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Abstract

This thesis investigates the detection, quantification, and localization of in-service
damage in additively manufactured lattice structures using ultrasonic techniques.
Lattice structures, characterized by their lightweight design and superior strength-
to-weight ratio, have gained significant attention across aerospace, automotive, and
biomedical industries. However, their intricate geometries and susceptibility to de-
fects during additive manufacturing (AM) and operational use pose critical chal-
lenges to ensuring their structural integrity. The research aims to address these
challenges by developing a robust methodology for structural health monitoring
(SHM) in lattice structures, leveraging advanced ultrasonic testing and machine
learning models.

The study focuses on strut-based lattice structures, which are particularly prone
to damage such as cracking and breaking of struts, often initiated by inherent man-
ufacturing anomalies like porosity, residual stresses, and delamination. Ultrasonic
wave propagation within lattice geometries was analyzed to understand the inter-
action between high-frequency waves and structural discontinuities. Piezoelectric
sensors, known for their precision and sensitivity, were deployed to generate and
capture ultrasonic signals, enabling real-time damage detection. The methodology
integrates numerical simulations and experimental setups to ensure comprehensive
analysis and validation.

Key features were extracted from ultrasonic response signals using advanced
signal processing techniques, including principal component analysis (PCA) and
energy-based feature extraction. These features served as inputs to a machine
learning neural network model, trained to classify the health states of the struc-
tures. The results demonstrated the ability of the proposed approach to accurately
identify damage states, quantify damage severity, and localize damage zones within
complex lattice structures. For damage detection, models achieved a high classifi-
cation accuracy, distinguishing between healthy and damaged states with over 90%
precision across 2D and 3D lattice configurations. The quantification study showed
reliable predictions for the extent of damage, particularly for groups of damaged
struts and damaged cells, with models achieving consistent accuracy in these clas-
sifications. The developed localization methodologies, using multiple sensors and
spatial mapping of damage in different zones of the structure, proved highly effec-
tive, achieving damage zone localization accuracy of up to 85% for cases involving up
to three damaged cells. Experimental validation using normalized datasets further
affirmed the robustness of the methodology, with experimental predictions aligning
closely with numerical simulations for 2D lattice structures.

The results of this research provide a detailed understanding of ultrasonic wave
propagation in lattice structures and demonstrate the feasibility of using ultrasonic
techniques for SHM in these complex geometries. The proposed methodology was
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validated through experimental work involving 2D and 3D lattice structures, with
findings highlighting the efficacy of the approach in real-world applications.

The novelty of this work lies in adapting ultrasonic SHM techniques to the com-
plex geometries of lattice structures, bridging the gap between existing methods for
traditional materials and the unique challenges posed by AM designs. The findings
not only advance the theoretical understanding of ultrasonic wave interactions in lat-
tice structures but also provide practical tools for ensuring their structural integrity.
This research establishes a foundation for industry standards in the non-destructive
evaluation of AM lattice structures, with implications for improved safety, mainte-
nance practices, and operational efficiency.
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Chapter 1

Introduction

1.1 Background

Damage detection in structures during service is a critical area that ensures the
reliability and safety of a mechanical system. An early detection of cracks or flaws
in aircraft components can prevent catastrophic failures, while in civil engineering,
timely identification of structural damage can avert bridge collapses and other disas-
ters. Structural Health Monitoring (SHM) is an online damage-detection and quan-
tification strategy that has seen significant development in the past two decades
[13, 14]. SHM systems employ active and passive techniques to measure system
response to global or local excitation. The response is analysed using advanced
signal-processing techniques to infer the health state of the structure. By far, the
two methods that have been significantly used in SHM are vibrational and ultrasonic
techniques. These techniques have been widely used to study the response of con-
ventional materials 7.e. metals and composites. Conventional structures here refer
to monolithic metallic or fibre-reinforced components with continuous load paths, in
contrast to architected cellular materials such as additively manufactured lattices.

Additive Manufacturing (AM) has seen significant development in the past decade.
Global AM revenue grew from US$4.1 billion in 2014 to US$22 billion in 2024 [15],
and scholarly output in the field increased six-fold over the same period [16]. Im-
provements in AM processes allow the design and manufacturing of complex struc-
tural parts not possible through conventional manufacturing methods. A lot of
research is being directed at present to understand the mechanical behaviour of com-
plex structures generated through additive manufacturing. Representative industrial
successes include the Airbus “bionic” cabin partition, GE’s LEAP fuel-nozzle core
and trabecular titanium cranial implants, all of which contain AM lattices for weight
saving or biological compatibility [17, 18, 19]. These real-world examples motivate
the need for reliable in-service monitoring of lattice cores.

Lattice structures are an important class of additively manufactured structures.
They are formed by a large number of interconnected nodes, struts or surfaces. Lat-
tice structures have emerged as an important class of structure due to their desirable
lightweight structures with superior mechanical properties. They are finding appli-
cation in various engineering applications such as aerospace, automotive and civil
infrastructures. Lattice structures are capable of giving superior strength-to-weight
ratio due to their material efficiency and structural design able to withstand large
structural loads. However, the intricate and lightweight geometry of lattice struc-
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tures also makes them susceptible to cracks and damage during their service life
thus reducing their structural strength and potentially compromising the structural
integrity.Crack initiation mechanisms include (i) lack-of-fusion porosity and keyhole
voids generated during powder-bed fusion, (ii) residual tensile stress accumulated
during rapid thermal cycling, and (iii) cyclic bending of slender (L/t > 15) struts
under service loads [20, 21]. These local defects are typically hidden within the
lattice core, rendering external visual inspection ineffective. In particular, the strut
type lattice structures which are formed by a large number of interconnected struts
can see cracking and breaking of struts, accelerated by material anomalies inherent
during additive manufacturing processes.

Non-destructive Evaluation (NDE) refers to scheduled, off-line inspection, whereas
Structural Health Monitoring (SHM) is a continuous, in-situ process that autonomously
evaluates a component during operation [22]. This thesis uses bulk-ultrasonic NDE
data to train machine-learning classifiers that will ultimately operate in an SHM
context, thereby linking both paradigms.

Damage detection in the lattice structures during service life is critical to en-
sure their desired mechanical performance, enhance their service life and to prevent
any catastrophic failures. The intricate and concealed nature of lattice structures
makes it even more important to develop novel methods for detecting damage in
such structures not possible through traditional inspection methods such as visual
inspection. There are various non-destructive evaluation (NDE) techniques which
may be useful in detecting damage in lattice structures. In particular, ultrasonic
testing can be useful in lattice structures as it uses high-frequency ultrasonic waves
which can penetrate deep into structures.

Piezoelectric sensors, which convert electrical signals into mechanical vibrations
and vice versa, are widely used in ultrasonic testing for their ability to generate and
detect ultrasonic waves with high sensitivity and precision. They are particularly
useful in setting an active sensing system which can provide real-time information
about the health of the structure. The 10 mm ¢, 2 mm-thick PZT-5H discs selected
in this study resonate radially at 215 kHz, a frequency high enough to interact with
2-3mm lattice struts yet low enough to avoid severe attenuation in Nylon-12. Each
disc adds only 0.08 g, three orders of magnitude less mass loading than the smallest
commercial accelerometers [12], making accelerometers impractical in this context.

Using an array of sensors, a system may be developed which can not only de-
tect the damage in the lattice but also be able to quantify and localize the dam-
age. A simple pitch—catch pair spaced 50 mm apart—an arrangement common in
guided-wave aircraft inspections [23]—is adopted here as the minimum array capable
of time-of-flight localisation.

