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Abstract

Abstract

Continuous advancements in GNSS systems, apart from the broadly used GPS, have led to
the development of other satellite systems (Galileo, BeiDou, GLONASS), which have
significantly increased the number of available satellites for GNSS positioning applications.
However, GNSS satellites’ redundancy and potential poor GNSS satellite signals can
negatively affect the GNSS’s positioning speed and accuracy. On the other hand, selecting
high-quality GNSS satellite signals by retaining a sufficient number of GNSS satellites can
enhance the GNSS’s positioning performance. Various methods have been applied for
satellite selection. However, the selected satellites via these methods could be insufficient
for precise positioning. These methods were designed to select satellites for Single Point
Positioning (SPP) solution with meters level accuracy. This is because these satellite
selection methods only consider SPP factors. To choose satellites for precise positioning,
new satellite selection method was developed considering Precise Point Positioning (PPP)
factors. Various satellite selection methods were investigated and assessed to developed
new satellite selection method that fit PPP- satellite selection. To test the performance of
the new satellite selection method, several experiments have been conducted. Satellites
were selected for various PPP applications: i) static open-sky, ii) kinematic open-sky, and iii)
static at multipath conditions. In addition, satellites were selected in all possible subset
sizes, i.e., they were selected in subsets with all possible numbers of satellites. According
to experiment results, the efficiency of the new satellite selection method was excellent at
low multipath environment regardless of PPP modes: static or kinematic. The positioning
accuracy of original PPP, using all satellites, was achieved by multiple sizes of selected
satellite subsets by the selection method. It was also obtained by selected satellites with
different subset sizes. In terms of high multipath environments, the performance of the
satellite selection method was less effective. The positioning accuracy of the original PPP
was not achieved by the selected satellite subsets although they provided positioning
accuracy close to the original PPP with a few satellites. This achievement is quite promising
although the new satellite selection method needs further improvement.
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Chapter 1 Introduction

1.1 Introduction

The Global Navigation Satellite System (GNSS) is a system of satellites, including GPS
(Global Positioning System, USA), GLONASS (Global Navigation Satellite System, Russian),
Galileo (European Union), BDS (BeiDou Navigation Satellite System, China), and other
regional navigation satellite systems. Essentially, GNSS provides positioning, navigation,
and timing (PNT) services. Nowadays, it becomes an important part of human life as it
supports a large number of applications. GNSS has been used in transportation. It supports
road navigation, as well as tracking and controlling the trips of trains, ships, and planes. In
farming, it supports precision agriculture by determining the right location for soil sampling,
seed spreading, and guiding harvesting machines. In engineering, it is utilized for
applications like mapping, construction, and structural health monitoring (SHM).
Furthermore, it has been used in emergency response services, social networking, and even
gaming.

Reliable and continuous GNSS results are necessary for many applications, as aviation and
autonomous car (AC). Due to the recent development in GNSS satellite systems, the
number of satellites available in space has reached 126; 31 GPS [1], 24 GLONASS [2], 25
Galileo [3], 35 BeiDou [4], 4 QZSS [5], and 7 IRNSS satellites [6]. As a result, the number of
satellites simultaneously visible from a single location, depending on geographic location,
can reach or exceed 30 [7]. The potential of using such a diverse and large number of GNSS
satellites can improve the accuracy and availability of the GNSS solution in positioning,
navigation and timing (PNT) services.

1.2 Problem Background

However, using large number of GNSS satellites also has limitations. The number of
computations required for GNSS positioning grows as the number of the used GNSS
satellites increases. Compared to 10 GNSS satellites the required time for processing the
position based on 20 and 30 GNSS satellites increases by a factor of 3 and 6, respectively
[8]. In addition, GNSS positioning accuracy generally increases with the number of available
satellites, but practically no further enhancement is achieved after a certain number of
satellites [9,10]. This was also revealed by Msaewe et al., [11], using zero-baseline GNSS
measurements. The accuracy of GNSS positioning did not improve with the decrease of
geometric dilution of precision (GDOP). Moreover, increasing the number of GNSS satellites
cannot always guarantee a higher quality of the sustained position. The positioning derived
from multi-satellite system (multi-GNSS) integration is not of the highest possible accuracy
due to introduced errors of various error sources. For example, multipath is one of the main
error sources [12], even under relative positioning [13]. As the number of positioning
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satellites decreases, the efficiency of positioning processing increases in terms of time cost
and power consumption.

This improvement can be sensitive for low-cost receivers [14], which are used for more than
91% of GNSS applications [15]. Recently, low-cost receivers have been tested in SHM [16-
19], which is a critical application [16]. One of the main requirements in many GNSS
monitoring applications is to limit as much as possible the GNSS data size for more
sustainable and reliable transmission of the GNSS data, which makes important to choose
only the optimal satellites which will lead to accurate and reliable GNSS solution. Therefore,
the GNSS satellite selection is required not only to improve the GNSS performance but also
to make the application of GNSS technology more sustainable.

1.3 Motivation and Significance of The Study

GNSS satellite selection is the process of choosing the right GNSS satellite combination
from the available GNSS satellites, aiming for better positioning quality with lower
computation load [20]. Various methods were used for satellite selection and have applied
in multiple studies for the three positioning techniques. However, most of these studies
were implemented for single point positioning (SPP) [21]. In addition, satellites for
differential positioning (DGNSS) and precise point positioning (PPP) were chosen using SPP
satellite selection methods, which ighored DGNSS and PPP factors such as satellite precise
orbit. Except for Martini et al. [22], who considered satellite precise orbit and clock in
satellite selection for PPP. However, achieving precise outcomes using PPP requires further
correction, such as solid earth tide and ocean loading corrections [23]. Thus, satellite
selection for DGNSS and PPP needs more investigation.

DGNSSiis a positioning technique that determine the location of receiver (rover) with respect
to another (station) with known coordinates. Receiver difference measurements are used to
eliminate or mitigate common errors, as the errors of satellite orbit, clock and atmospheric
biases. It also eliminates the delay due to satellite and receiver hardware, which increases
carrier phase ambiguity resolution. Hence, DGNSS provides fast and high accurate
positioning. However, the distance between the receivers (rover and station) is critical
because the greater it is, less common errors there are, consequently, corrections become
less accurate [24]. Therefore, a network of GNSS station-receivers is required to obtain
precise results of DGNSS. This makes DGNSS expensive and not suitable in remote areas
and undeveloped countries with no GNSS reference stations or benchmarks.

On the other hand, PPP is an absolute/ standalone positioning technique. It provides
centimetres to millimetres positioning accuracy by using precise products of satellite orbit
and clock and correction models to mitigate other types of GNSS errors, as atmospheric
biases. PPP takes tens of minutes to reach centimetre level of accuracy when using signal
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satellite system [24]. Recently, centimetre of PPP accuracy can be reached in few minutes
by using multiple satellite systems [25-27]. Compared to DGNSS, PPP is more flexible, less
expensive and provides comparable positioning accuracy.

1.4 Aims and Objectives

The aim of this thesis is to develop a method for the selection of an optimal subset of GNSS
satellites for precise PPP solution, considering all the corrections for PPP solution. The
project aim can be achieved through the following objectives:

1.4.1 Investigate different satellites selection methods and define the most suitable
one.

Various methods were used to select satellites. Each satellite selection method consists of
two components: criterion and technique. The criterion is a factor based on which satellites
are selected, as satellite selection elevation angle, satellite signal quality, and geometry
(GDOP). The technique is an approach for selecting satellites based on the criterion, such
as cut-off elevation angle. Thus, the quality of the selected satellites is affected by the
satellite selection method (criterion and technique), revealing the importance of defining
appropriate one of them. In order to find them, various types of them were investigated
based on literature. This is to determine the most suitable satellite selection method for
PPP.

1.4.2 Evaluating the performance of the chosen technique for satellite selection

After determining the suitable satellite selection criterion and technique, their reliability,
integrity and efficiency should be evaluated. As mentioned earlier, the criterion is a factor
based on which satellites are selected, and the technique is an approach for selecting
satellites based on the criterion. Hence, the performance of the selection technique
affecting the efficiency of the selection criterion. As a result, the performance of selection
technique was proven first before criterion.

The technique was evaluated based on selection accuracy and speed. The selection
accuracy is how closely the WGDOP value of the optimal satellite subset selected by
optimization algorithms matches that of the actual optimal subset. Regarding the evaluation
of the selection speed is defined as the time required to determine the optimal subset of
GNSS satellites.

1.4.3 Define the criteria and process for satellite selection

The most suitable selection criterion was chosen from previous satellite selection methods
that were design to consider SPP factors. Therefore, more positioning factors (PPP factors)
were considered along with chosen in different combinations. Their efficiency was
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evaluated to determine their fitness for PPP-satellite selection. They were evaluated based
on the positioning quality of the selected satellites, including positioning accuracy,
precision, and continuity.

1.4.4 Experimental evaluation of satellite selection method

As mentioned in section 1.4.3, new criterion for selecting satellites was developed by
considering more positioning factors. However, it was only evaluated in static open-sky
environment. To have comprehensive evaluation, the new satellite selection method was
used for satellite selection in different scenarios, including kinematic mode and multipath
environments. The performance of satellite selection method (criterion) was assessed
based on the positioning quality of its selected satellites.

1.5 Innovation of The Work

This work contributes by providing a new satellite selection method suitable for PPP solution
(i.e., precise positioning solution). It considers all PPP’s corrections like orbit, clock, ocean
loading, and Earth rotation. In addition, it also takes into account carrier phase ambiguity
resolution by considering the continuity of the selected satellites. Furthermore, the work
defines the most suitable number of satellites and the environment for the fixed satellite
selection. To do so, various techniques and criteria for selecting satellites, as well as order
of selection, were investigated.

1.6 Thesis Outline

In addition to this Introduction chapter (Chapter 1), the thesis has nine main chapters, which
are listed below. Chapter 2 describes the GNSS principle, covering GNSS overview,
observation types, and error sources. Chapter 3 investigates various satellite selection
methods, including their criteria and techniques. Chapter 4 presents an overview of five
types of optimization algorithms, covering their principle, advantages, limitations, and
applications. Chapter 5 presents the methodology of the project. Chapter 6 evaluates the
efficiency of the five optimization algorithms in satellite selection. Chapter 7 define new
criteria for PPP-satellite selection and evaluates their quality to determine the most suitable
one. Chapter 8 assesses the performance of the new satellite selection method (criterion)
in kinematic and multipath scenarios. Finally, Chapter 9 concludes the thesis by presenting
findings and recommendations.
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2.1 GNSS Background

GNSS consists of three main segments: i) the space segment, ii) control segment, and iii)
user segment. The space segment is the GNSS satellites orbiting Earth at different
elevations and continuously broadcasting their signals. The control segment is ground
stations monitoring the health of GNSS satellites and providing necessary corrections, as
updating their orbits and clocks. The user segment is GNSS receivers on Earth controlled by
users for various applications of positioning, navigation and timing.

126 GNSS satellites are currently in operation. They are controlled by different operators and
transmitting signals in different frequency bands. In addition, they are orbiting Earth at
different altitudes, including: i) Medium Earth Orbit (MEO), ii) Geostationary Earth Orbit
(GEQ), iii) Inclined Geo-Synchronous Orbit (IGSO) and iv) Quasi-Zenith Orbit (QZO). They are
classified into six constellations as shown below:

Table 2.1 Characteristic of six GNSS satellite systems

System Operator NSAT Orbital Frequency MHz References
MEO L1(1575.42),
GPS USA 31 (20,200 km) L2 (1227.60), [1,28]
’ L5(1176.45)

G1(1598.063 - 1608.75),
MEO G1a (1600.995),
GLONASS Russia 24 (o100km) ~ ©2(1242.938-1251.25), [2,28]
’ G2a (1248.06),
G3 (1202.025)

E1(1575.42),
MEO E5(1191.795),
Galileo EU 25 (23.222km)  E98 (1176.45), [3,28]
’ E5b (1207.14),
E6 (1278.75)

B1(1575.42),

B1-2 (1561.098),
MEO, GEO,  B2(1191.795),

IGSO B2a (1176.45),

B2b (1207.14),
B3 (1268.52)
L1(1575.42),
L2 (1227.60),
L5 (1176.45),
L6 (1278.75)
L5 (1176.45),
S-band (2492.028)

BeiDou China 35 [4,28,29]

QZSS Japan 4 QZO, GEO [5,28]

IRNSS India 7 GEO, IGSO [6,28]
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The location of user’s receiver is basically defined via triangulation, where unknown location
(user) is determined by measuring the distance to several known locations (satellites). At
least 4 satellites are required to obtain the user’s location in three coordinates. GNSS
satellites are continuously broadcasting their signals. Each GNSS satellite signal has three
main components: i) code, ii) carrier, and iii) navigation message. The navigation message
contains satellite information, including its location. By collecting satellite signhals, their
location can be known. The distance between the satellite and receiver can also be found
from satellite signal using its code and carrier. The code-based distance is called pseudo-
range, and the carrier-based distance is called carrier phase.

Once GNSS receiver receives a satellite signal, it creates a replica of its code to determine
the signal travel time by measuring the delay between the incoming code and its replica.
Hence, the distance between a satellite and receiver is the signal travel time multiplied by
light speed (i.e., signal speed) [30]. This distance is code-based distance and known as the
pseudo-range. In contrast, the carrier-based distance is the sum of the carrier cycles
including the fractional cycle multiplied by the carrier wavelength [30]. Both pseudo-range
and carrier phase measurements are negatively affected by error source. Common sources
of error are explained below.

2.2 GNSS Common Error Sources

2.2.1 Satellite Orbit and Clock Errors

Satellites fly in well-defined orbits although sometimes satellites deviate from their orbits.
As aresult, the errorin satellite orbit is the difference between actual and the predicted orbit
[31]. On the other hand, the satellites are equipped with highly accurate atomic clocks.
However, they are not perfectly synchronised with the GNSS reference time, resulting in
clock error [24]. If the orbit and clock errors are not corrected, the pseudo-range and carrier
phase measurements will be significantly inaccurate [24].

2.2.2 lonospheric Delay

The ionosphere is a layer of the atmosphere that extends from about 50 to 1,000 kilometres
above the Earth's surface [32]. According to [24], ultraviolet radiation from the Sun ionizes
some of the gas molecules in the ionospheric layer. This creating free electrons that affect
GNSS signals. They delay the code while advancing the carrier phase measurement [24].
The amount of delay or advance is affected by the satellite elevation angle, signal frequency,
and total electronic content (TEC). The ionospheric bias can be expressed as follows:

1 40.3
*
sin(elev?) f?

diont = * TEC (2.1)
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Where:

e dion%,is the ionosphere bias in meter between the satellite e and receiver u.

e elevé,is the elevation between the satellite e and receiver u.

e 1/sin(elev,) is the mapping function (MF®,), which is affected by the elevation angle
of the satellite e with respect to receiver u (eleve,).

o fisthe frequency of the satellite signal.

e TEC is the quantity of free electronic per square meter, and 1TEC equals 10
electrons/m?2.

2.2.3 Tropospheric Delay

According to [32], the troposphere is the atmospheric layer closest to the Earth's surface. it
is spread approximately 50 kilometres above the earth surface. Itis a nondispersive medium
for GNSS frequencies less than 30 GHz. As a result, it has an equal effect on L-band GNSS
frequencies (L1, L2, and L5) [32], and S-band GNSS frequencies [24]. According to [24], It
delays both code and carrier phase measurements equally. The troposphere delays are
classified into two types: hydrostatic (dry) and nonhydrostatic (wet). More than 90% of the
total delay in the troposphere is due to dry delay, which is caused by dry air. It can by
estimated accurately. In contrast, less than 10% of the totaltropospheric delay is due to wet
delay caused by water vapor. Because of the uncertainty in the distribution of water vaporin
the atmosphere, the wet delay is more difficult to predict. Overall, tropospheric delay is
affected by atmospheric pressure, temperature, humidity, and satellite elevation angle. The
tropospheric delay expressed as follows:

dtrop;, = mdryZdry + MyerZivet (2.2)
Where:

e dtrop®,is the tropospheric delay between the satellite e and receiver u.
® mayand mue are the dry and wet mapping function.
e Ziyand Z, are the dry and wet zenith (90°) delay.

2.2.4 Receiver Clock Error and Noise

Toreduce the size, cost and complexity of GNSS receivers, cheap crystal clocks are utilized
[24]. Thus, these clocks are roughly set to the GPS time and can drift over time, causing an
offset between the receiver clock and the GNSS reference time, which is known as receiver
clock error. On the other hand, receiver noise is caused by receiver thermal noise and
dynamic stress [32]. Receiver clock errors and noise have an impact on both pseudo-range
and carrier phase measurements [24].
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2.2.5 Multipath

According to [24], multipath is a major source of positioning errors in GNSS, which occurs
when the signal reaches the receiver via multiple paths due to signal refraction by buildings,
the ground, and other objects. Multipath affects both pseudo-range and carrier phase
measurements, but it causes more errors in pseudo-range measurements than in carrier
phase measurements [32]. The size of multipath error depends on the receiver environment,
satellite elevation angle, signal characteristics, antenna gain pattern and polarization, and
receiver signal processing. Multipath error is difficult to eliminate as it cannot be entirely
removed using models and it cannot be rejected by relative positioning technique if both
receivers (rover and station) do have different environment. However, it can be mitigated by
using special antennas (e.g., choke ring antenna) and applying satellite elevation mask [32].
In addition, it could be reduced by processing wide bandwidth signals and using narrow
correlators.

2.2.6 Cycle Slip

Cycle slip is a discontinuity of the cumulative count of cycles due to the temporary loss of
satellite signal (loss of lock) [33,34]. Losing satellite signal can be happened because of
obstacles (e.g., buildings, and trees), dynamic motion, and ionospheric anomalies [34]. Due
to this losing, receiver incorrectly calculates the total number of cycles (carrier phase
measurement), consequently, the positioning accuracy is negatively affected [35,36]. To
maintain high positioning accuracy, cycle slip should be detected and repaired. Satellite
signal with cycle slip can easily be ignored for a period until it becomes stable again. [24], or
it can be corrected based on difference between code and phase measurements (code-
phase), and doppler measurements [37].

2.3 Equations of Pseudo-Range and Carrier Phase

To improve GNSS positioning, several positioning techniques were developed, including
SPP, DGNSS, and PPP. In SPP, the location of a user receiver is determined using pseudo-
range measurement. Either pseudo-range or carrier phase measurements is used for
positioning in DGNSS. Whereas both pseudo-range measurements and carrier phase
measurements are used to locate userreceiverin PPP. The observation equation of pseudo-
range and carrier phase are presented in equations (2.3) and (2.4), respectively.

PRE = p& + c(6t, — 6t°) + dioné + dtropé + ¢ (2.3)

where,
e PR{ is observed code distance (pseudo-range) between a satellite (e) and user
receiver (U) in unite of meters.
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where,

pE is geometric range (true distance) between satellite (e) and receiver (u). Itis equals
pe(T¢ +T,) = \/(Xe —X)?+ (Ye=-Y,)?+ (Z¢ — Z,)?. (X, Y€ Z¢) are satellite (e)
coordinates, while (X,,, Yy, Z,,) are receiver (u) coordinates.

c is the speed of the light in the vacuum, which equals 299,792,458 metres/second.
6t€ and dt,, are the clock offset of satellite (e) and receiver (u) from GPS time.

dionf is ionospheric delay between satellite (e) and receiver (u) in meters.

dtrop;, is tropospheric delay between satellite (e) and receiver (u) in meters.

¢ is general error source, including multipath, thermal noise, dynamic stress, and
receiver clock error in meters [24].

Aps = pg + c(8t, — 6t8) + AN — dion{ + dtropg + €f (2.4)

@¢ is observed carrier phase measurement between a satellite () and user receiver
(u) in unite of cycle.

Ais carrier wavelength, which equals A = c/f. c is the speed of the light m/sec, and f
is satellite signal frequency Hz.

N is the correction of initial phase ambiguity in unite of cycle.
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Chapter 3 Satellite Selection Methods

Various methods have been used for selecting satellites, and these methods have relied on
selection criteria. Based on these criteria, the satellites selection methods can be divided
into five categories: 1) satellite angles, 2) satellite signal power, 3) Geometric Dilution of
Precision (GDOP), 4) Weighted GDOP (WGDOP), and 5) positioning residuals.

3.1 Satellite Angles

Satellite elevation and azimuth angles as well as the angles between the satellites have been
an approach to improve positioning by removing poor and redundant satellite signals. The
satellite's location relative to the earth's GNSS receiver is critical for positioning accuracy.
Satellite signals at low elevation angles are more vulnerable to multipath [38,39], and
ionospheric and tropospheric biases [38,40]. As a result, these defective satellite signals
can negatively impact positioning accuracy. In addition, satellites’ geometric distribution is
important for positioning accuracy. Tracking crowded satellites in one part of the receiver
sky increases the uncertainty zone of the receiver position (Figure 3.1). As the uncertainty
zone expands, the error in receiver position increases [24]. Satellites are considered
redundant when they contribute little to improving the geometric distribution; removing
them reduces the positioning processing time [41]. As a result, satellites were chosen based
on their angles to achieve two goals: 1) to avoid defective satellite signals and 2) to remove
redundant satellite signals.

=

% .

/ \ !
) ‘
/

Figure 3.1 Positioning error due to satellites distribution (geometry): A) good satellite geometry and

B) bad satellite geometry. The green centred circles are the real distance from satellites to receiver.

The black side circles are the error measurements between satellites and receiver obtained by the
receiver. The red area is the area of uncertainty.
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3.1.1 Avoiding Defective Satellite Signals

As mentioned before, satellite signals at low elevation angles are more vulnerable to errors
due to multipath, ionospheric, and tropospheric. To reduce the impact of these errors on
positioning accuracy, it is necessary to ignore low-elevation satellite signals using Cut-off
Elevation Angle (CEA) [38]. The common elevation angles applied for CEA are 10 and 15
degrees [42]. However, multipaths can exist at higher elevation angles depending on the
surrounding environment, such as urban areas due to tall buildings [43].

Therefore, several studies [42,44—-48] have investigated satellite selection using CEA with an
elevation angle greater than 15 degrees. In these studies, elevation masks up to 40 degrees
were tested using single and dual frequencies, as well as single and multiple satellite
systems (multi-GNSS). Despite the positioning modes they used (real-time kinematic (RTK)
[42,45-47], kinematic-DGNSS [48] and static-PPP [44]), all agreed that high elevation mask
(i.e., CEA) is achievable and can provide better GNSS results using multiple satellite system
as more satellites are available.

According to [49], satellite selection method based on CEA is the simplest and the least
time-consuming, but it has two limitations. First, high elevation mask angles reduce the
availability of GNSS satellites, which can affect positioning continuity. Second, no clear
standard defines the appropriate height for the elevation mask under different conditions to
achieve a high positioning accuracy. In addition, the satellites at low elevation angles can
improve satellite geometric distribution [50]. However, CEA-based satellite selection
prevents the use of high-quality satellite signals at low elevation angles.

3.1.2 Eliminating Redundant Satellite Signals

Redundant satellites contribute little to the geometric distribution of visible satellites;
removing them reduces the number of computations required for positioning [41]. As a
result, several methods for removing these redundant satellites were applied. According to
[41,51], redundant satellites can be removed based on the satellites' Line-of-Sight (LOS)
vectors, which represent the straight path between the satellites and the receiver (Figure
3.2). Based on the similarity of the satellites' LOS, the redundant satellites defined. The
satellites' LOS similarity was judged by a cost function determined based on the angle
between two satellites' LOS using Equation (3.1).

11
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CD‘D‘CZJ

Line of sight
(LOS)

=
Receiver

Figure 3.2 satellite line-of-sight vector

]ij = COSZBU (31)

where, J;; is the cost function and 6;; is the angle between it" and jth satellites. The cost
function has the maximum value when Hl-j ~ 0or 180 degrees, while it has the minim value
when 6;; = 90 degrees. The fitness of i" satellites is the sum of its cost function with all
visible satellites (N) using Equation (3.2).

]l' = ZCOSZQU (32)

In addition, redundant satellites relying on satellites’ elevation and azimuth angles.
According to Wei et al. [21], if two satellites had extremely similar azimuth angles, one of
them is removed based on its contribution to distribution to the overall distribution of
satellites via elevation angles.

According to Wei et al. [51], rejecting the redundant satellites based on satellite elevation
and azimuth angles is fast, as it avoids calculations and relying on elevation and azimuth
angles to select the satellites. However, it provides less accurate results comparing to the
LOS method. In contrast, the computational load in the LOS method is larger and
sometimes results in an extremely high (poor) GDOP value [41]. To improve satellite
selection, three enhanced methods are proposed in the following studies [51-53]. Two of
them are based on LOS [52,53], while the third combines them [51]. In the three studies, the
optimal satellite subsets were selected from a total of 9 GPS satellites. They were selected
by Two techniques: i) LOS and ii) proposed technique. Compared to actual optimal
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satellites, their proposed technique chose satellite subsets with GDOP value closer to
actual optimal satellites than LOS. The positioning quality of the selected satellites from the
three studies has not been evaluated.

3.2 Satellite Signals Power

The quality of satellite signals is critical for precise GNSS. [54] The carrier-to-noise density
(C/NO) and signal-to-noise ratio (SNR) are two parameters that describe the strength of
satellite signals. The C/NO is the ratio of carrier power to noise power per unit bandwidth
[65], and it is measured in decibels per hertz (dB-Hz) [38]. Whereas the SNR is the ratio of
signal to noise power at a given bandwidth [55] and it is usually expressed in decibels (dB)
[56]. However, in several studies they have been used in interchangeably, as in the following
studies [56-58], as SNR was expressed by dB-Hz. C/NO and SNR values are recorded by
receiver [55], and they can be changed from one receiver to another [54,59,60]. The C/NO
value from an ideal receiver range between 37 and 45 dB-Hz [61].

Low C/NO and SNR values indicates low satellite signal quality [62,63]. One of the factors
thatinfluence the satellite signal strength is multipath [64]. As aresult, C/NO and SNR values
have been used to reduce multipath errors by different methods, and they can be classified
into two categories: SNR value at single epoch and the fluctuation SNR value over period of
time.

3.2.1 SNR Value

SNR value at single epoch / time is an approach for satellite selection. It determines a SNR
threshold and rejects any satellite with an SNR value below it. The SNR threshold can be fix
or variable based on elevation angle. For example, the SNR threshold was fix at 36 dB-Hz in
[56]. It was variable based on the elevation angles in these studies [56,65,66]. Different
positioning modes were used in three studies: SPP, D-GNSS, and RTK, respectively. The SNR
or C/NO threshold based on elevation requires 24 hours of statistical satellite data in open
sky environment [65,66]. Based on this statistical data, the typical/reference signal strength
(i.e., SNR or C/NO0) for each satellite system and frequency is determined [65]. In three
studies [56,65,66], the threshold for SNR or C/NO was set below the reference signal power
by 7-8 dB-Hz. This is because multipath reduce satellite signal power by 6 dB [43].

According to Tokura and Kubo [65], satellite selection using elevation-dependent threshold
increased satellite availability by about (0.6%). Whereas it increased positioning accuracy
by more than 50% compared to original D-GNSS [66]. According to Uaratanawong et al. [56],
who applied the two techniques (fixed and elevation-dependent threshold) for SPP, the
elevation-dependent SNR threshold provided a higher number of available satellites and
better positioning availability, with an average of 6.12 available satellites and 91.60%
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positioning availability, compared to 5.54 available satellites and 66.83% positioning
availability for the fixed threshold. However, the fixed SNR threshold outperformed the
elevation-dependent method in terms of positioning accuracy, improving horizontal
accuracy by 46.80% and vertical accuracy by 12.88% compared to the original SPP method.
In contrast, the elevation-dependent SNR threshold only improved horizontal accuracy by
5.83% and decreased vertical accuracy by 5.37% compared to the original SPP method.

