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Abstract

This dissertation presents three studies: the first on the macroeconomics of advertising, the

second on growth and the role of competition, and the third on comparative statics.

The first study develops a new general equilibrium model to examine the aggregate effects

of advertising. The model captures the two traditional views of advertising—informative and

persuasive—and introduces a novel anticompetitive motive. We find that advertising has a

significant positive aggregate effect through its role in spreading product awareness.

The second study explores the role of competition in shaping the long-run effect of fiscal policy

on growth and the complementarity of fiscal and competition policies. To address these, we

develop a step-by-step growth model with endogenous market structure, and we find that the

market structure response amplifies the effect of fiscal policy.

The last study, which lies outside the field of macroeconomics, is motivated by the limited tools

available to get analytical results in models frequently used in macroeconomics and other fields.

It introduces a novel approach to comparative statics, building on Farkas’ Lemma, and derives

sufficient conditions under different assumptions. An application to an oligopoly model with

differentiated goods under CES preferences illustrates the method.
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Chapter 1

Introduction

This dissertation presents three studies: the first on the macroeconomics of advertising, the

second on growth and the role of competition, and the third on comparative statics.

Chapter 2 develops a new general equilibrium model to examine the aggregate effects of adver-

tising. The model captures the two traditional views of advertising—informative and persua-

sive—and introduces a novel anticompetitive motive. We find that advertising has an overall

positive aggregate effect, not only through financing entertaining media goods, but also through

expanding product awareness. Without advertising, firms remain smaller, which in turn reduces

the incentives to create new products.

Chapter 3 explores the role of competition in shaping the long-run effect of fiscal policy on

growth and the complementarity of fiscal and competition policies. To address these, we develop

a step-by-step growth model with endogenous market structure, and we find that the market

structure response amplifies the effect of fiscal policy. This is part of a joint project with my

supervisor Giammario Impullitti and Antonin Bergeaud.

Chapter 4, whose applicability extends beyond macroeconomics, is motivated by the limited

tools available to get analytical results in models frequently used in macroeconomics and other

fields. It introduces a novel approach to comparative statics, building on Farkas’ Lemma.

This chapter shows that this approach can improve the sufficient conditions for the sign of the

comparative static found in recent literature, as well as the bounds on the value. An application

to an oligopoly model with differentiated goods under CES preferences illustrates the method.

1



Chapter 2

Advertising Motives and Firm

Life-Cycle Dynamics in a General

Equilibrium Model

2.1 Introduction

Firms advertise for different motives. First, firms have an incentive to advertise to make

consumers aware of them and, in doing so, increase their customer base (i.e., the informative

motive). By raising consumer awareness, advertising allows consumers to enjoy more variety

and fosters competition. Second, firms may advertise to persuade current customers to spend

more on their products (i.e., the persuasive motive). By enhancing consumer preferences for

goods, advertising may positively affect utility from consumption but can also increase market

power by reinforcing product differentiation. An extensive literature has examined whether

advertising is informative or persuasive, with supporting evidence for both views.1 However,

research on the macroeconomic implications of advertising remains limited, and a framework

accommodating both views is missing. This paper aims to fill this gap.

In addition to these traditional views, consumers’ limited attention capacity implies that firms

need to compete for the attention of consumers to make their way into their consumption sets.

This introduces a novel effect of advertising: advertising by one firm diverts consumers’ atten-

1See Bagwell (2007) for a review.
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tion away from competitors. Thus, firms have an incentive to advertise to avoid competition

by hindering competitors’ ability to expand their customer base, which I refer to as the anti-

competitive motive. This seems particularly relevant in settings like Google search or Amazon

advertising, where firms compete to be placed in the top positions within a keyword, as these

receive most of the attention.

What are the aggregate implications of the different advertising motives, and how do these

motives evolve over the firm life cycle? This paper develops a novel model that is able to speak

about these questions. Additionally, it is the first general equilibrium model of informative

advertising where firms play strategically in a dynamic game, and I believe the methodology

developed here will be valuable for subsequent research.

In the model, each industry is composed of a generic good produced under perfect competition

by a fringe and an endogenous discrete set of oligopolistic firms each producing a differentiated

good. A key feature of the model is that, within an industry, consumers are characterized

by the set of goods they are aware of, which I refer to as awareness sets. All consumers

know the generic good of each industry, but may not know all of the differentiated goods.

The awareness sets evolve stochastically, affected by firms’ advertising decisions. Thus, firms

face a dynamic problem, as building a customer base takes time, which is motivated by the

empirical evidence from Foster et al. (2016).2 There is one type of advertising that has two

effects. First, it increases the probability a consumer becomes aware of the good, and second,

it increases the demand shifter for those consumers already aware of the good, inducing them

to spend more on the advertised good. Given that the advertising space of each industry is

limited, firms internalize that by increasing their advertising expenditure they increase the

price of the advertising space in their industry, which reduces the advertising space acquired

by competitors, reducing their visibility (the anticompetitive motive). This aligns with Google

search advertising, where firms bid on specific keywords in a cost-per-click (CPC) auction.3 So,

heterogeneity in the demand for advertising in a specific keyword translate into heterogeneity

2In particular, Foster et al. (2016) take advantage of data on physical quantities in industries that are
plausibly little subject to quality differentiation and find that the fact that older firms are bigger than younger
firms cannot be explained by differences in productivity, and then they find support for the hypothesis that
firms play an active role, not just a passive effect from aging. Einav et al. (2022), focusing on the retail sector,
find that most of the variability in sales is accounted by the number of clients.

3Google doesn’t charge firms just to be placed at the top, instead, the CPC is the amount the firm will be
charged for each click their ad receives. Therefore, Google doesn’t necessarily place the highest bidding firm at
the top; it also considers the relevance of the ad.
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in prices.4 Additionally, there is a media sector that transforms the advertising expenditure

into media goods using labor. These media goods are supplied to consumers at a zero monetary

price.5 Consumers choose the time they spend on them based on their entertainment value,

and during this time, they are exposed to advertising.

The paper studies how the three motives change over the firm life cycle. Intuitively, younger

firms have more potential customers to acquire, and so they tend to have a stronger informative

motive. In contrast, the anticompetitive motive, which is about retaining market power over

the existing customers by reducing the probability they learn about competitors, is stronger for

older firms, as they have more to lose due to their larger customer base. The persuasive motive

also tends to be stronger in older firms. Intuitively, if advertising persuades existing customers

to spend more, the revenue increase will be larger the bigger the customer base.

The model is estimated by simulated method of moments for the U.S. economy to fit key em-

pirical patterns regarding (i) the evolution of average firm growth by age, which is important to

discipline the customer base building process in the model; (ii) the relationship between adver-

tising expenditure and sales, which, given the previous results, is informative of the strength of

the motives; and (iii) macroeconomic aggregates, specifically the sales-weighted average markup

and its standard deviation, aggregate advertising expenditure as a share of GDP, the fraction

of time spent on media, and the labor share. The model does well in matching the targets. In

addition, the model also features an inverted-U relationship between advertising and sales as

documented in previous literature.

To assess the aggregate effects of the motives and advertising as a whole, the calibrated model

is compared to counterfactual economies where some or all of the motives are shut down from

the firms’ first-order conditions. The counterfactual where all motives are shut down (i.e., there

is no advertising) reveals that advertising has a significant positive effect on the aggregate, not

only through its role in financing media goods that provide entertainment but also through its

role in spreading product awareness. In this counterfactual, the probability consumers learn

about goods is lower, as they only learn through an exogenous probability; consequently, firms

4This heterogeneity is shown in Figure 1.A1. The same applies if we look at CPC in Google shopping ads
across industries, although these are considerably cheaper, rarely more than one dollar per click.

5The presence of media goods that get their revenue from selling advertising space is pervasive, spanning
traditional outlets like radio and TV as well as digital platforms such as YouTube, Instagram, Facebook, and
Google. Although these media goods are barely reflected in GDP (see Greenwood et al. (2024)), the time
consumers spend on them suggests they have a significant impact on welfare.
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tend to be smaller. This lowers firms’ growth prospects and discourages new firms from entering

the market. As a result, consumption decreases, both due to consumers enjoying less variety

and because a larger share of consumption comes from a fringe of small, unproductive firms.

Overall, shutting down advertising would decrease consumption by 16.68%. The counterfactuals

also show that while the persuasive motive increases markups and reduces entry, it has a net

positive effect by increasing consumers’ taste for the advertised good. The anticompetitive

motive is detrimental to output, resulting in higher markups and lower entry. However, it can

still have a positive aggregate effect, due to its contribution to the provision of media goods. In

fact, a result of the calibrated model is that both the anticompetitive and persuasive motives

matter mostly through the entertainment value of media goods, as their effects on consumption

are modest. This is despite the fact that these motives significantly influence firms’ advertising

decisions: shutting down the anticompetitive motive reduces total advertising expenditure by

12%, and additionally shutting down the persuasive motive reduces it by a further 42%. A

complementary decomposition analysis based on the firms’ first-order condition shows that

8.45% of the (marginal) incentives to advertise are attributable to the anticompetitive motive,

33.74% to the persuasive motive, and 57.81% to the informative motive.

To quantify the inefficiencies, the decentralized equilibrium is compared to the one resulting

from solving the social planner problem, while maintaining the consumers’ information frictions.

A novel feature of the model is that the social planner values media goods not only because

they entertain consumers, as in existing literature, but also because, through the advertising

in media, consumers get information that allows them to improve consumption. In other

words, media serves as a vehicle for product awareness. Unsurprisingly, as the entertainment

value of media goods increases, the social planner reallocates more labor from the production

sector to the media sector. After a certain point, consumption under the planner’s allocation

becomes lower than under the decentralized one. More interestingly, when the entertainment

value of media is negligible, the optimal quantity of media is lower than in the decentralized

equilibrium, suggesting excessive advertising expenditure. However, this conclusion would be

inaccurate as one must also consider how the advertising space is allocated among firms. In

other words, the ‘overprovision’ of media, through its effect on learning, may help mitigating

the inefficiencies arising from the misallocation in the advertising space. In this direction,

5



the exercise examining the optimal uniform tax on advertising reveals that advertising should

be subsidized.6 Finally, given that the informative motive declines with firm age, while the

persuasive and anticompetitive motives increase, a natural question to ask is what the welfare

gains from allowing the advertising tax to be age-dependent would be. However, I find that

the gains from such a policy are negligible.

The paper is organized as follows: Section 2.2 introduces the model and characterize the equilib-

rium. Section 2.3 estimates the model, studies the evolution of the motives, their contribution

to total advertising expenditure, and their aggregate effect. Section 2.4 discusses the ineffi-

ciencies of the model, compares the informationally-constrained social optimal equilibrium to

the decentralized one, and examines the gains from taxing advertising. Finally, section 2.5

concludes.

Related literature. This paper relates to the literature that studies the implications of

customer capital for firm, industry, and macroeconomic dynamics (e.g. Dinlersoz and Yorukoglu

(2012), Gourio and Rudanko (2014), Molinari and Turino (2018), Argente et al. (2023), Einav

et al. (2022), Ignaszak and Sedlacek (2023), Greenwood et al. (2024)). In these models, firms

grow via increasing their idiosyncratic demand (customer capital). Together with Cavenaile

et al. (n.d.), we contribute to this literature by showing that it is not just the quantity of

customers that matters, but also the degree of information the customers have about alternative

goods. Relative to Cavenaile et al. (n.d.), this paper allows for strategic advertising decisions

as well as the interaction between firms of different sizes and ages. In Cavenaile et al. (n.d.),

advertising also serves to expand product awareness, but the advertising choices are coordinated

at the industry level, made once and for all at industry inception, and firms are assumed to

be symmetric. Their focus is on how the improvements in targeted advertising may lead to

increased market power through market segmentation.

This paper is also related to Greenwood et al. (2024), who present a static model to study the

inefficiencies from advertising. Here, the contribution is to add to the analysis the inefficiencies

arising from markups typical of oligopoly frameworks, as well as identifying three novel sources

of inefficiency from advertising. The first two are reminiscent of growth models, namely: (i)

6In this exercise, I compare the stationary equilibria resulting from the different tax levels, without consid-
ering the transition.
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lack of full appropriability, as the producers cannot extract the entire surplus; and (ii) business-

stealing, as firms don’t consider the losses from the reduction of consumption from competitors.

The third source of inefficiency arises from the anticompetitive motive particular to this model,

as firms try to avoid suffering from the business-stealing effect. Note that the sources of

inefficiency push in different directions, so it is not clear whether there is too much or too little

advertising, and requires a quantitative answer. Finally, there is inefficient entry, again due to

lack of full appropriability and business-stealing.

For the persuasive aspect of advertising, this paper builds on the literature that adopts the

persuasive view, e.g. Cavenaile et al. (2024a), Rachel (2024), Molinari and Turino (2018).

These papers model advertising as a static demand shifter. A novel contribution of the current

paper is the combination of the persuasive and informative views of advertising within a single

framework. In particular, this paper relates to Cavenaile et al. (2024a), as they also develop an

oligopolistic model with endogenous market structure. In their paper, they study the interaction

between R&D and advertising. As in my model, advertising in Rachel (2024) and Greenwood

et al. (2024) also finances the provision of media goods that improve utility.

Finally, this paper uses the concept of consideration sets introduced by Manzini and Mariotti

(2014) that are widely used in other fields.7 In macroeconomics, this concept (using the term

awareness set) is introduced by Cavenaile et al. (n.d.). Relative to them, this paper explores

how the evolution of awareness sets both influences and is influenced by firms’ advertising

decisions. The presence of awareness sets complicates the firm problem, as firms need to keep

track of the distribution of consumers across these sets. In their model, they abstract from

this by assuming the evolution of the awareness sets is determined at industry inception, so the

only state variable is industry age.

7Manzini and Mariotti (2014) model choice as a two-stage process. In the first stage, some of the available
alternatives are selected into a consideration set, with a probability that is linked to attention. In the second
stage, the agent maximizes utility restricted to the consideration set.
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2.2 Model

2.2.1 Environment

Market structure and the production sector. There is a continuum of mass 1 of

industries indexed by i. In each industry, there is a generic good and a discrete set Ji,t of firms,

indexed by j, each one producing a single differentiated good with the production function

yj,i,t = Nj,i,t, where Nj,i,t is the labor employed by firm j. The generic good is produced under

perfect competition by many small firms with the production function y0,i,t = A0N0,i,t, where

N0,i,t is the total labor employed by these small firms in industry i at period t.

Advertising and the media sector. There is a media sector populated by media firms

that employ labor to produce media goods, which are supplied to consumers at zero monetary

price, and generate revenue by selling advertising space to production firms. There is free entry.

Each media firm produces a differentiated variety of media good of equal quality, so consumers

will allocate the time they spend on media equally among the different media goods. The

aggregate quality of media is given by

Q = AN
1
2
m, (2.1)

where Nm is total labor employed in media. In order to rule out an equilibrium with no

advertising expenditure and no media produced, I assume the government employs N̄m units

of labor in media, which is financed by a lump-sump tax to consumers.

Within the media sector, each industry of the production sector has α units of advertising

space.8 The process whereby firms acquire advertising space follows a kind of auction, where

media firms post a price per unit of ad space in industry i, pa,i,t, which is the minimum bid

accepted, and supply at most α units of ad space. Letting ej,i,t be the advertising expenditure

of firm j in industry i, then the final price per unit of ad space in industry i will be equal to

max
{
pa,i,t,

∑
j∈Ji,t ej,i,t/α

}
. Therefore, the advertising space acquired by firm j, αj,i,t, will be:

8This is a reasonable assumption for search advertising: there is one top search position for a specific
keyword, so higher demand only leads to higher price, as suggested in Figure 1.A1. More generally, you could
think of this α as some measure of attention.
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αj,i,t = min

 ej,i,t
pa,i,t

, ej,i,t
α∑

k∈Ji,t
ek,i,t

 . (2.2)

Entry and Exit of firms. A firm is hit by a death shock with probability κ, independent of

whether other firms are affected (so, the probability n firms exit is κn). Regarding entry, there

is a measure one of entrepreneurs that employs Ne,i,t units of labor to create a new differentiated

good in industry i with probability ze,i,t = ϕsN
1
2
e,i,t. Upon successfully creating a new good (and,

for computational purposes, provided the number of firms in the industry is below J̄), a new

firm enters the market, and initially no consumer is aware of the new firm. Entry and exit

occur simultaneously right at the start of t+ 1.

Consumers. There is a unit mass of individuals indexed by ℓ who maximize lifetime utility,

where the instantaneous utility is a function of her consumption (Cℓ) and entertainment (Lℓ)

goods. Individuals die with an exogenous probability δ, in which case they are replaced with

an offspring who inherits the assets aℓ,t, and individuals discount the offspring’s utility with the

same discount rate; thus, we can write utility as if they were infinitely lived:9

Uℓ =
∞∑
t=0

βt [E lnCℓt + Lℓt] . (2.3)

Each individual supplies inelastically one unit of labor and chooses how much time to allocate

to media goods, Tℓ,t, in order to maximise her entertainment good Lℓ,t, which is defined as

follows:10

Lℓt = υ

(
QtTℓ,t −

T 2
ℓ,t

2

)
, (2.4)

where Qt is an output of the media sector production function. Anticipating that all individuals

choose the same Tℓ,t, in what follows I drop the subindex ℓ from Tt and Lt. Individual ℓ gets her

9Note that the only source of uncertainty on Cℓ,t comes from the probability of dying, but not from aware-
ness. There is uncertainty at the industry level due to the stochastic evolution of the awareness sets (see next
section), but the law of large numbers over the continuum of industries removes the uncertainty at the aggregate
level.

10Note that Tℓ,t is not restricted to be below 1; this is consistent with the way media time is measured in
the data where multitasking is counted separately, see Appendix 2.7.1.
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Cℓ following a Cobb-Douglas aggregator of her consumption over the continuum of industries

of mass 1

lnCℓ,t =

∫ 1

0

lnCℓ,i,tdi (2.5)

where the industry i consumption good of individual ℓ is a CES aggregator of her consumption

on the generic good and each of the differentiated goods she is aware of:

Cℓ,i,t =

cσ−1
σ

ℓ,0,i,t +
∑
j∈Iℓ,i,t

ωj,i,tc
σ−1
σ

ℓ,j,i,t

 σ
σ−1

, σ > 1, (2.6)

where cℓ,j,i,t is the quantity of good j consumed by ℓ at t; Iℓ,i,t will be referred to as the awareness

set of individual ℓ in industry i at period t, as it is the subset of the differentiated goods Ji,t the

individual is aware of at period t (in the next section, I describe the evolution of this object);

and ωj,i,t is a demand shifter that depends on the exposure of individuals to the ad of good j.

In particular:

ωj,i,t = 1 + νs(αj,i,tTt)
νc , νc ∈ (0, 1). (2.7)

Note that the more time consumers spend on media, the larger the effect of advertising on the

demand shifter.

Individual ℓ’s budget constraint is given by:

wtNℓ,t + rtaℓ,t =

∫ 1

0

∑
j∈Iℓ,i,t∪{0}

cℓ,j,i,tpj,i,tdi+ aℓ,t+1 − aℓ,t + τt, (2.8)

where wt is the wage, aℓt is the asset holding of individual ℓ at period t, rt is the return on each

unit of asset in period t, and τt is the lump-sum tax the government uses to employ N̄m units

of labor in the media sector. At time 0, all individuals are assumed to have the same level of

assets a0.

Product learning and the evolution of the awareness sets. I assume that the proba-

bility an individual gets aware of a product thanks to advertising is an increasing and concave

10



function of the exposure to the ad of that good. In particular, assume an individual will get

aware of product j in industry i with the following probability

ρj,i,t = min{1, ρ̂+ ψs(αj,i,tTt)
ψc}, ψc ∈ (0, 1). (2.9)

Note that consumers can learn about multiple goods in the same period, and the events are

independent. Although I focus on advertising as an active way through which firms can increase

their customer base, consumers can get to know a firm in other ways (word-of-mouth, seeing

the product in a shop...), and these are captured by ρ̂. The inclusion of Tt is to capture the

idea that the more time consumers spend on media, the more they are exposed to ads, and so

the more effective advertising is, just like in the demand shifter ωj,i,t.

In addition, when a consumer dies, they are replaced by a newborn individual who starts

knowing only the generic good of each industry (i.e. Iℓ,i = ∅ for all i). This is equivalent to say

that individuals forget all the differentiated goods they know with an exogenous probability δ.

This assumption is not crucial for the results, and its only implication is that, even if a firm

lived forever, there would always be some consumers that are not aware of it.

Then, we have all the information needed to find the probability of moving between any pair of

awareness sets. Let Θ(I→I′) be the probability of moving from I to I ′. Given that, conditional

on not dying, the awareness set can only expand, then if I ′ doesn’t contain I, the transition

is only possible (i.e. Θ(I→I′) > 0) if I ′ = ∅, which happens with the probability of dying δ.

Conversely, if I ′ contains I, then the probability this transition takes place is the probability

an individual doesn’t die, (1− δ), times the probability of learning all the goods that are in I ′

but not in I,
∏

j∈I′\I
ρj,i, times the probability of not learning any of the goods that are not in

11



I ′,
∏
j /∈I′

(1− ρj,i). Formally:

Θ(I→I′) =



0, if I ⊈ I ′ ̸= ∅

δ, if I ⊈ I ′ = ∅

(1− δ)
∏

j∈I′\I
ρj,i ·

∏
j /∈I′

(1− ρj,i), if I ⊆ I ′ ̸= ∅

(1− δ)
∏

j∈Ji,t
(1− ρj,i) + δ, if I = I ′ = ∅.

(2.10)

2.2.2 Equilibrium

In this section, I characterize the pure strategy Markov perfect stationary equilibrium, that is

such that the time spent in media Tt and the relative wage ŵt =
wt
Et

are constant.

2.2.2.1 Consumption.

On the one hand, logarithmic preferences on Cℓ,t, together with aℓ,0 = a0, imply that all con-

sumers choose the same expenditure at all t: Eℓ,t = Et.
11 On the other hand, CES preferences

over the varieties within an industry implies that consumer’s spending in an industry is inde-

pendent of her industry price index: Eℓ,i,t = Et. Therefore, the awareness sets Iℓ,i,t only affect

the allocation of the expenditure within each industry. That is, in order to characterize con-

sumer ℓ’s consumption choices in industry i, we only need to know her awareness set in i, Iℓ,i,t.

In other words, within industry i, there are as many types of consumers as subsets I ⊆ Ji,t.

So, the set of consumer types in industry i is identified by the power set of Ji,t, P(Ji,t), and,

within an industry, I’ll use subindex I to denote the choice of an individual with awareness set

I.

11Equation 2.31 in the Appendix gives the analytical expression for Et. In the stationary equilibrium,
consumers spend all their income.
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The optimal choices satisfy:12

cI,j,i,t = EtP
σ−1
I,i,t p

−σ
j,i,tω

σ
j,i,t, j ∈ I, (2.11)

Et+1

Et
= β(1 + rt+1), (2.12)

Tt = Qt. (2.13)

where PI,i,t =

(
p1−σ0,i,t +

∑
j∈I

ωσj,i,tp
1−σ
j,i,t

) 1
1−σ

.13 Note that consumers consume a positive amount of

all the goods they are aware of, and the particular quantity consumed follows equation (2.11).

Equation (2.12) is the Euler equation, and (2.13) states that the aggregate quality of media

determines the time spent on media. From Et = PI,i,tCI,i,t we see one of the channels through

which (the informative) advertising will increase welfare: advertising will increase the amount

of products the consumer is aware of, which reduces the price PI,i,t of her industry composite

good. This is a standard preference for variety effect.

2.2.2.2 The industry state and its evolution

Given that firms have the same production technology, all the heterogeneity comes from the con-

sumer side. The relevant state of the industry is characterised by the triple (Ji,t,P(Ji,t), M⃗i,t),

where M⃗i,t = (Mi,t(I))I∈P(Ji,t) is the mass of consumers in each awareness set (that is, the

distribution of consumers over the awareness sets). Note that since there is a mapping from

Ji,t to P(Ji,t), I may write the state simply as (Ji,t, M⃗i,t). There are two processes that shape

the evolution of the industry state.

On the one hand, the industry state changes as consumers’ awareness sets evolve due to learning

and death, which, by law of large numbers, is a deterministic process at the industry level. Call-

ing Θt the transition matrix, where the element in row r and column s indicates the probability

of going from subset Ir to Is at time t (i.e. Θt,(Ir→Is)), and calling M⃗i,t the 2#Ji,t-dimensional

row vector (where #Ji,t is the cardinalilty of Ji,t) containing the masses of consumers in each

awareness set at time t; then, by the law of large numbers, the distribution of consumers in

12Together with the No-Ponzi condition limτ→∞
at+τ∏τ

s=0(1+rt+s)
= 0.

13Note that consumers may not only have different industry price index, Pℓ,i,t, but also a different aggregate

price index Pℓ,t = exp
(∫ 1

0
lnPℓ,i,tdi

)
. In particular, as explained in section 2.2.2.8, individuals with the same

age have the same aggregate price index, and the numeraire of the economy is the geometric mean of Pℓ,t.

13



t+ 1 in the absence of entry and exit of goods, which I denote by
⃗̂
Mi,t+1, would be:

⃗̂
Mi,t+1 = M⃗i,tΘt. (2.14)

On the other hand, the industry state changes stochastically due to entry and exit of firms. If

the realization of exit and entry changes the set of firms in industry i from J to J ′, then the

next period industry state is obtained using the application (J , ⃗̂M,J ′) 7−→ (J ′, M⃗ ′) defined

as follows.

For I ′ ∈ P(J ′), M ′(I ′) =


∑

{I∈P(J ):I∩J ′=I′}
M̂(I) , if I ′ ⊆ J

0 , if I ′ ⊈ J ,

(2.15)

where the first case says that two consumers become identical in industry i if all the firms in

which they differed exit, whereas the second case says that there are no consumers who are

aware of a newborn firm. The last piece of information needed to compute expected values is

the probabilities that the set of differentiated goods moves from J to J ′ ⊆ J ∪ {e}, where e

denotes an entrant. These probabilities are given by:

For J ′ ∈ P(J ∪ e)), Prob{J → J ′} =


(1− ze,i,t)

∏
j∈J∩J ′

(1− κ)
∏

j∈J\J ′
κ , if e /∈ J ′

ze,i,t
∏

j∈J∩J ′
(1− κ)

∏
j∈J\J ′

κ , if e ∈ J ′,

(2.16)

where ze,i,t is the probability of an entrant,
∏

j∈J∩J ′
(1 − κ) is the probability that all the firms

in J ∩ J ′ survive, and
∏

j∈J\J ′
κ is the probability that all the firms in J \ J ′ exit.

2.2.2.3 Production firms’ problem

Given the large number of small firms producing a homogeneous product, the price of the

generic good is equal to its marginal cost, p0,i,t = wt
A0
. The differentiated firms compete in

prices a la Bertrand and in advertising expenditures for the attention of consumers. Both

decisions are made simultaneously.

Profits. Using the production function yj,i,t = Nj,i,t, we can express profits decomposed as
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πj,i,t = Mj,i,t︸ ︷︷ ︸
Customer

Base

· (1−M−1
j,i,t)

∑
I∈Pj(Ji,t)

Mi,t(I)
Mj,i,t

sI,j,i,tEt︸ ︷︷ ︸
Average spending

by customers︸ ︷︷ ︸
Average rents from customers

, (2.17)

where Mj,i,t =
pj,i,t
wt

is the markup of firm j, sI,j,i,t =
pj,i,tcI,j,i,t

Et
is type I individual’s share of

expenditure in good j, Pj(Ji,t) = {I ∈ P(Ji,t) | j ∈ I} is the family of awareness sets containing

good j, and Mj,i,t =
∑

I∈Pj(Ji,t)
Mi,t(I) is the customer base of firm j.

This expression offers a first intuition of the motives driving firms to advertise. First, they

want to advertise to increase their customer base. I refer to this as the informative motive.

Second, as shown in the Appendix 2.7.3.1, all else equal, firms prefer to have customers that

know as fewer competitors as possible. Intuitively, the fewer alternative goods they know, the

more they will spend in j (i.e. higher sI,j,i,t) and the lower their demand elasticity (so, the

firm is able to extract more rents by rising the markup). So, given that by increasing the

advertising space they occupy, firms reduce the attention of consumers to the competitors’

goods and so the probability they will add them to their awareness sets; then, firms may have

the incentive to do advertising for the mere purpose of reducing the mass of customers who

learn about competitors. I refer to this as the anticompetitive motive, as under this motive

the firm is doing advertising to avoid competition by precluding competitors to expand their

customer base. Finally, given that the demand shifter ωj,i,t increases with the the advertising

space, firms want to do advertising to persuade current consumers to buy more. This is the

persuasive motive.

Price setting. I assume pure strategy Markov perfect equilibrium where policy functions

only depend on the current industry state (Ji,t, M⃗i,t). Given that the price has no direct

effect on the evolution of the industry state and that advertising and price choices are made

simultaneously, then the price setting problem is static. The optimal markup Mj,i,t is such

that profits (2.17) are maximised, given its own demand-shifter ωj,i,t, the markups and demand-

shifters of the competitors {Mk,i,t, ωk,i,t}k∈Ji,t,k ̸=j, and the distribution of consumers over the

awareness sets M⃗i,t = (Mi,t(I))I∈P(Ji,t), and taking into account that individuals’ spending
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shares are given by

sI,j,i,t =

[
(A0Mj,i,t)

σ−1ω−σ
j,i,t +

∑
k∈I

(
ωk,i,t
ωj,i,t

)σ (Mj,i,t

Mk,i,t

)σ−1
]−1

. (2.18)

The equilibrium markups are given by:

Mj,i,t =
σ
σ−1 − s̄j,i,t

1− s̄j,i,t
, with s̄j,i,t =

∑
I∈Pj(Ji,t)

Mi,t(I)pj,i,tcI,j,i,t
pj,i,tyj,i,t

sI,j,i,t, (2.19)

where s̄j,i,t is the sales-weighted average of firm j customers’ share of expenditure in industry i

allocated to good j.

Note that in a standard oligopoly model with Bertrand competition, the optimal markup is

given be the expression in (2.19) but with the market share sj,i,t instead of s̄j,i,t. So, while the

optimal markup in a standard oligopoly model with Bertrand is increasing with size, this is

not necessarily the case here. Here, the markup depends on the composition of the customers,

not in the size: a smaller firm can have a higher markup if a larger fraction of its customers

spend a larger share of expenditure on it. However, the model will still predict that, within

an industry, larger firms have higher markups. The intuition is as follows: a firm that entered

earlier had more time to accumulate customers (so older firms will be larger); but also, since

as time passes consumers get aware of more goods and advertising is undirected, then a firm

that enters later will get consumers that, on average, know more goods (and we have seen that

customers with more alternative goods spend a smaller share). So, within an industry, larger

firms will have customers that on average spend a larger share of expenditure, and thus they

set higher markups.

Advertising choice. Each firm chooses dynamically its advertising expenditure ej,i,t, tak-

ing into account (i) the advertising expenditure choices of its competitors {ek,i,t}k∈Ji,t,k ̸=j; (ii)

markups {Mk,i,t}k∈Ji,t ; (iii) the time consumers spend on media, Tt; (iv) the law of motion of

the industry state; and (v) that the actual advertising space purchased by each firm is given

by (2.2). In practice, given that in equilibrium pa,i,t is such that total advertising expenditure

in industry i exactly purchases α units of ad space, then, in all industries with more than one

differentiated firms, αj,i,t will be given by the second argument in (2.2), and so there will be
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an anticompetitive motive to advertise: by increasing ej,i,t, firm j will achieve to increase the

actual price for advertising space and thus reduce the advertising space of competitors, which

will reduce the probability consumers learn about competitors. In industry states with only one

differentiated firm, there is trivially no anticompetitive motive because there is no competitor

and so the unique firm has no incentive to spend more than pa,i,tα, and so in such industry

states αj,i,t will be given by the first argument in (2.2).

Given that I focus on Markov perfect equilibrium, then the firm problem can be expressed in

recursive form, with the value of the firm being a function of the state. Given that profits are

linear on Et, by guess and verify, the value of the firm is also linear in Et. Therefore, defining

Vj(Ji,t, M⃗i,t) =
Vj,i,t
Et

, êj,i,t =
ej,i,t
Et

, p̂a,i,t =
pa,i,t
Et

and πj(ωj,i,t,Ji,t, M⃗i,t) =
πj,i,t
Et

and using the Euler

equation and that in the stationary equilibrium it will be Tt = T , we can write the dynamic

firm problem recursively as

Vj

(
J , M⃗

)
= max

êj

{
πj

(
ωj ,J , M⃗

)
− êj + βEVj

(
J ′, M⃗ ′

)}
s.t. {êk}k∈J\{j}, {Mk}k∈J , T , (2.9), (2.10), (2.14), (2.35), (2.36), (2.2).

We can decompose the first-order condition into the three motives to advertise: the informative

motive (increase ρj), the anticompetitive motive (decrease ρj′ , j
′ ̸= j), and the persuasive

motive (increase sI,j,i for I ∈ Pj):

1 =
∂πj,i
∂ej︸ ︷︷ ︸

Persuasive
motive

+
∂Vj
∂ρj

∂ρj
∂αj

∂αj
∂ej︸ ︷︷ ︸

Informative
motive

+
∑
j′ ̸=j

(
− ∂Vj
∂ρj′

)
∂ρj′

∂αj′

(
−∂αj

′

∂ej

)
︸ ︷︷ ︸

Anticompetitive motive

. (2.20)

In section 2.3.2 I show how the intensity of the three motives evolve with firm age.

2.2.2.4 Entrepreneurs’ problem

The entrepreneurs in an industry (J , M⃗) choose Ne to maximise their expected value:

ve(J , M⃗) = max
Ne

{
−Neŵ + βzeEeVe

(
J ′ ∪ {e}, M⃗ ′

)}
, s.t. ze = ϕsN

1
2
e , (2.21)

where EeVe
(
J ′∪{e}, M⃗ ′

)
is the expected value of being a new firm conditional on successfully

creating a new differentiated good (so, the expectation comes from the uncertainty on which of

the J incumbents will survive). Then, the equilibrium labor employed in entry in an industry
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(J , M⃗) will be:

Ne,(J ,M⃗) =

(
ϕs
2ŵ

βEeVe
(
J ′ ∪ {e}, M⃗ ′

))2

. (2.22)

2.2.2.5 Stationary distribution

In the Appendix 2.7.7 I prove that, for any aggregates ŵ and T given, with their associated

solutions of the firms and entrepreneurs problems {αj,(J ,M⃗), Ne,(J ,M⃗)}, the probability that an

industry is at a given state (J , M⃗) converges to an ergodic distribution (existence), which is

independent of the initial state (uniqueness), and satisfies that the set of different states re-

alised, call it Ω, is at most countably infinite.14

By the strong law of large numbers, this implies that the economy converges to a stationary

distribution associated to the aggregates ŵ, T . Let µ(J ,M⃗) be the mass of industries in state

(J , M⃗) ∈ Ω in this stationary distribution. If ŵ, T are consistent with this stationary distribu-

tion, then we are in the stationary equilibrium.

The stationary distribution is computed using the method described in Appendix 2.7.8. To

the best of my knowledge, no other paper computes a stationary distribution with a countably

infinite number of states in its support, making this a methodological contribution of the paper.

2.2.2.6 Media sector problem

Given the identical media production by media firms, consumers allocate their media time T

equally among the media firms, and production firms allocate their advertising expenditure

equally among the media firms. Therefore, all media firms have the same profits, and so each

media firm has positive profits if and only if the overall profits in the media sector are positive.

Then, since there is free entry into the media sector, profits in the media sector must be zero

in equilibrium; so, the equilibrium Qt satisfies:

∫ 1

0

∑
j∈Ji,t

êj,i,tEtdi+ wtN̄m − wt

(
Qt
A

)2

= 0, (2.23)

14Note that I have not formally proved whether the solution of the firms’ and entrepreneurs’ problems is
unique; and so the stationary equilibrium is not necessarily unique.
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where recall that N̄m is the labor in media employed by the public sector. In the stationary

equilibrium, Qt = Q is constant.

2.2.2.7 Labor market clearing

The labor market must clear, that is, the amount of labor supplied has to be equal to the

labor demanded by the production firms, media firms and entrepreneurs. Without any loss of

generality (just a change in the units we measure labor), I can normalize labor supply N to 1.

