π,πβ2, . . . ,πβJ), noting the power law relationship between global avoidance

probabilities of different types of individuals (see, for example, Gart [1968],

Section 3). Then, using µn−r,i, j = ni in (5.1), we have

RD(π) = λ

J

∑
j=1

β jγ j ∑
n∈N

α j(n)πn
J

∑
l=1

nlβl. (5.2)

Letting π∗ be such that RD(π∗) = 1, we can then, in an obvious notation, com-
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pute

h̃D = 1−
J

∑
j=1

γ j ∑
n∈N

α j(n)(1−πn
∗ ). (5.3)

In most cases (5.2) cannot be solved analytically, in which case h̃D cannot be

computed directly. Despite this, we can make progress for certain choices of

parameters by comparing reproduction numbers. To this end, we now compute

RU(c) in the highly locally infectious case. Using (5.1) we find

RU(c) = λ

J

∑
j=1

β jγ j ∑
n∈N

α j(n)
n

∑
r=0

(
n

r

)
cr(1−c)n−r

(
n j− r j

n j

) J

∑
i=1

βi(ni− ri)

= λ

J

∑
j=1

β jγ j ∑
n∈N

α j(n) fn, j(c), say.

Observe that

fn, j(c) = E[gi(X1,X2, . . . ,XJ)],

where, for given n ∈N , X1,X2, . . . ,XJ are independent random variables with

Xi ∼ Bin(ni,c), i ∈J and

g j(x1,x2, . . . ,xJ) =

(
1−

x j

n j

) J

∑
l=1

βl(nl− xl), j ∈J .

Then

fn, j(c) = E

[(
1−

X j

n j

)( J

∑
l=1

(nl−Xl)βl

)]

= E

[(
1−

X j

n j

)( J

∑
l ̸= j

(nl−Xl)βl +(n j−X j)β j

)]

= (1− c)

(
J

∑
l ̸= j

(1− c)nlβl

)
+E

[(
1−

X j

n j

)(
n j−X j

)
β j

]

= (1− c)

(
J

∑
l ̸= j

(1− c)nlβl

)
+(1− c)2n jβ j + c(1− c)β j

= (1− c)2
J

∑
l=1

nlβl + c(1− c)β j, n ∈N , j ∈J ,
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leading to

RU(c) = λ

J

∑
j=1

β jγ j ∑
n∈N

α j(n)

{
(1− c)2

J

∑
l=1

nlβl + c(1− c)β j

}
. (5.4)

We conclude this section with an expression for hC in the highly locally

infectious case.

Theorem 5.1. In the highly locally infectious case we have hC = 1−R−1
0 .

Proof. Recall that in this case all individuals in the household are infected by

the initial (globally contacted) infective. Then, from Section 4.3.4, we have that

RV = R0, so the critical vaccination coverage is hC = 1−R−1
V = 1−R−1

0 .

5.4 The activity level model without household structure

We begin our comparison of h̃D and hC by considering the activity level model

in the absence of household structure. This model is a special case of the stan-

dard multitype SIR model in Andersson and Britton [2000], Chapter 6, with

proportionate global mixing, obtained by taking N = {e1,e2, . . . ,eJ}, so that

all households contain a single member. Note that R0 and R∗ coincide for this

model due to the lack of household structure; it follows from (4.2) that R0 for

this model is given by

R0 = λ

J

∑
j=1

β
2
j γ j. (5.5)

In Britton et al. [2020], Table 1, the disease-induced herd immunity level is

calculated for a specific set of parameters in the activity level model and h̃D < hC

in the examples presented there; the following result provides a more general

comparison of h̃D and hC in the activity level model.

Theorem 5.2. We have h̃D ≤ hC in the activity level model, with equality if and

only if J = 1.

Proof. If J = 1 then the epidemic is homogeneously mixing and h̃D = hC; as-

sume hereafter that J > 1. Suppose a first epidemic is run in the activity level
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model. Then, in the framework of Section 5.3.1 and using (5.2), we have

RD(π) = λ

J

∑
j=1

β
2
j γ jπ

β j ,

Letting π ∈ (0,1) denote the probability a typical type-1 individual avoids in-

fection, note that the probability a type- j individual avoids infection is given by

πβ j ( j ∈J ). Thus, letting S(π) denote the proportion of susceptibles remaining

after the first epidemic, we have

S(π) =
J

∑
j=1

γ jπ
β j .

Supposing instead that a fraction S(π) of the population are vaccinated

uniformly at random prior to the epidemic, writing R̃U(π) = RU(S(π)), and

using (5.5) yields

R̃U(π) = S(π)R0 = λ

(
J

∑
j=1

γ jπ
β j

)
J

∑
j=1

β
2
j γ j.

In order to compare R̃U(π) and RD(π) we make use of Chebyshev’s “other”

inequality - see Hardy et al. [1952], p.168, which states that for a random vari-

able X and functions f ,g which are both increasing or both decreasing, we have

E[ f (X)g(X)]≥ E[ f (X)]E[g(X)]. (5.6)

With a view toward applying Chebyshev’s other inequality, we let X be a random

variable having probability mass function

P(X = i) = γi, i ∈J .

We also define f ,g : J → R by

f (i) = β
2
i , g(i) =−π

βi.
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Note that f ,g are increasing functions with

E[ f (X)g(X)] =−
J

∑
j=1

γ jβ
2
j π

β j

=− 1
λ

RD(π)

and

E[ f (X)]E[g(X)] =−

(
J

∑
j=1

γiπ
β j

)(
J

∑
j=1

γ jβ
2
j

)

=− 1
λ

R̃U(π).

The only cases of equality in (5.6) occur when X has all its probability mass on

one point or when at least one of f and g are constant. It is clear that neither of

these conditions hold, since γi > 0 for all i∈J and β1 < βJ . Chebyshev’s other

inequality then implies that RD(π)< R̃U(π), so that h̃D < hC, which establishes

the claim.

Theorem 5.2 establishes that h̃D < hC when individuals are typed based on

their activity level in the absence of household structure, which is considered

in a more general setting in Bootsma et al. [2023], Section 7. The result of

Theorem 5.2 contrasts the observations of h̃D > hC which are typical in the

households model. In the remainder of this chapter we impose activity level and

household structure on the population and investigate how the ordering of h̃D

and hC changes.

5.5 Highly locally infectious epidemics, common household

size

Typically it is not possible to obtain orderings of h̃D and hC in a model with

activity level and household structure, owing to the complicated form of (5.1).

However, in the case λL→∞, some analytical progress can be made. We inves-

tigate how the distribution of individuals of different types affects this ordering

by considering two extreme cases; we study the scenario in which all households

contain an individual of each type, as well as the case in which all households
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only contain one type of individual. These cases represent the extremes in which

individuals of different types mix locally as much or as little as possible.

5.5.1 Single household category

In the case where all household categories are the same we can establish an or-

dering between h̃D and hC. We consider, without loss of generality, the case

where all households are size J and there is one individual of each type. Other

configurations can be recovered by setting βi = β j for some i, j ∈J as appro-

priate.

Theorem 5.3. Consider the activity level and households model with all house-

holds category n = (1,1, . . . ,1), in the highly locally infectious case, such that

there are J > 1 individuals in each household. We have h̃D > hC.

Proof. Using the framework of Section 5.3.1, we have

RD(π) =
λ

n
π1π2, . . . ,πJ

(
J

∑
i=1

βi

)2

,

with the proportion of individuals infected in the first epidemic given by z(π) =

1−π1π2 . . .πJ . Setting RD(π) = 1, we find

h̃D = 1− n

λ
(
∑

J
i=1 βi

)2 = 1−R−1
∗ .

The result follows by recalling that hC = 1−R−1
0 and that R∗ > R0 when R∗ > 1;

see Section 4.3.4.

A heuristic justification of Theorem 5.3 is as follows. In the activity level

model, the ideal method of spreading infection is to target highly active indi-

viduals, as this will more quickly reduce the overall population susceptibility.

However, in the present model, it is not possible to infect a more active individ-

ual without also infecting their remaining (lower activity) household members,

due to the highly locally infectious assumption. Consequently, disease-induced

herd immunity is not effective at gathering herd immunity.
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5.5.2 Fully clumped activity levels

We now turn attention to the case where all individuals in a household are the

same type, whence individuals of different types do not mix locally. Such an

assumption is not unreasonable, particularly during COVID-19 where individ-

uals, who were unable to perform social distancing due to their work, tended

to reside in households together. It is therefore of interest to study a model in

which individual types are clumped together, and to observe the impact this has

on the disease-induced herd immunity level.

We begin this section with the following result which considers fixing R0

and increasing the household size, generalising Theorem 2.3.

Theorem 5.4. Let h̃(n)D denote the disease-induced herd immunity level when all

households are size n, with all individuals in a given household the same type

and with λ = λ (n) chosen such that R0 > 1 is held fixed. Then h̃(n)D is increasing

with n.

Proof. Note that R0 = RI in the highly locally infectious case. We calculate

λ (n) such that R0 is held fixed. In the notation of Section 4.3.2, we have R2
0 =

aR0 +u⊤v, where a = λ ∑
J
j=1 β 2

j γ j. Further, we have u j = (n− 1)β jγ j and

v j = λβ j. Fixing R0 > 1, this gives

λ
(n) =

R2
0

(R0 +n−1)∑
J
j=1 β 2

j γ j
.

Further, letting π (π̃) denote the probability a type-1 individual avoids global

infection when all households are size n (size n+ 1) we have, in an obvious

notation, z = 1−∑
J
j=1 γ jπ

nβ j and z̃ = 1−∑
J
j=1 γ jπ̃

(n+1)β j . Suppose that πn =

π̃n+1 = q ∈ (0,1), so that the same fraction z (= z̃) are infected at the end of

the respective epidemics. The threshold parameters for the second epidemic,

denoted R(n)
D , satisfy

R(n)
D (q) =

J

∑
j=1

β
2
j γ jqβ jR(n)

D (1),

where R(n)
D (1) = nλ

(n). An elementary calculation establishes that R(n)
D (1) is in-
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creasing with n, so that the solution to R(n)
D (q) = 1 decreases as n increases. This

implies a greater fraction infected in the first epidemic as n increases, whence

h̃(n+1)
D > h̃(n)D , as required.

We observe for this household category distribution that, for fixed R0, the

disease-induced herd immunity level h̃(n)D increases with n whilst, by Theorem

5.1, hC = 1−R−1
0 is fixed. It is therefore of interest to find the limit of h̃(n)D

as n → ∞. In the case of no activity levels, we show in Theorem 2.3 that

lim
n→∞

h̃(n)D = 1−R−2
0 , so that h(n)D ∈

[
1−R−1

0 ,1−R−2
0
)
. The following theorem

extends this to the multitype case, where the corresponding limit as n→ ∞ is

the solution to a nonlinear equation.

Theorem 5.5. Under the same conditions and assumptions as Theorem 5.4, we

have lim
n→∞

h̃(n)D = h̃(∞)
D , where

h̃(∞)
D = 1−

J

∑
j=1

γ jq
β j
∞ , (5.7)

with q∞ the unique solution in (0,1) of

J

∑
j=1

β
2
j γ jqβ j =

1
R2

0

J

∑
j=1

β
2
j γ j. (5.8)

Proof. Note that, for each n ∈N, the equation R(n)
D (q) = 1 has a unique solution

in (0,1), forming a sequence (qn)n≥1. Further, R(n)
D → R(∞)

D uniformly as n→∞,

where

R(∞)
D (q) =

R2
0 ∑

J
j=1 β 2

j γ jqβ j

∑
J
j=1 β 2

j γ j
.

It is clear that the sequence (qn)n≥1 is non-decreasing and bounded below, im-

plying that q∞ = lim
n→∞

qn exists. Moreover, the uniform convergence of R(n)
D to

R(∞)
D implies that R(∞)

D (q∞) = 1; it can easily be shown that this is the unique

root of R(∞)
D (q) = 1 in (0,1). Then q∞ can be computed by solving (5.8), from

which h̃(∞)
D satisfies (5.7), as required.