3.2.2 SNR Fluctuation Value

SNR fluctuation is another approach that was used for satellite selection using signal
strength. It technique checking the changing of SNR values over period of time. According to
Fang et al. [43], SNR fluctuates get large as the signal quality decreases. Thus, they
estimated the SNR fluctuation (i.e., stander deviation) of each satellites observed using
Equation (3.3) If satellite’s SNR fluctuation was over the threshold (Equation(3.4)), the
satellite signal was rejected. Compared to the traditional relative positioning, SNR
fluctuation selection method reduces the error in Easting, Northing and height by 87%, 80%,
80%, respectively.

N
1
std(SNR)y = NZ(SNRi )2 (3.3)
i=1
std(SNR)r < Threshold (3.4)

where, std(SNR)r is SNR fluctuation for a satellite during T period, N is the total number
observed (epochs), SNR;is SNR value of imepoch, pyis the mean of SNR values over T period,
and Threshold is SNR fluctuation threshold, which was set to 4 dB because multipath
affected satellite SNR values to have a std around 4 dB in preliminary tests [43] .

Low-elevation satellites generally have low signal quality as they are more vulnerable to
multipath errors [43]. However, due to tall buildings in urban areas, even high-elevation
satellites are affected by multipath [43]. In these scenarios, the benefit of the chosen
satellites based on their signal quality (C/NO and SNR) becomes obvious. Strong satellite
signals can be chosen regardless of the satellite location (i.e., elevation). However,
positioning accuracy is also affected by other factors, such as satellite geometry [67,68]. As
aresult, choosing satellites based on their signal quality alone is insufficient.

3.3 Geometric Dilution of Precision (GDOP)

The accuracy of GNSS solution relies on the quality of satellites measurements and satellite
geometry, as shown in Equation (3.5) [24,32]. Dilution of Precision (DOP) is a parameter that
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describes the quality of satellites geometry. It can be formed to express the impact of
satellite geometry on horizontal positioning (HDOP), vertical positioning (VDOP), 3D
positioning (PDOP), clock offset (TDOP), and all the above together (positioning and time) as
Geometric Dilution of Precision (GDOP) [32]. The quality of satellite geometry improves as
the satellites spread out in the sky. When satellites are concentrated in a single location,
their quality decreases. As a results, this reduces positioning accuracy [69,70], as the
uncertainty region grows (Figure 3.1). The DOP value is shown in Table 3.1, and it increases
as the quality of satellite geometry decreases.

o =UERE X DOP (3.5)

Where ois the accuracy of GNSS solution, UERE is the user equivalent range error, and
DOP dilution of precision.

Table 3.1 DOP value ratings [71]

DOP value Ratings

1 Ideal
2-4 Excellent
4-6 Good
6-8 Moderate
8-20 Fair

20-50 Poor

Due to the importance of GDOP in positioning accuracy, various studies used GDOP in
satellite selection. The optimal satellite subset based on GDOP can be determined simply
and accurately by checking the GDOP value for all possible satellite subsets using Equation
(3.8). The satellite subset with the lowest GDOP value is then considered optimal. This
exhaustive search technique is known as the traditional method (TM).

GDOP = Jtr(HTH)™1 (3.6)

cosE;sinA, cosE;cosA; sinE; 1

cosE,sinA, cosE,cosA, sinE, 1

H= (3.7)

cosE,sinA, cosE,cosA, sinE, 1
where, tr: is the trace, H is the geometry matrix, H' is a transpose of geometry matrix (H),

and (HTH)™1 is the inverse of measurement matrix (HT H). The E, and A, are the elevation
and azimuth angles of the ns satellite. Each satellite system has its own time system, and
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considering this difference in positioning will increases positioning accuracy [24]. As a
result, this consideration will also improve the quality of satellite selection [14]. The H is
calculated using Equation (3.8) taking into account the difference in satellite system timing.

'COSEGps:LSinAGp51 COSEGp51COSAGp51 SinEgp51 1 0 07

c0SEgpsnSinAgpsn  COSEGpsnCO0SAgpsn  SinEgpsn 1 0 0
COSEGLOlsinAGL01 COSEGL01COSAGL01 SiTLEGLOl 0 1 0

: : : P (3.8)
co0SEGLonSinAgLon COSEGLonCOSAgLon SinEgron 0 1 0

cosEgaLiSinAgaL:  €0SEgaL1€0SAgaL:  SinEgans 0 0 1

-COSEGALnSinAGALn COSEGALnCOSAGALn SinEGALn 0 0 1_

The TM is a straightforward approach that selects the optimal satellite 100% accuracy as
the efficiency (i.e., GDOP value) of all possible satellite subsets are checked. However, the
inversion matrix that use to calculate GDOP (Equation (3.6)) is a computational load [72].
As aresult, the TM can be time-consuming when it calculates the GDOP value of all possible
satellite subsets [73], especially if their number was large. To avoid this computational load,
various techniques including the closed-form solution, maximum volume, artificial neural
network (ANN), and optimisation algorithms have been used to select optimal satellite
subsets based on GDOP.

3.3.1 Closed-Form Formula

The close form is a mathematical expression refers to a mathematical operation that can be
completed in a limited number of operations [74]. To avoid the huge computational burden
of calculating the GDOP with the inversion matrix, different closed-form formulas were
applied in these studies [75-78]. For example, Doong (2009) [76] proposed a closed-form
formula to calculate the GDOP value for one satellite system, as shown in Equation (3.9).

3 _
cpop - |51 = 15huhs + by 3.9)
3h,

Where, hq, h, and h; are the trace of M, M?, and M3, while h,is the determinant of M. The
measurement matrix (M) is computed by the geometry matrix (H), where M = (H'H).

The closed-form formula can significantly reduce the computational complexity of inversion
matrixin TM, leading to compute GDOP value with less computation load using closed-form
formula [79,80]. However, the number of calculations cannot be reduced with the closed-
form formula, so it becomes time-consuming when the number of satellites increases [81].
Furthermore, the selected satellites by closed-form formula in the above four studies have
not been used in positioning with any kind.
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3.3.2 Maximum Volume

At least four satellites are required for positioning. The best geometry of four satellites is a
tetrahedron, by one satellite directly above the receiver and three near the horizon, 120
degrees apart in azimuth (Figure 3.3) [82,83]. The GDOP value decreases (improves) as the
tetrahedron's volume increases [82—-84]. As a result, positioning accuracy increases by
maximizing the tetrahedron volume [85]. Several studies [82,85,86] have selected the
optimal four satellites based on maximizing the tetrahedral size. To select the optimal
subset of more than four satellites, other studies [8,87,88] have maximized the polyhedron
size. In addition, other studies [89,90] maximized the polygon area (i.e., orthogonal
projection) to determine the optimal satellites subset.

From the above eight studies of satellite selection based on maximum volume, simulation
GNSS data were used for satellite selection in three studies [8,87,89]. In addition, the
satellites selected in the above eight studies were not evaluated in positioning except for
one study [88]. In this study [88], the selected satellites based on maximum volume were
implemented for SPP. Their 3D positioning accuracy was worse by about 44% than original
SPP using all satellites (GPS and BDS).

Satellite selection based on maximum volume can be implemented by two methods: 1)
volume computation and 2) satellites separation [85]. In the first approach, the
tetrahedron/polyhedron volume of all possible satellite subsets is computed, and the
largest satellite subset is chosen as the optimal. In the second method, satellite angles are
used to determine the optimal satellite subset, which is the group of satellites that are the
farthest apart. For example, Noe et al. chose the three satellites with the greatest separating
in the Easting, Northing, and Zenith directions, then selected the fourth satellite that form
the tetrahedron with the biggest volume [85].

According to Zuo-ya et al. [85], satellite selection based on maximum volume using both
techniques is faster than TM, especially the satellite separation method. However, they are
less accurate than TM [75,81,91], as the method focuses on maximizing the volume and not
on the GDOP value [81,92]. Furthermore, the computation load is not effectively reduced in
the volume computation method, as itincreases with the number of satellites used [81,92].
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Figure 3.3 The tetrahedron of four satellites

3.3.3 Artificial Neural Network (ANN)

ANN is a machine learning algorithm that belongs to the field of artificial intelligence (Al). It
was developed to simulate the biological neural networks of the human brain. ANN learn
from input data just like humans [93], and the information gained from learning is stored as
weights that influence the output [94]. ANN has broadly been used for different problems
[95]. One of these issues is satellite selection based on the GDOP (e.g., [84,96—99)).
However, the selected satellites in these studies have not been evaluated in positioning.

ANN is one of the most powerful Al algorithms [100]. The GDOP computational load can be
reduced using ANN as it does not require the inversion matrix for GDOP determination
[96,101,102]. However, ANN requires costly training, which becomes useless when the data
deviates significantly from the training data [76,103]

3.3.4 Optimization Algorithms

Optimisation algorithms are mathematical procedures that aim to find the best solution to
a given problem. They have been widely used in a variety of fields, including Al and machine
learning. Furthermore, optimisation algorithms were used for satellite selection based on
GDOP (e.g., [7,99,101,104-107]). Different optimalization algorithm was used in these
studies for satellite selection. Despite the variation of optimization algorithms in these
studies, their selected satellites have not been used for positioning.

Like ANN, optimization algorithms do not require the inversion matrix for GDOP
computation [108]. This reduces the GDOP computation load. Compared to ANN,
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optimisation algorithms do not require training, which make them faster than ANN [99]. In
addition, optimization algorithms choose satellite subset with high quality [7,105]. They can
successfully select the optimal satellite subset with high rate over 90% [99,106]. However,
the successful selection rate of optimization algorithms is not fixed or grunted. This is
because these algorithms were mainly desighed to provide solutions in short time [109-
111]. To do so, they tend to choose a reasonable solution, especially in complex problem
that required long time to solve (ref). Furthermore, optimization algorithms relay on
randomness in their selection this may lead to have different solution at each trail [110].

3.4 Weighted Geometric Dilution of Precision (WGDOP)

The positioning accuracy depends on satellites geometry (GDOP) and pseudo-range error
(i.e., UERE), as shown in Equation (3.5). Thus, satellites were widely selected based on
GDOP, as presented in Section 3.3. However, the quality of satellite pseudo-ranges varies
depending on satellite system, atmospheric biases and multipath [112,113]. Thus,
satellites’ UERE should be considered when selecting satellites to improve outcomes [112].
To consider both GDOP and UERE at the same time, several studies chose satellites based
on Weighted GDOP (WGDOP). WGDOP computes satellite geometry (GDOP) by assigning
more weight to satellites with lower UERE. The WGDOP can be calculated using inversion
matrix (Equation (3.10)). To reduce it computational load, closed-form solution [112,114],
maximum volume [113], and artificial neural network (ANN) [73,92], were used to select the
optimal satellite subset based on WGDOP.

The UERE is affected by the satellite signal power [115,116], which can be expressed by the
SNR and C/NO. Since calculating the UERE value can be more complex compared to the
value of signal power (SNR and C/NO0) [50,92], which are directly calculated by the receiver.
Therefore, three studies [50,92,117] chose satellites with WGDOP based on satellite signal
power (SNR and C/NO) rather than UERE. Two of them [92,117] utilized optimization
algorithms.

WGDOP = \/tr(HTWH)=! (3.10)

wy 0 .. 0
w=[% v 0 (3.11)
0 0 .. wy

where, H is the geometry matrix determined based on the elevation and azimuth angles, as
shown in Equations (3.7) and (3.8). W is the weighting matrix, where w, is the weight of the
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n satellite. In WGDOP based on UERE, the w, is 1/UERE"2 [112,114]. In contrast, itis SNR
in WGDOP based on SNR [92].

The selected satellites in the previous seven studies based on WGDOP using different
satellite selection techniques: i) closed-form formal, ii) maximum volume, iii) ANN, and v)
optimization algorithms, were not tested for positioning.

3.5 GDOP- RAIM (Receiver Autonomous Integrity Monitoring)

To verify the integrity of stand-alone positioning (i.e., SPP), Receiver Autonomous Integrity
Monitoring (RAIM) was developed. It checks the consistency of satellite measurements by
overdetermining positioning solution [24]. Then it detects and excludes abnormal satellite
measurements to improve positioning accuracy. To determine receiver’s coordinates (3D)
and clock offset, four satellites are needed. Hence, five satellites are required for RAIM
availability (i.e. fault detection). This is because the fifth satellite allows repeated position
calculations using different measurements and finding abnormal satellite measurement.
Six and more satellites are needed for RAIM exclusion.

After initial positioning, each satellite’s pseudo-range residual, which is the differences
between observed and estimated pseudo-range measurements, is determined. Then the
sum squared residuals is computed. If the exceeds the error threshold, as determined by
the Chi-square, the positioning solution consider invalid [118,119]. After that RAIM removes
the satellite with high residual to improve positioning accuracy. The RAIM procedure can be
expressed by the following steps [24,120]:

Step 1: Positioning determination using the following equations:

y=Hx+e (3.12)
Rs = (HH) HTy (3.13)
Vs = HXps (3.14)
v=y—Js (3.15)

Where, y is observation vector, which is the different between the observed and the
estimated measurements. Whereas H is the geometry matrix, x is the estimated vector for
receiver three coordinates and clock offset, ¢ is the error vector, X, is the least square
solution, and v is the residual vector.

Step 2: Solution validation based on sum squared residuals using Chi-square test
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T
v'v
——<x((m-n-1 (3.16)
Where, vTv is sum squared residuals, (m —n — 1) is the Chi-square degree of freedom. m
is the total number of satellites tracked, n is the number of estimated parameters, xﬁ is the

chi-square distribution, and «a is significance level, which is 0.001(0.1%) [118,119].

Step 3: Detection and exclusion fault satellite measurements via determining the
contribution of each satellite in positioning error. This contribution of each satellite is given
by a slope as shown in the following equations:

/AZ. + A2,
12t (3.17)

Slopey (i) =
Sii
N Az
Slopey (i) = (3.18)
A=HHTH) 'HT (3.19)
S=1,—HHH)H" (3.20)

Where, Slopey (i) and Slopey (i) indicate the errors of i, satellite horizontal and vertical,
respectively. I,,, is m X m identity matrix, m is total number of satellites observed. The
satellite with the highest slope is excluded, as it contributes the most in positioning error.

RAIM only needs the satellite measurements observed by the receiver for positioning
integrity (i.e., satellite exclusion) [14,121]. In addition, it considers positioning correction, as
ionosphere and troposphere [122,123]. However, it is not suitable for satellite selection as
RAIM excludes satellites based on criteria of positioning integrity. To take advantage of RAIM
in satellite selection, several studies [14,121,124] used RAIM after satellite selection based
on GDOP.

Meng et al. [121,124] chose satellites based on their geometrical distribution (GDOP) and
RAIM using simulation GNSS data. They selected satellites three times in a row. Firstly, they
chose satellites based on GDOP. Secondly, they check the quality of selected satellites
using RAIM. Lastly, they applied satellite selection based on GDOP to replace the rejected
selected satellites by RAIM. In other words, the satellite selection method was GDOP-RAIM-
GDOP. The satellite selection based on their geometrical distribution (GDOP) was done
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using satellite angles (elevation and azimuth). According to Meng et al. [99], the SPP
positioning accuracy of the selected satellites GDOP-RAIM-GDOP was enhanced by 50% in
comparisonto the original SPP. According to Meng et al. [124], the SPP positioning accuracy
of the selected satellites based on GDOP-RAIM was enhanced by more than 90% in
comparison to the accuracy where only GDOP was applied. The SPP positioning accuracy
of the satellite selected using GDOP-RAIM-GDOP was enhanced by more than 8% better
than that of GDOP-RAIM.

In addition, Wang et al. [14] selected satellites based on GDOP and RAIM. Initially, they
chose satellites based their geometrical distribution (GDOP) using satellite elevation angles
(elevation and azimuth). Then they improved their set of selected satellites by adding more
satellites to the selected set based on satellite contribution slope in RAIM algorithm.
According to the authors, the horizontal accuracy of their proposed method was about 3 m
higher (better) than that based on geometrical distribution.

3.6 Comparison of Satellite Selection Methods

This chapter presents various satellite selection methods. It shows how satellite selection
method has two components: criterion and technique. Using the best of both provides the
best method for selecting satellites. Below is a comparison of the criteria and techniques to
find the best of both.

Satellites have been selected based on five criteria: i) satellite angles, ii) satellite signal
power, iii) satellite geometry (GDOP), iv) satellite geometry and signal power (WGDOP), and
v) GDOP and RAIM (GDOP-RAIM). Satellite geometry (GDOP) and signal power are the main
factors affecting positioning solution. Satellite elevation angles were used to select
satellites based on their signal power by abandoned satellite signal at low elevation angles
(0-15 degrees), as they are more vulnerable to errors from multipath, ionospheric, and
tropospheric. In addition, satellite elevation and azimuth angles were utilized to choose
satellites based on their geometry distribution. Satellite selection methods based on
satellite angle can be the fastest as it avoids computation [49,51]. However, their selected
satellites cannot be the best. Poor satellite signals can be at elevation angles higherthan 15
degrees. Using high elevation mask reduces satellite availability [49]. On the other hand, the
quality of the selected satellites based on GDOP value were better using computation
methods from satellites angles [14,51,52,105].

The quality of selected satellites increases as more positioning factors are considered.
Thus, choosing satellites based on their geometry and signal power (WGDOP) could be
better than selecting satellites based on GDOP or signal power alone. In addition, choosing
satellites based on GDOP-RAIM could be even better than WGDOP. This is because RAIM
considers more positioning factors than WGDOP. RAIM excludes satellites based on range
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residuals, which are the different between the observed and the estimated pseudo-range
measurements. To estimate pseudo-range measurements, it requires initial positioning
considering satellite geometry, signal power and positioning correction. However, RAIM
cannot be used for satellite selection, as itis a positioning integrity technique. Hence, RAIM
was applied after GDOP-based satellite selection to improve the quality of the selected
satellites in previous studies. Since satellite selection based on WGDOP is better than
GDOP, WGDOP-RAIM could be the most suitable criterion for satellite selection.

RAIM is implemented via positioning. Whereas WGDOP can be carried out by various
techniques, including TM, closed-form formal, maximum volume, ANN, and optimization
algorithms. TM selects the optimal satellites with 100% selection accuracy, but it is time-
consuming. The closed-form formal can reduce the TM computational complexity [125,126].
However, it could not reduce the number of calculations, so it becomes time-consuming
when the number of satellites increase [72]. The maximum volume method is based on
maximizing the volume of the tetrahedron or orthogonal projection created between the
satellites [92,127]. The WGDOP value decreases (improves) as tetrahedron volume and
maximum orthogonal projection increase. However, the positioning quality obtained with
the selected satellites via this method is not guaranteed [72,128], as the method focuses on
maximizing the volume of tetrahedron/orthogonal projection and not on the WGDOP value
[92,128], and it is also a time-consuming technique [128]. On the other hand, ANN and
optimization algorithms, which are broadly applied in artificial intelligence (Al) problems,
can both provide good results in satellite selection [92,99,106]. However, the optimization
algorithms, contrarily to ANN and generally to any Al or machine-learning algorithms, do not
require any training and consequently any large dataset for the required training [129-131],
which makes the optimization algorithms faster than ANN. In addition, ANN trained model
could be difficult to apply due to the varying geometry of the tracked satellites due to the
different revolution periods of the GNSS systems [129,130]. Thus, optimization algorithms
are potentially more suitable for selection of satellites than ANN and similar Al techniques.

3.7 Summary

Satellite selection method has two components: criterion and technique. This chapter
presents various types of criteria and techniques used for satellite selection. In addition, a
comparison was made between the types of criteria and the types of techniques in the
chaptertoo. Thisisto determine the best of both and used to form the most suitable satellite
selection method. Precise positioning accuracy one of the main goals of satellite selection.
Thus, positioning factors, as GDOP, have used as criteria for satellite selection. Since
positioning is affected by all its factors, using as much as possible of them as criteria for
satellite selection could be the best. Therefore, WGDOP-RAIM, including satellite signal
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power, geometry, and positioning corrections, was considered the suitable criterion for
satellite selection. On the other hand, optimization algorithm(s) was considered the
appropriate technique for selecting satellites because it is efficient in terms of satellite
selection accuracy and speed.
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Chapter 4 Optimization Algorithms

4.1 Optimization Algorithms for Satellite Selection

There is a large number of optimization algorithms. According to Ostoji¢ et al. [109], the
optimization algorithms can be classified into three groups: i) Exact, ii) Heuristic, and iii)
Meta-Heuristic. The exact algorithms provide the optimal solution but require a lot of time
and resources. In contrast, the heuristic algorithms do not guarantee the optimal solution
and outcomes’ quality but usually they provide acceptable solutions in a short time. The
main limitations of heuristic algorithms that are more suitable for specific problem
[109,132], and they can be easily trapped in local optima [110,132]. The meta-heuristic
algorithms are higher level of heuristic algorithms [132,133], designhed to overcome heuristic
drawbacks [110]. They are more flexible and reliable, handling various types of optimization
problems and provide good results [110,111,134].

Many optimization algorithms are covered fall under the category of meta-heuristic, where
50 types of them were listed by Kaveh et al. in 2020 [135]. In satellite selection problem, five
robust and well-known optimization algorithms have been used: i) Artificial Bee Colony
(ABC) [99,106], ii) A (ACO) [92,106], iii) Genetic Algorithm (GA) [7,92,99,104,105,117], iv)
Particle Swarm Optimization (PSO) [7,99,136], and v) Simulated Annealing (SA) [99,136]. In
this chapter, these algorithms’ principle, advantages, limitation, and application were
shown. In addition, their efficiency was compared.

4.1.1 Artificial Bee Colony (ABC)

ABC is an algorithm developed by Karaboga (2005) to simulate the foraging behaviour of
bees [137]. The algorithm is a population-based algorithm as it generates multiple numbers
of artificial bees. ABC splitthese bees into three groups: employed bees, onlooker bees, and
scout bees. Each type of bee is assigned to different research tasks. Through sharing the
information of the discovered possible solutions (quality and location in the search space)
among the bees, ABC can converge toward the optimal solution (Figure 4.1). ABC is flexible
as it can be used for various types of problems, with the requirement of very few control
parameters [138,139] which lead to reliable and robust results. However, ABC is relatively
weak in local searching [140]. ABC algorithm has been used various applications, such asi)
power system [141], ii) image processing [142], iii) clustering [143,144] , iv) biology [145], v)
job scheduling [146], vi) engineering design [147], vii) Al training [148], and viii) GNSS satellite
selection [99,106]. ABC can be implemented using the flowing steps [149]:
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Based on probability
Local searching by local searching by
Employed Bees Onlooker Bees

Global searching by
Scout Bees

Figure 4.1 Representation of the ABC searching process and the roles of employed, onlooker, and
scout and bees, adapted from [150].

1. Parameter Initialization: ABC It requires three parameters to be set: iterMax, pSize,
and limit. iterMax is the maximum number of iterations allowed to find the optimal
solution. pSize represents the number of bees searching for the best solution.
Whereas limit is a threshold for abandoning a specified area in the issue search
space. Typically, the limit value is calculated by multiplying the problem dimensions
by the population size (D xpSize) [151]. As a result, only two parameters (iterMax and
pSize) are required setting in ABC [138].

2. Food Source: equivalent to pSize, a number of locations in the search space are
selected at random. Any location in the search space is a possible solution, which is
called food source in ABC algorithm. Food sources can be chosen randomly using
Equation (4.1). After selecting the possible solutions, Equation (4.2) is used to
calculate their fitness (quality).

xl',d = ld + T'(ud — ld) (41)
— if f(x)=0

faey = 41O (@.2)
1+ |F(x;)] else
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where, x is the solution (food) location, i =[1,2,...,SN] is the solution number is the
possible solution number, d=[1,2,...,D] is the dw, dimension within the search space,
l; and u, are the lower and upper bounds of the problem search space, ris a random
number ranging from 0-1, and f(x;) is the fitness of i;;, solution, while F(x;) is the
objective function of i;;, solution.

3. Employed Bees: New possible solutions (i.e., food sources) are investigated by
employee bees. Every employee bee presents a possible solution. They then change
their current solutions (locations) using Equation (4.3). The new solutions are
selected from the current solution neighborhood. The quality of these new solutions
is evaluated using Equation (4.2). If a bee’s new solution provides better quality, it is
accepted and replaces the previous one. In addition, the abandon counter is reset to
zero. Otherwise, the previous solution remains, and the abandoned counter
increases by one.

Vig = Xjg + P(Xig — Xpa) (4.3)
where, v; 4 is a vicinity solution, x; 4 is the current solution, @ is random number
between [-1,1], x; 4 is a random solution from the generated solution set # the
current solution (x; 4).

4. Onlooker Bees: onlooker bees replace employed bees in this stage. Likewise,
onlooker bees investigate neighbour solutions by changing their location in the
search space using Equation (4.3). However, not all onlooker bees are allowed to
change their location. An onlooker bee investigates/ changes its location if its
searching probability (P) is greater than r, which is a random number between 0-1. P
is calculated using Equation (4.4). After the onlooker bee finds a new solution, if the
new solution quality is better than the previous one, it is accepted and replaces the
previous one. In addition, the abandon counter is reset to zero. Otherwise, the
previous solution remains, and the abandoned counter increases by one.

fi

Pi=—t
SN
j=1 fj

where, p; is the probability of the current solution (i.e., onlooker bee), f; is the
fitness of the current solution, and zﬁﬁl f] is the sum of all solutions’ fitness.

5. Scout Bees: When the solution abandonment counter reaches the specified
threshold (limit), Scout Bees phase is activated. Bees in both the employee and
onlooker stages investigate neighbour (local) solutions. However, if no better local
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solution is discovered after a certain number of attempts, the solution's location is
considered poor and abandoned. In such cases, a Scout Bee is assigned to change
its (i.e., solution) location globally using Equation (4.1). As a result, the scout phase
allows ABC to avoid local optimal trapped [152].

6. Termination: The number of iterations increases by one. If the number of iterations
reaches the maximum (/terMax), the ABC search stops and solution with the highest
fitness is considered the best solution for the given problem. Otherwise, ABC steps
2-6 are repeated until the stopping criterion is met.

4.1.2 Ant Colony Optimization (ACO)

ACOis analgorithm developed by Marco Dorigo et al. in 1996 [153]. The algorithm simulates
the behaviour of ants in finding the shortest path between the food and the nest. In nature,
ants search for food and secrete a substance known as pheromone to determine the food
path. However, the pheromone evaporates over time. As a result, the pheromone rate
increases as the food path decreases. This led ants to use the shortest food paths with high
pheromone levels, as shown in Figure 4.2. The same concept is used in ACO, where a
number of artificial ants is generated to find the best path (solution) for the given problem.
In ACO, the optimal solution can be found after a number of iterations. At each iteration,
each ant creates a new solution (path), and it is evaluated by the pheromone rate, which
rises as the quality of the solution improves. The pheromone rates on the paths influence
the ants’ choice in finding the best path (solution) with the highest pheromone rate, as
shown in Figure 4.3. ACO is a robust and flexible algorithm [154,155], suitable for the path
planning problem [155,156], but it has a slow convergence [154]. ACO algorithm has been
used various applications, such as i) power system [157], ii) clustering [158], iii) Medicine
[159], iv) Transportation [160,161], v) water system design [162], and vi) GNSS satellite
selection [92,106]. ACO can be implemented using the flowing steps [149]:
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Figure 4.2 Ants food searching in nature, taking the shorted path for the food from the nest over

time.
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Figure 4.3 Artificial ants searching for the best possible solution, which is the path between nest
and food. It is found (red line) over number of iterations, adapted from [150].

1. Parameter Initialization: The algorithm parameters are determined in this stage.
Seven parameters needed to be set: (1) maximum number of iterations (/termax), (2)
ant population size (pSize), (3) pheromone evaporation rate (p), (4) influence of
pheromone rate creating a solution (a), (6) influence of desirability creating a solution
(B), and (7) the quantity of pheromone laid by ant (Q).