1 = N =

∫ 1

0

 ∑
j∈{0}∪Ji,t

Nj,i,t +Ne,i,t

 di+Nm,t, (2.24)

where Nj,i,t =
sj,i,t
Mj,i,t

ŵ−1, and Ne,i,t and Nm,t are given by (2.22) and (2.23), respectively. This

pins down the equilibrium relative wage ŵt, and verifies that it is constant in the stationary

equilibrium.

2.2.2.8 Aggregate output and representative consumer conditional on age

I define the aggregate consumption good as the geometric mean of the individuals’ aggregate

consumption goods; that is lnCt =
∫ 1

0
lnCℓ,tdℓ. Using the definitions of Cℓ,t and Cℓ,i,t, together

with cℓ,j,i,t =
sℓ,j,i,t
Mj,i,t

ŵ−1 and cℓ,0,i,t = sℓ,0,i,tA0ŵ
−1, and interchanging the integrals over ℓ and i,

we obtain the level of the consumption good:

lnC = − ln ŵ +
∑

(J ,M⃗)∈Ω

µ(J , M⃗)
∑

I∈P(J )

M(I) σ

σ − 1
ln

(sI,0,(J ,M⃗)A0)
σ−1
σ +

∑
j∈I

ωj,(J ,M⃗)

(
sI,j,(J ,M⃗)

Mj,(J ,M⃗)

)σ−1
σ

 .

(2.25)

The aggregate price index of the economy is Pt such that PtCt = Et, and it is the numeraire

(i.e. Pt = 1). GDP in the economy is given by Y = E +
∑

(J ,M⃗)∈Ω
µ(J ,M⃗)Ne,(J ,M⃗)ŵE.

Finally, note that applying a law of large numbers to the continuum of industries, two consumers

with the same age will have the same level of aggregate consumption good. That is, although

they will differ on their awareness sets for particular industries, at the aggregate level they will

have the same distribution of awareness sets.
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2.3 Quantitative analysis

2.3.1 Calibration

In this section, we describe the calibration of the model, and the details of the data sources

and how the moments are computed are provided in the Appendix 2.7.1. One of the main

components of the model is firms’ customer base accumulation, which has a strong relationship

with firm size, both in the model and in the data, as pointed by the empirical literature cited

in the introduction. Therefore, it is important that the model reproduces the evolution of the

average firm sales growth by age, in order to calibrate this customer base building process.

In particular, we target the constant and the linear coefficient from the fitted line of the plot

of average firm relative sales growth by age. Also, as shown in section 2.3.2, the intensity of

the different motives to advertise varies with firm size, so the coefficient from a regression of

advertising expenditure and sales is a good candidate to discipline the model.

To compute these three moments I use Compustat data. Given that firms typically enter

Compustat a few years after their foundation (and certainly not with zero customers as it is

assumed in the model for new firms), for the computation of the model-implied moments of

these three targets, I assume that firms in the model are unobserved until they are at least five

years old.

We estimate the model for the US at an annual frequency and set the consumer discount rate

to β = 0.98. We also set (i) δ = 0.01 corresponding to the mortality rate of 1% in the data, (ii)

the concavity parameter for the persuasive advertising νc = 0.2972 is taken from (the inverse)

Cavenaile et al. (2024a), (iii) given that public sector spending on media represents roughly

0.008% of US GDP, dividing this by the (capital-adjusted) labor share, we set N̄m = 8·10−5

0.8359
, and

(iv) we set κ = 0.1151 corresponding to the entry rate in the data. Acknowledging the difficulty

to find good proxies for the utility value of media goods, we leave the weight of the entertainment

good on the utility function, υ, uncalibrated and all the exercises involving welfare are made

for a range of values of υ. This leaves 8 parameters to estimate: the elasticity of substitution

parameter, σ; the relative productivity of the small firms producing the generic goods, A0; the

scale parameter for the persuasive effect of advertising, νs; the scale and convexity parameters

for the informative effect of advertising, (ψs, ψc); the exogenous learning probability, ρ̂; the
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scale parameter regulating the creation of new products, ϕ; and the aggregate productivity of

the media sector, A. Apart from A, which can be derived directly from 2.23 using the target

values for aggregate advertising expenditure and labor shares and the fraction of time in media,

the rest of the 7 parameters are estimated jointly through a Simulated Method of Moments

estimation procedure. Apart from the three moments described above concerning the average

firm growth by age and the relationship between advertising and sales, at the aggregate level,

I target the sales-weighted average markup and standard deviation, the aggregate advertising

expenditure as a percentage of GDP, the fraction of time spent in media, and the labor share.

Given that there is no physical capital in the model, for comparability, I take the labor share as

the share of labor income among labor income and profits, following Cavenaile et al. (2024a).

Table 2.1 summarises the results of the calibration. Panel A reports the parameter values,

while Panel B reports both the model-implied moments and the empirical ones. The model

does well in matching the moments. In addition to the targeted moments, the calibrated model

also features an inverted-U relationship between advertising expenditure and relative sales as

documented in Cavenaile et al. (2024a).

Note that Compustat is not the ideal dataset to discipline the growth pattern of firms in the

model for the following reasons. First, firms do not automatically enter Compustat when they

are born, and they may enter at different stages of the life cycle. Second, contrary to the model,

firms may grow by expanding to new geographical markets or new product lines. Figure 1.1

plots the average firm relative sales growth rate both in the model and in the data. Note that in

the model, if a firm had a constant ρj,i (this is the case of a firm that has always been the single

differentiated firm of the industry), then growth would be monotonically decreasing, pushed by

a mechanical force: given that the population is constant, as the firm’s customer base expands,

the growth rate slows down because (i) a given increase in customers has a smaller relative

impact, and (ii) there are fewer non-customers remaining. Things get noisier when there are

other competitors and there is entry and exit.

2.3.2 Advertising motives and firm age and size

In this section, I quantify the share of the incentives to advertise attributable to each of the

three motives and examine their relationship with firm age and size. The intuition is clear:
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Table 1.1: Parameter values and targeted moments

A. Parameters

Parameter Description Calibration Value

Preferences
β Discount rate External 0.98
σ CES consumption Internal 5.0625
υ weight of leisure Uncalibrated -

Persuasive
νs Scale parameter Internal 0.1250
νc Convexity parameter External 0.2972

Learning

ψs Scale parameter Internal 0.2194
ψc Convexity parameter Internal 0.4500
ρ̂ Exogenous learning Internal 0.1000
δ Mortality rate External 0.01

Media sector
A productivity media firms Internal 3.2087
N̄m public sector media External 9.5705 · 10−5

Generic good A0 Productivity Internal 0.5047

Entry/Exit
κ Exit rate External 0.1151
ϕ Entry scale Internal 0.6422

B. Moments

Moment Data Model

Sales-weighted average markup 1.3498 1.3281
St.Dev. Markup 0.3460 0.3479

Labor share (capital-adjusted) 0.8359 0.8392
Advertising/GDP 2.2% 2.1535%

Fraction of time in media 0.552 0.552
Intercept (firm growth, age) 0.0784 0.0831
Linear(firm growth, age) -0.0061 -0.0063

Linear(adv. exp, market share) 0.6710 0.6501

Notes. Panel A reports the parameter values. Panel B reports the simulated and empirical
moments. Details on data sources and how these moments are computed can be found in the
Appendix 2.7.1

smaller or younger firms—those that are unknown to most consumers—have more potential

customers to acquire. In the extreme case, a firm known by all consumers would have no incen-

tive to advertise for informational purposes. Conversely, the anticompetitive motive, which is

about retaining market power over the current customers by reducing the probability that they

learn about competitors, becomes stronger as the customer base grows. A firm that is unknown

to all consumers also has some incentive to prevent them from learning about other firms (since

it internalizes that these consumers may eventually become customers, and thus wants them
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Figure 1.1: Average firm growth by age

Notes. This figure displays the average firm relative sales growth by age both in the data
(blue) and in the model (red). Given that firms typically enter Compustat a few years after
their foundation, for comparability I assume age 0 in Compustat corresponds to age 5 in the
model.

to know as few goods as possible), but intuitively, the incentive to prevent a consumer from

learning about a competitor is higher when the consumer is already a current customer rather

than just a potential one. Finally, the persuasive motive also tends to be bigger in older or

larger firms. Intuitively, if advertising persuades current customers to spend more, the increase

in revenue will be larger if there are more customers.

The decomposition of the FOC of advertising expenditure in (2.20) allows us to see the share

of the firm’s marginal value of advertising coming from each of the three motives. Using this

observation, Figure 1.2 displays the share of the marginal value of advertising attributable to

each of the three motives for all the firms in the stationary equilibrium. Three observations

can be drawn. First, that there is significant heterogeneity, which indicates that age is far from

being a sufficient statistic. This shows that industry dynamics play a key role (i.e. competition

matters). Second, despite the variability, it can be observed that the informative motive is

negatively associated with age, while the anticompetitive and the persuasive motives are pos-
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Figure 1.2: Marginal intensity of the advertising motives by age

Notes. This figure displays the values from the terms of the FOC corresponding to the informa-
tive motive (left panel), the anticompetitive motive (middle panel) and the persuasive motive
(right panel), for all the firms in the stationary equilibrium, where the relative size of each dot
indicates the share of this firm type in the stationary distribution.

itively associated with it. Finally, firm age appears to play a particularly important role in

distinguishing the motives during the first 5–10 years of a firm’s life.

By aggregating the previous shares, weighted by total industry advertising expenditure, we ob-

tain an indicative breakdown of the advertising expenditure attributable to each motive. This

exercise suggests that 57.81% of the incentives correspond to the informative motive, while

33.74% correspond to the persuasive motive and 8.45% to the anticompetitive motive. Figure

1.A2 further repeats this decomposition exercise conditional on the number of firms in the in-

dustry. This reveals that the persuasive motive is more important as the number of competitors

increases.

Because of the positive link between firm age and size (either sales or customer base, see Figure

1.A3), we obtain qualitatively similar plots when firm size is used instead of age. This numerical

result is further supported by the following analytical result:

Proposition 1 If distribution M⃗2 is obtained from M⃗1 by adding {j} to the awareness sets of

some consumers (that is, formally, if M⃗1, M⃗2 satisfy M2(I ∪{j})−M1(I ∪{j}) =M1(I)−M2(I) ≥ 0

for every I ∈ P−j = {I ∈ P|j /∈ I}), then (for now, the proof is keeping the advertising choices

fixed):

1. Firm j’s informative motive is smaller in M⃗2. That is, the informative motive is stronger
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in smaller firms.

2. Firm j’s anticompetitive and persuasive motives are bigger in M⃗2. That is, both the

anticompetitive and the persuasive motives are stronger in bigger firms.

Proof. See the Appendix 2.7.5

2.3.3 Counterfactuals shutting motives

How do each of the three motives affect the aggregates? Is the anticompetitive motive necessar-

ily bad? What are the aggregate effects of shutting down advertising? This section addresses

these questions. To do so, I compare the baseline economy with three counterfactual scenarios.

The first is an economy where firms neglect the anticompetitive motive; that is, they don’t

internalise that by increasing their advertising expenditure they are effectively reducing the

amount of consumers who learn about competitors. To be precise, this is done by removing

the anticompetitive component from the firm’s first order condition. In the second counterfac-

tual, in addition, firms also neglect the persuasive motive; that is, they don’t internalise that

advertising increases current customers’ spending. In the third one, the informative motive is

also shut down, meaning firms don’t advertise at all, and so consumers only learn through the

exogenous probability; i.e., ρj,i,t = ρ̂. This exercise illustrates what the economy would look

like if firms neglected some of the motives to advertise. Such negligence alters firms’ decisions,

which in turn also has general equilibrium consequences.

Table 1.2 reports some relevant statistics for the counterfactuals and the benchmark. The sec-

ond row shows the level of the consumption good assuming that the persuasive advertising is

deceptive (i.e., consumers make their purchasing decisions based on ωj,i,t, but then they derive

utility as if ωj,i,t = 1).

First, as intuition suggests, without the anticompetitive motive, smaller firms face less com-

petition for advertising space, allowing them to grow faster, which increases competition and

consequently lowers markups. Additionally, improved growth prospects increase entrepreneurs’

incentives to create new products, driving up the entry rate. However, these positive effects on

C are mitigated by a negative general equilibrium effect. Removing one incentive to advertise

decreases the demand for advertising, which in turn reduces aggregate advertising expenditure,
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Table 1.2: Comparison of counterfactuals with firms neglecting the anticompetitive and/or the
persuasive motives

Benchmark No Anticompetitive Only Informative No motive

C 0.7260 0.7268 0.7226 0.6049
C no taste shifter 0.6898 0.6916 0.6935 0.6049

Q 0.5150 0.4860 0.3536 0.0314
Adv/GDP 2.1535 1.9137 1.0054 0

w 0.8392 0.8376 0.8345 0.9010
Avg Number of Firms 1.4148 1.4233 1.4406 1.1087

Sales-Weighted Average Markup 1.3281 1.3260 1.3135 1.1698
Coefficient advertising vs market share 0.6501 -2.5961 -15.0744 .

Notes. In the ’No Anticompetitive’ counterfactual, firms make their decisions neglecting the
anticompetitive motive; in the ’Only Informative’ counterfactual, firms neglect both the anti-
competitive and the persuasive motives; and in the ’No motive’ firms neglect all the incentives
to advertise, so they don’t advertise and there is only the exogenous learning, ρj,i,t = ρ̂.

leading to a lower supply of media goods. As a result, consumers spend less time on media,

meaning they are less exposed to advertising, which renders advertising less effective. This

explains the negligible overall effect on C.15 Therefore, although the anticompetitive motive

has an overall negative effect on consumption, it is not necessarily the case that welfare would

be higher in a counterfactual economy without it, due to its contribution on the provision of

media goods.

The counterfactual where, in addition, the persuasive motive is shut down suggests that the

persuasive motive has an overall positive effect on consumption. The second line shows that

this positive effect is due to consumers enjoying the advertised goods more. Similarly to the

anticompetitive motive, shutting down the persuasive motive allows smaller firms to capture a

larger share of the advertising space, which increases entry and lowers markups. Moreover, as

in the first counterfactual, although shutting down the motive has a significant effect on firms’

advertising decisions (in this case, advertising expenditure falls by 47.46%), its effect on C is

very modest. Thus, on the aggregate, both motives matter mostly through media goods.

Finally, the last counterfactual shows that shutting down advertising would decrease consump-

tion by 16.68% relative to the benchmark. In this counterfactual, the media sector only receives

revenue from the public sector. In this counterfactual, firms’ customer base only grows via the

exogenous learning. This implies that, in the equilibrium, the differentiated firms will tend to

15Relatedly, in the Conclusion I discuss that the current specification of ρj,i,t may exhibit excessive dimin-
ishing returns.
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be smaller, which decreases the incentives to enter. Given that there are fewer differentiated

firms and that they are, on average, smaller in size, the generic goods capture a larger market

share, which drives the average markup down.

2.4 Welfare: Planner Problem and Taxation

In this section, I first identify the sources of inefficiency in the model and then solve the

informationally-constraint planner problem and compare it to the decentralized equilibrium.

Finally, I examine taxation on advertising.

2.4.1 Social planner problem

The model is inefficient for several reasons. First, the dispersion of markups typical in oligopolis-

tic setups leads to labor misallocation in the production sector. Second, when choosing their

advertising expenditure, firms do not internalize the entertainment value of media goods, which

are financed through advertising. This points to an underprovision of media goods, as in Green-

wood et al. (2024). Additionally, there are three sources of inefficiency coming from the adver-

tising choices that are characteristic of the current paper: the anticompetitive motive, the lack

of full appropriability, and business-stealing. Note that we can distinguish between inefficiencies

in the level of advertising expenditure (or, equivalently, in the prices of advertising space or in

the provision of media goods) and inefficiencies in the allocation of advertising space. In this

sense, the anticompetitive motive points to too much advertising and shifts the allocation of

advertising space toward older firms. The lack of full appropriability, meaning that firms cannot

extract the full surplus, pushes towards having too little advertising. Finally, business-stealing

here refers to firms not internalizing the losses from the reduction in the consumption of other

goods when consumers learn about their product, which pushes toward excessive advertising,

especially in industries with more competitors. Moreover, there is also inefficient entry, again

due to lack of appropriability and business-stealing.

To assess the importance of these inefficiencies, I solve the following planner problem and com-

pare the resulting equilibrium with the decentralized one.16 The planner has full control over

16This is work in progress. Given that there are numerous sources of inefficiency, a more insightful exercise
would be to compare allocations where the planner takes control of one additional decision.

27



production, media, and entrepreneurial decisions but cannot affect consumers’ behavior; that is,

the learning process and the choices regarding consumption and media time remain as they are

in the decentralized equilibrium. Its goal is to maximize aggregate utility, with all individuals

weighted equally. Formally, the planner solves:

max
{NM,t,Nj,i,t,Ne,i,t,pj,i,t,αj,i,t}

U =

∞∑
t=0

βt
∫ 1

0

[lnCℓt + Lℓt] dℓ

s.t. Cℓ,t from (2.5), Cℓ,i,t from (2.6), cℓ,j,i,t from (2.11), and Lℓ,t from 2.4, with Tt = Qt (Consumer choices)

yj,i,t = Nj,i,t, y0,i,t = A0N0,i,t, Qt = AN
1
2
m,t (Production functions)

1 = Nm,t +

∫ 1

0

 ∑
j∈{0}∪Ji,t

Nj,i,t +Ne,i,t

 di , wt = Et (Resource constraints)

∑
j∈Ji,t

αj,i,t = 1, (2.9), (2.10), (2.14), (2.35), (2.36) (Learning process)

ze,i,t = ϕN
1
2
e,i,t, (2.35), (2.36) (Entry and exit) .

I leave the details of the solution in the Appendix 2.7.6. The planner sets prices equal to

marginal cost times a markup (or a tax) that allows the planner to pay for the labor to produce

the media goods and for entry. That is, pj,i,t = τwt/Aj, with τ = Et/(wtN
P
t ), where N

P
t is the

labor used in the production sector.

For the dynamic problem of advertising and media, as in the model introduced above, I focus

on the stationary Markov perfect equilibrium. The social planner has to decide on (i) how to

allocate the ad space among the differentiated firms of each industry, αj,i,t, (ii) how much labor

to allocate to the media sector, Nm,t, and (iii) how much labor to allocate to creating new

products in each sector, Ne,i,t.

First, let’s see the social planner choice of αj,i,t. The allocation of the ad space has to be such

that the marginal social gain of increasing the ad space given to each firm is the same, since

otherwise we could improve the allocation. Formally, letting lnCi,t =
∫ 1

0
lnCℓ,i,tdℓ be the total

consumption good of industry i, and UX =
∞∑
t=0

βtE lnCi,t be the expected life-time utility derived

from an industry whose current state is X; it must be

∂ lnCX,t
∂αj,X

+ β
∂EUX′

∂ρj,X

∂ρj,X
∂αj,X

= ĥX for some ĥX and all j ∈ JX , together with
∑
j∈JX

αj,X = 1. (2.26)

Note that the anticompetitive motive plays no role in the social planner’s allocation of αj,X ,

as the planner directly chooses the ad space occupied by each firm. So, in deciding whether to

give more ad space to one firm over another, the planner only considers the utility gains from
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informing more consumers and from enhancing customers’ taste for that good.

Second, let’s see the social planner choice of Nm. The planner takes into account that by

employing more labor in media it will increase the aggregate quality Q of media, which has

two effects: (i) it increases the level of entertainment L; and, by increasing the time spent in

media, (ii) it increases the consumption good by increasing the probability of learning goods.

The optimal Nm is given by

Nm =
NP

2

(
υQ2 +

∑
X∈Ω

µ(X)ĥXα

)
. (2.27)

Note that, unlike existing literature, here the planner values the provision of media goods even

if their entertainment value was negligible (i.e. even if υ = 0), due to their role as a vehicle for

spreading product awareness. Finally, the labor employed in entry in each industry satisfies:

Ne,X =

(
ϕNP

2
β (EeUX′ − E−eUX′)

)2

, (2.28)

where EeUX′ (resp. E−eUX′) is the expected industry-utility conditional on successfully creating

(resp. not creating) a new differentiated good (so the undertainty comes from the probabilities

the incumbents exit). The relative wage is ŵ = 1 as consumers spend all the income they

receive, which is w. The labor market clearing, using 2.50 and 2.27 pins down NP :

1 = NP +Ne +Nm. (2.29)

Figure 1.3 compares the planner economy with the decentralized one for different values of the

relative utility weight of the entertainment good, υ. As expected, as υ increases, the planner

puts more weight on producing media goods, at the expense of consumption, which eventually

is lower than in the decentralized equilibrium. More interestingly, when υ → 0 (that is, when

spending time on media doesn’t provide any direct utility gain to consumers), the supply of

media qoods is larger in the decentralized equilibrium, which seems to indicate that, when

υ → 0, there is too much advertising. However, it is important to remind that there are

inefficiencies both in the level of advertising expenditure as well as in the allocation of the

advertising space. Therefore, this doesn’t mean that welfare in the decentralized equilibrium

would improve if all firms reduced their advertising expenditure proportionally to emulate the

same Q as in the planner’s equilibrium. In other words, the inefficiencies from the misallocation
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in the advertising space may be mitigated with the ‘overprovision’ of media, through its effect

on learning.

Figure 1.3: Welfare comparison of the planner and decentralised allocations

Notes. This figure displays the difference in final output (upper-left panel), in media time
(upper-right panel), and welfare (bottom panel) between the planner’s equilibrium and the
decentralized one, relative to the decentralized one.

2.4.2 Taxing advertising: Uniform tax

Given that the decentralized equilibrium is inefficient, this section explores the welfare gains

from the uniform tax on advertising that maximizes welfare. Here, in addition to ej,i,t, firms

pay τaej,i,t as taxes to the government, which are distributed as transfers to consumers. Figure

1.4 depicts the effect of this tax on final output, the quality of media, and welfare for different

values of υ. As expected, the higher the entertainment value of media, the more valuable a

subsidy on advertising becomes, as it magnifies the inefficiency arising from the fact that firms

don’t internalize the entertainment value of media goods. More interestingly, recall that we

have seen that the decentralised equilibrium supplies more media than the planner’s equilibrium

in the case of υ → 0, which seems to point to an overprovision of media. Actually, it turns out

that even when υ → 0, the optimal tax is a subsidy. This suggests that the ‘overprovision’ of
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media mitigates the inefficiencies from the misallocation of the advertising space, via increasing

the time spent on media and thus the effectiveness of advertising.

Figure 1.4: Welfare under uniform tax on advertising

2.4.3 Age-dependent tax

The observation in section 2.3.2 that the informative motive decreases with age, while the per-

suasive and anticompetitive motives increase with age—and that these motives have different

welfare implications—suggests that significant welfare improvements may be achieved by im-

plementing an age-dependent tax rather than applying a uniform tax across all firms. Assume

now that firms pay τY if their age is less than the age cutoff ā, and τO if their age is greater

than or equal to ā. In particular, for this exercise, I have set ā = 3; this means that firms

receive different tax treatment during their first three periods of life compared to afterwards.

This differential policy treatment makes the vector of ages of the firms an additional state.

Note that firms that are at least ā years old are indistinguishable by age; if all firms are older,

then the firm problem is identical to the baseline with a uniform tax. However, for aj < ā, we

need to keep track of the particular age aj; i.e., how close a firm is to ā makes a difference.

So, if (a1, . . . , aJ) is the vector of ages (from older to younger), then the relevant age state is
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a⃗ = (â1, . . . , âJ), where âj = min(aj, ā).

Figure 1.5 illustrates the effect of this age-dependent advertising tax on (i) consumption, (ii)

consumption under the assumption that the persuasive effect of advertising is deceptive (as

described in 2.3.3), (iii) media quality, and (iv) welfare for two values of υ. As with the

uniform tax, the gains in consumption from the optimal age-dependent tax are small.

Figure 1.5: Welfare under age-dependent tax on advertising

2.5 Concluding remarks

The informative and persuasive aspects of advertising are widely accepted: firms may advertise

to mitigate some information frictions by informing consumers, but also to shift market shares

from one firm to another (Bagwell, 2007). On top of this, I highlight that the fact that con-

sumers’ attention is limited introduces a novel motive to advertise: firms may want to divert

consumers’ attention away from competitors.

This paper develops a novel model that accommodates the three motives and allows us to

consider how firms build their customer capital and interact with their competitors’ customer

capital. Additionally, the paper introduces new methods—specifically, piecewise multivariate

Newton interpolation and the method used to find the stationary distribution—which we believe

will be valuable for future research.

I first use the model to examine how the motives evolve along the firm’s life-cycle, their contri-

bution to total advertising, and their aggregate effects. The informative motive, which accounts
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for around half of the incentives to advertise, is stronger for younger firms, as these are less

known. The persuasive and anticompetitive motives, which are stronger in older firms, while

relevant from the firms’ perspective, have an almost negligible effect on aggregate consump-

tion. Instead, they mostly matter through the provision of entertaining media goods, as they

significantly contribute to total advertising expenditure. However, completely shutting down

advertising leads to a considerable 16.68% reduction in consumption Finally, given that there

are several sources of inefficiency in the model, I compare the planner’s allocation with the

decentralized one, and study the welfare gains from taxing advertising. I find that advertising

should be subsidized, although the gains are small.

Two considerations are relevant in understanding the modest effect on aggregate consump-

tion both when only some motives are shut down and when advertising is taxed. First, as

explained in section 2.3.3, there is a general equilibrium effect that mitigates their impact.

Second, the model features inherent diminishing returns to advertising: as more consumers

become informed, fewer consumers remain to be informed. Therefore, the assumption that the

probability of learning also exhibits diminishing returns may imply that the diminishing returns

to advertising are too strong, so changes in the exposure to advertising have little impact on

learning. Future work should explore the robustness of the results to different specifications of

the learning process.
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2.7 Appendix

2.7.1 Calibration Appendix: Data sources and Computation of mo-

ments

1. Sales-weighted average markup, sales-weighted standard deviation of markups,

labor share, entry rate, and aggregate advertising expenditure as a percent-

age of GDP. Taken from Cavenaile et al. (2024a). Following Cavenaile et al. (2024a),

given that there is no physical capital in the model, I target the labor share among labor

income and profits. Given that wL
wL+π+rK

= wL
wL+π

wL+π
wL+π+rK

= wL
wL+π

(
1− rK

wL+π+rK

)
; then,

the target used is obtained from dividing the labor share by one minus the capital share.

In the model, given that labor supply is normalised to 1, then labor share equals w.

In the model, in the stationary distribution the entry and exit rates are equalized, and

the exit rate is given by the exogenous probability of exiting κ.

2. Fraction of time in media. According to Statista, people in the US spend on average

751 minutes per day in media, which corresponds to the 0.521528 of time. Note that

in this measure of media time multitasking is counted separately; that is: it counts the

time spend in media while also doing other activities (e.g. commuting to work, breaks

at work, listening a podcast while cooking or running), and duplicated media time when

using multiple forms of media simultaneously (e.g. watching the TV while using a phone

will count double).

3. Coefficient of a regression of advertising expenditure on relative sales. This

and the growth by age moments are computed using Compustat data for the time period

1976-2018. Both in the model and in the data, I take the logarithm of advertising expen-

diture and then I standardise it by subtracting their means and dividing by their standard

deviation for comparability. In the data, I regress the standardised logarithm of advertis-

ing expenses on relative sales of the firm in its SIC4 industry, controlling for the same set

of controls used in Cavenaile et al., namely: profitability, leverage, market-to-book ratio,

log R&D stock, firm age, the coefficient of variation of the firm’s stock price, the number

of firms in the industry, and a full set of year and SIC4 industry fixed effects. In the
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model, I regress the standardised logarithm of advertising expenses, pa,i,tej,i,t, on market

shares, sj,i,t, with industry fixed effects. Table 1.A1 shows the results of the empirical

regression:

Table 1.A1: Advertising and relative sales in the data

log advertising expenses

Relative sales
0.671

(0.0448)***

R2 0.6056
N 40,007

Notes. Robust asymptotic standard errors (in parenthesis) are clustered at the firm level. The
sample period is from 1976 to 2018. The regression controls for profitability, leverage, market-
to-book ratio, log R&D stock, firm age, the coefficient of variation of the firm’s stock price, the
number of firms in the industry, and a full set of year and SIC4 industry fixed effects.

4. Constant and slope of the fitted line of average firm relative sales growth by

age. In Compustat, I define age as the number of years since the first appearance of the

firm in Compustat. First, for comparability with the model, where there is no aggregate

growth, I compute growth rates of relative sales of the firm in its SIC4 industry. Second,

firms in the data may experience big jumps on sales through expansion to new markets

or via mergers and acquisitions, and I am interested in the average evolution of firm

growth in the absence of such disruptive events; therefore, I drop all the observations of

a firm posterior to a big change in their relative sales. In particular, if a firm’s relative

sales increase by more than 100% or decrease by more than 50%, this observation and

the posterior ones of this firm are dropped. Then, I take the average firm relative sales

growth grouping all the observations with the same age. In the model, I redefine age

by subtracting 5 (as I am assuming that age 5 in the model corresponds to age 0 in

Compustat). Given the average firm relative sales growth by age, ḡa, I define the fitted

line ĝa = β0 + β1a, where a is age. The coefficients β0 and β1 are the targeted moments.

5. Calibration of the public sector financed media N̄m. According to the US

Government Accountability Office, the federal government spent $14.9 billion over the

last 10 fiscal years (2014-2023). Then, I use that federal governments spent roughly $1.49
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billion per year. In addition, federal appropriations for CPB (Corporation for Public

Broadcasting) amounted to $477 million in fiscal year 2023. So, the estimate I use for

public sector spending on media is ($1.49 + $0.477) billion, which I divide for the US

GDP in 2023, $27360 billion. This gives 0.008% of GDP, which divided by w = 0.8359

gives the N̄m = 9.5705 · 105.

2.7.2 Additional Figures

Figure 1.A1: Average Cost-Per-Click (CPC) in Google search ads by industry

Notes. Adapted from Wordstream (2023). This figure displays the average CPC in Google ads
by industry, calculated by dividing the overall cost of a campaign by the number of clicks it
received. Each individual click has a different cost as it’s determined by the Google Ads auction
algorithm.
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Figure 1.A2: Decomposition of advertising incentives by motive conditional on age

Notes. This figure displays the average shares of the incentives from the FOC attributable to
each motive, weighted by industry advertising expenditure and conditioned on the number of
differentiated firms in the industry.

Figure 1.A3: Customer base and market share and age

Notes. This figure displays the relationship of age with customer base (left panel) and market
share (right), with the size of the dots indicates the share of this firm type in the stationary
distribution.
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2.7.3 Preferences

max
{{cℓ,j,i,t},aℓ,t+1,Tℓ,t}

Uℓ =

∞∑
t=0

βt

[
E
C1−θ
ℓ,t − 1

1− θ
+ Lℓ,t

]
,

s.t. Cℓ,t =

(∫ 1

0

C
χ−1
χ

ℓ,i,t di

) χ
χ−1

, Lℓ,t = υ

(
QtTℓ,t −

T 2
ℓ,t

2

)
,

Cℓ,i,t =

cσ−1
σ

ℓ,0,i,t +
∑

j∈Iℓ,i,t

ωℓ,j,i,tc
σ−1
σ

ℓ,j,i,t

 σ
σ−1

,

wtN + rtaℓt =

∫ 1

0

∑
j∈Iℓ,i,t

cℓ,j,i,tpj,i,tdi+ aℓ,t+1 − aℓ,t + τt.

(for the case θ = 1, limθ→1
c1−θ

1−θ = limθ→1
c1−θ−1
1−θ + limθ→1

1
1−θ = ln c+ limθ→1

1
1−θ )

We can already plug Cℓ,t and Cℓ,i,t into the objective function.

The FOC reads:

[cℓjt] :
∂Uℓ,t
∂Cℓ,t

∂Cℓ,t
∂Cℓ,i,t

∂Cℓ,i,t
∂cℓ,j,i,t

= µℓ,tpj,i,t,

where
∂Uℓ,t
∂Cℓ,t

= βtC−θ
ℓ,t ,

∂Cℓ,t
∂Cℓ,i,t

= C
1
χ

ℓ,tC
− 1
χ

ℓ,i,t, and
∂Cℓ,i,t
∂cℓ,j,i,t

= C
1
σ
ℓ,i,tc

− 1
σ

ℓ,j,i,tωℓ,j,i,t.

We can break down the FOC into three conditions, by defining Pℓ,i,t as Pℓ,i,tCℓ,i,t =
∑

j∈Iℓ,i,t
cℓ,j,i,tpj,i,t,

and Pℓ,t as Pℓ,tCℓ,t =
∫ 1

0
Cℓ,i,tPi,tdi:

1. ∂Uℓ,t

∂Cℓ,t

∂Cℓ,t

∂cℓ,j,i,t
= µℓ,t

∂Eℓ,t

∂Cℓ,t

∂Cℓ,t

∂cℓ,j,i,t
=⇒

[
∂Uℓ,t

∂Cℓ,t
− µℓ,t

∂Eℓ,t

∂Cℓ,t

]
∂Cℓ,t

∂cℓ,j,i,t
= 0 =⇒ βtC−θ

ℓ,t = µℓ,tPℓ,t.

2. ∂Uℓ,t

∂Cℓ,t

∂Cℓ,t

∂Cℓ,i,t

∂Cℓ,i,t

∂cℓ,j,i,t
= µℓ,t

∂Eℓ,t

∂Cℓ,i,t

∂Cℓ,i,t

∂cℓ,j,i,t
=⇒

[
∂Uℓ,t

∂Cℓ,t

∂Cℓ,t

∂Cℓ,i,t
− µℓ,t

∂Eℓ,t

∂Cℓ,i,t

]
∂Cℓ,i,t

∂cℓ,j,i,t
= 0, where using from the

previous condition that µℓ,t = βtC−θ
ℓ,t P

−1
ℓ,t , we get: C

1
χ

ℓ,tC
− 1

χ

ℓ,i,t =
Pℓ,i,t

Pℓ,t
=⇒ Cℓ,i,t = Cℓ,t

(
Pℓ,t

Pℓ,i,t

)χ
, and

plugging it into the definition of Cℓ,t, we get Pℓ,t =
(∫ 1

0
P 1−χ
ℓ,i,t di

) 1
1−χ

. Note that if Cobb-Douglas (i.e.

χ = 1), then Eℓ,t = Pℓ,tCℓ,t = Pℓ,i,tCℓ,i,t.

3. ∂Uℓ,t

∂Cℓ,t

∂Cℓ,t

∂Cℓ,i,t

∂Cℓ,i,t

∂cℓ,j,i,t
= µℓ,t

∂Eℓ,t

∂cℓ,j,i,t
= µℓ,tpj,i,t, where using from the previous conditions that µℓ,t =

βtC−θ
ℓ,t P

−1
ℓ,t and C

1
χ

ℓ,tC
− 1

χ

ℓ,i,t =
Pℓ,i,t

Pℓ,t
, we get:

Pℓ,i,t

Pℓ,t
C

1
σ

ℓ,i,tc
− 1

σ

ℓ,j,i,tωℓ,j,i,t =
pj,i,t
Pℓ,t

=⇒ cℓ,j,i,t = Cℓ,i,t

(
ωℓ,j,i,tPℓ,i,t

pj,i,t

)σ
,

and plugging it into the definition of Cℓ,i,t, we get: Pℓ,i,t =
(
p1−σ0,i,t +

∑
j∈Iℓ,i,t

ωσℓ,j,i,tp
1−σ
j,i,t

) 1
1−σ

.

The FOC for assets is:

[aℓ,t+1] : µℓt = (1 + rt+1)µℓ,t+1.

From the first one, using that µℓ,t = βtC−θ
ℓ,t P

−1
ℓ,t , we get the Euler equation: βtC−θ

ℓ,t P
−1
ℓ,t =

(1 + rt+1)β
t+1EC−θ

ℓ,t+1P
−1
ℓ,t+1, which assuming θ = 1 (i.e. logarithmic preferences on Cℓ,t), then

the expenditure choice is independent of the price indices (so, the awareness set just affects the
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intratemporal allocation of expenditure).