Theorem 5.4 implies that, provided we can find parameters (β1,β2, . . . ,βJ)

and (γ1,γ2, . . . ,γJ) with h̃(∞)
D ≤ 1−R−1

0 , we will have a scenario in which h̃(n)D ≤
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hC for all n. We consider extending Britton et al. [2020], Table 1, to the present

highly locally infectious households setting. In Britton et al. [2020] the parame-

ters (γ1,γ2,γ3) =
(1

4 ,
1
2 ,

1
4

)
and (β1,β2,β3) = (1,2,4) were used, corresponding

to half, standard and double activity. We consider these parameters in Table 5.1,

as well as (β1,β2,β3) = (1,3,9) in Table 5.2.

n = 1 n = 2 n = 3 n = 4 n = 5 n→ ∞ hC
R0 = 2.0 37.7 48.6 52.5 54.5 55.7 60.8 50.0
R0 = 2.5 46.3 57.7 61.8 64.0 65.3 70.9 60.0
R0 = 3.0 52.5 63.8 67.9 70.1 71.5 77.3 66.7

Table 5.1: Values of h̃D and hC for a model with all households size n, and
all members of a given household the same activity level in the highly locally
infectious case, taking (γ1,γ2,γ3) = (1

4 ,
1
2 ,

1
4) and (β1,β2,β3) = (1,2,4). Values

correspond to percentages and are rounded to 1 decimal place.

n = 1 n = 2 n = 3 n = 4 n = 5 n→ ∞ hC
R0 = 2.0 14.9 37.0 40.0 42.1 43.0 47.1 50.0
R0 = 2.5 18.0 44.4 47.9 50.0 51.2 56.4 60.0
R0 = 3.0 20.0 49.7 53.5 55.5 56.7 62.8 66.7

Table 5.2: Values of h̃D and hC for a model with all households size n, and
all members of a given household the same activity level in the highly locally
infectious case, taking (γ1,γ2,γ3) = (1

4 ,
1
2 ,

1
4) and (β1,β2,β3) = (1,3,9). Values

correspond to percentages and are rounded to 1 decimal place.

Table 5.1 illustrates the impact of household structure; observe that h̃D ex-

ceeds hC once the common household size n≥ 3. Table 5.2 provides an example

of activity rates for which h̃D < hC regardless of the common household size

n, although for this model some individuals are far more active than others. In

complete contrast to the household category distribution in Section 5.5.1, highly

active individuals in this model can be infected without infecting individuals of

the other types. Thus disease-induced herd immunity is able to be achieved

efficiently since the epidemic can effectively target highly active individuals,

giving a heuristic justification for why h̃D < hC can occur if the activity levels

are contrasting enough.
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5.5.3 Fully clumped, two types framework

In this section we consider the case in which γ1 = 1− γ2 = p, with activity rates

(β1,β2) = (1,β ). We maintain the highly locally infectious assumption, with all

households size n and all individuals in a given household the same type. We

provide a framework for comparing h̃D and hC, which in general is difficult to

analyse for β > 1. We then make direct progress in the cases β = 2 and β = 3

respectively.

We drop the explicit dependence of threshold parameters on p and n for

ease of exposition. Consider first disease-induced herd immunity and let π ∈

(0,1) denote the probability a typical type-1 individual avoids global infection,

with q = πn. Using (5.2), we find that the threshold parameter for the second

epidemic is given by

RD(q) = nλq(p+β
2(1− p)qβ−1), (5.9)

with the final size of the first epidemic given by

z(q) = 1− pq− (1− p)qβ .

Then, using (5.4), we have

RU(c) = λ{p+β
2(1− p)}(1− c){1+(n−1)(1− c))}

Writing R̃U(q) = RU(z(q)), corresponding to vaccinating a proportion z(q) of

the population uniformly at random, we have

R̃U(q) = λq{p+β
2(1− p)}(p+(1− p)q2){1+(n−1)(pq+(1− p)qβ )}

For a given value of β , we wish to study where the function

f (β )n,p (q) =
1
λ
(RD(q)− R̃U(q)) (5.10)

= nq(p+β
2(1− p)qβ−1)−{p+β

2(1− p)}(1− c){1+(n−1)(1− z(q))}
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changes sign in (0,1) in order to determine whether h̃D > hC. The location of

these sign changes will typically depend on both n and p. Observe that, for all

β ≥ 1, we have f (β )n,p (0) = f (β )n,p (1) = 0; in cases where β is an integer we can

then use algebraic division to write f (β )n,p (q) = q(1− q)g(β )n,p(q). If g(β )n,p(q) > 0

(g(β )n,p(q)< 0) for all q ∈ (0,1) then h̃D > hC (h̃D < hC). If g(β )n,p(q) changes sign

over (0,1) then both orderings of h̃D and hC can occur, depending on λ . We

consider β = 2 and β = 3, corresponding to the cases in which g(β )n,p is quadratic

and quartic respectively. In the sequel we suppress the dependence of f and g

on β for ease of exposition.

Standard and double activity

The following theorem relates the ordering of h̃D and hC to the common house-

hold size and the proportion of type-1 individuals in the case of standard and

double activity.

Theorem 5.6. Suppose all members of a given household are the same type, in

the highly locally infectious case, with common household size n > 1. Suppose

there are two activity levels, with standard and double activity. Let p denote

the proportion of individuals who are type 1 (standard activity). If n ≥ 4, then

h̃D > hC independently of the value of p. When n ∈ {2,3}, if p ≥ 4−n
3 then

h̃D > hC, otherwise there is a value λ ∗(n, p) such that h̃D > hC (h̃D < hC) for

λ < λ ∗(n, p) (λ > λ ∗(n, p)). Moreover, we have

λ
∗(n, p) =

[
npq̂n(p)+4n(1− p)q̂2

n(p)
]−1

, (5.11)

where q̂n(p) is the unique solution in (0,1) to

(n−1)(1− p)2(4−3p)q2 +(n−1)(1− p2)(4−3p)q+3p2− (4−n)p = 0.

Proof. Substituting β = 2 into (5.10), we have

fn,p(q) = q(1−q)gn,p(q), (5.12)
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where

gn,p(q)= (n−1)(1− p)2(4−3p)q2+(n−1)(1− p2)(4−3p)q+3p2−(4−n)p.

Note that gn,p(q) is quadratic with positive coefficients of q2 and q respectively.

There are no positive solutions to gn,p(q) = 0 if and only if the constant term is

non-negative, which is equivalent to

p≥ 4−n
3

.

If n≥ 4 then the above condition is satisfied for all p ∈ (0,1), yielding h̃D > hC

independently of the value of p. If p < 4−n
3 then g(q) has two roots which differ

in sign. Now

g′(1) = (n−1)(4−3p)(1− p)(3− p)> 0,

which implies that the positive root of gn,p(q) belongs to (0,1). The change in

sign of gn,p(q), and hence of fn,p(q), occurs when gn,p(q) = 0 which is given,

by definition, by q̂n(p). The change of behaviour occurs when RD(q̂n(p)) =

R̃U(q̂n(p)) = 1. Substituting q̂n(p) and β = 2 into (5.9) then establishes (5.11),

as required.

Theorem 5.6 implies that, in the present setting of standard and double ac-

tivity, we can have h̃D < hC provided the global infection rates are high enough.

In Figure 5.1 we consider how high the global infection rate has to be for this

to occur, by plotting the critical value (R∗0(n, p), say) at which h̃D = hC. Thus

h̃D > hC below the curve and h̃D < hC above it.
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Figure 5.1: The value of R∗0(n, p) (on a logarithmic scale) as a function of p for
n ∈ {2,3}.

Note that Figure 5.1 only considers p ∈ (0, 4−n
3 ); for values of p outside

of this interval there is no value of R0 such that h̃D < hC. We observe that

R∗0(3, p)> R∗0(2, p), which is consistent with the fact that increasing household

size makes a scenario in which h̃D < hC more difficult to achieve. One can show,

for n = 2 and n = 3, that limp↑ 4−n
3

R∗0(n, p) = ∞ and limp↓0 R∗0(n, p) = ∞.

Standard and triple activity

We now consider the case of standard and triple activity, corresponding to taking

β = 3. We begin with a supporting lemma regarding gn,p, before restricting

attention to the common household size n = 2 and n = 3 respectively.

Lemma 5.7. When β = 3 and for all p ∈ (0,1) and n ≥ 2, we have fn,p(q) =

q(1−q)gn,p(q), where the function

gn,p(q) =(n−1)(9−8p)(1− p)2q4 +(n−1)(9−8p)(1− p)2q3

+(n−1)(9−8p)(1− p2)q2

−{(n−1)(8p−9)p2 + p(8p−9+n)}q+ p(8p−9+n)
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is convex on R.

Proof. Let

g̃n,p(q) =
gn,p(q)

(n−1)(9−8p)(1− p)2 .

We will show that g̃′′n,p(q)> 0, so that gn,p is convex. Appropriate differentiation

yields

g̃′′n,p(q) = 12q2 +6q+
2(1+ p)
(1− p)

= 12

[(
q+

1
4

)2

− 1
16

]
+

2(1+ p)
(1− p)

= 12
(

q+
1
4

)2

− 3
4
+

2(1+ p)
(1− p)

> 0,

since p ∈ (0,1).

Theorem 5.8. Suppose all members of a given household are the same type, in

the highly locally infectious case, with common household size n = 2. Suppose

there are two activity levels, with standard and triple activity. Let p denote the

proportion of individuals who are type 1 (standard activity), and define

p± =
37±

√
73

48
.

If p ∈ [p+,1), then h̃D > hC. If p ∈ (7
8 , p+) then h̃D < hC (h̃D > hC) for λ <

λ ∗(p) (λ > λ ∗(p)). If p ∈ [p−, 7
8 ] then h̃D < hC. If p ∈ (0, p−) then h̃D > hC

(h̃D < hC) for λ < λ ∗(p) (λ > λ ∗(p)). Moreover, we have

λ
∗(p) =

1
2
[
pq̂(p)+9(1− p)q̂3(p)

]−1
,

where q̂(p) is the unique solution in (0,1) to

(9−8p)(1− p)2q4 +(9−8p)(1− p)2q2 +(9−8p)(1− p2)q2

− p(1− p)(8p+7)q+ p(8p−7) = 0.

Proof. Using the framework of Section 5.5.3 with n = 2 and β = 3 and letting
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f2,p = fp we have that fp(q) = q(1−q)gp(q), where

gp(q) = (9−8p)(1− p)2q4 +(9−8p)(1− p)2q2 +(9−8p)(1− p2)q2

− p(1− p)(8p+7)q+ p(8p−7).

Now gp is convex by Lemma 5.7, so that gp has at most two real roots. Note that

gp(0) = p(8p−7) and gp(1) = 48p2−74p+27 = 0 when p = p±. Moreover,

g′p(1) = (1− p)(32p2−124p+81).

We consider the possible values of p in turn. When p ∈ (1, p+], we have

g(1) ≥ 0, so that any real roots of gp have the same sign. For such p, we have

gp(0)> 0, gp(1)> 0 and g′p(1)< 0, so that gp has no real roots; it follows that

gp(q)> 0 for q ∈ (0,1). When p ∈ (7
8 , p+) we have gp(0)> 0, so that any real

roots of gp have the same sign. Now gp(1) < 0, so that gp has a unique root in

(0,1).

Suppose now that p∈ [p, 7
8 ]. Then gp(0)≤ 0 and gp(1)≤ 0, so that gp(q)<

0 for all q ∈ (0,1). Finally, suppose that p ∈ (0, p−). We have gp(0)< 0, which

implies two roots that differ in sign. The fact that gp(1) > 0 then establishes

a unique root of gp in (0,1). The orderings regarding h̃D and hC then follow

from the discussion in Section 5.5.3. At points where behaviour changes from

h̃D > hC to h̃D < hC we have gn,p(q) = 0 which occurs, by definition, at q =

q̂(p). At such a point, we have RD(q̂(p)) = R̃U(q̂(p)) = 1; substitution into

(5.9) establishes the expression for λ ∗(p), which completes the proof.

We next extend Theorem 5.8 to the case where all households are size 3.