2. Creating new path (solution): Each ant in the population creates one possible
solution. The ant sequentially chooses solution variables to create one possible
solution. In other words, it selects the path nodes one by one to form their path, as
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shown in Figure 4.3. The node selection relies on probability, which is determined
using the following equation.

a . B
Tij Nij
n a ﬁ
i1=1Ti1 Ny

pij = (4.5)

where, pj is the probability of selecting j note, T is the pheromone rate on the path
between notes i and j, n; is the desirability of selecting j note. While a and B are the
influence parameters, which control the impact of the pheromone and the
desirability value on the probability. The desirability is the distance between notes i
and j. The rate of desirability increases as the distance between the two notes
decreases in the distance minimization problem. Using Equation (4.5), ants choose
notes to create their path (solution). However, they randomly select the notes to
create the initial path as all paths initially have the same pheromone rates. The
quality of each ants’ possible solution is then evaluated.

3. Update pheromone rate: The pheromone rate of all possible paths between notes
is updated. It is updated through two stages: (1) evaporation, which removes a
portion of the pheromone rate on all possible paths, and (2) reinforcement, where an
amount of pheromone is add on the paths based on their quality. Equation (4.6) can
be used to update the pheromone rate, including evaporation and reinforcement.

K
T+ = prry (D) + zkzlmg (4.6)
Q
Aty = 4.7
YU FTo (47)

where, T;; (t + 1) is the amount of updated pheromone for the path between i and j,
t is the currentiteration value, p is the evaporation rate, 7;; (t) the current amount of

pheromone between i and j, and At’i‘j is the amount of pheromone increase on the

path i to j based on the tour (solution) fitness. While Q is the quantity of pheromone
laid by ant, and f (T}) is the fitness of the k ant’s tour.

4. Termination: The number of iterations increases by one. If the number of iterations
reaches the maximum (/terma.), the ACO search stops and tour (solution) with the
highest pheromone rate is considered the best tour (solution) for the given problem.
Otherwise, ACO steps 2-4 are repeated until the stopping criterion is met.
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4.1.3 Genetic Algorithm (GA)

GAis an optimisation algorithm developed in the 1960s and 1970s by John Holland and his
collaborators at the University of Michigan [149,163]. GA was developed to simulate
Darwin's concept of evolution and natural selection. In GA, a problem’s best solution is
found by creating a number of random possible solutions. These possible solutions are
evaluated and improved using various procedures to find the best possible solution ever. GA
is a flexible and robust algorithm [149], but it is complex [149,164], sensitive to the value of
parameters [149] and dependent on the initial population [164,165]. GA algorithm has been
used various applications, such as i) Al training [166], ii) power system[167], iii) clustering
[168], iv) Transportation [169], v) water system design [170,171], vi) Industry [172], vii) job
scheduling [173], and viii) GNSS satellite selection [7,92,99,104,105,117]. The basic GA
contains six main steps: population generation, fitness determination, selection, crossover,
mutation, and population replacing [174]. Part of the first step, these steps are repeated for
a number of iterations to find the best solution for a given problem, as shown in Figure 4.4.

Initialization

1({2(3]|4
Population | ) AT
Chromosome [5 ls 7 8| ‘ | N Ves " Final
Gene . -__\Solution
’ Evaluation % -
HEEN

Selection

5(1(3]|4 BED .,

Crossover

1(2(3]|4

Mutation sl6l7 s
|5]8]3]|4]

L._ 5/6(3]4

(s [as]e] il2]7]s

Figure 4.4 Representation of the GA processing steps [150].

1. Population Generation: To find the best solution for a given problem, GA initially
generates a number of possible solutions that known as population of possible
solutions. The population size/ the number of possible solutions is predefined.
According to Yang (2014) [149], too small population size can cause GA to fall in the
local optimum, while too large population size will lead to unnecessary computation
load. A population size of 40 to 200 is sufficient for most problems. The possible
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solutions in GA are represented as chromosomes, where each chromosome
contains a number of genes (Figure 4.4). These genes indicate the problem variables.
All chromosomes (possible solutions) have the same number of genes, which is
equal to the number of problem variables were considered. The genes’ value can be
presented using the binary number system that is commonly used [149,174]. In
addition, it can be presented as a real number, which is simpler as no conversion is
required [174]. After determining the number of genes in the chromosomes and the
number of chromosomes in the population, the GA randomly generates the initial set
of possible solutions (chromosomes) using Equation (4.1).

2. Fitness Determination: Once a set of chromosomes (potential solutions) is
generated, the quality (fitness) of each chromosome is evaluated to determine its
efficiency in solving the given problem. The chromosome with highest fitness is
required for problem solving. The fithess of chromosomes for maximization and
minimization problems can be calculated using Equations (4.8) and (4.9),
respectively.

F=f(x) (4.8)
Fe (4.9)
™ '

where, F is the fitness, and fis the problem objective function of x possible solution.

3. Selection: In GA, the best solution to a given problem is discovered by improving the
quality (fitness) of the current possible solutions (population) using crossover and
mutation procedures. The selection step is the process of selecting the right current
chromosomes to generate new set of chromosomes (i.e., new population).
Iteratively, the selection procedure is carried out, with a number of iterations
equivalent to half the total number of chromosomes. In each iteration, two
chromosomes (parents) are chosen to produce new chromosomes (offspring).
Chromosomes are chosen based on their fitness, but randomly. The roulette wheel
is a selection technique widely used in GA [175]. Chromosomes with high fitness are
more likely to be chosen using this technique.

4. Crossover: is a process aimed at creating two new possible solutions
(chromosomes) from a pair of selected chromosomes. This can be done by switching
chromosomes’ genes in single or multiple points [176]. Single-point crossover
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switches chromosome genes before/ after one point, whereas multi-point crossover
flips chromosome genes at multiple locations, as shown in Figure 4.5. The multi-
point crossover is more effective and commonly used [149]. The initial chromosomes
are called parents, and the new solutions (chromosomes) are called offspring.
Despite the crossover technique used (single/ multiple), the parents’ genes switch
(crossover) only if the crossover probability (Pc) is true (Pc> r). Usually, Pc value
ranges between 0.7-1, and ris random number between 0 and 1 [149].

Single-point crossover

1123 |4 5|6|3|4

-

516178 1(2(7]|8

multi-point crossover

112|314 51238
->

51678 1(6|7]|4

Figure 4.5 Genetic algorithm single- and multi-point crossover.

5. Mutation: After the crossover stage, the new set of chromosomes changes further by
mutation. Mutation is another operation that seeks to create new possible solution
(chromosome) by randomly changing the solution's variables (genes). It is only done
if the mutation probability (Pm) is true (Pm >r). Pm value typically ranges from 0.001
- 0.05 [149]. In contrast to crossover, the mutation process occurs for each
chromosome separately.

6. Population Replacing: After the mutation phase, the new set of chromosomes
(population) replaces the initial one. In addition, the number of iterations increases
by 1. Until the maximum number of iterations is met, the GA procedure is repeated
from 21to 6.

4.1.4 Particle Swarm Optimization (PSO)

PSO is an algorithm that simulates bird/fish foraging behaviour, and it was developed by
Kennedy and Eberhart (1995) [177]. It is a population-based algorithm in which a number of
particles are generated to find the optimal solution in the search space. By sharing
information about the discovered possible solutions (quality and location in the search
space), particles can converge towards optimal solutions. PSO is a flexible [149] and simple
algorithm and it can be easily implemented compared to other optimization algorithms
[149,178]. However, in a high-dimensional search space, PSO slowly converges toward the
optimal solution, and the quality of its results decreases [179,180]. PSO algorithm has been
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used various applications, such as 1) Al training [181], 2) power system [182], 3) clustering
[183], 4) Transportation [184], 5) image processing [185], 6) Industry [186], 7) Farming [187],
and 8) GNSS satellite selection [7,99,136]. According to [188], the PSO algorithm follows

steps:

1.

Initialization: a population of particles is generated and randomly distributed in the
problem search space using Equation (4.1). Each location in the search space
indicates a possible solution. As a result, particles represent the possible solutions
of their positions.

Updating: The quality (fithess) of these particles (possible solution) is then
calculated. Based on particles’ fitness, the particle personal best (psest) and global
best (grest) is repeatedly determined in each iteration. peest is the best solution ever
found by the same particle, while the best solution ever found by all particles is the

gbest-

Travelling: particles velocity and location are determined/ updated in this stage. To
find the best solution for the given problem, the particles move in the search space,
investigating new locations (i.e., potential solutions). Particles’ travelling depends on
their velocity, prest and grest as shown in Figure 4.6. Updating particles velocity and
location can be done using Equations (4.10) and (4.11).

Global best
Q Next
," location (X;*1)

Current ‘ Personal best
location (X;) A O

Velocity (V;)

Figure 4.6 Representation of updating particle location based and on gpest, Prestand velocity [150] .

X=Xo+V (4.10)

34



Chapter 4 Optimization Algorithms

V = wVy + Cyry(pbest — X,) + C,ry(gbest — X,) (4.11)

Wmax — Wm

in
* [ter 4.12
Itermax ( )

where, X is the new position, X; is the current (initial) position, Vis the new velocity,

W = Wmnagx —

Vo is the current (initial) velocity, C; and C; are the acceleration factors, r; and r; are
random number between 0-1, w is the inertia weight, wmaxand wnmi, are initial and final
weights respectively, Itermax is the maximum number of iterations, and /ter: is current
number of iterations. Typically, the value of the wma and wmin are 0.9 and 0.4,
respectively [189]. Whereas the value of C; and C.are 2[190].

4. Termination: The number of iterations increases by one. If the number of iterations
reaches /terma.x, the PSO search stops and gues: is considered the best solution for the
given problem. Otherwise PSO steps 2-4 are repeated until the stopping criterion is
met.

4.1.5 Simulated Annealing (SA)

SA is an optimization algorithm developed by Kirkpatrick et al. (1983) [191]. It is a single-
based algorithm, where it generates one possible solution and iteratively optimizes to create
the best solution for the given problem. To avoid the trap of local optimal solution, both
better and worse solutions are acceptable. SA was designed to simulate annealing
processes, where the metal is highly heated and slowly cooled to change its properties.
Similarly, SA algorithm starts with a high temperature value, which allows it to accept worse
solutions; as the temperature value decreases, the probability of accepting poor solutions
declines. SA is a flexible algorithm [192] with the capacity to avoid local optima trap by
accepting the worse solution [149]. However, slow convergence is required in SA to obtain
the actual optimal solution [149,164,193]. In addition, it is a single solution-based
algorithm, where only one solution is generated and optimized from local search [149]. SA
algorithm has been used various applications, such as i) Industry [194], ii) clustering [195],
iii) Transportation [196], iv) image processing [197], v) Security [198], vi) Water system [199],
and vii) GNSS satellite selection [99,136]. According to [200,201], SA can be easily
implemented using the following steps:
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1.
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Figure 4.7 Schematic representation of SA algorithm procedure [150].

Initialization: The algorithm parameters and initial possible solution is determined
in this stage. Three parameters needed to be set: (1) initial temperature (7o), (2) the
final temperature (79, (3) cooling factor (a), and (3) maximum number of iterations
(ltermax). According to [202], the Toand the a are very importance parameters in SA.
Because the initial temperature determines whether non-good solutions are
acceptable or not. If it is too low, weak solutions are rarely accepted. In contrast, if it
is too high, all changes, good or bad, are accepted. Thus, a suitable initial
temperature is needed. While the cooling factor responsible for lowering the
temperature value during simulating. The value of the cooling factor usually ranges
from 0.7-0.99. In addition, the initial possible solution is generated in this phase. It
creates atrandom using Equation (4.1). Moreover, the solution quality is determined.

New Solution: A new possible solution is chosen at random from the currently
chosen solution neighbourhood. Its fitness is calculated. If the new solution fitness
was better than current (initial) one, the new solution accepted, i.e., replace the
current one. Otherwise, the new solution is accepted if the probability (P >r) is true.
Pis calculated as follows:

P = exp(—Af/Ty) (4.13)

where, P is the probability density function, ris a random number between 0-1, Afis
the fitness difference between the current and new solutions. T is the temperature
at the current iteration.

Termination: The number of iterations increases by one, while the temperature value
decreases using Equation (4.14). If a stopping criterion is met, such as reaching the
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maximum number of iterations or the minimum number of temperatures, the
algorithm stops its search for the best solution and considers the current solution
the best. Otherwise, SA steps 2-3 are repeated until the stopping criterion is met.

Thy1 =Ty xa (4.14)

where Ti:7 is the new temperature, Ty is the current temperature, and a is the cooling
factor.

4.2 Comparison of Optimization Algorithms for GNSS satellite selection

The five optimization algorithms (ABC, ACO, GA, PSO, and SA) are uniquely designed,
leading them work differently using different types of parameters. This makes each of them
more suitable for different types of problems. In addition, their parameter values are
affecting their result quality [203,204]. Hence, the value of algorithm parameters should be
carefully adjusted to fit the problem. This can explain why the performance of the five
optimization algorithms compared to each other changed from study to another (i.e., from
one problem to another), as shown in Table 4.1.

Table 4.1 Comparison between optimization algorithms in different problems/studies

Algorithms Problem Best Reference
ABC vs. GA Ben.chrn.ark functions . ABC [205]
Optimizing Heterogeneous wireless networks (HWNs) GA [206]
i 207
ABC vs. PSO Benc.hmark functlonts ‘ ABC [207]
Maximum power point tracking (MPPT) system PSO [208]

- X >

GA vs. PSO O'pt|m|2|r.1g Heterogeneous wireless networks (HWNs) GA [206]
Timetabling problem PSO [209]
PSO vs. SA Satel!lte s.elef:tlon . PSO [99]
Multi-Objective Land Allocation (MOLA) SA [210]

Therefore, the performance of the five optimization algorithms should be considered from
satellite selection problems. The five optimization algorithms (ABC, ACO, GA, PSO, and SA)
were used to choose the optimal satellites in various studies. However, most of these
studies have applied only one of these algorithms. Only three studies [92,99,106] were
found that compared optimization algorithms.

Apart of ACO, Mosavi and Shiroie [106] chose the optimal subset of GPS satellites based on
GDOP using the remaining four optimization algorithms. According to the selection results,
the four algorithms were comparable in terms of selection speed and accuracy (i.e.,
matching the actual optimal satellites). According to their results, ABC was the most
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superior as it was the most accurate and second fastest algorithm. The fastest algorithm
was SA, but it was also the least accurate.

Xia et al. [106] chose the optimal subset of BeiDou satellites based on GDOP using ACO and
modified ABC. To improve the performance of ABC, they combined ABC with another
optimization algorithm (Tabu algorithm). This combination was called Tabu Search Artificial
Bee Colony (TSABC). Comparing to the actual optimal satellites derived from TM (Exhaust
Search), the TSABC outperformed ACO.

Du et al. [92] chose the optimal satellite subsets from multi-GNSS (GPS and BeiDou) using
the minimum GDOP value (MGV), i.e., selecting satellites based on GDOP using TM. In
addition, they chose the optimal satellites based on WGDOP using GA, ACO, and modified
ACO, and Artificial neural network (ANN). To improve ACO, they combined it with polarized
feedback (ACO-PF). Error! Reference source not found. shows the selection results of the a
lgorithms. According to their results, ACO chose better satellites than GA, as their average
WGDOP and RMS was better. However, GA was faster than ACO in satellite selection.

Accordingly, the suitable optimization algorithm for selecting satellites cannot be verified.
This is because there are not adequate comparisons between them in satellite selection
problem. Only three studies compared the performance of optimization algorithms in
satellite selection. One of these studies compered four optimization algorithms (ABC, GA,
PSO, and SA). The remaining studies compared two optimization algorithms. In addition,
one of them was enhanced, leading to an unfair comparison.

4.3 Summary

This chapter presented the concept, pros, cons, applications, and implementation steps of
five optimization algorithms (ABC, ACO, GA, PSO, and SA). All of them are considered robust
and flexible as they were adapted to different types of problems. However, these algorithms
were uniquely designed and work differently. Thus, they could be more suitable for one
problem than another. In satellite selection problem, they have not been adequately
compared. To find the most suitable optimization algorithm for satellite selection, the five
algorithms should be tested in satellite satellites.
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Chapter 5 Methodology to find the criterion and technique for PPP-
selection

This chapter discuss the methodology that carried out to develop a satellite selection
method for PPP, various steps were carried out. Mainly, they can be classified into three
stages: 1) Define the suitable optimization algorithm, 2) Define the criteria and process for
satellite selection, and 3) Experimental evaluation of Satellite Selection Method. This can be
seenin Figure 5.1.

Each satellite selection method consists of two components: criterion and technique. The
criterion is the factor based on which satellites are selected, while the technique is an
approach for selecting satellites based on the criterion. Thus, technique performance is
importance for criterion efficiency that indicate the efficiency of satellite selection method.
Therefore, in the first stage of the project methodology, the performance of five optimization
algorithms (techniques) was evaluated to find their best in satellite selection. In the second
stage of the project methodology, the most suitable criterion for satellite selection was
define. It can be a combination of criteria such as WGDOP including satellite signal strength
and geometry. Hence, the appropriate criterion(s) and combination process were
determined by testing different criteria and combination methods for satellite selection.
Lastly, the results of the previous two phases were used to form the satellite selection
method that were evaluated in several case studies in the third stage of the project
methodology.

Analysing satellite data becomes more complex as it gets noisier due to GNSS error sources
including receiver noise. To facilitate the development of satellite selection method, GNSS
data were collected from geodetic GNSS receivers and antennas. This is because they
provide results with lower noise levels than low-cost receivers and antennas [211]. GNSS
data was collected from Leica GR10 and GS10 receivers and AR25.R4 and AS10 antennas.
The antennas and receivers were designed to track and record precise satellite signals of
multiple systems. However, the Leica receiver (GR10) and antenna (AR25.R4) are heavy and
suitable for permanent jobs such as stations. Whereas the Leica receiver (GS10) and
antenna (AS10) are lightweight, and easy to carry, making it suitable for field works. More
information about these Leica receivers and antenna are shown in the tables below.
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Table 5.1 Features of Leica GR10 and GS10 receivers

Receiver Sat System Frequency Channel Recordingrate Reference

GPS L1,L2,L5

LeicaGR10 GLONASS L1, L2 120 Upto1Hz [212]
Galileo E1, E2a, E2ab
GPS L1,L2,L5

Leica GS10 CLONASS L1, L2 120 Up to 20 Hz [213]
Galileo E1, E2a, E2ab
BeiDou B1, B2

Table 5.2 Features of Leica AR25.R4 and AS10 antennas

Amplifier Noise

Antenna  Sat System Frequency Gain T Design Reference
GPS L1, L2, L5
GLONASS L1, L2,L3, L5
A;SiSC.aR4 :::;ZZ El: 25;,525b’ Foay B 40dB <1.2d8B choieDring [214]
QZSS L1, L2, L5, L5
IRNSS L5
GPS L1, L2, L5
Leica GLONASS Not specified 2943 dB Nc.)t. Compact [213]
AS10 Galileo Not specified specified
BeiDou Not specified

RTKLIB (demo5 b34d) was used for processing GNSS data. RTKLIB is an open-source
software developed by Takasu and Yasuda (2006) for GNSS. It is a full package of GNSS
software, including GNSS data conversion (RTKCONYV), plotting (RTKPLOT), and processing
(RTKPOST). RTKLIB can process GNSS data in multiple modes such as SPP, DGNSS, and
PPP. Enormous number of studies have used RTKLIB proving its efficiency. In addition,
RTKLIB is highly flexible and transparent as its code, processing configurations, and debug
trace files are accessible. Thus, it is suitable for this project, as the performance of the
selected satellites can be tracked and evaluated. Various versions of RTKLIB have been
released since 2006. RTKLIB version demo5 b34d was used as it was the latest when this
project started.

High Performance Computing (HPC) of the University of Nottingham was used for selecting
satellites. HPC indicates combination of computing resources to achieve higher computing
performance that is difficult or impossible to achieve using standard computers and
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laptops. It is available to any research student and academic faculty member from any
school or college. Users can use up to 600 CPU cores and 3000GB RAM simultaneously for
up to 7 days. In addition, 1TB of storage is provided.
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Figure 5.1 Flowchart of the project methodology

5.1 Define the suitable optimization algorithm

To find the most suitable and reliable optimization algorithm for satellite selection, the
performance of five optimization algorithms (ABC, ACO, GA, PSO, and SA) was tested in
satellite selection. Their algorithms were modified to fit to the satellite selection problem,
while their common parameter values were adjusted and defined uniformly. They were
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applied in several scenarios of satellite selection for various number of satellites and
conditions. In all the cases, the cost-function of the five optimization algorithms was the
CNR-WGDOP parameter, of which the minimum value would indicate the corresponding
optimal GNSS satellite subset. The evaluation of the optimization algorithms was based on
comparing the CNR-WGDOP value of their optimal satellite subset with that of the actual
optimal satellite subset derived from the TM. The optimization algorithm with the best
results in terms of satellite selection accuracy and speed was considered the appropriate
algorithm for satellite selection, which then was applied for the development of the
methodology of satellite selection (stage 2) and the various case studies applications (stage
3).

5.1.1 Adjust optimization algorithms

GNSS satellite selection is a discrete problem [127], while the five optimization algorithms
are not explicitly designed for this type of problem. The five optimization algorithms follow
an iterative search processing to find the optimal satellite subset. At the end of each
iteration, new solution(s) are generated. ABC and PSO algorithms generate solution(s) with
a fractional value as they were designed for the continuous problem. However, only an
integer number is accepted in the satellite selection problem. This issue can be overcome
by changing the algorithm design for a discrete problem [127,215,216], or simply rounding
solutionvalues [215,217]. To reduce complexity, the generated solutions from ABC and PSO
were rounded to the nearest integer in each iteration.

In addition, the four optimization algorithms (apart from ACO) can provide results with
duplicate values. In the case of the GNSS satellite problem, this would mean that the same
satellite could be chosen twice in the solution of the optimized satellite constellation. To
address this problem with less interference in the algorithm design, the algorithm solution
was checked at the end of each iteration. If the solution contained a duplicated value, it was
rejected, and a new solution was generated without consuming the number of searching
iteration.

In this study, the optimal satellite subsets were chosen based on the criterion of minimising
the CNR-WGDOP which indicates the best potential GNSS satellite combination for the
given available GNSS satellites. That can be done without adjustment by all algorithms
except for ACO. ACO originally was designed to simulate the foraging behaviour of ants,
where ants search for the shortest path for the food source. Due to that ACO finds the
optimal solution based on two criteria: (i) solution quality and (ii) the distance between
solution members [153]. The weight of the two criteria (solution quality and distance
between solution members) on finding the optimal solution can be determined through the
values of alpha (a) and beta (B) parameters, respectively. In this problem, the quality of the
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CNR-WGDOP and the distance between the satellites in a constellation represent the
solution quality and the distance between solution members. To select the optimal
satellites based on CNR-WGDOP only, the B value was set to zero [153].

5.1.2 Define the values of Optimization Algorithm parameters

The values of the algorithm parameters are critical as they directly affect the algorithm
output and performance [203,204]. Choosing the appropriate value for algorithm
parameters can be difficult due to their wide range [149,203], whereas homogeneity
between these values should be considered [149]. In this study, parameter values were
chosen based on their standards and previous studies (Table 5.3). However, this does not
guarantee that the value of these parameters is the best for this problem.

To have an objective comparison of the performance of the five optimization algorithms, the
algorithms’ common parameters were standardized. In Table 5.3, the parameters of the five
optimization algorithms are presented, and itis observed that the only common parameters
were the searching iteration and population size. The values of both parameters were set to
100, which is considered a reasonable value and consistent with previous studies (Table
5.3). However, the SA algorithm was originally designed to have a single population size. To
make up for this restriction of the population size in SA algorithm, the number of
corresponding iterations was increased with respect to the other four optimization
algorithms and defined to 1000 [218]. The humber of iterations for the SA algorithm derived
based on tests assessing the performance of the SA algorithm to reach the optimal solution
while also retaining the SA iterations to a similar level of the performance of the other four
optimization algorithms as defined by the number of iterations and population size.
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Table 5.3 The parameter values of the five optimization algorithms [150].

Algorithm Notation Meaning Value References
The problem dimensions, indicating the satellite

D constellation size
ABC maxlter The maximum number of iterations 100 [106,107,127,219]
pSize The population size 100 [92,127,149,220]
limit The abandonment limit D x pSize [151]
maxlter The maximum number of iterations 100
pSize The population size 100
ACO o) The evaporation rate 0.5
a The relative importance of the trail 1
— — [92,149,153]
B The relative importance of the visibility 0
Q The quantity of trails laid by ants 100
maxlter The maximum number of iterations 100
GA pSize The population size 100
Pc The probab!l!ty of crossc?ver 0.8 [107,149]
Pm The probability of mutation 0.12
maxlter The maximum number of iterations 100
pSize The population size 100
PSO Wmax The initial weights 0.9
Wmin The final weights 0.4
- . [136,149,219]
C1 The personal acceleration coefficient 2
C2 The social acceleration coefficient 2
maxlter The maximum number of iterations 1000
pSize The population size 1
SA TO The initial temperature 2000 [149,218]
Tf The final temperature 0.01
a The cooling factor 0.975

5.1.3 GNSS Data

The 24-hour GNSS data was obtained from the BIGF (British Isles continuous GNSS Facility)
station located on the roof of the Nottingham Geospatial Institute building (Figure 5.2), The
GNSS station is equipped with a choke-ring antenna Leica AR25.R4 antenna with strong
multipath rejection installed on the pillar of control point (NGB2) and a Leica GR10 receiver
with the capacity of recording multi-GNSS signals (GPS, Galileo, GLONASS). On 20
September 2021, GNSS data were collected with a 30-sec sampling rate and zero-degree
elevation mask. A total of 18-31 satellites were recorded including 7-13 GPS, 4-10
GLONASS, and 5-10 Galileo satellites (Figure 5.3).
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Figure 5.2 (left) View at the roof of NGI building, with the location of control point NGB2 and
(right) the GNSS antenna installed on the top of the pillar of NGB2 [150] .
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Figure 5.3 Number of available GNSS satellites at NGB2 GNSS station for the 24-hour period
on 20 September 2021 [150].

5.1.4 Satellite Selection Implementation

To evaluate the five optimization algorithms, they should be applied for a long period of
GNSS observation, where (i) the GNSS satellites systems (i.e. GPS, GLONASS, Galileo, etc.),
(ii) the number of the corresponding GNSS satellites, and (iii) the position of the GNSS
satellites (azimuth, elevation) varies with time. Therefore, a 24-hour period of GNSS
observations were used. The optimization algorithms were applied to select the optimal
GNSS satellites subset for specific time intervals where the change of the GNSS satellites
position (azimuth and elevation) is adequate to affect the satellite constellation geometry.

45



Chapter 5 Methodology to find the criterion and technique for PPP-selection

Forthe given location of the GNSS station (i.e. Nottingham Geospatial Institute, Nottingham)
and available GNSS satellites (i.e. GPS, Galileo, GLONASS), the required time for each GNSS
satellite to move on its orbit by one degree was analysed. Figure 5.4 displays the required
time of each available GNSS satellite to move by one degree, where the maximum required
time reaches up to 3 minutes. In previous studies [107,117], 10 minutes satellite selection
interval was used. However, in the current study, the satellite selection interval was setto 5
minutes to reduce the computation load of satellite selection while maintaining a large
number of epochs for the satellite selection. Hence, the optimal satellite subsets were
selected for 288 epochs, corresponding to 1 epoch per 5-minute interval, for the 24-hour
GNSS dataset.