So, assuming χ = θ = 1, we have:17

cℓ,j,i,t = Eℓ,tP
σ−1
ℓ,i,t p

−σ
j,i,tω

σ
ℓ,j,i,t,

EEℓ,t+1

Eℓ,t
= β(1 + rt+1).

where Eℓ is the expenditure of individual ℓ. Next, I show that we can get rid of the expectation,

since the expenditure path just depends on the initial level of assets (and, therefore, since all

individuals start with the same level of assets, this implies all consumers choose the same

expenditure path, Eℓ,t = Et). To show this, first consolidate the budget constraint:

To do this, first express the budget constraint as at = (1+r)−1 [Et − wt + at+1]. Next, substitute

at+1 using next period’s budget constraint (here we will have an expectation coming from the

possibility the individual dies:

at = (1 + r)−1
[
Et − wt + (1 + r)−1 [EtEt+1 − wt+1 + Etat+2]

]
.

Iterating:

at = lim
t̄→∞

t̄∑
s=0

(1 + r)−(s+1) [EtEt+s − wt+s] + lim
t̄→∞

(1 + r)−(t̄+1)Etat̄+1, (2.30)

where the second limit is zero due to the No-Ponzi condition. On the other hand, the Euler

condition tells us that EtEt+s = β(1+ r)EtEt+s−1, and iterating: EtEt+s = βs(1+ r)sEt. Using

this in 2.30, and that in the stationary equilibrium wt+s = wtg
s, we have:

at =

∞∑
s=0

(1 + r)−(s+1)+sβsEt −
∞∑
s=0

(1 + r)−(s+1)gswt.

And using that the geometric sums are
∑∞

s=0 β
s = (1− β)−1 and

∑∞
s=0(1 + r)−(s+1) = (1 + r−

g)−1:

at =
Et

(1 + r)(1− β)
− wt

1 + r − g
=⇒ Et =

(1 + r)(1− β)

1 + r − g
[(1 + r − g)at + wt] , (2.31)

In our stationary equilibrium, the economy is not growing in the aggregate, so g = 0 and Et

is constant and equal for all individuals as the initial assets is equal for all individuals. From

the Euler equation, this implies that the return to assets r that clears the asset market is such

17The result that the consumer choice of expenditure just depends on income and not on the price index is
true also out of a stationary equilibrium.
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that 1 = β(1 + r) =⇒ r = 1−β
β
. So, consumers spend all their income Et = rat +wt, and at is

constant.

Since, within an industry, the individual is characterised by the awareness set, from now on

I use the subindex I, instead of ℓ. The share of expenditure of each consumer on each good

they know is sI,j =
pjcI,j
E

= P σ−1
I p1−σj ωσj = p1−σj ωσj

[
p1−σ0,t +

∑
k∈Iℓ ω

σ
ℓ,kp

1−σ
k

]−1
; so, using the

definition of markup Mj =
pjAj
w

:

sI,j =

( 1

MjA0

)1−σ ( 1

ωj

)σ
+
∑
k∈Iℓ

(
MkAj
MjAk

)1−σ (ωk
ωj

)σ−1

.

Next, the choice of media time is straightforward:
∂Lℓ,t
∂Tℓ,t

= υ (Qt − Tℓ,t), so Tt = Qt. And so,

optimal leisure as a function of Q is: L∗
t = υ

Q2
t

2
.

2.7.3.1 The effect of learning about another good on sI,j,i and the demand elas-

ticity

Proposition 2 If j ∈ I ⊂ I ′, then:

1. sI,j,i > sI′,j,i.

2. |ϵI,j,i| < |ϵI′,j,i|, where ϵI,j,i = pj,i
cI,j,i

∂cI,j,i
∂pj,i

.

Proof. If j ∈ I ⊂ I ′, then, since ωk,i,Mk,i > 0 for all firm k and σ > 1:

sI,j,i =

[
(A0Mj,i)

σ−1ω−σ
j,i +

∑
k∈I

(
ωk,i
ωj,i

)σ (Mj,i

Mk,i

)σ−1
]−1

>

(A0Mj,i)
σ−1ω−σ

j,i +
∑
k∈I

(
ωk,i
ωj,i

)σ (Mj,i

Mk,i

)σ−1

+
∑

k∈I′\I

(
ωk,i
ωj,i

)σ (Mj,i

Mk,i

)σ−1
−1

= sI′,j,i.

For 2, define ϵI,j,i =
pj,i
cI,j,i

∂cI,j,i
∂pj,i

, and note that
∂sI,j,i
∂Mj,i

=
∂sI,j,i
∂pj,i

∂pj,i
∂Mj,i

= 1
E

[
cI,j,i + pj,i

∂cI,j,i
∂pj,i

]
w =

sI,j,i
Mj,i

(1 + ϵI,j,i). And substituting
∂sI,j,i
∂Mj,i

, we have:

− sI,j,i
Mj,i

(σ − 1)(1− sI,j,i) =
sI,j,i
Mj,i

(1 + ϵI,j,i) =⇒ ϵI,j,i = −σ + sI,j,i(σ − 1).

So, using 1, we have j ∈ I ⊂ I ′ 0 > ϵI,j,i > ϵI′,j,i.
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2.7.4 Production Firms

2.7.4.1 Derivation of the optimal markup:

The first-order condition is:

0 =
∂πj
∂Mj

=
sj
M2

j

+ (1−M−1
j )

∂sj
∂Mj

, (2.32)

which, using
∂sj
∂Mj

=
∑

I∈Pj
M(I)sI,j(1− sI,j)

σ−1
Mj

, we can rewrite as:

sj
Mj

= (σ − 1)(1−M−1
j )

∑
I∈Pj

M(I)sI,j(1− sI,j). (2.33)

And dividing by sj and defining s̄j :=
∑

I∈Pj

M(I)sI,j
sj

sI,j:

1

Mj
[σ − (σ − 1)s̄j ] = (σ − 1) (1− s̄j) =⇒ Mj =

σ
σ−1 − s̄j

1− s̄j
. (2.34)

2.7.5 Derivative with respect to advertising and Proof of Proposi-

tion 1

As a preliminary to proof Proposition 1, we need two things. On the one hand, the derivative

of ρj,i with respect to ek,i.
∂ρk
∂ej

= ψcψsT
ψcαψc−1

k
∂αk
∂ej

; and we distinguish two cases:

• If J = 1 (ad space not binding), then ∂αk
∂ej

= 0, so ∂ρk
∂ej

= 0; and
∂αj
∂ej

= 1
pa
, so:

∂ρj
∂ej

=

ψcψsT
ψcαψc−1

j
1
pa

• If J > 1 (ad space binding), then ∂αk
∂ej

= − ak∑
s es

, so ∂ρk
∂ej

= −ψcψsTψcαψc−1
k

ak∑
s es

; and

∂αj
∂ej

= α∑
s es

− αj∑
s es

=
∑
k ̸=j αk∑
s es

, so:
∂ρj
∂ej

= ψcψsT
ψcαψc−1

j

∑
k ̸=j αk∑
s es

.

Note that since αj = α
ej∑
k ek

, we can rewrite them as: ∂ρk
∂ej

= −ψcψsTψc αψc

(
∑
s es)

ψc+1 e
ψc−1
k ek

and
∂ρj
∂ej

= ψcψsT
ψc αψc

(
∑
s es)

ψc+1 e
ψc−1
j

∑
k ̸=j ek

On the other hand, we need the derivative of a function of the next period vector of masses M⃗ ′

(like the firms’ continuation value). As a first step:

Lemma 1 If f :
⃗̂
M ′ → R, then we have:

1. ∂f
∂ρj

=
∑

I∈P−j

M(I)
∑

I′∈P−j ,I′⊇I

Θ(I→I′)
1−ρj

[
∂f

∂M ′(I′∪{j}) −
∂f

∂M ′(I′)

]

42



2. For the anticompetitive motive, it will be useful:

∂f
∂ρj

=
∑

I∈P−k,−j

M(I)
∑

I′∈P−k,−j

I′⊇I

Θ(I→I′)
1−ρj

[[
∂f

∂M ′(I′∪{j}) −
∂f

∂M ′(I′)

]
−
[

∂f
∂M ′(I′∪{k,j}) −

∂f
∂M ′(I′∪{k})

]]
+

∑
I∈P−k,−j

(M(I) +M(I ∪ {k}))
∑

I′∈P−k,−j

I′⊇I

Θ(I∪{k}→I′∪{k})
1−ρj

[
∂f

∂M ′(I′∪{k,j}) −
∂f

∂M ′(I′∪{k})

]

Proof. First, recall that M̂ ′(I ′) =
∑

I∈P(J )M(I)Θ(I → I ′).

Next, the derivatives of Θ(I → I ′) wrt ρj are:

1. If I ⊈ I ′: ∂Θ(I→I′)
∂ρj

= 0

2. If I ⊆ I ′:

(a) If j ∈ I: ∂Θ(I→I′)
∂ρj

= 0

(b) If j ∈ I ′ \ I: ∂Θ(I→I′)
∂ρj

= (1− δ)
∏

k∈I′\(I∪{j})
ρk
∏
k/∈I′

(1− ρk) =
Θ(I→I′\{j})

1−ρj

(c) If j /∈ I ′: ∂Θ(I→I′)
∂ρj

= −(1− δ)
∏

k∈I′\I
ρk

∏
k/∈(I′∪{j})

(1− ρk) = −Θ(I→I′)
1−ρj

Using this, the derivative of M̂ ′(I ′) wrt ρj is:

1. If j ∈ I ′: ∂M̂ ′(I′)
∂ρj

=
∑

I∈P−j ,I⊂I′
M(I)∂Θ(I→I′)

∂ρj
=

∑
I∈P−j ,I⊂I′

M(I)Θ(I→I′\{j})
1−ρj

2. If j /∈ I ′: ∂M̂ ′(I′)
∂ρj

=
∑

I∈P−j ,I⊆I′
M(I)∂Θ(I→I′)

∂ρj
= −

∑
I∈P−j ,I⊆I′

M(I)Θ(I→I′)
1−ρj

And the derivative of a generic function f :
⃗̂
M ′ → R wrt ρj is:

∂f

∂ρj
=
∑
I′∈P

∂f

∂M ′(I ′)

∂M ′(I ′)

∂ρj
=
∑

I′∈Pj

∂f

∂M ′(I ′)

∂M ′(I ′)

∂ρj
+

∑
I′∈P−j

∂f

∂M ′(I ′)

∂M ′(I ′)

∂ρj

=
∑

I′∈Pj

∂f

∂M ′(I ′)

∑
I∈P−j ,I⊂I′

M(I)Θ(I → I ′ \ {j})
1− ρj

−
∑

I′∈P−j

∂f

∂M ′(I ′)

∑
I∈P−j ,I⊆I′

M(I)Θ(I → I ′)

1− ρj

Now we are going to merge the two summations using that Pj = {I ∪ {j}|I ∈ P−j} [Proof:

from any set I that doesn’t contain j we can build one by adding j to I (that is, {I ∪ {j}|I ∈
P−j} ⊆ Pj), and that from any I ′ that contains j we can build another one that doesn’t contain

j by removing j from I ′ (that is, Pj = {(I ′ \ {j}) ∪ {j}|I ′ ∈ Pj} ⊆ {I ∪ {j}|I ∈ P−j}].

Using this in the previous expression, we get:

∂f

∂ρj
=

∑
I′∈P−j

∂f

∂M ′(I ′ ∪ {j})
∑

I∈P−j ,I⊆I′

M(I)Θ(I → I ′)

1− ρj
−

∑
I′∈P−j

∂f

∂M ′(I ′)

∑
I∈P−j ,I⊆I′

M(I)Θ(I → I ′)

1− ρj

=
∑

I′∈P−j

∑
I∈P−j ,I⊆I′

M(I)Θ(I → I ′)

1− ρj

[
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

]

=
∑

I∈P−j

M(I)
∑

I′∈P−j ,I′⊇I

Θ(I → I ′)

1− ρj

[
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

]

43



where for the last equality, I have used that {(I, I ′)|I ∈ P , I ′ ⊆ I} = {(I, I ′)|I ′ ∈ P , I ⊇ I ′}.

This proves the first expression of the lemma. For the second:

First, note that above we have shown that {I ∪ {j}|I ∈ P−j} = Pj, which implies that

P = P−j ∪ {I ∪ {j}|I ∈ P−j}. Analogously, defining P−k,−j = {I ∈ P|j, k /∈ I}, we have:

P−j = P−k,−j ∪ {I ∪ {k}|I ∈ P−k,−j}, so the previous expression becomes

∂f

∂ρj
=

∑
I∈P−k,−j

M(I)
∑

I′∈P−j

I′⊇I

Θ(I → I ′)

1− ρj

[
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

]

+M(I ∪ {k})
∑

I′∈P−j

I′⊇I∪{k}

Θ(I ∪ {k} → I ′)

1− ρj

[
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

]

Now, for the first line, I use the following equivalence: for each I ∈ P−k,−j we have {I ′ ∈

P−j|I ′ ⊇ I} = {I ′ ∈ P−k,−j|I ′ ⊇ I} ∪ {I ′ ∪ {k}|I ′ ∈ P−k,−j, I ′ ⊇ I}. And for the second

line, I use the equivalence: for I ∪ {k} we have {I ′ ∈ P−j|I ′ ⊇ I ∪ {k}} = {I ′ ∪ {k}|I ′ ∈

P−k,−j, I ′ ⊇ I}.

∂f

∂ρj
=

∑
I∈P−k,−j

M(I)
∑

I′∈P−k,−j

I′⊇I

[
Θ(I → I ′)

1− ρj

(
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

)

+
Θ(I → I ′ ∪ {k})

1− ρj

(
∂f

∂M ′(I ′ ∪ {k, j})
− ∂f

∂M ′(I ′ ∪ {k})

)]
+M(I ∪ {k})

∑
I′∈P−k,−j

I′⊇I

Θ(I ∪ {k} → I ′ ∪ {k})
1− ρj

(
∂f

∂M ′(I ′ ∪ {k, j})
− ∂f

∂M ′(I ′ ∪ {k})

)
.

Finally, I use that for I, I ′ ∈ P−k,−j with I ′ ⊇ I, we have

Θ(I ∪ {k} → I ′ ∪ {k}) =
∏

h∈I′\I

ρh
∏

h/∈I′∪{k}

(1− ρh) · (ρk + 1− ρk) = Θ(I → I ′ ∪ {k}) + Θ(I → I ′).

So, I substitute in the second line Θ(I → I ′ ∪ {k}) = Θ(I ∪ {k} → I ′ ∪ {k})−Θ(I → I ′):

∂f

∂ρj
=

∑
I∈P−k,−j

M(I)
∑

I′∈P−k,−j

I′⊇I

Θ(I → I ′)

1− ρj

[(
∂f

∂M ′(I ′ ∪ {j})
− ∂f

∂M ′(I ′)

)

−
(

∂f

∂M ′(I ′ ∪ {k, j})
− ∂f

∂M ′(I ′ ∪ {k})

)]

+ (M(I) +M(I ∪ {k}))
∑

I′∈P−k,−j

I′⊇I

Θ(I ∪ {k} → I ′ ∪ {k})
1− ρj

(
∂f

∂M ′(I ′ ∪ {k, j})
− ∂f

∂M ′(I ′ ∪ {k})

)
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With uncertainty:

For I ′ ∈ P(J ′), M ′(I ′) =


∑

{I∈P(J ):I∩J ′=I′}
M̂(I) , if I ′ ⊆ J

0 , if I ′ ⊈ J ,
(2.35)

where the first case says that two consumers become identical in industry i if all the firms in

which they differed exit, whereas the second case says that there are no consumers who are

aware of a newborn firm. The last piece of infornation needed to compute expected values is

the probabilities that the set of differentiated goods moves from J to J ′ ⊆ J ∪ {e}, where e

denotes an entrant. These probabilities are given by:

For J ′ ∈ P(J ∪ e)), Prob{J → J ′} =


(1− ze,i,t)

∏
j∈J∩J ′

(1− κ)
∏

j∈J\J ′
κ , if e /∈ J ′

ze,i,t
∏

j∈J∩J ′
(1− κ)

∏
j∈J\J ′

κ , if e ∈ J ′.

(2.36)

In the model, there is uncertainty on J ′, so I am more interested in finding the derivative

of the expected value of a function g : M⃗ ′ → R rather than the derivative of a function

f :
⃗̂
M ′ → R (note that f is defined on

⃗̂
M ′, that is, the next period distribution if there weren’t

entry and exit, whereas g is defined on the actual next period distribution after the uncertainty

has been resolved). Recall that for each J ′ ⊆ J ∪ {e}, the probability of this transition is

given by Prob{J → J ′} defined in 2.36 and the mapping between
⃗̂
M ′ and M⃗ ′ is given by

FJ ,J ′ :
⃗̂
M ′ → M⃗ ′ defined in 2.35:

FJ ,J ′(
⃗̂
M ′) =


M ′(I) =

∑
{I∈P(J ):I∩J ′=I′}

M̂(I) , for I ′ ⊆ J

M ′(I) = 0 , for I ′ ⊈ J .

Going in the reverse order, each I ∈ P(J ) is associated to I ′ = I ∩ J ′ ∈ P(J ′); therefore

∂g

(
FJ ,J′ (

⃗̂
M ′)

)
∂M̂ ′(I) = ∂g(M⃗ ′)

∂M̂ ′(I) =
∂g(M⃗ ′)

∂M ′(I∩J ′)
∂M ′(I∩J ′)

∂M̂ ′(I) = ∂g(M⃗ ′)
∂M ′(I∩J ′) .

Then, we can apply this to the result of the case without entry and exit and we have:

∂g
(
FJ ,J ′(

⃗̂
M ′)

)
∂ρj

=
∑

I∈P−j

M(I)
∑

I′∈P−j ,I′⊇I

Θ(I → I ′)

1− ρj

[
∂g

∂M ′((I ′ ∪ {j}) ∩ J ′)
− ∂g

∂M ′(I ′ ∩ J ′)

]
.

Note that if j /∈ J ′, then this derivative is 0 since in this case ∂g
∂M ′((I′∪{j})∩J ′)

= ∂g
∂M ′(I′∩J ′)

.

With this, the expected value is defined as:

Eg
(
M⃗
)
=

∑
J ′⊆J∪{e}

Prob{J → J ′}g
(
FJ ,J ′(

⃗̂
M ′)

)
.

45



Proof of the Proposition 1: For the informative motive it is straightforward from applying

1 of Lemma 1, together with the note on the Uncertainty case:

∂EVj(J ′, M⃗ ′)

∂ρj

∂ρj
∂ej

=

[ ∑
J ′⊆J∪{e}

Prob{J → J ′}
∑

I∈P−j

M(I)
∑

I′∈P−j

I′⊇I

Θ(I → I ′)

1− ρj

·

(
∂Vj(J ′, M⃗ ′)

∂M ′((I ′ ∪ {j}) ∩ J ′)
− ∂Vj(J ′, M⃗ ′)

∂M ′(I ′ ∩ J ′)

)]
· ∂ρj
∂ej

> 0,

where the positive comes from the fact that ∂Vj(J ′,M⃗ ′)
∂M ′((I′∪{j})∩J ′) ≥ ∂Vj(J ′,M⃗ ′)

∂M ′(I′∩J ′) , since firm j’s value

increases more if we add a consumer that besides I ′ ∩ J ′ she is also aware of j (there is

equality if j has exited in the scenario with J ′). For the result that the informative motive

decreases if we add {j} to some consumers that weren’t aware, note that the above expression

is a summation over the awareness sets that don’t contain j, and the change described implies

a reduction of the masses in these sets.

For the anticompetitive motive, I use 2 of 1, which together with the note on the Uncertainty

case, implies:

∑
k ̸=j

(
−∂EVj(J

′, M⃗ ′)

∂ρk

)(
−∂ρk
∂ej

)
=
∑
k ̸=j

∑
J ′⊆J∪{e}

Prob{J → J ′}

·

{ ∑
I∈P−k,−j

M(I)
∑

I′∈P−k,−j

I′⊇I

Θ(I → I ′)

1− ρk

[(
∂Vj

∂M ′(I ′)
− ∂Vj
∂M ′(I ′ ∪ {k})

)
−
(

∂Vj
∂M ′(I ′ ∪ {j})

− ∂Vj
∂M ′(I ′ ∪ {j, k})

)]
︸ ︷︷ ︸

<0

+
∑

I∈P−k,−j

(M(I) +M(I ∪ {j}))
∑

I′∈P−k,−j

I′⊇I

Θ(I ∪ {j} → I ′ ∪ {j})
1− ρk

[
∂Vj

∂M ′(I ′ ∪ {j})
− ∂Vj
∂M ′(I ′ ∪ {j, k})

]
︸ ︷︷ ︸

>0

}

·
(
−∂ρk
∂ej

)
> 0,

where the intuition for the negative sign of the first underbrace is that the firm value is more

affected if it is a customer who learns about another good (since she will reduce the spending

in j) rather than if it is a non-customer who learns about another good. And the positive

sign in the second underbrace is because the value of a firm decreases if a customer learns

about another good. So, we see that the anticompetitive motive increases more if M(I ∪ {j})

increases rather than M(I) (direct from taking the derivatives with respect to M(I ∪{j}) and

M(I) in the previous expression. Finally, that the anticompetitive motive is positive follows

from observing that Θ(I → I ′) = (1− ρj)Θ(I ∪ {j} → I ′ ∪ {j}) < Θ(I ∪ {j} → I ′ ∪ {j}), and then the

negative part of the second line is offset by the third line.
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The result for the persuasive motive is straightforward from observing that ?? is a summation

over the awareness sets that contain j.

2.7.6 Social planner problem

max
{NM,t,Nj,i,t,he,i,t,pj,i,t,αj,i,t}

U =

∞∑
t=0

βt
∫ 1

0

[lnCℓt + Lℓt] dℓ

s.t. Cℓ,t from (2.5), Cℓ,i,t from (2.6), cℓ,j,i,t from (2.11), and Lℓ,t from 2.4, with Tt = Qt

yj,i,t = Nj,i,t, y0,i,t = A0N0,i,t, Qt = ANφ
m,t (Production functions)

1 = Nm,t +

∫ 1

0

 ∑
j∈{0}∪Ji,t

Nj,i,t +Ne,i,t

 di , wt = Et (Resource constraints)

∑
j∈Ji,t

αj,i,t = αi, (2.9), (2.10), (2.14), (2.35), (2.36) (Learning process)

ze,i,t = ϕN
1
2
e,i,t, (2.35), (2.36) (Entry and exit)

Plugging Cℓ,t and Lℓ,t with Tt = Qt into the objective function and interchanging the integrals

over ℓ and i:

max
{NM,t,Ne,i,t,Nj,i,t,pj,i,t,αj,i,t}

U =

∫ 1

0

∫ 1

0

∞∑
t=0

βt lnCℓ,i,tdℓdi+

∞∑
t=0

βtυ
Q2
t

2

s.t. Cℓ,i,t from (2.6), cℓ,j,i,t from (2.11)

yj,i,t = Nj,i,t, y0,i,t = A0N0,i,t, Qt = ANφ
m,t (Production functions)

1 = Nm,t +

∫ 1

0

 ∑
j∈{0}∪Ji,t

Nj,i,t +Ne,i,t

 di , wt = Et (Resource constraints)

∑
j∈Ji,t

αj,i,t = αi, (2.9), (2.10), (2.14), (2.35), (2.36) (Learning process)

ze,i,t = ϕN
1
2
e,i,t, (2.35), (2.36) (Entry and exit)

The planner decides how much to produce for each individual and, accordingly, sets the prices

that induce the consumers to consume these quantities. Let NP
t be the labor used to produce

all the goods in the production sector. Then, The FOC for cI,j,i,t reads:

[cI,j,i,t] : βt
1

Ct

∂Ct
∂Ci,t

∂Ci,t
∂CI,i,t

∂CI,i,t

∂cI,j,i,t
= βtλ

∂NP
t

∂Ct

∂Ct
∂Ci,t

∂Ci,t
∂CI,i,t

∂CI,i,t

∂cI,j,i,t
(2.37)

1. Dividing both sides ∂Ct
∂Ci,t

∂Ci,t
∂CI,i,t

∂CI,i,t
∂cI,j,i,t

> 0, and defining P̂t =
wtNP

t

Ct
, we get:

1

Ct
= λ

P̂t
wt

=⇒ λ =
wt

P̂tCt
(2.38)

2. lnCt =
∫ 1

0
lnCi,tdi. Dividing both sides of 2.37 by

∂Ci,t
∂CI,i,t

∂CI,i,t
∂cI,j,i,t

> 0, letting Ni,t be the
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the labor used in sector i,
∂NP

t

∂Ct
∂Ct
∂Ci,t

=
∂NP

t

∂Ci,t
and defining P̂i,t =

wtNi,t
Ci,t

, we get:

1

Ci,t
= λ

P̂i,t
wt

=⇒ λ =
wt

P̂i,tCi,t
=⇒ Ci,t = Ct

P̂t

P̂i,t
(2.39)

where for the last expression I have used 2.38. Plugging Ci,t into the definition of Ct, we

get:

ln P̂t =

∫ 1

0

ln P̂i,tdi (2.40)

3. lnCi,t =
∫ 1

0
lnCℓ,i,tdℓ. Dividing both sides of 2.37 by

∂Cℓ,i,t
∂cℓ,j,i,t

> 0, letting Nℓ,i,t be the the

labor used in sector i by ℓ,
∂Ni,t
∂Ci,t

∂Ci,t
∂Cℓ,i,t

=
∂Ni,t
∂Cℓ,i,t

and defining P̂ℓ,i,t =
wtNℓ,i,t
Cℓ,i,t

, we get:

1

Cℓ,i,t
= λ

P̂ℓ,i,t
wt

=⇒ λ =
wt

P̂ℓ,i,tCℓ,i,t
=⇒ Cℓ,i,t = Ci,t

P̂i,t

P̂ℓ,i,t
(2.41)

where for the last expression I have used 2.39. Plugging Cℓ,i,t into the definition of Ci,t,

we get:

ln P̂i,t =

∫ 1

0

ln P̂ℓ,i,tdi (2.42)

4. Cℓ,i,t given by 2.6. Letting Nℓ,j,i,t be the the labor used in good j in sector i by ℓ,
∂Nℓ,i,t
∂Cℓ,i,t

∂Cℓ,i,t
∂cℓ,j,i,t

=
∂Nℓ,i,t
∂cℓ,j,i,t

= 1
Aj
, we get:

1

Cℓ,i,t

(
Cℓ,i,t
cℓ,j,i,t

) 1
σ

ωj,i,t = λ
1

Aj
=⇒

(
Cℓ,i,t
cℓ,j,i,t

) 1
σ

ωj,i,t =
wt

P̂ℓ,i,tAj
=⇒ cℓ,j,i,t = Cℓ,i,tP̂

σ
I,i,t

(
ωj,i,t

Aj
wt

)σ
(2.43)

where I have used λ from 2.41. Plugging cℓ,j,i,t into the definition of Cℓ,i,t, we get:

P̂I,i,t =

(A0

wt

)σ−1

+
∑
j∈I

ωσj,i,t

(
1

wt

)σ−1
 1

1−σ

(2.44)

Since we have P̂ℓ,i,tCℓ,i,t = P̂i,tCi,t = P̂tCt = wtN
P
t and λ from 2.38, then we have:

cI,j,i,t = wtN
P
t P̂

σ−1
I,i,t

(
ωj,i,t

Aj
wt

)σ
, NP

t =
1

λ
(2.45)

Comparing this with the consumer choices:

cI,j,i,t = EtP
σ−1
I,i,tp

−σ
j,i,tω

σ
j,i,t, PI,i,t =

p1−σ0,i,t +
∑
j∈I

ωσj,i,tp
1−σ
j,i,t

 1
1−σ
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It is straightforward to check that the planner can induce the consumer to consume the quan-

tities in 2.45 by setting prices equal to the marginal cost times a markup (or a tax) equal to

the ratio of expenditure to the production costs; i.e. pj,i,t =
wt
Aj
τt, where τt =

Et
wtNP

t
.

The particular level of τ affects the level of consumption, but not the share of expenditure

allocated to each good, since, as seen in the following expression, sI,j,i,t is independent of τ

(that is, τ doesn’t distort how NP
t is allocated among the production goods):

sI,j,i,t =
pj,i,tcI,j,i,t
EI,i,t

=
τ wt

Aj
cI,j,i,t

τwtNI,i,t
= ωσj,i,t

(
wt

AjP̂I,i,t

)1−σ

=⇒ sI,j,i =
ωσj,i

Aσ−1
0 +

∑
k∈I

ωσk,i
(2.46)

Using that cI,j,i = AjNI,j,i = Aj
NI,j,i
NI,i

NI,i = AjsI,j,i
Et
wt

1
τ
; then, we can write CI,i as:

CI,i,t =
1

τ

Et
wt

(
(A0sI,0,i,t)

σ−1
σ +

∑
k∈I

ωk,i,t(sI,k,i,t)
σ−1
σ

) σ
σ−1

(2.47)

and combining this with Et
τ
= wtN

P
t = CI,i,tP̂I,i,t, we get (where for the second equality I use

2.46):

(
(A0sI,0,i,t)

σ−1
σ +

∑
k∈I

ωk,i,t(sI,k,i,t)
σ−1
σ

)
=

(
wt

P̂I,i,t

)σ−1
σ

= ωj,i,ts
− 1

σ

I,j,i,t (2.48)

Next, I move to the advertising part of the planner problem. We will use the following

derivatives:

∂CI,i,t

∂ωj,i
=

σ

σ − 1
C

1
σ

I,i,t

[
s

σ−1
σ

I,j,i,t +
σ − 1

σ

(∑
k∈I

ωk,i,ts
−1
σ

I,k,i,t
∂sI,k,i,t
∂ωj,i

+A
σ−1
σ

0 s
−1
σ

I,0,i,t
∂sI,0,i,t
∂ωj,i

)]
∂sI,j,i,t
∂ωj,i

= sI,j,i,t(1− sI,j,i,t)
σ

ωj,i,t
,

∂sI,k,i,t
∂ωj,i

= −sI,j,i,tsI,k,i,t
σ

ωj,i,t
∂ωj,i
∂αj,i,t

= νcνsT
νcανc−1

j,i,t =
T

αj,i,t

∂ωj,i
∂T

The term in parenthesis of the first line can be rewritten as (in the second expression, I use

2.48): (
ωj,i,t −

∑
k∈I

ωk,i,ts
σ−1
σ

I,k,i,t −A
σ−1
σ

0 s
σ−1
σ

I,0,i,t

)
sI,j,i,t

σ

ωj,i,t
=
(
1− s

− 1
σ

I,j,i,t

)
sI,j,i,tσ < 0

so, the term in the parenthesis is negative. And we have:

∂ lnCI,i,t

∂ωj,i
=

σ

σ − 1
C

1−σ
σ

I,i,t

[
s

σ−1
σ

I,j,i,t + (σ − 1)
(
1− s

− 1
σ

I,j,i,t

)
sI,j,i,t

]
=

σ

σ − 1

(
sI,j,i,t
CI,i,t

)σ−1
σ [

1 + (σ − 1)
(
s

1
σ

I,j,i,t − 1
)]

So:

∂ lnCI,i,t

∂αj,i
=

(
sI,j,i,t
CI,i,t

)σ−1
σ
[

σ

σ − 1
+ σ

(
s

1
σ

I,j,i,t − 1
)]
νcνsT

νcανc−1
j,i,t
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For the dynamic problem of advertising/media, it is useful to define UX =
∫ 1

0

∑∞
t=0 β

t lnCℓ,i,tdℓ

as the expected life-time industry-consumption utility of an industry with the current industry

state being X.

The social planner has to decide on (i) how much labor to allocate to the media sector, Nm,t,

and (ii) how to allocate the ad space among the differentiated firms of each industry, αj,i,t.

First, let’s see the social planner choice of αj,i,t. The allocation of the ad space has to be such

that the marginal social gain of increasing the ad space given to each firm is the same, since

otherwise we could improve the allocation. Formally, it must be β ∂EUX′
∂ρj,i

∂ρj,i
∂αj,i

+
∂ lnCX,t

∂αj,X
= ĥX for

some ĥX and all j ∈ JX , together with
∑
j∈JX

αj,X = αX .

Second, let’s see the social planner choice of Nm. ∂L
∂Q

+
∑
X∈Ω

µt(X)
∑
j∈JX

[
β
∂EUX′

∂ρj,X

∂ρj,X
∂T

+
∂ lnCX,t
∂ωj,X

∂ωj,X
∂T

]
∂T

∂Q

 ∂Q

∂Nm
= λ

where ∂L
∂Q̃

= υQ, ∂T
∂Q = 1 (if Q < 1, otherwise it is 0). Also, using that ∂ρj,X

∂T =
αj,X

T
∂ρj,X
∂αj,X

,

∂ωj,X

∂T =
αj,X

T
∂ωj,X

∂αj,X
, and ∂Q

∂Nm
= φ Q

NmυQ+
∑
X∈Ω

µt(X)
∑
j∈JX

[
β
∂EUX′

∂ρj,X

∂ρj,X
∂αj,X

+
∂ lnCX,t
∂αj,X

]
αj,X
T

φ Q

Nm
= λ

and using that ∂EUX′
∂ρj,X

∂ρj,X
∂αj,X

+
∂ lnCX,t

∂αj,X
= ĥX for some value ĥX and all j, that

∑
j αj,X = αX , and

Q = T , then the condition for Nm reads:

υQ2 +
∑
X∈Ω

µ(X)ĥXαX =
λ

φ
Nm (2.49)

Finally, the labor employed in entry in each industry satisfies:

λ =
ϕ

2
N

− 1
2

e,Xβ (EeUX′ − E−eUX′) (2.50)

where EeUX′ (resp. E−eUX′) is the expected industry-utility conditional on successfully creating

(resp. not creating) a new differentiated good (so the expectation comes from the probabilities

the incumbents exit).

Using 2.45, 2.50 and 2.49, the labor market clearing condition reads:

1 = NP +Ne +Nm =⇒ λ = 1 + υQ2φ+
∑
X∈Ω

µ(X)

(
φĥXαX +

(
ϕ

2
β (EeUX′ − E−eUX′)

)2

λ−1

)
(2.51)

Note that this clearly implies λ > 1. Finally, the budget constraint implies the relative wage

is 1, ŵ = w
E
= 1. Therefore the planner’s markup (or tax) is τ = 1

NP ŵ
= 1

NP = λ > 1.
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2.7.7 Proof of convergence to an ergodic distribution and unique-

ness

Uniqueness:

Let τ be the first period that we arrive at state J = ∅, and Pt,0(X) be he probability that we

are at X after t periods starting from J = ∅; then the probability we are at state X starting

from a given state is:

Pt{X} =
t∑

k=1

P{τ = k}Pt−k,0{X}+ P{τ > t}Pt{X|τ > K}

As t → ∞, P{τ > t} → 0 since every period there is a positive probability that all differ-

entiated firms die and we arrive at J = ∅. Therefore, this tells us that if Pt,0{X} converges

(which later I prove that this is the case), then, the only stationary distribution we can have is

P0(X) = limt→∞ Pt,0(X).

The set of possible states is at most countably infinite

This is a consequence of two things: (i) from a given state you can directly move to a finite

number of states; (ii) with probability 1 any industry will pass through the state J = ∅ at

some point in time. Just as in the proof of Uniqueness, (ii) is telling us that the only stationary

distribution we can have (if any, since I haven’t proved this yet) is the one we would converge

to starting from the state J = ∅, which (i) tells us that at most will have a countably infinite

number of different states.

Convergence (Existence)

Suppose there are n ∈ N ∪ {∞} possible states and the probability of moving from state j to

state i is ai,j, then the transition matrix is

Q =



1−
∑n

j=2 aj,1 a1,2 · · · a1,n

a2,1 1−
∑

j ̸=2 aj,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · 1−
∑n

j=1 an,n


Let mt = (m1,t, . . . ,mn,t) be the vector of masses in each state, and call Mt := mt+1 −mt =

(Q− In)mt; so Mi,t =
∑

k ̸=imk,tai,k −mi,t

∑
k ̸=i ak,i.
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Lemma 2
∑n

k=1Mk,t = 0

Proof. Given that Mi,t =
∑
k ̸=imk,tai,k −mi,t

∑
k ̸=i ak,i; then∑n

i=1Mi,t =
∑n
i=1

[∑
k ̸=imk,tai,k −mi,t

∑
k ̸=i ak,i

]
=
∑n
i=1

∑
k ̸=imk,tai,k −

∑n
i=1

∑
k ̸=imi,tak,i

=
∑n
i=1

∑
k ̸=imk,tai,k −

∑n
k=1

∑
i̸=kmk,tai,k.