Physics-based amplitude or time-of-flight thresholds struggle when bulk waves
traverse dozens of lattice nodes, producing high-dimensional, low-signal-to-noise
data. Recent work has shown that convolutional neural networks and autoencoders
can outperform classical algorithms for ultrasonic damage detection in composite
plates and honeycombs [24, 25]. The present thesis extends those ideas to addi-
tively manufactured lattices.
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1.2 Research Problem

There is no work in literature for the damage detection in additively manufactured
lattice structures. Limited work is available for damage detection in some complex
honeycomb and civil structures using vibrational techniques. However, to the best
knowledge of the author, there is no dedicated research on additive manufactured
lattice structures using ultrasonic techniques. So the research problem in this study
is two-fold. First, to understand the behavior and interaction of ultrasonic waves
with the lattice structure and then to develop and test a methodology for dam-
age detection, quantification, and localization in these structures. This research,
therefore, addresses two fundamental gaps:

1. Understanding the behavior and interaction of ultrasonic waves within lattice
structures.

2. Developing and testing a novel methodology for damage detection, quantifica-
tion, and localization in lattice structures.

The industrial examples cited above demonstrate why additively manufactured
(AM) lattices are attractive, but they also highlight a fundamental limitation: once
an AM lattice is built into a larger component, its internal struts are inaccessible to
visual inspection or conventional NDE. A recent review of lattice-mechanical testing
lists more than 300 papers on strength and stiffness, yet only three on in-service
damage assessment, all of which rely on micro-CT and therefore require component
removal from service [26]. Guided-wave SHM has been demonstrated for aluminium
honeycomb sandwich panels and concrete bridges [27, 14], but the wave modes,
boundary conditions and defect morphologies in open lattices differ markedly from
those plate-like structures. To the authors’ knowledge, no published study has
integrated bulk-ultrasonic sensing with machine learning to detect, quantify and
localise damage in AM lattices. Consequently, the research problem addressed in
this thesis is two-fold

1. Wave—lattice interaction. Quantitatively model how high-frequency bulk
longitudinal waves propagate through, and scatter from, the complex node—strut
topology of a periodic lattice; identify measurable features that are sensitive
to strut fracture or cell-level damage.

2. SHM methodology. Develop and validate a unified framework that (i) de-
tects the presence, (ii) quantifies the severity, and (iii) localises the position
of damage in AM lattices, using a minimal piezoelectric sensor array and
data-driven classifiers that can ultimately operate on-board as part of an SHM
system.

1.3 Aims and Objectives

The primary objective of this research is to develop a robust methodology for damage
characterization in lattice structures using ultrasonic techniques. To achieve this
primary objective, the specific research objectives are defined as below.
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1. Understanding Wave Propagation in Lattice Geometries: To investi-
gate the propagation and interaction of ultrasonic waves in lattice structures
particularly the strut-based lattice structures, with a focus on how unique
geometrical complexities and material properties influence wave behavior.

2. Developing a methodology for damage detection and quantification:
To develop a methodology for damage detection and quantification in a repre-
sentative lattice structure using piezoelectric sensors. This includes extracting
useful information from response signals using signal processing techniques and
using both numerical and experimental setups for developing and validating
the methodology.

3. Establishing a Damage Localization Methodology: To develop a method-
ology for localizing the damage in a lattice structure using array of sen-
sors. This included using numerical and experimental studies for validation of
methodology

4. Incorporating Machine Learning for Enhanced SHM: Explore the ap-
plication of ML algorithms to improve the accuracy and efficiency of damage
characterization processes.

5. Evaluating Scalability and Applicability: Assess the scalability of the
proposed methodologies to 3D lattice structures and their potential for real-
world application.

1.4 Hypotheses

The research is guided by the following hypotheses:

1. Ultrasonic wave propagation in lattice structures is affected by the presence
of discontinuances and damages.

2. The difference between response of healthy and damaged structures can pro-
vide a baseline for damage characterization.

3. Advanced signal processing techniques and machine learning algorithms, can
be used for the detection and quantification of damage in lattice structures.

4. A systematic approach combining experimental data and numerical simula-
tions can enhance the accuracy of damage quantification and localization in
lattice structures.

To test these hypotheses, a combination of numerical simulations, experimental
studies, and machine learning methods will be employed. Ultrasonic wave behavior
in lattice structures will be analyzed through analytical modeling to understand the
effects of discontinuities and material defects, which will be validated through nu-
merical and experimental testing. Signal processing and machine learning techniques
will be used to train and develop damage classification models.
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1.5 Significance of the Study

The novelty of this research lies in its focus on the application of ultrasonic-based
Structural Health Monitoring (SHM) techniques to additively manufactured lattice
structures, a field that remains largely unexplored. While traditional SHM method-
ologies have been extensively applied to metals and composites, their adaptation
to lattice structures introduces unique challenges due to the intricate and intercon-
nected geometries. This study bridges this gap by developing a novel framework
that integrates ultrasonic wave propagation analysis, signal processing, and ma-
chine learning (ML) algorithms to detect, quantify, and localize damage in these
structures. The dual approach of combining numerical simulations with experimen-
tal validations further enhances the robustness and applicability of the proposed
methodology. Following highlights the significances of this study in various areas of
interest.

e Theoretical Significance: Enhancing the understanding of ultrasonic wave
propagation in complex geometries and developing novel techniques for damage
detection using Machine Learning.

e Practical Significance: Offering a reliable and non-invasive method for in-
specting lattice structures, which can be applied in various applications to
ensure structural integrity and safety.

e Policy Implications: Informing the development of guidelines and stan-
dards for the non-destructive evaluation of lattice structures, thereby improv-
ing maintenance practices and reducing the risk of structural failures.

1.6 Overview of the Thesis Structure

The structure of this thesis is organized as follows:

e Chapter 2: Literature Review - This chapter provides a comprehensive
review of existing literature relevant to the study. It covers five main areas:
(1) additive manufacturing processes and how they enable complex structures
(highlighting differences between AM and conventional manufacturing), (2)
the design, mechanical behavior, and typical defects of lattice structures, (3)
current Structural Health Monitoring techniques with emphasis on vibration-
based and ultrasonic methods, (4) prior work on damage detection in related
structures (such as honeycombs or truss networks), and (5) applications of
machine learning in SHM and damage detection. Through this review, the
chapter identifies the knowledge gaps (particularly the lack of research on
ultrasonic SHM for lattices) and justifies the approach of this thesis. It lays
the groundwork by summarizing what is known and what remains to be solved,
thereby contextualizing the subsequent methodology.

e Chapter 3: Methodology - In this chapter, the overall approach and design
of the research are presented. It restates the aims and objectives for clarity and
then describes the methodology adopted to achieve them. A high-level process
flow is provided (with a schematic diagram) illustrating how the analytical,
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numerical, and experimental components interconnect. By the end of Chapter
3, the reader should have a clear understanding of how the research will proceed
and how validity and reliability are ensured (e.g., via repeat experiments or
cross-validation of ML models).

e Chapter 4: Numerical and Experimental Methods - This chapter de-
tails the research design in terms of both the numerical simulations and the
experimental setups used in the study. On the numerical side, it describes the
finite element models of the lattice structures, including geometry, material
properties, and how ultrasonic wave propagation is simulated (for example,
using transient dynamic analysis or explicit time-stepping). Boundary condi-
tions and defect modeling (how damage is introduced in the simulation) are
explained. On the experimental side, the chapter describes the fabrication of
physical lattice specimens (using additive manufacturing), the instrumenta-
tion with PZT sensors, and the experimental procedure for ultrasonic testing
(including the excitation signals, sensor arrangement, and data acquisition pa-
rameters). Any custom equipment or software (such as a function generator
or oscilloscope, and signal processing scripts) is also presented. By providing
this detailed account, Chapter 4 ensures that the methodology can be repro-
duced and that the context for results (in later chapters) is well understood.
Essentially, it translates the methodological plan of Chapter 3 into concrete
implementations.