3 T TT T T T T T T T T T T T T T T T T T T TTTT71 TT T T T T T T T T T T T T T T T T T T T T TTT TT
[ cPs
[ GLonass
[ calileo
25—
—
[
o
3 2
£
E
=
j=2
=
E
=15
[
£
2
<]
E
c
g 1
@
=
0.5
O TANMNTNOMRODONMOTNOMRONO - NMTUORDIO N ~OUNOFTVOMRORONMNINONMODO—NMS ngmhmm-—mmmmv—vmmno-—nw
CO0000000O T~ T T T T NANANNNNNNMMO O000C0CCOCO - T o ANNNNN COCO0OO0O00O ™~~~ NN MMM
[GIGICIOICIOIOIOIGIGIGIGIVIGICIGICIGIGICIGICIGIGIGIGICICIO ORI A i i i i i i i Ao i oo o o e T T T T T R T R R O A P TR TR NI ]
Satellites

Figure 5.4 Time-period of satellites mean movement by one degree, considering satellite azimuth
and elevation angles.

To choose the satellites based on the CNR-WGDOP, using the Equation (3.10), it is
necessary to extract (i) satellite pseudorandom noise (PRN), (ii) satellite observation time,
(iii) elevation angles, (iv) azimuth angles, and (v) the CNR values. The raw satellite data
(range observations and navigation data) were introduced in RTKLIB (demo5 b34d) software
to define the elevation and azimuth of each satellite, extract the required remaining
information (satellite PRN, observation time and CNR) and save the information in a file, as
shown in Figure 5.5. Using MATLAB (R2022b) software in HPC the optimal satellite subset
was selection by the five optimization algorithms. The satellite selection was carried out
every five minutes. They were selected sequentially using the standard serial for loop.
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% TIME (GPST) AZ(deg) EL(deg) CNR(dBHz)
2021/09/20 06: 242. 4.2 34.95
2021/09/20 96: 243. 6. 37.10
2021/09/20 06: 244 8. 39.25
2021/09/20 06: 245. 10. 38.35
2021/09/20 96: 246. 11. 39.45
2021/09/20 06: 247. 13. 40.50
2021/09/20 07: 248. 15. 42.45
2021/09/20 07: 250. 175 41.10
2021/09/20 07: 251. 19. 41.75
2021/09/20 07: 252. 21 44.65
2021/09/20 07: 253. PER 41.15
2021/09/20 07: 255. 25. 44.95
2021/09/20 07: 256. 28. 41.05

.0
.0
.0
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Figure 5.5 Sample of the file of the GPS data information, which includes (i) date-time, (ii) satellite
PRN, (iii) azimuth, (iv) elevation angle and (v) CNR (in dB-Hz) [150].

However, the GNSS satellite selection becomes more challenging as the number of possible
satellite combinations increases, which occurs when there is a large number of available
GNSS satellites in relation to the number of satellites in the subset. This can be described
more clearly with Equation (5.1):

n n!
“ =r!(n—r)! (5.1)

where ¢ is the number of possible GNSS satellite combinations, expressed as factorial
function of n, the number of available GNSS satellites, and r, the number of GNSS satellites
in the subset (subset size).

Hence, by increasing the number of available satellites, the number of possible satellite
combinations increase dramatically, making the evaluation of the five optimization
algorithms more complex. In this study, satellite data were collected from multiple satellite
systems (GPS, GLONASS, and Galileo). The number of available satellites exceed 20 (Figure
5.3), resulting in a large number of possible satellite combinations, making satellite
selection more difficult. In Figure 5.6, the number of all possible combinations for GPS
constellation and multi-GNSS constellation are depicted. The graphs illustrate the potential
combinations for a number of given trackable satellites. It is evident that the possible
satellite constellation combination increases significantly with the number of available
satellites. With 8 GPS satellites available, the maximum number of 4-satellite combinations
is 70, whereas in the case of 13 available GPS satellites, the maximum number of
combinations is 1716 and occurs for GPS subsets of 6 and 7 satellites. For the case of the
multi-GNSS constellation, where the available number of satellites increases, the number
of possible combinations increases dramatically. Representative of this is the case of 31
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available GNSS satellites, for which the maximum number of possible combinations
300,540,195 and occurs for multi-GNSS satellite subsets of 15 and 16 satellites.
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Figure 5.6 The possible combinations of satellite constellations for (left) GPS-only for the cases of 8
and 13 available GPS satellites, and (right) multi-GNSS satellites constellation, for the case of 18
and 31 available GNSS satellites [150].

Therefore, the optimization of the GNSS satellite subset was performed in two stages: (i) for
GPS-only satellite constellation and (ii) for multi-GNSS satellite constellation (GPS,
GLONASS and Galileo). Based on these two case studies, it is evaluated how the
performance of the optimization algorithms is affected by the number of GNSS satellites. In
the first stage, the performance of the five optimization algorithms was evaluated by
optimizing GPS subsets in different sizes to change selection conditions. Based on the first
stage of evaluation, the optimization algorithm with best performance, in terms of satellite
selection accuracy and computation time requirement, was chosen. In the second stage,
only the best-performed optimization algorithm was applied and evaluated to optimize
different sizes of multi-GNSS satellite subsets under more challenging conditions as the
number of available GNSS satellites is significantly high, resulting in a large number of
possible satellite constellations. In addition, at the second stage, a parametric analysis of
the best-performed optimization algorithm was conducted to evaluate the impact of the
various settings, such as the number of iterations and the population size, on the
performance of the optimization algorithm.

Accordingly, the performance of the five optimization algorithms in optimizing GPS satellite
subsets of 4, 5, 6, and 7 satellites was examined. The most suitable optimization algorithm
was chosen based on its overall performance. It was then tested for optimizing multi-GNSS
satellite subsets of 4, 8, 12, and 15 satellites using various algorithm parameter values. In
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allabove tests, the algorithms quality in satellite selection was evaluated by comparing their
selection with the actual optimal satellite subsets, which are identified by TM.

The TM checks the WGDOP value of all possible GNSS satellite subsets to define the optimal
GNSS satellite subset with the lowest WGDOP value. Thus, it provides the actual optimal
satellite subsets. However, finding the optimal satellite subset of 15 satellites when 31
satellites available requires checking 300,540,195 by TM. In MATLAB, a variable with one cell
costs 8 bytes. Therefore, more than 40 GB of computer’s RAM is required to generate only
300,540,195 of satellite subsets. As a result, High Performance Computing (HPC)
Nottingham University was used to determine the optimal satellite subsets by TM and
optimization algorithms.

5.1.5 Evaluation of the optimisation algorithms

The performance of optimization algorithms was evaluated based on two criteria: i)
selection accuracy and ii) selection speed. Satellite selection of optimization algorithms
was compared with the actual optimal satellite subsets, derived from TM. The WGDOP value
of all possible satellite combinations (i.e., all possible solutions) was determined, and then
the best satellite combination with least WGDOP value was define as the optimal
combination. The optimization algorithm considers to be accurate when the WGDOP value
of its selected optimal satellite subset exactly matches the WGDOP value of the TM optimal
satellite subset, and consequently, the accuracy expresses how closely. On the other hand,
the selection speed of optimization algorithm is processing time required for finishing the
entire selection (288 selections). It was determined by MATLAB, which was used to perform
satellite selection by TM and optimization algorithms.

5.2 Define the criteria and process of satellite selection subset

In section 3.6, WGDOP-RAIM was primarily chosen as the appropriate criteria for satellite
selection. To improve the quality of satellite selection further, the performance of WGDOP-
RAIM in satellite selection was evaluated along with satellite selection angle (Ele) and iv)
Kalman Filter innovation threshold (KFITH). They were implemented for satellite selection in
different combinations and order. In addition, the optimal satellites were selected in all
possible subset sizes by WGDOP-RAIM in all combinations. The evaluation of WGDOP-RAIM
selection combinations was based on (i) the positioning quality of the selected satellites, (ii)
positioning availability, (iii) the number of actual selected satellites used in positioning
solution, and (iv) the continuity of selected satellite subset. The selection combination with
the best results in above evaluation criteria considered the appropriate one for satellite
selection.
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5.2.1 Define Possible Selection Factors with WGDOP-RAIM

There are many factors that affect positioning accuracy. Considering as many as possible of
these factors can improve the quality of selecting satellites. WGDOP considers the satellite
geometry and signal quality, which are the most important positioning factors. Whereas
RAIM considers satellite geometry, signal quality, and positioning correction. As a result,
WGDOP-RAIM could be the most appropriate criterion for satellite selection.

However, Satellite geometry (GDOP) improves with the use of low elevation satellites, so the
GDOP/WGDOP-based satellite selection method tends to choose low elevation satellites.
Satellite at low elevation angels (0°-15°) are more vulnerable to atmospheric and multipath
errors. Thus, using cut-off elevation angle (CEA) may improve the selection quality of
WGDOP-RAIM. Furthermore, using CEA will reduce the number of satellites observed.
Consequently, the number of possible satellites combination will reduce, leading to
decrease the difficulty of satellite selection.

On the other hand, RAIM was essentially design for Single Point Positioning (SPP) that has
low positioning quality (meter level), where pseudo-range measurements are used to
determine a positioning solution for each epoch separately (epoch-by-epoch) by least
squares (LS). In contrast, PPP provides precise positioning (centimetre level), where both
pseudo-range and carrier phase measurements are used to a sequential positioning using
data processing approach such as Kalman Filter (KF). As a result, RAIM is not designed for
PPP data process [221,222]. Several studies [123,223-225] have proposed a new RAIM
algorithm that fit the KF’s serial positioning residuals (KF innovation). Since satellite
selection is for PPP, KF-RAIM should be used with WGDOP to improve selection quality.

However, RTKLIB (version demob5 b34d), used software, has the traditional RAIM and normal
KF innovation thresholds [118,119]. In RTKLIB, the KF innovation threshold is set manually,
and any residue exceeding it is rejected [118,119]. To perform a comprehensive evaluation
of WGDOP-RAIM based on RTKLIB's traditional RAIM and standard KF innovation threshold,
satellites were selected based on WGDOP-RAIM with or without the KF innovation
threshold.

5.2.2 Define the suitable selection order for WGDOP-RAIM

In previous studies [14,121,124], satellites were chosen based on GDOP and RAIM. This
selection was made sequentially. They chose satellites based on GDOP and then used RAIM
to ensure the integrity of the selected satellites. In these two studies [121,124], satellites
were selected again based on GDOP. Thus, their selection was GDOP-RAIM-GDOP. This
selection order can be used with WGDOP to be as follows: WGDOP-RAIM-WGDOP.
However, this selection order has a major limitation especially for PPP satellite selection.
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Compared to SPP, PPP required various number of corrections such as satellite precise
orbit and clock, as well as satellite and receiver phase antenna. WGDOP-based satellite
selection ignores PPP correction because it only considers satellite geometry and signal
power. On the other hand, RAIM considers positioning corrections when selecting satellites.
As a result, selecting satellites based on WGDOP first may result in choosing inappropriate
satellites for PPP. There is no guarantee that using RAIM later will improve this selection,
especially if it the number of selected satellites was small, as satellites have already been
filtered by WGDOP selection. Furthermore, satellites were selected based on WGDOP to
meet arequired level of geometry; removing some of these satellites using RAIM may impact
their geometry.

In contrast, using RAIM first will check the integrity of satellite measurements, considering
positioning corrections. This will improve WGDOP selection later because the integrity of
the selected satellites by WGDOP for the positioning has been proved. Furthermore, few
number of WGDOP selected satellites will be rejected by RAIM when it used again. Thus,
RAIM-WGDOP-RAIM is better selection order. To verify the accuracy of the above
hypotheses, the optimal satellites were selected by ten satellite selection cases, as shown
inthe Table 5.4.

Table 5.4 Ten satellite selection cases

Case Selection technique
WGDOP

Ele + WGDOP

WGDOP + RAIM

WGDOP + RAIM +KFITH

RAIM + WGDOP

RAIM + KFITH + WGDOP

Ele + RAIM + WGDOP

Ele + RAIM + KFITH + WGDOP

Ele + RAIM + WGDOP + RAIM + KFITH
Ele + RAIM + KFITH + WGDOP + RAIM + KFITH

[N

O |N[oojLnn|(~|W([N

[E
o

5.2.3 GNSS Data

To evaluate satellite selection of ten cases, satellites should be selected by them multiple
times. In other words, satellites should be selected for a long period of GNSS data. Satellite
signals are affected by various types of error sources, which reduce positioning accuracy,
such as ionosphere, troposphere, and multipath. Compared to others, multipath effects
cannot be mitigated by models. To reduce its effects, affected satellite signals should be
minimized by avoiding multipath environments and using special antennas (e.g., choke ring
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antenna). As a result, four days (20 September, 22 September, 27 September, and 01
October 2021) of satellite data were collected using choke ring antenna from open-sky

environment.

GNSS data was obtained from the same BIGF station (NGB2) located on the roof of the NGI
building (Figure 5.2). Figure 5.7 shows the number of GNSS satellites observed with a 30-sec

sampling rate and zero-degree elevation mask.

To determine the true coordinates of NGB2,
implemented. GNSS data was obtained from NGB2 and the closest five BIGF stations
(Keyworth, Lichfield, Lincoln, Church Lawford, Peterborough). They are 0.12 to 64.21 km
away from NGB2, as shown in Table 5.5. Their 15 days of GNSS data was obtained from 20

September to 04 October 2021.
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Table 5.5 Information of the closest five BIGF stations to NGB2

# Station name Receiver Antenna Distance

1 Keyworth (KEYW)  SEPT POLARX5 LEIAR25 0.12 km
2 Lichfield (LICF) TRIMBLE ALLOY LEIAR25 52.98 km
3 Lincoln (LINO) TRIMBLE ALLOY LEIAR25 55.73 km
4 Church Lawford (CLAW) SEPT POLARX5 LEIAR25 60.40 km
5 Peterborough (PETE) SEPT POLARXS5 LEIAR10 64.21 km

5.2.4 Satellite Selection Implementation

As mentioned earlier, in addition to WGDOP and RAIM, Ele and KFITH were considered in
satellite selection. To evaluate the impact of RAIM, Ele, and KFITH on WGDOP selection, ten
satellite selection cases were considered (Table 5.4). To improve satellite selection quality,
the satellite selection of Ele, RAIM, and KFITH should be before WGDOP. In addition, the Ele
selection should be before RAIM and KFITH. Whereas the satellite selection of RAIM and
KFITH is done simultaneously using RTKLIB. Figure 5.8 shows the satellite selection order

using the four selection factors.

-
Satellite

selection

y

Ele

A 4

RAIM & KFITH

!

WGDOP
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Figure 5.8 Satellite selection order using the Ele, RAIM, KFITH, and WGDOP.

5.2.4.1 Satellite Selection Based on Ele

Satellite selection based on elevation angles (Ele) is commonly used to remove satellite
signals at low elevation angles that ranges from 0 -15 degrees, as they are more vulnerable
to atmospheric and multipath errors. Ele satellite selection can be implemented with 5, 10,
and 15 degrees. However, to investigate the impact of satellite selection by Ele with the least

P
Using elevation

angle threshold )

Using ABC
algorithm
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number of trials/steps, the maximum threshold (15 degrees) was used only. This is suitable
because it can show the maximum effect of satellite selection by Ele on WGDOP selection.

Ele satellite selection was carried out five times: once with WGDOP only (case 2), and the
remine with RAIM/ RAIM-KFITH (cases 7-10), as shown in Table 5.4. In case 2, Ele selection
was performed using MATLAB (R2022b) software before WGDOP selection using the ABC
algorithm in MATLAB. When satellite characteristics file (Figure 5.5) was uploaded to
MATLAB, any satellites with elevation angles less than 15 degrees were rejected. In other
cases, Ele selection was done using RTKLIB's cut-off elevation angle (CEA), as RTKLIB will
be used for RAIM/ RAIM and KFITH selection, which require satellite observation and
navigation files.

5.2.4.2 Satellite Selection Based on RAIM and KFITH

RAIM and KFITH exclude satellites based on residual, which are the differences between the
obtained/expected and computed measurements. Thus, the satellite selection of RAIM and
KFITH require an initial positioning. RTKLIB (demo5 b34d) was utilized to performed RAIM
and KFITH satellite selection. RTKLIB is equipped with the traditional RAIM, which deals with
pseudo-range (code) measurements. Hence, RAIM’s residuals is the differences between
obtained and computed pseudo-range measurements. RTKLIB’s RAIM uses chi-square test.
Ifitis failed, RAIM remove the satellites to improve positioning accuracy. The chi-square test
is shown in Equation (3.16).

Furthermore, RTKLIB has athreshold that exclude satellites based on Kalman filter innovate,
which is the difference between the expected and computed measurements. These
measurements are for both code and phase measurements. Kalman filter innovate
threshold (KFITH) is a simple and straightforward threshold, where satellite measurements
exclude if its residual (code/phase) exceeded the user pre-determined threshold. The code
and phase thresholds are different but still connected in RTKLIB (demo5 b34d). The phase
threshold is determined in meter by the used, and it multiplied by the code/phase error ratio
to generate the code threshold [118]. Based on previous studies [13,226] and the default
value [118,119], the phase threshold was set to 30 meters. The code/phase error ratio is a
parameter defining how much accurate phase measurements than code. The code/phase
error ratio was 300 using the default value [118].

As mentioned early, RAIM and KFITH satellite selection consider positioning correction as
they chose satellite based on residuals, which are the different between the
obtained/expected and computed measurements. Thus, an initial positioningis required for
RAIM and KFITH selection. To consider the required PPP corrections and applied RAIM and
KFITH selection, RTKLIB was implemented with following configurations:
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Table 5.6 PPP configurations

Settings

Options

Position mode

PPP static

Satellite system

GPS, GLONASS, and Galileo

Frequency

L1/G1/E1, L2/G2/E5b, and L5/E5a

Filter type

Combined

Ocean tides loading

GOT4.7

lonosphere correction

lonosphere-free

Troposphere correction

Estimate ZTD (zenith total delay)

Satellite Ephemeris/Clock

Precise (final)

Satellite antenna PCV (phase centre variation) igsl4.atx
Receiver antenna PCV igs14.atx
Phase windup correction (PhWindup) ON

Reject eclipse ON
Differential code bias (DCB) correction ON

Integer Ambiguity Resolution Continuous
RAIM ON

KFITH of phase 30 meters
Code/phase error ratio 300

5.2.4.3 WGDOP Selection

WGDORP is a parameter that indicates satellite geometry while considering the quality of
satellite measurements, either through pseudo-range error (UERE) or signal power
(SNR/CNR). Compared to UERE, SNR and CNR are much easier to obtain as they are
computed by the receiver. As a result, WGDOP based on CNR was used for satellite
selection. WGDOP satellite selection can be classify into two main stages: (1) WGDOP
determination and (2) WGDOP selection.

e WGDOP Determination

As discussed in Section 3.4, WGDOP can be computed either through the traditional
method (TM) or closed-form formula. Although it can be calculated faster using the closed
form formula, the traditional method was used for clarity and simplicity. In the TM, the
geometry matrix (H) and the weighted matrix (W) are required to calculate the WGDOP using
the inverse matrix, as shown in Equation (3.10). The H can be computed without and with
the time difference between satellite systems using Equations (3.7) and (3.8), respectively.
In multi-GNSS, it is crucial to consider the time difference between satellite systems to
improve positioning accuracy [24]. Hence, considering this time difference is important
when selecting multi-GNSS satellites to improve the quality of the selected satellites and
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then positioning accuracy [14]. Therefore, the geometry matrix (H) was computed with the
time difference consideration using Equation (3.8). On the other hand, the W matrix contains
the CNR value of the satellites diagonally, as shown in Equation (3.11).

To calculate WGDOP based on CNR using the above three equations (3.10), (3.8), and (3.11),
five satellite information is required: (1) satellite PRN, (2) observation time, (3) elevation
angles, (4) azimuth angles, and (5) CNR values. These satellite data were obtained using
RTKLIB (demo5 b34d). The raw satellite data (observations and navigation data) was
imported in RTKLIB's PLOT to determine and extract the required the five satellite
information, as shown in Figure 5.5. However, different satellite observation data were used
in the ten satellite selection cases.

As shown in Table 5.4, there are ten cases of satellite selection. In the first four cases
WGDOP satellite selection was done alone, after Ele, and before RAIM and before RAIM-
KFITH, respectively. In these cases, the original satellites observation data obtained from
receiver were used to generate the satellite characteristic file using RTKLIB. The satellite
characteristic file was imported to MATLAB for WGDOP selection. However, the satellite
characteristic file was filtered first to remove any satellites with an elevation angle less than
15 degrees before WGDOP selection in case 2.

In the last six cases, WGDOP satellite selection was performed after RAIM or RAIM-KFITH
alongwith Elein some of them. In these cases, a modified satellite observation file was used
to generate the satellite characteristic file. RAIM or RAIM-KFITH selection was implemented
before WGDOP. A positioning is implemented after RAIM selection. After RAIM selection
(i.e., exclusion), the remaining satellites are then used for new positioning determination.
As aresult, the positioning status file was checked to find which satellites were rejected by
RAIM and others (Ele and KFITH). These satellites were then excluded from the satellite
observation file using MATLAB. This modified satellite observation file with the navigation
massage were imported into RTKLIB’s PLOT to obtain the satellite characteristic file for
WGDORP selection.

e WGDOP Selection

Several techniques, as TM, ANN, and optimization algorithms, were used to find the optimal
satellite subset based on WGDOP value. The optimization algorithms were considered the
most suitable technique for the satellite selection based on their high result quality and
computation speed, as discussed in Section 3.3. The performance of five optimization
algorithms (ABC, ACO, GA, PSO, and SA) was evaluated in satellite selection in Chapter 6.
The best-performing optimization algorithm was used for WGDOP-based satellite selection
in the ten cases.
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Satellite selection based on WGDOP/GDOP can be done by two ways: 1) fix subset size and
2) fix GDOP/WGDOP value. The fix subset size is an approach that finding the optimal
satellites for a fix subset size (i.e., fix number of satellites in the subset). The fix
GDOP/WGDOP value is an approach that finding the optimal satellite subset with the least
size that reach the predetermined GDOP/WGDOP value. The optimal satellite subset based
on WGDOP/GDOP was found for a fix number of satellites using optimization algorithms. To
improve positioning accuracy with the lowest number of satellites, the optimization
algorithms were carried out finding the optimal subset of fix number of satellites ranges
between 4-18 (Table 5.7).

Table 5.7 Number of selected satellites using optimization algorithms in previous studies

NSAT selected Reference
4 [101,105]
6 [107]
8 [106]
6,8,10,and 12 [7,117]
5-18 [104]

The number of satellites is important for positioning accuracy because it increases as the
number of satellites rises. To investigate the effect of the number of satellites on selection
and positioning, the optimal satellites were selected with all possible subset sizes. When
using one satellite system, at least four satellites are required for positioning. This minimum
number of satellites (4) increases by one as the number of used satellites system increases.
This is because the time difference between satellite system [22]. In this project, satellite
data were collected from three satellites systems: GPS, GLONASS, and Galileo. Thus, the
optimization algorithm was applied to find the optimal subset of 6 — maximum number of
satellites observed.

Although GNSS data were collected for 24 hours with 30-sec interval (i.e., 2880 epochs), the
optimal subset of large number of satellites was selected in few numbers of epochs less
than 2880.This is because the number of satellites fluctuate over time, as the number of
satellites increases the short it last. The satellites selection based on WGDOP was
implemented per epoch. For each epoch, It was only applied if an epoch has a number of
satellites greater or equal to the predetermined number of satellites for selection.

WGDOP-based satellite selection is selection based on the quality of satellite geometry
(GDOP) and signal power (CNR). The optimal satellites were selected for multi-GNSS (GPS,
GLONASS, and Galileo). Each one of these satellite system broadcasts their signal in
multiple frequencies, as shown in Table 2.1. However, only satellite L1 frequencies were
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considered in WGDOP selection. This is because the three satellite systems have different
number and band of frequencies (Table 2.1).

5.2.5 Results Evaluation

The performance of the ten cases in satellite selection can be evaluated based on their
selected satellite positioning quality, which includes positioning accuracy, precision,
epochs, and the number of satellites used for positioning of the selected. The selection case
with the best results in above evaluation criteria considered the appropriate one for satellite
selection. However, four steps are required to implement positioning and estimate
positioning accuracy, as shown in Figure 5.9

s N
Modify RINEX file

\ J

e 1 N

PPP positioning

l

Coordinates
transformation

. 1 J
e ~
Reference
coordinates
. J

Figure 5.9 Flowchart of Implementing PPP positioning with the selected satellites and
determine its accuracy

e Modify RINEX

Satellites travel around the Earth, so GNSS receiver track different satellites over time. As a
result, different optimal satellites should be selected for different periods of time. RTKLIB,
which was used for PPP positioning, can exclude different satellites for each epoch.
Therefore, the original RINEX, obtained from receiver, was modified. It was imported to
MATLAB to remove unselected satellites for each epoch Hence, the RINEX file was modified
for every number of satellites selected in each case, as shown in Figure 5.10.
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Case:6 Selected:6-Sat

> 2021 09 20 00 00 00.0000000 © 6
GO6 23680380.100 1 124441273.11116
G12 20912213.020 1 109894485.92317
G22 25994644.820 1 136602749.05015
G24 24101322.960 1 126653325.47116
1
1

| Case:8 Selected:6-Sat
> 2021 @9 20 00 00 00.0000000
GO6 23680380.100 1 124441273.
G12 20912213.020 1 109894485.
624 24101322.960 1 126653325.
625 19902207.820 1 104586823.

1

i

G31 22646321.440 1 119007226.
G32 22001572.140 1 115619071.
> 2021 09 20 00 00 30.0000000
GO6 23685231.480 1 124466764.
G12 20924118.400 1 109957047.
G24 24122363.600 1 126763895.
G25 19902772.060 1 104589788.

1

1

G25 19902207.820 1 104586823.52817
G32 22001572.140 1 115619071.03417
> 2021 09 20 00 00 30.0000000 © 6
GO6 23685231.480 1 124466764.287
G12 20924118.400 1 109957047.530
G22 26003940.080 1 136651593.997
G24 24122363.600 1 126763895.127
G25 19902772.060 1 104589788.619
G32 22011205.080 1 115669691.137
> 2021 09 20 00 01 00.0000000 © 6
GO6 23690195.560 1 124492849.926
G12 20936089.200 1 110019953.310
G22 26013310.260 1 136700832.169
G24 24143425.040 1 126874574.440

1

1

G31 22629526.260 1 118918966.
G32 22011205.080 1 115669691.
> 2021 09 20 00 01 00.0000000
GO6 23690195.560 1 124492849.
G12 20936089.200 1 110019953.
G24 24143425.040 1 126874574.
G25 19903423.880 1 104593214.
G31 22612781.520 1 118830972.
G32 22020939.240 1 115720845.

G25 19903423.880 1 104593214.017

1
1
it
1
1
G32 22020939.240 1 115720845.030 1

Case:6 Selected:7-Sat
> 2021 09 20 00 00 00.0000000
GO3 25145643.320 1 132141245.
GO6 23680380.100 1 124441273.
G12 20912213.020 1 109894485.
G22 25994644.820 1 136602749.

il

11,

al

Case:8 Selected:7-Sat
> 2021 09 20 00 00 00.0000000
GO6 23680380.100 1 124441273.
G12 20912213.020 109894485.
G24 24101322.960 1 126653325.

1
1
1
G25 19902207.820 1 104586823.
G24 24101322.960 1 126653325. 1
1
i

G25 19902207.820 1 104586823.
G32 22001572.140 1 115619071.
> 2021 09 20 00 00 30.0000000
GO3 25148563.240 1 132156589.
GO6 23685231.480 1 124466764.
G12 20924118.400 1 109957047.
G22 26003940.080 1 136651593.
G24 24122363.600 1 126763895.
G25 19902772.060 1 104589788.
G32 22011205.080 1 115669691.
> 2021 09 20 00 01 00.0000000
GO3 25151591.220 1 132172500.
GO6 23690195.560 1 124492849.
G12 20936089.200 1 110019953.
G22 26013310.260 1 136700832.

i

i

il

G29 22159658.020 1 116449808.
G31 22646321.440 1 119007226.
G32 22001572.140 1 115619071.
> 2021 09 20 00 00 30.0000000
GO6 23685231.480 1 124466764.
G24 24122363.600 1 126763895.
G25 19902772.060 1 104589788.