So, we just need to see that {k ̸= i|i, k ∈ {1, . . . , n}} = {i ̸= k|i, k ∈ {1, . . . , n}}, which is clearly satisfied by

symmetry of the ̸=-relationship.

And the following lemma expresses Mt+q for q ∈ N in terms of Mt:

Lemma 3 For any q ∈ N, Mt+q = QqMt, with Mi,t+q =
(
1−

∑
k ̸=i a

(q)
k,i

)
Mi,t +

∑
k ̸=i a

(q)
i,kMk,t,

where a
(q)
i,k is the probability of moving from k to i in q periods.

Proof. By definition,Mt+q = (Q−In)mt+q = (Q−In)Qqmt = (Qq+1−Qq)mt = Qq(Q−In)mt =

QqMt.

My main goal here is to study the convergence of Mt towards the null vector; so, we want to

establish some result that compares Mt to Mt+q for some q ∈ N. Since Mt is an n-dimensional

object, it is important to specify under which metric. To see the importance of this, let’s see

a counterexample that shows that not necessarily each component of Mt has to monotonically

decrease in absolute value:

Lemma 4 It is not necessarily true that |mt+1(k)−mt(k)| ≥ |mt+2(k)−mt+1(k)| for all k.

Proof. Suppose that mt is only non-zero in position i, where mi,t = 1. Then

Mt = (Q− In)mt =

(
a1,i · · · −

∑
k ̸=i

ak,i · · · an,i

)t
, mt+2 −mt+1 =

(
B1 · · · Bi · · · Bn

)t
,

where

Bj = aj,1

1−
∑
k ̸=i

ak,i −
∑
k ̸=j

ak,j

+
∑

k/∈{i,j}

aj,kak,1 for j ̸= i,

Bi = −

∑
k ̸=i

ak,i

1−
∑
k ̸=i

ak,i

+
∑
k ̸=i

ai,kak,i.

Then, we can find a counterexample by just supposing a1,i = 0 and that there exists k /∈ {1, i}

such that a1,kak,i > 0. Then, we have: |m1,t+1 −m1,t| = a1,i = 0 < a1,kak,i ≤
∑

k/∈{1,i} a1,kak,i =
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|B1| = |m1,t+2 −m1,t+1|

The norm that will prove useful is ||Mt|| := max
A⊂{1,...,n}

{|
∑

k∈AMk,t|}. Define B+ := {i ∈

{1, . . . , n}|Mi,t > 0} and B− := {i ∈ {1, . . . , n}|Mi,t < 0}

Proposition 3 It is satisfied that max
A⊂{1,...,n}

{|
∑
k∈AMk,t+1|} ≤ max

A⊂{1,...,n}
{|
∑
k∈AMk,t|} =

∑
k∈B+

Mk,t

Further, if i ∈ B+, j ∈ B− and there exists ℓ ∈ {1, . . . , n} such that a
(q)
ℓ,i , a

(q)
ℓ,j > 0 (ℓ can

be equal to i or j, which means that this state has period smaller or equal than q), then

max
A⊂{1,...,n}

{|
∑
k∈AMk,t+q|} < max

A⊂{1,...,n}
{|
∑
k∈AMk,t|} =

∑
k∈B+ Mk,t

Proof. First, max
A⊂{1,...,n}

{|
∑

k∈AMk,t|} =
∑

k∈B+ Mk,t since

max
A⊂{1,...,n}

{|
∑
k∈A

[mt+1(k)−mt(k)] |} = max{
∑
k∈B+

Mk,t,−
∑
k/∈B+

Mk,t},

and, by Lemma 2, both terms have the same value . Next, from Lemma 3, for any given q ∈ N

and A ⊂ {1, . . . , n}, we have:

∑
k∈A

Mk,t+q =
∑
k∈A

[
(1−

∑
j ̸=k

a
(q)
j,k)Mk,t +

∑
j ̸=k

a
(q)
k,jMj,t

]
.

And I group the terms with same Mi,t. Let’s focus first on the positive terms (i.e. Mi,t for

i ∈ B+):

• If i ∈ B+∩A, then: (i) for k = i we have the term (1−
∑
j ̸=i

a
(q)
j,i )Mi,t; (ii) for each k ∈ A\{i},

we have the term a
(q)
k,iMi,t.

• If i ∈ B+ \ A: for each k ∈ A, we have the term a
(q)
k,iMi,t.

Then, the positive terms can be written as:

∑
i∈B+∩A

Mi,t

1−
∑
j ̸=i

a
(q)
j,i +

∑
k∈A\{i}

a
(q)
k,i

+
∑

i∈B+\A

Mi,t

(∑
k∈A

a
(q)
k,i

)

=
∑

i∈B+∩A

Mi,t

(
1−

∑
k/∈A

a
(q)
k,i

)
+

∑
i∈B+\A

Mi,t

(∑
k∈A

a
(q)
k,i

)
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And using that for any i
∑

k ̸=i a
(q)
k,i ∈ [0, 1], we have

∑
i∈B+∩A

Mi,t

(
1−

∑
k/∈A

a
(q)
k,i

)
+

∑
i∈B+\A

Mi,t

(∑
k∈A

a
(q)
k,i

)
≤
∑
i∈B+

Mi,t (2.52)

Analogously, for the negative terms (i.e Mi,t for i ∈ B−):

• If i ∈ A∩B−, then: (i) for k = i we have the term (1−
∑
j ̸=i

a
(q)
j,i )Mi,t; (ii) for each k ∈ A\{i},

we have the term a
(q)
k,iMi,t

• If i ∈ B− \ A: for each k ∈ A, we have the term a
(q)
k,iMi,t

Then, the negative terms can be written as:

∑
i∈B−∩A

Mi,t

1−
∑
j ̸=i

a
(q)
j,i +

∑
k∈A\{i}

a
(q)
k,i

+
∑

i∈B−\A

Mi,t

(∑
k∈A

a
(q)
k,i

)

=
∑

i∈B−∩A

Mi,t

(
1−

∑
k/∈A

a
(q)
k,i

)
+

∑
i∈B−\A

Mi,t

(∑
k∈A

a
(q)
k,i

)
.

So, again using that for any i
∑

k ̸=i a
(q)
k,i ∈ [0, 1], we have

∑
i∈B−∩A

(−Mi,t)

(
1−

∑
k/∈A

a
(q)
k,i

)
+

∑
i∈B−\A

(−Mi,t)

(∑
k∈A

a
(q)
k,i

)
≤ −

∑
i∈B−

Mi,t (2.53)

The first part of the proposition follows directly from the fact that the previous two inequalities

for q = 1 imply that for any A ⊂ {1, . . . , n}, we have |
∑

k∈AMk,t+1| ≤
∑

k∈B+ Mk,t, and so the

inequality is also true for the maximum.

For the second part of the proposition, suppose the condition holds and I will show by contra-

diction that we cannot find any A such that |
∑

k∈AMk,t+q| ≤
∑

k∈B+ Mk,t holds with equality,

and so the inequality has to be strict.

In order for the equality to hold, it must be one of the following two cases:

• Case A: The positive terms are equal to the upper bound, and the negative terms are zero.

For this to be the case, we need: (i) for i ∈ B+ ∩ A,
∑

k/∈A a
(q)
k,i = 0; (ii) for i ∈ B+ \ A,∑

k∈A a
(q)
k,i = 1; (iii) for i ∈ B− ∩ A,

∑
k/∈A a

(q)
k,i = 1; and (iv) for B− \ A, it must be∑

k∈A a
(q)
k,i = 0

If i ∈ A, then condition (i) implies that also ℓ ∈ A, since otherwise we would have the
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contradiction 0 =
∑

k/∈A a
(q)
k,i ≥ a

(q)
ℓ,i > 0. If i /∈ A, then condition (ii) again implies that

ℓ ∈ A, since otherwise we would have the contradiction 1 =
∑

k∈A a
(q)
k,i ≤ 1 − a

(q)
ℓ,i < 0.

Therefore, ℓ must be in A in order for the positive terms to reach the upper bound.

Next, if j ∈ A, then condition (iii) implies that ℓ /∈ A, since otherwise we would have the

contradiction 1 =
∑

k/∈A a
(q)
k,j ≤ 1 − a

(q)
ℓ,j < 1. So, the only possibility is that j /∈ A, but

then condition (iv) contradicts that ℓ ∈ A, since then we would have the contradiction

0 =
∑

k∈A a
(q)
k,j ≥ a

(q)
ℓ,j > 0. Therefore, Case A is not possible.

• Case B: The positive terms are equal to zero, and the negative terms are equal to the

lower bound. For this to be the case, we need: (i) for i ∈ B+ ∩ A,
∑

k/∈A a
(q)
k,i = 1; (ii) for

i ∈ B+ \ A,
∑

k∈A a
(q)
k,i = 0; (iii) for i ∈ B− ∩ A,

∑
k/∈A a

(q)
k,i = 0; and (iv) for B− \ A, it

must be
∑

k∈A a
(q)
k,i = 1

Analogously as in the previous case, we get to the conclusion that this case is not possible.

If i ∈ A, then (i) implies ℓ /∈ A, since otherwise 1 =
∑

k/∈A a
(q)
k,i ≤ 1 − a

(q)
ℓ,i < 1. If i /∈ A,

then (ii) also implies that ℓ /∈ A, since otherwise 0 =
∑

k∈A a
(q)
k,i ≥ a

(q)
ℓ,i > 0. So, it must

be ℓ /∈ A.

If j ∈ A, (iii) implies the contradiction 0 =
∑

k/∈A a
(q)
k,j ≥ aℓ,j > 0. But if j /∈ A, (iv) also

implies the contradiction 1 =
∑

k∈A a
(q)
k,j ≤ 1− aℓ,j < 1. So, we conclude that this case is

not possible.

This proposition tells us that a sufficient condition to guarantee convergence to an ergodic

distribution is that whenever we are not in a stationary distribution, we can find states that

have changed in opposite directions in the previous iteration (period) such that there exists

some state which can be reached from each of the two states with positive probability in the

same number of periods (in other words, if two points start from state i and j respectively,

there is positive probability they will meet at some future period).

The next definitions and proposition show a sufficient condition for this condition to hold:

Definition 1 A Markov chain is irreducible if for any pair of states i, j, there exists q ∈ N

such that a
(q)
j,i > 0. (that is, it is possible to get to any state from any other state)

Definition 2 Let the longitude of the shortest path between two states i, j be di,j =
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min{q ∈ N|a(q)i,j > 0} (that is, the smallest number of periods required to go from one state to

the other).

Proposition 4 In an irreducible Markov chain that contains at least one state i with di,i = 1,

as long as we are not in the stationary distribution, it is always possible to find states j ∈ B+

and k ∈ B−, and a state ℓ such that a
(q)
ℓ,j , a

(q)
ℓ,k > 0 for some q ∈ N (and so, in such Markov

chain we can guarantee convergence to an ergodic distribution).

Proof. If we are not in a stationary distribution then there are j withMj,t ̸= 0, and by Lemma

2 there must be j ∈ B+ and k ∈ B−. .Let i be the state such that di,i = 1. Then, it is sufficient

to see that we can find q ∈ N such that a
(q)
i,j , a

(q)
i,k > 0, which is straightforward. We can check

that q := max(di,j, di,k) satisfies this (intuitively, the first to arrive from one of the two states

then stays with positive probability in i, and at some point the one that started from the other

state will also arrive to i). Without loss of generality, assume max(di,j, di,k) = di,k. a
di,k
i,k > 0 by

definition of di,k. But also a
di,k
i,j ≥ a

di,j
i,j a

(di,k−di,j)
i,i ≥ a

di,j
i,j

(
a
(1)
i,i

)di,k−di,j
> 0

So, in the Uniqueness section I proved that the only possible stationary distribution is the one

we would obtain if the initial sate is J = ∅ (if this converges). Now, the previous proposition

tells us that Pt,0(X) converges, since the Markov chain obtained is irreducible (if a state is

possible, it means that there was positive probability of arriving to it starting from J = ∅;

and, from any state, there is probability 1 of eventually going back to J = ∅) and the state

J = ∅ satisfies that the longitude of its shortest path connecting it to itself is 1 (with positive

probability there will be no entrant and we stay at J = ∅).

2.7.8 Summary of the method to solve the model

1. First, for each possible number of firms J :

• Define the different awareness sets PJ . There are 2J awareness sets (think on how

many different ways we can assign {0, 1} to J variables).

• Define the NJ grid nodes we will use, M⃗n, n = 1, . . . , NJ . Each node is a vector

of the mass of consumers in each awareness set. As we have seen, the solutions
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of the model are functions of the form f(J , M⃗) on a continuous m-dimensional

space, with m = 2J − 1 (M⃗ is (m + 1)-dimensional, but since the masses have to

add up to 1, one is redundant). To deal with this exponentially increasing state

space and alleviate the curse of dimensionality, I introduce a piecewise multivariate

Newton interpolation method described in detail in section 2.7.9. Using this method,

increasing the number of grid points leads to a better approximation, as in standard

univariate methods using a grid and linear interpolation, with the advantage that

the higher degree of the interpolating polynomial allows to reduce the number of

necessary grid points for a given fit.18

Also, note that J has information of the identity of the firm. Therefore, some nodes

are just a reordering of firms, so I use this to avoid solving again nodes that are just

a reordering of a node that has already been solved.

2. Define initial guesses for the aggregate states w and T, as well as initialize the policy

functions for advertising expenditure and entry; that is, assign a value for the grid nodes

{{{ej,n}Jj=1}
NJ
n=1}J̄J=1 and entry {{Ne,n}NJn=1}J̄J=1.

3. Given the aggregate states:

(a) Solve the firm problem:

i. Given the guess of the policy functions for advertising expenditures and entry:

• Solve the static price-setting problem. Note that this has to be updated

in every iteration of the firm problem because the advertising choices affect

the demand shifters ωj,i,t. This gives us profits and markups at each node:

{{Mj(J, M⃗n), πj(J, M⃗n)}NJn=1}J̄J=1.

• Solve for the value function implied by the policy functions of advertising

and entry and the profit function. Note that this implies solving a linear

system on {{V (J, M⃗n)}NJn=1}J̄J=1.

ii. Given the functions for markups and firm value found in the previous points,

{{Mj(J, M⃗n), Vj(J, M⃗n)}NJn=1}J̄J=1, compute the best responses:

18Using piecewise interpolation is important because increasing the degree of an interpolating polynomial
doesn’t necessary lead to a better approximation (Runge’s phenomenon).
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{{{e′j,n, N ′
e,n}Jj=1}

NJ
n=1}J̄J=1 (i.e. the optimal choice keeping the competitors’ choices

fixed). If the difference between these best responses and the previous guess is

small enough, we are done (in this case we have found a Nash equilibrium);

otherwise, update the guesses and go back to (i).

(b) Solve for the unique stationary distribution given the solution of the firm problem (in

particular, we need the policy functions for the advertising space {{{αj,n}Jj=1}
NJ
n=1}J̄J=1

and entry {{Ne,n}NJn=1}J̄J=1 and entry in an industry with J = 0: Ne,0). For the details

of the method, see section 2.7.8.1

4. Given the firm policy functions and the stationary distribution, compute the implied

aggregates w and T, using 2.24, 2.23, together with T = Q. If the difference between

the guesses and the implied values of w and T are close enough, we are done; otherwise,

update the new guesses for w and T and go back to 3.

2.7.8.1 Method used to find the stationary distribution

The method has two parts.

1. In section 2.7.7, I show that the set of industry states observed in the stationary dis-

tribution is at most countably infinite; and so the stationary distribution is a discrete

probability function defined on a potentially infinite set of points, and so, computation-

ally, the set of states needs to be bounded some way. In the following I describe the

approach used in the baseline to bound the set of states. As a robustness, I compare the

stationary distribution obtained from this approach to the one obtained by bounding the

space by a grid (that is, restricting M⃗ to take only values from a grid). The baseline

approach tends to be much faster.

(a) Given that in section 2.7.7 I show that the unique stationary distribution is the one

we would obtain if the initial sate is J = ∅, then:

• I initialize the List of states with this state. For each state in the List, I store

(1) the number of firms, (2) the vector of masses corresponding to this state,

(3) the vector of ages, and (4) the probability Prob, which I now describe. Prob

is the probability of going from state J = ∅ to the particular state X in the
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shortest path from J = ∅ to X. That is, for this initial state J = ∅, we have

Prob = 1.

• To facilitate the process of looking up whether we have already encountered a

state before (i.e. whether a state is already in List, I order the states in a library

LibraryStates lexicographically based on (i) the number of active firms, (ii) the

vector of ages, and (iii) the vector of masses. Initially, LibraryStates = 1.

• I also initialize iter = 0 and the list of states I will take as starting point in the

following iteration, NewStatesiter. Initially, NewStates1 = 1.

• Finally, we need the transition matrix with the probabilities of going from each

state to the others. However, since this matrix is very sparse (the states are

just directly connected to few others) and storing the whole matrix with all the

zeros would be highly costly for memory storage (and solving the system would

also be very slow), I only store the non-zero elements of the transition matrix

in a Library, where each book contains three pieces of information (the books

are ordered lexicographically based on the same order of these three pieces of

information): the row in the transition matrix (i.e., state of origin), the column

in the transition matrix (i.e., state of destination), and the value in this position

of the matrix resulting from subtracting the transition matrix from the identity

matrix. I initialize it as Library = [1, 1, 1] (the third 1 is the 1 from the identity

matrix).

(b) Then, as long as NewStatesiter+1 is not empty, increase iter by 1 and do the following

for each state s ∈ NewStatesiter+1:

i. Calculate the next period vector of masses if there weren’t entry/exit, and the

probability of an entrant. Then, for each of the possible cases of entry/exit, let-

ting q be the probability of the particular event of entry/exit, I do the following:

ii. Look up whether this state is already in List, using the order in LibraryStates.

Here is where I bound the problem.

• If the probability Prob is above a threshold, then I check for an exact match

(that is, they match in the three elements: J , the vector of ages, and the
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vector of masses (note that, although the vector of ages is not a state in

the baseline firm problem, it is useful to distinguish it for the quantitative

exercises).

• If the probability Prob is below the threshold (that is, it is a rare state),

then I just check for J and the vector of ages. If there is no state in List

matching J and the vector of ages, then we will treat this state as a new

state; otherwise, I will treat it as if it were identical to the first state in

List with the same J and ages. The intuition is that, although the vector

of ages is not a sufficient statistic (because history matters), it serves as

a good first approximation. The other boundary I set is on the firm age;

in particular, I don’t distinguish ages above a threshold (which I set to 20

years old). The intuition is that for firms older than 20 years old very few

consumers remain unaware of the firm, so the error from not distinguishing

older firms is negligible.

iii. If the outcome from the previous point is that it is not a new state, then we

index it by s′ equal to the index of the state we have matched it to and go to

(iv); else, if it is a new state, then we index it by s′ equal to the current size of

List plus one and do the following:

• Add the one of the identity matrix to Library ; that is: add [s′, s′, 1].

• Add the four pieces of information relative to this state in List. Prob will

be equal to the Prob of state s time q.

• Add s′ to NewStatesiter+1.

iv. Add [s, s′,−q] to the Library. If there is already an element at position [s, s′],

then just add −q.

2. In the second part, we need to solve for the stationary distribution. The matrix found in

the previous step is singular (note that the sum of all the elements in row s is 1−
∑
s′
ps,s′ =

1− 1 = 0, where ps,s′ is the probability of moving from state s to s′). So, we need to add

a new condition to have a compatible and determinate system: it is the condition that

the solution must add up to 1; so, I add to Library [s, 0, 1], for all the states s. Then, we
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also need the vector of independent coefficients, which again is very sparse (there is only

one non-zero value), so again I store it in a library called LibraryB = [0, 1].

2.7.9 Multivariate Newton Interpolation

Suppose we want to interpolate a function f : Rm → R by a polynomial of m variables and

degree n.

Definition 3 (Generating points): For each dimension i = 1, . . . ,m, we define n + 1

points xi,k, k = 0, . . . , n. {{xi,k}nk=0}mi=1 are called the generating points.

Definition 4 (Multiindices): Let α⃗ = (α1, . . . , αm) ∈ Λm,n := {α⃗ ∈ {0, . . . , n}m|
m∑
i=1

αi ≤

n}, and x⃗α⃗ = (x1,α1 , . . . , xm,αm).

The cardinal of Λm,n (i.e. the number of different multiindices) is given by N(m,n) =
(
n+m
n

)
(to see this, you can think of 1α0xα1

1 · · ·xαmm with
∑m

i=0 αi = n, which we can transcribe as

1 . . . 1︸ ︷︷ ︸
α0

#x1 . . . x1︸ ︷︷ ︸
α1

# . . .#xm . . . xm︸ ︷︷ ︸
αm

; so the problem of finding the number of different multi-

indices is equivalent to finding the number of different ways we can choose m boxes from n+m

boxes (i.e. the position of the m hashtags), which is
(
n+m
m

)
).

Definition 5 (Newton polynomial): wα⃗(x⃗) =
m∏
i=1

αi−1∏
k=0

(xi − xi,k).

Definition 6 The m-dimensional Newton interpolating polynomial of degree n of the

function f is pm,n(x⃗) =
∑

α⃗∈Λm,n
aα⃗wα⃗(x⃗), satisfying f(x⃗α⃗) = pm,n(x⃗α⃗), for all α⃗ ∈ Λm,n.

Lemma 5 Note that given β⃗, α⃗ ∈ Λm,n, if βi − 1 ≥ αi, then wβ⃗(x⃗α⃗) contains the term (xi,αi −

xiαi) = 0.

Corollary 1 Then, f(x⃗α⃗) = pm,n(x⃗α⃗) =
αm−1∑
km=−1

· · ·
α1−1∑
k1=−1

km∏
sm=0

(xm,αm − xm,sm) · · ·
km∏
sm=0

(x1,α1 −

x1,s1)a(k1+1,...,km+1)

To allow generality, I define:

Definition 7 Given α⃗ = (α1, . . . , αm), define:

(i) α⃗(i,k) = (α1, . . . , αi−1, k, αi+1, . . . , αm) (i.e. α⃗
(i,k) equals α⃗ except k in position i)
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(ii) α⃗(k) = (αk+1, . . . , αm).

(iii) β⃗(i,k) = (α⃗(i,k−1), . . . , α⃗(i,0), . . . , α⃗(m,αm−1), . . . , α⃗(m,0)), and let β⃗(i,0) = β⃗(i+1,αi+1−1) and

β⃗(m,0) = ∅.

Definition 8 (Divided differences):

f [α⃗, β⃗(i,b)] =
αi−1∑
ki=b−1

· · ·
α1−1∑
k1=−1

ki∏
si=b

(xm,αm − xm,sm) · · ·
k1∏
s1=0

(x1,α1 − x1,s1)a(k1+1,...,ki+1,α⃗(i)) if αi > b; and

f [α⃗, β⃗(i,b)] = f [α⃗, β⃗(i−1,0)] otherwise.

Note that by Corollary 1, and since α⃗(m) = ∅, then f [α⃗, β⃗(m,0)] = f(x⃗α⃗). The algorithm to find

the coefficients aα⃗ is defined as follows:

1. Start setting i = m and b = 0.

2. If there is some α⃗ ∈ Λm,n such that αi > b, then:

(a) For all the α⃗ ∈ Λm,n such that αi > b: Noting that f [α⃗(i,b), β⃗(i,b)] contains all the

terms of f [α⃗, β⃗(i,b)] with ki = b − 1, and so the remaining terms will all contain

(xi,αi − xi,b); then:

f [α⃗, β⃗(i,b+1)] =
f [α⃗, β⃗(i,b)]− f [α⃗(i,b), β⃗(i,b)]

xi,αi − xi,b

=

αi−1∑
ki=b

· · ·
α1−1∑
k1=−1

ki∏
si=b+1

(xm,αm − xm,sm) · · ·
k1∏
s1=0

(x1,α1 − x1,s1)a(k1+1,...,ki+1,α⃗(i))

(b) For all the α⃗ ∈ Λm,n such that αi ≤ b, then f [α⃗, β⃗(i,b+1)] = f [α⃗, β⃗(i,b)] (satisfies the

definition since αi ≤ b < b+ 1, so f [α⃗, β⃗(i,b+1)] = f [α⃗, β⃗(i,b)] = f [α⃗, β⃗(i−1,0)]

Set b = b+ 1, and go back to step 2.

3. If αi ≤ b for all α⃗ ∈ Λm,n (which is satisfied if and only if b ≤ n), then make f [α⃗, β⃗(i−1,0)] =

f [α⃗, β⃗(i,b)], and set i = i− 1 and b = 0. If i = 0, we are done; otherwise, go back to step

2.

All is left to do is to show that the f [α⃗, β⃗(0,0)] = aα⃗ for all α⃗ ∈ Λm,n. Given that the divided

difference of α⃗ just changes when we apply (2a) to it, then it is sufficient to see that in the

last time that we select α⃗ for (2a) it is f [α⃗, β⃗(i,b+1)] = aα⃗; since then it will be f [α⃗, β⃗(0,0)] =

f [α⃗, β⃗(i,b+1)] = aα⃗.

62



Proof. If we have used aα⃗ in (2a), it means that αi > b, which implies that exactly one of the

following is true:

1. αi > b+ 1, in which case aα⃗ would also be selected in the next iteration, contradicting it

was the last time it was selected;

2. αi = b + 1, in which case aα⃗ it is the last iteration for variable i that aα⃗ is selected. In

this case there are two possibilities:

• αk > 0 for some k < i, in which case in iteration (k, 0) α⃗ would be selected, contra-

dicting the hypothesis.

• αk = 0 for all k < i, in which case we have:

f [α⃗, β⃗(i,b+1)] =

αi−1∑
ki=αi−1

· · ·
α1−1∑
k1=−1

ki∏
si=αi

(xm,αm − xm,sm) · · ·
k1∏
s1=0

(x1,α1 − x1,s1)a(k1+1,...,ki+1,α⃗(i))

=

αi−1∏
si=αi

(xm,αm − xm,sm) · · ·
−1∏
s1=0

(x1,α1 − x1,s1)a(0,...,0,αi,α⃗(i))

= a(0,...,0,αi,α⃗(i)) = aα⃗
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Chapter 3

Fiscal Policy, Competition and Growth

3.1 Introduction

Fiscal consolidation, a term used to describe government efforts to reduce fiscal deficits and

lower public debt, has become a priority for many countries. Significant increases in spending

following the 2008-09 financial crisis, the Covid-19 pandemic, and recent shocks such as fluc-

tuating commodity prices and the Ukraine conflict have placed considerable strain on public

finances. A significant number of developing and emerging economies are grappling with debt

distress, while many advanced economies—even if not yet in the same situation—face a press-

ing need for fiscal consolidation (IMF, 2020). Strengthening policy buffers will be essential to

address infrastructure gaps, respond to climate change, support aging populations, and prepare

for future economic shocks.

There is broad agreement that fiscal consolidation tends to have negative short-term effects on

growth, primarily through fiscal multipliers, while supporting higher growth in the long run by

crowding in private investment and reducing policy uncertainty (Balasundharam et al., 2023).

Interestingly, the transmission channels typically cited—such as lower interest rates and reduced

uncertainty—are mechanisms more commonly associated with short-run dynamics, as captured

in standard macroeconomic models designed to study business cycle fluctuations rather than

long-term growth. Indeed, much of the existing analysis of the long-run effects of fiscal consol-

idation relies on this class of models. Yet, it is well established that the fundamental driver of

1This chapter is joint work with Giammario Impullitti and Antonin Bergeaud.

64



long-run growth is innovation and technological progress. This suggests that a comprehensive

assessment of the long-term implications of debt and deficit reduction should explicitly consider

their impact on innovation and the sustained productivity growth it enables.

Structural reforms—such as product and labour market liberalisation—have the potential to

mitigate the contractionary effects typically associated with fiscal consolidation. In particular,

product market competition is widely recognised as a key driver of innovation and long-run

economic growth.2 This is particularly relevant in light of the observed rise in market power

across many countries in recent decades,3 which has coincided with a prolonged slowdown in

productivity growth across a broad set of countries, including many advanced economies.

Does market power matter for the long-run effect of fiscal policy? What are the long-run effects

of fiscal consolidation in economies characterized by high market power and low productivity

growth. Is there complementarity between fiscal and competition policies, and how does it

shape the long-run impact of fiscal consolidation?

To address these questions, we develop an endogenous growth model with variable markups to

study the effects of fiscal policy on innovation and productivity growth, and to analyse the role

of product market competition in shaping the transmission of these policies. Our framework

builds on the class of step-by-step Schumpeterian growth models, in which a small number of

oligopolistic firms compete strategically for market leadership within each product line (e.g.

Aghion et al., 2005). The economy features a ‘mixed market structure’, where large, highly

productive firms coexist with a competitive fringe of smaller, less productive firms. Within

each industry, a small number of heterogeneous superstar firms engage in Cournot competition

for market shares and invest in innovation to improve their productivity and maintain their

leadership position. Firm-level productivity differences arise both from initial heterogeneity at

entry and from subsequent success in innovation. In parallel, each industry is populated by a

continuum of smaller firms that operate at a lower productivity level and capture a limited share

of the market. These fringe firms are separated from the superstar firms by an exogenously

given productivity gap, but retain the ability to invest in innovation and potentially ascend to

2See the seminal contributions of Aghion et al. (2001, 2005), and Griffith and Reenen (2021) for a recent
review of the theoretical and empirical literature on competition and growth.

3A range of indicators of market power—including markups and market concentration measures—have risen
over the past three decades in many advanced economies (e.g. Autor et al., 2020; De Loecker et al., 2020; Bajgar
et al., 2019; Diez et al., 2021).
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the superstar class. While the inflow of new superstar firms is driven by successful innovation

from the competitive fringe, exit from the superstar group occurs either when firms fail to cover

a fixed operating cost or when their relative productivity falls sufficiently behind that of the

industry leader. Finally, a mass of entrepreneurs can enter the market by paying an entry cost

to join the competitive fringe. In this setting, long-run economic growth is ultimately driven

by the innovation efforts of superstar firms within each industry, which push the technological

frontier forward.

The model generates non-degenerate distributions of sales, employment, and markups within

each industry, which are shaped by the number of superstar firms, the distribution of their

productivities, and the relative productivity and mass of the competitive fringe. This rich in-

dustry structure enables us to discipline the model using firm-level data, allowing it to replicate

key cross-sectional patterns observed in the data—including the dispersion of productivity and

markups across firms.

Moreover, the model inherits the nuanced relationship between competition and growth that

characterises step-by-step innovation frameworks. On the one hand, firms have strong incen-

tives to innovate in order to escape intense competition and secure a more dominant market

position—a mechanism known as the escape competition effect, which generates a positive re-

lationship between competition and innovation. On the other hand, greater competition can

erode the expected rents from innovation by reducing post-innovation markups, thereby discour-

aging investment in R&D—a channel often referred to as the discouragement or Schumpeterian

effect. The interplay between these two opposing forces provides the model with the necessary

flexibility to capture the often non-monotonic or non-linear relationship between competition

and innovation documented in the empirical literature.

In our model economy, the government levies taxes on consumption and labour income. In

the baseline specification, we assume that the government operates under a balanced budget,

using the proceeds from these taxes to finance lump-sum transfers to households. We later

extend the framework to allow for fiscal deficits and public debt accumulation. Labour supply

is endogenous, as households derive utility from both consumption and leisure. Importantly,

the size of the market—a key determinant of innovation incentives—depends on labour supply,

which responds to changes in wages through the standard income and substitution effects.
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Consequently, fiscal policy—through its effects on consumption and labour taxation—influences

the size of the market by altering households’ labour supply decisions.

The effects of fiscal policy on long-run innovation and growth operate through the two central

mechanisms linking competition and innovation in our framework: the escape competition

effect and the Schumpeterian effect. For instance, a fiscal expansion that stimulates labour

supply increases the size of the market, boosting demand and firm profits, which in turn fosters

innovation. However, in the absence of firm entry, higher profits reduce the incentive to innovate

through the escape competition channel, as firms become more profitable without needing to

outpace competitors. Crucially, in our model, firm entry responds endogenously to changes

in market size: a larger market encourages entry, intensifies competition, and strengthens

incentives for innovation in order to escape rivals. This pro-competitive effect of fiscal policy

amplifies the positive impact of fiscal expansions on innovation and growth, highlighting the

important role of product market competition in mediating the transmission and effectiveness

of fiscal policy.

We use administrative French firm-level data, FICUS and FARE from Insee-DGFiP to cali-

brate the model and explore the impact of fiscal policy numerically. We begin by examining

whether economies characterised by higher market power—where firms enjoy greater pricing

power—exhibit stronger or weaker responses to changes in fiscal policy compared to more com-

petitive environments. Since product market competition is endogenous in our framework, we

then explore how fiscal expansions affect both competition and innovation. Comparing these

outcomes with those generated by a version of the model in which competition is exogenously

fixed—and thus unresponsive to policy changes—allows us to isolate and quantify the role of

competition in mediating the effects of fiscal policy. We find that market structure endogeneity

amplifies the effect of fiscal policy on growth by 10%. Finally, we investigate the complementar-

ity between fiscal and competition policies. Specifically, we contrast the growth effects of policy

regimes in which fiscal and competition instruments are used in isolation with those in which

they are deployed jointly. This analysis sheds light on the potential for competition policy to

mitigate the adverse effects of fiscal consolidation on long-run growth.
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Literature review. We use the frontier version of the step-by-step Schumpeterian growth

model recently developed by (Cavenaile et al., 2021). This framework builds on the standard

step-by-step model—widely used to study the relationship between competition and innova-

tion—by introducing a key improvement: a fully-fledged entry process. In the standard model,

each industry is characterized by a duopoly, and even when entry is allowed, the entrant sim-

ply replaces one of the incumbent firms. Markups depend on the productivity gap between

the leader and the follower. In contrast, the new model features non-degenerate distributions

of sales, employment, markups, and profits within each industry. It allows for an arbitrarily

large and endogenous number of oligopolistically competing firms, providing a richer and more

realistic characterization of industry dynamics. The presence of a competitive fringe captures

the realistic coexistence of both small and large firms within an industry, allowing for more

empirically plausible market share distributions and firm life cycles. In particular, entrants do

not immediately displace incumbents as industry leaders but instead typically start small and

grow over time.

We extend the framework along three dimensions. First, we introduce fixed operating costs for

superstar firms, thereby incorporating a selection channel in the model. Second, we assume

decreasing returns to labor to allow the size of the fringe to matter for the degree of product

market competition in each industry. Third, we add endogenous labor supply and fiscal policy.

There is a recent literature analyzing the link between competition and the effects of mone-

tary policy. Variable markups imply that firms do no fully pass cost reductions onto prices,

as part of them go into increasing profit margins. Via this incomplete pass-through channel,

reduction in borrowing costs brought about by expansionary monetary policy have a weaker

impact on output (e.g Ferrando et al., 2021, forthcoming). Moreover, strategic complementarity

in firm-level pricing, typical of oligopolistic models can increase price-stickiness thereby gen-

erating stronger money non-neutrality, stronger output response to monetary policy changes

(e.g. Mongey, 2021; Wang and Werning, 2022). While this line of research focuses on short-run

effects of monetary policy, others have analysed long-run effects and highlighted a third chan-

nel shaping the interaction between competition and monetary policy which operates via credit

constraints. Higher product market competition means lower profits and therefore more need

for external funds. Thus as firms are more dependable on credit, monetary expansion aimed

68



at reducing the cost of credit have a stronger impact on firms’ investment decisions than in an

economy with higher profits (Aghion et al., 2019).

To the best of our knowledge, there is no work on the interaction between competition and

fiscal policy. While monetary policy acts directly on a price, the cost of borrowing, allowing

firms to increase investment and hiring, fiscal policy operates directly on demand, stimulating

firms growth via an expansion of the size of the market.4 The size of the market plays an

important role for competition, as larger markets typically promote entry. Thus, the linkage

between competition and fiscal policy operates via a different channel compared to monetary

policy, the market size channel produced by demand management.