Theorem 5.9. Suppose all members of a given household are the same type, in

the highly locally infectious case, with common household size n = 3. Suppose

there are two activity levels, with standard and triple activity. Let p denote the

proportion of individuals who are type 1 (standard activity).

If p ∈ [ 9
10 ,1), then h̃D > hC. If p ∈ (3

4 ,
9

10) then h̃D < hC (h̃D > hC) for

λ < λ ∗(p) (λ > λ ∗(p)). If p = 3
4 then h̃D < hC. If p ∈ (0, 3

4) then h̃D > hC
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(h̃D < hC) for λ < λ ∗(p) (λ > λ ∗(p)). Moreover, we have

λ
∗(p) =

1
3
[
pq̂(p)+9(1− p)q̂3(p)

]−1
,

where q̂(p) is the unique solution in (0,1) to

(9−8p)(1− p)2q4 +(9−8p)(1− p)2q3 +(9−8p)(1− p2)q2

− p(1− p)(8p+3)q+ p(4p−3) = 0.

Proof. We use an argument analogous to that of the proof of Theorem 5.8, but

taking n = 3 instead; using the notation of that theorem, we have

gp(q) = 2{(9−8p)(1− p)2q4 +(9−8p)(1− p)2q3 +(9−8p)(1− p2)q2

− p(1− p)(8p+3)q+ p(4p−3)},

which is convex by Lemma 5.7. Now gp(0) = p(8p−6), gp(1) = 40p2−66p+

27 = (4p−3)(10p−9), and g′p(1) = 2(1− p)(32p2−120p+81). If p∈ [ 9
10 ,1)

then gp(0) > 0, gp(1) ≥ 0 and g′p(1) < 0, so that gp(q) > 0 for all q ∈ (0,1).

If p ∈ (3
4 ,

9
10), then gp(0) > 0 and gp(1) < 0, implying gp has a unique root in

(0,1). If p = 3
4 then gp(0) = gp(1) = 0, and gp(q)< 0 for all q ∈ (0,1). Finally,

if p ∈ (0, 3
4) then gp(0) < 0 and gp(1) > 0, implying that gp has a unique root

in (0,1). The ordering of h̃D and hC, as well as the expression for λ ∗(p), follow

from identical reasoning to that which is used in the proof of Theorem 5.8.

Theorem 5.8 and Theorem 5.9 demonstrate the effect of increasing the ac-

tivity rate of the second type, where we observe that h̃D > hC is harder to achieve

for fixed n when β is increased from β = 2 to β = 3. We expect that this or-

dering is “continuous” in β ; supposing that h̃D > hC for some fixed n and p, we

would expect that this ordering still holds for β ′ < β . When p ↓ 0 or p ↑ 1 we

find h̃D > hC; in this limiting case all households are size n with no typing, so

this ordering is in agreement with the findings of Section 2.4.2.
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5.6 Numerical analysis, 0 < λL < ∞

In this section we consider numerical comparison of herd immunity levels with-

out the highly locally infectious assumption. We take TI ∼ Exp(1), recalling the

discussion in Section 2.5.1, and, where we vary the local infection rate, we do

this using pL rather than λL. Where relevant, we note the connection between

the numerical analysis when pL = 1 and the results of Section 5.5. We thus

consider h̃D and hC as functions of pL for various choices of household category

distribution.

5.6.1 Variable clumping

In Section 5.5 we observed that the distribution of types among the households

has an effect on the disease-induced herd immunity level. We now investigate

the clumping of individuals of the same type as follows. Suppose that J = 2

and, initially, that all households are size 2. Suppose γ1 = 1− γ2 = 1
2 . As in

Section 4.2 we let θn denote the proportion of households of category n. We

parameterise between full clumping and no clumping by letting xC ∈ [0,1] and

setting

(θ(2,0),θ(1,1),θ(0,2)) =
(xC

2
,1− xC,

xC

2

)
.

Thus xC = 0 corresponds to the case where individuals of different types mix

locally as much as possible, with xC = 1 corresponding to maximal clumping of

types, in which type-1 individuals only mix locally with type-1 individuals. The

above idea can be extended to larger values of the common household size n,

although such an extension is not unique without further parameterisation; we

proceed in the case n = 3 by taking

(θ(3,0),θ(2,1),θ(1,2),θ(0,3)) =

(
xC

2
,
1− xC

2
,
1− xC

2
,
xC

2

)
.

193



Figure 5.2: Herd immunity levels h̃D and hC against pL, when γ1 = γ2 = 0.5,
for different values of the clumping parameter xC ∈ [0,1], R0 = 2, common
household size n ∈ {2,3} and activity levels 1 and β , where β ∈ {2,3}.

In Figure 5.2 we plot h̃D as a function of pL when n = 2 and n = 3 for fixed

values of xC, with R0 = 2. Recall that, under these assumptions, hC = 1−R−1
0 =

1
2 is constant. We also have h̃D < hC when pL = 0 by Theorem 5.2. Moreover,

when xC = 0, we have h̃D > hC as pL→ 1 owing to Theorem 5.3. We observe

that h̃D increases with pL, with lower values for h̃D as xC increases (for fixed pL).

This illustrates the suspected trend that separating individuals of different types

from mixing locally causes the disease-induced herd immunity level to decrease,

as disease-induced herd immunity spreads more efficiently in that household

structure. Moreover, in the plot corresponding to n = 2 and β = 3, we observe

that h̃D < hC for all pL when xC = 1. It is clear that, for intermediate values

of pL, the clumping affects the value of h̃D, as well as whether h̃D > hC. The

discrepancy between the values of h̃D obtained as xC varies can be quite high;

for example, the percentage increase in h̃D from xC = 1 to xC = 0 when pL = 1

in the case n = 3, β = 3 is 21.2%.

We now consider a similar comparison when γ1 = 1− γ2 = p ̸= 1
2 . In this
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case xC = 0 loses its correspondence with the household structure of Theorem

5.3 in which all households have one individual of each type, and xC = 1 does

not correspond to fully clumped households. Letting p̃ = min{p,1− p}, we

take

(θ(2,0),θ(1,1),θ(0,2)) = (p− p̃(1− xC),2p̃(1− xC),1− p− p̃(1− xC))

when all households are size 2. Note that this choice of parameterisation is such

that xC = 1 corresponds to type-1 and type-2 individuals being separated, i.e.

clumped, as much as possible. The corresponding parameterisation when the

common household size n = 3 is

(θ(3,0),θ(2,1),θ(1,2),θ(0,3))= (p− p̃(1− xC), p̃(1− xC), p̃(1− xC),1− p− p̃(1− xC)) .

Figure 5.3: Herd immunity levels h̃D and hC against pL, when γ1 =
1
4 , for dif-

ferent values of the clumping parameter xC ∈ [0,1], R0 = 2, common household
size n ∈ {2,3} and activity levels 1 and β , where β ∈ {2,3}.
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Figure 5.4: Herd immunity levels h̃D and hC against pL, when γ1 =
3
4 , for dif-

ferent values of the clumping parameter xC ∈ [0,1], R0 = 2, common household
size n ∈ {2,3} and activity levels 1 and β , where β ∈ {2,3}.

In Figure 5.3 (Figure 5.4) we take p = 1
4 (p = 3

4 ) and R0 = 2, allowing xC to

vary. Broadly speaking, when p = 1
4 we see h̃D > hC for a larger range of values

of pL, likely owing to the fact that many type-1 individuals reside in households

with a type-2 individual which, as discussed previously, is inefficient in terms

of herd immunity. We again observe a large range of values for h̃D based on the

value of the clumping parameter xC.

5.6.2 Common household size with three types of individuals

In Section 5.6.1 we investigated the distribution of types using a clumping argu-

ment. As discussed there, such a method is not simple to parameterise when the

common household size n ≥ 3. Moreover, there are a vast number of choices

for infection parameters and household category distributions, even for a fixed

common household size n. In this section we focus on a specific subset of these

choices and observe the behaviour of h̃D and hC. In particular, we assume that

there are three types of individual, in proportions (γ1,γ2,γ3) = (1
4 ,

1
2 ,

1
4). We

assume a common household size n, and that the activity levels are given by
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(1,β ,β 2) for some β ≥ 1. When β = 2 this parameterisation is analogous to

that which was used by Britton et al. [2020], except incorporating household

structure. We note that this choice of parameters is for the purposes of demon-

strating how h̃D and hC in a model with activity level and household structure,

and other choices of parameter values are of interest – see Section 5.7 for further

discussion of parameter selection.

The parameter β controls how different the three activity levels are from

one another, with β = 1 corresponding to the single-type households model. In

Figure 5.5 we consider an example in which we vary β , demonstrating the effect

on h̃D.

Figure 5.5: Values of h̃D for a population with common household size n = 3,
activity levels (1,β ,β 2) for various values of β and (γ1,γ2,γ3) = (1

4 ,
1
2 ,

1
4) and

R0 = 2.

In Figure 5.5 we assume that all individuals in a given household have the

same type. When β = 1 we have h̃D > hC (recall Theorem 2.15). The lower

curves in Figure 5.5 correspond to increasing β , thus making the activity levels

of different individuals differ more greatly. We observe, even for β = 2, a sharp

reduction in h̃D compared to β = 1. As β increases further there are scenarios in
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which h̃D < hC for all pL ∈ (0,1). Moreover, when β is taken to be very large,

we find that, for given values of R0 and pL, the value of h̃D differs from the

corresponding value of h̃D in the households model (i.e. when β = 1) only by a

multiplicative constant. We provide a justification of this as follows. As β → ∞

there is one activity level which is far more active than the other two; when the

epidemic begins the individuals with this activity level will get infected first.

Since these individuals are far more active, achieving herd immunity among

this group essentially achieves herd immunity for the population as well. This

suggests that, as β →∞, the disease-induced herd immunity level is of the form

γ3
ˆ̃hD, where ˆ̃hD is the disease-induced herd immunity level for a single type

households epidemic with the given values of R0 and pL. If the assumption of

individual types being fully clumped is removed, the above argument no longer

holds, although it does provide a lower bound for h̃D.

The above heuristic argument generalises to more than three types, pro-

vided one type is much more highly active than the others. (The parameteri-

sation (1,β ,β 2) for the activity levels is not necessary for the above argument

to hold.) The above argument also implies that, if β is large and γ3 is small,

h̃D, which is bounded above by γ3, will be small. This represents a case where

disease-induced herd immunity is at its most efficient, because the population

can be protected by a small number of the highly active individuals being in-

fected. In particular, this is more efficient that uniform vaccination, which will

vaccinate large proportions of individuals of other types when γ3 is small.

The previous example considered varying the strength of activity levels.

We next fix an activity level and allow the common household size n to vary.

We persist with the same proportion of individuals of each type and consider

two distributions of types. The first distribution of types is the fully clumped

distribution in which all individuals in a given household are the same type.

The second distribution assumes that the number of individuals of each type

in a household of size n follows a multinomial distribution with probabilities

p = (1
4 ,

1
2 ,

1
4). In Figure 5.6 we plot h̃D and hC for these choices of distribution

when β = 2 and R0 = 2 are fixed, where we vary both pL and the common

household size n. In Figure 5.7, we calculate, for each pL, the corresponding
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critical value (β ∗(pL), say) of β such that h̃D = hC.

Figure 5.6: Values of h̃D and hC for a population with common household size
n ∈ {2,3,4,5}, activity levels (1,β ,β 2) with β = 2, (γ1,γ2,γ3) = (1

4 ,
1
2 ,

1
4) and

R0 = 2. The left plot corresponds to fully clumped types and the right plot
corresponds to a multinomial distribution for individual types.

Figure 5.6 is consistent with the previous discussions regarding clumping

of individuals of the same type reducing the disease-induced herd immunity

level – see the values on the y-axis. Broadly speaking, a larger local infection

rate is required to achieve h̃D > hC in the multinomial case than in the fully

clumped case. In particular, we observe h̃D < hC when all households are size

2 in the fully clumped case, but the same statement does not hold for a multino-

mial distribution of types. Note that h̃D is not monotone in pL, since R0 is being

held fixed, and thus the global infection rates are implicitly changing. This be-

haviour is consistent with the households model in the absence of individual

types – cf. Figure 2.10, which can be recovered by setting β = 1.
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Figure 5.7: Critical value β ∗ of β such that h̃D = hC for a population with com-
mon household size n ∈ {2,3,4,5}, activity levels (1,β ,β 2) with (γ1,γ2,γ3) =
(1

4 ,
1
2 ,

1
4) and R0 = 2. The left plot corresponds to fully clumped types and the

right corresponds plot to a multinomial distribution for individual types.