E27 25892393.140
E30 22466574.340 1 118062662.
E36 25611059.640 1 134587047.
> 2021 09 20 00 01 00.0000000
GO6 23690195.560 1 124492849.
G12 20936089.200 1 110019953.
G24 24143425.040 1 126874574.
G25 19903423.880 1 104593214.

it

1

1t

136065459.

1
it
1
G31 22629526.260 1 118918966.
1
1
1

G24 24143425.040 1 126874574.
G25 19903423.880
G32 22020939.240

G29 22124278.020 1 116263885.
G31 22612781.520 1 118830972.
G32 22020939.240 1 115720845.

104593214.
115720845.

Figure 5.10 Sample modified RINEX files for 6 and 7 satellites selected from cases 6 and 8. They
show L1 frequency in the first three epochs of the selected satellites (6 and 7). Left: satellites were
selected from case 6, Right: satellites were selected from case 8.

e PPP Configuration and Implementation

After creating a RINEX file for every number of selected satellites in the ten cases, RTKLIB
was used to determine the PPP positioning for the selected satellites. The previous PPP
configurations, which was used for the initial PPP positioning (Table 5.6), was used again.
However, RAIM and KFITH were disabled in PPP positioning of the selected satellites from
all cases except for those in cases 9 and 10. This is to apply RAIM-KFITH selection after
WGDOP selection. In RTKLIB, RAIM is turn on and off via ticking. Whereas KFITH can be
disabled by increasing the threshold, and it was increased from 30 to 1000 metres.

e Coordinates Transformation

The positioning solution were determined in cartesian coordinate system (XYZ). In addition,
the solution coordinates were obtained based on the satellite ephemeris' reference frame
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because it was PPP solution. However, the positioning errors were evaluated in the east,
north, and up directions of the British National Grid (BNG). This transformation was made to
provide better representation of positioning errors.

According to El-Rabbany [30], satellite ephemeris contains satellite coordinates in the
World Geodetic System 1984 (WGS84). If precise satellite ephemeris was used, the solution
coordinates will be based on its reference frame. It was the International Terrestrial
Reference Frame (ITRF) of 2014. To convert the solution coordinates from ITRF2014 to BNG
based on OSTN15, was made three transformations: i) ITRF conversion, ii) datum
conversion, ii) BNG conversion. These transformations are based on online services. The
first two based on ETRF/ITRF Coordinate Transformation, while the last one is based on
OSGB36 national grid coordinates.

e Reference Coordinates

To determine the positioning accuracy of the selected satellites, their positioning results
were compared to truth. The truth was considered the results of relative positioning for 15
days (20 September to 04 October 2021). Five BIGF stations (Table 5.5) were used as
reference stations. In addition, this relative positioning was implemented via Leica software
with following configurations:

Table 5.8 Relative positioning configurations via Leica infinity

Setting Options
Units of Lat/Long DMS [0.00001]
Coordinate System 0SGB36(15)
Cut Off Angle 15-degree
Sample Rate 30-sec
Satellite System GPS, GLONNAS, and Galileo
Ephemeris Type Precise
Antenna Phase igsl4.atx
Solution Type Phase Fixed
Tropospheric Model Computed
lonospheric Model Automatic
Frequency Automatic

5.3 Experimental evaluation of Satellite Selection Method

Different optimization algorithms and WGDOP-RAIM cases (combinations) were tested
(Chapter 6 and 0) to determine the suitable satellite selection method. GNSS data, which
was collected statically from open-sky environment, was used in these evaluations. To test
the performance of the final proposed satellite selection method, it was implemented to
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select satellites from GNSS data collected in three different scenarios. The first scenario of
data collection is static open sky environment, which is the same data used before. This is
to evaluate the new satellite selection method after the enhancement made based on the
suggestion(s) derived from Chapter 6 and 0. The second scenario of data collection is
kinematic open sky environment. The last scenario is static multipath environment.

To evaluate the performance of proposal satellite selection method for PPP. The satellite
selection method was implemented in different scenarios. The optimal satellites were
selected in all possible subset sizes. The evaluation of its selection was based on the
positioning quality of their selected satellites, the number of positioning epochs, the
number of selected satellites used in positioning, and the continuity of selected satellite
subset.

5.3.1 GNSS Data

e Static Open-Sky Environment
The same GNSS data on the 20" of September 2024 that was obtained from the same
BIGF station (NGB2) located on the roof of the NGl building (Figure 5.2). Figure 5.3 shows
the number of GNSS satellites observed with a 30-sec sampling rate and zero-degree
elevation mask. The true coordinates of NGB2 were determined based on 15 days of
relative positioning, using the closest five BIGF stations (Table 5.5).

e Kinematic Open-Sky Environment

On 26 April 2023, GNSS data was collected kinematically. On the roof of the Nottingham
Geospatial Institute building, a train was equipped with Leica AS10 antenna installed on
a pillar (18 cm) and a Leica GS10 receiver with the capacity of recording multi-GNSS
signals (GPS, Galileo, GLONASS, and BeiDou). For one-hour (13:16:45 - 14:16:45) GNSS
data were collected while the train moving (Figure 5.11). To determine the true
coordinates of train’s path, GNSS data was collected from NGB2 station for the same
period. This is to apply one-hour relative positioning using NGB2 station as a reference.
Since NGB2 station collected only GPS, Galileo, and GLONASS satellite data, satellite
data of these systems were collected with a 1-sec sampling rate and zero-degree
elevation mask by the train and NGB2 receivers. Figure 5.12 shows the number of GPS,
Galileo, and GLONASS satellites collected for one-hour by NGB2 and train receivers.
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Figure 5.11 (left) The train and its path on the roof of NGI building, (right) the GNSS receiver and
antenna on train collecting GNSS data.
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Figure 5.12 Number of GNSS satellites collected by NGB2 (left) and train (right) receivers for 1-hour

period on April 26", 2023.

Static Multipath Environment

To investigate the performance of the new satellite selection method under multipath
environment, it was implemented for satellite selection in three locations with low and
high multipath level. The first location has low multipath effect, and it is in the Jubilee
campus next the tennis court. The second and the third locations are the control points
NGB 11 and NGB 09 located fort and behind the NGI building. Both locations are
surrounded by rise building creating high multipath environment. The GNSS data in these
locations are shown below.

On 08 October 2024, GNSS data was collected statically at Jubilee campus next the
tennis court. Tripod, Leica AS10 antennas and Leica GS10 receiver were used to collect
GNSS data, as shown in Figure 5.13. The GNSS data was collected for four hours
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(09:40:00-13:40:00) with a 30-sec sampling rate and zero-degree elevation mask. Figure
5.14 shows the number of GPS, Galileo, and GLONASS satellites collected from.

Figure 5.13 (left) The receiver location at Jubilee campus next to the tennis court and (right) the
GNSS receiver and antenna collecting GNSS data at the location.
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Figure 5.14 Number of GNSS satellites collected at Jubilee campus next to the tennis court for 4-

hour period on October 08, 2024.

On 12 July 2023, GNSS data was collected statically from two control points (NGB9 and
NGB11) around the Nottingham Geospatial Institute building (Figure 5.15). These control
points are in multipath environment, as they surrounded by building. Tripods, Leica AS10
antennas and a Leica GS10 receivers were used (Figure 5.16) to collect GNSS data for
four hours (11:01:21- 15:01:21) with a 30-sec sampling rate and zero-degree elevation
mask. Figure 5.17 shows the number of GPS, Galileo, and GLONASS satellites collected
from both locations (NGB9 and NGB11).
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Figure 5.15 The location of NGB9 and NGB11, where GNSS data was collected.

L]

/ \
R ——

| I

Figure 5.16 The GNSS receiver, antenna, collecting GNSS data on NGB11 (left) and NGB9 (right),
which are front and behind NGI building, respectively.
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Figure 5.17 Number of GNSS satellites collected on NGB11 (left) and NGB9 (right) for 4-hour period
on 12 July 2023.
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5.3.2 Satellite Selection Implementation

Satellite selection method consists of two parts: i) selection techniques and ii) selection
criterion. Satellite selection technique was evaluated in Chapter 6, as five optimization
algorithms were tested. The best-performing optimization algorithm was used for WGDOP-
based satellite selection. Whereas different satellite selection criteria were evaluated in
Chapter 7, and the one with the best performance was used for satellite selection. To apply
the best-performed selection technique and criterion, several steps were implemented,
which are the same steps in section 5.2.4.

5.3.3 Results Evaluation

The performance of the satellite selectin method can be evaluated based on the positioning
accuracy of its selected satellites. Four steps are required to apply the selected satellites
for positioning and estimate positioning accuracy, as shown in Figure 5.9. These four steps
were explained in section 5.2.5.
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Chapter 6 Optimization Algorithms Performance
6.1 Results and Discussion

6.1.1 GPS Optimal Satellites

The five optimization algorithms were applied for the optimization of GPS-only satellite
constellations of 4, 5, 6, and 7 GPS satellite constellations for the 24-hour GPS data.
Optimal GPS satellites were selected every five minutes; hence the optimization algorithms
selected optimal satellite constellation for 288 epochs (i.e. one epoch per 5 minutes) in the
24-hour period. Figure 6.1 shows (i) the quality of match of the GPS satellite subsets
selected by the algorithms, which was determined by comparing the satellite selection
results of the optimization algorithms with those of TM, and (ii) the selection time that was
taken by the algorithms for the GPS satellite selection over 288 epochs.
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Figure 6.1 (left) The quality of match (accuracy) of the selection of the optimal GPS satellite subset
by the optimization algorithms with respect to the actual optimal GPS satellite subset derived by
the TM. (right) The required time of the TM and the optimization algorithms for the optimal GPS
satellite subset selection[150].

According to Figure 6.1, all the optimization algorithms effectively selected the optimal GPS
satellites, except for the SA algorithm. More specifically, for the cases of a GPS satellite
constellation of 4, 5, 6, and 7 satellites, the four algorithms ABC, ACO, GA and PSO achieved
a GPS satellite selection accuracy over 99%, with the algorithms ABC and GA achieving the
best GPS satellite selection accuracy as they had 100% match with the GPS optimal satellite
constellation as derived by the TM. In contrast, SA had the lowest accuracy in choosing the
optimal GPS satellite constellation with a match ranging between 83% and 93%. However,
the SA proved to be the fastest in satellite selection among the five optimization algorithms,
but it was still slower than TM. The satellite selection speed is the time required to finish the
selection session, which involves determining the optimal satellite subset sequentially from
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288 epochs for a specific subset size. It was considered the processing time taken by
MATLAB in HPC. The performance of optimization algorithms, and consequently the quality
of their results, can be affected by the value of optimization algorithms’ parameters.
However, the main reason for lower SA quality in satellite selection is its design and
specifically the technique of finding the optimal solution. ABC, ACO, GA, and PSO are
population-based algorithms, which mean that they use groups of individuals to find the
optimal solution [149]. In this project, the population size of these algorithms was
determined as 100. In contrast, SA was originally designed to find the optimal solution by a
single population size. Since increasing the population size can improve the quality of the
algorithms' results [149] , the performance of SA was negatively affected by its low
population.

On the other hand, it can be seen that the four algorithms (ABC, ACO, GA, and PSO) are
equally accurate in selecting satellites. These algorithms achieved more than 99% accuracy
in selecting the optimal GPS subsets of 4, 5, 6 and 7 satellites. ABC and GA constantly
selected the optimal satellites with a quality of 100% in all cases. Whereas ACO and PSO
had less accurate satellite selection (99.3%) in one and two cases, respectively. Since each
case included 288 epochs the satellite selection accuracy of 99.3% means that the optimal
GPS satellite subset was miss-selected in two epochs.

Figure 6.2 shows the fitness value (CNR-WGDOP) of the actual optimal satellite with the four
subset sizes (4, 5, 6, and 7) over time (288 epochs), where they derived from TM. This is
presented as a blue line that corresponds to life y-axis. The figure’s right y-axis presents the
difference between the fithess of actual optimal satellite subset and that of optimization
algorithms (dABC, dACO, dGA, dPSO, and dSA). According to the Figure 6.2, no significant
difference can be found between the ACO and PSO results and the TM results (actual
results). This indicates that ACO and PSO fall at a local optimum that was too close to the
best solution (i.e. satellite combination) ever found in the two epochs. ACO and PSO miss-
selected the optimal subset of 4 satellites in two epochs. In Figure 6.3 and Figure 6.4, the
actual optimal subset of 4 satellites, derived by TM, and the selected satellite combinations
by ACO and PSO are displayed. The quality of these algorithms may vary from one trial to
another, which could be due to the fact that these algorithms start randomly [149], which
affects their results [164,165], or because the chosen values for the different parameters
which can also affect the algorithms’ results. However, the four algorithms (ABC, ACO, GA,
and PSO) can generally be considered as equally accurate in satellite selection. This aligns
with the results presented in [99], where ABC, GA, and PSO provided approximately the
same high level of accuracy in GPS satellite selection, while SA provided slightly lower
accuracy in the selection.
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Figure 6.2 The comparison of the performance of the optimization algorithms with respectto TM,
expressed as the difference between the CNR-WGDOP of the optimal satellite constellation of
each optimization algorithm and the corresponding CNR-WDGOP of TM. The results of the four

cases of GPS satellites constellations (4, 5, 6 and 7 satellites) are presented. On the left-axis, the

CNR-WGDOP value of the optimal satellite constellation based on the TM is presented, and on the
right-axis the difference between each of the optimization algorithm and the TM. Reprinted from
[150].
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Figure 6.3 The sky plots of epoch 55 (left) and epoch 184 (right) presenting the selection of the
optimal GPS satellite subset by the ACO and the TM, and showing the commonly selected satellites
(blue) by the two methods, but also those who were differently selected by ACO (yellow) and TM

(orange) [150].
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Figure 6.4 Same as Figure 13, presenting the sky plots for the epoch 81 (left) and epoch 215 (right),
and differences between the selection of the optimal GPS satellite subset for PSO and TM [150].

In terms of satellite selection speed, the optimization algorithms were slow in selecting the
optimal GPS satellites. Figure 6.1 represents the required time of the five optimization
algorithms and TM to find the optimal GPS satellite selection for all 288 epochs:
corresponding to the selection of GNSS satellite subset of 1-epoch per 5-minute interval, for
the 24-hour GNSS data set. According to the figure, TM, which checks all possible satellite
combinations, was faster than the optimization algorithms in finding the optimal satellite
subset. TM selected the optimal satellites within about 2 minutes in all satellite selection
cases. In contrast, the five optimization algorithms took more than 2 minutes in all cases,
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with the required time varying depending on the number of the satellites in the constellation.
In general, SA was the fastest algorithm among the five, whereas GA was the slowest. ABC,
ACO, and PSO algorithms were similar in the required time (5 min) to complete the satellite
optimization.

Unlike TM, optimization algorithms do not require a complete investigation of possible
satellite combinations to determine the optimum. However, TMwas faster in finding the best
GPS satellites, as the optimization algorithms are computationally heavy for “small”
problems by following indirect approaches that require additional processing time. For a
small number of satellites that can be provided by a single system (e.g. GPS), this additional
processing adds unnecessary burden to the problem. As a result, the TM was faster in
finding the optimal GPS satellites, which aligns with the outcome in [92], as the TM is
suitable for selecting satellites from one system.

Except for GA, the selection speed of the optimization algorithms is generally comparable.
They took about 5 minutes to choose satellites in all selection cases. However, GA took
much longer, ranging from 14 to 24 minutes. This contrasts with what was stated in [164],
where GA is a fast algorithm. In addition, it contradicts the results presented by Du et al.
[92], who showed that GA outperformed ACO in terms of satellite selection speed. GA took
only 2 seconds, while ACO took 4.37 seconds to complete one selection. Furthermore, in
[99], GA was as fast as ABC and PSO in selecting GPS satellites, completing approximately
the same number of search iterations within 1, 1.5, and 2 seconds. The main reason for this
unexpected delay in the speed of GA selection is the algorithm modification. GA finds the
optimal solution by iteratively generating better new solutions. However, it may create
solutions with a duplicate value, which is unacceptable in satellite selection. Thus, the
solutions with a duplicate value were rejected, and new solutions were generated until no
duplicates appeared. Obviously, this is time-consuming. Although the same modification
was applied to ABC, PSO, and SA, these algorithms took much less time than GA. This is
because GA creates new solutions by swapping the variables of two good solutions. As GA
solutions converge, two nearly identical solutions are selected to create a new solution,
which subsequently leads to more duplication.

Based on Equation (5.1), the number of possible satellite constellations changes due to the
number of available satellites (8 and 13; Figure 5.6) and the constellation sizes (4, 5, 6, and
7; Figure 5.6). Compared to others, the subset of 6 GPS satellites has the highest number of
possible combinations, which is a total of 1744. As a result, TM, which is checking all
possible satellite combinations, took slightly longer time (13 sec) to find the optimal GPS
subset of 6 satellites than others, as shown in Figure 6.1. In contrast to TM, the five
optimization algorithms are unaffected by the number of possible satellite combinations, as

70



Chapter 6 Optimization Algorithms Performance

their number of searching iterations is predetermined. Although the five optimization
algorithms were executed with the same number of iterations (100) at all satellite
constellation sizes (4, 5, 6, and 7), the selection time for each algorithm varied from one
satellite constellation size to another, as shown in Figure 6.1, due to the adjustment of
duplication in the four algorithms (ABC, GA, PSO and SA). However, the difference in ACO
processing time can be due to the number of possible GPS satellite subsets. In ACO, the
pheromone rate on the paths influences the ants’ path choice, which is stored in a
pheromone matrix containing the pheromone rates of all possible paths. Since the size
/burden of the pheromone matrix depends on the number of possible paths, which is equal
to the number of possible satellite combinations, the ACO selection time changed with
different satellite constellation sizes (4, 5, 6, 7), as they have different possible satellite
constellations.

Among the five optimization algorithms, the most suitable one for satellite selection can be
determined based on their satellite selection accuracy and speed. SA and GA are not
suitable for satellite selection because of their low selection quality and speed,
respectively. On the other hand, ABC, ACO, and PSO showed equivalent levels of selection
quality and speed. However, the ABC algorithm was considered as the suitable algorithm
for satellites selection, as only three parameters have to determined.

6.1.2 Multi-GNSS Optimal Satellites

Based on the evaluation of the optimization algorithms for the GPS-only satellite
constellation, the ABC algorithm proved to be the most accurate and suitable for the
optimization of GNSS satellite subsets. The next step was to apply and evaluate the ABC
algorithm for the optimization of multi-GNSS satellite constellation. The same methodology
as that for identifying the GPS-only satellite constellation was followed, by selecting the
optimal GNSS satellite subset every five minutes. GPS, GLONASS and Galileo satellites
were included for satellite selection, and four cases of satellite subset sizes (4, 8, 12and 15
satellites) were examined. ABC was applied three times for each size of satellite subset, with
different values for the parameters of (i) number of iteration and (ii) population size (Table
6.1), to evaluate their impact on algorithm performance and determine which parameters
provide the best results.

The ABC algorithm requires the setting of three parameters: the maximum number of
iterations (maxlter), population size (pSize), and abandoned limit (limit). In the case of the
GPS-only satellite constellation, the maxlter, pSize, and limit values were set to 100, 100,
and the product of problem dimensions and population size (D X pSize), respectively. The
value of abandoned limit (D X pSize) is a dynamic value that automatically adapts to the
problem size [151]; hence it does not need to be adjusted. On the other hand, higher values
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of population size (pSize) and iteration (maxlter) can lead to better results, but they may
cause slow convergence (longer processing times) [149,227]. Increasing the value of both
pSize and maxlter could be unnecessary as the algorithm results can be improved with
higher pSize and limited maxiter [227]. Based on previous studies pSize up to 200 is
recommended [149]. As a result, pSize and maxlter were set to the values shown in Table
6.1.

Table 6.1 ABC parameter values [150].

Setting maxIter pSize limit
1 100 100 D x pSize
2 100 200 D x pSize
3 200 200 D x pSize

Figure 6.5 shows the accuracy of the ABC algorithm in the GNSS satellite selection, which
was determined by comparing ABC optimal GNSS satellite selection with the actual (TM
selection), for each case of satellite subsets size (4, 8, 12 and 15) and for each case of
parameters setting. In addition, Figure 6.5 illustrates the speed of the ABC algorithm and TM,
expressed as the required selection time for the optimal satellite selection of all 288 epochs
(GNSS satellites selection per 5 minutes for the 24-hour GNSS dataset). It is observed that
satellite selection becomes more challenging due to the size of satellite subset, requiring
higher parameter values and longer computation time. ABC showed better accuracy in
selecting the optimum 4 GNSS satellites subset compared to the other sizes of satellite
constellation (8, 12, 15) using the first two cases of parameter settings. This is due to the
significantincrease of the possible satellite combinations, which follows the increase of the
number of satellites in the constellation (from 4 to 8, 12 and 15) (Figure 5.6). By increasing
the value of the pSize and maxlter to 200, ABC accurately (100%) determined the optimal
GNSS satellite subset for all sizes. However, the time required for selection increased by
about 3.6 times, with respect to the first setting case using 100 for both pSize and maxlter.
Therefore, satellite selection becomes more challenging due to constellation size. This
requires higher values of population size and iteration, which leads to longer time of
computation. This is consistent with what was reported in [149,227], as lower pSize and
maxlter prevent achieving the best solution in complex problems, whereas increasing the
value of these parameters increases the processing time.
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Figure 6.5 (left) The accuracy of the selection of the optimal GNSS satellite subset of ABC with
respectto TM, for the various cases of satellite constellations and parameters settings and (right)
the required time of the TM and ABC algorithm for the computation of the selection of optimal
GNSS satellite subset. Reprinted from Alluhaybi et al. [150], licensed under CC BY 4.0.

The number of possible satellite combinations of 8 and 12 satellites-subsets is less than
that for 15 satellites, and consequently the selection of the optimal satellite constellation
should be easier than the 15 satellites. However, ABC was relatively more accurate in
selecting the optimal 15 satellites than 8 and 12 satellites using the first parameter setting
(Figure 6.5). The accuracy of choosing the optimal 8, 12 and 15 satellite constellation is 84%,
79.5% and 84.7%, respectively. Since similar parameter values were used for the three
satellite constellation sizes, it is the initial randomly generated solution by the ABC
algorithm which influences the produced solutions [165].

In terms of speed, the TM required an overall longer processing time to find the optimal
satellites than the ABC algorithm, as the required time forthe TM increases significantly with
the satellite constellation size (increased from 4 to 15), since TM checks all possible satellite
combinations which increase with the size of the satellite constellation. It should be noted
that the TM required time for the case of 12 and 15 GNSS satellites constellation exceeds
150 minutes (i.e. >30 seconds per epoch).

On the other hand, the speed of ABC varies based on the parameters’ settings. For the case
of the first set of parameters (maxlter and pSize equal to 100), the ABC algorithm required
approximately the same processing time (i.e. about 4.3 minutes; 0.9 seconds per epoch) for
the four cases of satellites constellations (4, 8, 12 and 15), indicating that the number of
satellite combinations does not affect speed of the ABC algorithm. For the other two settings
an increased processing time was observed caused by the number of population
size/iterations which was increased to 200. However, some slight difference of the required
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processing time for the various satellite constellations (4, 8, 12 and 15) is reasoned by the
adjustment of duplication of satellites in the solutions. The total number of GPS, GLONASS,
and Galileo satellites reached 31, providing more than 300 million possible satellite
combinations (Figure 5.6). However, ABC provides good results regardless of the setting
used. According to Figure 6.5, ABC achieved a selection accuracy of 100% using setting 3,
and its selection accuracy was no less than 80% with other settings. Figure 6.6 shows the
fithess value (CNR-WGDOP) of the actual optimal satellite with the four subset sizes (4, 8,
12 and 15) over time (288 epochs), as they obtained from TM. This is presented as a blue line
that corresponds to life y-axis. The right y-axis of the figure presents the difference between
the fitness of actual optimal satellite subset and that of ABC with three settings (dSet1,
dSet2, and dSet3). By reviewing the selection quality per epoch in Figure 6.6, it can be see
that the fitness (CNR-WGDOP) of the miss-selected optimal GNSS satellite constellations
differs by no more than 0.0063 in all cases (i.e. settings and constellation size) from those
of the actual optimal GNSS satellite constellations determined by TM (Figure 6.6). The
largest difference between the quality (i.e. CNR-WGDOP) of ABC satellite selection and the
actual (TM) occurred in the selection of the four optimal satellites in setting 1. Figure 6.7
shows the sky plots of the satellites selected by ABC setting 1 and TM at epochs 20 and 88,
which are the epochs with the largest difference of the CNR-WGDOP values between ABC
setting 1 and TM; 0.0059 and 0.0063, respectively. In epoch 20, the selection of ABC setting
1 differed from TM in one satellite; the two different satellites of ABC and TM are of similar
elevation angle and roughly symmetrical with respect azimuth. In epoch 88, ABC setting 1
selected three satellites different from those of TM. Similar to epoch 20, the six different
satellites of ABC and TM are of similar elevation angle and roughly symmetrical with respect
azimuth. Hence, even for the epochs where ABC satellite selection was not the actual
optimal, its geometry was very close to the actual (as defined by TM), as shown in Figure 6.7.
As a result, the ABC satellite subset had a very similar CNR-WGDOP value compared to the
actual optimal satellite subset.
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Figure 6.6 The comparison of the performance of the ABC algorithm for the three sets of parameter
settings with respect to TM, expressed as the difference between the CNR-WGDOP of the optimal
satellite constellation of each ABC parameter setting and the corresponding CNR-WDGOP of TM.

On the left-axis the CNR-WGDOP value of the optimal satellite constellation based on the TM is
presented, and on the right-axis the difference between each of the ABC parameter setting and the

T™M [150].
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Figure 6.7 Sky plots of epochs 20 (left) 88 (right) presenting the difference in the selection of optimal
GNSS satellite subset between ABC setting 1 and the actual-TM, by showing the common satellites
(blue) and the differences of the ABC (yellow) and TM (orange) satellite selection[150].

As mentioned earlier, the satellite selection speed is the required time to complete the
selection session of 288 selection for a single subset size. These 288 selections were done
sequentially using the standard serial for loop in MATLAB. Despite the algorithm (TM or
optimization algorithms), its selection speed can be improved by choosing the optimal
satellite subsets parallelly using the parallel for loop (parfor) in MATLAB. However, this
required more resources, including more CPU cores and RAM capacity. Furthermore, the
selection speed/time can be improved by using compiled languages (e.g., C++), as they are
faster than MATLAB (interpreted language) [228].

On the other hand, as revealed on the results above, TM has absolute accuracy (100%) in
satellite selection, and the highest selection speed in single-GNSS selection. This raises a
question. Can the satellite selection quality and speed of multi-GNSS be improved by
selecting the optimal satellite subset from each satellite system individually by TM and then
combining them to form the optimal satellite subset for multi-GNSS?

The speed of the multi-GNSS section will certainly increase greatly because the TM is so fast
in single-GNSS selection. However, the quality of the selection is not guaranteed. TM selects
satellites based on WGDOP, i.e., it chooses a number of satellites at the same time with the
bestsignal power and distribution (WGDOP value). Since TM examines all possible solutions
to determine the optimal one, the optimal subset of satellites derived from each system
using TM is guaranteed. However, merging the optimal satellite subsets from different
systems does not always provide the best subset of multi- GNSS satellites. This is because
satellites from two or more GNSS systems can be close to each other leading to less optimal
satellite distribution, as shown in Figure 6.8.
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Figure 6.8 Sky plots of 12 multi-GNSS satellites selected by TM from the second epoch. Left, 4
satellites were selected from each system (GPS, GLONASS, and Galileo) individually. Right, 12
satellites were selected from multi-GNSS data directly.