3.2 The model

3.2.1 Environment

Preferences. Time is continuous. There is a unit mass of identical consumers who choose

their consumption and labor supply to maximize lifetime utility:

U =

∫ ∞

0
e−ρt [lnCt + γ ln(1− Lt)] dt, (3.1)

where Lt is the labor supplied by the individual per unit of time, and Ct is the final consumption

good, which is a Cobb-Douglas aggregator of the continuum of industry goods:

lnCt =

∫ 1

0
Ci,tdi. (3.2)

In each industry, there is a fringe producing a homogeneous good and an endogenous dis-

crete number of superstar firms each one producing a single differentiated good. The industry

consumption good is a CES aggregator of these goods:

Ci,t =

C σ−1
σ

f,i,t +

Ni,t∑
j=1

c
σ−1
σ

j,i,t

 σ
σ−1

, σ > 1, (3.3)

4Monetary policy operates via a direct effect on the cost of borrowing in all its standard transmission
channels. In the ‘traditional money-view’ policy operates through the expectation channel and affects the user
cost of capital, while in the ”credit-channel view” it operates through its effects on external finance and credit
constraints (Bernanke and Gertler, 1995).
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where Cf,i,t is the quantity consumed from the good of the fringe in industry i, and cj,i,t is the

quantity consumed from superstar j in industry i.

Households own all the assets in the economy, and face the budget constraint:

ȧt = rtat + (1− τL)wtLt − (1 + τC)PtCt + TRt, (3.4)

where at is the level of assets, wt is the wage rate, Pt is the price index of the final consumption

good, which is the numeraire, τL and τC are taxes on labor and consumption, respectively, and

TRt is a lump-sum transfer.

Production technology and market structure. The fringe is populated by a mass mi,t

of small firms, all producing the same homogeneous good. Let lowercase yf,i,t and ℓf,i,t refer to

the output and labor of a single firm in the fringe, and Yf,i,t and Lf,i,t be the the output and

labor of the fringe as a whole.

Both fringe and superstar firms face a production function with decreasing returns to scale in

labor

yf,i,t = Af,i,tℓ
α
f,i,t , yj,i,t = Aj,i,tℓ

α
j,i,t, j = 1, . . . , Ni,t, α ∈ (0, 1], (3.5)

where Aj,i,t and ℓj,i,t are the productivity and labor, respectively, of superstar j in industry i

and time t. Analogously, Af,i,t and ℓf,i,t are the productivity and labor of the fringe. All firms

in the fringe of industry i have the same productivity given by Af,i,t = A1,i,tζ, where A1,i,t is

the productivity of the leader in industry i.

In addition to the variable labor costs of production, superstar firms need to pay a fixed cost f

(in labor units) at every t in order to operate; otherwise, they exit.

Innovation by superstars. Superstar firms employ labor, hj,i,t, to improve their produc-

tivity. If successful, the productivity of that superstar, Aj,i,t, is multiplied by a step λ > 1.

Success in innovation arrives at the Poisson rate ρj,i,t given by

ρj,i,t = Zhψj,i,t, ψ ∈ (0, 1). (3.6)
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Entry an exit to superstars. Each small firm in the fringe can also employ labor hf,i,t

with the aim to become a superstar in their industry. If successful, and as long as the current

number of superstars is below an exogenous number N̄ , there will be a new superstar in the

industry that starts with productivity Aj,i,t = A1,i,tλ
−ae , where ae ∈ N. Success in innovation

by a small firm arrives at the Poisson rate ρf,i,t (so, the industry Poisson rate of a new superstar

is ρ̄f,i,t = mi,tρf,i,t) given by

ρf,i,t = Zfh
ψf
f,i,t, ψf ∈ (0, 1). (3.7)

There are two possible ways a superstar can exit. On the one hand, since the firm has to incur

a fixed cost f to operate as a superstar, a firm will endogenously exit when its value is negative.

On the other hand, as in Cavenaile et al. (2021), a superstar exits (or loses its superstar status)

when it falls more than ā gaps below the industry leader (that is, if a superstar is ā gaps behind

the leader and the leader innovates, then the firm exits from the pool of superstars). As in

Cavenaile et al. (2021), our interpretation of the exogenous ā gap is that firms below this gap

are not large enough to strategically interact with the other superstars.

Entry and exit to the fringe. As in Cavenaile et al. (2021), we assume an exogenous

death rate of small firms, δ, and a measure one of entrepreneurs who employ he,t researchers

to get a Poisson rate ρe,t = Zeh
1
2
e,t of starting a new small firm. New small firms are randomly

allocated to an industry, so the mass of small firms is the same in all industries, mi,t = mt.

Successful entrepreneurs sell their firm on a competitive market at its full value and remain in

the set of entrepreneurs, so that the mass of entrepreneurs is unchanged.

3.2.2 Equilibrium

For the derivations, see the Appendix.

Consumer’s Problem. The optimal consumption and labor choices are given by:

Ėt
Et

= rt − ρ, (3.8)

Et = PtCt = Ci,tPi,t, (3.9)
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cj,i,t = Ci,t

(
Pi,t
pj,i,t

)σ
, Cf,i,t = Ci,t

(
Pi,t
Pf,i,t

)σ
, (3.10)

γ

1− Lt
=

(1− τL)wt
(1 + τc)Et

. (3.11)

where Et = PtCt is expenditure, Pi,t is the price index of the industry, given by Pi,t =(∑ni,t
j=1 p

1−σ
j,i,t + P 1−σ

f,i,t

) 1
1−σ , and, given that all small firms in the fringe produce the same ho-

mogeneous good, the price index of the fringe, Pf,i,t, equals the price set by each small firm (i.e.

Pf,i,t = pf,i,t). Equation 3.11 governs the consumption-leisure choice, and states that as taxes,

either on consumption or labor, increase, the labor supplied decreases.

Quantity setting. Market clearing implies that the quantities consumed equal the quan-

tities produced (i.e. yj,i,t = cj,i,t, Yf,i,t = Cf,i,t, Yi,t = Ci,t, and Yt = Ct). Superstar firms

within the same industry compete a la Cournot. They choose quantity yj,i,t to maximize their

profits πj,i,t = yj,i,tpj,i,t−wtℓj,i,t, given the quantities of the other superstars and the fringe, and

internalizing that its choice has an effect on the industry quantity Yi,t. This delivers an optimal

markup that is increasing in the market share of the firm, sj,i,t =
pj,i,tyj,i,t
Pi,tYi,t

:

Mj,i,t =
σ

σ − 1
[1− sj,i,t]

−1 . (3.12)

Superstar value function and innovation One way to express the industry state is by

the vector of productivity gaps from the leader θ = {a1, . . . , aN}, where aR = ln
(
A1

AR

)
1

lnλ
(that

is, the productivity of the industry leader is A1 = ARλ
aR).5 This vector not only gives us

information about the relative productivities, but also about the number of superstars in the

industry. A key feature of the firm problem is the presence of a fixed cost. Due to the fixed

cost, some superstars may find that their value of continuing operations is negative. Here,

two considerations need to be made. First, as it is well known, there may not be a unique

Nash equilibrium if firms decide simultaneously whether to stay or exit; therefore, we impose

a sequentiality on the exit decision, in particular assuming that firms with higher value choose

5This is just one way to write the sufficient information needed to specify the industry state; another
possibility (which is the one we use for the code) is to state it in consecutive gaps, in which case we would define

aR := ln
(

AR

AR+1

)
1

lnλ , R = 1, . . . , n− 1.
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earlier whether to stay or exit (solving by backward induction, this is equivalent to say that

firms with lower productivity exit first).6 Second, to solve the model in general, we need to

allow for mix strategies in the exit decision; that is, a firm may randomise with some probability

whether to stay or exit the moment it becomes indifferent (i.e. when its value becomes 0). If

the result of the randomisation is to stay, the firm stays at least until the industry state changes

again.

To make their exit decisions, firms need to compute their value of continuing operations, V S
j,θ,t;

that is, the value of firm j in an industry of type θ if all firms in the industry decide to stay. In

contrast, let Vj,θ,t be the expected value of firm j when the industry state becomes θ (before exit

movements). That is, letting θ = (a1, . . . , aNθ), θ
(k) = (a1, . . . , ak) (i.e. θ truncated at k), N̂θ ∈

[0, Nθ] be the expected number of firms that stay when the state θ is reached, and ĵθ ∈ N be the

greatest integer smaller or equal than N̂θ; then: Vj,θ,t = (N̂θ− ĵθ)V S

j,θ(ĵθ+1),t
+(ĵθ+1−N̂θ)V

S

j,θ(ĵθ),t

for j ≤ ĵθ, and Vj,θ,t = 0 otherwise.

The firm problem to obtain the values of continuing operations, V S
j,θ,t, can be expressed as

the following Hamilton-Jacobi-Bellman equation (the detailed derivations are in the Appendix

3.6.2.4):

ρV Sj,θ,t = max
hj,θ,t

{
Etsj,θ(1− αM−1

j,θ )− wt(f + hj,θ,t)

+

Nθ∑
k=1

ρk,θ,t

(
Vj′(θ,k),θ′(θ,k),t − V Sj,θ,t

)
+ ρ̄f,θ,t

(
Vj′(θ,f),θ′(θ,f),t − V Sj,θ,t

)}

s.t. ρj,θ,t = Zhψj,θ,t.

The first two terms inside the brackets are production profits and research and fixed costs. The

third term captures that the firm internalises that with arrival rate ρk,θ,t the incumbent firm

k will innovate, in which case the industry state will become θ′(θ, k), which doesn’t take into

account exit (as described above, exit is taken into account by Vj′(θ,k),θ′(θ,k),t), and j
′(θ, k) is the

new position of firm j in the ranking of productivities.7 More explicitly, θ′(θ, k) is obtained in

the following steps. First, if the leader innovates, then the productivity gap of all the followers

increases by 1 (i.e. aR becomes aR+1 for all R > 1); whereas if the innovator is the incumbent

R > 1, then only the productivity gap of firm R is reduced by 1 (i.e. aR becomes aR − 1).

6Note that given that what happens in one industry state affects the value in other states, this sequentiality
is defined not only within an industry state but across industry states. That is: the firm with the lowest value
across all industry states exit first.

7For instance, if θ = {0, 2, 2} and firm 3 innovates, then it moves up to position 2 in the ranking.

73



Second, and this is just to avoid redundant industry states, we reorder firms from lower to

higher productivity gap, and j′(θ, k) maps the previous position on the ranking to the new one.

Finally, the fourth term in the HJB equation captures that with arrival rate ρ̄f,θ,t = mρf,θ,t

some small firm will become a superstar, in which case the new industry state (before exit

movements) is θ′(θ, f). The only thing that changes from the previous explanation is the first

step. In this case, the productivity gaps of the incumbents are unchanged, but we need to add

to θ a new productivity gap for the entrant, ae.

Given that, as we will see wt
Et

is constant in the stationary equilibrium and that production

profits are linear in Et

πj,θ,t = Etsj,θ(1− αM−1
j,θ ).

Then, using guess and verify, it is straightforward to check that the value function is linear in

Et, Vj,θ,t = V̂j,θEt.

The optimal amount of researchers employed by firm j if all firms in industry θ stay is given

by

h1−ψj,θ = Zψ
E

w

(
V̂j′(θ,j),θ′(θ,j) − V̂ S

j,θ

)
. (3.13)

See Figure 2.1 for the model-implied relationship between industry market share and research,

as well as between total industry research and the industry Herfindahl index.

When computing the values of continuing operations, V̂ S
j,θ, using the system of HJB equations,

firms need to take into account the exit decisions of firms at each industry state to compute V̂j,θ

(in particular, as stated above, they need the expected number of firms that stay, N̂θ). In the

equilibrium of the firms problem, the expected number of firms that stay at each industry state,

N̂θ, must be consistent; that is, if N̂θ < Nθ, then V̂
S
Nθ,θ

≤ 0, and if N̂θ = Nθ, then V̂
S
Nθ,θ

≥ 0.

Otherwise, the lowest productivity superstar firm would have an incentive to deviate from its

exit decision.

Small firm value function and entry into superstars. Given that there is a continuum

of small firms producing the same homogeneous good, small firms are price takers andMf,i = 1.

As with superstars, small firms’ production profits are linear in Et

πf,θ,t = Et(1− α)
sf,θ
m

,
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where I have dropped all subindices from the mass of small firms m because, as we will see, in

the stationary equilibrium it is constant and the same across industries.

So, the value of small firms is also linear in Et, and they solve:

(ρ+ δ)vf (θ) = max
{hf,θ}

{
(1− α)

sf,θ
m

− w

E
hf,θ + ρf,θV̂f ′(θ,f),θ′(θ,f)

+

Nθ∑
j=1

ρj,θ,t

(
vf
(
θ′(θ, j)

)
− vf

(
θ
))

+ ρ̄f,θ

(
vf
(
θ′(θ, f)

)
− vf

(
θ
))

s.t. ρf,θ = Zfh
ψf

f,θ,

where vf (θ) is the value of a small firm in industry state θ, ρ̄f,θ =
∫
ρf,θdf = mρf,θ, and

V̂f ′(θ,f),θ′(θ,f) is the value of becoming a new superstar.8 The first term are the profits of a small

firm in that industry. The next two terms are the costs and gains of innovating to become a

new superstar, whereas the other two terms capture the change in the value of remaining in

the fringe when some superstar innovates and when another small firm becomes a superstar,

respectively. The optimal research choice is given by:

h
1−ψf
f,θ = Zfψf

E

w
V̂f ′(θ,f),θ′(θ,f). (3.14)

Entry into small firms. The entrepreneurs solve the value problem

ρve = max
he

{
ρe
∑
θ

vf (θ)µ(θ)− w

E
he

}
, s.t. ρe = Zeh

1
2
e ,

where µ(θ) is the mass of industries in state θ. That is, successful entrepreneurs become a small

firm in a randomly allocated industry. So, the optimal research by entrepreneurs is given by:

h
1
2
e =

Ze
2

E

w

∑
θ

vf (θ)µ(θ). (3.15)

In the stationary equilibrium, the mass of small firms must be constant, that is, the mass of

entrants into small firms must equal the mass of small firms who exit; that is: ρe = mδ.

3.2.2.1 Law of Motion of the Distribution of Industry States

With the optimal research and entry decisions, we can obtain the infinitesimal transition matrix.

Let µt(θ) be the mass of industries with state θ at time t (post exit movements), p(θ, θ′) be the

time derivative of the probability of transiting from industry state θ to θ′ (pre exit movements),

8The value of a small firm is infinitesimal, the value of small firms in θ is
∫
f
vf (θ)df = mvf (θ).
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and G(θ, θ′) be the probability that exit movements turn θ into θ′. That is, using the same

notation as in section 3.2.2, then: (i) G(θ, θ′) = N̂θ − ĵθ if θ′ = θ(ĵθ+1) with ĵθ + 1 ≤ Nθ; (ii)

G(θ, θ′) = 1 + ĵθ − N̂θ if θ
′ = θ(ĵθ); and (iii) G(θ, θ′) = 0 otherwise.

Since in the stationary distribution it must be µt(θ) = µ(θ), then we have (see Appendix 3.6.3

for the detailed derivation):

0 =
dµt(θ)

dt
=
∑
θ′∈Θ

µt(θ
′)
∑
θ′′ ̸=θ′

p(θ′, θ′′)G(θ′′, θ) + µt(θ)p(θ, θ) , θ ∈ Θ. (3.16)

And p(θ, θ′) is non-zero only when (i) θ′ = θ, p(θ, θ) = −
∑Nθ

j ρj,θ − ρe,θ, or when (ii) θ′ is

the state we obtain from θ when only one new firm becomes a superstar and no incumbent

innovates (and before any potential exit), or when (iii) only one incumbent j innovates and

there is no new superstar (and before any potential exit).

Calling Q the infinitesimal matrix and ordering the industry states Θ = {θ1, . . . , θT}, then the

element in row i and column j of Q is (Q)i,j =
∑

k ̸=i p(θi, θk)G(θk, θj) if j ̸= i and (Q)i,i =

p(θi, θi) +
∑

k ̸=i p(θi, θk)G(θk, θi), and (3.16) can be written as Qtµ⃗ = 0⃗. From the above

description, it is clear that
∑T

j=1Qi,j = 0;9 so, Q has not full rank. The extra condition we

need to solve for the stationary distribution is
∑T

i=1 µ(θi) = 1.

3.2.2.2 Labour Market Clearing

Labour is used in production by superstars and small firms, and in research by superstars, small

firms, and entrepreneurs. So, the labour market clearing condition writes:

LS =
∑
θ∈Θ

µ(θ)

 Nθ∑
j=1

(Lj,θ + hj,θ + f) + Lf,θ +mhf,θ

+ he, (3.17)

where the labour supply LS is given by LS = 1 − γ (1+τc)
(1−τL)

E
w
. Note that in the stationary

equilibrium E
w
is constant.

3.2.2.3 Aggregate Production Function and Growth

As derived in the Appendix 3.6.5, the aggregate production function can be written as:

9
∑T
j=1Qi,j = p(θi, θi) +

∑T
j=1

∑
k ̸=i p(θi, θk)G(θk, θj) = p(θi, θi) +

∑
k ̸=i p(θi, θk)

∑T
j=1G(θk, θj) =∑T

k=1 p(θi, θk) = 0.
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lnYt = α ln

(
α
Et
wt

)
+

∫ 1

0

lnA1,i,tdi+
σ

σ − 1

∑
θ∈Θ

µt(θ) ln

(ζm1−αsαf,θ
)σ−1

σ +

Nθ∑
j=1

(
Âj,θ

(
sj,θ
Mj,θ

)α)σ−1
σ

 ,

which decomposes the aggregate output in three terms. The first term is linked to the relative

wage; the second is the geometric mean of the industry leaders’ productivity level; and the

third refers to the composition of industry states. In a stationary equilibrium, µt(θ) = µ(θ),

as well as Et
wt

is constant; and so in the stationary equilibrium, all the growth comes from the

second term. In particular, the growth rate in the stationary distribution is:

g =
Ẏt
Yt

=

∫ 1

0

Ȧ1,i,t

Aj,i,t
di = lnλ

∑
θ

µ(θ)ρ1,θ. (3.18)

That is, the economy grows at a rate equal to the average probability a leader innovates times

the log of the innovation step size.

3.3 Quantitative Analysis

3.3.1 Calibration

In this section, we describe the calibration of the model. We estimate the model for France

at an annual frequency and set the discount rate to ρ = 0.04. For the parameters that com-

putationally bound the problem, we set the maximum number of superstars to N̄ = 4 and

the maximum number of steps behind the leader to ā = 5. Additionally, we set the num-

ber of gaps for a new superstar to ae = 3. We also set the degree of decreasing returns to

scale to α = 0.9, following the value used in the Appendix of Cavenaile et al. (2021), and the

death rate of small firms in the fringe to δ = 0.0531, corresponding to the entry rate in the

data. This leaves us 10 parameters to estimate: the elasticity of substitution parameter, σ;

the relative productivity of the fringe, ζ; the consumption-leisure parameter, γ; the innovation

step-size, λ; the innovation scale parameters of superstars, small firms, and entrepreneurs, Z,

Zf , Ze, respectively; the innovation convexity parameters of superstars and small firms, ψ, ψf ,

respectively; and the operating fixed cost, f . These parameters are estimated jointly through

a Simulated Method of Moments estimation procedure. In particular, given a point in the

space {σ, ζ, λ, Z, Zf , ψ, ψf , f}, γ is set such that employment in the model perfectly matches

the employment rate in the data, and Ze is set such that the mass of the fringe is normalized

to 1. The other 8 parameters are set to target: the sales-weighted average and variance of the
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Figure 2.1: Research within and between industries

Notes. On the left, we plot the researchers employed by superstars, hj,θ for each j and θ, against
the firm’s industry market share. On the right, total researchers demanded by superstars,∑

j hj,θ for each θ, against the Herfindahl index. The size of each circle is proportional to the
frequency we observe it in the stationary distribution.

log of markups using FARE, the labor share, the growth rate, the average share of R&D to

sales for manufacturing firms from EU KLEMS, the average share of fixed costs to total firm

costs, taken from De Ridder (2024), and the linear coefficient and the implied top point from a

regression of innovation expenditure and relative sales and its square. For more details on how

these moments are calculated in the model, see Appendix 3.6.4.

Table 2.1 summarizes the results of the calibration. Panel A reports the parameter values,

while Panel B reports both the model-implied moments and the empirical ones. Overall, the

model does well in matching the moments.

Figure 2.1 shows, on the left, the (targeted) inverted-U relationship between R&D spending

and market share in the stationary equilibrium of the calibrated model; on the right, it shows

that competition is positively related to overall industry R&D spending. In both panels, the

size of each circle is proportional to its frequency in the stationary equilibrium.

3.3.2 Fiscal Policy Effects: the Role of Market Structure Endogene-

ity

A sufficient statistic to study the effect of a change in either taxes on consumption or labor is

given by τ = (1 − τL)/(1 + τC) − 1; therefore, we will refer as fiscal policy as changing τ . To
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Table 2.1: Parameter values and targeted moments

A. Parameters

Parameter Description Value

ρ Discount rate 0.0400
σ Elasticity of substitution between superstars and fringe 9.7139

ln
(
A1,i,t

Af,i,t

)
Gap between leader and fringe 0.6045

γ Consumption-Leisure parameter 0.2306
lnλ Innovation step-size 0.0826
Z Incumbents’ innovation scale parameter 0.8033
ψ Incumbents’ innovation convexity parameter 0.4574
Zf Small firms’ innovation scale parameter 0.1651
ψf Small firms’ innovation convexity parameter 0.5393
Ze Entrants’ innovation scale parameter 0.3638
δ Small firms’ exit rate 0.0531
f fixed cost 0.0150
α Decreasing returns production 0.9000

B. Moments

Moment Data Model

Average of log(Markup) 0.39 0.4023
Variance of log(Markup) 0.25 0.2503

Employment rate 0.75 0.7500

Labor share 0.65 0.6922

Growth rate 0.93% 0.9283%

R&D share 6% 5.9724%

Entry rate 5.31% 5.31%

β1 (regression innovation, relative sales) 1.66 1.6612

Top point (regression innovation, relative sales) 0.3673 0.2810

Fixed cost as share of costs 0.1030 0.1030

Notes. Panel A reports the parameter values. Panel B reports the simulated and empirical
moments. Details on how these moments are computed can be found in the Appendix 3.6.4

examine the role of market structure endogeneity in the response of the economy to fiscal policy,

we compare the effects of increasing τ from 0 to τ0 = 0.0301, where τ0 is the tax that achieves

a tax revenue equivalent to 5% of GDP,10 in the baseline model, as well as in a counterfactual

economy where market structure is exogenous. In particular, to obtain this counterfactual, we

10That is, assuming τC = τL = τ0, then τ0wL+ τ0E = 0.05Y .
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fix: (i) the stationary distribution, {µ(θ)}θ∈Θ; (ii) the endogenous exit decisions of superstars,

{N̂θ}θ∈Θ; and (iii) the mass of firms in the fringe, m.

Table 2.2 presents the results of this experiment. We see that the effect on growth would be

10% more muted if the role of endogenous market structure were neglect. The increase in τ

leads to a reduction in labor supply, which in turn reduces market size. This lowers profitability,

discouraging innovation by superstars as well as innovation to become a superstar or entering

the fringe. As a result, both the number of superstars and the mass of the fringe decline.

As shown in Figure 2.1, in the calibrated model, more competitive industries are positively

associated with innovation intensity. Thus, these changes in market structure—toward less

competitive industries—amplify the negative effect of an increase in τ on growth. Finally,

note that the effect on both research by the fringe and by entrepreneurs is more muted in the

baseline than in the counterfactual. As said above, the increase in τ decreases the incentives

to innovate both for small firms and entrepreneurs (this is true both in the baseline and the

counterfactual); however, in the baseline, this leads to a shift towards industries with fewer

superstars and smaller fringe, and in industries with fewer firms the incentives to enter are

larger, which mitigates the effect on hf and he in the baseline.

Table 2.2: Effects of Fiscal Policy with Endogenous vs. Exogenous Market Structure

∆ g ∆
∑
θ,j

µ(θ)sj,θMj,θ ∆m ∆
∑
θ

µ(θ)Nθ ∆
∑
θ

µ(θ)hf,θ ∆he

Baseline -0.0045 0.0002 -0.0039 -0.0011 -0.0000 -0.0002
Exogenous Market structure -0.0040 0 0 0 -0.0001 -0.0003

Notes. We compare the effects of increasing τ (where τ = (1− τL)/(1 + τC)− 1) from 0 to
0.0301 under the baseline economy, where market structure adjusts endogenously, with a
counterfactual scenario in which market structure remains fixed.

3.3.3 Policy complementarity

Here, we examine whether there is complementarity between fiscal and competition policies.

For competition policy, we consider, on the one hand, subsidies to innovation by small firms

aiming to become superstars, τfwhf,θ, and, on the other hand, subsidies to entrepreneurs for

creating new small firms, τewhe. To assess the complementarity between policies, we analyze

how the effect of an increase in taxes, τ , from 0 to τ0, changes when we introduce one of the

following competition policies: (i) a subsidy to innovation by small firms, τf = τf,0; (ii) a sub-
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sidy to entrepreneurs, τe = τe,0; or (iii) both a subsidy to small firms and to entrepreneurs,

τf = τe = τf,1. In particular, as in the previous section, τ0, τf,0, τe,0, and τf,1 are calibrated so

that, when implemented individually, they imply tax revenue (or public spending) equivalent

to 5% of GDP.

Table 2.3 presents the effects of fiscal and competition policies on key aggregates when im-

plemented separately and in combination. Focusing on the growth rate, we observe that

both types of subsidies—to innovation by small firms and to entrepreneurs—amplify the ef-

fect of fiscal policy. For instance, the increase in τ causes the growth rate to decline by 0.0064

(= 0.2514 − 0.2578) when both subsidies are in place, compared to a decline of 0.0045 when

no other policy is implemented. Similarly, we find that the effect of fiscal policy on the mass

of the fringe is amplified particularly in the presence of a subsidy to entrepreneurs, while the

effect on the number of superstars is amplified especially when there is a subsidy to small firms

aiming to become superstars. Finally, note that a subsidy to innovation by small firms actually

discourages entrepreneurs from creating new firms, thereby reducing the mass of the fringe.

Although entrepreneurs get some gains from the subsidy, as they internalize that becoming a

superstar is easier, these gains are dominated by the negative effect on their value resulting

from the increase in the number of superstars, which reduces the profits of firms in the fringe

as well as those of a prospective new superstar.

Figure 2.2 shows visually the same result that the effect of fiscal policy is amplified (i.e. steeper

slope) in the presence of competition policies that promote entry.

Table 2.3: Policy Complementarity

∆ g ∆
∑
θ,j

µ(θ)sj,θMj,θ ∆m ∆
∑
θ

µ(θ)Nθ ∆
∑
θ

µ(θ)hf,θ ∆he

τ = τ0 -0.0045 0.0002 -0.0039 -0.0011 -0.0000 -0.0002
τf = τf,0 0.3221 -0.0282 -0.0775 0.8576 0.0562 -0.0032
+ τ = τ0 0.3159 -0.0279 -0.0808 0.8532 0.0555 -0.0033

τe = τe,0 0.0374 -0.0430 0.9227 0.1788 0.0013 0.0574
+ τ = τ0 0.0324 -0.0428 0.9152 0.1770 0.0012 0.0568

τf = τe = τf,1 0.2578 -0.0493 0.6228 0.7172 0.0222 0.0348
+ τ = τ0 0.2514 -0.0490 0.6167 0.7130 0.0219 0.0344

Notes. We compare the effects of different tax structures individually and in combination
with τ = τ0, where τ = (1− τL)/(1 + τC)− 1, and τ0 = 0.0301, τf,0 = −0.8165, τe,0 = −0.7131,
and τf,1 = −0.6393.

81



Figure 2.2: Comparing Fiscal Policy Effects Under Entry Subsidies and Taxes

Notes. This figure shows the changes (relative to the case τ = 0) in growth (measured in
percentage points), sales-weighted average markup, mass of fringe firms, and the number of
superstar firms, for five equally spaced values of the effective tax rate, from τ = −0.1 to
τ = 0.1. The blue curve represents a subsidy to entry (τf = τe = −0.6), while the orange curve
represents a tax on entry (τf = τe = 0.6).

3.4 Conclusion

This paper develops a step-by-step growth model with endogenous market structure to study

the role of competition in shaping the effects of fiscal policy on long-run growth, and the

complementarities between fiscal and competition policies. We find that the market structure

response amplifies the effect of fiscal policy.

In future work, we plan to incorporate government expenditure and debt into the model to

explore fiscal consolidation, as outlined in the introduction. Additionally, we will explore tran-

sitional dynamics, which will help to capture the adjustment process toward the stationary

equilibrium.
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3.6 Appendix

3.6.1 Preferences with taxes (on consumption and leisure)

U = max
{cj,it,at+1,Lt}

∫ ∞

0
e−ρt [lnCt + γ ln(1− Lt)] dt

s.t. ȧt = rtat + (1− τL)wtLt − (1 + τc)PtCt + TRt

lnCt =

∫ 1

0
lnCi,tdi , Ci,t =

C σ−1
σ

f,i,t +

ni,t∑
j=1

c
σ−1
σ

j,i,t

 σ
σ−1

, σ > 1

Writing the present-value Hamiltonian, the optimal solution of this problem is given by the

optimality conditions:

[cj,i,t] :

[
e−ρt

1

Ct
− µt(1 + τc)Pt

]
∂Ct
∂cj,i,t

= 0 =⇒ µt = e−ρt
1

(1 + τc)Et

[Cf,i,t] : e−ρt C−1
i,t C

1
σ
i,tC

− 1
σ

f,i,t − µt(1 + τc)Pf,i,t

[at] : −µ̇t = µtrt =⇒ Ėt
Et

= rt − ρ

[Lt] : e
−ρt γ

1− Lt
= µt(1− τL)wt =⇒ γ

1− Lt
=

(1− τL)

(1 + τc)

wt
Et

The condition of cj,i,t can also be written as:

[cj,i,t] :
[
e−ρt C−1

i,t − µt(1 + τc)Pi,t
] ∂Ci,t
∂cj,i,t

= 0

which substituting for µt = e−ρt 1
(1+τc)CtPt

implies:

Et = PtCt = Ci,tPi,t

Plugging into Ct: lnCt = lnCt + lnPt −
∫ 1

0
lnPi,tdi, so: lnPt =

∫ 1

0
lnPi,tdi.

Finally, the condition of cj,i,t can be written as:

[cj,i,t] : e−ρt C−1
i,t C

1
σ
i,tc

− 1
σ

j,i,t − µt(1 + τc)pj,i,t = 0

which substituting for µt = e−ρt 1
(1+τc)CtPt

, and PtCt = Ci,tPi,t, we have:

C
1
σ
i,tc

− 1
σ

j,i,t =
pj,i,t
Pi,t

=⇒ cj,i,t = Ci,t

(
Pi,t
pj,i,t

)σ
Analogously, we get Cf,i,t = Ci,t

(
Pi,t
Pf,i,t

)σ
. And plugging it into Ci,t:

Ci,t = Ci,tP
σ
i,t

P 1−σ
f,i,t +

ni,t∑
j=1

p1−σj,i,t

 σ
σ−1

=⇒ Pi,t =

P 1−σ
f,i,t +

ni,t∑
j=1

p1−σj,i,t

 1
1−σ

with Pf,i,t = pf,i,t because each small firm in the same industry produces the same good.11

11With monopolistic competition, we have: Pf,i,t =
(∫mt

0
p1−σf,i,t

) 1
1−σ

= m
− 1

σ−1

t
σ
σ−1

wt

A1,i,tλ
−af

.
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Market shares: Letting sj,i,t =
pj,i,tyj,i,t
Pi,tYi,t

, using yj,i,t = Yi,t

(
Pi,t
pj,i,t

)σ
, and the definition of Yi,t,

we have:

sj,i,t =

(
yj,i,t
Yi,t

)1− 1
σ

=

(Yf,i,t
yj,i,t

)σ−1
σ

+

ni,t∑
j′=1

(
yj′,i,t
yj,i,t

)σ−1
σ

−1

3.6.2 Production Firms

3.6.2.1 Quantities and profits as function of shares and markups

Given that yj,i = Aj,iℓ
α
j,i, then ℓj,i =

(
yj,i
Aj,i

) 1
α
; so, marginal cost equals MgCj,i =

w
α

ℓj,i
yj,i

= w
α

ℓ1−αj,i

Aj,i
.

On the other hand, Mj,i =
pj,i

MgCj,i
=

pj,iyj,iα

ℓj,iw
=⇒ ℓj,i = α

sj,i
Mj,i

E
w
So:

yj,i = Aj,i

(
sj,i
Mj,i

E

w
α

)α

Analogously, for the fringe, since each small firm sets price equal to marginal cost (i.e. pf,i =

w
α

ℓf,i
yf,i

= w
α

ℓf,i
Yf,i

mi, since by symmetry we have Yf,i = miyf,i); so, isolating ℓf,i from the price

condition, we have: ℓf,i = α
sf,i
mi

E
w
, where sf,i =

pf,iYf,i
E

; so:

Yf,i = miyf,i = miAf,iℓ
α
f,i = Af,im

1−α
i

(
αsf,i

E

w

)α

For profits:

πj,i = Esj,i − wℓj,i = Esj,i − Eα
sj,i
Mj,i

= E(1− αM−1
j,i )sj,i

And for a small firm in the fringe:

πf,i = pf,iyf,i − wℓf,i = E
sf,i
mi

− wαM−1
f,i

sf,i
mi

= E(1− α)
sf,i
mi

3.6.2.2 Cournot Competition

max
yj,i,t

πj,i,t = Esj,i −
w

A
1
α
j,i

y
1
α
j,i

s.t. pj,i,tyj,i,t = Etsj,i,t, sj,i,t =

[(
Yf,i,t
yj,i,t

)σ−1
σ

+

ni,t∑
j′=1

(
yj′,i,t
yj,i,t

)σ−1
σ

]−1

The derivative of the market share sj,i,t with respect to its own quantity yj,i,t is:
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∂sj,i,t
∂yj,i,t

=
σ − 1

σ
s2j,i,t

[(
Yf,i,t
yj,i,t

)σ−1
σ 1

yj,i,t
+
∑
k ̸=j

(
yk,i,t
yj,i,t

)σ−1
σ 1

yj,i,t

]

=
σ − 1

σ

s2j,i,t
yj,i,t

[(
Yf,i,t
yj,i,t

)σ−1
σ

+

ni,t∑
k=1

(
yk,i,t
yj,i,t

)σ−1
σ

− 1

]
=
σ − 1

σ

sj,i,t
yj,i,t

[1− sj,i,t]

So, the FOC is

∂πj,i,t
∂yj,i,t

= E
∂sj,i,t
∂yj,i,t

− 1

α

w

A
1
α
j,i,t

y
1−α
α

j,i,t = E
σ − 1

σ

sj,i,t
yj,i,t

[1− sj,i,t]−
pj,i,t
Mj,i,t

= 0

So, given that sj,i,t =
pj,i,tyj,i,t

E
, the optimal markup is

Mj,i,t =
σ

σ − 1
[1− sj,i,t]

−1

3.6.2.3 Algorithm static solver Matlab:

We start with a guess of {sj,i}, sf,i. With these, compute the optimal markups {Mj,i} (Mf,i =

1) using 3.12. With markups and shares, we can compute labor relative to one firm in the fringe

ℓfj,i =
ℓj,i
ℓf,i

= mi
sj,i
sf,i

1
Mj,i

. Then, the quantities relative to the fringe are: yfj,i =
yj,i
yf,i

=
Aj,i
Af,i

(ℓfj,i)
α

mi
.

Finally, we can compute the shares (and iterate):

sj,i =

( 1

yfj,i

)σ−1
σ

+

Ni∑
j′=1

(
yfj′,i

yfj,i

)σ−1
σ

−1

3.6.2.4 Derivation of the HJB equation

Let V S
j,θ be the value of firm j conditional on all firms of industry state θ staying, and Vj,θ′ be

the expected value of firm j in industry state θ′ (it takes into account the exit strategy of firms

in θ′). That is, the Vj,θ’s can be computed knowing V S
j,θ’s and the exit strategies (following the

expression in the main text). The V S
j,θ’s satisfy:

V Sj,θ,t = (πjθ,t′ − wt′hj,θ,t′)∆t+ e−
∫ t+∆t
t

rudu

∑
θ′ ̸=θ

P∆t(θ → θ′)Vj,θ′,t+∆t + P∆t(θ → θ)V Sj,θ,t+∆t

 ,

where t′ ∈ (t, t+∆t) and P∆t(θ → θ′) the probability of moving from state θ to θ′ in the time

interval ∆t.