e Chapter 5: Analytical estimation of ultrasonic transmission in Lat-
tice structures - This chapter addresses Objective 1 by focusing on the fun-
damental analysis of ultrasonic wave behavior in a lattice structure. It presents
an analytical model for wave transmission and reflection in a simplified lat-
tice element (often a unit cell or a repeating segment of the lattice). It then
builds up to modeling a sequence of unit cells, predicting how waves attenuate
or scatter as they travel through an intact lattice. The insights gained here
directly support the hypotheses related to wave discontinuities and provide
justification for using certain wave frequencies or sensor placements in the
subsequent chapters.

e Chapter 6: Damage detection and quantification - In this chapter, the
thesis demonstrates the development of the damage detection methodology
(Objective 2) on a two-dimensional (planar) lattice structure. Chapter 6 com-
bines numerical simulation results and experimental data to show how damage
(of various sizes/severities) affects the ultrasonic response. Key features are ex-
tracted from the raw signals using signal processing techniques. These features
are then used to distinguish between healthy and damaged states. The chap-
ter introduces a classification model (e.g., a neural network or other machine
learning classifier) trained on the features to automatically detect damage and
possibly estimate the damage extent (number of broken struts, etc.).

e Chapter 7: Damage Localization - Building upon the damage quantifica-
tion, Chapter 7 tackles Objective 3 by introducing and validating the damage
localization methodology. Using the sensor array approach, this chapter shows
how the position of damage within the lattice can be identified. It details the
strategy for localization at various known locations in the lattice and record
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the sensor responses to build a localization model. Then experiments are con-
ducted where the lattice is damaged in specific cells or regions, and the sensor
data is fed into the model to predict the damage location.

Chapter 8: 3D Lattice Structures - Chapter 8 addresses Objective 5
by testing the developed methods on a three-dimensional lattice structure,
thereby assessing scalability and broader applicability. A 3D lattice (with a
volume of unit cells rather than a single layer) introduces additional complex-
ity: waves can travel in all three dimensions, and there are more potential
damage locations and patterns.

Chapter 9: Discussions, Future Work and Conclusions - This chapter
provides a holistic discussion of the research findings, connecting the results
from Chapters 5 through 8 back to the hypotheses and objectives. It also
presents challenges in the present work, the future research directions and
conclusions.
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Chapter 2

Literature Review

2.1 Introduction

This chapter explores the literature related to the scope of research in this study.
It reviews the key developments in additive manufacturing (AM) for lattice struc-
tures, SHM techniques, and ML applications in damage detection. Each section is
structured to provide a foundation for the methodologies explored in this thesis,
addressing gaps in the current literature related to the unique challenges posed by
AM-produced lattice geometries. The literature review is organized in the following
areas.

e Overview of additive manufacturing

Lattice structures

Defects in lattice structures

Structural health monitoring (SHM) and damage detection

Statistical and Machine learning models for damage detection

Identification of Research Gaps

2.2 Overview of additive manufacturing

Additive manufacturing (AM) is an advanced manufacturing method which uses
material deposition techniques to build the structures layer by layer. It differs
from conventional manufacturing in which material is removed when manufactur-
ing, whereas in additive manufacturing material is added, hence the name additive
manufacturing [28]. AM allows manufacturing of complex geometries and structures
while reducing the material waste and thus has seen significant surge in its use [29].
During this work, various AM techniques were explored with specific application to
lattice structures. Some of the major AM methods are discussed in the subsequent
paras. Each of these AM techniques offers trade-offs between material compatibility,
mechanical performance, resolution, build volume, and cost, and are selected based
on the intended function of the final part.
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2.2.1 Additive Manufacturing methods

There are various additive manufacturing methods depending on its materials, lay-
ering and machine technology used. A brief overview of few AM methods is given
below [30, 31].

Material Extrusion

Material extrusion is one of the most accessible and widely used AM processes,
especially in desktop 3D printers. A thermoplastic filament (e.g., PLA, ABS, PETG)
is heated and extruded through a moving nozzle, depositing material layer by layer
to form the object. The material solidifies upon cooling to form the final shape.
While it is predominantly used for prototyping and low-strength applications, it
has also been explored for biomedical scaffolds and tooling aids in aerospace and
automotive sectors [32, 33]. A schematic of this method is shown in Figure 2.1.

Material Spool

Heater Elemant

Nozzle
ObjectModel

l Build Platform

Figure 2.1: Schematic of Fuse deposition modeling (FDM) [1]

Powder Bed Fusion (PBF)

PBF techniques utilize a high-energy source (laser or electron beam) to selectively
fuse regions of a powder bed. Common variants include Selective Laser Sintering
(SLS), Direct Metal Laser Sintering (DMLS), Selective Laser Melting (SLM), and
Electron Beam Melting (EBM). These methods are capable of producing complex,
high-performance metal and polymer parts with good mechanical properties. PBF
is used in aerospace (e.g., lightweight brackets, heat exchangers), medical (e.g.,
orthopedic implants), and tooling industries [34, 35]. A schematic of PBF is shown
in Figure 2.2.

Direct Energy Deposition (DED)

DED involves melting material as it is deposited, typically through a nozzle with
simultaneous energy input via a laser or electron beam. It is highly suitable for
repair applications, large part fabrication, and gradient material deposition. DED
enables precise control over material composition and is used in turbine blade repair,
aerospace structural component enhancement, and functionally graded material fab-
rication [36, 37]. A schematic of DED is shown in Figure 2.3
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Figure 2.3: Schematic of Direct Energy Deposition (DED) [3]

VAT Photopolymerisation

This process uses a vat of liquid photopolymer resin cured layer-by-layer using a UV
laser (SLA) or projector (DLP). It provides extremely high resolution and smooth
surface finish. Applications include dental models, microfluidic devices, hearing aids,
and jewelry casting molds [38, 39]. The schematic of process is shown in Figure 2.4.
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Figure 2.4: Schematic of VAT Photopolymerisation [4]
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Material and Binder Jetting

Material Jetting involves the deposition of build material in droplet form, cured
by UV light. It supports multi-material and color printing, making it ideal for
prototypes, medical models, and anatomical simulations. Binder Jetting uses a
liquid binder to selectively bond powder particles. It is commonly used in sand
casting molds, ceramic parts, and low-cost metal component production [40, 41].
The process flows of both these techniques are represented in Figure 2.5.
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Figure 2.5: Schematic of (a) Material jetting (b) Binder jetting [5]

Sheet Lamination

Sheet Lamination includes Laminated Object Manufacturing (LOM) and Ultrasonic
Additive Manufacturing (UAM). In LOM, adhesive-coated sheets (typically paper,
polymer, or metal) are bonded and cut into shape using a laser or blade. UAM
uses ultrasonic welding to bond metal foils. These methods are used in packaging
prototypes, metal tooling inserts, and composite structures with embedded sensors
[42, 43]. The process of sheet lamination is shown in Figure 2.6.
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Material Spool Used Material Spool

Figure 2.6: Schematic of Sheet Lamination process|6]

2.2.2 Defects Induced in Additive Manufacturing

Defects are a major concern in additive manufacturing (AM), primarily arising due
to thermal gradients, layer-by-layer deposition, and variability in process parame-
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ters. These defects compromise the structural integrity of parts, influence mechani-
cal performance, and in some cases, lead to premature failure. A detailed discussion
of key defect types, their origins, and reported effects in literature is provided below.