6.2 Summary

This chapter focused on evaluating the performance of five optimization algorithms (ABC,
ACO, GA, PSO, and SA) in satellite selection to determine the most suitable one, which was
then further examined in more complex scenarios to determine its performance and
suitable parameters’ value. The evaluation was based on the selection accuracy and speed.
The selection accuracy is how closely the CNR-WGDOP value of the optimal satellite subset
selected by optimization algorithms matches that of the actual optimal subset, as
determined by the TM. The selection speed is the required processing time to finish the
selection session of 288 selections. The importance of this study is (i) the overall evaluation
of the performance of the five optimization algorithms against each other and TM method,
and (ii) the investigation of how the algorithms’ principles and parameters setting affect their
performance.

The five optimization algorithms were implemented to choose the optimal GPS satellites
with different four subset sizes (4, 5, 6, and 7). According to the evaluation results, the ABC,
ACO, and PSO algorithms had the highest accuracy in satellite selection, and they were
efficient in terms of computation time. However, the ABC algorithm is more practical with
the fewest parameters to adjust. The evaluation of the ABC algorithm in the more complex
problem with multi-GNSS satellite constellation and even up to 31 available satellites
revealed that the satellite selection accuracy of ABC algorithm improves significantly by
increasing the values of the population size and iteration, which has though an effect on the
required computation time (selection speed).
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Also, it was shown that the TM is still the most efficient algorithm for selecting the optimal
satellite combination from a single satellite-system system (i.e. GPS-only). However, this is
not the case for multi-GNSS constellations with more simultaneously tracked satellites
available, making the satellite selection problem too complex and time consuming for the
™.
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Chapter 7 Define the criteria and process for satellite selection

7.1 Results and Discussion

The analysis of the performance of WGDOP in selecting the optimal subset of satellites was
based on data selected on 20" September, 22" September, 27" September, and 15t October
2021. Theresults based on the analysis of 20" September 2021 are presented in this chapter
as representative of the entire analysis process, whereas the data of the other three days
are presented in the appendix.

7.1.1 Availability

The optimal satellites were selected based on WGDOP in ten cases (Table 5.4). Except for
the first case, the optimal satellites were chosen based on WGDOP with additional selection
factors. Despite the additional selection factor (Ele, RAIM, or KFITH), satellites were mainly
selected based on WGDOP. Satellite selection based on Ele, RAIM and KFITH were used to
enhance WGDOP selection (i) before the application of WGDOP (cases 2, and 5 - 8), (ii) after
the WGDOP (cases 3and 4), and (iii) both, before and after the application of WGDOP (cases
9 and 10). The quality of selected satellites by WGDOP in the 10 cases can be evaluated by
checking the number satellites initially selected for the solution with that were applied for
the positioning solution. In positioning, weak satellite measurements are rejected by
integrity functions (e.g., RAIM) to improve positioning accuracy. If all selected satellites were
used in positioning, the quality of the selected satellites can be considered high and vis
versa.

Figures 7.1, 7.2, and 7.3 show the availability results, including selection epochs availability
(SEAva), positioning availability (PAva), and optimal positioning availability (OPAva). The
optimal satellites were selected every 30 seconds for 24 hours, so they were chosen from
2880 epochs over 24 hours. As mentioned earlier in Section 5.2.4, The optimal satellites
were chosen based on WGDOP for a fixed number of satellites from 6 to maximum number
of observed satellites. They were selected separately for each epoch over the entire time.
However, the number of observed satellites fluctuates over time. Therefore, satellite
selection was implemented for specific number of satellites when the number of observed
satellites in an epoch is greater than or equal to the number of selecting.

Out of 2880 epochs, the SEAva indicates the rate of epochs from which satellites were
selected based on WGDOP. These epochs will be called WGDOP selection epochs. The
PAva presents the rate of WGDOP selection epochs out of 2880 used in positioning.
Whereas the OPAva indicates the rate of WGDOP selection epochs used in positioning out
of 2880 without losing one WGDOP selected satellite. Moreover, the x-axis of Figure 7.1
represents the number of selected satellites out of 31, which is the total number of observed
satellites over 24 hours.
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Figure 7.1 Comparison between satellite selection availability (SEAva), positioning availability
(PAva), and optimal positioning availability (OPAva) from selection cases 1, 2, 3, and 4.

80



Chapter 7 Define the criteria and process for satellite selection

Case 5 (20/09/2021)

Case 6 (20/09/2021)

100 100,
' ) ) ; SEAva
7 —SEAva I N
90 \ Phva 90 \ PAva
\ OPAva 0 - - OPAva
60 L= : L
70 mor
\ _ \
& 60 \ £ eof
= Z \
= 5 50 \
E 50 \ %
@ \ > 40t \
z 40 <
1 A
\ 30 \
30 I'\I I"\.
\ 20
20 \
\ 10 \
10 \ i
. ol L ) ) i
0

6 & 10 12 14 16 18 20 22 24 26 28 30
NSAT selected
Case 7 (20/09/2021)

6 8 10 12 14 16 18 20 22 24 26 28 30
NSAT selected
Case 8 (20/09/2021)

100 —
100 N i v Sthn
9% \ —SEAva 90 | PAva
/ \ PAva OPAva
\ OPAva 80
80 \\
0 \ 70 \

@
=1

Availability (%)
(4,
(=)

o
o

Availability (%)
[4,]
(=]

40 4o
30 \
30 \ \
20} \ 20 \
10 \ 10F \
N\
Ay
8 8 10 12 14 16 18 20 22 24 26 28 30 6 8 10 12 14 16 18 20 22 24 26 28 30

NSAT selected

NSAT selected

Figure 7.2 Comparison between satellite selection availability (SEAva), positioning availability
(PAva), and optimal positioning availability (OPAva) from selection cases 5, 6, 7, and 8.
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Figure 7.3 Comparison between satellite selection availability (SEAva), positioning availability
(PAva), and optimal positioning availability (OPAva) from selection cases 9 and 10

According to Figures 7.1, 7.2, and 7.3, satellite availability was inconsistent in the ten
selection cases. The maximum number of selected satellites is the largestin cases 1, 3, 4
and 5 with 31 satellites, while it is the lowest in cases 7, 8 and 10 with 23 satellites. The
maximin number of selected satellites is 24 in case 2, while it is 30 in cases 6 and 9.
Furthermore, SEAva was also inconsistent for the same number of satellites in the ten
cases. For example, the SEAva for the six satellites was 100% (2880 epochs) in first four
cases, while it was 98.99% (2851 epochs), 98.75% (2844 epochs), 99.27% (2859 epochs),
99.38% (2862 epochs), 98.75% (2844 epochs), and 99.38% (2862 epochs) for cases 5, 6, 7,
8, 9 and 10, respectively. The reason for this variation between cases is the satellite data
used in WGDOP selection, as it were filtered differently in each case with the other selection
factors (Ele, RAIM, and KFITH). Because the satellite data has not been filtered by them
before WGDOP selectionin cases 1, 3, and 4, SEAva in these cases was exactly the same.

On the other hand, the rate of SEAva decreased as the number of selected satellites
increases in the same selection case. For example, the value of SEAva for 6 and 25 satellites
in case 1is 100% (2880 epochs) and 52.57% (1514 epochs), respectively. This is because
the number of observed satellites fluctuates over time. Thus, a small number of satellites
can be chosen most of the time, if not all. Whereas a large number of satellites can be
selected only for short periods.

PAva refers to the rate of WGDOP selection epochs used in positioning. In all cases, it can
be seen a smallvariation between the rate of epochs input for positioning (SEAva) and those
used in positioning (PAva). In case 6, PAva is mostly alighed with SEAva in all selected
satellites. In the remaining cases, the PAva is generally aligned with SEAva in all selected
satellites except for those of 6 and 7 satellites. The alignment between PAva and SEAva
means that all epochs input for positioning were used in positioning. In contrast, the
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reduction of PAva compared to the corresponding SEAva means that a number of epochs
have been excluded from the positioning determination.

There are two reasons for PAva reduction, i.e., losing epochs in the positioning solution. The
first reason is solution validation. Both code and phase measurements are used in PPP. In
RTKLIB, the quality of code solution is checked per epoch using chi-square test for the
solution evaluation[118,119]. Ifthe chi-square test for an epoch’s solution fails, the epoch’s
solution is removed when RAIM is disable. However, weak satellite measurements are
removed when RAIM is activated. This leads to the second reason for PAva reduction that is
satellite exclusion. To maintain and improve an epoch solution, number of weak satellite
measurements are removed by functions such as RAIM and KFITH. Nevertheless, the epoch
solution is rejected when the number of the remaining satellites is less than four satellites.

The PAva reduction due to the second reason can be more affected with small number of
selected satellites (e.g., 6 and 7), as their remain can easily be less than four satellites.
Hence, the larger number of selected satellites are less affected by the second reason of
PAva reduction. As a result, it can be assumed that the large number of selected satellites
was affected only by the first reason for the PAva reduction. This can explain why 6 and 7
satellites have more PAva reduction than others.

Weak satellite measurements are rejected by RAIM and KFITH in RTKLIB. In case 4, both
were only implemented before WGDOP selection. Therefore, PAva reduction was seen in
more selected satellites (6 — 14) in case 4 compared to other cases.

In contrast to PAva, OPAva indicates the rate of epochs used in positioning without losing
satellites, which were selected by WGDOP. Hence, the reduction of OPAva compared to the
corresponding PAva indicates that a number of epochs were used for positioning after
excluding a number of their WGDOP selected satellites. These satellites were removed due
to their negative impact on positioning solution. According to Figure 7.1, there is a variation
between OPAva and PAva in the ten selection cases with different rate. In the first four cases,
the OPAva was significantly less than PAva in all selected satellites (6 — maximum number
of selected satellites). In general, the variation between OPAva and the corresponding PAva
was the largest in case 4, and the least in case 2. Whereas it was the same in case 1 and 3.
The variation in OPAva rates between the four cases is accepted because different selection
factors (Ele, RAIM, and KFITH) were used in them. Although RAIM was used in case 3 and not
in case 1, their OPAva was identical. This is unacceptable, and it means that RAIM is not
working. This is aligned with Angrisano et al. [226] outcomes, where no satellites were
rejected by RAIM in PPP, using RTKLIB (v.2.4.2). It also supports what Zhang and Wang [222]
stated, that RAIM is not mature enough for PPP.

Despite the differences between the first four cases in OPAva, the rate of OPAva decreases
as the number of selected grows. In other words, the number of epochs with rejected
satellites increases with the number of selected satellites. For example, in case 1, OPAva
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rate was about 87%, 45%, and 3% for the 6, 16, and 28 selected satellites, respectively.
Hence, the rate of their epochs with rejected satellites were about 9%, 55%, and 73% out of
total number of epochs used in positioning 2736, 2880 and 316.8 (PAva: 95%, 100%, and
11%), respectively. This is because the satellites were selected based on a fixed number,
which forces the selection algorithm (ABC) to provide a satellite constellation containing the
exact number of satellites. As the number of selected satellites increases, more satellites
with weak measurements are selected and will be rejected later, consequently, OPAva rate
decreases.

Onthe other hand, the OPAva was almost aligned with PAva in all selected satellites in cases
5to 8. In these cases, satellites were selected based on WGDOP along with Ele, RAIM, and
KFITH. The WGDOP selection was applied as the last parameter of the method. This is the
main reason for maintaining WGDOP selected satellites from rejection, i.e., increasing
OPAva rates. Applying WGDOP selection first will lead to reject its selected satellites by the
later selection technique (RAIM or KFITH). This can be seen in cases 3, 4, 9, and 10 when
RAIM or RAIM-KFITH selection were performed after WGDOP selection. In addition, WGDOP
selection uses satellites’ raw information obtained from RINEX file, and it is not considering
all positioning requirements. As a result, some of its selected satellites were rejected from
positioning even without a later satellite selection. This can be seen in case 1 and 2, when
satellites were selected bason on WGDOP-only and Ele-WGDOP, respectively. In these
cases, satellites were excluded by two main factors: i) absent of satellites data and ii) post-
fit residuals’ threshold.

The selected satellites were excluded from positioning because of the absence of some of
their data, which were due to precise satellite data and cycle slip. Precise satellite orbit and
clock data are required for PPP, and they were collected from the Centre for Orbit
Determination in Europe (CODE), which including satellite data from about 280 stations
[229]. However, the precise satellite data from CODE did not contain a precise information
for every satellite tracked by the GNSS receiver on NGB2. This led to reject these satellites
from positioning, as shown in Figure 7.4. On the other hand, some of the selected satellites
were rejected due to the absence of their clock data, which was caused by cycle slip, as
shown in Figure 7.4.

prec ephem outage 2021/09/20 00:00:00 sat=42

no ephemeris 2021/09/19 23:59:59.922 sat=42

no broadcast ephemeris: 2021/09/20 00:00:00 sat=61 iode= -1
no broadcast clock 2021/09/19 23:59:59.916 sat=61

no broadcast ephemeris: 2021/09/20 ©0:00:00 sat=66 iode= -1
no broadcast clock 2021/09/19 23:59:59.913 sat=66
no broadcast ephemeris: 2021/09/20 00:00:00 sat=89 iode= -1
no broadcast clock 2021/09/19 23:59:59.925 sat=89

Figure 7.4 Sample of the debug trace file of 15-sat from case 1, showing four selected satellites
were rejected. The first satellite (42) was excluded due to the absence of precise information, while
the remaining were removed due to an ephemeris outage (i.e., cycle slip).
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Furthermore, some of the selected satellites were rejected as they were outliers, as shown
in Figure 7.5. In RTKLIB, PPP outliers determine by pre-fit and post-fit residuals’ tests [230].
RAIM and KFITH are only eliminating the pre-fit outliers [119,231]. Since RAIM and KFITH
were disabled in cases 1 and 2, the post-fit residuals’ threshold was the main reason for
these outliers’ rejection (Figure 7.5). In cases 5 — 8, WGDOP selection were implemented
the last, after RAIM or RAIM-KFITH. Nevertheless, few numbers of satellites were rejected
from positioning, leading to OPAva reduction. This can be clearly seen in the selected 6 and
7 satellites. When RAIM and RAIM-KFITH selection were performed, both per-fit and post-fit
residuals’ thresholds were implemented, leading to exclude number of satellites with weak
measurements. However, few satellites were rejected due to post-fit residuals again after
WGDOP selection. This is because the status of satellite data used in positioning change
after WGDOP selection, such as the number of satellite measurements. In cases 9 and 10,
the selection of RAIM, KFITH, and post-fit residuals’ threshold were implemented before and
after WGDOP. Similarly, number of satellites were excluded by the after selection of RAIM,
KFITH, and post-fit residuals’ threshold due to the change of satellite status. The post-fit
residuals’ threshold is affected by the carrier phase errors, which was 0.003. The carrier
phase errors is the base term of errors of carrier phase [118]. Increasing its value will
increase the post-fit residuals’ threshold and prevent satellites reduction. Figure 7.6 shows
the number of used satellites in positioning when using 0.003 and 0.006 meters of carrier
phase observations variation. It presents the number of satellites uses in positioning over
24 hours out of 6 selected satellites from case 7, which has the largest satellite reduction
among the last four cases.

0.0372 el=24.
0.7690 el=24.
0.0224 el=66.
2021/09/20 :57:00. sat=44 res= -1.8723 sig= 6.0279 el=66.
2021/09/20 :57:00. sat=83 res= -0.1907 sig= 0.0172 el=57.

4

(2]

4

0

2021/09/20 :57:00. sat=36 res=  2.1313 sig=
2021/09/20 :57:00. sat=36 res= 7.6536 sig= 1
2021/09/20 23:57:00. sat=44 res= -0.7692 sig=

2021/09/20 :57:00. sat=83 res= -0.7868 sig= .1949 el=57.
2021/09/20 :57:00. sat=84 res= 0.1674 sig= .0168 el=62.
2021/09/20 :57:00. sat=84 res= 0.7193 sig= .0647 el=62.
2021/09/20 :57:00. sat=92 res= 0.0428 sig= .0279 el=21.
2021/09/20 23:57:00.00 sat=92 P1 res= 0.0903 sig= 7.8063 el=21.
outlier (2) rejected 2021/09/20 23:57:00.00 sat=36 L1 res= 2.1313 el=24.0

DONNNNWWOS®

Figure 7.5 Sample of the debug trace file of 15-sat from case 1, including satellites’ code (P1) and
phase (L1) residuals. Satellite 36 was rejected because its phases residual was considered an
outlier.
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Figure 7.6 Comparison of the number of satellites used for 24-hour positioning out of six selected
satellites from case 7. Top: the carrier phase error was set to 0.003 m, bottom: the carrier phase
error was set to 0.006 m.

According to Table 5.4, satellites were selected by ten cases. Figures 7.7, 7.8, and 7.9 show
the number of satellites used in positioning for all selected satellites in the ten cases.
According to Figures 7.7, 7.8, and 7.9, the number of removed satellites was large in the first
four cases compared to the others. As a result, the mean and median number of satellites
used for positioning was often less than the number of selected satellites by one satellite.
Whereas few numbers of satellites were excluded in cases 5 to 10. Thus, the exact number
of selected satellites was mostly used in positioning. Apart from case 4, the maximum
number of losing satellites can reach to 7 satellites. Figure 7.10 shows the number of
satellites used in 24 hours positioning solution out of 10, 15, and 20 satellites selected from
allcases. WGDOP selected satellites were mostly used in positioning in cases 5 -8 because
the WGDOP selection was the last selection.
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Figure 7.7 Number of satellites used in the 24-hour positioning solution from the selected satellites
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Figure 7.8 Number of satellites used in the 24-hour positioning solution from the selected satellites
with all subset sizes. The satellites are chosen by the selection cases 5, 6, 7, and 8.
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Figure 7.9 Number of satellites used in the 24-hour positioning solution from the selected satellites
with all subset sizes. The satellites are chosen by the selection cases 9 and 10.
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Figure 7.10 Time series of number of satellites used in 24 hours positioning solution from 10, 15,
and 20 selected satellites from the ten cases.

7.1.2 Satellite Selection Status

Positioning accuracy is affected by various factors such as the quality of satellite geometry
(GDOP) and measurement (code/phase). In addition, the system of used satellites can also
affect positioning solution. Therefore, before evaluating the positioning quality of the
selected satellites, their GDOP and WGDOP value were evaluated. In addition, the
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continuity of the selected satellite combination, which affecting the carrier-phase's
ambiguity resolution were also investigated. Finally, the system of selected satellites was
displayed. As mentioned earlier, satellites were selected by different selection factorsinten
cases although they were chosen mainly based on WGDOP. However, large number of
WGDOP selected satellites were rejected in 6 cases (1-4 as well as 9 and 10). Thus,
presenting the WGDOP selected satellites’ status (GDOP, WGDOP, continuity, satellite
system)is meaningless forthese cases. As aresult, the status of WGDOP selected satellites
was shown only for the four cases 5 to 8, where the WGDOP selected satellites were mostly
used in positioning solution.

7.1.2.1 GDOP/WGDOP

The optimal satellite subsets of 6 to max-observed satellites were selected for 2880 epochs,
corresponding to 1 epoch per 30-sec interval, for the 24 hours. The quality of WGDOP
improves as its value decreases, but no standards indicate how good the WGDOP value is.
As aresult, the GDOP value of the selected satellites were presented in Figure 7.11.
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Figure 7.11 Mean and stander deviation of the GDOP and WGDOP of the selected satellites with all
possible subset sizes for 24 hours GNSS data (30 sec interval) collected over NGB2 on 20
September 2021. The value of selected satellite from cases 5, 6, 7 and 8 are only presented.
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Figure 7.11, presents the mean and the stander deviation (std) of WGDOP and GDOP for the
selected subsets of six to maximum number of satellites observed. In the selection cases (5
- 8), the average and std of GDOP and WGDOP have a similar pattern as they improve
(decrease) with the same rate as the number of satellites increases. Although satellite data
were different in each case, the average and std of GDOP and WGDOP for the same number
of satellites are almost the same in cases 5, and 6. In addition, it was the same in cases 7,
and 8. Toillustrate, in cases 5 and 6, the average value of GDOP and WGDOP for the optimal
subsets of 6 to 30/31 satellites decrease from about 1.8 to 1.1 and from 0.27 to 0.16,
respectively. In cases 7 and 8, the average value of GDOP and WGDOP for the optimal
subsets of 6 to 23 decrease from about 2.5 to 1.5 and from 0.37 to 0.22, respectively. In
terms of GDOP and WGDOP std, it was mostly the same for cases 5 and 6, as well as for
cases 7 and 8. The difference between each pair in the std of GDOP for the same number of
selected satellites is about 0.1, while is about 0.01 in the std of WGDOP.

Satellite geometry (GDOP) improves when using satellite at low elevation angles. Thus,
GDOP and WGDOP values in cases 5, and 6 are lower (better) than those in cases 7, and 8
that used elevation angle mask (15°). However, the variation between them is small and get
smaller as the number of satellites increases. The differences between the average GDOP
value for the same number of satellites (6, 17, and 23) is 0.7, 0.5 and 0.3, respectively.

7.1.2.2 Constellation Continuous

The optimal satellites were selected for 2880 epochs, and they were chosen separately for
each epoch. They were selected without considering the continuity of selected satellites
subset over time. Therefore, the optimal satellites can vary significantly from sequence
epochs. Figure 7.12 displays the number of epochs having continuous optimal satellite
subset (i.e., continuous epochs) for all selected satellites in cases 5 to 8. In addition, it
shows the rate of these continuous epochs out of total number of epochs used in positioning
solution. The selected optimal satellite subset was considered a continuous when the exact
subset was selected in the pervious epoch.
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Figure 7.12 The number and the rate of continuous selection epochs from the selection cases 5, 6,
7, and 8 using 24 hours GNSS data collected on 20 September 2021.

Figure 7.12 shows similarity between the selection cases 5 and 6, as well as between the
cases 7 and 8. The percentage of continuous epochs is less than 40% for the most satellite
subset sizes in cases 5 and 6. In contrast, its value is more than 40% for all satellite subset
sizes in cases 7 and 8. Furthermore, the number of continuous epochs in cases 7 and 8 are
larger than those in the cases 5 and 6. For most satellite subset sizes, the average number
of continuous epochs is about 2 in cases 5 and 6, and it is over than 2 in cases 7 and 8.
Compared to cases 5 and 6, satellite elevation angle (15°) was used in cases 7 and 8. Thus,
it can be considered it the reason for increasing the rate and number of continuous epochs
in them.

Despite the difference between the four cases in rate or number of continuous epochs, they
form a U-shape in the four cases. For example, the rate of continuous epoch was more than
70% for the six and maximum number of selected satellites, while it was less than 70% for
the middle number of selected satellites in the four cases. Satellite data were collected from
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three satellite systems (GPS, GLONASS, and Galileo). The time difference between these
satellite systems was considered when selecting the optimal satellites by calculating the
geometry matrix (H) using Equation (3.8) This supports the existence of more than one
satellite of a system in the optimal satellite subset (Figure 7.13). As a result, this can be the
reason for maintaining the same optimal satellite subset for larger number of sequential
epochs, especially for the subset with a small number of satellites such as 6 and 7. On the
other hand, the optimal satellite subset of larger and maximum number of selected
satellites stayed langer because they were the only combination with that number of

satellites.
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Figure 7.13 Comparison of selecting 8 satellites with (left) and without (right) considering the time
difference between satellite systems.

The optimal satellites were selected separately for each epoch based on WGDOP without
considering the continuity of the optimal satellite subset. Therefore, itis expected choosing
different satellites combinations from one epoch to another due to the change of satellites’
location and signal power over time. Figure 7.14 shows the difference in the WGDOP
(fitness) value between the current and the pervious epochs’ optimal satellite subset. Over
the entire selection, the WGDOP value of the optimal satellites in the current and previous
epochs was computed based on satellite information in the current epoch. The WGDOP
value of the current epoch’s optimal satellites subtracted from that of the previous epoch’s
optimal satellites. Satellites were selected based on WGDOP value, which is considered
better when it decreases. Thus, the fithess of current epoch’s optimal satellites is better
than the old if the subtraction result is positive and vice versa.
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Figure 7.14 Comparison between the current and previous epochs’ optimal subset of 15 selected
satellites in their WGDOP value, using the current epoch’s satellite information. The WGDOP value
of the current epoch’s optimal satellite subset was subtracted from that of the pervious epoch.

According to Figure 7.14, the current epoch’s optimal satellite subset changed from the
previous due to four reasons:

WIN =

N
~— ~— ~— ~—

losing previous optimal satellite subset,
reduction the fitness of previous optimal satellite subset,
replacing previous optimal satellite subset with an equivalent one,

miss-selection.

The previous epoch’s optimal satellite subset was missing in the later epoch, leading to
choose another subset as the optimal. Since new satellite subset can be created by
changing one satellite in a subset, losing previous epoch’s optimal satellites can be due to
the loss of one satellite. Thus, the new optimal satellite subset could differ from the previous
by only one satellite. Over selection, the pervious epoch’s optimal satellite subset was
missing less than 10% in cases 5 and 7, while it was around 20 % in cases 6 and 8. KFITH
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was applied in both cases 6 and 8. This could be the main reason why the missing rate of the
previous subset of selected satellites increased to about 10%.

Satellites travel over time, leading to change their location and signal power through time.
Thus, the fitness (WGDOP) value of the same satellite subset varies over time. The fitness
(WGDOP) of previous epoch’s optimal satellite subset was not the best in the later epoch,
so another satellite subset with better fitness was chosen the optimal. This occurred most
of the time during the selection in cases 5 and 6, as ithappened more than 44%. In the other
two cases 7 and 8, the optimal satellite subset changes from the previous due to decrease
subset fitness with less rate 26.3 and 28.5%, respectively. This is due to the use of a 15°
elevation mask in cases 7 and 8, where satellites with low elevation angles, which are more
vulnerable to multipath and atmospheric errors, were not considered.

Since satellites were selected based on WGDOP without considering continuity, the
previous epoch’s optimal satellite subsetwas replaced by another subset has an equivalent
fitness (WGDOP) value. This occurred only in cases 5 and 6 with few rates (0.1%).

Finaly, the current optimal satellites were miss-selected. Although the previous optimal
satellite subset had better fitness (WGDOP) value, less quality satellite subset was chosen
as the optimal. Over selection, this happened 15.2%, 7.9%, 1.3%, and 1.1% in cases 5 - 8,
respectively. The main reason for this is efficiency of selection technique, i.e., optimization
algorithm (ABC). The rate of miss-selection was significantly lower in the last two cases 7
and 8 because the selection difficulty was less. In both cases 15-degree elevation mask was
used this lead to reduce the total number of satellites, consequently, decrease the selection
difficulty.

As mentioned earlier, the previous epoch’s optimal satellite subset could be loss and
change by one satellite. Figure 7.15 shows the number of satellites in subset that differ from
the previous epoch's optimal satellites subset. According to Figure 7.15, the number of
changed satellites in the four cases is about the same. It is generally no more than 2 in all
four cases. The maximum number of changed satellites is around 8 satellites for the most
satellite subset sizes in the four cases.

Nonetheless, the number of changed satellites in cases 5 and 6 is slightly higher than that
in cases 7 and 8 by few satellites. For example, the mean number of changed satellites of 13
selected satellitesis 3,2, 1,and 1in cases 5, 6, 7, and 8, respectively. The maximum number
of changed satellites of 13 selected satellites is 10, 10, 6, and 7 in in cases 5, 6, 7, and 8,
respectively.
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Figure 7.15 The number of satellites changed in the selected optimal subset over selection from the
selection cases 5, 6, 7, and 8 using 24 hours GNSS data collected on 20 September 2021.

7.1.2.3 Satellite System Used

Three satellite systems (GPS, GLONASS, and Galileo) were tracked during the day
(20/09/2021). Figure 7.16 illustrates the overall reliance on each system to form the optimal
satellite subset in the four selection cases. The figure presents the average and standard
deviation of the number of satellites from each system (GPS, GLONASS, and Galileo) that
were included in the optimal subsets over 2880 epochs. In addition, it indicates the
percentage of using the satellite system to form the optimal satellite subset over the total
number of epochs (selection) for each satellite subset size. The contribution of the satellite
system considered by one satellite.
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Figure 7.16 The mean and stander deviation of number of GPS, GLONASS, and Galileo satellites
selected to form the optimal subsets with different sizes. The rate of using the system of satellite
over the entire selection is also presented. Selected satellites from selection cases 5, 6, 7, and 8

are only presented. 24 hours GNSS data collected over NGB2 on 20 September 2021 are used.