V Sj,θ,t

(
1− e−

∫ t+∆t
t

rudu
)
= (πj,θ,t′ − wt′hj,θ,t′)∆t

+ e−
∫ t+∆t
t

rudu

∑
θ′ ̸=θ

P∆t(θ → θ′)Vj,θ′,t+∆t + P∆t(θ → θ)V Sj,θ,t+∆t − V Sj,θ,t

 .

For the left-hand side, note that the first order Taylor expansion gives us 1 − e−
∫ t+∆t
t rudu =

rt+∆t∆t. Then, dividing by ∆t and making ∆ → 0:
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rtV
S
j,θ,t = πj,θ,t′ − wt′hj,θ,t′ + lim

∆t→0

∑
θ′ ̸=θ P∆t(θ → θ′)Vj,θ′,t+∆t + P∆t(θ → θ)V Sj,θ,t+∆t − V Sj,θ,t

∆t
.

Let’s focus on the limit.

lim
∆t→0

∑
θ′ ̸=θ P∆t(θ → θ′)Vj,θ′,t+∆t + P∆t(θ → θ)V Sj,θ,t+∆t − V Sj,θ,t

∆t

= lim
∆t→0

∑
θ′ ̸=θ Vj,θ′,t+∆t (P∆t(θ → θ′)− P0(θ → θ′)) + V Sj,θ,t+∆t(P∆t(θ → θ)− P0(θ → θ)) + P0(θ → θ)

(
Vj,θ,t+∆t − V Sj,θ,t

)
∆t

=
∑
θ′ ̸=θ

V Ej,θ′,t
dP0(θ → θ′)

dt
+ V Sj,θ,t

dP0(θ → θ)

dt
+ V̇ Sj,θ′,t,

where for the first equality I have used that P0(θ → θ′) = 0 and P0(θ → θ) = 1, and for the

second equality I have used that if all firms in θ decided to stay at t, then they will also stay

at t+∆t if nothing has changed, i.e. lim
∆t→0

Vj,θ,t+∆t = V S
j,θ,t.

Now, focus on the terms dP0(θ→θ′)
dt

. Suppose the J firms of the industry innovate k1, . . . , kJ ∈ NJ

steps respectively. Then, the probability this happens in the interval ∆t of time is

P∆t(k1, . . . , kJ) =

J∏
j=1

e−
∫ t+∆t
t

ρj,i,udu

(∫ t+∆t

t
ρj,i,udu

)kj
kj !

.

And the derivative with respect to ∆t is, making ∆t→ 0:

dP∆t(k1, . . . , kJ)

d∆t
= 0 +

∑
{j|kj=1}

ρj,i,t
∏
j′ ̸=j

0kj′

kj′ !
+

∑
{j|kj=0}

(−ρj,i,t)
∏
j′ ̸=j

0kj′

kj′ !
.

So, for this derivative to be different than 0, it must be either no firm innovates, kj = 0 for all

j:

dP∆t(0, . . . , 0)

d∆t
= −

J∑
j=1

ρj,i,t,

or only one firm j innovates (note that here I am not distinguishing between incumbents and

entrants):

dP∆t(0, . . . , 1, . . . , 0)

d∆t
= ρj,i,t.

I denote by θ′(θ, j) the state we obtain when incumbent j achieves an innovation, and by θ′(θ, f)

the state we obtain when a small firm successfully becomes a superstar. So, the previous

derivatives become:

∑
θ′ ̸=θ

Vj,θ′,t
dP0(θ → θ′)

dt
+ V Sj,θ,t

dP0(θ → θ)

dt
+ V̇ Sj,θ′,t =

Nθ∑
k=1

ρk,θ,t

(
Vj,θ′(θ,k),t − V Sj,θ,t

)
+ ρe,θ,t

(
Vj,θ′(θ,e),t − V Sj,θ,t

)
+ V̇ Sj,θ,t

Finally, using the Euler equation rt = ρ+ Ėt
Et
, we get the HJB equation:

(
ρ+

Ėt
Et

−
V̇ Sj,θ,t
V Sj,θ,t

)
V Sj,θ,t = πj,θ,t − wthj,θ,t +

Nθ∑
k=1

ρk,θ,t

(
Vj,θ′(θ,k),t − V Sj,θ,t

)
+ ρe,θ,t

(
Vj,θ′(θ,e),t − V Sj,θ,t

)

and in a stationary equilibrium Ėt
Et

=
V̇ Sj,θ,t
V Sj,θ,t
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3.6.3 Stationary distribution

Let P∆t(θ, θ
′) be the probability of transiting from θ to θ′ in the lapse of time ∆t (before exit

movements), and G(θ, θ′) the probability that exit movements turn θ into θ′. Then, from the

condition that in the stationary distribution it must be µt+∆t(θ) = µt(θ) = µ(θ), we have:

0 =
µt+∆t(θ)− µt(θ)

∆t
=

∑
θ′∈Θ

µt(θ
′)
∑

θ′′ ̸=θ′
P∆t(θ

′, θ′′)G(θ′′, θ) + µt(θ)P∆t(θ, θ)− µt(θ)

∆t

=
∑
θ′∈Θ

µt(θ
′)
∑
θ′′ ̸=θ′

P∆t(θ
′, θ′′)− 0

∆t
G(θ′′, θ) + µt(θ)

P∆t(θ, θ)− 1

∆t

And so, since P0(θ
′, θ) = 0 when θ′ ̸= θ, and P0(θ, θ) = 1, when ∆t→ 0 we have the expression

of the main text.

Here we can see why we needed the assumption that firms only decide to exit when a change

of state occurs: if there were some state with µt(θ) > 0 and G(θ, θ) < 1, then lim
dt→0+

µt+dt(θ) =

G(θ, θ)µt(θ) < µt(θ), and so µt+∆t(θ)−µt(θ)
∆t

would not be well-defined. That is, in such case, µt(θ)

would never be strictly positive for a positive interval of time, and so it would be just as if we

just allowed firms to stay or exit with probability 1, and so in cases where in the baseline model

we have µ(θ) > 0 with G(θ, θ) < 1, in this alternative setting we wouldn’t have a stationary

equilibrium.

3.6.4 Estimation

First, we present the details on how we compute the different moments in the model:

1. m(1): Sales-weighted Average of log markups: m(1) =
∑
X∈Ω

µ(X)
JX∑
j=0

sj,X lnMj,X .

2. m(2): Sales-weighted variance of log markups:

m(2) =
∑
X∈Ω

µ(X)
JX∑
j=0

sj,X (lnMj,X)
2 −m(1)2

3. m(3): Sales-weighted Average share of fixed costs:

m(3) =
∑
X∈Ω

µ(X)

(
sf,X

hf,X
hf,X+Lf,X

+
JX∑
j=1

sj,X
f+hj,X

f+hj,X+Lj,X

)
4. m(4): Labor share: m(4) = wL

Y
= wL

E+whe

5. m(5): Growth rate: m(5) = 100
∑
X∈Ω

µ(X)
∑

j∈LeaderX
ρj,X lnλ, with ρj,X = Zhψj,X

6. m(6): R&D share: m(6) = 100
∑
X∈Ω

µ(X)
JX∑
j=0

whj,X
sj,X

1
Jh,X

, where Jh,X =
∑JX

j=0 1hj,X>0 is the

number of firms with positive research.
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7. m(7),m(8): Linear coefficient from the following regression, and top point:

Define (i) yj,X = whj,X − 1
JX

JX∑
j′=1

whj′,X , (ii) x1,j,X = sj,X − 1
JX

JX∑
j′=1

sj′,X , and (iii) x2,j,X =

s2j,X − 1
JX

JX∑
j′=1

s2j′,X , which capture already the industry fixed effects; and regress yj,X =

β1x1,j,X + β2x2,j,X + uj,X

Define m(7) = β1 and m(8) = − β1
2β2

Second, we discuss which moments are mot directly related to each parameter. First, the elas-

ticity of substitution, σ, and the relative productivity of small firms, Af , help match the average

markup and the labour share. The link of these moments with the elasticity of substitution

is straightforward, as σ enters directly into the expression of the markup, and markups are

inversely related to labour demand. On the other hand, a higher Af implies a reallocation

of market share towards the fringe, which affects both moments directly, as the fringe has no

profits and so a higher market share for the fringe decreases the average markup and increases

labour demand, and indirectly, via reducing the market power of superstars.

Second, we associate the scale and convexity parameters for both superstars and small firms,

as well as the step size innovation λ, to the growth rate, the R&D expenditure share, and, as

in Cavenaile et al. (2021), we also use the empirically observed inverted U-shape relationship

between market share and innovation. In particular, as they do, we require the linear and

quadratic coefficients of the following regression using the model data to be as close as possible

to the coefficients of the same regression using the empirical data.

R&Dexpj,i = α0,i + α1sj,i + α2s
2
j,i + uj,i

where a0,i denotes the industry fixed effects, R&Dexpj,i is the R&D expenditure of firm j in

industry i, and sj,i is the industry market share of firm j in industry i.

An increase in the innovation step-size, λ, directly increases growth and innovation incentives

(because it increases the magnitude of a successful innovation). In addition, keeping everything

else fixed, an increase in the step-size increases the dispersion of productivities among super-

stars, and so, the dispersion of markups.

Finally, given all other parameters, we set the innovation scale parameter of entrants, Ze, to

normalise the mass of firms in the fringe to 1 (that is, from the definition of ρe and the stationary
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condition ρe = mδ, we set Ze = δh
− 1

2
e ).

3.6.5 Aggregate Production Function and Growth

Remember that yj,i,t = Aj,i,t

(
sj,θ
Mj,θ

E
w
α
)α

, where A1,i,t is the leader’s productivity and Âj,i,t =
Aj,i,t
A1,i,t

. Similarly, for the fringe, since the markup in small firms equals 1 and their productivity

is Af,i,t = A1,i,tζ:

Yf,i,t = A1,i,tζm
1−α

(
sf,θ

E

w
α

)α
Then, the aggregate production function writes

lnYt =
σ

σ − 1

∫ 1

0

ln

(A1,i,tζm
1−α

(
sf,i,t

Et
wt
α

)α)σ−1
σ

+

Ni,t∑
j=1

(
Âj,i,tA1,i,t

(
sj,i,t
Mj,i,t

Et
wt
α

)α)σ−1
σ

 di

which can be rewritten as:

lnYt = α ln

(
α
Et
wt

)
+

∫ 1

0

lnA1,i,tdi+
σ

σ − 1

∫ 1

0

ln

(ζm1−αsαf,i,t
)σ−1

σ +

Ni,t∑
j=1

(
Âj,i,t

(
sj,i,t
Mj,i,t

)α)σ−1
σ

 di

Finally, note that sj,i,t, Mj,i,t and Âj,i,t are fully determined by knowing θ; so:

lnYt = α ln

(
α
Et
wt

)
+

∫ 1

0

lnA1,i,tdi+
σ

σ − 1

∑
θ∈Θ

µt(θ) ln

(ζm1−αsαf,θ
)σ−1

σ +

Nθ∑
j=1

(
Âj,θ

(
sj,θ
Mj,θ

)α)σ−1
σ


In a stationary equilibrium, µt(θ) = µ(θ), as well as Et

wt
is constant; and so in the stationary

equilibrium, all the growth comes from the second term, namely, the geometric mean of the

industry leaders’ productivity level. In particular, the growth rate in the stationary distribution

is:

g =
Ẏt
Yt

=

∫ 1

0

Ȧ1,i,t

Aj,i,t
di =

∑
θ

µ(θ)ρ1,θ lnλ

3.6.6 Summary of the code to solve the model

In this section, we summarise the code used to solve for the stationary equilibrium of the model.

In this stationary equilibrium, the relative wage is constant, and the state space of the firm

problem consists on all the possible industry states. The industry state consists on a vector

telling us the number of firms and their productivity gaps. More explicitly, letting N̄ be the

maximum number of superstars, n̄ be the maximum gap relative to the industry leader allowed,

ordering firms from higher to lower productivity and letting θ = (θ1, . . . , θNθ−1) be the vector

of consecutive productivity gaps of an industry with N firms (that is, θi = ln
(

AR
AR+1

)
1

lnλ
); then
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the industry state space is{
θ = (θ1, . . . , θN−1) | N ∈ {1, . . . , N̄}, θ1, . . . , θN−1 ∈ N,

∑n−1
i=1 θi ≤ n̄

}
Static price-setting problem: The price-setting problem is solved as follows for each industry

state and obtain πj,θ.

Let ŷj,θ =
yj,θ
Yf,θ

be the quantity produced by superstar j relative to the quantity of the fringe,

and θ = (θ1, . . . , θNθ−1) be the vector of consecutive productivity gaps of the superstars in the

industry and θf ∈ R the exogenous gap of the fringe to the industry leader. Then, solving

the problem involves solving the following system of Nθ equations in the Nθ unknowns ŷj,θ,

j = 1, . . . , N :

ŷj,θ =
sj
sf
M−1

j,θλ
θf−

∑j−1
i=1 θi,θ , j = 1, . . . , Nθ, with

Mj,θ =
[
η−1
η

− σ−1
σ
sj,θ − s̃j,θ

(
η−σ
ησ

)]−1

, s̃j,θ =

[∑Nθ
j′=1

(
ŷj′,θ
ŷj,θ

) η−1
η

]−1

and

sj,θ = s̃j,θ

[
s̃
η(σ−1)
(η−1)σ

j,θ ŷ
−σ−1

σ
j,θ + 1

]−1

.

Dynamic problem: For the dynamic problem, let Nθ be the number of firms of industry

state θ, and Sθ ∈ [0, 1] be the probability that firm j = Nθ decides to stay. If Sθ = 0, then the

least productive superstar exits with probability 1, so we never observe state θ (and then we

need to check the truncated state at Nθ − 1).

To solve, I follow these steps:

1. Start with some guesses for the relative wage w
E
and for the mass of small firms m̂f , the

amount of researchers ĥj,θ, ĥf,θ, and the exit decisions N̂θ, for all θ ∈ Θ.

2. Given the relative wage and the exit decisions, solve the firm problem:

(a) Given the guesses for hj,θ, hf,θ and mf , calculate the arrival rates ρj,θ = Zhψj,θ and

ρ̂f,θ = mfZfh
ψf
f,θ.

(b) Given these arrival rates, solve the system of linear equations on V̂ S
j,θ, θ ∈ Θ, implied

by the HJB equation of the superstars problem. Here, for the different possible

innovators, we need to find the state we would obtain if that innovation happens,

taking into account the expectation of firms exiting in the new state.

(c) Given the guess of the value function, compute hj,θ and hf,θ according to (3.13) and

(3.14), respectively.
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(d) Update the innovation choices and repeat from (a) until convergence.

3. Update the exit decision. For each industry state θ = (θ1, . . . , θNθ−1), check whether

V̂ S
Nθ,θ

< 0. If so, then reduce Sθ (at most up to 0). Otherwise, if V̂ S
Nθ,θ

> ϵ, then increase

Sθ (at most up to 1), where ϵ > 0 is some tolerance allowed because, given numerical

error, the value will very rarely be exactly 0.

If there have not been any updates, go to the next step; otherwise, repeat step 2.

4. Given the optimal research choices, compute the infinitesimal transition matrix and solve

for the associated stationary distribution, as described in section 3.2.2.1.

5. Given the value function for superstars and the arrival rates implied by the research

choices of superstars and small firms obtained before, solve the system of linear equations

on vfθ , θ ∈ Θ, implied by the HJB equation of the small firms problem.

6. Given the solutions µθ and vfθ of the previous steps, compute the researchers employed

by entrants he using (3.15). And update the guess of the mass of small firms (in the

stationary equilibrium, it must be Zeh
1
2
e

δ
= mf ). In the baseline, the mass of small firms

is normalised to 1, so when calibrating, instead of updating mf , at this point I update

the parameter Ze so that entry equals the exit rate. Repeat this step until convergence

of mf (or Ze).

7. Given the guess of the stationary distribution and research choices, compute aggregate

labour used in production and research (by superstars, small firms, and entrants), and

solve for the relative wage from the labour market clearing condition 3.17. If the difference

between this relative wage and the previous guess is small enough, then we are done;

otherwise, go back to step 3.
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Chapter 4

New sufficient conditions for

Comparative statics using the Farkas’

Lemma

4.1 Introduction

When working with models, it is natural to ask how a variable reacts to a change in a pa-

rameter or a state variable, and, in particular, in which direction. In other words, one would

like to carry out comparative statics. However, the conditions required to apply the available

comparative statics results are rarely satisfied—except in very stylized models. So one must

settle for numerical analysis (that is, studying the change of the variable in particular points

of the parameter and/or state spaces).

This paper develops a novel approach to do comparative statics that builds on a classical result

from linear algebra, which, as we argue, has been largely underutilized in economics: the Farkas’

Lemma.1 Farkas’ Lemma—originally proved by Farkas (1902)—essentially states that exactly

one of the following holds: either (1) a linear system (the primal system) has a non-negative

solution, or (2) there exists a vector that satisfies a related dual system of linear inequalities.

The power of Farkas’ Lemma is that, while it may be hard to prove that (2) does not hold,

it may be very easy to prove that (2) holds; in which case we know that (1) does not. Then,

1Some examples where Farkas’ Lemma has been applied in economics include Vohra (2006), Belhaj and
Deröıan (2012), or Gollier and Kimball (2018).
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with some modifications, one can utilize this to establish sufficient conditions for the sign of

a specific element of the solution vector of (1); that is, the sign of the comparative static. In

addition, we show that this is not only useful for sign analysis, but also for deriving bounds on

the value of the comparative static itself. We show that the bounds in Norris (2025) can also

be obtained—and even improved—with the approach presented in this paper.

The appeal of this approach using Farkas’ Lemma lies in the intuitiveness of the strategy it fol-

lows and its generality. That is, on the one hand, the logic behind the method is easy to grasp;

and on the other hand, although the sufficient conditions provided rely on specific conditions,

the method itself does not. It is therefore a tool that is always available and worth considering

when facing any comparative statics problem.

The paper is organized as follows: Section 4.2 presents the theoretical framework and provides

sufficient conditions for comparative statics under various assumptions. It also discusses strate-

gies for applying the method when none of these conditions are met. Section 4.3 illustrates

the approach with an application to an oligopoly model with differentiated goods and CES

preferences. Finally, Section 4.4 concludes.

Literature. This paper contributes to a long literature that has sought to determine com-

parative statics. Norris (2025) uses a result in the linear algebra literature (Ostrowski (1952))

that bounds the value of the elements in the inverse of a strictly diagonally dominant matrix,

without inverting the matrix. Their focus is on the bounds of the comparative static, but these

are also informative of the sign when both bounds have the same sign. Relative to Norris

(2025), the approach presented here is more general, in the sense that it can reproduce their

results and is not limited to systems that satisfy (or some transformation does) the diagonal

dominance condition.

A second strand of the literature, utilizing lattice theory (Topkis (1976), Milgrom and Roberts

(1990)), is referred to as monotone comparative statics (Vives (1990), Milgrom and Shannon

(1994), Villas-Boas (1997), Quah (2007), Barthel and Sabarwal (2018)), the foundations of

which are laid in Milgrom and Roberts (1990) Another group of papers have explored compar-

ative statics in aggregative games, that is, games in which each player’s payoff depends on the

own player action and an aggregate of the actions of the rest (Corchón (1994), Acemoglu and
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Jensen (2013)).

Regarding the application of comparative statics in oligopoly models with differentiated prod-

ucts under CES preferences, this paper is, to the best of my knowledge, the first to establish

the sign of the comparative statics on prices, quantities, and profits for all firms in response

to a shock. Dixit (1986) identifies the sign of comparative statics in an oligopoly model with

homogeneous products. Milgrom and Roberts (1990) and Norris (2025) establish uniqueness of

the equilibrium, and are able to establish the sign of comparative statics of all players only in

cases where the shock solely has a direct effect on a single firm.

4.2 Theory

4.2.1 Setting of interest and notation

Consider n variables uj, j ∈ J := {1, . . . , n}, and n conditions that determine jointly these

variables, {fi(u1, . . . , un; t) = 0}i∈J , where t is a parameter. Differentiating the conditions with

respect to t, we get the following linear system∑
j∈J

∂fi
∂uj

duj
dt

+
∂fi
∂t

= 0, ∀i ∈ J .

We are interested in how the variables react to a change in t; that is, we are interested in

xj :=
duj
dt
. In the following of this section, acknowledging that we face a linear system Ax = c,

we are going to define the n × n matrix A, with the element on row i and column j being

(A)i,j = ai,j :=
∂fi
∂uj

, ∀i, j ∈ J , and the n× 1 matrix c, with ci := −∂fi
∂t
, ∀i ∈ J .

4.2.2 Farkas’ Lemma and some corollaries

Theorem 1 (Farkas’ Lemma): Let A be a m × n matrix and c ∈ R
m. Exactly one of the

following is true:

1. Ax = c and x ≥ 0 for some x ∈ Rn.

2. ytA ≤ 0 and ytc > 0 for some y ∈ Rm.

Proof. See Appendix ??.
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Although the Farkas’ Lemma by itself only tells us whether all the elements of the vector of

unknowns x are non-negative, to allow for different combinations of signs one can consider the

following transformations of the original linear system:

Let K := {(k1, . . . , kn) : kj ∈ {0, 1}, j ∈ J } be the collection of multiindices associated to all

the possible combinations of signs of the n unknowns, and let K denote an element of K. Then,

the system Ax = c is satisfied if and only if the system AKxK = c is satisfied, with:

AK =



(−1)k1a1,1 · · · (−1)kna1,n

(−1)k1a2,1 · · · (−1)kna2,n
...

. . .
...

(−1)k1an,1 · · · (−1)knan,n


xK =



(−1)k1x1

(−1)k2x2
...

(−1)knxn


.

The power of Farkas’ lemma is in the fact that, while it may be very difficult to prove that

there does not exist y ∈ R
n such that condition 2 of Farkas’ Lemma is satisfied, it may be

relatively easy to find one y ∈ R
n that does satisfy such condition 2. This will be the main

strategy of this paper: if xj0 is hypothesized to be positive (resp. negative), we are going to

assume by contradiction that kj0 = 1 (resp. kj0 = 0) and search for vectors y ∈ Rn that satisfy

condition 2 of Farkas’ Lemma for K ∈ K1 (resp. K0), with Ks := {K ∈ K : kj0 = s}, s = 0, 1.

In the following, we are going to assume the following normalization:

Condition 1 The system Ax = c satisfies:

A =



1 a1,2 · · · a1,n

a2,1 1 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · 1


.

Note that assuming aj,j = 1 is without any loss of generality: (i) if aj,j < 0, then redefine

a′j,i = −aj,i, ∀i ∈ J , and c′j = −cj; and (ii) if aj,j > 0, but aj,j ̸= 1, then redefine a′i,j = a−1
j,j ai,j,

∀i ∈ J and x′j = aj,jxj, which preserves the sign.2

Definition 9 We are going to say that two systems Ax = c and A′x′ = c′ are:

1. Equivalent in signs, when sign(xi) = sign(x′i) for all i = 1, . . . , n.

2And if the interest is in the bounds on xj rather than the sign: if the bounds are x′j ∈ [l′j , u
′
j ], then

xj ∈ [a−1
j,j l

′
j , a

−1
j,j u

′
j ].
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2. Equivalent in xi, when they preserve the value of the i-th variable (i.e. xi = x′i).

Lemma 6 Any system Ax = c can be transformed (non-uniquely) into an equivalent in signs

one satisfying Condition 1.

Proof. See Appendix 4.6.2.

4.2.3 Comparative Statics: Sign

In this section, we use the previous strategy to find sufficient conditions for the sign of xj0

under different assumptions on A: in section 4.2.3.1 we assume A satisfies Condition 2 of

column diagonal dominance; in section 4.2.3.2, in addition to Condition 2, we assume the

off-diagonal elements of A are non-positive; in section 4.2.3.3, in contrast, we assume the off-

diagonal elements are non-negative; in section 4.2.3.4, we assume A satisfies row (instead of

column) diagonal dominance. Finally, we discuss some complementary strategies we can follow:

(i) a change of variable to get a system where we can use the main results, (ii) consider a reduced

system neglecting dispensable variables, (iii) if the sign of some variable is already known.

4.2.3.1 Proposition 1

One condition that proves useful to get some first set of sufficient conditions is the following one

of column diagonal dominance. The intuition is that the effect of a change in uj on condition fj

is always greater in absolute value than the sum of effects the change in uj causes to conditions

fi for i ∈ J \ {j}.

Condition 2 (Column diagonal dominance):
∑
i ̸=j

|ai,j| ≤ |aj,j| = aj,j = 1, ∀j ∈ J .

which is a bit less restrictive than the strict column diagonal dominance, which is the one used

in Norris (2025):3

Condition 3 (Strict column diagonal dominance):
∑
i ̸=j

|ai,j| < |aj,j| = aj,j = 1, ∀j ∈ J .

3This assumption has long been identified as useful in economics (McKenzie, 1960).
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We leave as a next step to check conditions that guarantee that A can be transformed into A′

satisfying column diagonal dominance using the operations defined in the Proof of Lemma 6

(i.e. row multiplication by a scalar, and column multiplication by a positive scalar). A first step

in this direction is given in Section 4.2.3.4 for a matrix that satisfies row diagonal dominance.

Proposition 5 If Condition 2 is satisfied, then a sufficient condition for sign(xj0) = sign(cj0)

is:

|cj0| >
∑

j∈J\{j0}

|y∗j ||cj|,

where |y∗j | is the unique limit of the decreasing sequence {|y(m)
j |}∞m=0, defined by |y(0)j | = 1 and

|y(m)
j | = |aj0,j|+

∑
k∈J\{j0,j}

|y(m−1)
k ||ak,j|.

Proof. See Appendix 4.6.2.

Corollary 2 If Condition 2 is satisfied, then a sufficient condition for sign(xj0) = sign(cj0)

is:

|cj0| >
∑

j∈J\{j0}

|ŷj||cj|,

where |ŷj| ∈ [y∗j , 1] for all j ∈ J \ {j0}.

If Condition 3 is satisfied, then a sufficient condition for sign(xj0) = sign(cj0) is:

|cj0| ≥
∑

j∈J\{j0}

|ŷj||cj|,

where |ŷj| ∈ [y∗j , 1] for all j ∈ J \ {j0} and |ŷj1||cj1| > |y∗j1||cj1 | for at least one j1 ∈ J \ {j0}.

Some examples of ŷ include:

1. |ŷj| = 1 for all j ∈ J \ {j0}.

2. (Theorem 1, Norris) |ŷj| = max
j1∈J\{j0}

Ac,j1 for all j ∈ J \ {j0}, where Ac,j :=
∑

k∈J\{j}
|ak,j|.

3. |ŷj| = H for all j ∈ J \ {j0} with H :=
max

j∈J\{j0}
|aj0,j |

1− max
j∈J\{j0}

∑
k∈J\{j0,j}

|ak,j |
.4

4. (Proposition 1, Norris) |ŷj| = Ac,j for all j ∈ J \ {j0}.

Proof. See Appendix 4.6.3.

4The least demanding condition of the form |cj0 | > H
∑

j∈J\{j0}
|cj | is achieved with H = H∗ :=

max
j∈J\{j0}

|aj0,j |
1−

∑
k∈J\{j0,j}

|ak,j | , as shown in Proposition 11.
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4.2.3.2 Proposition 2: Sufficient condition when ai,j ≤ 0 for all i ̸= j

Condition 4 The matrix A satisfies ai,j ≤ 0 for all i, j ∈ J with i ̸= j.

Proposition 6 If A satisfies Conditions 2 and 4, then:

1. If cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}
|y∗j ||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≥0}

|y∗j,0||cj|, then xj0 ≥ 0.

2. If −cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}
|y∗j ||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≤0}

|y∗j,0||cj|, then xj0 ≤ 0.

where |y∗j | is the limit of the sequence defined in Proposition 5, and |y∗j,0| is the unique limit of the

increasing sequence {|y(m)
j |}∞m=0, defined by |y(0)j,0 | = 0 and |y(m)

j,0 | = |aj0,j|+
∑

j1∈J\{j0,j}
|y(m−1)
j1,0

||ak,j|.

If A satisfies Condition 3, then |y∗j,0| = |y∗j |.

Proof. See Appendix 4.6.7.

The conditions implied by Milgrom and Roberts are direct from Proposition 6; in other words,

whenever the conditions to apply Milgrom and Roberts are satisfied, we can also apply Propo-

sition 6:

Corollary 3 (Milgrom and Roberts): If A satisfies Condition 2 and ai,j ≤ 0 for all i ̸= j and

cj ≥ 0 (resp. cj ≤ 0) for all j; then xj ≥ 0 (resp. xj ≤ 0) for all j.

Proof. Straightforward, since if c ≥ 0 (resp. c ≤ 0), then {j ̸= j0 : cj < 0} = ∅ (resp.

{j ̸= j0 : cj > 0} = ∅).

Corollary 4 If A satisfies Conditions 2 and 4, then:

1. If cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}
|ŷj||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≥0}

|ŷj,0||cj|, then xj0 ≥ 0.

2. If −cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}
|ŷj||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≤0}

|ŷj,0||cj|, then xj0 ≤ 0.

where |ŷj| ∈ [y∗j , 1], |ŷj,0| ∈ [0, y∗j,0] for all j ∈ J \ {j0}.

If, in addition, Condition 3 is satisfied and exist either (|ŷj1| − |y∗j1|)|cj1 | > 0 or (|ŷj1,0| −

|y∗j1|)|cj1| < 0 for some j1, j2 ∈ J \{j0}, then we can replace > for ≥ in the previous conditions.

Some examples of |ŷj|, |ŷj,0|, ∀j ∈ J \ {j0}, include (any combination of these |ŷj| and |ŷj,0|

work):
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• |ŷj| = 1

• |ŷj| = max
j1∈J\{j0}

Ac,j1

• |ŷj| = Ac,j

• |ŷj| = H as defined in Corollary 2.

• |ŷj,0| = 0

• |ŷj,0| = min
j1∈J\{j0}

|aj0,j1|

• |ŷj,0| = |aj0,j|

• |ŷj,0| = H1 :=
min

j∈J\{j0}
|aj0,j |

1− min
j∈J\{j0}

∑
k∈J\{j0,j}

|ak,j |
.

Proof. See Appendix 4.6.8.

4.2.3.3 Proposition 3: Sufficient condition when ai,j ≥ 0 for all i ̸= j

Here we are going to use the following condition, which intuitively tells us that the direct effect

of xj to condition fj0 dominates the indirect effects of xj to condition fj0 through its effect on

the other variables:

Condition 5 A satisfes that |aj0,j| ≥
∑

j1 /∈{j0,j}
|aj0,j1||aj1,j| for all j ∈ J \ {j0}.

Proposition 7 If A satisfies Conditions 2 and 5, then:

1. If cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}
|ȳj,1||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≤0}

|ȳj,0||cj|, then xj0 ≥ 0.

2. If −cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}
|ȳj,1||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≥0}

|ȳj,0||cj|, then xj0 ≤ 0.

where |ȳj,0|, |ȳj,1| are the unique limits of the increasing and decreasing, respectively, sequences

{|y(m)
j,0 |}∞m=0, {|y

(m)
j,1 |}∞m=0, defined by

|y(0)j,0 | = 0 , |y(m)
j,0 | = |aj0,j| −

∑
j1∈J\{j0,j}

|y(m−1)
j1,1

||aj1,j|,

|y(0)j,1 | = |aj0,j| , |y(m)
j,1 | = |aj0,j| −

∑
j1∈J\{j0,j}

|y(m−1)
j1,0

||aj1,j|.

If A satisfies Condition 3, then |ȳj,0| = |ȳj,1| = |ȳj|.

Proof. See Appendix 4.6.9.

Corollary 5 If A satisfies Conditions 2 and 5, then:

1. If cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}
|ŷj,1||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≤0}

|ŷj,0||cj|, then xj0 ≥ 0.
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2. If −cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}
|ŷj,1||cj| −

∑
{j∈J\{j0}:|aj0,j |cj≥0}

|ŷj,0||cj|, then xj0 ≤ 0.

where |ŷj,1| ∈ [ȳj,1, 1], |ŷj,0| ∈ [0, ȳj,0] for all j ∈ J \ {j0}.

If, in addition, Condition 3 is satisfied and exist either (|ŷj1,1| − |ȳj1,1|)|cj1| > 0 or (|ŷj1,0| −

|ȳj1,0|)|cj1| < 0 for some j1, j2 ∈ J \{j0}, then we can replace > for ≥ in the previous conditions.

An example is given by |ŷj,1| = |aj0,j|, |ŷj,0| = 0, ∀j ∈ J \ {j0}.

4.2.3.4 Row diagonal dominance

Condition 6 (Row diagonal dominance):
∑
i ̸=j

|aj,i| ≤ |aj,j| = aj,j = 1 for all j ∈ J .

Lemma 7 If A satisfies Condition 6 but not Condition 2 (i.e. ∃j ∈ J such that
∑

i∈J\{j}
|ai,j| >

1); then ∃j0 ∈ J such that
∑

i∈J\{j0}
|ai,j0 | < 1.

Proof. See Appendix 4.6.10.

An almost direct consequence of this lemma is the following result:

Proposition 8 Any matrix satisfying Condition 6 and minj Ac,j > 0 can be transformed (non-

uniquely) into an equivalent in signs one satisfying Condition 2. In addition, this can be done

multiplying the rows and columns by strictly positive scalars.

Proof. See Appendix 4.6.10.

Note that xj for j ∈ J0 := {j ∈ J : Ac,j = 0} is irrelevant for the other variables; so the

approach in this case would be to do the analysis on the reduced system with the variables xj,

∀j ∈ J \ J0, and then study the implications for xj, ∀j ∈ J0. Direct from the proof of this

Proposition, we have:

Corollary 6 If the system Ax = c satisfies Condition 6 with minj Ac,j > 0 but not Condition

2, a system equivalent in signs that do satisfy Condition 2 (and so we can potentially apply the

previous sufficient conditions) is given by A′x′ = c′, with:

For i ∈ J0: a′i,j = ai,j
Ac,i
Ac,j

, ∀j ∈ J0, a′i,j = ai,jAc,i, ∀j /∈ J0, c′i = ciAc,i, x′i = xiAc,i,

For i /∈ J0: a′i,j = ai,j
1

Ac,j
, ∀j ∈ J0, a′i,j = ai,j, ∀j /∈ J0, c′i = ci, x′i = xi.

Proof. Direct from the transformation used in the proof of Proposition 8.

This substantially expands the set of systems where we can do comparative statics relative to

the result with row diagonal dominance in Norris (2025), which is restricted to xj0 such that

cj = 0 for all j ∈ J \ {j0}.
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4.2.3.5 Transformations, System Reduction, and Known Signs

Transformation into a system equivalent in xj0 If we do the change of variable x =

x′ + z, where z is such that zj0 = 0; then the system Ax = c is equivalent in variable xj0 to

Ax′ = c′ = c − Az. Therefore, if we can apply any of the previous propositions to the system

Ax′ = c′ for the sign of x′j0 ; then we know the sign of xj0 .

Corollary 7 If A satisfies Condition 4 (i.e. off-diagonal elements are non-positive), and exists

some k ∈ J such that (i) sign(ck) = −sign(cj) for all j ∈ J \{k} and (ii) |ck| ≤ min
j∈J\{k}

{
|cj |
|aj,k|

}
;

then sign(xj) = sign(cj) for all j ∈ J \ {k}.

Proof. See Appendix 4.6.11.3.

The following result states that Condition 3 guarantees the existence of a change of variable

that achieves a system equivalent in xj0 to which we can apply Proposition 5.

Proposition 9 If A satisfies Condition 3, there exists z ∈ R
n such that making the change

of variable x = x∗ + z, we get a system Ax∗ = c∗ equivalent in xj0 to Ax = c such that

c∗ = (0, . . . , c∗j0 , . . . , 0)
t, and Proposition 5 tells us that sign(xj0) = sign(c∗j0). An explicit

expression of c∗j0 is given by:

c∗j0 = cj0 +
K∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

ajs,js+1cjk+1
.