Porosity and Voids

Porosity is one of the most studied defects in AM, particularly in powder-based
processes such as Selective Laser Melting (SLM). Greco et al. [44] investigated dif-
ferent porosity mechanisms, distinguishing between gas-induced and lack-of-fusion
pores. Their study emphasized the importance of scan speed and hatch spacing
in controlling pore distribution. While their simulations were validated experimen-
tally, their analysis remained focused on static properties, without assessing fatigue
performance. Leung and Tam [45] extended this by examining the fatigue behav-
ior of Ti-6Al-4V parts with varying porosity levels. They demonstrated that pores
near the surface had a disproportionately large impact on fatigue life due to crack
nucleation. Their work, however, did not account for multi-axial loading, limiting
its applicability in aerospace applications. Taheri et al. [46] experimentally demon-
strated that irregular powder morphology and wide particle size distribution lead
to heterogeneous melt pools and increased porosity, particularly in laser-based AM
processes. Their work provides important insight into feedstock preparation but
does not assess mechanical performance impacts. A depiction of porosity is shown
in Figure 2.7.
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Figure 2.7: Microscopic porosity and voids [7]

Delamination and Cracking

Delamination is often observed in polymer-based AM processes and is attributed
to weak interlayer bonding. King et al. [47] used high-speed imaging to capture
melt pool dynamics and showed that insufficient overlap between melt pools was a
primary cause of inter-layer separation. Their insights have helped in optimizing
laser scan strategies, although their findings were limited to single-track builds.
Mukherjee and DebRoy [48] provided a broader framework by linking delamination
and cracking to thermomechanical stress accumulation. They proposed a thermal
stress model that could predict crack-prone regions based on temperature gradients,
although experimental validation was only partially addressed. Residual stress and
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strains due to temperature differences also lead to cracking and delamination as
depicted in Figure 2.9.

Figure 2.8: Delamination and cracking in additive manufacturing[8]

Residual Stresses

Residual stress is not a visible defect but can lead to warping, distortion, and ul-
timately crack propagation. Mercelis and Kruth [49] conducted one of the earliest
experimental studies measuring residual stress in SLM using X-ray diffraction. They
concluded that island scan strategies and post-build stress-relief treatments are ef-
fective in reducing internal stresses. Parry et al. [50] complemented this with a
numerical approach, showing that scan pattern rotation between layers can reduce
stress buildup. However, their model assumed constant thermal conductivity, which
can vary during solidification, potentially affecting accuracy in real builds.

Figure 2.9: Residual stresses leading to cracks in the parts[9]
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Surface Roughness

Surface roughness in AM is primarily a result of stair-step effects, unmelted pow-
der, and poor melt pool stability. Strano et al. [51] analyzed roughness in SLM
parts and correlated it to laser parameters and powder morphology. They showed
that roughness levels could be significantly reduced by optimizing recoating param-
eters, although their study lacked mechanical performance validation. Song et al.
[52] explored how rough surfaces affect fatigue strength, reporting that unmachined
surfaces acted as crack initiation sites under cyclic loading. They highlighted the
importance of post-processing but also acknowledged that mechanical polishing may
not be feasible for intricate lattice structures.

Inclusions and Contamination

Inclusions are typically caused by powder contamination, oxidation, or environmen-
tal exposure during processing. DebRoy et al. [53] reviewed the role of feedstock
quality and found that oxygen content and powder reuse cycles significantly influ-
ence inclusion formation. While their review was comprehensive, it mainly focused
on metals, with limited applicability to polymers or composites. Yan et al. [54]
investigated electron beam melting and reported frequent oxide inclusions at layer
interfaces. Their study emphasized the need for chamber vacuum control and pow-
der recycling protocols, but their findings were limited to a specific alloy system.

Overall, these studies highlight that defects in AM are multifaceted and strongly
linked to process parameters, part geometry, and material system. Despite advances
in process control and simulation, many challenges remain in predicting how defects
evolve during printing and how they affect in-service performance—especially for
complex geometries like lattice structures.

2.2.3 Effect of Defects on Structural Integrity

The presence of defects in additively manufactured (AM) components has a di-
rect and often severe impact on their structural integrity. These effects are highly
dependent on defect type, location, geometry, and material system. While some de-
fects serve as stress concentrators and reduce fatigue life, others impair dimensional
stability, load-bearing capacity, or cause catastrophic failure. Understanding these
effects is essential for the design, certification, and long-term deployment of AM
parts, particularly in safety-critical applications such as aerospace and biomedical
implants.

Porosity and Fatigue Life

Porosity, especially near-surface pores, has been widely shown to degrade fatigue
resistance. Leung and Tam [45] conducted fatigue tests on Ti-6A1-4V samples fabri-
cated via SLM and reported that even small pores located near the surface acted as
nucleation sites for crack growth. Their results were experimentally robust, though
limited to uniaxial loading conditions. Sanaei and Fatemi [55] extended this un-
derstanding by developing a mechanistic model linking porosity parameters (size,
distribution, aspect ratio) to fatigue crack initiation life. Their work is notable for
its relevance to cellular structures, though the model remains semi-empirical and
material-specific.
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Cracks and Structural Collapse

Cracking due to thermal stress accumulation compromises global stiffness and intro-
duces fracture paths under load. Mukherjee and DebRoy [48] linked such cracking
in metal AM to non-uniform cooling rates and stress localization. While their sim-
ulations provided temperature-field predictions, mechanical property degradation
was not quantified. In lattice structures, where localized stiffness plays a critical
role, even small through-strut cracks can cause cascading failure. This highlights
the importance of early crack detection and mitigation.

Residual Stress and Dimensional Instability

Residual stresses impact both geometric fidelity and in-service performance. Mer-
celis and Kruth [49] showed that high residual stress levels in laser-melted parts led
to warping and delamination during build and post-processing. They recommended
annealing protocols for stress relief, though effects on microstructure were not ad-
dressed. Parry et al. [50] further demonstrated that scan strategy optimization
reduced residual stress gradients, indirectly improving dimensional stability. How-
ever, neither study assessed the combined effects of residual stress and defects under
cyclic loading—common in aerospace components.

Surface Roughness and Crack Initiation

Rough surfaces act as stress raisers and promote early crack nucleation. Song et al.
[52] correlated surface roughness parameters with fatigue crack growth rate, showing
that higher roughness significantly reduces fatigue life in AM metals. Their study
emphasized the importance of surface finishing, though such treatments are often
infeasible in internal geometries typical of lattice structures. As a result, as-built
surface conditions remain a limiting factor in the use of AM for lightweight truss-like
components.

Inclusions and Fracture Toughness

Foreign inclusions, often resulting from powder reuse or oxidation, reduce ductility
and fracture toughness. Brennan et al. [56] observed that inclusions act as crack
initiation points, particularly in Ti alloys subjected to tensile and fatigue loads.
Their results support stricter powder handling protocols but also indicate that even
well-controlled processes are susceptible to internal flaws, especially in multi-build
reuse scenarios.

Implications for Lattice Structures

Lattice structures, due to their slender struts and distributed load paths, are par-
ticularly sensitive to local defects. As shown in recent work by Sanaei and Fatemi
[55], defects such as pore clusters or strut-scale residual stresses disproportionately
affect stiffness, energy absorption, and fatigue resistance. Their study advocated
for topology-aware quality control during manufacturing and post-processing. How-
ever, comprehensive experimental validation of such defect effects in real lattice
geometries remains limited in literature.
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In summary, defects in AM components influence a range of structural param-
eters including strength, stiffness, fatigue life, and dimensional accuracy. While
general trends are understood, their behavior in architected geometries like lattices
is still under investigation. Accurate modeling of defect interaction with complex ge-
ometries and the development of defect-tolerant design methodologies remain active
research areas.

2.2.4 Motivation for Structural Health Monitoring in AM
Structures

Despite advances in process optimization and post-processing, defects in additive
manufacturing (AM) remain a persistent challenge. As established in the previous
sections, defects such as porosity, microcracks, residual stresses, and inclusions can
significantly degrade structural integrity, leading to early failure under mechanical
or environmental loading. While mitigation strategies aim to reduce the occurrence
of these flaws, they cannot guarantee defect-free builds—especially when dealing
with complex geometries or large-scale components.

Moreover, AM parts often contain internal features or embedded channels that
are difficult to inspect using conventional non-destructive evaluation (NDE) tech-
niques. Post-build inspections may miss internal damage or fail to capture defect
evolution during service, particularly under cyclic or fatigue loading where damage
initiation and growth are not externally visible.