Overall, GPS satellites were highly selected to form the optimal satellite subsets in the four
selection cases. This can be seen from the percentage of using GPS satellites in the optimal
satellite subset, and it was high for all satellite subset sizes with no less than 88% in all
selection cases. In addition, the average number of GPS satellites used to form optimal
satellite subsets was higher than other systems in all satellite subset sizes and in the four
cases. This is because the number of GPS satellites observed was more than other two
systems, as shown in Figure 5.7. On the other hand, the reliance on the GLONASS and
Galileo satellite systems was approximately the same in terms of number of satellites.
However, Galileo satellites were selected in more epochs than GLONASS. Galileo satellites
were chosen more than GLONASS in two cases (5 and 7) out of the four and were chosen
equally with GLONASS in case 8.
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7.1.3 Positioning

In the ten selection cases (Table 5.4), the optimal satellites were selected in different
number of satellites ranges from 6 to maximum number of satellites observed. To evaluate
the quality of the ten selection cases in PPP selection, the PPP solution using the selected
satellites from the ten cases was determined and presented. The positioning accuracy and
precision of the selected satellites in the three directions (selE, selN, and selH) were
illustrated. Their positioning availability (PAva) and the optimal positioning availability
(OPAva), which can affect the positioning quality, are also shown. In order to assess the PPP
solution of the selected satellites, it was compared with the original PPP solution, which
included all satellites, a 15-degree elevation mask, RAIM, and KFITH (30-meter threshold).

The positioning solutions (accuracy and precision) of the selected satellites in the three
directions (selE, selN, and selH) are presented as blue lines corresponding to left y-axis.
Their PAva and OPAva are presented with red lines corresponding to right y-axis. To facilitate
the comparison between the positioning solutions (accuracy and precision) of selected
satellites with different subset sizes and the original PPP in the three directions (orgE, orgN,
and orgH), the original PPP positioning solutions were presented with a green line starched
over the selected satellites with different numbers (x-axis).

To have readable figure and clear presentation, the positioning solutions of the selected
satellites from ten cases was divided into three figures. The first figure shows positioning
solutions of the first 4 cases, where satellites were selected based on WGDOP before
RAIM/RAIM-KFITH. The second figure covers the next 4 cases, selecting satellites based on
WGDOP after RAIM/RAIM-KFITH. The third figure shows the last 2 cases, selecting satellites
by RAIM/RAIM-KFITH before and after the WGDOP-selection.
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e Positioning solutions of cases 1, 2, 3, and 4
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Figure 7.17 Comparison of the positioning accuracy of selected satellites from cases 1, 2, 3, and 4
with respect to the original PPP (all satellites). The life y-axis expresses the position accuracy of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).
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Figure 7.18 Comparison of the positioning precision of selected satellites from cases 1, 2, 3, and 4
with respect to the original PPP (all satellites). The life y-axis expresses the position precision of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).

The positioning solutions of the selected satellites from cases 1, 2, 3, and 4 are presented
Figure 7.17 and Figure 7.18, which indicate the positioning accuracy and precision,
respectively. The common between these selection cases is satellites were selected by
WGDOP before they be filtered by RAIM/RAIM-KFITH. Whereas these selection cases differ
from each other by selecting satellites as follows: WGDOP-only, Ele-WGDOP, WGDOP-
RAIM, and WGDOP-RAIM-KFITH, respectively.

Despite the selection variation in these selection cases, the cases’ results have common
pattern. The positioning solutions (accuracy and precision) of their selected satellites (blue
lines) are unstable. In the same selection case, the positioning solutions change
significantly as the number of selected satellites changes by one satellite, especially
between the smallest and largest number of selected satellites. In general, it can be notice
that the positioning accuracy and precision of the middle number of selected satellites is
better than those of the smallest and the largest number of satellites. Furthermore, the
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OPAva , indicating the rate of using the exact selected satellites in positioning solution, is
noticeably low, indicating the low selection quality.

Because of the differences in selection for each case, the above common pattern has a
different rate between cases 1, 2, and 4. However, they are same in cases 1 and 3 even
though RAIM is considered in case 3, as shown in Figure 7.19. This is alighed with what
Angrisano et al. [226] and Zhang and Wang [222] stated, that RAIM-snapshot (used in
RTKLIB) is not suitable for PPP.
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Figure 7.19 Comparison of the positioning accuracy, precision, and availability between cases 1
and 3.

Figure 7.17 and Figure 7.18 show the positioning solutions of the original PPP (green lines)
along with that of the selected satellites (blue lines). The quality of positioning results of the
selected satellites from the four cases can be evaluated by comparing them with that of the
original PPP, using all satellites, a 15-degree elevation mask, RAIM, and KFITH with 30-meter
threshold. Since the middle number of selected satellites in the above four cases provide
the better and more stable results, their results were compared to original PPP.
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Overall, the original PPP provided better vertical positioning accuracy, but worse
horizontally positioning (easting and northing) accuracy compared to selected satellites. In
precision, the original PPP had better results in three directions than the middle number of
selected satellites. The middle number of selected satellites with most stable results.

Figure 7.20 and Figure 7.21 (below) illustrate the amount of differences in positioning
solution between the original PPP and these middle number of selected satellites (12, 13,
14, 15 ,and 16) in the four cases. The positioning solutions (accuracy and precision) of
original PPP subtracted from that of the selected satellites. If the product is positive, the
positioning solution for the selected satellites is worse than the original PPP and vice versa.
Based on the

Figure 7.20 and Figure 7.21, the exact difference in positioning solutions between the original
PPP and the middle number of selected satellites (12-16) can be determined, which is no
more than about 2 cm and 4 mm in accuracy and precision. Furthermore, the difference of
the positioning solutions between the selected satellites from cases can be indicated. It is
noticed that they are generally close to each other, with no more than around 4 cm in
positioning accuracy, and 4 mm in precision.
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Figure 7.20 The differences of positioning accuracy between the original PPP and the selected
satellites (12, 13, 14, 15 and 16) from cases 1, 2, 3, and 4.
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Precision Differences
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Figure 7.21 The differences of positioning precision between the original PPP and the selected
satellites (12, 13, 14, 15 and 16) from cases 1, 2, 3, and 4.
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e Positioning solutions of cases 5, 6, 7, and 8
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Figure 7.22 Comparison of the positioning accuracy of selected satellites from cases 5, 6, 7, and 8
with respect to the original PPP (all satellites). The life y-axis expresses the position accuracy of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).
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Figure 7.23 Comparison of the positioning precision of selected satellites from cases 5, 6, 7, and 8
with respect to the original PPP (all satellites). The life y-axis expresses the position precision of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).

Figure 7.22 show the positioning accuracy of the selected satellites from cases 5, 6, 7, and
8. Figure 7.23 illustrates the precision of the positioning solutions of these selected
satellites. The common between the four selection cases (5, 6, 7, and 8) is satellites were
selected by WGDOP after RAIM/RAIM-KFITH selection as follows: RAIM-WGDOP, RAIM-
KFITH-WGDOP, Ele-RAIM-WGDOP, and Ele-RAIM-KFITH-WGDOP, respectively.

Accordingto Figure 7.22 and Figure 7.23, the OPAva is mostly aligned with the corresponding
PAva over all satellite subset sizes at the four selection cases 5, 6, 7, and 8. This means that
the satellites selected by these selection cases have been used in the positioning solution,
indicating the selection quality. In terms of positioning accuracy and precision of the
selected satellites (blue lines), they vary from one case to another. Overall, those of the
small and the large number of selected satellites are fluctuated. Whereas the positioning
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solutions of the middle number of satellites are more stable, especially those in cases 7 and
8.

Focusing on the middle number of satellites, their positioning accuracy in cases 5 and 6 are
generally close to that of original PPP. However, their positioning precision are clearly worse
than original PPP. On the other hand, the positioning accuracy and precision of the middle
number of satellites from cases 7 and 8 are equivalent to the original PPP. To evaluate the
differences, the original PPP solution was subtracted from the solutions of 12to 16 selected
satellites in cases 5 to 8.

Figure 7.24 shows the difference in positioning accuracy, while positioning precision
presentedin Figure 7.25. According to the figures, the variation between the original PPP and
the middle number of satellites no more than about 1cm and 2 mm in positioning accuracy
and precision respectively. The difference between cases results no more than about 1.5
cm in positioning accuracy, and 2 mm in precision.
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Figure 7.24 The differences of positioning accuracy between the original PPP and the selected
satellites (12, 13, 14, 15 and 16) from cases 5, 6, 7, and 8.
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Precision Differences
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Figure 7.25 The differences of positioning precision between the original PPP and the selected
satellites (12, 13, 14, 15 and 16) from cases 5, 6, 7, and 8.

e Positioning solutions of cases 9 and 10
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Figure 7.26 Comparison of the positioning accuracy of selected satellites from cases 9 and 10 with
respect to the original PPP (all satellites). The life y-axis expresses the position accuracy of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).
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Figure 7.27 Comparison of the positioning precision of selected satellites from cases 9 and 10 with
respect to the original PPP (all satellites). The life y-axis expresses the position precision of the
selected satellites (blue) and original PPP (green). The right y-axis expresses the positioning
availability of the selected satellites (red).

Figure 7.26 show the positioning accuracy of the selected satellites from cases 9 and 10.
Figure 7.27 illustrates the precision of the positioning solutions of these selected satellites.
The common between these two selection cases is satellites were selected by RAIM-KFITH
before and after WGDOP selection as follows: RAIM-KFITH-WGDOP-RAIM-KFITH and Ele-

RAIM-KFITH-WGDOP-RAIM-KFITH, respectively.

The satellites were selected by ten unique selection cases (Table 5.4), where each one
considering different selection factors. The difference between cases 9 and 10 is a 15-
degree satellite elevation mask (Ele), which was included in 10 cases only. According to
Figure 7.26 and Figure 7.27, this leads to have different rate of OPAva and positioning
solutions provided by each case. However, the positioning solutions of case 9 is almost the
same to case 6 despite the differences in their selection factors. The same thing is
noticeable between cases 8 and 10. The difference between cases 6 and 9, as well as
between cases 8 and 10, lies in the RAIM-KFITH selection, which is considered further after
WGDORP in cases 9 and 10. Figure 7.28 compares the difference between cases 6 and 9,
while Figure 7.29 shows the comparison between cases 8 and 10.
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Figure 7.29 Comparison of the positioning accuracy, precision, and availability between cases 8
and 10.

According to Figure 7.28, the positioning solutions in cases 6 and 9 were almost identical.
The same was true for cases 8 and 10, as shown in Figure 7.29. However, the OPAva rate in
cases 9 and 10 was lower than that in cases 6 and 8. Lossing number of the selected
satellites based on WGDOP in cases 9 and 10 was expected due to the RAIM-KFITH selection
after WGDOP selection. However, the loss of these satellites did notimprove the positioning
solutions. This demonstrates the quality of selection in cases 6 and 8.

e Comparison of satellite selection cases

The optimal satellites were selected by ten unique selection cases, where different
selection factor or order was considered in each case. Because of these differences, each
selection case provides different results in positioning accuracy, precision, or availability, if
not all of them together. In the first four cases, satellites were selected based on WGDOP
before RAIM / RAIM-KFITH. Since WGDOP selection relied on the raw satellite data from the
RINEX file, satellites with no correction (orbit and clock) and cycle slip were selected. These
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satellites were then excluded during positioning process due to lack of information. As a
result, the quality of the selected satellites from these cases is not good, and their
positioning solution cannot be guaranteed as the positioning satellites cannot be controlled
and predicted.

In cases 5, 6, 7, and 8, satellites were selected by RAIM or RAIM-KFITH first before WGDOP
selection. RAIM and KFITH selection applied during positioning determination. Satellites
with no correction and cycle slip were rejected through positioning due to lack of
information. Poor satellite measurements were eliminated by RAIM and KFITH. This filtered
satellite data and improved the quality of WGDOP selection leading to used most of its
selected satellites in positioning solution.

RAIM only was applied before WGDOP selection in cases 5 and 7. Whereas both RAIM and
KFITH (RAIM-KFITH) were used in cases 6 and 8. Since RAIM was found inefficient, as shown
in Figure 7.19. The figure shows a comparison between case 1 and case 3. Satellites were
selected based on WGDOP-only in case 1, while they were chosen based on WGDOP-RAIM
in case 3. According to the Figure 7.19, both cases provided similar results in terms of
positioning accuracy, precision, and availability. This means that RAIM was not effective,
and no satellites were excluded by RAIM. The rejected satellites in case 1 were also
eliminated in case 3 because their missing data (no correction / cycle slip). As a result, the
selection cases 5 and 7, relying on RAIM-only, are not good enough. This this because RAIM
is not working and does not provide anything for the selection.

In cases 6 and 8, satellites were selected based on RAIM-KFITH before WGDOP selection.
In cases 9 and 10 satellites were chosen by RAIM-KFITH before and after WGDOP selection.
15-degrre satellite elevation mask (Ele) was included in cases 8 and 10. The only difference
between cases 6 and 9, as well as between case 8 and 10, is applying RAIM-KFITH after
WGDOP selection in cases 9 and 10. Despite the difference, the positioning solutions
(accuracy and precision) provided by cases 6 and 9 are almost the identical. The same is
true between cases 8 and 10. However, it can be notice that OPAva rate in cases9and 10is
lower than those in cases 6 and 8. In other words, number of WGDOP’s selected satellites
were rejected in cases 9 and 10. This is expected as RAIM-KFITH was implemented after
WGDORP selection. Since excluding WGDOP selected satellites in cases 9 and 10 did not
improve / change the positioning solutions provided by case 6 and 8, keeping these satellites
may be more valuable to facilitate data analysis. As a result, it can be considered the
selection quality of cases 6 and 8 better than that of cases 9 and 10.

From the ten cases, case 6 and 8 consider better than others. Satellites were chosen based
on RAIM-KFITH-WGDOP in case 6, while they were selected based on Ele-RAIM-KFITH-
WGDOP in case 8. Including satellite elevation mask (Ele) enhanced selection continuity
more than 20%, as shown in Figure 7.12. Furthermore, it is improved satellite selection
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accuracy by about 7%, as shown in Figure 7.14. Therefore, case 8 consider the most suitable

selection case for PPP.

The ten selection cases were applied to choose satellites from four days of GNSS data. The
selection results of the first day (20/09/2021) are the one shown above, while the rest are
presented in the appendix. Overall, the performance of the ten selection cases were almost

the same in four days / times. The positioning solutions (accuracy and precision) provided

by cases 8 in the four times is shown below.
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Figure 7.30 Positioning accuracy of case 8 from four days with respect to the original PPP (all
satellites). The life y-axis expresses the position accuracy of the selected satellites (blue) and
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Figure 7.31 Positioning precision of case 8 from four days with respect to the original PPP (all
satellites). The life y-axis expresses the position accuracy of the selected satellites (blue) and
original PPP (green). The right y-axis expresses the positioning availability of the selected satellites
(red).

7.2 Summary

This chapter focused on defending and investigating the performance of various criteria and
selection orders for PPP-satellite selection and identifying the most suitable. As a result,
satellites with all possible subsets were chosen based on ten selection combinations/cases
of different criteria and selection orders. The importance of this study is (i) the overall
evaluation of the performance of these selection combinations and (ii) the suitable subset
size for PPP- satellite selection.

High PPP accuracy required corrections such as orbit and clock. In addition, excluding
satellites signal at low elevation angle can also lead to improve PPP accuracy, as these
satellites’ signal are more vulnerable to atmospheric and multipath errors. As a result, the
optimal satellites were selected based on WGDOP with and without satellite elevation angle
and corrections in ten cases. The optimal satellites were selected in all possible subset
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sizes as number of satellites affecting positioning quality. According to the results, PPP
corrections are required for PPP satellite selection, otherwise a large number of poor
satellite signals will be selected. Due to positioning validation functions, they will be
rejected from positioning. Considering as more as possible of PPP corrections leads to
better selection quality. Among the ten satellite selection cases, case 8 is the most suitable,
as it considered the largest number of corrections using satellite elevation angle mask,
RAIM, KFITH, and WGDOP. The least number of satellites suitable for selection is 12 to
maintain continuous positioning with the same quality. The continuity of satellites over time
is required for carrier phase ambiguity resolution, which improves PPP solution. Thus, the
continuity of the selected optimal satellite subset over time should be considered for better
quality PPP satellite selection.
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Chapter 8 Experimental evaluation of Satellite Selection Method

Satellite selection method is combination of selection criterion and selection technique. To
find the most suitable satellite selection method, various types of satellite criteria and
techniques were evaluated. It was found that satellite selection based on multiple criteria is
the best. This is because several factors affect positioning quality. Taking into account as
many as possible of these factors will increase the quality of the selected satellites, and
consequently, positioning accuracy. According to the results of 0, the most suitable criteria
for satellite selection is satellite elevation angels, geometry (GDOP), signal power (CNR),
and positioning residuals (RAIM and KFITH). They should be implemented with the following
order: Ele then RAIM and KFITH, then WGDOP (Ele-RAIM+KFITH-WGDOP). Ele, RAIM, and
KFITH can be implemented using positioning/navigation software (e.g., RTKLIB). Whereas
WGDOP- based satellite selection can be implemented by various techniques. Optimization
algorithms are more suitable technique than other for satellite selection based on WGDOP
as discussed in Section 3.6. The ABC algorithm is the most suitable optimization algorithm
as itis robust, fast, and has few parameters to set, as shown in Chapter 6.

In 0, the satellites were selected in ten cases one of them was based on Ele, RAIM, KFITH
and WGDOP, using RTKLIB and ABC. The positioning accuracy of its selected satellites was
the best and equivalent to the original PPP (all satellites). However, it did not support the
continuity of the selected satellites. Thisis because it has mostly selected a different subset
of satellites over successive epochs. The optimal satellites were change from one epoch to
another due to four reasons: i) the previous selection was missing, ii) the pervious selection
has worse fitness, iii) the previous and the new selection has the same fitness, and iv) miss-
selection, as the previous selection has better fithness than the new selection although the
new choice was chosen.

Since the continuity of satellites important for positioning, the continuity of the selected
satellites was considered in this chapter. The satellites were selected based on Ele, RAIM,
KFITH and WGDOP, using RTKLIB and ABC. The continuity of the selected satellites was
considered in WGDOP-based satellite selection. For each epoch the pervious selection was
compared with the new. If they are different and the previous selection has a WGDOP
(fitness) value equal to or better than the new selection, the previous selection replaces the
new choice.

To test the performance of the satellite selection method, it was implemented to select
satellites from three different scenarios: i) static open-sky environment, ii) kinematic open-
sky environment, and iii) static multipath environments. The results and their discussion are
presented below.

115



Chapter 8 Experimental evaluation of Satellite Selection Method

8.1 Result And Discussion

8.1.1 Static Open-Sky Environment

The new satellite selection method is to choose satellite based on Ele, RAIM, KFITH and
WGDOP, while considering the continuity of the selected satellites. This selection
implement using RTKLIB and ABC algorithm as selection techniques. However, the same
satellite selection method was applied in Chapter 7, but without continuity consideration.
To evaluate the impact of continuity consideration, the positioning accuracy of selected
satellites by the new method should be compared to that without continuity consideration.
Therefore, satellites were selected using the proposed method from the same satellite data
(static open-sky environment) used before.

Furthermore, the same positioning configurations (Table 5.6) were used. According to Table
5.6, combined KF, which has been used for PPP solution in several studies [226,232,233],
was used. This is because its providers smoother positioning than forward and backword KF
[118,119]. However, there is no convergence time when using the combined KF. To
investigate the convergence time of the selected satellites by the new satellite selection
method, the data of its selected satellites was processed also using forward KF. As a result,
the data of the selected satellites by the new satellite selection method was processed
twice: i) using the same positioning configurations (combined KF) to investigate the
continuity consideration and ii) using forward KF to investigate the convergence time.

8.1.1.1 Satellite Selection with and without Continuity Consideration

To investigate the impact of considering the continuity of the selected satellites, the
positioning solutions (accuracy and precision) of the selected satellites with and without
continuity were compared. The satellites were selected for 24-hour every 30-sec (i.e., 2880
epochs). In addition, they were selected with all possible numbers of satellites (6-max
number of observed satellites). Figure 8.1 shows the positioning solutions (accuracy and
precision) for the selected satellites with and without continuity. In addition, it shows the
positioning solutions (accuracy and precision) of original PPP, which is using all satellites,
15-degree elevation mask, RAIM, and 30-meter KFITH. Figure 8.2 shows the ENH errors
timeseries of the 10, 15, and 20 selected satellites with and without continuity.
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Figure 8.1 Positioning solutions (accuracy and precision) of the original PPP and the selected
satellites with and without continuity.
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Figure 8.2 E/N/H error timeseries of the subset of 10, 15, and 20 selected satellites with and without
continuous considerations. Left: the positioning error of the selected satellites without continuity,
right: the positioning errors of the selected satellites with continuity.
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Figure 8.2 presents E/N/H error timeseries of 10, 15, and 20 selected satellites with and
without continuity. According to the figure, it can be seen how close the positioning
solutions (accuracy and precision) of the satellites with and without continuity. The
positioning accuracy of the selected 20 satellites with and without continuity was identical
in the three directions (E/N/H). For 15 satellites, it varies by 1 mm in all three directions. For
the 10 satellites, it was the same in northing and hight and differed by 1 mm in easting.

Checking the number of continuous epochs of the selected satellites with and without
continuity (Figure 8.3), there is not a big different. For example, the average number of
continuous epochs for middle number of selected satellites (10-19) is mostly 3in both cases
with and without continuity consideration. In addition, the average number of satellites
change in the subset for the middle number of selected satellites is 2 for both cases. The
continuity of the selected satellites was considered by comparing the pervious and current
epoch’s optimal selected satellites over each epoch. If the previous epoch’s optimal
satellites has equal or better fitness than the current, the previous epoch’s optimal
satellites replace the current. Despite the continuity consideration the selected satellites
continuous did not increase a lot. This is could the reason why the positioning solutions
(accuracy and precision) of the selected satellites with and without continuity are the same.
In addition, RTKLIB (used software) apply PPP without carrier-phase ambiguity resolution
[118]. This mean that continuity consideration has less effect on positioning, as the satellite
continuity importance to carrier-phase ambiguity resolution [118,119]. This could be a
second reason why the positioning solutions was almost the same for the selected satellites
with and without continuity consideration.
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of continuous epochs and changed satellites with continuity consideration.

8.1.1.2 PPP Convergence Time

To investigates the positioning convergence time required for the selected satellites,
forward KF setting was used in PPP positioning. Figure 8.4 shows the convergence time
required for each number of selected satellites. Figure 8.5 shows the positioning solutions
(accuracy and precision) after convergence for the original PPP and the selected satellites
with different numbers and. Figure 8.6 presents the E/N/H error timeseries of the selected
satellites and the original PPP. Lastly, Figure 8.7 shows a comparison between the
positioning solutions (accuracy and precision), of the selected satellites using combined
and forward KF.
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Figure 8.4 The time required for PPP convergence of the selected satellites with different number
and original PPP (all satellites).
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Figure 8.5 Positioning solutions (accuracy and precision) after convergence for the original PPP (all
satellites) and the selected satellites with different numbers.
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Figure 8.6 E/N/H error timeseries of the selected satellites and the original PPP (all satellites) with
forward KF.
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Figure 8.7 Comparison in positioning solutions (accuracy and precision) between the original PPP
and selected satellites using forward and combined KF.

The convergence time is the time required to reach a stable absolute positioning error
[234,235], which is a few centimetres [24,235]. According to Abou-Galala et al. [234], PPP
convergence time is influenced by various factors, including the number of observed

satellites and their geometry, the GNSS receiver’s dynamic and environment, and the
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observation quality and sampling rates. PPP convergence time is around 20 minutes when
using single satellites systems [24,236]. It is several minutes, (~ 4 minutes) with multi-GNSS
[25-27].

According to the Figure 8.4, the convergence time of the original PPP was about 4 minutes.
The convergence time of the selected satellites varied based on the number of satellites
selected. The convergence time of the subsets of 6 —15 selected satellites was like original
PPP (about 4 minutes) except for the subsets of 6 and 10 satellites. Their convergence time
was lesser, as it was about 3.5 minutes. The convergence times of the remaining selected
satellites (16-23) was below 3 minutes. In general, their convergence time decreased as the
number of selected satellites increased. For example, the convergence time of the subset
of 16, 19, and 23 satellites was about 3, 2, and 0 minutes.

Various factors affecting the convergence time. The main reason for reducing the
convergence time of the selected satellite with high number (16-23) is positioning
availability. The positioning availability of the subset of 16-23 satellites decrease rapidly as
the number of satellites increased (Figure 8.5), which is directly proportional to their
convergence time. This explains why the convergence time was zero for the subset of 23
satellites, as it had only two epochs (Figure 8.6).

The convergence time of the original PPP and some of the selected satellites (7,8,9,11,12,
13,14, and 15) was about 4 minutes. The positioning accuracy of these selected satellites
was better than original PPP apart of the 7 selected satellites. According to Figure 8.5, the
vertical error of these selected satellites was almost like original PPP, which is 2.73 cm.
However, their horizontal error was mostly 0.347 cm less than original PPP, which is 2.154
cm. On the other hand, the positioning accuracy of the selected satellites with convergence
time less than 4 minutes (6,10, and 16-23). The positioning accuracy of 16, 17 and 22
selected satellites was better than the original PPP horizontally, vertically and both,
respectively. The horizontal and vertical accuracy of 10 selected satellites was almost the
same with original PPP, which were 2.154 and 2.73 cm. Whereas the horizontal accuracy of
the selected satellites 18,19, 20, and 21 was worse than original PPP with no less than 0.5
cm. However, their vertical accuracy was better than original PPP with no less than1.5 cm.
In terms of precision, the original PPP had better precision than the selected satellites in
general.

According to Figure 8.7, the different between the positioning accuracy using forward and
combined KF is mainly an offset. The horizontal accuracy of the selected satellites with
combined KF was about 0.3 cm better than the forward KF accuracy. Whereas its vertical
accuracy was worse than that of the forward KF by about 0.3 cm. In terms of precision, itis
significantly better (lower) with combined KF. The positioning precision of most of the
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selected satellites (8-17) was around 1 mm in the three directions (E/N/H). In contrast, the
accuracy of the same selected satellites (8-17) was around 1 mm vertically and more than
4 mm in the easting and northing.

8.1.2 Kinematic Open-Sky Environment

The efficiency of the new satellite selection method was tested for kinematic PPP. Over one
hour, the optimal satellites were selected for every second, i.e., they were selected 3600
times. They were selected in all possible subset sizes (6-max observed satellites). Figure 8.8
shows the overall positioning accuracy and precision of the selected satellites and original
PPP, using all satellites, 15 degrees elevation mask, RAIM and 30 meters KFITH. In addition,
it presents the positioning (PAva) and optimal positioning available of the selected satellites
(OPAva). Figure 8.9 shows the E/N/H errors of timeseries of the original PPP and selected
satellites. Figure 8.10 shows the track of the train based on the position of the original PPP
and some of the selected satellites.
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Figure 8.8 Overall kinematic positioning solutions accuracy and precision of the original PPP (all
satellites) and the selected satellites with different numbers.
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Figure 8.9 E/N/H error timeseries of original PPP (all satellites) and the subsetof 12, 14, and 16
selected satellites for kinematic PPP.
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Figure 8.10 The train track based on the position of the selected satellites (12,14, and 16), original
PPP (all satellites), and the relative positioning using all satellites (reference).