Proof. See Appendix 4.6.11.4.

Some examples where the expression of c∗j0 simplifies considerably (the derivations are in Ap-

pendix 4.6.11.4):

Example 1 (Case n = 2):

c∗j0 = cj0 − aj0,j1c1.

□

Example 2 (Case n = 3):

c∗j0 = cj0 +
aj0,j2aj2,j1 − aj0,j1
1− aj1,j2aj2,j1

cj1 +
aj0,j1aj1,j2 − aj0,j2
1− aj2,j1aj1,j2

cj2 .
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□

Example 3 Suppose ai,j = a for all i ̸= j and aj,j = 1. To satisfy Condition 2, it must be

a ≤ (n− 2)−1. Then:

c∗j0 = cj0 −
∑

j1 /∈{j0}

acj1
1 + (n− 2)a

.

□

System Reduction: dispensable variables

Definition 10 We are going to say that xj for j ∈ I are dispensable for the sign of xj0 if

ak,j = 0 for all j ∈ I and k /∈ I.

We say they are dispensable because we can set yj = 0 for all j ∈ I and then the conditions

(ytA)j ≤ 0 for all j ∈ I are satisfied; and so it is sufficient to consider the system obtained

after deleting the rows and columns I.

Known signs Suppose we know that xj ≥ 0 for all j ∈ I+ and xj ≤ 0 for all j ∈ I−, but we

are uncertain about the sign of xj for all I. Then, it will be useful to define:

Definition 11 We are going to say that xj for j ∈ I are conditionally dispensable for the sign

of xj0 if, given sign(xj) for j ∈ I, we can find y, with yj = 0 for all j ∈ I, such that ytA ≤ 0

and ytc > 0.

4.2.4 Comparative Statics: Bounds

Although the purpose of this paper is to establish some sufficient conditions for the sign of

the comparative statics, the previous theory can also be used to establish bounds on the value

of the comparative statics. The way to proceed to find the upper (resp. lower) bound on xj0

implied by a given proposition of Section 4.2.3 is as follows: Consider the change of variable

x′j0 = xj0 − zj0 , which transforms the system Ax = c into Ax′ = c′ with c′j = cj − aj,j0zj0 ,

∀j ∈ J , and find the minimal (resp. maximal) zj0 such that the given proposition of Section

4.2.3 allows us to state that x′j0 ≤ 0 (resp. x′j0 ≥ 0).

For example, using Proposition 5, we obtain the following result. The subsequent corollary
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shows that the interval implied by these bounds is included in the interval implied by the

bounds in Norris (2025). To ease notation, we define:

Bj0(ŷ, i1, i2) :=

cj0 + (−1)i1
∑

j∈J\{j0}
|ŷj||cj|

1 + (−1)i2
∑

j∈J\{j0}
|ŷj||aj,j0|

.

Proposition 10 Using the sufficient condition of Proposition 5, we have the following bounds

on xj0, where y
∗
j is the limit defined in Proposition 5.

For an upper bound:

• If −cj0 >
∑

j∈J\{j0}
|y∗j ||cj|: xj0 ≤ U∗

−,j0 := Bj0(y
∗, 0, 0) < 0.

• If −cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj|: xj0 ≤ U∗

+,j0
:= Bj0(y

∗, 0, 1).

For a lower bound:

• If cj0 >
∑

j∈J\{j0}
|y∗j ||cj|: xj0 ≥ L∗

+,j0
:= Bj0(y

∗, 1, 0) > 0.

• If cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj|: xj0 ≥ L∗

−,j0 := Bj0(y
∗, 1, 1).

Proof. See Appendix 4.6.5.

Corollary 8 If Condition 2 is satisfied and |ŷj| ∈ [y∗j , 1] for all j ∈ J \ {j0}, then:

For an upper bound:

• If −cj0 >
∑

j∈J\{j0}
|ŷj||cj|, then also −cj0 >

∑
j∈J\{j0}

|y∗j ||cj|; and: xj0 ≤ U∗
−,j0 ≤ Bj0(ŷ, 0, 0).

• If −cj0 ≤
∑

j∈J\{j0}
|ŷj||cj|: U∗

−,j0 ≤ U∗
+,j0

≤ Bj0(ŷ, 0, 1).

For a lower bound:

• If cj0 >
∑

j∈J\{j0}
|ŷj||cj|, then also cj0 >

∑
j∈J\{j0}

|y∗j ||cj|; and: xj0 ≥ L∗
+,j0

≥ Bj0(ŷ, 1, 0).

• If cj0 ≤
∑

j∈J\{j0}
|ŷj||cj|: L∗

+,j0
≥ L∗

−,j0 ≥ Bj0(ŷ, 1, 1).

Some examples of ŷ include the ones defined in Corollary 2.

Proof. See Appendix 4.6.6.
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4.3 Applications

4.3.1 Oligopoly with differentiated goods

4.3.1.1 Setup

Assume an oligopoly of n firms, each one producing one differentiated good and competing a la

Bertrand. Appendix 4.6.12 includes the derivations, as well with Cournot competition instead

of Bertrand.

Firm j’s production function is given by yj = Ajℓj, and so profits write πj = sj(1 − M−1
j ),

where Mj =
pj
w
Aj is the markup.

Consumers have Constant Elasticity of Substitution (CES) preferences. In particular, the

representative consumer solves

max
{yj}j∈J

Y =

(∑
j∈J

y
σ−1
σ

j

) σ
σ−1

, s.t. E = PY =
∑
j∈J

pjyj.

With this, the market share is given by:

sj =

[
J∑

j′=1

(
Aj
Aj′

Mj′

Mj

)1−σ
]−1

. (4.1)

Firm j solves

max
Mj

πj = sj(1−M−1
j ) , s.t. sj given by (4.1).

We are going to show that: (i)
dMj0

dAj0
≥ 0,

dMj

dAj0
≤ 0, ∀j ∈ J \ {j0}; and (ii)

dπj0
dAj0

≥ 0,
dπj
dAj0

≤ 0,

∀j ∈ J \ {j0}.

4.3.1.2 Effect on Markups

Lemma 8 The first-order condition reads:

Fj(M1, . . . ,Mn) := M−1
j − (σ − 1)(1−M−1

j )(1− sj) = 0.

We will need the following derivatives:

∂Fj
∂Mj

= −σ−1
Mj

[
1− sj +

sj
Mj

]
, ∂Fi

∂Mj
= σ−1

Mj

si
Mi

sj
1−si ,

∂Fj0
∂Aj0

= σ−1
Aj0

sj0
Mj0

,
∂Fj
∂Aj0

= −σ−1
Aj0

sj
Mj

sj0
1−sj .
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And we have the linear system Ax = c, where (A)i,j = ai,j := − ∂Fi
∂Mj

, xj :=
dMj

dAj0
, and cj :=

∂Fj
∂Aj0

.

We can obtain a system A′x′ = c′ equivalent in signs by applying operations of the type de-

scribed in Lemma 6. In particular, multiply row i of both A and c by bi =
Aj0
sj0

Mi(1−si)
(σ−1)

, and col-

umn j ofA by ej =
sj0
Aj0

Mj

sj
dj (i.e. change of variable x

′
j =

xj
ej
), where dj =

(
Mj

sj
(1− sj)

2 + 1− sj

)−1
.

So, we have:

(A′)j,j = (A)j,jbjej = dj

(
Mj

sj
(1− sj)

2 + 1− sj

)
= 1 , (A′)i,j = (A)i,jbiej = −sidj,

c′j0 = cj0bj0 = 1− sj0 , c′i = cibi = −si.

It is straightforward to check that A′ satisfies Condition 3, since
∑

i∈J\{j}
|(A′)i,j| =

∑
i∈J\{j}

sidj ≤

(1− sj)dj < 1 = |(A′)j,j|, ∀j ∈ J .

First, Corollary 2, using |ŷj| = 1 is sufficient to show x′j0 ≥ 0, since c′j0 = 1− sj0 ≥
∑

j∈J\{j0}
sj ≥∑

j∈J\{j0}
|c′j|.

Second, we can show x′j ≤ 0 using Corollary 7, making k = j0, since it satisfies c′j0 = 1− sj0 >

0 > −si = c′i, and (ii)
|cj0 |

|(A′)j0,j0 |
≤ d−1

j0
= si

dj0si
=

|c′i|
|ai,j0 |

, ∀i ∈ J \ {j0}.

4.3.1.3 Effect on Profits

Now, we add {Gj := sj(1−M−1
j )− πj = 0}j∈J to the conditions {Fj = 0}j∈J . We have:

Lemma 9 We need the following derivatives:

∂Gj
∂πj

= −1 , ∂Gi
∂πj

= 0,

∂Gj
∂Mj

= 0 due to the FOC, ∂Gi
∂Mj

=
sisj

MjMi(1−si) ,

∂Gj0
∂Aj0

=
sj0

Mj0
Aj0

, ∂Gi
∂Aj0

= − sj0si
MiAj0 (1−si)

.

Now, the linear system Ax = c is given by

A :=

 (A)i,j = −∂Gi
∂πj

(A)i,n+j = − ∂Gi
∂Mj

(A)n+i,j = −∂Fi
∂πj

= 0 (A)n+i,n+j = − ∂Fi
∂Mj


i,j∈J

, c :=

 ci =
∂Gi
∂Aj0

cn+i =
∂Fi
∂Aj0


i∈J

.

Again, we can obtain a system equivalent in signs by applying operations of the type described

in Lemma 6. In particular, multiply row i of both A and c by bi = Mi(1−si)
Aj0
sj0

, and row n+ i

by bn+i =
Mi(1−si)
σ−1

Aj0
sj0

, for i ∈ J , and column j and n+ j of A by ej = b−1
j and en+j =

sj0Mj

Aj0sj
dj,

respectively, for j ∈ J , where dj is defined as before. The transformed system writes:

A′ =

 (A′)i,i = 1 , (A′)i,j = 0, ∀j ∈ J \ {i} , (A′)i,n+i = 0 (A′)i,n+j = −sidj , ∀j ∈ J \ {i}

(A′)n+i,i = 0 , (A′)n+i,j = 0, ∀j ∈ J \ {i} , (A′)n+i,n+i = 1 (A′)n+i,n+j = −sidj , ∀j ∈ J \ {i}


i∈J

c′ =
{
c′j0 = 1− sj0 , c′i = −si, ∀i ∈ J \ {j0} , c′n+j0 = 1− sj0 , c′n+i = −si, ∀i ∈ J \ {j0}

}
i∈J

.
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This A′ does not directly satisfy the column diagonal dominance of Condition 2, but we will

simplify the problem using the notions of dispensable variables. First, note that if we are

interested in the sign of xj for some j ∈ J , then xi for all i ∈ J \ {j} are dispensable in

the sense of Definition 10. Second, we use that we know the signs xn+j0 ≥ 0 and xn+j ≤ 0,

∀j ∈ J \ {j0} (that is, kn+j = 1, ∀j ∈ J \ {j0}). Next, consider two cases.

1. If j = j0, we are going to see that xn+j0 is conditionally dispensable in the sense of

Definition 11. Indeed, if kj0 = 1, we can find y ∈ R2n with yi = 0 for i ∈ {n+j0}∪J \{j0}

(e.g. setting yj0 = 1 + ϵ, for ϵ > 0, and yj = 1 for all j ̸= j0) such that ytA′
K ≤ 0

and ytc′ > 0. Indeed, noting that the zeros in y imply (ytA′
K)i = (−1)ki(ytA′)i =

(−1)ki

(
(1 + ϵ)(A′)j0,i +

∑
j∈J\{j0}

(A′)n+j,i

)
; so:

(a) (−1)kj0 (ytA′)j0 = −(1 + ϵ) ≤ 0, and (ytA′)n+j0 =
∑

i∈J\{j0}
(−sidj0) ≤ 0.

(b) For i ∈ J \ {j0}: (ytA′)i = 0 ≤ 0, and

(−1)kn+i(ytA′)n+i = −

(
−(1 + ϵ)sj0di + 1 +

∑
j∈J\{j0,i}

(−sjdi)

)
≤ 0, using

∑
j∈J\{i}

sjdi =

(1− si)di < 1.

(c) ytc′ = (1 + ϵ)(1− sj0) +
∑

j∈J\{j0}
sj > 0.

2. If j ∈ J \ {j0}, we are going to see that xn+j for all j ∈ J \ {j0} are conditionally

dispensable in the sense of Definition 11. Indeed, if kj = 0, we can find y ∈ R
2n with

yi = 0 for i ∈ {n + j0} ∪ J \ {j0} (e.g. setting yj = −1, and yn+j0 = −sjdj0) such that

ytA′
K ≤ 0 and ytc′ > 0. Indeed, noting that the zeros in y imply (ytA′

K)i = (−1)ki(ytA′)i =

(−1)ki ((−1)(A′)j,i − sjdj0(A
′)n+j0,i); so:

(a) (−1)kj(ytA′)j = −1 ≤ 0, and (−1)ki(ytA′)i = 0 ≤ 0, ∀i ∈ J \ {j0}.

(b) For i ∈ J \ {j0, j}: (−1)ki(ytA′)n+i = − (−(−sjdi)− sjdj0(−sj0di)) ≤ 0,

(−1)kj(ytA′)n+j = − (−(0)− sjdj0(−sj0dj)) ≤ 0, and

(−1)kj0 (ytA′)n+j0 = − (−(−sjdj0)− sjdj0) ≤ 0.

(c) ytc′ = −(−sj) +−sjdj0(1− sj0) > 0, where I have used that dj0(1− sj0) ∈ (0, 1).
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4.4 Conclusion

This paper introduces a novel approach to comparative statics, building on Farkas’ Lemma,

which enables both sign analysis and the derivation of bounds on comparative statics. By

offering an intuitive and general method, this framework overcomes the limitations of traditional

approaches that rely on strict conditions. We have applied this method to derive sufficient

conditions under various assumptions, replicating and improving earlier results. Moreover, we

believe there is further potential to extend it and derive sufficient conditions for a broader range

of problems.

The next step is to derive better sufficient conditions conditional on knowing the sign of some

variables. This could derive in an iterative method, where in the first iteration we determine

the signs of those variables that satisfy some of the conditions in Corollaries 2, 4, 5; and in the

next iterations we would use the relaxed conditions on the remaining variables given the known

signs.

In a follow-up paper, I plan to use this theory to do comparative statics in dynamic games.

This is a bit more challenging, as the value function is defined recursively.
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Belhaj, Mohamed and Frédéric Deröıan, “Risk taking under heterogenous revenue shar-

ing,” Journal of Development Economics, 2012, 98 (2), 192–202.

Corchón, Luis C., “Comparative statics for aggregative games the strong concavity case,”

Mathematical Social Sciences, 1994, 28 (3), 151–165.

Dixit, Avinash, “Comparative Statics for Oligopoly,” International Economic Review, 1986,

pp. 107–122.

Farkas, Julius, “Theorie der einfachen Ungleichungen,” Journal für die reine und angewandte

Mathematik, 1902, 124, 1–27.

109



Gollier, Christian and Miles S. Kimball, “New methods in the classical economics of

uncertainty: Comparing risks,” The Geneva Risk and Insurance Review, 2018, 43, 5–23.

McKenzie, Lionel, “Matrices with Dominant Diagonals and Economic Theory,” 1960.

Milgrom, Paul and Chris Shannon, “Monotone Comparative Statics,” Econometrica, 1994,

62 (1), 157–180.

and John Roberts, “Rationalizability, Learning, and Equilibrium in Games with Strategic

Complementarities,” Econometrica: Journal of the Econometric Society, 1990, pp. 1255–

1277.

Norris, Jordan, “Bounds High Dimensional Comparative Statics,” Working Paper, 2025.

Ostrowski, A.M., “Note on Bounds for Determinants with Dominant Principal Diagonal,”

Proceedings of the American Mathematical Society, 1952, 3 (1), 26–30.

Quah, John K.H., “The Comparative Statics of Constrained Optimization Problems,” Econo-

metrica, 2007, 75 (2), 401–431.

Topkis, Donald M., “The Structure of Sublattices of the Product of n Lattices,” Pacific

Journal of Mathematics, 1976, 65, 525–532.

Villas-Boas, J. Miguel, “Comparative Statics of Fixed Points,” Journal of Economic Theory,

1997, 73 (1), 183–198.

Vives, Xavier, “Nash Equilibrium with Strategic Complementarities,” Journal of Mathemat-

ical Economics, 1990, 19, 305–321.

Vohra, Rakesh V., “The Ubiquitous Farkas Lemma,” in Frank B. Alt, Michael C. Fu, and

Bruce L. Golden, eds., Perspectives in Operations Research: Papers in Honor of Saul Gass’

80th Birthday, Springer, 2006, pp. 199–210.

110



4.6 Appendix

4.6.1 Proof Lemma 6

Proof. Let ai,j = (A)i,j be the element in row i and column j of matrix A. We are going to use two

types of transformations that preserve the sign of the unknowns:

1. (Row multiplication by scalar) For any bi ∈ R, the system Ax = c is equivalent to A′x = c′, with

(A′)i,j = ai,jbi and (c′)i = (c)ibi, and (A′)i′,j = ai′,j and c
′
i′ = ci′ for all i

′ ̸= i.

2. (Column multiplication by positive scalar) For any dj ∈ R+, the system Ax = c is equivalent to

A′x′ = c, with (A′)i,j = ai,jdj and x′j = xj/dj , and (A′)i,j′ = ai,j′ and x
′
j′ = xj′ for all j′ ̸= j,

given that if x satisfies Ax = c, then the x′ defined above clearly satisfies A′x′ = c and x′ has

the same signs as x.

To transform the system Ax = c into one that satisfies Condition 1: first, we apply 1 to row j ∈ J

using bj =
aj,j
|aj,j |ej , for some ej > 0. Second, we apply 2 to column j ∈ J of A using dj = 1

|aj,j |
1
ej
.

This transformations achieve a diagonal of ones, and the non-unicity result is shown by the freedom

on ej > 0 for j ∈ J .

4.6.2 Proof Proposition 5

Proof. We want a sufficient condition for sign(xj0) (let k∗j0 = 1xj0≥0) in a system that satisfies

Condition 2. The way we will proceed is as follows: First, suppose by contradiction that kj0 = 1− k∗j0

and find a vector y that satisfies ytA′ ≤ 0, with the normalisation |yj0 | = 1, and, if we succeed, then

ytc > 0 gives us a condition on c.

In particular, we are going to find a vector y of the form: yj0 = (−1)kj0+1, and yj = (−1)kj+1|yj |, for

some |yj | ∈ [0, 1] that satisfies ytA ≤ 0; that is:

1. Given this structure of y, a sufficient condition for ytc > 0 is:

ytc = (−1)kj0+1cj0 +
∑

j∈J\{j0}

yjcj ≥ (−1)kj0+1cj0 −
∑

j∈J\{j0}

|yj ||cj | > 0

So, for xj0 ≥ 0 (i.e. k∗j0 = 0 = 1− kj0) a sufficient condition would be cj0 >
∑

j∈J\{j0}
|yj ||cj |; and

for xj0 ≤ 0 (i.e. k∗j0 = 1 = 1− kj0), a sufficient condition would be −cj0 >
∑

j∈J\{j0}
|yj ||cj |.

2. (ytA)j0 ≤ 0 is guaranteed by Condition 2:
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(ytA)j0 = (−1)kj0

(−1)kj0+1 +
∑

j∈J\{j0}

yjaj,j0

 ≤ −1 +
∑

j∈J\{j0}

|aj,j0 | ≤ 0

3. For j ∈ J \ {j0}: (ytA)j ≤ 0 requires:

(ytA)j = −|yj |+ (−1)kj

(−1)kj0+1aj0,j +
∑

k∈J\{j0,j}

ykak,j


We are going to construct a decreasing sequence {{|y(m)

j |}j∈J\{j0}}m∈N such that for each

m ∈ N and each j ∈ J \ {j0} it is satisfied −|y(m)
j | + |aj0,j | +

∑
k∈J\{j0,j}

|y(m)
k ||ak,j | ≤ 0.

Initialize |y(0)j | = 1, which clearly satisfies the conditions due to Condition 2. Now, suppose

that {|y(m−1)
j |}j∈J\{j0} satisfies {|aj0,j |+

∑
k∈J\{j0,j}

|y(m−1)
k ||ak,j | ≤ |y(m−1)

j |}j∈J\{j0}, and define

{|y(m)
j | = |aj0,j | +

∑
k∈J\{j0,j}

|y(m−1)
k ||ak,j | ≤ |y(m−1)

j |}j∈J\{j0}. Note that, since by construction

|y(m)
j | ≤ |y(m−1)

j | for all j ∈ J \ {j0}, then also {|aj0,j |+
∑

k∈J\{j0,j}
|y(m)
k ||ak,j | ≤ |y(m)

j |}j∈J\{j0}.

Given that {y(m)
j }m∈N is a decreasing sequence and bounded by [0, 1], then it converges to a

unique |y∗|.

4.6.3 Proof Corollary 2

Proof. |cj0 | >
∑

j∈J\{j0}
|ŷj ||cj | ≥

∑
j∈J\{j0}

|y∗j ||cj |, and so by Proposition 5, we have sign(xj0) =

sign(cj0).

For the second part, note that Condition 3 implies max
j∈J\{j0}

|y∗j | < 1, since:

||y(m)||∞ = max
j∈J\{j0}

|aj0,j |+
∑

k∈J\{j0,j}

|y(m−1)
k ||ak,j |


≤ max

j∈J\{j0}

|aj0,j |+ ||y(m−1)||∞
∑

k∈J\{j0,j}

|ak,j |


< max

j∈J\{j0}

{
|aj0,j |+ ||y(m−1)||∞(1− |aj0,j |)

}
≤ ||y(m−1)||∞

And, so, we can find ŷ satisfying the conditions of the statement (as long as max
j∈J\{j0}

|cj | > 0) and we

have |cj0 | ≥
∑

j∈J\{j0}
|ŷj ||cj | ≥

∑
j∈J\{j0}

|y∗j ||cj |, and so by Proposition 5, we have sign(xj0) = sign(cj0).

For the examples, note on the one hand that y∗j ≤ y
(1)
j = Ac,j ≤ maxj∈J\{j0}Ac,j ≤ 1. On the
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other hand, given that we have seen that the sequence converges, then it has to be y∗j =
∞∑
i=0

BiB0 ≤

||
∞∑
i=0

BiB0||∞ ≤
∞∑
i=0

||B||i∞||B0||∞ = ||B0||∞
1−||B||∞ =

max
j∈J\{j0}

|aj0,j |

1− max
j∈J\{j0}

∑
k∈J\{j0,j}

|ak,j |

4.6.4 Proof of the least demanding condition with |yj| = H for all

j ∈ J \ {j0}

Proposition 11 If Condition 2 is satisfied, then a sufficient condition for sign(xj0) = sign(cj0) is:

|cj0 | > H
∑

j∈J\{j0}

|cj | , with H := max
j∈J\{j0}

|aj0,j |
1−

∑
k∈J\{j0,j}

|ak,j |

Proof. Here, we follow the same strategy of the proof of Proposition 5, but restricting the vector y

to be of the form yj0 = (−1)1−kj0 , and yj = (−1)1−kjH, for some H ∈ [0, 1] that satisfies ytA ≤ 0;

that is:

1. Given this structure of y, a sufficient condition for ytc > 0 is |cj0 | > H
∑

j∈J\{j0}
|cj |.

2. (ytA)j0 ≤ 0 is guaranteed by Condition 2 and |yj | ≤ 1:

(ytA)j0 = (−1)kj0

(−1)1−kj0 +
∑

j∈J\{j0}

yjaj,j0

 ≤ −1 +
∑

j∈J\{j0}

|aj,j0 | ≤ 0

3. For j ∈ J \ {j0}: (ytA)j ≤ 0 requires:

(ytA)j = −|yj |+ (−1)kj

(−1)1−kj0aj0,j +
∑

k∈J\{j0,j}

ykak,j


≤ −|yj |+ (−1)kj+1−kj0aj0,j +H

∑
k∈J\{j0,j}

|ak,j | ≤ 0

And so, given that kj is arbitrary, we want |yj | ≥ |aj0,j | + H
∑

k∈J\{j0,j}
|ak,j |. That is, we

want H that satisfies H ≥ |aj0,j | + H
∑

k∈J\{j0,j}
|ak,j | for all j ∈ J \ {j0}; in other words:

H ≥ Hj :=
|aj0,j |

1−
∑

k∈J\{j0,j}
|ak,j | .

5 In particular, we are interested in the minimal H that satisfies

these inequalities, that is H = max
j∈J\{j0}

Hj ; let h ∈ J \ {j0} be such that Hh = H.

To see that this condition is more general than the one in Theorem 1 of Norris (2025) (i.e. we

want to show that H ≤ max
j∈J\{j0}

Ac,j), first note that H ≤ 1 since by Condition 2, we have

H =
|aj0,h|

1−
∑

k∈J\{j0,h}
|ak,h| ≤

1−
∑

k∈J\{j0,h}
|ak,h|

1−
∑

k∈J\{j0,h}
|ak,h| = 1. Then, we have H = |aj0,h|+H

∑
k∈J\{j0,h}

|ak,h| ≤∑
k∈J\{j0}

|ak,h| = Ac,h ≤ max
j∈J\{j0}

Ac,j

5Note that Condition 2 guarantees that the denominator is non-negative.
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4.6.5 Proof Proposition 10

Proof. Consider x′ with x′j0 = xj0 = xj0 − zj0 and x′j = xj . So, Ax = c can be rewritten as

Ax′ = c′ = c−Az. Note that c′j = cj − aj,j0zj0 for j ∈ J .

For a lower bound on xj0 , we want to find the maximal zj0 such that the condition in Proposition

5 allows us to state that x′j0 = xj0 − zj0 ≥ 0. That is, we want to find the maximal zj0 for which we

have c′j0 = cj0 − zj0 >
∑

j∈J\{j0}
|y∗j ||c′j | =

∑
j∈J\{j0}

|y∗j ||cj − aj,j0zj0 |. A sufficient condition for this is:

cj0 − zj0 >
∑

j∈J\{j0}

|y∗j | (|cj |+ |aj,j0 ||zj0 |) =⇒ zj0 + |zj0 |
∑

j∈J\{j0}

|y∗j ||aj,j0 | < cj0 −
∑

j∈J\{j0}

|y∗j ||cj |

And there are two cases:

1. If we know that zj0 ≥ 0 (recall that cj0 >
∑

j∈J\{j0}
|y∗j ||cj | implies xj0 ≥ 0, and so the lower

bound is also non-negative): zj0 < L+,j0 :=

cj0−
∑

j∈J\{j0}
|y∗j ||cj |

1+
∑

j∈J\{j0}
|y∗j ||aj,j0 |

So: xj0 ≥ L+,j0 − ϵ for ϵ > 0 arbitrarily small.

2. If zj0 < 0: zj0 < L−,j0 :=

cj0−
∑

j∈J\{j0}
|y∗j ||cj |

1−
∑

j∈J\{j0}
|y∗j ||aj,j0 |

So: xj0 ≥ L−,j0 − ϵ for ϵ > 0 arbitrarily small.

For an upper bound on xj0 , we want to find the minimal zj0 such that the condition in Proposition

5 allows us to state that x′j0 = xj0 − zj0 ≤ 0. That is, we want to find the minimal zj0 for which we

have −c′j0 = −cj0 + zj0 >
∑

j∈J\{j0}
|y∗j ||c′j | =

∑
j∈J\{j0}

|y∗j ||cj − aj,j0zj0 |. A sufficient condition for this is:

zj0 − cj0 >
∑

j∈J\{j0}

|y∗j | (|cj |+ |aj,j0 ||zj0 |) =⇒ zj0 − |zj0 |
∑

j∈J\{j0}

|y∗j ||aj,j0 | > cj0 +
∑

j∈J\{j0}

|y∗j ||cj |

And there are two cases:

1. If we know that zj0 ≤ 0 (recall that −cj0 >
∑

j∈J\{j0}
|y∗j ||cj | implies xj0 ≤ 0, and so the upper

bound is also non-positive): zj0 > U−,j0 :=

cj0+
∑

j∈J\{j0}
|y∗j ||cj |

1+
∑

j∈J\{j0}
|y∗j ||aj,j0 |

So: xj0 ≤ U−,j0 + ϵ for ϵ > 0 arbitrarily small.

2. If zj0 > 0: zj0 > U+,j0 :=

cj0+
∑

j∈J\{j0}
|y∗j ||cj |

1−
∑

j∈J\{j0}
|y∗j ||aj,j0 |

So: xj0 ≤ U+,j0 + ϵ for ϵ > 0 arbitrarily small.
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4.6.6 Proof Corollary 8

Proof. Next, we want to see that using |ŷj | ∈ [|y∗j |, 1] for all j ∈ J \ {j0} can only worsen the bounds

(i.e. widens the interval). That is, we want to see that
∂U−,j0
∂|ŷj | ,

∂U+,j0
∂|ŷj | ≥ 0 and

∂L−,j0
∂|ŷj | ,

∂L+,j0
∂|ŷj | ≤ 0.

For the upper bounds:

• If −cj0 >
∑

j∈J\{j0}
|y∗j ||cj | ≥ 0: then we know that xj0 ≤ 0, and so we know that the upper

bound is non-positive; that is, the relevant bound is U−,j0 . The derivative with respect to |ŷk|

is:

∂U−,j0
∂|ŷk|

=

|ck|

(
1 +

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)
− |ak,j0 |

(
cj0 +

∑
j∈J\{j0}

|ŷj ||cj |

)
(
1 +

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2 ≥ 0

where I have used that from the condition we have −cj0 > 0.

• If −cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj |: then Proposition 11 is not sufficient to determine whether xj0 ≤ 0,

and so, the upper bound is positive; that is the relevant bound is U+,j0 . The derivative with

respect to |ŷk| is:

∂U+,j0

∂|ŷk|
=

|ck|

(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)
+ |ak,j0 |

(
cj0 +

∑
j∈J\{j0}

|ŷj ||cj |

)
(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2

≥
|ak,j0 |

( ∑
j∈J\{j0}

|ŷj ||cj | −
∑

j∈J\{j0}
|y∗j ||cj |

)
(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2 ≥ 0

where in the first inequality I have used the condition −cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj |, and for the second

I have used |ŷj | ≥ |y∗j |.

For the lower bounds:

• If cj0 >
∑

j∈J\{j0}
|y∗j ||cj |: then we know that xj0 ≥ 0, and so we know that the lower bound is

non-negative; that is, the relevant bound is L+,j0 . The derivative with respect to |ŷk| is:

∂L+,j0

∂|ŷk|
=

−|ck|

(
1 +

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)
− |ak,j0 |

(
cj0 −

∑
j∈J\{j0}

|ŷj ||cj |

)
(
1 +

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2 ≤ 0
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where I have used the condition cj0 > 0.

• If cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj |: then Proposition 5 is not sufficient to determine whether xj0 ≥ 0, and

so, the lower bound is negative; that is the relevant bound is L−,j0 . The derivative with respect

to |ŷk| is:

∂L−,j0
∂|ŷk|

=

−|ck|

(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)
+ |ak,j0 |

(
cj0 −

∑
j∈J\{j0}

|ŷj ||cj |

)
(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2

≤
|ak,j0 |

( ∑
j∈J\{j0}

|y∗j ||cj | −
∑

j∈J\{j0}
|ŷj ||cj |

)
(
1−

∑
j∈J\{j0}

|ŷj ||aj,j0 |

)2 ≤ 0

where in the first inequality I have used the condition cj0 ≤
∑

j∈J\{j0}
|y∗j ||cj |, and for the second

I have used |ŷj | ≥ |y∗j |.

4.6.7 Proof Proposition 6

Notation:

Let R+,j := {j1 ∈ J \ {j0, j} : aj0,jaj0,j1aj1,j > 0} and R−,j := {j1 ∈ J \ {j0, j} : aj0,jaj0,j1aj1,j ≤ 0}.

Also, let ij = 1{kj+kj0+kaj0,j odd}, and let I := {(i1, . . . , ij0−1, ij0+1, . . . , in) : ij ∈ {0, 1}} be the

collection of multiindices, and let I denote an element of I.6 Ans define the restriction I{ij=s} = {I ∈

I : Ij = ij = s} for s = 0, 1.

Proof. We want a sufficient condition for sign(xj0) (let k∗j0 = 1xj0≥0) in a system that satisfies

Condition 2 and 4. The way we will proceed is as follows (as in the proof of Proposition 5): First,

suppose by contradiction that kj0 = 1 − k∗j0 and find a vector y that satisfies ytA′ ≤ 0, with the

normalisation |yj0 | = 1, and, if we succeed, then ytc > 0 gives us a condition on c.

However, now we want to exploit that we know the sign of the elements ai,j . We consider a vector y

of the form: yj0 = (−1)1−kj0 , and yj = (−1)
kj0+kaj0,j

∑
I∈I

|yj,I |, with |yj,I | ∈ [0, 1], ∀j ∈ J \ {j0} and

∀I ∈ I. Condition 2 of Farkas’ lemma requires:

1. (ytA)j0 ≤ 0 is guaranteed by Condition 2 and |yj | ≤ 1:

6Note that #I = 2n−1.
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(ytA)j0 = (−1)kj0

(−1)1−kj0 +
∑

j∈J\{j0}

yjaj,j0

 ≤ −1 +
∑

j∈J\{j0}

|aj,j0 | ≤ 0

2. For j ∈ J \ {j0}: (ytA)j ≤ 0 requires:

(ytA)j = (−1)kj
∑
I∈I

1I

(
(−1)

1−kj0+kaj0,j |aj0,j |+ (−1)
kj0+kaj0,j |yj,I |

+
∑

j1∈J\{j0,j}

(−1)
kj0+kaj0,j1

+kaj1,j |yj1,I ||aj1,j |

 ≤ 0

Extracting common factors and using the definition of ij :

(ytA)j = (−1)ij
∑
I∈I

1I

|yj,I | − |aj0,j |+
∑

j1∈J\{j0,j}

(−1)
kaj0,j

+kaj0,j1
+kaj1,j |yj1,I ||aj1,j |

 ≤ 0.

Using the definitions of R+,j and R−,j , then:

(ytA)j = (−1)ij
∑
I∈I

1I

|yj,I | − |aj0,j |+
∑

j1∈R+,j

|yj1,I ||aj1,j | −
∑

j1∈R−,j

|yj1,I ||aj1,j |

 ≤ 0.

We are going to construct two sequences: (i) a decreasing one {|y(m)
j,1 |}m∈N associated to ij = 1,

and (ii) an increasing one {|y(m)
j,0 |}m∈N associated to ij = 0, with |y(m)

j,1 | ≥ |y(m)
j,0 | for all m ∈ N,

such that:

|y(m)
j,0 | ≤ |aj0,j | −

∑
j1∈R+,j

|y(m)
j1,1

||aj1,j |+
∑

j1∈R−,j

|y(m)
j1,0

||aj1,j |

≤ |aj0,j | −
∑

j1∈R+,j

|y(m)
j1,0

||aj1,j |+
∑

j1∈R−,j

|y(m)
j1,1

||aj1,j | ≤ |y(m)
j,1 |. (4.2)

Note that for this to be possible it has to be 0 ≤ |aj0,j |−
∑

j1∈R+,j

|y(m)
j1,1

||aj1,j |+
∑

j1∈R−,j

|y(m)
j1,0

||aj1,j |

for ∀j ∈ J \ {j0}. This is clearly satisfied if Condition 4 holds, since ai,j for all i ̸= j implies

R+,j = ∅ for ∀j ∈ J \ {j0}, so the conditions simplify to:

|y(m)
j,0 | ≤ |aj0,j |+

∑
j1∈J\{j0,j}

|y(m)
j1,0

||aj1,j | ≤ |aj0,j |+
∑

j1∈J\{j0,j}

|y(m)
j1,1

||aj1,j | ≤ |y(m)
j,1 |. (4.3)

We can initialize the sequence by setting |y(0)j,0 | = 0 and |y(0)j,1 | = 1, which clearly satisfy these

conditions:

|y(0)j,0 | = 0 ≤ |aj0,j |+
∑

j1∈J\{j0,j}

0|aj1,j | ≤ |aj0,j |+
∑

j1∈J\{j0,j}

|aj1,j | ≤ 1 = |y(0)j,1 |.
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Now, suppose |y(m−1)
j,0 |, |y(m−1)

j,1 | satisfy 4.3, and define |y(m)
j,0 |, |y(m)

j,1 | by:

|y(m−1)
j1,0

| ≤ |aj0,j |+
∑

j1∈J\{j0,j}

|y(m−1)
j1,0

||aj1,j | =: |y(m)
j,0 |

≤ |y(m)
j,1 | := |aj0,j |+

∑
j1∈J\{j0,j}

|y(m−1)
j1,1

||aj1,j | ≤ |y(m−1)
j1,1

|.