These limitations underscore the need for more proactive and integrated damage
detection strategies. Structural Health Monitoring (SHM) offers a complementary
approach to traditional inspection by enabling continuous, real-time assessment of
component condition. SHM techniques, including ultrasonic sensing, vibration anal-
ysis, and acoustic emission, can detect changes in structural response indicative of
internal damage. This capability is particularly valuable in AM, where variability in
build quality and defect distribution can make conventional inspection insufficient.

Recent studies have highlighted the integration of SHM systems within AM com-
ponents. For instance, de Baere et al. [57] proposed embedding SHM systems di-
rectly into AM structures, facilitating real-time monitoring without compromising
structural integrity. Similarly, Khanafer et al. [58] reviewed various condition mon-
itoring techniques in AM, emphasizing the role of SHM in ensuring product quality
and reliability throughout the component’s lifecycle.

Among the diverse design freedoms enabled by AM, lattice structures have
emerged as a promising solution for achieving lightweight, high-performance compo-
nents. However, the same architectural complexity that makes them attractive also
renders them highly susceptible to manufacturing defects and difficult to inspect us-
ing conventional methods. The thin struts, internal voids, and intricate geometries
of lattice structures make them particularly challenging in terms of defect mitigation
and quality assurance. These challenges further strengthen the case for integrating
SHM approaches tailored to such geometries. The next section provides an overview
of lattice structures, their classification, and their relevance in advanced engineering
applications.
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2.3 Lattice Structures

Lattice structures represent a unique class of architected materials enabled by addi-
tive manufacturing (AM), offering tunable mechanical, thermal, and acoustic prop-
erties. Unlike stochastic cellular structures such as foams, which exhibit random
internal geometry, lattice structures are defined by a periodic and controlled ar-
rangement of struts or surfaces forming unit cells in three-dimensional space. Gib-
son and Ashby [59] define cellular materials as “an interconnected network of solid
struts or plates which form the edges and faces of cells,” a description that applies
broadly to both foams and lattices.

The primary distinction lies in their geometry and manufacturability. While
cellular foams are typically formed through stochastic processes such as gas injec-
tion into molten materials [60], lattice structures are designed with deterministic
geometry, allowing precise tailoring of unit cell architecture and part-scale behavior.
The rise of AM technologies has made it feasible to manufacture such complex lat-
tice geometries, which were previously impractical or impossible using conventional
methods.

Due to their superior strength-to-weight ratio and efficient use of material, lat-
tice structures have found applications in aerospace, biomedical implants, and en-
ergy absorption systems. Natural analogues like honeycomb structures illustrate the
strength of geometric optimization, and modern lattice topologies extend these prin-
ciples to three dimensions. The following subsections provide a detailed overview
of lattice types, design classifications, and applications in engineering systems, with
emphasis on their relevance to defect sensitivity and structural reliability.

2.3.1 Type of lattice structures

Lattice structures are categorized based on their periodicity, structural elements, and
spatial arrangement. These classifications are essential for selecting or designing the
most appropriate topology for a specific mechanical or functional requirement.

Periodicity

Based on periodicity, lattice structures are classified as periodic and non-periodic or
stochastic lattice structures. Periodic lattice structures have a regular and repeating
pattern throughout the structure. On the other hand stochastic lattices have a
random or non periodic arrangement of cells in the structure. The example of these
lattice structures is given in Figure 2.10.

Structural elements

Based on structural elements, the lattice structures primarily fall into three cate-
gories (a) strut based lattice structures (b) planar or shell based lattice structures
(¢) Triply periodic minimal surface (TPMS) lattices. Strut based lattice structures
are formed by various arrangements of interconnected rod like elements. Planar
lattice structures are formed by thin plates or shells which are grown in a single
direction. TPMS lattices are governed by mathematical equations that control the
shape and size of structure. The three classes are shown in Figure 2.11.
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(b)

Figure 2.10: Periodic and non-periodic/stochastic lattice structure (a) periodic lat-
tice (b) non periodic lattice [10]

I I | I
(@ (b) (c)

Figure 2.11: Classification of lattice structures (a) TPMS lattices (b) strut based
lattice (c) planar lattice [10]

Lattice structure designs are also defined by their unit cell, which often falls into
one of two categories: strut and surface based [11] as shown in Figure. 2.12. Strut-
based unit cells consist of a network of often prismatic struts (i.e. constant cross
section) connected at nodes, similar to truss structures. Surface-based unit cells also
known as triply periodic minimal surfaces (TPMS) are mathematically defined as
the surface connecting set of points for which a given function has a constant value,
that is, an isosurface. Periodic arrangement of unit cells forms lattice structures
which are designed to perform a desired function.

Strut-based Surface-based

(@ (b) () (d)

Figure 2.12: Types of unit cells: (a) body-centred cubic, (b) face-centred cubic, (c)
gyroid (skeletal/network) and (d) double gyroid (sheet/matrix) [11]

Spatial arrangement

Lattices can either be volume-filling or surface-conforming. Volume-filling lattices
occupy the entire domain and are typically used for internal lightweighting. Surface-
conforming lattices follow the external geometry of the part, often used in impact
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protection and thermal regulation.

Design Optimization of Lattice Structures

Design of lattice structures is increasingly aided by computational optimization tech-
niques. Topology optimization is often employed to distribute material within a
given design space for optimal stiffness or weight objectives [61]. Moreover, func-
tionally graded lattices—where cell size, type, or orientation vary across the struc-
ture—allow tuning of performance under spatially varying loads. Finite element
simulations are routinely used to assess and refine designs before fabrication. These
strategies are critical to ensure that the manufactured lattice not only meets mechan-
ical performance targets but is also robust to defects inherent to the AM process.

2.3.2 Applications of Lattice Structures

The design flexibility offered by additive manufacturing (AM) has enabled the inte-
gration of lattice structures into a wide range of engineering applications, particu-
larly where weight efficiency, energy absorption, and tailored mechanical properties
are critical. Their use has been widely reported in aerospace, biomedical, and auto-
motive domains, where traditional manufacturing techniques often limit geometric
complexity.

In aerospace, lattice architectures are increasingly used in load-bearing compo-
nents such as brackets, stiffeners, and support frames. These structures benefit from
optimized strength-to-weight ratios and can be topology-tailored to meet load paths
while reducing inertial loads. Strano et al. [51] reported the implementation of
lattice-filled brackets in aerospace components, highlighting significant weight re-
duction without compromising structural performance. Similarly, Leary et al. [62]
investigated gyroid-type TPMS lattices as compact heat exchangers for aerospace
cooling systems, demonstrating enhanced thermal performance due to increased sur-
face area and controlled porosity.

Impact mitigation is another critical aerospace application. Li et al. [63] studied
the energy absorption capabilities of BCC and Kelvin-type lattices and concluded
that deformation under compressive loading could be tuned by adjusting cell ge-
ometry and wall thickness. These characteristics make lattices attractive for crash
zones, protective housings, and landing gear structures.

Biomedical applications have similarly benefited from the controlled porosity and
mechanical tunability of lattice structures. Sanaei and Fatemi [55] reviewed how
lattice-based scaffolds offer porosity for tissue ingrowth, with mechanical properties
tailored to mimic cortical or trabecular bone. Their work emphasized that strut
thickness, unit cell type, and fabrication defects all influence biocompatibility and
mechanical reliability.

However, the use of lattices in high-integrity systems, such as aircraft structures
or biomedical implants, introduces challenges related to defect tolerance and in-
spection. Echeta et al. [64] emphasized that lattice structures, particularly those
with thin features and high surface-area-to-volume ratios, are inherently sensitive to
AMe-induced defects. Their review stressed the importance of in-situ monitoring and
robust design practices to ensure structural reliability. Brennan et al. [56] further
highlighted how oxygen-related inclusions from powder reuse can compromise the
integrity of lattice struts, particularly in Ti-6Al-4V components.
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Taken together, these studies reflect the versatility and performance potential
of lattice structures across sectors. Yet, they also reinforce the need for defect-
aware design, robust process control, and integration of post-fabrication inspection
or health monitoring strategies to ensure their successful deployment in mission-
critical applications.