Comparison of different household sizes in Figure 5.7 illustrates that, for

fixed R0, a larger value of β is required in order to achieve h̃D = hC as the

household size n increases. (Note that if n= 1 then β ∗(pL) = 1 is constant, since

any introduction of activity levels will lead to h̃D < hC.) Moreover, comparing

the multinomial and fully clumped cases, we see that the required value of β for

the fully clumped case is lower than the corresponding value for the multinomial

case. The fact that β ∗(pL) does not increase monotonically in pL is suggested

by the fact that h̃D is not monotonic in pL (recall Figure 5.6).

5.6.3 Real-world household size distributions

We consider some brief numerical analysis of herd immunity levels using real-

world household size distributions. We focus first on the UK household size

distribution, before giving a comparison between countries with quite different

mean household sizes – recall Figure 2.12.
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Figure 5.8: Values of h̃D against pL for β ∈ {1,1.5,2,2.5,3,5}, using the UK
household size distribution and taking R0 = 3. The left plot corresponds to fully
clumped types and the right plot corresponds to a multinomial distribution of
types; in both cases (γ1,γ2,γ3) = (1

4 ,
1
2 ,

1
4).

Figure 5.8 provides another comparison of the disease-induced herd immu-

nity levels when the individual types are fully clumped or follow a multinomial

distribution. It is clear that the disease-induced herd immunity level can reduce

drastically from the corresponding value in the households model (when β = 1)

with this difference being even larger in the case when individual types are fully

clumped. Moreover, the increase in h̃D as pL increases is much less for the fully

clumped case compared to the multinomial case. We suspect that this is because

of the aforementioned impact of allowing highly globally active individuals to

mix locally with individuals of a lower activity level, so that in the multino-

mial case the local mixing has more of an impact on the disease-induced herd

immunity level.

We next consider the UK household size distribution with two types of

individuals, with rates 1 and β , and let the number of individuals of type 1

follow a binomial distribution.
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Figure 5.9: Values of h̃D against pL for β ∈ {1,2,2.5,3,5}, using the UK house-
hold size distribution and taking R0 = 2. The number of type-1 individuals in a
household of size n is binomial with parameters (n, p).

The numerical results given by Figure 5.9 are qualitatively similar for dif-

ferent values of p; other choices of p, R0 and real-world household size distri-

bution produced similar results. The disease-induced herd immunity level again

is highly variable and dependent on the activity rate β chosen. Broadly speak-

ing, when the proportion p of type-1 individuals is small the values of h̃D are

closer together, suggesting that the effect of the activity levels is less when most

individuals belong to the higher activity level.

We conclude our numerical analysis by giving comparisons h̃D and hC for

a few different real-world household size distributions, viz. Mexico, Morocco,

Pakistan, Sweden and UK – see Figure 5.10.
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Figure 5.10: Values of h̃D against pL for several real-world household size distri-
butions, with activity levels (β1,β2) = (1,2). The number of type-1 individuals
in a household of size n is binomial with parameters (n, 1

2).

Whilst hC = 1−R−1
0 when pL = 0 and pL = 1, we note that, in Figure

5.10, hC does not change much for intermediate values of pL; using 1−R−1
0

as a baseline for comparison with h̃D is certainly reasonable. Note that both

h̃D and hC are larger in Figure 5.10 for countries with a larger mean household

size. This is consistent with the findings of Chapter 2. Varying the proportions

of individuals of type 1, as in Figure 5.9 leads to very similar observations,

although they are omitted here for succinctness.

5.7 Discussion

We have provided a framework for studying h̃D and hC in a model combining ac-

tivity levels and household structure, as well as proving that h̃D < hC for a model

with activity levels only. In the highly locally infectious case we have derived

conditions upon which h̃D > hC for particular household category distributions.

We have shown, and justified heuristically, that the rate at which individuals of

different types mix locally is integral to the ordering of h̃D and hC. We have

also illustrated that, for models calibrated by R0, increasing the household size

tends to increase h̃D. In contrast, when individual activity levels become more

different from one another, we have observed that h̃D decreases.
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From a healthcare perspective, we would like to provide a reliable estimate

of the disease-induced herd immunity level. It is therefore, owing to the above

calculations, important to ascertain how highly clumped the highly globally ac-

tive individuals are. It is also of interest to study how much “more active” an

active individual is – we have seen that this can drastically impact the disease-

induced herd immunity level. These numerical calculations also support the idea

of vaccinating first the most highly active individuals; doing so mimics the effi-

cient spread of disease-induced herd immunity. As a result, the assumptions of

activity level and household structure illustrate a more complex and changeable

scenario in terms of herd immunity than that of Chapter 2.

As noted in Section 5.1 it is possible to compute hD for the activity level

and households model. Although the number of ODEs does quickly grow, one

possible extension is to compute hD for households of size 2 or 3, and to com-

pare hD to h̃D and hC. We expect that hD would be approximated well by h̃D for

this model, as in the households model, with the approximation being worse as

the maximum household size increases.

The progress made in the case of two fully clumped types in Section 5.5.3

allows for some orderings of h̃D and hC, particularly when β is an integer be-

cause the resulting functions are polynomials. It may be possible to extend these

results to non-integer β , provided a different method is used to study the result-

ing function g(β )n,p . It is likely that convexity still holds, although the fact that

g(β )n,p(0) = g(β )n,p(1) = 0 can no longer be used to help factorise g(β )n,p . Despite this,

we have been able to gain insight from integer values of β in terms of observing

the effect of activity levels on disease-induced herd immunity.

It is clear that further numerical analysis could be conducted in order to

investigate in more detail the interaction between activity level and household

structure in the context of herd immunity. It is possible to do similar analysis

to that of Section 5.6 when individuals are typed locally; we have omitted such

analysis owing to a lack of obvious parameter choices for local infection rates,

as well as for succinctness. Similar analysis could also be done for a model

with only variable susceptibilities, by appropriate modification of the model of

Chapter 4, as well as in the absence of proportionate mixing. Moreover, it would
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be good to apply the analysis of this chapter to real-world data. We have already,

in Section 2.5.4, given a method to estimate household size distributions from

data. We would like be able to efficiently estimate the contact structure of the

population of interest. Recall that, particularly in cases where a small proportion

of individuals are much more active than all others, the disease-induced herd

immunity level can be drastically reduced below the level suggested by a model

with only household structure. Being able to accurately estimate contact rates

is highly dependent on the data available. For example, Wallinga et al [2006]

estimated contact rates among different age groups, using maximum likelihood

estimation on survey data. Choosing a sensible number of activity levels, as well

as how much these levels differ from one another, remains an open problem.
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6 Impact of global restrictions on disease-induced

herd immunity

6.1 Introduction

In this chapter we study disease-induced herd immunity, for a population under

global restrictions, in more detail. Recall, in Chapter 2, the method to obtain

h̃D, in which we reduce global transmission rates such that a first epidemic ter-

minates when R∗ among the remaining susceptible population reaches one. In

doing so we assume that local infection rates are unaffected. In practice, local

infection rates are likely to increase as a result of global restrictions, as individu-

als would spend more time than usual in their household. We consider applying

restrictions that decrease the rate of global mixing, but increase the rate of local

mixing and observe the effect this has on the disease-induced herd immunity

level.

As seen in Section 2.3.2, global restrictions in the households model can

result in a scenario in which a first epidemic will terminate with the population

having achieved herd immunity. If restrictions are too strong, however, there is a

possibility that no major outbreak can occur until the restrictions are relaxed. In

such a scenario, herd immunity is not achieved at the time of ending restrictions.

Moreover, if global restrictions are too weak to prevent a first wave of infection,

a scenario may occur in which the remaining susceptible population has not

achieved herd immunity and is vulnerable to a second major outbreak. We prove

that these behaviours are possible in the sequel. We then ascertain under what

conditions two such major outbreaks are preferable to a single epidemic, in

terms of the proportion of individuals ever infected. We also make a connection

between the stopping of an unrestricted epidemic in real time and running a

globally restricted epidemic to termination.

Imposing global restrictions on mixing rates is a type of epidemic control,

which has been the subject of several studies, in particular in the case of deter-

ministic SIR models. Morton and Wickwire [1974] consider such a problem and

find that the optimal policies are of the form of “bang-bang” controls, where the
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policy switches from no control to full control. Bolzoni et al. [2017] considered

minimising the eradication time of the homogeneously mixing SIR epidemic via

control, where the eradication time refers to the time at which the proportion of

infectives falls to a specified level. Note that our control measure is transmission

reduction, which is one of four measures outlined in that paper. Behncke [2000]

sought optimal control in an attempt to minimise the total proportion infected,

finding the optimal control to be “maximum effort on some time interval”. They

considered a deterministic SIR model with more general dynamics than the ho-

mogeneously mixing model. In these and many other examples, the typical

approach is to apply control measures to the deterministic SIR epidemic model,

usually by modifying the associated ODEs, and to use Pontryagin’s Minimum

Principle for linear time optimal control problems (see Pontryagin [2018]) to

establish the optimal control. Optimal control in disease management is also

considered by Bussell et al. [2019]. In contrast to the aforementioned methods,

we proceed by using final size results, thus benefiting from the extra generality

of not requiring the assumption that infectious period distributions are Marko-

vian, as well as the reduced complexity of not having to study the epidemic in

real time.

This chapter is structured as follows. We begin in Section 6.2 by defining

a new disease-induced herd immunity level h̃∗D for the households model which

accounts for the potential for greater local spread at a time of global restrictions,

which we compare to the other disease-induced herd immunity levels defined in

Section 2.3.2. (We are grateful to Tom Britton for suggesting this idea and for

his insight during discussions regarding this chapter.) We then, in Section 6.3,

consider in more depth the scenario where restrictions are applied throughout a

first epidemic, before being completely removed for a second epidemic. If re-

strictions are too strong for the population to be able to achieve herd immunity

during the first epidemic, two major outbreaks may occur. We show that a single,

globally restricted, epidemic which terminates with the population at criticality

always leads to fewer individuals infected than any other choice of global re-

striction that are applied uniformly throughout only the first epidemic. We show

this for the multitype households model with proportionate global mixing, in-
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troduced in Chapter 4, from which it is immediate that the result also holds for

the households model and the multitype model with proportionate mixing.

6.2 Increased local infection during global restrictions: the

disease induced herd immunity level h̃∗D

As discussed in Section 6.1, it is likely that, in practice, the local infection rate

will increase during a period of global restrictions, owing to individuals being

unable to mix at their usual rate with individuals outside their household. We

briefly investigate how this affects the disease-induced herd immunity level, by

defining a new disease-induced herd immunity level h̃∗D and comparing it to the

herd immunity levels defined in Chapter 2.

6.2.1 Common household size

Recall the definition of h̃D in Section 2.3.2. We extend this to the case where

local infection is increased during global restrictions. We assume that the local

infection rate increases in such a way that the mean total number of contacts

made by an individual remains fixed. Consider first the model with common

household size n > 1 and E[TI] = 1. Assume that R∗ > 1, since otherwise herd

immunity would already have been achieved. In that model the mean total num-

ber of contacts (λ , say) made by a typical individual during their infectious

period satisfies

λ = λG +(n−1)λL.

It follows that λ will remain fixed if the first epidemic is run with infection

parameters (αλG,β (α)λL), where α ∈ (0,1) and

β (α) = 1+
λG(1−α)

λL(n−1)
.

Let En(λG,λL) denote an epidemic in the households model with common house-

hold size n. In order to calculate h̃∗D, we first run En(αλG,β (α)λL) to its conclu-

sion, followed by an unrestricted epidemic (i.e. En(λG,λL)) among the remain-

ing susceptible population. We choose α = α∗ (cf. κ = κ∗ in Section 2.3.2)
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such that the second epidemic is at criticality. (Note that α∗ always exists since

taking α = 0 leaves the second epidemic supercritical and taking α = 1 leaves

the second epidemic subcritical.) Then h̃∗D is the final size of En(α∗λG,β (α∗)).