124



Chapter 8 Experimental evaluation of Satellite Selection Method

According to Figure 8.8, the overall positioning solutions (accuracy and precision) of the
selected satellites creates U-shape. The positioning solutions of few and large number of
selected satellites is high, while those of the middle number of satellites (12-18) is low
(better). The positioning solutions of the middle number of selected satellites is equivalent
to the original PPP, especially those of selected 15 and 16 satellites. The easting and
northing errors of the original PPP and 15 and 16 selected satellites are about 6 cm. Whereas
their high errors are about 10 cm. Their precision in the three directions (E/N/H) are about 4,
6, and 10 cm, respectively.

Figure 8.9 shows E/N/H timeseries of the original PPP and the selected 12, 14, and 16
satellites. The subset of 12 selected satellites provides easting and height positioning more
precise than others. As the number of satellites increases (14, 16, to all satellites) the
positioning accuracyin both directions becomes worse, which can be seeingin the following
periods (50-1500 or 3500-3800). However, the difference between their overall positioning
(RMS) is small, about 2 cm maximum. This explains why the train track based on them
(Figure 8.10) looks almost identical.

8.1.3 Static Multipath Environment

To investigate the performance of the new satellite selection method under multipath
environment, it was implemented for satellite selection in three locations with low and high
multipath level. The first location has low multipath effect, and it is in the Jubilee campus
next the tennis court. The second and the third locations are on the control points (NGB11
and NGB9) located fort and behind the NGI building. Both locations are surrounded by rise
building creating high multipath environment. The positioning solution of the selected
satellites in these locations are shown below.
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Figure 8.11 Number of satellites observed every 30 sec with 15 degrees elevation mask next the
tennis court at Jubilee campus.
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Figure 8.12 Positioning solutions (accuracy and precision) of the selected satellites and original
PPP for the receiver location next the tennis court at Jubilee campus. In addition, the positioning
available of the selected satellites.
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Figure 8.13 E/N/H errors timeseries of the original PPP and 14, 16, and 20 selected satellites from
positioning receiver next to the tennis court at Jubilee campus.

Accordingto Figure 8.11, 16 is the maximum number of satellites observed next to the tennis
court when using a 15 degrees elevation mask. According to Figure 8.12, the horizontal and
vertical positioning accuracy of original PPP, using all satellites, are 2.744 and 6.960 cm,
respectively. The horizontalaccuracy of 8 -12 selected satellites is stable at 2.048 cm, which
is better than original PPP by 0.696 cm. The vertical accuracy of 9 -13 selected satellites is
also better than original PPP, which gradually rises from 4.830t0 6.519 cm.

According to Figure 8.12, E/N/H precision of the original PPP are 1.958, 1.835, and 5.191
mm, respectively. The original PPP has better E/N/H precision than selected satellites
except for the 13 selected satellites in the northing direction. The northing precision of the
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subset of 13 satellites is better than that of original PPP by 0.242 mm. Compared to the
selected satellites, the northing precision of the 12 selected satellites is the second best
after 13 selected satellites. The E/N/H precision of the 12 selected satellites is the closest
to the original PPP with 0.101, 0.916, and 0.076 mm difference.

Figure 8.13 shows a time series of E/N/H errors for the original PPP and a subset of 9, 10 and
12 selected satellites. E/N/H solutions of the original PPP are more precise than 9 and 10
selected satellites although they provide better overall positioning (RMS) in the three
directions. E/N/H positioning accuracy of the 12 selected satellites is better than the original
PPP although their E/N/H precisions are comparable.

Using a 15-degree elevation mask, the maximum number of available satellites was 16.
Using the new satellite selection method, better position accuracy was achieved than all
satellites (original PPP) with fewer number of satellites 9-12. This indicates the existence of
weak satellite signals at high elevation angles (greater than 15°) even in low multipath
environment (open area). This also proves the efficiency of the satellite selection method in
this kind of environment. Compared to selected satellites, the 9-selected satellites provide
the best positioning accuracy, but it does not have the best precision. According to Figure
8.12, the positioning precision of the selected satellites improve as the number of selected
satellites increases up to 12 satellites. However, when the number of satellites exceeds 12,
the positioning accuracy decreases gradually. Also, the positioning availability gradually
decreases as the number of satellites exceeds 12. This means that the number of satellites
and positioning availability are important for precision.
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Figure 8.14 Number of satellites observed every 30 sec with 15 degrees elevation mask on NGB9.
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Figure 8.15 NGB9 positioning solutions (accuracy and precision) of the selected satellites and
original PPP, as well as the positioning available of the selected satellites
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Figure 8.16 NGB9 E/N/H errors timeseries of the original PPP and 14, 16, and 20 selected satellites

The optimal satellites were found in all possible subset sizes. They were selected in subsets
of 6 - the maximum number of satellites observed. According to Figure 8.14, 22 is the
maximum number of available satellites using 15 degrees elevation mask. According to
Figure 8.15, apartfrom6, 7, 8, and 22 selected satellites, the horizontal positioning accuracy
of the selected satellites is close to original PPP, which was 3.168 cm. The furthest
horizontal accuracy from the original PPP is that of 13 selected satellites with a difference
of 6.12 mm. The horizontal positioning accuracy of 14 and 20 selected satellites is better
than original PPP with 5.57 and 3.66 mm difference. On the other hand, the vertical accuracy
of original PPP was 3.378 cm. The vertical accuracy of most of the selected satellites was
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worse than the original PPP by more than 1 cm. However, the vertical accuracy of 13 and 20
selected satellites was better than original PPP with 0.258 and 1.877cm difference.

According to Figure 8.15, E/N/H precision of the original PPP are 2.890, 2.486, and 3.470
mm, respectively. The original PPP significantly has better easting and height precision than
selected satellites. However, most of the selected satellites (10-18) have equivalent or
better precision than original PPP in northing direction. 15-selected satellites has the best
northing precision (1.512 mm), which is better than the original PPP.

Figure 8.16 shows a time series of E/N/H errors for the original PPP and a subset of 14, 16,
and 20 selected satellites. In general, E/N/H errors of the original PPP are more precise than
selected satellites. However, its positioning accuracy was achieved by the subset of 14, and
16 selected satellites. In addition, the positioning accuracy of the original PPP in the three
directions was overcome by the subset of 20 satellite selected that has positioning
availability (44%) less than original PPP (100%).

According to Figure 8.14, the maximum number of available satellites using 15-degree
elevation mask mainly ranges 16 — 22. A horizontal positioning accuracy equivalent to
original PPP was achieved with 9 satellites using the new satellite selection method. In
addition, better horizontal positioning than original PPP was obtained by 14 and 20 selected
satellites by 0.557 and 0.361 cm, respectively. Better vertical positioning accuracy of the 13
and 20 selected satellites is better than original PPP by 0.258 and 1.877 cm, respectively.
This can indicate the quality of satellites selection method.
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Figure 8.17 Number of satellites observed every 30 sec with 15 degrees elevation mask on NGB11
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Figure 8.18 NGB11 positioning solutions (accuracy and precision) of the selected satellites and
original PPP, as well as the positioning available of the selected satellites
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Figure 8.19 NGB11 E/N/H errors timeseries of the original PPP and 8, 9, and 15 selected satellites

According to Figure 8.18, 15 is the maximum number of satellites observed on NGB11 when
using a 15 degrees elevation mask. The horizontal and vertical accuracy when using all
available satellites (original PPP) are 2.840 and 3.404 cm, respectively. Except for 6 and 7
selected satellites, the horizontal and vertical accuracy of the selected satellites are close
to the original PPP. The horizontal positioning accuracy of the original PPP is mostly better
than that of the selected satellites (10-14) by about 1.4 cm. Compared to the original PPP,
the subset of 10-selected satellites is the furthest horizontally by 1.638 cm. The horizontal
accuracy of the 8 selected satellites is the closest to the original PPP with 1.73 mm
difference. Whereas the horizontal accuracy of the 15 selected satellites is better than
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original PPP with 6.23 mm difference. In contrast, the vertical positioning accuracy of most
of the selected satellites (10-14) better than original PPP by about 0.8 cm.

According to Figure 8.18, E/N/H precisions of the original PPP are 4.591, 1.371, and 6.426
mm, respectively. The original PPP significantly has better E/N/H precision than selected
satellites except for the 10 selected satellites. Its easting precision is better than that of
original PPP by 0.2 mm. The northing precision of the 8, 9, 10 and 11-selected satellites is
approximately constant at about 2.5 mm and is noticeably better than that of the larger
number of selected satellites.

Figure 8.19 shows a time series of E/N/H errors for the original PPP and a subset of 8, 9, and
15 selected satellites. In general, E/N/H errors of the original PPP are more precise than
selected satellites. The easting and northing positioning of the subsets of 8 and 9 selected
satellites are more precise than 15 selected satellites although they have a lower number of
satellites.

8.2 Summary

This chapterfocused on investigating the performance of the new satellite selection method
under different scenarios (PPP modes). Satellites were chosen from kinematic GNSS data
under low multi-path environment and from static GNSS data under low and high multipath
environments. The importance of this study is the evaluation of the performance of satellite
selection method in different PPP modes.

The efficiency of the new satellite selection method was excellent at low multipath
environment regardless of the positioning modes: static, kinematic. This is because the
kinematic positioning accuracy of original PPP (all satellites) was achieved by about half the
number of satellites observed using the satellite selection method. Statically, a subset with
half the number of satellites observed provided better positioning accuracy than the original
PPP (all satellites). In addition, this level of positioning accuracy achieved by a subset with
half the number of satellites observed was also obtained with optimal subsets with different
number of selected satellites, which is less than the total.

In terms of high multipath environments, the performance of the new satellite selection
method was less effective. From two different GNSS data, the satellites were selected in
subsets with different number of satellites. In general, the positioning accuracy of original
PPP was betterthan the selected satellites horizontally and vertically. However, the different
between them was not big, it was less than 2 cm. In addition, one of the subsets with few
numbers of satellites provided positioning accuracy was every close to original PPP. This
proves the efficiency of the satellite selection method because selecting satellites based on
a fixed number of satellites forces the algorithm to provide an optimal subset with an exact
number of satellites. The satellite selection method is less effective in a high multipath
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environment because it forced to choose poor satellite signals to complete the number of
satellites predetermined.
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Chapter 9 Conclusion and Recommendations

9.1 Conclusion

This thesis focuses on finding the most suitable satellite selection methods for PPP. For this
purpose, various criteria and techniques for satellite selection were investigated. Satellites
were selected from static and kinematic GNSS data at low and high multipath. Under these
GNSS data scenarios, satellites were selected with all numbers of satellites (i.e. subset
sizes) possible for positioning. The conclusion of these evaluations is given in the following:

9.1.1 Determining Satellite Selection Criteria

One of the main goals of satellite selection is obtaining precise positioning. Satellite
geometry and signal power are the main factors affecting positioning solution. Therefore,
satellites have been mainly selected based on them in one of five criteria: i) satellite angles,
ii) satellite signal power, iii) satellite geometry (GDOP), iv) satellite geometry and signal
power (WGDOP), and v) satellite geometry and positioning residuals (GDOP-RAIM). For
example, satellite elevation angles were used to select satellites based on their signal power
by abandoned satellite signal at low elevation angles, as they are more vulnerable to errors
from multipath, ionospheric, and tropospheric. Satellite elevation and azimuth angles were
adapted to choose satellites based on their geometry distribution.

Since positioning accuracy is affected by all its factors, considering them all for selecting
satellites will improve satellite selection quality. Hence, choosing satellites based on their
geometry and signal power (WGDOP) is better than selecting satellites based on GDOP or
signal power alone. Choosing satellites based on GDOP-RAIM is even better than WGDOP
especially for PPP-satellite selection. Corrections such as satellites ephemeris (orbit and
clock) data, antenna phase centre variation (PCV), and ocean tide loading, are important
factors for precise PPP. RAIM, which excludes satellites based on positioning residuals,
takes these corrections into account. However, satellites cannot be selected by RAIM as it
is a positioning integrity technique. Therefore, it was implemented after GDOP-based
satellite selection to improve the quality of the selected satellites in previous studies. Since
satellite selection based on WGDOP is better than GDOP, WGDOP-RAIM could be the most
suitable criterion for satellite selection.

9.1.2 Determining Satellite Selection Techniques

RAIM is a technique for excluding satellites based on positioning residues. Satellite
selection based on WGDOP can be carried out by various techniques, including TM, closed-
form formal, maximum volume, ANN, and optimization algorithms. TM determines the
optimal satellite subset after evaluating the fitness (WGDOP) of all possible satellite
subsets (all possible solutions). Thus, it selects the optimal satellites with 100% selection
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accuracy. However, it is time-consuming when the number of possible satellite subsets is
huge. In this situation, the other techniques are faster than TM. The most effective in terms
of selection accuracy and speed is optimization algorithms.

There are 50 types of optimization algorithms, and each was designed uniquely leading them
to have different advantages and limitations. Five of the most popular and powerful
optimization algorithms (ABC, ACO, GA, PSO, and SA) were tested in satellite selection
based on WGDOP. They were implemented to choose the optimal GPS satellites for 288
epochs, corresponding to satellite selection every 5 minutes for 24-hour of GNSS dataset.
In addition, the optimal GPS satellites were selected in four subset sizes (4, 5, 6, and 7). ABC,
ACO, and PSO had the highest accuracy in determining the optimal GPS satellites and they
were efficient in terms of computation time. However, the ABC algorithm is more practical,
because it has the fewest parameters to adjust. maxlter and pSize are the only parameters
that need adjustment in ABC algorithm.

The parameter values of optimization algorithm are critical for the results quality. Thus, the
value of optimization algorithm parameters should be suitable for the given problem to
obtain the best results. Satellite selection problem becomes more challenging as the
number of possible satellite combinations (i.e., subsets) increases, corresponding to the
increase of the total number of satellites tracked. Thus, the ABC algorithm was evaluated
under complex satellite selection problem with different setting of parameters (maxiter and
pSzie). It was implemented to select the optimal satellites from multi-GNSS data, where up
to 31 satellites were tracked. The optimal multi-GNSS were selected satellites for 288
epochs, corresponding to satellite selection every 5 minutes for 24-hour of GNSS dataset.
In addition, they were chosenin five subset sizes (4, 8, 10, 12, and 15). The evaluation of ABC
algorithm revealed that the satellite selection accuracy of the ABC algorithm improves
significantly (up to 100%) by increasing the values of population size and number of
iterations, although this has an effect on the required computation time. This is consistent
with what was reported in [149,227], as lower pSize and maxlter prevent achieving the best
solution in complex problems, whereas increasing the value of these parameters increases
the processing time.

Among the five optimization algorithms, the ABC algorithm is the most suitable in terms of
selection accuracy and speed, as well as simplicity with only two parameters to set. This
lines with what was stated in [99,138], as ABC is a robust algorithm between other
optimization algorithms. Compared to TM, ABC is more efficient in multi-GNSS satellite
selection because it is faster. However, it is significantly slower than TM in GPS satellite
selection. As aresult, TMis the most suitable algorithm (technique) for selecting the optimal
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satellites from single satellite system (e.g., GPS). This aligns with what Du et al. [92] said that
the TM is suitable for satellite selection from single satellite system.

9.1.3 Define the criteria and process for satellite selection

WGDOP-RAIM was considered as the most suitable criterion for PPP-satellite selection
although it can be improved further. Satellite signals at low elevation angles could improve
satellite geometry. However, they are vulnerable to errors due to multipath and ionosphere
and troposphere biases. In addition, including them will increase the total number of
satellites for selection, consequently, increasing the complexity of satellite selection
problem. Thus, excluding these satellite signals could be useful. In addition, RAIM was
originally designed for SPP, where it deals with pseudo-range residuals of least square. In
contrast, PPP uses KF for positioning estimation based on pseudo-range and carrier phase
measurements. Therefore, RAIM, carrier RAIM (CRAIM), and alternative technique, as KFITH,
should be investigated for PPP-satellite selection. Furthermore, choosing satellites based
on WGDOP-RAIM is applied sequentially. Hence, different selection order should be
investigated as they can lead to different results quality.

As a result, the optimal satellites were selected based on WGDOP with and without Ele,
RAIM, and KFITH in different combinations and orders. They were selected from multi-GNSS
data for 2880 epochs, corresponding to satellite selection every 30 seconds for 24-hour of
GNSS dataset. The selected optimal satellites were then utilized for positioning via PPP
mode. It has been noticed that the optimal subset of satellites selected has changed
frequently over sequential selections (epochs). Excluding satellite signals at low elevation
angles (159°) increased the continuity of the selected optimal satellites over selections
(epochs) up to 40%. This led to increase the positioning precision. It was also revealed that
traditional RAIM is not suitable for PPP, as it had no contribute to PPP-satellite selection.
This is consistent with what Zhang and Wang [222] stated, that RAIM is not mature enough
for PPP. It is also aligned with Angrisano et al. [226] outcomes, where no satellites were
rejected by RAIM during PPP. Thus, CRAIM or KFITH is required for PPP-satellite selection.
The most suitable selection combination and order is Ele-RAIM/KFITH-WGDOP, as it
excludes low elevation satellites and considers PPP- corrections before satellite selection
based on WGDOP.

9.1.4 Experimental evaluation of Satellite Selection Method

As mentioned, the most suitable satellite selection method is the combination of using Ele-
RAIM/KFITH-WGDOP. However, it does not support the selection continuity. Thus, it was
improved to consider the selection continuity. [t was implemented to choose satellites with
all possible subset sizes (6-max observed number of satellites). They were selected for PPP
from different scenarios: static open-sky, static multipath and kinematic open-sky.
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Compared to original PPP, the selected optimal satellites provided equivalent or even
millimetres better positioning accuracy in one or more satellite subset sizes in all scenarios.
The PPP convergence time of the original PPP (~ 4min) was equivalent to those of the optimal
satellite subsets except for those with a large number of satellites. They had less time for
convergence due to their low positioning availability.

The continuity of the selected optimal satellites increased as it was considered. However, it
had no significantimpact on positioning accuracy or precision. Thisis because its increasing
rate was small, where it was less than 5% mostly. In addition, PPP was implemented without
carrier phase ambiguity resolution (float-PPP); thus, continuity of selected satellites has low
impact of positioning solution.

The optimal satellites were selected in subsets with a fix number of satellites (6-max
observed number of satellites). In general, the optimal subsets of 12-15 satellites provided
the best positioning accuracy and precision. This is because these number of satellites had
high positioning availability as they are mostly available during the entire observation period.
In addition, their optimal satellite subsets are less affected by changing satellites in the
subsetthatranging from 1-7 satellites. Hence, 12-15 satellites are the most suitable number
of satellites for selection. This contrasts with most, if not all, studies that has investigated
satellite selection with numbers ranging from 4 to 12 (e.g., [7,117]).

However, the subset of 12-15 satellites is only suitable at open-sky and low multipath areas.
In high multipath environment, the maximum number of satellites available could be less
than12, especially when using cut-off elevation mask. In addition, choosing satellites with a
fixed number of satellites can result in selecting a weak satellite signal to complete the
number of satellites predetermined. This can be more noticeable in complex environment
(high multipath area). Thus, satellite selection with a fixed number is not the most suitable
method for satellite selection, especially in high multipath environments.

9.2 Contribution Summary

This works aims to find the most suitable satellite selection method for PPP. It gives a
comprehensive evaluation for satellite selection methods, determining their advantages
and limitations in Chapter 3. In Chapter 6, comparison evaluation between five optimization
algorithms (selection techniques) was conducted, showing their performance in satellite
selection. In Chapter 7, ten cases with different selection criteria and selection orders were
evaluated. Furthermore, the importance of considering the continuity of the chosen
satellites during selection was demonstrated in Chapter 7. Based on the above, a new
satellite selection method for PPP, considering all its corrections, was created. This work
also defines the most suitable number of satellites (Chapter 7) and the environment for fixed
satellite selection (Chapter 8).
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9.3 Limitations and Future Work

GNSS results are affected by various factors such as positioning configurations,
environment, mode, and equipment quality. To develop new method for selecting GNSS
satellites, many of these factors were considered. For example, the satellites were selected
with ten cases considering several positioning settings (Ele, RAIM, and KFITH). The
performance of the new satellite selection method was assessed under open-sky
environmental in statically and kinematically. Its performance was also evaluated statically
at different levels of multipath rate. The GNSS data was collected by geodetic receivers and
antennas.

However, still several factors were not covered in this study. In addition, the satellite
selection method suffers from two main limitations. All these can be defined as the work
limitations, which is as follows:

1.

7.

The proposed satellite selection method chooses satellites based on fixed number of
satellites forthe whole period. This is notthe best way for satellite selection, especially,
in multipath (e.g., urban) areas. In multipath areas, the number and geometry of the
observed satellites change quickly. Therefore, choosing a fixed number of satellites at
all times cannot accommodate the changing status of satellites over time.

The proposed satellite selection method was evaluated only for post-positioning and
not for real time positioning.

The proposed satellite selection method took several seconds (> 4sec) to choose the
optimal satellite subset from single epoch. Hence, the proposed satellite selection
method is not quick enough for real-time positioning at 1Hz or more.

RAIM was used for selecting satellites. However, CRAIM has not been used, which may
provide different results.

The positioning solution of the selected satellites was determined with float PPP. The
positioning quality can be changed with fix PPP, fixing ambiguity resolution.

The performance of the new satellite selection has not been evaluated kinematically
under multipath area.

GNSS data from low-cost receiver and antenna has not been considered.

The above limitations can be points for Future work for satellite selection.
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Appendix A

The coordinates of NGB2 based on relative positioning
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Figure 0.1 Leica report of estimating the coordinates of NGB2 using relative positioning and relying
on five GNSS reference stations.
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Positioning solutions of NGB2 based on the selected satellites on 22/09/2021
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Figure B.0.1 Satellites availability (blue line) on 24 hours GNSS data collected over NGB2 on 22
September 2021. In addition, the availability of positioning (red line) and optimal positioning (green
line) using the selected satellites with all subset sizes from the ten selection cases.
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Figure B.0.2 Number of satellites used in the 24-hour positioning solution from the selected
satellites with all subset sizes. The satellites are chosen by ten selection cases from GNSS data

collected over NGB2 on 22 September 2021.
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Figure B.0.3 Mean and stander deviation of the GDOP and WGDOP of the selected satellites with all
possible subset sizes for 24 hours GNSS data (30 sec interval) collected over NGB2 on 22
September 2021. The value of selected satellite from cases 5, 6, 7 and 8 are only presented.
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Figure B.0.4 The number and the rate of continuous selection epochs from the selection cases 5, 6,
7, and 8 using 24 hours GNSS data collected on 22 September 2021.
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Figure B.0.5 The number of satellites changed in the selected optimal subset over selection from
the selection cases 5, 6, 7, and 8 using 24 hours GNSS data collected on 22 September 2021.
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Figure B.0.6 The mean and stander deviation of number of GPS, GLONASS, and Galileo satellites

selected to form the optimal subsets with different sizes. The rate of using the system of satellite

over the entire selection is also presented. Selected satellites from selection cases 5, 6, 7, and 8
are only presented. 24 hours GNSS data collected over NGB2 on 22 September 2021 are used.
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Figure B.0.7 Positioning accuracy in Easting, Northing, and Hight using the original PPP and the
selected satellites from the ten selection cases. In addition, the availability of positioning and
optimal positioning of the selected satellites is presented. The positioning is based on 24 hours
GNSS data collected over NGB2 on 22 September 2021.
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Figure B.0.8 Positioning precision in Easting, Northing, and Hight using the original PPP and the
selected satellites from the ten selection cases. In addition, the availability of positioning and
optimal positioning of the selected satellites is presented. The positioning is based on 24 hours

GNSS data collected over NGB2 on 22 September 2021.
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Positioning solutions of NGB2 based on the selected satellites on 27/09/2021
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Figure B.0.9 Satellites availability (blue line) on 24 hours GNSS data collected over NGB2 on 27
September 2021. In addition, the availability of positioning (red line) and optimal positioning (green
line) using the selected satellites with all subset sizes from the ten selection cases.
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Figure B.0.10 Number of satellites used in the 24-hour positioning solution from the selected
satellites with all subset sizes. The satellites are chosen by ten selection cases from GNSS data
collected over NGB2 on 27 September 2021.
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Figure B.0.11 Mean and stander deviation of the GDOP and WGDOP of the selected satellites with
all possible subset sizes for 24 hours GNSS data (30 sec interval) collected over NGB2 on 27
September 2021. The value of selected satellite from cases 5, 6, 7 and 8 are only presented.
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Figure B.0.12 The number and the rate of continuous selection epochs from the selection cases 5,
6, 7, and 8 using 24 hours GNSS data collected on 27 September 2021.
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Figure B.0.13 The number of satellites changed in the selected optimal subset over selection from
the selection cases 5, 6, 7, and 8 using 24 hours GNSS data collected on 27 September 2021.
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Figure B.0.14 The mean and stander deviation of number of GPS, GLONASS, and Galileo satellites
selected to form the optimal subsets with different sizes. The rate of using the system of satellite
over the entire selection is also presented. Selected satellites from selection cases 5, 6, 7, and 8

are only presented. 24 hours GNSS data collected over NGB2 on 27 September 2021 are used.
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Figure B.0.15 Positioning accuracy in Easting, Northing, and Hight using the original PPP and the
selected satellites from the ten selection cases. In addition, the availability of positioning and
optimal positioning of the selected satellites is presented. The positioning is based on 24 hours
GNSS data collected over NGB2 on 27 September 2021.

171



Appendix B

Case 2 (27/09/2021)

- = = = OPAva

STD (mm)

6 8 10 12 14 16 18 20 22 24 26 28 30
NSAT selected

Case 5 (27/09/2021)

10 12 14 16 18 20 22 24 26 28 30
NSAT selected

Case 8 (27/09/2021)
| ]

@

w

6 8 10 12 14 16 18 20 22 24 26 28 30

NSAT selected
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selected satellites from the ten selection cases. In addition, the availability of positioning and

optimal positioning of the selected satellites is presented. The positioning is based on 24 hours
GNSS data collected over NGB2 on 27 September 2021.
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Positioning solutions of NGB2 based on the selected satellites on 01/10/2021
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Figure B.0.17 Satellites availability (blue line) on 24 hours GNSS data collected over NGB2 on 1°
October 2021. In addition, the availability of positioning (red line) and optimal positioning (green
line) using the selected satellites with all subset sizes from the ten selection cases.
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Figure B.0.18 Number of satellites used in the 24-hour positioning solution from the selected
satellites with all subset sizes. The satellites are chosen by ten selection cases from GNSS data
collected over NGB2 on 1°* October 2021.
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Figure B.0.19 Mean and stander deviation of the GDOP and WGDOP of the selected satellites with
all possible subset sizes for 24 hours GNSS data (30 sec interval) collected over NGB2 on 1°*
October 2021. The value of selected satellites from cases 5, 6, 7 and 8 are only presented.
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Figure B.0.20 The number and the rate of continuous selection epochs from the selection cases 5,
6, 7, and 8 using 24 hours GNSS data collected on 1 October 2021.
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Figure B.0.21 The number of satellites changed in the selected optimal subset over selection from
the selection cases 5, 6, 7, and 8 using 24 hours GNSS data collected on 1°' October 2021.
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Figure B.0.22 The mean and stander deviation of number of GPS, GLONASS, and Galileo satellites
selected to form the optimal subsets with different sizes. The rate of using the system of satellite
over the entire selection is also presented. Selected satellites from selection cases 5, 6, 7, and 8

are only presented. 24 hours GNSS data collected over NGB2 on 1° October 2021 are used.
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Figure B.0.23 Positioning accuracy in Easting, Northing, and Hight using the original PPP and the
selected satellites from the ten selection cases. In addition, the availability of positioning and
optimal positioning of the selected satellites is presented. The positioning is based on 24 hours
GNSS data collected over NGB2 on 15 October 2021.
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Figure B.0.24 Positioning precision in Easting, Northing, and Hight using the original PPP and the
selected satellites from the ten selection cases. In addition, the availability of positioning and
optimal positioning of the selected satellites is presented. The positioning is based on 24 hours
GNSS data collected over NGB2 on 1% October 2021.
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