2.3.3 Strut-Type Lattice Structures

Strut-based lattice structures are the most commonly studied and applied category
of architected materials in additive manufacturing. They are constructed from an
array of interconnected struts forming repeating unit cells. The simplicity of their
geometry, combined with predictable mechanical behavior, makes them highly suit-
able for numerical modeling, optimization, and experimental validation.

The mechanical response of strut lattices is largely governed by their relative
density, which is the ratio of the lattice’s bulk density to the density of the solid
material. According to the scaling laws presented by Gibson and Ashby [59], the
elastic modulus and yield strength of a strut-based lattice scale with the square
or cube of its relative density, depending on whether the structure is bending- or
stretching-dominated. Stretch-dominated lattices, such as the octet truss, exhibit
higher stiffness and load-bearing capacity, while bending-dominated topologies like
BCC or rhombic dodecahedron are more energy-absorbing and compliant under
load.

Sanaei and Fatemi [55] highlighted that due to their periodic geometry, strut-
based lattices enable localized tailoring of stiffness and strength. By varying strut
thickness, length, and connectivity, engineers can adjust performance parameters
such as energy absorption, load redistribution, and directional stiffness. This makes
them particularly useful in applications requiring high performance-to-weight ratios.

In aerospace, strut-type lattices have been used in internal support structures
for turbine blades, optimized brackets, and sandwich cores in panel stiffeners. These
components benefit from the ability to reduce mass while maintaining mechanical
integrity under complex loading. For instance, Maskery et al. [61] demonstrated
that AlSil0Mg strut-based lattices produced via selective laser melting achieved
stiffness values closely matching simulation predictions, confirming their viability
for structural applications. Similarly, Deshpande et al. [65] characterized the crush
response of a variety of periodic lattices and confirmed their suitability for aerospace
energy absorbing systems.

Strut lattices are also employed in biomedical scaffolds, where open porosity is
essential for tissue ingrowth and nutrient transport. Structures such as BCC or
diamond lattices are often used in load-bearing orthopedic implants due to their
favorable compressive properties and manufacturability using biocompatible alloys.

Overall, strut-type lattices offer a versatile design space for applications demand-
ing lightweighting, energy absorption, or mechanical compliance. Their geometry
can be tailored through unit cell selection and parameter tuning, while their be-
havior remains analytically tractable—making them an ideal candidate for both
high-performance engineering systems and experimental prototyping.
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Failure Mechanisms in Strut-Based Lattice Structures

The structural integrity of strut-based lattice architectures is often governed by the
failure mechanisms of their slender elements. These struts are typically subjected
to complex combinations of tensile, compressive, and bending loads depending on
the applied boundary conditions and lattice topology. Due to their high slender-
ness ratios, struts are inherently prone to buckling, fracture, and plastic collapse,
which may occur either in isolation or in combination, often leading to catastrophic
progressive failure.

Gibson and Ashby [66] established that the fracture behavior of lattice struc-
tures is largely determined by whether the architecture is bending- or stretching-
dominated. In bending-dominated structures, such as body-centered cubic (BCC)
lattices, failure usually initiates from buckling or plastic yielding under compressive
loading, whereas stretching-dominated structures, such as the octet-truss, tend to
fail more abruptly via brittle fracture due to axial tensile stresses.

The susceptibility of lattice struts to fracture is further exacerbated by process-
induced defects inherent in additive manufacturing (AM). Taheri et al. [46] reviewed
the mechanisms by which internal porosity, lack of fusion, and surface roughness
are introduced during powder-bed fusion, particularly in thin-walled features like
struts. These imperfections act as stress concentrators and significantly reduce fa-
tigue life and fracture resistance. Brennan et al. [56] emphasized the detrimental
impact of such defects on fatigue crack initiation and propagation in metallic AM
lattices, especially under cyclic or impact loading, which are common in aerospace
and biomechanical environments.

Echeta et al. [64] provided further insight into the degradation of load-bearing
capacity due to defect-sensitive collapse mechanisms in lattice structures. Their
work revealed that even minor inconsistencies in strut geometry or surface mor-
phology can trigger early fracture, particularly at nodal junctions. The authors
recommended improved powder quality control and the implementation of in-situ
monitoring strategies as essential steps toward improving strut reliability.

In addition to defect mitigation, structural optimization of the lattice geome-
try plays a key role in improving fracture resistance. By tailoring strut diameter,
connectivity, and unit cell type, designers can delay the onset of local failure and
prevent fracture propagation. This is particularly relevant for functionally graded
lattices, where gradual variations in strut size or orientation help in redistributing
stresses more evenly throughout the structure.

Ultimately, the fracture and breaking of struts determine not only the local
failure but also the global mechanical response of the lattice. A comprehensive
understanding of these mechanisms, informed by both experimental validation and
computational modeling, is critical for deploying lattice-based structures in safety-
critical applications.

Need for Structural Health Monitoring in AM Lattice Structures

Additively manufactured (AM) lattice structures, while offering significant advan-
tages in terms of weight savings and tailored mechanical properties, are inherently
susceptible to various defects and manufacturing inconsistencies. These include
lack of fusion, residual porosity, surface roughness, geometric inaccuracy, and mi-
crostructural heterogeneity [46, 64, 56]. In lattice architectures, particularly those
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employing slender struts, such flaws may not only compromise the mechanical per-
formance but can also lead to premature fracture and progressive collapse under
loading, as discussed in the previous sections.

Due to the distributed nature of damage in lattice materials and their geometric
complexity, traditional non-destructive evaluation (NDE) techniques face limita-
tions in detecting sub-surface defects or predicting failure. Furthermore, internal
lattice regions are often inaccessible for post-manufacturing inspection, especially in
functionally integrated components. This makes **in-situ sensing and monitoring
during service or operation not only desirable but necessary™*.

Structural Health Monitoring (SHM) systems offer a potential solution by en-
abling continuous or periodic assessment of structural integrity through embedded
sensors, ultrasonic interrogation, or vibration-based methods. In the context of
AM lattices, SHM is particularly relevant due to: - High sensitivity of mechanical
response to micro-defects - Localized failure modes that may not exhibit external
signs until final collapse - Load-bearing applications where failure has safety-critical
implications

Several studies have begun to explore the adaptation of SHM techniques for
AM lattices. For instance, ultrasonic wave-based SHM has been proposed to track
changes in wave propagation due to micro-cracking or delamination in lattice cells.
These methods rely on baseline comparison strategies and require accurate numerical
models of wave behavior within periodic structures. Brennan et al. [56] emphasized
that in highly porous and thin-strutted geometries, even subtle flaws can cause
substantial local stress changes, further justifying the use of sensitive monitoring
systems.

Moreover, the integration of SHM with digital twins, model-driven simulations of
the lattice structure—has emerged as a promising concept for critical applications.
In such systems, monitored data can be continuously compared against predictive
models to assess damage progression, fatigue life, and failure probability. This is
particularly attractive in aerospace and biomedical sectors, where AM lattices are
already being employed in satellite components and load-bearing implants.

Thus, the development of effective SHM strategies tailored for AM lattice struc-
tures not only addresses current reliability concerns but also enables the design of
intelligent, self-aware components capable of reporting their health state through-
out their service life. This aligns with the broader shift toward condition-based
maintenance and mission-critical material systems.

2.4 Structural Health Monitoring and Damage De-
tection

Additively manufactured (AM) components—particularly lattice structures—present
new challenges for structural integrity assessment. Their complex internal geome-
tries, thin features, and process-induced variability often make them unsuitable
for traditional inspection techniques. As such, the demand for robust, integrated
damage detection approaches has driven the advancement of both Non-Destructive
Evaluation (NDE) and Structural Health Monitoring (SHM) methods.