We anticipate that this modification, to increase the local infection rate as well

as reduce the global infection rate during the first epidemic, will increase the

disease-induced herd immunity level even further, owing to the extra clumping

from the increased local infection rates; we expect that h̃∗D > h̃D will typically

be true. The following theorem considers the case n = 2.

Theorem 6.1. Consider the households epidemic model with common house-

hold size n = 2, with λL ∈ (0,∞) and R∗ > 1. We have h̃∗D > h̃D.

Proof. We proceed by comparing reproduction numbers. Suppose that E2(αλG,λL)

and E2(α
′λG,βλL) infect the same proportion (z) of the population, with global

escape probabilities π and π∗ respectively. It follows that π∗> π , since the local

infection is greater in the latter epidemic. Let Pi (i = 0,1,2) denote the propor-

tion of households with i immune members after E2(αλG,λL), and define P∗i

(i = 0,1,2) analogously. In an obvious notation (cf. Section 2.4.4), we have

RD(λL) = λGE[TI]
2

∑
v=0

(
1− v

2

)
Pvµ2−v(λL)

R∗D(λL) = λGE[TI]
2

∑
v=0

(
1− v

2

)
P∗v µ2−v(λL).

Note that, since both epidemics are assumed to infect the same proportion z of

the population, we have

2P0 +P1 = 2P∗0 +P∗1 .

Note also that A := 2
(
P∗0 −P0

)
= 2(π∗−π)> 0, so that

R∗D(λL)−RD(λL) = λGE[TI]

[
(P∗0 −P0)µ2(λL)+

1
2
(P∗1 −P1)µ1(λL)

]
= AλGE[TI] [µ2(λL)−µ1(λL)]> 0,

from which it follows that h̃∗D > h̃D.

A proof of h̃∗D > h̃D has not been forthcoming for n > 2; we make the

209



following conjecture.

Conjecture 6.2. Consider the households epidemic model with common house-

hold size n > 1, with λL ∈ (0,∞) and R∗ > 1. Then h̃∗D > h̃D.

In Figure 6.1 we provide brief numerical support for Conjecture 6.2, ob-

serving that h̃∗D > h̃D > hD > hC. (Note that n = 2 in Figure 6.1 is consistent

with Theorem 6.1.) As discussed previously, the clumping of the remaining

susceptible population is greater under h̃∗D than under h̃D due to the extra local

infection. When λL = 0 (λL→∞) the within-house epidemics infect none of (all

of) the household, so h̃∗D = h̃D in these cases. Similar behaviours occur for other

choices of λG, with the difference between h̃∗D and hC increasing as the common

household size n increases.

In Figure 6.2 we illustrate the clumping of remaining susceptibles by con-

sidering the proportion of households with i members infected (0≤ i≤ n) under

h̃∗D, h̃D and hC respectively.

Figure 6.1: Comparison of herd immunity levels for common household size
n ∈ {2,3,4,5}, with λG = 2, as pL varies.
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Figure 6.2: Comparison of household states under h̃∗D, h̃D and hC for various
values of λL, with common household size n = 5 and λG = 1.5.

In Figure 6.2 we take (n,λG) = (5,1.5); note that other choices of (n,λG)

produce qualitatively similar results. Under hC individuals are vaccinated uni-

formly at random, so that the number of individuals infected in each household

follows a binomial distribution with parameters n and hC. It is clear in Figure

6.2 that the remaining susceptibles are more clumped under h̃∗D than h̃D, further

underlining the justification of Conjecture 6.2.

6.2.2 Unequal household sizes

In this section we briefly discuss the extension of h̃∗D to the households model

with unequal household sizes, together with numerical examples of the typical

ordering of the herd immunity levels. Assume that E[TI] = 1, without loss of

generality, and consider an individual chosen uniformly at random from the

population. Such an individual resides in a household of size n with probability

α̃n, so the mean total number of contacts made by a typical individual during
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their infectious period is given by

λ =
∞

∑
n=1

α̃n (λG +(n−1)λL)

= λG +λLE[H̃−1].

This can be held fixed by running the first epidemic with infection parameters

(αλG,β (α)λL), where

β (α) = 1+
λG(1−α)

λLE[H̃−1]
.

Then h̃∗D can be calculated in an analogous manner to the calculation for the

households model with a common household size. As in the case of common

household size, the typical behaviour is to have h̃∗D > h̃D > hD > hC; see Fig-

ure 6.3 for an example with real-world household size distributions. Thus the

assumption of increased local infection rates during global restrictions typically

increases the disease-induced herd immunity level even further.

Figure 6.3: Comparison of herd immunity levels using real-world household
size distributions for UK, Mexico, Morocco and Pakistan, with λG = 2 as pL
varies.
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It is natural to question whether this ordering of herd immunity levels can

be reversed. Whilst precise conditions for this inequality to hold are difficult to

establish, we show in Figure 6.4 a numerical example with h̃∗D < h̃D < hD < hC.

Figure 6.4: Comparison of herd immunity levels with λG = 2 and α̃5 = 1− α̃1 =
p.

Note that in Figure 6.4 the population comprises of households of size 1

and 5 only. We see that h̃∗D < h̃D when the size-biased proportion p of individuals

in households of size 5 is small, with the inequality changing as p varies. In this

case the majority of individuals belong to single-member households which are

not affected by the increase in local infection rates. Figure 6.4 is consistent with

findings in Chapter 2 in which sufficiently high variance of the household size

distribution can lead to hC < hD; it appears these findings extend, in the sense

that h̃∗D < h̃D < hD < hC when the variance of the household size distribution is

sufficiently large.

6.3 Two waves of infection

Whilst in Section 2.4 we make comparisons between the disease-induced and

vaccine-induced herd immunity levels, in reality it may be the case that, during
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the early stages of an epidemic, non-pharmaceutical interventions (such as a

lockdown) must be considered a primary option in order to limit disease spread.

The present study considers the strength of possible global restrictions and finds

that there is an optimal amount of global restrictions, beyond which restrictions

can become harmful in terms of how much of the population ultimately become

infected.

It seems natural to assume that the stronger global restrictions are, the more

well-protected the population will be from an epidemic. However, lockdowns

(or similar restrictions) are a finite resource which cannot be permanently main-

tained. If these restrictions are very strong and are then suddenly lifted, very

little of the population will be immunised in a first wave, leaving a risk of a

large second wave; in this case the final outcome will, in terms of the proportion

of the population infected, be similar to that of not imposing global restrictions

for the first epidemic. In this section we consider a first epidemic run with global

infection rates reduced by a factor α ∈ (0,1), followed by a second, unrestricted

epidemic among the remaining susceptibles.

The problem of optimal control is investigated numerically by Handel et

al. [2007], where it is noted that the optimal choice is a scenario in which the

first epidemic ends just as herd immunity is achieved. We prove this for the

homogeneously mixing model, where we also make a connection with optimal

stopping of a first epidemic. We then turn attention to the multitype households

model with proportionate global mixing. Throughout the sequel we assume that

all supercritical epidemics take off.

6.3.1 Homogeneously mixing epidemic

Consider the homogeneously mixing epidemic, denoted Eλ , as the population

size tends to infinity, assuming without loss of generality that E(TI) = 1. Then

R0 = λ for this model and, if global restrictions are applied to a first epidemic,

that first epidemic will have R0 = αλ , implying that R0 > 1 if and only if α >

λ−1. Letting α0 = λ−1, the first wave can only take off provided α > α0. Now

suppose that we choose α = α∗ such that the population is at criticality at the

end of the first epidemic. The threshold parameter R0 for the second epidemic
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satisfies R0 = λ (1− z1), where z1 is the proportion of individuals infected in the

first epidemic. Using Andersson and Britton [2000], Theorem 4.2, we have that

z1 is the unique solution in (0,1) of

1− z1 = exp(−α∗λ z1).

In order to have criticality for the second epidemic we require z1 = 1− λ−1,

which implies that

α∗ =
log(λ )
λ −1

.

Consequently, no second epidemic can occur if α ≥ α∗.

The above arguments demonstrate that there are three possibilities, depen-

dent on the choice of α . If α is too small then the first epidemic will be subcriti-

cal, leaving all of the population susceptible to an unrestricted second epidemic.

If α is too large then the first epidemic will be sufficient to achieve herd im-

munity and the second epidemic will fail to take off, but more individuals will

be infected than necessary. For intermediate values of α , there will be two

supercritical epidemics. Consider an epidemic model in which the population

is exposed to Eαλ , with all remaining susceptibles then exposed to Eλ (recall

our assumption that all supercritical epidemics take off). Denote this epidemic

model by Ẽα,λ and let z(α) denote the final size of Ẽα,λ . In Figure 6.5 we fix

λ and investigate z(α) as α varies, observing the behaviour described above.

Note that, when α0 < α < α∗, we have z(α) = z1(α)+ z2(α), say, where z1(α)

is the unique solution in (0,1) of

1− z1(α) = exp(−αλ z1(α)). (6.1)

Then z2(α) is given by the unique solution in (0,1− z1(α)) of

z2(α) = (1− z1(α))(1− exp{−λ z2(α)}). (6.2)

215



Figure 6.5: Plot of the final size z(α) as a function of α ∈ (0,1), taking λ = 3.
The dashed (dotted) line corresponds to α = α0 (α = α∗).

Figure 6.5 is consistent with the above calculations and is constructed, for

α ∈ (α0,α∗), by solving (6.1) and (6.2) numerically. Note that, in this example,

z(α) is minimised by taking α = α∗, i.e. by restricting the first epidemic as

much as possible whilst still achieving herd immunity for the second epidemic.

The following theorem establishes that this minimisation always occurs at α =

α∗. We note that z1(α) is a non-decreasing function of α , so that α0 < α∗.

Theorem 6.3. Suppose λ > 1. The final size of Ẽα,λ is minimised by taking

α = α∗, that is,

argmin
α∈[0,1]

z(α) = α∗.

Proof. Let z1(α) (z2(α)) denote the final size of the first (second) epidemic.

We divide [0,1] into three regions, using α0 and α∗. When α ≥ α∗ the second

epidemic cannot take off, in which case z2 = 0. Then it is clear that, as α

increases, z1(α) will increase and thus z(α)≥ z(α∗) when α ≥ α∗. When α ≤

α0 the first epidemic is subcritical (z1(α) = 0) so this situation is equivalent to

taking α = 1 (a single unrestricted epidemic). Thus z(α)≥ z(α∗) when α ≤ α0.
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It remains to treat the case α0 < α < α∗, which implies z1(α), z2(α) >

0. Recall that z(α∗) = 1− λ−1 for this model. Suppose for the purpose of

contradiction that z1 + z2 ≤ 1− λ−1. Using (6.2), the final size z2(α) of the

second epidemic satisfies

z2 = (1− z1)(1− exp(−λ z2)), (6.3)

where we have suppressed the dependence of z1 and z2 on α for ease of exposi-

tion. By assumption we have

(1− z1)(1− exp(−λ z2))≥ (z2 +λ
−1)(1− exp(−λ z2)).

Letting f (x) = (x+λ−1)(1− exp(−λx), we have f (0) = 0 and

f ′(x) = 1+λxexp(−λx)> 1, x > 0,

so that f (x)− x > 0 for x > 0. It follows that (6.3) has no solution in (0,1),

which is a contradiction; we find that z(α) > 1−λ−1 for α0 < α < α∗ which,

in addition to the above arguments, establishes the claim.

Theorem 6.3 shows that the optimal control to minimise the final size is to

have the first epidemic end with the remaining susceptible population at criti-

cality. A heuristic argument for this is discussed in Handel et al. [2007], Section

4.