For the examples: for m = 0 |y(0)j,0 | = 0, |y(0)j,1 | = 1; for m = 1 |y(1)j,0 | = |aj0,j |, |y
(1)
j,1 | = Ac,j .

Given that {y(m)
j,0 }m∈N and {y(m)

j,1 }m∈N are increasing and decreasing sequences respectively and

bounded by [0, 1], then they are convergent to y∗j,0 and y∗j,1, respectively. Note that |y∗j,1| = |y∗j |,

where |y∗j | is the limit of the sequence of Proposition 5 (since they have the same initial condition

and updating rule).

In matricial form, for s = 0, 1, |y(m)
s | = B0 + |y(m−1)

s ||A(j0)|, where B0 is the 1× (n− 1) matrix

with elements |aj0,j | for j ∈ J \ {j0}, and |A(j0)| consists on the absolute values of matrix A

without row and column j0. Then, lim
m→∞

|y(m)
s | = lim

m→∞

(
m−1∑
i=0

B0|A(j0)|i + |y(0)||A(j0)|m
)
, and if

lim
m→∞

|y(0)||A(j0)|m = 0, then the limit doesn’t depend on the initial value and so y∗j,0 = y∗j,1 = y∗j .

Note that if A satisfies Condition 3, then lim
m→∞

|||y(0)s ||A(j0)|m||1 ≤ lim
m→∞

|||y(0)s |||1|||A(j0)|||m1 = 0.

3. Given this structure of y, a sufficient condition for ytc > 0 is:

ytc = (−1)1−kj0 cj0 +
∑
I∈I

1I

∑
j∈J\{j0}

(−1)
kj0+kaj0,j

+kcj |yj,I ||cj |

= (−1)kj0
∑
I∈I

1I

−cj0 + ∑
{j∈J\{j0}:aj0,jcj>0}

|yj,I ||cj | −
∑

{j∈J\{j0}:aj0,jcj<0}

|yj,I ||cj |

 > 0

(4.4)

So, for xj0 ≥ 0 (i.e. k∗j0 = 0 = 1 − kj0) a sufficient condition would be (note that I include the

possibility of equality, aj0,jcj = 0, in the negative terms)

cj0 >
∑

{j∈J\{j0}:aj0,jcj>0}

max
I

|yj,I ||cj | −
∑

{j∈J\{j0}:aj0,jcj≤0}

min
I

|yj,I ||cj |

and for xj0 ≤ 0 (i.e. k∗j0 = 1 = 1− kj0), a sufficient condition would be

− cj0 >
∑

{j∈J\{j0}:aj0,jcj<0}

max
I

|yj,I ||cj | −
∑

{j∈J\{j0}:aj0,jcj≥0}

min
I

|yj,I ||cj |

And for Condition 4, ai,j ≤ 0, ∀i ̸= j:
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cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}

|y(m)
j,1 ||cj | −

∑
{j∈J\{j0}:cj≥0}

|y(m)
j,0 ||cj |

− cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}

|y(m)
j,1 ||cj | −

∑
{j∈J\{j0}:cj≤0}

|y(m)
j,0 ||cj |

And, since |y(m)
j,1 | is decreasing in m and |y(m)

j,0 | is increasing in m, then the conditions are less

demanding as m increases.

4.6.8 Proof Corollary 4

Proof. The only thing that is not straightforward is the part of H1. For this, first note that

∑
j1

(Bm)i,j1B0,j1 =
∑
j1

∑
j2

(Bm−1)i,j2(B)j2,j1B0,j1

≥
∑
j2

(Bm−1)i,j2
∑
j1

(B)j2,j1 min
j
B0,j ≥

min
i

∑
j1

(B)i,j1

m

min
j
B0,j .

So: y∗j =
∞∑
i=0

BiB0 ≥ H1 :=
min

j∈J\{j0}
|aj0,j |

1− min
j∈J\{j0}

∑
k∈J\{j0,j}

|ak,j | .

4.6.9 Proof Proposition 7

Proof. We follow the same procedure as in the Proof of Proposition 6, but now ai,j ≥ 0, ∀i ̸= j.

Again, suppose by contradiction that kj0 = 1−k∗j0 we consider a vector y of the form: yj0 = (−1)1−kj0 ,

and yj = (−1)
kj0+kaj0,j

∑
I∈I

|yj,I |, with |yj,I | ∈ [0, 1], ∀j ∈ J \ {j0} and ∀I ∈ I. Condition 2 of Farkas’

lemma requires:

1. (ytA)j0 ≤ 0 is guaranteed by Condition 2 and |yj | ≤ 1:

(ytA)j0 = (−1)kj0

(−1)1−kj0 +
∑

j∈J\{j0}

yjaj,j0

 ≤ −1 +
∑

j∈J\{j0}

|aj,j0 | ≤ 0

2. For j ∈ J \{j0}: a sufficient condition for (ytA)j ≤ 0 is given by (4.2), which, using that ai,j ≥ 0

∀i ̸= j implies R−,j = ∅, writes:

|y(m)
j,0 | ≤ |aj0,j | −

∑
j1∈J\{j0,j}

|y(m)
j1,1

||aj1,j | ≤ |aj0,j | −
∑

j1∈J\{j0,j}

|y(m)
j1,0

||aj1,j | ≤ |y(m)
j,1 | (4.5)
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Note that for this to be possible it has to be 0 ≤ |aj0,j |−
∑

j1∈J\{j0,j}
|y(m)
j1,1

||aj1,j | for ∀j ∈ J \{j0}.

And note that Condition 5 guarantees this if we have |y(m)
j1,1

| ≤ |aj0,j1 |, ∀j1 ∈ J \ {j0}. Then, we

can initialize the two sequences with |y(0)j,0 | = 0 ≤ |aj0,j | = |y(0)j,1 |.

Now, suppose |y(m−1)
j,0 |, |y(m−1)

j,1 | satisfy 4.5, and define |y(m)
j,0 |, |y(m)

j,1 | by:

|y(m−1)
j1,0

| ≤ |aj0,j | −
∑

j1∈J\{j0,j}

|y(m−1)
j1,1

||aj1,j | =: |y(m)
j,0 |

≤ |y(m)
j,1 | := |aj0,j | −

∑
j1∈J\{j0,j}

|y(m−1)
j1,0

||aj1,j | ≤ |y(m−1)
j1,1

|

Given that {y(m)
j,0 }m∈N and {y(m)

j,1 }m∈N are increasing and decreasing sequences respectively

and bounded by [0, |aj0,j |], then they are convergent to ȳj,0 and ȳj,1, respectively. And if

lim
m→∞

|A(j0)|m = 0, where |A(j0)| is the same matrix defined in Appendix 4.6.7, then the limit

doesn’t depend on the initial value and so ȳj,0 = ȳj,1 = ȳj . As shown in the proof of Proposition

6, Condition 3 is a sufficient for this.

3. For ytc > 0, following from (4.4):

for xj0 ≥ 0 (i.e. k∗j0 = 0 = 1 − kj0) a sufficient condition would be (note that I include the

possibility of equality, aj0,jcj = 0, in the negative terms)

cj0 >
∑

{j∈J\{j0}:|aj0,j |cj>0}

|ȳj,1||cj | −
∑

{j∈J\{j0}:|aj0,j |cj≤0}

|ȳj,0||cj |

and for xj0 ≤ 0 (i.e. k∗j0 = 1 = 1− kj0), a sufficient condition would be

− cj0 >
∑

{j∈J\{j0}:|aj0,j |cj<0}

|ȳj,1||cj | −
∑

{j∈J\{j0}:|aj0,j |cj≥0}

|ȳj,0||cj |

4.6.10 Proofs Row diagonal dominance

Proof of Lemma 7:

By contradiction, suppose
∑
i ̸=j

|ai,j | ≥ 1 for all j ∈ J , then:

∑
j1∈J

1 ≥
∑
j1∈J

∑
j2∈J\{j1}

|aj1,j2 | =
∑
j2∈J

∑
j1∈J\{j2}

|aj1,j2 | ≥
∑

j1∈J\{j0}

|aj1,j0 |+
∑

j2∈J\{j0}

∑
j1∈J\{j2}

1 >
∑
j1∈J

1

where I have used that A satisfies row diagonal dominance for the first inequality, the contradiction

hypothesis for the second inequality, and that A doesn’t satisfy the column diagonal dominance for

120



the last strict inequality. This gives us a contradiction, which proves the result.

□

Proof of Proposition 8:

If A satisfies Condition 2, we are done; otherwise Lemma 7 tells us that J0 := {j ∈ J : Ac,j < 1}

is not empty. Then, multiply each row i ∈ J0 by Ac,i < 1. On the one hand, it clearly preserves

row diagonal dominance: Ac,i ≥
∑

j∈J\{i}
|aj,i|Ac,i. On the other hand, now column i satisfies diagonal

dominance: Ac,i =
∑

j∈J\{i}
|aj,i| ≥

∑
j∈J0\{i}

|aj,i|Ac,j +
∑

j∈J\J0

|aj,i|. The only thing missing is to have

ones in the diagonal, for which we multiply each column j ∈ J0 by A−1
c,j <∞, since Ac,j > 0.

□

4.6.11 Other

4.6.11.1 Review Matricial norms induced by vector norms:

Definition 12 Given the vector norm || · ||p, 1 ≤ p ≤ ∞, we define the (induced) matrix norm

||A||p := sup
x ̸=0

{
||Ax||p
||x||p

}
.

It is straightforward from the definition that ||ABx||p = ||A(Bx)||p ≤ ||A||p||Bx||p ≤ ||A||p||B||p||x||p;

therefore: ||AB||p = sup
x ̸=0

{
||ABx||p
||x||p

}
≤ sup

x ̸=0

{
||A||p||B||p||x||p

||x||p

}
= ||A||p||B||p. As a corollary: ||Akx||p ≤

||Ak||p||x||p ≤ (||A||p)k ||x||p; so if ||A||p < 1, then lim
k→∞

||Akx||p = 0. In particular, for p = 1,∞:

• The matrix norm induced by the vector norm ||x||∞ = max
j

{|xj |}. Note that ||Ax||∞
||x||∞ =

max
i

{|
∑
j
ai,jxj |}

max
j

|xj | = max
i

{|
∑
j
ai,j

xj
x̄ |} ≤ max

i
{
∑
j
|ai,j |

∣∣xj
x̄

∣∣} ≤ max
i

{
∑
j
|ai,j |}, and this upper bound

is attained taking xj =
ai,j
|ai,j | x̄.

• Now, for the vector norm ||x||1 =
∑
j
|xj |. Note that ||Ax||1

||x||1 =

∑
i

∣∣∣∣∣∑j ai,jxj
∣∣∣∣∣∑

j
|xj | =

∑
i

∣∣∣∣∣∑j ai,j xj∑
k xk

∣∣∣∣∣ ≤∑
i

∑
j
|ai,j |

∣∣∣ xj∑
k |xk|

∣∣∣ = ∑
j

(∑
i
|ai,j |

) ∣∣∣ xj∑
k |xk|

∣∣∣ ≤ max
j

{∑
i
|ai,j |

}∑
j

∣∣∣ xj∑
k |xk|

∣∣∣ = max
j

{∑
i
|ai,j |

}
,

and this upper bound is attained taking xj∗ = 1 and xj = 0 for j ̸= j∗, for j∗ such that∑
i
|ai,j∗ | = max

j

{∑
i
|ai,j |

}
.

Lemma 10 Let x, y ∈ Rn and A ∈ Rn ×Rn, then ||ytAx||1 ≤ ||y||∞||A||1||x||1.

Proof. ||ytAx||1 = |
∑
i
yi
∑
j
(A)i,jxj | ≤

∑
i

∑
j
|yi(A)i,jxj | ≤

∑
j
max
k

{|
∑
i
yi(A)i,k|}|xj |

≤ max
k

{|
∑
i
max
h

{yh}(A)i,k|}||x||1 = ||y||∞||A||1||x||1
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Condition 2 guarantees that ||B||1 < 1 and so we have the convergence result we wanted:

lim
k→∞

||c(k+1,j0)||1 = lim
k→∞

||Bkc(0,j0)||1 ≤ lim
k→∞

||Bk||1||c(0,j0)||1 ≤ lim
k→∞

(||B||1)k ||c(0,j0)||1 = 0

So, for j ̸= j0: lim
k→∞

|c(k)j | ≤ lim
k→∞

∑
j′ ̸=j0

|c(k)j′ | = lim
k→∞

||c(k,j0)||1 = 0.

And for j0: lim
k→∞

|c(k)j0
− c

(k−1)
j0

| = lim
k→∞

|a′Bc(k−2,j0)| = 0. So, {c(k)j0
}k is a Cauchy sequence on R, and

since (R, | · |) is a complete metric space, it is convergent: lim
k→∞

c
(k)
j0

= c∗j0 .

4.6.11.2 Neumann series expansion of the inverse

Note that if lim
k→∞

Bk = 0, then lim
K→∞

(I − B)
K∑
k=0

Bk = lim
K→∞

K∑
k=0

Bk −
K+1∑
k=1

Bk = lim
K→∞

I − BK+1 = I.

And so (I−B)−1 =
∞∑
k=0

Bk. In our case, Condition 3 guarantees that B = I−A satisfies ||I−A||1 < 1

and so lim
k→∞

Bk = 0; therefore, we have A−1 =
∞∑
k=0

(I −A)k, and so the solution to our system is given

by x = A−1c =
∞∑
k=0

Bkc.

Lemma 11 We have bj,j := (B)j,j = 0, bi,j = (B)i,j = −ai,j for all i ̸= j, and so:

xj0 = cj0 +

∞∑
k=1

(−1)k
∑

j1 /∈{j0}

∑
j2 /∈{j1}

· · ·
∑

jk /∈{jk−1}

k−1∏
s=0

ajs,js+1cjk

Proof. For k = 0: B0c = c. For k = 1: (B1c)j0 =
∑

j1 /∈{j0}
bj0,j1cj1 . Suppose by induction that for

k = K: (BKc)j0 =
∑

j1 /∈{j0}

∑
j2 /∈{j1}

· · ·
∑

jK /∈{jK−1}

K−1∏
s=0

bjs,js+1cjK . Then, for k = K + 1: (BK+1c)j0 =

(BBKc)j0 =
∑

i/∈{j0}
bj0,i

∑
j1 /∈{i}

∑
j2 /∈{j1}

· · ·
∑

jK /∈{jK−1}

K−1∏
s=0

bjs,js+1cjK , and redefining js as js+1 for s =

1, . . . ,K and defining j1 = i, we have the result. Then, we just need to change bi,j = (−1)ai,j .

4.6.11.3 Proof of Corollary 7

Consider the change of variable x = x′ + z with z a vector of zeros except in position k, zk = µ, with

µ ∈ R. So Ax′ = c′, with c′j = cj − µaj,k, ∀j ∈ J , is a system equivalent in xj for all j ∈ J \ {k}.

Using that for all j ∈ J \ {k}, we have aj,k ≤ 0 and kcj = 1 − kck (where, for a generic x: kx = 1 if

x ≥ 0 and 0 otherwise), then c′j = (−1)kcj (|cj | − |ck||aj,k|); so, sign(cj) = sign(c′j) for j ∈ J \ {k}

if and only if |cj | − |ck||aj,k| ≥ 0 ⇐⇒ |ck| ≤
|cj |
|aj,k| , for all j ∈ J \ {k}. Then, if ck satisfies this

condition, we have that (−1)1−kck c ≥ 0, and so Proposition 6 then tells us that for all j ∈ J \ {k}:

sign(xj) = sign(x′j) = sign(c′j) = sign(−ck) = sign(cj).

□
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4.6.11.4 Proof of Proposition 9

Consider the change of variables x = x′+z with z defined by zj0 = 0 and zj = cj , ∀j ∈ J \{j0}, which

leads to a system Ax′ = c′ equivalent in variable xj0 . Now, with the aim to iterate this operation,

define c(0) := c, x(0) := x, and for m ∈ {0} ∪ N, define z(m) defined as z
(m)
j0

= 0, and z
(m)
j = c

(m)
j ,

∀j ∈ J \{j0}. And define c(m+1) := c(m)−Az(m), and x(m+1) = x(m)−z(m) (and since by construction

of z(m) we have z
(m)
j0

= 0 for allm, then x
(m)
j0

= xj0 for allm, and so Ax(m) = c(m) is equivalent in xj0 to

Ax = c). We are going to show that if A satisfies Condition 3, then the sequence {c(m)}m∈N converges

to a vector of the form c∗ = (0, . . . , c∗j0 , . . . , 0)
t; and so, that we converge to a system equivalent in xj0

to which we can apply Proposition 5, which then would tell us that sign(xj0) = sign(c∗j0).

To this aim, let’s first introduce some notation. For a generic vector x ∈ Rn, we will denote x(j) the

vector in Rn−1 the vector obtained from eliminating the j-th element in x. Analogously, for a generic

matrix A ∈ Rn×Rn, A(j) will denote the matrix in Rn−1 ×Rn−1 obtained from eliminating row and

column j from A, and (A)(r,j0) denote the row j0 of matrix A without the element j0. With this, note

that we have

c
(m+1)
j0

= c
(m)
j0

− (A)(r,j0)c
(m)
(j0)

c
(m+1)
(j0)

= c
(m)
(j0)

−A(j0)c
(m)
(j0)

= Bc
(m)
(j0)

where we have defined B := 1n−1 − A(j0), with 1n−1 the (n − 1)-dimensional identity matrix. Then,

we have:

Lemma 12 {c(m)}m defined above converges to a vector of the form c∗ = (0, . . . , c∗j0 , . . . , 0)
t.

Proof. Condition 3 guarantees that ||B||1 < 1 and so we have the convergence result we wanted,

since this guarantees that

lim
m→∞

||c(m+1)
(j0)

||1 = lim
k→∞

||Bmc
(0)
(j0)

||1 ≤ lim
m→∞

(||B||1)m ||c(0)(j0)
||1 = 0

So, for j ̸= j0: lim
m→∞

|c(m)
j | ≤ lim

m→∞

∑
j′∈J\{j0}

|c(m)
j′ | = lim

m→∞
||c(0)(j0)

||1 = 0.

And for j0: lim
m→∞

|c(m)
j0

− c
(m−1)
j0

| = lim
m→∞

|(A)(r,j0)c
(m)
(j0)

| = 0. So, {c(m)
j0

}m is a Cauchy sequence on R,

and since (R, | · |) is a complete metric space, it is convergent: lim
m→∞

c
(m)
j0

= c∗j0 .

Then, the z of the proposition is given by z =
∑

m z
(m). And using Neumann expansion series, we

get an explicit expression of c∗j0 :

Lemma 13 We have: c∗j0 = cj0 +
K∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

ajs,js+1cjk+1
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Proof. Direct from Lemma 11.

Example 4 (Case n = 2): If n = 2:

c∗j0 = cj0 +

∞∑
k=0

(−1)1a′c(k,j0) = cj0 +

∞∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

ajs,js+1cjk+1

= cj0 +

0∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

ajs,js+1cjk+1

= cj0 − aj0,j1c1

□

Example 5 (Case n = 3): If n = 3:

∞∑
k=0

(−1)1a′c(k,j0) =
∞∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

ajs,js+1cjk+1

=
∞∑
k=0

(−1)k+1
∑

s∈{1,2}

aj0,js
(
ajs,j3−saj3−s,js

)⌊ k
2
⌋
a
k
2
−⌊ k

2
⌋

js,j3−s

(
1{k odd}cj3−s + 1{k even}cjs

)
=

∞∑
k=0

∑
s∈{1,2}

aj0,js

((
ajs,j3−saj3−s,js

)k
ajs,j3−scj3−s −

(
ajs,j3−saj3−s,js

)k
cjs

)
=

∑
s∈{1,2}

aj0,js
ajs,j3−scj3−s − cjs
1− ajs,j3−saj3−s,js

=
∑

s∈{1,2}

aj0,j3−saj3−s,js − aj0,js
1− ajs,j3−saj3−s,js

cjs

So:

c∗j0 = cj0 +
aj0,j2aj2,j1 − aj0,j1
1− aj1,j2aj2,j1

cj1 +
aj0,j1aj1,j2 − aj0,j2
1− aj2,j1aj1,j2

cj2

□

Example 6 Suppose ai,j = a for all i ̸= j and aj,j = 1. To satisfy Condition 2, it must be a ≤

(n− 2)−1. Then, Lemma 13 writes:

c∗j0 = cj0 +

∞∑
k=0

(−1)k+1
∑

j1 /∈{j0}

∑
j2 /∈{j0,j1}

· · ·
∑

jk+1 /∈{j0,jk}

k∏
s=0

acjk+1

= cj0 −
∑

j1 /∈{j0}

acj1 +
∞∑
k=1

(−1)k+1
∑

jk+1 /∈{j0}

∑
jk /∈{j0,jk+1}

· · ·
∑

j1 /∈{j0,j2}

ak+1cjk+1

= cj0 −
∑

j1 /∈{j0}

acj1 +

∞∑
k=1

(−1)k+1
∑

j1 /∈{j0}

(n− 2)kak+1cj1

Note that
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∞∑
k=1

(−1)k+1(n− 2)kak+1 =
∞∑
k=0

(−1)k(n− 2)k+1ak+2 = (n− 2)a2
∞∑
k=0

(−1)k[(n− 2)a]k

= (n− 2)a2
∞∑
k=0

[(n− 2)a]2k [1− (n− 2)a] = (n− 2)a2
1− (n− 2)a

1− [(n− 2)a]2
=

(n− 2)a2

1 + (n− 2)a

c∗j0 = cj0 −
∑

j1 /∈{j0}

acj1 +
∑

j1 /∈{j0}

(n− 2)a2

1 + (n− 2)a
cj1 = cj0 −

∑
j1 /∈{j0}

acj1

[
1− (n− 2)a

1 + (n− 2)a

]

= cj0 −
∑

j1 /∈{j0}

acj1
1 + (n− 2)a

□

4.6.12 Appendix Applications

4.6.12.1 Setup

Consumers. Preferences are CES, in particular, the representative consumer solves

max
{yj}j∈J

Y =

∑
j∈J

y
σ−1
σ

j

 σ
σ−1

, s.t. E = PY =
∑
j∈J

pjyj

Solution: yj = EP σ−1p−σj = Y

(
P

pj

)σ
= Y 1−σ

(
E

pj

)σ
, with P =

∑
j∈J

p1−σj

 1
1−σ

With this, the market share is given by sj =
pjyj
E =

(pj
P

)1−σ
=
(yj
Y

)1− 1
σ , which can be expanded (both

in prices and in quantities):

sj =

 J∑
j′=1

(
pj′

pj

)1−σ
−1

=

 J∑
j′=1

(
Aj
Aj′

Mj′

Mj

)1−σ
−1

=

 J∑
j′=1

(
yj′

yj

)σ−1
σ

−1

Lemma 14 (Derivatives of sj, P and Y ):

1. ∂P
∂pj

=
(pj
P

)−σ
= s

− σ
1−σ

j

2. ∂Y
∂yj

= Y
1
σ y

− 1
σ

j = s
− 1
σ−1

j

3.
∂sj
∂yj

= σ−1
σ sj

[
1
yj

− 1
Y
∂Y
∂yj

]
= σ−1

σ
sj
yj

[
1−

(yj
Y

)1− 1
σ

]
= σ−1

σ
sj
yj
(1− sj)

4.
∂sj
∂yk

= −σ−1
σ sj

1
Y
∂Y
∂yk

= −σ−1
σ

sj
yk

(yk
Y

)1− 1
σ = −σ−1

σ
sj
yk
sk

5.
∂sj
∂pj

= (1 − σ)sj

[
1
pj

− 1
P
∂P
∂pj

]
= (1 − σ)

sj
pj

[
1−

(pj
P

)1−σ]
= (1 − σ)

sj
pj
(1 − sj). Note that

∂sj
∂Mj

=

∂sj
∂pj

∂pj
∂Mj

= (1− σ)
sj
pj
(1− sj)

w
Aj

= (1− σ)
sj
Mj

(1− sj)

6.
∂sj
∂Mk

=
∂sj
∂pk

w
Ak

= −(1− σ)sj
1
P
∂P
∂pk

w
Ak

= −(1− σ)
sj
Mk

(pk
P

)1−σ
= (σ − 1)

sj
Mk

sk.

7. When we are taking quantities as given, Aj has no effect on market shares; but when we take

markups as given, they do, and they are given by:
∂sj
∂Aj

= sj(1− sj)
σ−1
Aj

, and
∂sj
∂Ak

= −sjsk σ−1
Ak
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Firms. Firm j’s production function is given by yj = Ajℓj , and so profits write πj = sj(1−M−1
j ),

where Mj =
pj
wAj is the markup. Firm j solves max

pj
sj(1−M−1

j ), s.t Mj =
pj
wAj , and sj =

(pj
P

)1−σ
.

Proof of Lemma 8: For the FOC:

∂πj
∂Mj

=
∂sj
∂Mj

(1−M−1
j ) + sjM−2

j = (1− σ)
sj
Mj

(1− sj)(1−M−1
j ) + sjM−2

j

=
sj
Mj

[
M−1

j − (σ − 1)(1− sj)(1−M−1
j )
]

1.
∂Fj
∂Mj

= − 1
M2

j
− σ−1

M2
j
(1− sj) + (σ − 1)(1−M−1

j )
∂sj
∂Mj

= −σ−1
Mj

[
1− sj − 1

(σ−1)(1−sj)
∂sj
∂Mj

]
, where

the last equality follows from the FOC.7 And substitute for
∂sj
∂Mj

.

And
∂Fj
∂Mk

= (σ−1)(1−M−1
j )

∂sj
∂Mk

= 1
Mj

1
1−sj

∂sj
∂Mk

, where the last equality comes from the FOC.

And substitute for
∂sj
∂Mk

.

2.
∂Fj
∂Aj

=
∂Fj
∂sj

∂sj
∂Aj

and
∂Fj
∂Ak

=
∂Fj
∂sj

∂sj
∂Ak

, were we need the expressions of
∂sj
∂Aj

and
∂sj
∂Ak

from Lemma

14, and that
∂Fj
∂sj

= (σ− 1)(1−M−1
j ) = 1

Mj

1
1−sj , where the last equality follows from the FOC.

□

Proof of Lemma 9: First: (i)
∂Gj
∂sj

= 1−M−1
j , (ii)

∂Gj
∂Mj

=
sj
M2

j
, and

∂Gj
∂πj

= −1.

Then:

1.
∂Gj
∂Mj

= 0 due to the FOC, and ∂Gi
∂Mj

= ∂Gi
∂si

∂si
∂Mj

= (1−M−1
i )(σ − 1)

sisj
Mj

=
sisj

MjMi(1−si)

2.
∂Gj
∂Aj

=
∂Gj
∂sj

∂sj
∂Aj

= (1 − M−1
j )(σ − 1)

sj(1−sj)
Aj

=
sj

MjAj
, and ∂Gi

∂Aj
= ∂Gi

∂si
∂si
∂Aj

= −(1 − M−1
i )(σ −

1)
sjsi
Aj

= − sjsi
MiAj(1−si)

□

4.6.12.2 Cournot Competition

Firm j solves max
yj

sj(1−M−1
j ), s.t Mj =

pj
wAj , pj = EY

1−σ
σ y

− 1
σ

j , and sj =
(yj
Y

)1− 1
σ . We are going to

show that: (i)
dMj

dAj
≥ 0, dMk

dAj
≤ 0; and (ii)

dyj
dAj

≥ 0, dyk
dAj

≥ 0

Lemma 15 The FOC writes:

Fj(y1, . . . , yn) :=
σ − 1

σ
(1− sj)−M−1

j = 0

We will need the following derivatives:

7In particular, substitute − 1
M2

j
= − 1

Mj
(σ− 1)(1−M−1

j )(1− sj) = −σ−1
Mj

(1− sj) +
σ−1
M2

j
(1− sj) in the first

term, and (σ − 1)(1−M−1
j ) = 1

Mj(1−sj) in the third term.

126



∂Fj
∂yj

= −
(
σ−1
σ

)2 sj(1−sj)
yj

, ∂Fi
∂yj

=
(
σ−1
σ

)2 sisj
yj

∂Fj0
∂Aj0

= 1
Aj0Mj0

,
∂Fj
∂Aj0

= 0

Proof. For the FOC, first, note that
∂pj
∂yj

= pj

[
1−σ
σ

1
Y
∂Y
∂yj

− 1
σ

1
yj

]
=

pj
yj

[
1−σ
σ

(yj
Y

)1− 1
σ − 1

σ

]
= −pj

yj
(σ−1
σ sj+

1
σ ) = −pj

yj
(sj +

1
σ (1− sj))

∂πj
∂yj

=
∂sj
∂yj

(1−M−1
j ) + sjM−2

j

∂Mj

∂pj

∂pj
∂yj

=
σ − 1

σ

sj
yj

(1− sj)(1−M−1
j )− sjM−2

j

Aj
w

pj
yj

(sj +
1

σ
(1− sj))

=
sj
yj

[
σ − 1

σ
(1− sj)(1−M−1

j )−M−1
j (sj +

1

σ
(1− sj))

]
=
sj
yj

[
σ − 1

σ
(1− sj)− (1− sj)M−1

j

(
σ − 1

σ
+

1

σ

)
− sjM−1

j

]
=
sj
yj

[
σ − 1

σ
(1− sj)−M−1

j

]
1.

∂Fj
∂yj

=
∂Fj
∂sj

∂sj
∂yj

= −
(
σ−1
σ

)2 sj(1−sj)
yj

, and ∂Fi
∂yj

= ∂Fi
∂si

∂si
∂yj

=
(
σ−1
σ

)2 sisj
yj

2.
∂Fj
∂Aj

=
∂Fj
∂Mj

∂Mj

∂Aj
= 1

MjAj
, and ∂Fi

∂Aj
= 0

where we have used: (i)
∂Fj
∂Mj

= 1
M2

j
; (ii)

∂Fj
∂sj

= −σ−1
σ ; (iii)

∂Mj

∂Aj
=

Mj

Aj

Then, we have the linear system Ax = c, where (A)i,j = ai,j := −∂Fi
∂yj

, xj :=
dyj
dAj0

, and cj :=
∂Fj
∂Aj0

.

Next, we obtain a system equivalent in signs by applying operations of the type described in Lemma

6. We suggest two alternatives:

One is to multiply column j of A by ej =
1

Aj0Mj0

(
σ−1
σ

)−2 yj
sj

1
1−sj (i.e. change of variable x′j = e−1

j xj),

and row i of both A and c by bi = Aj0Mj0 . So, we have:

(A′)j,j = (A)j,jbjej = 1 , (A′)i,j = (A)i,jbiej = − si
1−sj

c′j0 = cj0bj0 = 1 , c′i = cibi = 0

It is straightforward to check that the system satisfies column diagonal dominance of Condition 2,

since 1− sj ≥
∑

k∈J\{j}
sk.

In addition, using Corollary 4 cj >
∑

{i∈J\{j}:|aj,i|ci<0}
|ŷi||ci| −

∑
{i∈J\{j}:|aj,i|ci≥0}

|ŷi,0||ci|, with |ŷi| = 1

and |ŷi,0| = |(A′)j,i| = sj
1−si , we have:

1. cj0 = 1 > 0 = −
∑

{j∈J\{j0}:cj≥0}
|(A′)j0,j ||cj |, and so xj0 ≥ 0

2. cj = 0 > − sj
1−si = −

∑
{i∈J\{j}:ci≥0}

|(A′)j,i||ci|, and so xj ≥ 0, ∀j ∈ J \ {j0}

The other alternative is to multiply each column j of A by yj , and then it is straightforward to check

that the resulting matrix satisfies row diagonal dominance of Condition 6, and minj Ac,j > 0, so we

can apply Corollary 6, and since cj = 0, ∀j ∈ J \{j0}, it is straightforward that sign(xj0) = sign(cj0),

it can also be shown that sign(xj) = sign(cj0), ∀j ∈ J \ {j0}, using, in addition, Corollary 4.
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Effect on markups:

Lemma 16 We will need the following derivatives:

∂Fj
∂Mj

= M−2
j + (σ−1)2

σ
sj
Mj

(1− sj) ,
∂Fi
∂Mj

= − (σ−1)2

σ
sj
Mj

si

∂Fj0
∂Aj0

= − (σ−1)2

σ

sj0
Aj0

(1− sj0) ,
∂Fj
∂Aj0

= (σ−1)2

σ

sj0
Aj0

sj

Proof.

1.
∂Fj
∂Mj

= M−2
j − σ−1

σ
∂sj
∂Mj

= M−2
j + (σ−1)2

σ
sj
Mj

(1− sj), and
∂Fk
∂Mj

= − (σ−1)2

σ
sj
Mj

sk

2.
∂Fj
∂Aj

=
∂Fj
∂sj

∂sj
∂Aj

= −σ−1
σ sj(1− sj)

σ−1
Aj

. On the other hand, ∂Fk∂Aj
= ∂Fk

∂sk
∂sk
∂Aj

= σ−1
σ sjsk

σ−1
Aj

.

Then, we have the linear system Ax = c, where (A)i,j =
∂Fi
∂Mj

, xj :=
dMj

dAj0
, and cj := − ∂Fj

∂Aj0
.

We can obtain a system A′x′ = c′ equivalent in signs by applying operations of the type described in

Lemma 6. In particular, multiply row i of both A and c by bi =
σ

(σ−1)2
Aj0
sj0

, and column j of A by

ej =
sj0
Aj0

Mj

sj
dj (i.e. change of variable x′j =

xj
ej
), where dj =

[
(Mjsj)

−1 σ
(σ−1)2

+ 1− sj

]−1
. So, we

have:

(A′)j,j = (A)j,jbjej = 1 , (A′)i,j = (A)i,jbiej = −sidj

c′j0 = cj0bj0 = 1− sj0 , c′i = cibi = −si

So, this transformed system is exactly the same as the case of Bertrand.

128


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Advertising Motives and Firm Life-Cycle Dynamics in a General Equilibrium Model
	Introduction
	Model
	Environment
	Equilibrium

	Quantitative analysis
	Calibration
	Advertising motives and firm age and size
	Counterfactuals shutting motives

	Welfare: Planner Problem and Taxation
	Social planner problem
	Taxing advertising: Uniform tax
	Age-dependent tax

	Concluding remarks
	References
	Appendix
	Calibration Appendix: Data sources and Computation of moments
	Additional Figures
	Preferences
	Production Firms
	Derivative with respect to advertising and Proof of Proposition 1 
	Social planner problem
	Proof of convergence to an ergodic distribution and uniqueness
	Summary of the method to solve the model
	Multivariate Newton Interpolation


	Fiscal Policy, Competition and Growth
	Introduction
	The model
	Environment
	Equilibrium

	Quantitative Analysis
	Calibration
	Fiscal Policy Effects: the Role of Market Structure Endogeneity
	Policy complementarity 

	Conclusion
	References
	Appendix
	Preferences with taxes (on consumption and leisure)
	Production Firms
	Stationary distribution
	Estimation
	Aggregate Production Function and Growth
	Summary of the code to solve the model


	New sufficient conditions for Comparative statics using the Farkas' Lemma
	Introduction
	Theory
	Setting of interest and notation
	Farkas' Lemma and some corollaries
	Comparative Statics: Sign
	Comparative Statics: Bounds

	Applications
	Oligopoly with differentiated goods

	Conclusion
	References
	Appendix
	Proof Lemma 6
	Proof Proposition 5
	Proof Corollary 2
	Proof of the least demanding condition with |yj|=H for all jJ{j0}
	Proof Proposition 10
	Proof Corollary 8
	Proof Proposition 6
	Proof Corollary 4
	Proof Proposition 7
	Proofs Row diagonal dominance
	Other
	Appendix Applications