NDE refers to techniques that allow inspection without causing damage to the
part, and includes methods such as X-ray computed tomography (CT), ultrasonic
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testing, eddy current testing, and thermography. These methods are typically ap-
plied at discrete time intervals and can be highly effective in detecting surface and
subsurface flaws—particularly in planar or accessible regions. However, their ap-
plicability to internal regions of complex AM lattices is limited, especially when
structures are enclosed or have high porosity. Moreover, NDE generally provides a
snapshot in time rather than continuous monitoring.

In contrast, SHM refers to the continuous or periodic observation of struc-
tural state using embedded or surface-mounted sensors, with the aim of identifying
changes that may indicate damage. SHM methods can be broadly categorized as
either baseline-dependent or baseline-free. Baseline-dependent approaches compare
sensor data to a known undamaged condition to identify changes, but establishing
such a baseline can be difficult in AM components due to geometry-specific variabil-
ity. Baseline-free methods, on the other hand, utilize statistical learning, pattern
recognition, or unsupervised algorithms to detect anomalies without needing a pris-
tine reference [67, 68].

Guided wave-based SHM has gained popularity due to its ability to propagate
over long distances and interact sensitively with defects. These waves differ from
surface waves in that they are confined within bounded media—such as thin plates
or struts—and can be tailored for enhanced sensitivity to geometric discontinuities.
This makes them particularly relevant for thin-walled AM structures where access
is limited. Their widespread use is further supported by the availability of compact
piezoelectric actuators, ease of signal processing, and high sensitivity to damage
modes like cracking, delamination, or corrosion [69].

Ultimately, while NDE and SHM both contribute to the detection of manufactur-
ing defects and in-service damage, SHM provides the added advantage of enabling
proactive maintenance and real-time condition assessment. In the context of AM
lattice structures, this distinction becomes critical, as defects can evolve under load
and are often not detectable using surface-based techniques alone.

Among the various wave-based SHM techniques, surface waves and guided waves
are frequently employed for damage detection. Surface waves, such as Rayleigh
waves, propagate along the material surface and decay exponentially with depth.
These are particularly effective for detecting shallow surface cracks or corrosion.
Guided waves, in contrast, propagate within bounded media—such as plates, rods,
or struts—and are influenced by both geometry and boundary conditions. Due
to their ability to travel long distances and interact with both surface and internal
discontinuities, guided waves are especially suited for monitoring complex geometries
like those found in AM lattice structures [69].

Signal-based SHM systems typically operate by first acquiring dynamic response
data through sensors such as piezoelectric actuators, strain gauges, or accelerome-
ters. This raw data undergoes signal processing to extract informative features—such
as frequency content, time-domain statistics, or modal shifts—that are sensitive to
the presence of damage. These features are then fed into classification or regression
algorithms to determine damage existence, severity, or location.

As Farrar and Worden [67] noted, feature extraction alone is insufficient for com-
prehensive SHM. A complete system must also include a decision-making framework
capable of interpreting feature changes to identify not only if damage has occurred,
but also what its implications might be. This is where the concept of **prognosis**
becomes critical.
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Prognosis refers to the prediction of future structural behavior based on current
and historical monitoring data. Unlike detection and localization, which focus on
identifying the presence and location of damage, prognosis aims to estimate remain-
ing useful life (RUL) or time to failure. This capability is essential for transitioning
from reactive to predictive maintenance, particularly in aerospace applications where
operational safety and lifecycle optimization are paramount [70].

In vibration-based SHM, excitation sources play a critical role in generating
dynamic responses sensitive to structural changes. These sources can include in-
strumented impact hammers, modal shakers, piezoelectric actuators, or embedded
resonant devices. The choice of excitation depends on the frequency range, type
of wave to be excited (e.g., bending modes, longitudinal waves), and the geometry
of the structure. For AM lattice structures, localized excitation via surface-bonded
piezoelectric elements is often preferred due to their scalability and compatibility
with small features.

Following excitation and signal acquisition, the detection of damage does not stop
at feature extraction. Rather, the extracted features—such as changes in natural
frequencies, damping ratios, wavelet coefficients, or time-domain statistics—must
be interpreted using a decision-making model. These models are typically data-
driven and include supervised machine learning algorithms (e.g., support vector
machines, neural networks), probabilistic classifiers (e.g., Gaussian mixture models),
or threshold-based anomaly detection methods [67].

The use of features offers several advantages. They reduce dimensionality, en-
hance robustness to noise, and often provide physically meaningful indicators of
damage progression. However, in some advanced applications, raw time-series or
frequency-domain data can also be used directly as input to deep learning mod-
els such as convolutional neural networks (CNNs) or recurrent neural networks
(RNNs), which automatically learn abstract representations of damage-related pat-
terns. While this approach may eliminate the need for manual feature engineering, it
requires large, well-labeled datasets and high computational cost—often impractical
in real-world SHM deployments, especially for bespoke AM components.

Feature-based damage classification in SHM often employs supervised learning
algorithms that learn decision boundaries from labeled examples. Among these,
support vector machines (SVMs) are popular due to their ability to perform well
in high-dimensional feature spaces with limited training data. Artificial neural net-
works (ANNs) have also been widely used, especially for capturing nonlinear dam-
age patterns, though they require more extensive training data and are sensitive to
overfitting. Probabilistic methods like Gaussian mixture models (GMMs) allow for
uncertainty modeling, which can be useful in noisy or variable environments.

Principal Component Analysis (PCA) is a commonly used dimensionality reduc-
tion technique in SHM. It transforms high-dimensional feature sets into a reduced
set of uncorrelated variables (principal components) that capture the directions of
maximum variance in the data [70]. However, PCA assumes linear relationships
between features and may not adequately capture nonlinear or localized damage
patterns. It also relies on global variance, which may ignore subtle but critical fea-
tures. These limitations motivate the use of nonlinear extensions such as Kernel
PCA, t-SNE, or autoencoders, especially in systems with complex damage modes
such as AM lattices.

For example, Worden and Manson [70] applied PCA to vibration-based damage
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localization and demonstrated the utility of dimensionality reduction in detecting
structural change. However, they also noted PCA’s inability to resolve features in
the presence of nonlinear damage evolution. More recent studies have proposed
hybrid approaches that combine PCA with clustering or supervised classification for
improved sensitivity and decision accuracy.

2.4.1 Overview of SHM and NDE Principles

Structural Health Monitoring (SHM) and Non-Destructive Evaluation (NDE) are
two interrelated fields aimed at assessing the integrity and operational readiness of
engineering structures without causing damage. While NDE is typically applied as
an offline inspection technique during scheduled maintenance cycles, SHM extends
this concept into real-time or periodic monitoring through embedded sensors or
intelligent systems [67]. In both domains, the ultimate goal is to detect, locate,
classify, and—when possible—predict the evolution of damage before catastrophic
failure occurs.

Farrar and Worden [67] provided one of the foundational frameworks in this field,
classifying SHM into five hierarchical levels: (1) damage detection, (2) localization,
(3) classification, (4) severity assessment, and (5) remaining life estimation. Their
structure is still widely adopted, but as Mousavi et al. [71] noted, practical imple-
mentation beyond detection is often limited due to data scarcity and inadequate
feature robustness in complex systems.

Tibaduiza et al. [72] emphasized the integration of signal processing with clas-
sification algorithms to achieve Level 2 and 3 functionality. Their work utilized
Principal Component Analysis (PCA) and Self-Organizing Maps (SOMs) to distin-
guish between various damage conditions. However, their study focused on metallic
plates under laboratory conditions, limiting its generalizability to more intricate
geometries like lattice structures.

Yang and Li [73] introduced a Bayesian decision framework for vibration-based
SHM using wavelet packet features. While their method demonstrated high sensitiv-
ity in detecting damage in composite beams, it relied on assumptions of Gaussian-
distributed features and prior knowledge of undamaged conditions. Such require-
ments are problematic in AM components, where the "healthy” state is often poorly
defined due to embedded porosity and microstructural inconsistency.