6.3.2 Optimal stopping in the homogeneously mixing model

We comment briefly on a heuristic connection between α =α∗ being the optimal

choice to minimise final size and a problem regarding optimal stopping of an

epidemic. Consider running the homogeneously mixing epidemic Eλ until a

certain proportion (z, say) of the population become infected. At this point, the

first epidemic is terminated (e.g. by a total lockdown) and a new homogeneously

mixing epidemic begins among the remaining susceptible population. We call

this epidemic the restart epidemic, denoting it by Êz,λ . Note that in Êz,λ both

epidemics are unrestricted, but the first epidemic is stopped early. In the context
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of a homogeneously mixing epidemic it does not matter that the proportion z

have received immunity through the epidemic; this idea of a first epidemic is

simply used as a device in order to be able to compare final sizes.

Let α ∈ (0,1) be chosen such that z is the final size of Eαλ , and let z̃ be the

final size of Eλ . In this case the models Ẽαλ and Êz,λ give the same final size;

they both run an unrestricted epidemic among the same proportion of remain-

ing susceptibles. Moreover, infected individuals in the homogeneously mixing

epidemic are chosen uniformly at random, so the composition of infected indi-

viduals is the same in both cases. We can then consider minimising the final size

ẑ of Êz,λ . Choosing a level z at which the restart occurs is equivalent to prescrib-

ing a value of α ∈ (0,1). It is clear that an immediate restart, given by taking

α ↓ 0 and hence z ↓ 0, will lead to the epidemic Eλ , so that ẑ ↑ z̃ as z ↓ 0. Simi-

larly, taking α→ 1 leads to the epidemic Eλ , so ẑ ↑ z̃ as z ↑ z̃. A natural choice is

to take the restart level z such that the level of infection in the population at the

time of the restart is as high as possible, so that the lockdown removes as much

present infection as possible. Recalling (3.11), we find that the proportion of

infectives at time t, denoted y(t), is maximised when the proportion of suscep-

tibles x(t) = λ−1. It follows that the proportion of non-susceptibles under this

strategy is then 1−λ−1(= h̃D). This provides the following interpretation of the

global restriction level; choosing α = α∗ corresponds to stopping the epidemic

at the optimal time (i.e. at its peak), whilst α < α∗ (α > α∗) corresponds to

stopping the epidemic too early (too late) which leads to more of the population

being infected than is necessary to achieve herd immunity.

6.3.3 Optimal stopping in models with heterogeneous mixing

The heuristic argument described in Section 6.3.2 is not immediately available

in general for models that are not homogeneously mixing. In particular, in the

households model, an epidemic with parameters (λG,λL) which is stopped early

typically will have a different composition of infected individuals to that of an

epidemic with parameters (αλG,λL) run to its conclusion, even if both of these

epidemics infect the same overall fraction of the population. This is due to the

fact that the local epidemics play out differently; the model with reduced global
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infection rate is more driven by local infection. As a result, the population sus-

ceptibility will differ between these epidemics, even if they infect the same pro-

portion of individuals, since the effective household structures are not the same

at the end of the respective epidemics. However, in the multitype model with

proportionate mixing, a power law relationship holds between the proportions

of susceptibles of each type – see, for example, Gart [1968], Section 3. Thus

fixing a proportion of the population to be infected in this model also fixes the

proportions of each type that are infected. An analogous argument to that in the

homogeneously mixing model can then be used to show that choosing α = α∗

corresponds to optimal stopping. The above reasoning also gives a justification

as to why h̃D = hD in the multitype model with proportionate mixing, as well as

why h̃D = hD is not true in general in the households model.

6.3.4 Multitype households model with proportionate global mixing

We consider extending Theorem 6.3 to the multitype households model with

proportionate global mixing, recalling the model Em(β,κ,ΛL), where we again

borrow all of the relevant notation from Section 4.2 in what follows. (We

now do not suppress the dependence of E on the model parameters.) For α ∈

(0,1), let Ẽ α
m(β,κ,ΛL) denote the epidemic Em(αβ,κ,ΛL), followed by run-

ning Em(β,κ,ΛL) among the remaining susceptible population. Let z(α) de-

note the final size of Ẽ α
m(β,κ,ΛL).

We denote by q( j)
k the probability a type- j infective fails to infect anyone in

a group of k susceptibles (k1 type-1 susceptibles, k2 type-2 susceptibles,. . . ,kJ

type-J susceptibles) in a single-household epidemic without outside infection

and let qk =
(

q(1)k ,q(2)k , . . . ,q(J)k

)
with a view to establishing the following lemma.

Lemma 6.4. Consider a typical type-l individual, denoted by χ , residing in a

category-n household. Suppose that the second epidemic in Ẽ α
m(β,κ,ΛL) is

triggered by a type- j initial infective, chosen uniformly at random among this

household. The probability P̃( jl)
n that χ is infected in the ensuing local epidemic

within the household is given by

P̃( jl)
n =

n

∑
i=0

1
nl

n[i]q
n−i
i G(el)

i (1|U)
i j

n j
πi, j, l,∈J , (6.4)

219



where πi (i ∈J ) is the probability a typical type-i individual avoids global

infection in the first epidemic in Ẽ α
m(β,κ,ΛL), π = (π1,π2, . . . ,πJ) and where

G(el)
i (1|U) is defined in Appendix A, with U given by uk = qk (k ∈ ZJ

+).

Proof. Assume that l ∈J is given. We proceed using susceptibility sets, de-

noting the susceptibility set of individual χ by S, which is defined to include χ .

Thus χ avoids infection from the first epidemic if all members of their suscepti-

bility set avoid global infection; we have

P1 = P(χ avoids infection in the first epidemic) =
n

∑
i=0

Pl(S = i)πi,

where the dependence on l is present owing to individual χ being a member

of their own susceptibility set. Given they avoid infection in the first epidemic,

individual χ will avoid infection in both epidemics if the initial infective in

the second epidemic, which is chosen uniformly at random among the type- j

individuals in the household, does not lie in χ ′s susceptibility set. Hence

P2 = P(χ avoids infection in both epidemics) =
n

∑
i=0

Pl(S = i)πi

(
n j− i j

n j

)
,

which implies that

P̃( jl)
n = P1−P2

=
n

∑
i=0

Pl(S = i)πi i j

n j
. (6.5)

It remains to compute Pl(S = i) for 0 ≤ i ≤ n. In the notation of Ball [2019],

Lemma 4.1, we have

Pl(S = i) = Pjk(SA = i−el),
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where A = {χ}, j = el and k = n−el . Applying that lemma, we find

Pl(S = i) = (n−el)[i−el ]q
n−i
i G(el)

i (1|U)

= ∏
m ̸=l

nm!
(nm− im)!

(nl−1)!
(nl−1− (il−1))!

qn−i
i G(el)

i (1|U)

=
1
nl

∏
m̸=l

nm!
(nm− im)!

nl!
(nl− il)!

qn−i
i G(el)

i (1|U)

=
1
nl

J

∏
m=1

nm!
(nm− im)!

qn−i
i G(el)

i (1|U) (0≤ i≤ n).

Substituting this expression into (6.5) then establishes (6.4).

We are now in a position to derive the threshold parameter for the second

epidemic in Ẽ α
m(β,κ,ΛL).

Lemma 6.5. The threshold parameter for the second epidemic in Ẽ α
m(β,κ,ΛL),

RDI(π), satisfies

RDI(π) = m−1
H

J

∑
k=1

µ
(k)
I βk ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)κiπi,

where κi = ∑
J
j=1 κ ji j and with π as in the statement of Lemma 6.4.

Proof. We construct the threshold parameter among the remaining susceptibles

by considering the mean number of contacts that emanate from a typical globally

contacted household in the early stages of the second epidemic. Consider a

globally contacted individual in the early stages of the second epidemic. Such

an individual is type j with probability γ jκ j and, given their type, resides in a

household of category n with probability α j(n). The mean number of contacts

that emanate from this household (Cn, j, say) is, by symmetry, given by

Cn, j =
J

∑
k=1

nkµ
(k)
I βkP(typical type-k individual is infected by the ensuing local epidemic),

where the above local epidemic is initiated by a type- j initial infective. Apply-
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ing Lemma 6.4 gives

Cn, j =
J

∑
k=1

µ
(k)
I βk

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)
i j

n j
πi.

Conditioning on the type of the initial infective and their household category, as

well as noting that
α j(n)γ j

n j
= m−1

H θn, we have

RDI(π) =
J

∑
j=1

γ jκ j ∑
n∈N

α j(n)Cn, j

=
J

∑
j=1

γ jκ j ∑
n∈N

α j(n)
J

∑
k=1

µ
(k)
I βk

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)
i j

n j
πi

=
J

∑
j=1

κ j ∑
n∈N

α j(n)γ j

n j

J

∑
k=1

µ
(k)
I βk

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)i jπ
i

= m−1
H

J

∑
j=1

κ j ∑
n∈N

θn

J

∑
k=1

µ
(k)
I βk

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)i jπ
i

= m−1
H

J

∑
k=1

µ
(k)
I βk ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)πi
J

∑
j=1

κ ji j

= m−1
H

J

∑
k=1

µ
(k)
I βk ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(ek)

i (1|U)κiπi,

as required.

We now consider minimising the final size of Ẽ α
m(β,κ,ΛL), using a gener-

alisation of the argument in the proof of Theorem 6.3.

Theorem 6.6. The final size of Ẽ α
m(β,κ,ΛL) is minimised by taking α = α∗,

that is,

argmin
α∈[0,1]

z(α) = α∗.

Proof. We proceed in a similar fashion to the proof of Theorem 6.3, using a

proof by contradiction and considering severity. Let z(1)1 ,z(1)2 , . . . ,z(1)J denote the

fraction of type-i individuals infected in the first epidemic, where dependence

on α is suppressed for ease of exposition. Let

δ1 = α

J

∑
j=1

µ
( j)
I β jz

(1)
j γ j
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denote the severity of the first epidemic. Define z(2)1 ,z(2)2 , . . . ,z(2)J analogously

and let

δ2 =
J

∑
j=1

µ
( j)
I β jz

(2)
j γ j

denote the severity of the second epidemic. Recalling (4.12), we have

z( j)
i = ∑

n∈N :ni>0

αi(n)

ni
µn,i

(
Λ

L,π( j)
)
, i ∈J ; j = 1,2,

where π
( j)
i = exp(−δ jκi) for i ∈J and j = 1,2. Now, since

z(1)i + z(2)i = ∑
n∈N :ni>0

αi(n)

ni
µn,i

(
Λ

L,exp{−κ(δ1 +δ2)}
)

we have

δ2 =
J

∑
j=1

µ
( j)
I β jz

(2)
j γ j

=
J

∑
j=1

µ
( j)
I β jγ j ∑

n∈N :n j>0

α j(n)

n j

[
µn, j

(
Λ

L, π̂
)
−µn, j

(
Λ

L,π(1)
)]

=
J

∑
j=1

µ
( j)
I β j ∑

n∈N
m−1

H θn

[
µn, j

(
Λ

L, π̂
)
−µn, j

(
Λ

L,π(1)
)]

, (6.6)

where π̂ = exp{−κ(δ1 +δ2)}. Taking j = ek in (4.14), we have

µn,k(Λ
L,π)= nk−E

[
S[ek]

]
= nk−

n

∑
i=0

n[i]q
n−i
i πiG(ek)

i (1|U), k∈J ,n∈N .

Substitution into (6.6) gives

δ2 = m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)
[
exp{−κδ1}i− exp{−κ(δ1 +δ2)}i

]
= m−1

H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)exp{−κiδ1} [1− exp{κiδ2}] .

(6.7)

Let δ∗ denote the value of δ such that the second epidemic is at criticality. Sup-

pose for the purpose of contradiction that δ1 +δ2 ≤ δ∗. Under this assumption,
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the right-hand side of (6.7) is at least f (δ2), where

f (δ2)=m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U) [exp{−κi(δ∗−δ2)}− exp{−κiδ∗}] .

It is clear that f (0) = 0. Differentiation then gives

f ′(δ2) = m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)κiexp{−κi(δ∗−δ2)}

and

f ′′(δ2)=m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)(κi)2 exp{−κi(δ∗−δ2)}.

As noted in Lemma 4.6, we have G(ek)
i (1|U) ≥ 0 for all i ∈ N and for all

k ∈J . It follows that f ′′(δ2)> 0. By Lemma 6.5, we have

f ′(0) = m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)κiexp{−κiδ∗}

= m−1
H

J

∑
j=1

µ
( j)
I β j ∑

n∈N
θn

n

∑
i=0

n[i]q
n−i
i G(e j)

i (1|U)κiπi
∗

= RDI(π∗)

= 1.

Since f (δ2) is convex, with f (0) = 0 and f ′(0) = 1, it follows that there is no

solution to (6.7) in (0,∞), which is a contradiction; we conclude that δ1 +δ2 >

δ∗. Then, in an obvious notation, we have

π̂i = exp{−κi(δ1 +δ2)}< exp{−κiδ∗}, i ∈J .

This implies that the total proportion of type-i individuals infected (zi(α)) satis-
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fies

zi(α) = ∑
n∈N :ni>0

αi(n)

ni
µn,i(Λ

L, π̂)

> ∑
n∈N :ni>0

αi(n)

ni
µn,i(Λ

L,π∗)

= zi(α∗), i ∈J .

It is then clear that the total final size z(α) is minimised by taking α = α∗, as

required.

We note two special cases of Theorem 6.6 in the following corollaries.

Corollary 6.7. Consider running two epidemics in the households model of Sec-

tion 2.2.1, the first with all global mixing rates multiplied by α and the second

unrestricted. The total final size of this pair of epidemics is minimised by taking

α = α∗.

Proof. Taking J = 1 in Theorem 6.6, so that all individuals have the same type,

establishes this result for the households model.

Corollary 6.8. Consider running two epidemics in the multitype epidemic model

with proportionate mixing, the first with all mixing rates multiplied by α and the

second unrestricted. The total final size of this pair of epidemics is minimised

by taking α = α∗.

Proof. Considering Theorem 6.6 with θn = 0 for ∥n∥ > 1, corresponding to

considering households of size one only, establishes the result for this model.

Note that the result for the homogeneously mixing model treated in The-

orem 6.3 is also a special case of Theorem 6.6. In Figure 6.6 we demonstrate

Corollary 6.7 with a numerical example for the UK household size distribution,

noting the similarity to the behaviour observed in Figure 6.5. We also provide

the corresponding plots of z1(α) and z2(α). Observe that z(α) only has contri-

butions from both z1(α) and z2(α) when α0 < α < α∗.
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Figure 6.6: Left: plot of the total final size z(α) for two epidemics in the house-
holds model, the first with infection parameters (αλG,λL), the second with in-
fection parameters (λG,λL), using the UK household size distribution and tak-
ing (λG,λL,γ) = (1.25,0.75,1). The dashed (dotted) line corresponds to α =α0
(α = α∗). Right: plot of z(α) (red), z1(α) (blue), and z2(α) (green).

6.3.5 Discussion

We have introduced a new approximation for the disease-induced herd immu-

nity level which accounts for the fact that local infection increases when global

restrictions are applied. We have also considered the case of two supercritical

epidemics and shown that, in the models we consider, this scenario is always

worse, in terms of the final size, than a single epidemic which leaves the remain-

ing population at criticality. We have also commented on a connection between

the imposition of global restrictions throughout an epidemic to the problem of

optimal stopping of an unrestricted epidemic, providing a heuristic connection

between h̃D and hD.

There are several possible extensions to the work of this chapter. The as-

sumption that the mean total rate at which an individual makes contacts remains

constant may not be true in practice; we may find that even more contacts are

made locally during periods of global restrictions than that which keeps the

original rate constant. Moreover, the multiplication of local infection rates by

a factor β has no effect on individuals in single-member households, who are
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unable to mix locally anyway. Future work could incorporate the idea of “bub-

bles”, in which single-member households are more highly globally connected

to a single, other, household. We again expect to see the disease-induced herd

immunity level being larger (often much larger) than the classical herd immu-

nity level in this case.

In this chapter we have assumed that the local infection rate does not de-

crease as household size increases. It may be insightful to repeat the calculations

of Section 6.2.2 when λL = λL(n) depends on the household size, particularly

due to the fact that, in our calculation of h̃∗D, we assume that λL increases during

global restrictions.

In the case of two supercritical epidemics, we have shown that there is an

“optimal” global restriction for the first epidemic in order to minimise the total

number infected across the two epidemics. We have shown this for the multi-

type households model with proportionate global mixing. Similar results hold

for minimising other final outcome quantities which are increasing functions of

the severity of the epidemic, using Theorem 6.6. It would be interesting to in-

vestigate whether the result of Theorem 6.6 holds for a wider class of epidemic

models, as well as making the connection between global restrictions and opti-

mal stopping. We have shown that α∗ is optimal for the multitype model with

proportionate mixing (Corollary 6.8). Numerical investigations suggest that a

similar result is true in the multitype model in the absence of proportionate mix-

ing, although a proof has not been forthcoming. It seems unlikely that a similar

proof (i.e. by contradiction) will work for a wider class of models; finding a

more widely applicable proof for the case of proportionate mixing may also be

beneficial. We have also not shown that z(α) is decreasing between α = α0 and

α = α∗, but we believe it is possible to do so and are currently working on this

problem.

We have assumed that restrictions are in place, and remain the same strength,

throughout the duration of the first epidemic. In practice global restrictions have

varying degrees of severity and, with a view toward cost, governments would be

likely to try weaker restrictions first, increasing restrictions if a disease contin-

ued to grow. Moreover, as previously discussed, the use of global restrictions are

227



a finite resource; future research could consider how best to allocate restrictions

subject to minimising the cost associated with implementing them.

In the homogeneously mixing model the optimal choice is to stop at the

peak (i.e. when the proportion of infectives is at its highest) which coincides

with herd immunity being achieved. In the mixing groups model of Ball and

Neal [2022] these two points do not coincide; it may be fruitful to investigate the

problem of optimal epidemic stopping for this model, as well as other models

where the peak does not coincide with herd immunity being reached.
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7 Concluding comments

We now provide a general overview of the results which we have established

and discuss how these results could be extended. We discuss the underlying

assumptions in our models, how they may be removed, and which results we

might expect to change upon removing these assumptions. We also indicate

possible directions for future work.

We have provided detailed comparison of hD and hC. In Chapter 2 we

defined hD (hL
D when a latent period is present) and introduced an approxima-

tion h̃D of hD for the households model, following Britton et al. [2020], which

modifies the global infection rate so that the first epidemic terminates with the

remaining susceptible population at criticality. We observed that the approxima-

tion is typically very good. Moreover, we have h̃D = hD when the local infection

rate λL → 0 or λL → ∞ and h̃D, owing to its dependence on final outcome re-

sults, is more amenable to analysis, allowing for direct comparison of h̃D and

hC in these cases. We showed that, for the households model, we typically

have h̃D > hC unless the variability in households is sufficiently large. We also

considered numerical comparisons of h̃D, hD, hL
D, and hC. During these com-

parisons we assumed an exponential distribution for the infectious period and

latent period. We would expect to obtain qualitatively similar results for other,

more realistic choices of infectious period distribution. We also provided com-

parison of herd immunity levels using real-world household size distributions,

estimated from data. In our model we have assumed that the local infection rate

is independent of the household size. For countries with large mean household

size, such as Pakistan, it may be insightful to allow the local infection rate to

depend on the household size, i.e. set λL = λL(n) where λL(n) is a decreasing

function of n – see Cauchemez et al. [2004]. The results obtained in the highly

locally infectious case are invariant to this assumption but the numerical results

when λL < ∞ may change.

In Chapter 3 we obtained a Gaussian approximation to the disease-induced

herd immunity level, for the multitype model with proportionate mixing and

for the households model with common household size. We observed that the

229



asymptotic variance was small; brief numerical investigations suggest that this

still holds when household size is variable. The asymptotic variance of hD for

the multitype model with proportionate mixing was compared to, and agreed

well with, corresponding simulations. It is possible to extend this work to a

multitype households model and to a model in the absence of proportionate

mixing. However, obtaining an explicit expression for the asymptotic variance,

as we have done for the multitype model with proportionate mixing, does not

seem plausible in general owing to the lack of access to a random time change

which will simplify the calculations. In any case we expect that the asymptotic

variance of hD would remain small.

In Chapter 4 we considered the multitype households model with propor-

tionate global mixing. We used the assumption of proportionate mixing to sim-

plify calculations of reproduction numbers and the final size of the epidemic. We

also presented a central limit theorem for the final outcome of this model, con-

ditional upon a major outbreak. In order to establish this central limit theorem,

we used an embedding construction with index set which is one-dimensional,

owing to the proportionate mixing assumption. We applied this central limit

theorem to the special cases of a highly locally infectious disease and a standard

SIR multitype epidemic, respectively, establishing essentially explicit mean vec-

tors and asymptotic covariance matrices. These results easily extend to the case

where the global and local infection rates are allowed to depend on an individ-

ual’s household category. In deriving the central limit theorem we have assumed

a finite maximum household size. A central limit theorem for this model can be

derived in the absence of a finite maximum household size, provided stronger

assumptions are placed on the moments of the final outcome quantities associ-

ated to the epidemic.

In Chapter 5 we studied herd immunity in a model with activity levels

and household structure. (This model is a special case of the model analysed in

Chapter 4.) We showed that the interaction between these two factors, one which

typically causes h̃D to increase and the other causing h̃D to decrease, is rather

complex. A key factor in determining an ordering for h̃D and hC is the clumping

of individuals of each type. Broadly speaking, we showed that individuals with
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high global mixing rates who mix locally with less active individuals causes h̃D

to increase. Thus, a situation where highly active individuals reside in house-

holds together leads to lower values of h̃D. We provided analysis in the highly

locally infectious case, where λL→ ∞, in which some explicit results were ob-

tained. We also provided heuristic justification for these results in terms of how

the epidemic spreads among the population structure in question. In doing so

we emphasised the importance of population structure in disease-induced herd

immunity. We have also noted how strongly disease-induced herd immunity

levels can vary based on the underlying population structure – something which

we must bear in mind when attempting to provide accurate estimates of the

disease-induced herd immunity level.

The impact of global restrictions on disease-induced herd immunity was

investigated in Chapter 6. We introduced a new approximation h̃∗D of hD for

the households model, where we accounted for the fact that local infection is

typically greater at a time of global restrictions. We showed that h̃∗D > hD when

all households are size 2, providing evidence supporting a conjecture that this

holds more generally for a common household size n. Returning to the multi-

type households model with proportionate mixing, we considered a scenario in

which two supercritical epidemics occur, and sought to minimise the final size

across these two epidemics by choosing the control measures for the first epi-

demic appropriately. We showed that, with this aim, the optimal choice is to

infect precisely a proportion h̃D in the first epidemic, thus ending the first epi-

demic with the remaining susceptible population at criticality. We expect that

this result regarding the minimisation of two epidemics, the first with control

measures, would generalise to a wider class of epidemic models. We are cur-

rently working on such a generalisation by considering an alternative proof for

the multitype households model with proportionate global mixing. Future work

could assume that control measures are not applied uniformly during the first

epidemic; it is not hard to envisage a scenario where control measures gradually

increase, particularly when in the early stages of an outbreak they are deemed to

be insufficient. Moreover, restrictions could be applied differently to different

individuals. For example, individuals who have increased vulnerability upon
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becoming infected could be placed under stronger global restrictions.

The models we have considered have, in terms of realism, the defect that an

individual cannot become infected again once having recovered. In the case of

endemic diseases, subsequent reinfection can occur. Whilst this certainly com-

plicates the analysis, this thesis has shown that it is the state of the population

when a new outbreak occurs that is most crucial; if many households have one

or two individuals immune, this better prepares the population than a scenario

in which households are either fully susceptible or fully immune. Moreover, if

very active individuals become susceptible again, the overall population suscep-

tibility can increase. Future work could consider herd immunity for a population

in which individuals can become reinfected. It would also be of interest to study

herd immunity in other population structures; examples include the overlapping

groups model of Ball and Neal [2002] and a model involving time of day effects

– see Neal [2016]. As we have demonstrated, the key lies in studying when

the relevant threshold parameter among the remaining susceptible population

reaches one.

We have not considered how herd immunity may play out in a network set-

ting. Networks allow for a high amount of individual heterogeneity; it would be

interesting to investigate further how herd immunity is affected by such a pop-

ulation structure – see Ball et al. [2024]. Moreover, the mixing of households

could be assumed to take place on a network, such that each household corre-

sponds to a node in the network. Ideas such as preventive dropping of edges,

which mimics social distancing, considered by Ball et al. [2019], may also be

of interest in the context of herd immunity.

We have assumed a perfect vaccine throughout this thesis. In practice vac-

cines are imperfect and it may be of interest to observe the impact of a non-

perfect vaccine on the results we have obtained. A detailed analysis of a non-

perfect vaccine in the households model is given by Ball and Lyne [2002]. Fur-

ther, we have assumed that vaccination and herd immunity play out separately,

rather than both impacting a population simultaneously. Whilst this appears to

be a drawback, it is likely that in the early stages of a disease a vaccine is un-

available. Our work then gives insight into how disease-induced herd immunity

232



could play out in the absence of a vaccine, provided the population structure

can be estimated well. The vaccine-induced herd immunity level provides a

good baseline for comparison. In any case, vaccination could be accounted for

in the associated ODEs governing a deterministic epidemic model by allowing

individuals to transition directly from susceptible to recovered. We could also

consider the case of waning immunity, in which individual susceptibility begins

to increase again after recovery – see El Khalifi and Britton [2023].

The work of this thesis has shown that population structure can lead to a

drastic increase or decrease in the disease-induced herd immunity level when

compared to a model with homogeneous mixing of individuals. We have high-

lighted the importance of having a good model of the underlying population

structure in order to properly understand herd immunity.
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A Gontcharoff polynomials

We provide some vector notation which is used regularly throughout this thesis,

before defining multivariate Gontcharoff polynomials. In this section we let

a,b ∈ RJ . We write

ab =
J

∏
j=1

ab j
j and

a

∑
r=0

=
a1

∑
r1=0

. . .
aJ

∑
rJ=0

. (A.1)

In the second definition of (A.1) we note that the sum is taken over all r ∈ ZJ
+

such that r ≤ a, with the convention that r ≤ a if and only if r j ≤ a j for all

j ∈ {1,2, . . . ,J}. We write r < a if r ≤ a and ∑
J
j=1 r j < ∑

J
j=1 a j. We also

define the vector analogues to the factorial and falling factorial via

a! =
J

∏
j=1

a j! and a[b] =
J

∏
i=1

ai[bi],

where a[b] =
a!

(a−b)!
denotes the falling factorial.

We now define multivariate Gontcharoff polynomials – see, for example,

Picard and Lèfevre [1993], Definition 2.1. Let N = {1,2 . . .} denote the set

of natural numbers. For each j ∈J , let U ( j) = {u( j)
i1,i2,...,iJ = u( j)

i (i ∈ NJ)}

be a given family of real numbers and define U = (U (1),U (2), . . . ,U (J)). Let

k = (k1,k2, . . . ,kJ) ∈ ZJ
+ and let x = (x1,x2, . . . ,xJ) ∈ RJ . The Gontcharoff

polynomial Gk(x|U), which is of degree ki in xi, is then defined by the follow-

ing recursion: set G0(x|U) = 1 and, when ∑
J
i=1 ki ≥ 1,

Gk(x|U) =
xk

k!
−∑

i<k

uk−i
i

(k− i)!
Gi(x|U).

Define finally, for i ∈ ZJ
+, G(i)

k (x|U) as the partial derivative of Gk(x|U) with

derivatives of orders i j in x j ( j ∈J ), i.e.

G(i)
k (x|U) =

∂ ∥i∥

∂xi1
1 ∂xi2

2 . . .∂xiJ
J

Gk(x|U).
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B Wald’s identity

We provide two identities, relating the mean final size and mean severity of epi-

demics among a group of individuals of size n, which are used regularly in this

thesis. Let En denote an epidemic model in which there are n individuals and

assume that the infectious period for each individual is independent and iden-

tically distributed according to the random variable TI . Assume, without loss

of generality, that there is one initial infective. Let N∗ denote the total number

of individuals ever infected in En and let TA denote the sum of the infectious

periods of these N∗ individuals.

Lemma B.1 (Ball [1986], Corollary 2.2). We have

E[TA] = E[N∗]E[TI].

We next consider a multitype epidemic, with individual types belonging to

{1,2, . . . ,J}. Suppose there are ni type-i individuals and let n = (n1,n2, . . . ,nJ).

Suppose that the infectious period of each type-i individual is independent and

identically distributed according to the random variable T (i)
I . Assume, without

loss of generality, that there is one initial infective of type 1. Denote this epi-

demic model by En. Let N(i)
∗ be the total number of type-i individuals infected in

En and let T (i)
A denote the sum of the infectious periods of these N(i)

∗ individuals.

Lemma B.2 (Ball [1986], Corollary 3.2). We have

E
[
T (i)

A

]
= E

[
N(i)
∗
]

E
[
T (i)

I

]
, i = 1,2, . . . ,J.

C Methods for numerical results

All numerical solutions and simulations were obtained using the R program-

ming language (Version 4.4). Further details for particular numerical calcula-

tions and simulations are provided below.
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C.1 Root-finding

In several instances in this thesis we wish to solve an equation of the form

f (x) = 0,

to find the root (x∗, say). (Examples include solving (2.3) to find R0.) In many

cases, such as in (2.3), the solution to such equations is unique; the “fzero”

function in the package pracma (Version 1.9.9) is then, with a suitable choice

of starting interval, used to find the desired root. The relative tolerance of this

method is ε = 1× 10−12. For further details of this method, see Alefeld et

al. [1995].

In some cases we wish to solve an equation which has a unique root in a

specific interval. Consider the equation

1− z = exp(−R0z), (C.1)

where R0 > 1. Whilst there is a unique solution to (C.1) in the interval (0,1),

care must be taken when searching for this root, since z = 0 is also a root. More-

over, it can be shown that the positive solution z∗ of (C.1) satisfies z∗ ↓ 0 as R0 ↓

1. However, a Taylor expansion of exp(−R0z) establishes that z∗ > 2(R−1
0 −R−2

0 ),

which provides an adequate search interval. A similar method can be applied to

the other root-finding problems that occur in this thesis.

C.2 Ordinary differential equations

The differential equations solved in this thesis can be written in the form

dy

dt
= f (y, t), y(0) = y0. (C.2)

Such equations are solved using an implementation of the Runge-Kutta algo-

rithm from the package deSolve. The relative tolerance of this method is ε =

1× 10−6. For more information on this method, consult Soetaert et al. [2010].

In some instances we wish to solve equations such as (C.2) until some “event”
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time at which a given function of y takes a desired value. For example, we in-

tegrate (2.11) until R∗ among the remaining susceptible population reaches one.

In practice, we append a “rootfun” argument to the “ode” function used to in-

tegrate such equations, which terminates when a stopping condition is satisfied.

Such stopping conditions are, in this thesis, always monotone, which ensures

the integration has been stopped at the desired time.

C.3 Stochastic simulations

There are several simulations in this thesis which are used to provide realisations

of the disease-induced herd immunity level, which is a random variable for a fi-

nite population, since it depends on the trajectory of the epidemic. For such

simulations we assume that the infectious period TI ∼ Exp(γ), in which case we

can simulate a continuous-time Markov chain. As an example, the pseudocode

to simulate realisations of (H(m)
D ,T (m)

∗ ), in the absence of a latent period, con-

ditional on a major outbreak (recall Section 2.3.2) is provided in Algorithm 1.

(We assume that the epidemic being simulated is initially supercritical.)

In order to perform simulations of the households model, we require more

notation, including a labelling of the possible states a household can be in.

First, we let t(n) denote the nth triangular number, so that t(n) = 1
2n(n + 1)

(n ∈N). Letting nmax < ∞ denote the maximum household size, define H̃ (nmax)

(cf. H (nmax) at (2.9)) by

H̃ (nmax) = {(s, i,r) ∈ Z3
+ : 1≤ s+ i+ r ≤ nmax}.

Suppose u, v ∈ H̃ (nmax) are distinct. Then we define an ordering ≺ on H̃ (nmax)

by writing u≺ v ⇐⇒ uk < vk, where k = min
i≥1
{ui ̸= vi}. We use≺ to (uniquely)

construct a list l of states ordered by ≺. (For completeness, the first state is

(1,0,0).) Letting N denote the number of possible states we can construct,

in an obvious fashion, a bijection b : {1,2, . . . ,N} → l which provides a lin-

ear index for each state (s, i,r). In the sequel we write Hi for the number of

households in state b(i) (i = 1,2, . . . ,N). For ease of exposition, we also write

f (i) =
i
6
(
i2−6i+11

)
. Suppose the state u ∈ H̃ (nmax) has linear index i. We
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define g : {1,2, . . . ,N}→ {1,2, . . . ,N} by

g(i) =i+min{v ∈ N : t(v)≥ i}

=i+

⌈
−1

2
+

√
1
4
+2i

⌉
,

with the property that an infection in a household with linear index i gives rise

to a household with linear index g(i). If a recovery occurs in a household with

linear index i, that household becomes a household with linear index i+1. Fi-

nally, let Xi (Yi) denote the number of susceptible (infective) individuals in a

household with linear index i.
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Algorithm 1 : Compute H(m)
D assuming no latent period

1: procedure HOUSEHOLDS SIMULATION(nmax,m1,m2, . . . ,mnmax ,λG,λL,γ)
2: Initialise: N = f (nmax), Rsusc = R∗, H = 0N , x = 0nmax×(nmax+1) and

MRates = 0N×2

3: m←
nmax

∑
i=1

mi and n̄←
nmax

∑
j=1

jα j ▷ Mean household size

4: for i = 1 to nmax−1 do H1+ f (i−1)← mi
5: end for
6: H1+ f (nmax−1)← mnmax−1
7: H2+ f (nmax−1)← 1 ▷ One initial infective in a household of size nmax
8: while Rsusc > 1 do

9: I← 1
n̄

N

∑
i=1

HiYi

10: if I = 0 then
11: return H(m)

D = 0 ▷ Infectives are all removed before herd
immunity is achieved

12: end if
13: for i = 1 to N do
14: Mrates

i,1 ← λGIHiXi +λLXiYi

15: Mrates
i,2 ← γHiYi

16: end for
17: Normalise Mrates

18: Sample (i, j) ∈ {1,2, . . . ,N}×{1,2} with probability Mrates
i, j

19: if j = 1 then
20: Hi← Hi−1 ▷ Infection occurs
21: Hg(i)← Hg(i)+1
22: else if j = 2 then
23: Hi← Hi−1 ▷ Recovery occurs
24: Hi+1← Hi+1 +1
25: end if
26: z← m−1H
27: for n = 1 to nmax do
28: for v = 1 to n+1 do

29: xn,v←
f (n−1)+t(v)

∑
k=1+ f (n−1)+t(v−1)

zk

30: end for
31: Normalise (xn,1,xn,2, . . . ,xn,nmax)
32: end for
33: Rsusc←

λG

γ

nmax

∑
n=1

α̃n

n

∑
v=1

(
1− v

n

)
xn,vµn−v(λL)

34: end while

35: return H(m)
D = 1− 1

n̄

N

∑
i=1

HiXi

36: end procedure

Algorithm 1 can then be used to generate the desired number (nsim, say)
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of samples
(

H(m,k)
D

)nsim

k=1
from which Monte Carlo estimates of the mean and

variance can be computed – see Table 2.1. To condition on a major outbreak we

simply reject samples in which H(m,k)
D = 0. Algorithm 1 can also be extended, in

an obvious fashion, to account for the presence of a latent period TE ∼ Exp(δ ).

The Monte Carlo simulations provided in Table 3.1 and Table 3.2 can be gener-

ated using similar methods to that of Algorithm 1.
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Bartoszyński, R. (1967). “Branching processes and the theory of epidemics”.

Proceedings of the Berkeley Symposium on Mathematical Statistics and Prob-

ability. Vol. 4. University of California Press, p. 259.
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