The difference between SHM and NDE becomes more evident when considering
the sensing infrastructure and intended application. Traditional NDE techniques,
such as X-ray CT, ultrasonic pulse-echo, and eddy current inspection, offer high-
resolution images or pointwise measurements but are limited to discrete inspections.
In contrast, SHM leverages continuous monitoring through techniques such as piezo-
electric sensing, guided wave interrogation, and modal analysis [74]. Cheraghi et
al. used piezoelectric actuators and wavelet transforms to detect corrosion-induced
degradation in pipelines, highlighting how real-time SHM can preempt the need for
invasive NDE procedures.

Moreover, Dron et al. [75] and Pittner and Kamarthi [76] explored signal-based
indicators such as kurtosis and wavelet energy for early damage detection. Their
methods, while effective for conventional components, are constrained by the as-
sumption of uniform geometry and repeatable signal conditions—assumptions rarely
satisfied in lattice-based AM structures. These studies often omit how defect-
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induced scattering or internal attenuation in porous lattices might obscure signal
patterns or invalidate feature thresholds.

To summarize, SHM offers a broader, more proactive paradigm than traditional
NDE, but its implementation is highly dependent on signal interpretation quality,
environmental noise resilience, and system-specific tuning. The transition from fea-
ture extraction to reliable decision-making remains a challenge, especially for irregu-
lar geometries and novel materials. As such, the integration of SHM with advanced
data processing methods and adaptive learning systems has become a key area of
research—particularly for emerging domains like AM lattice structures, where em-
bedded defects and inaccessible regions complicate conventional approaches.

2.3.2 Classification of damage state

There are five major levels in damage detection and prognosis. These levels are
based on the answer to the following five questions [77]. Each damage detection
study will vary depending upon which of these five question need to be answered.

e Level 1 - Damage detection - Is the damage present in the structure?

Level 2 - Damage Analysis - What is the type of the damage?

Level 3 - Damage quantification - What is the severity of the damage?

Level 4 - Damage localization - What is the location of the damage?

Level 5 - Damage prognosis - What is the useful life remaining?

2.3.3 Steps in damage detection

The damage detection explored and used here is based on the techniques of structural
health monitoring which is used for on-line and active health monitoring. The steps
involved in implementing a damage detection strategy are now discussed [78, 79].

Excitation source and response measurement

The first step in any damage detection strategy is to use a source to excite the
structure. Exciting the structure is necessary to measure its response. Both un-
damaged and damaged structures will have different response to these excitations.
Commonly used excitation sources in literature are vibration and ultrasonic meth-
ods. Vibration based SHM methods use low frequency (upto 20KHz) vibrations to
measure global response of structure [80, 81]. In ultrasonic techniques, actuators
(commonly piezoelectric) are used to send ultrasonic waves in the structure [82, 83].

Signal processing and feature extraction

Once the data has been acquired from the sensors, the next step is to process the
data. This step includes data cleansing to filter noise and normalizing data to cater
for any environmental variations [84]. In the next step, important information
from the data is extracted, which effectively represents the state of structure. This
process is called feature selection. The aim of feature selection is to reduce the
dimensionality of the data and to use the features of the data that are most related
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to the damage state of structure. The features chosen from the response signals
which are sensitive to damage are also called damage features. The selection of
the appropriate damage features from the signal is the most important step of any
damage detection strategy. The most simple method of extracting useful information
from signal is by using basic signal statistics such as mean and variance [79]. Other
statistical features such as third and fourth centered moments known as skewness
and kurtosis are also used as features. Kurtosis in particular is popularly used in
condition monitoring [85, 75]. In the time domain, some of the features used for
signal analysis are Normalized Root Mean Square Error between baseline signal and
response signal [86, 87], correlation coefficients [88, 89, 90] and loss in temporal
coherence [91, 88]. Features are also extracted by converting the time domain signal
to frequency domain using Fast Fourier Transform (FFT) [92]. In time-frequency
domain, some advanced signal processing techniques such as Short Time Fourier
Transform (STFT) [93, 94], Empirical Mode Decomposition (EMD) and Hilbert-
Huang Transform (HHT) [95, 96, 71] and features using Wavelet Transforms [76,
74, 73, 97].

Empirical Mode Decomposition (EMD) EMD is a signal decomposition tech-
nique that adaptively breaks down non-linear and non-stationary signals into a set
of intrinsic mode functions (IMFs). These IMF's isolate frequency components cor-
responding to local oscillatory modes in the signal. EMD has been used in SHM to
extract features linked to structural damage with high temporal precision.

Hilbert—Huang Transform (HHT) HHT combines EMD with the Hilbert Trans-
form to compute instantaneous frequency and energy content of the signal. It enables
localized time-frequency analysis, making it effective for detecting transient changes
caused by damage. This technique is especially useful when conventional Fourier
methods fail to capture non-stationary signal behavior.

Wavelet Transform The Wavelet Transform provides a multi-resolution repre-
sentation of the signal, capturing both time and frequency information simultane-
ously. It is particularly suited for detecting localized anomalies such as cracks or
delaminations. Different wavelet bases allow tuning the transform to the nature of
the damage and structural response.

Principal Component Analysis (PCA) Principal Component Analysis (PCA)
is a widely used unsupervised dimensionality reduction and feature extraction tech-
nique. It transforms the original data vector x = (21, Zo,...,,)7 into a new vector
z = (21,22,...,2)", where each z; is a linear combination of the original variables
and represents a principal component. The first principal component z; captures
the direction of maximum variance in the data, with subsequent components zs, 23,
etc., capturing the next highest variance orthogonally. This process effectively com-
presses the data while retaining the most informative structure, thereby simplifying
downstream analysis such as clustering or classification.

In the context of SHM, PCA is employed to detect damage by identifying changes
in the statistical structure of the monitored signals. Sharma [98] provides a foun-
dational overview of PCA applications in multivariate systems, establishing the
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theoretical basis for its use in engineering diagnostics. Tibaduiza et al. [72] ap-
plied PCA to reduce high-dimensional vibration signal data and combined it with
self-organizing maps to classify damage states in composite structures. Their ap-
proach demonstrated high sensitivity in detecting subtle changes in signal behavior
under varying damage conditions. Similarly, Yu et al. [99] conducted a paramet-
ric study on PCA’s performance under different operational scenarios and sensor
configurations, emphasizing its robustness and versatility across SHM systems.

While PCA is computationally efficient and interpretable, it has limitations. It
assumes linear relationships between features and may not perform well if damage-
related features lie in a non-linear subspace. Nonetheless, due to its simplicity and
ability to reveal hidden structures, PCA continues to be a core preprocessing step
in many SHM frameworks.

There are different studies which use the features of the signal such as amplitude
and energy of the signal. [100, 101] have used time domain energy of the signal
as the damage feature for damage detection. [102] used the magnitude changes in
signal to measure the damage state of the structure. Energy of scatter signal was
used as damage feature for damage detection in bridge structures by [103].

2.4 Damage classification models

Damage classification models play a pivotal role in structural health monitoring
(SHM) and non-destructive evaluation (NDE), where the core objective is to detect,
characterize, and predict damage in engineered structures before it leads to catas-
trophic failure [78, 104]. In many industrial sectors, including aerospace, automotive,
civil infrastructure, and increasingly in additive manufacturing (AM) applications,
these models help ensure safety, reduce downtime, and optimize maintenance sched-
ules [105, 77].

The growing complexity of modern materials and designs—ranging from ad-
vanced composites to additively manufactured lattices—presents unique challenges
for robust damage classification [106, 107]. Consequently, researchers have devel-
oped a variety of data-driven methods to interpret sensor signals (e.g., vibration,
ultrasonic, acoustic emission) and map them to damage states [108, 109]. Generally,
these methods fall into two overarching categories: statistical classification mod-
els and machine learning classification models. Within the machine learning
category, neural networks have become particularly prominent due to their ability
to handle complex, high-dimensional data [110].

This chapter focuses on the landscape of damage classification models, detailing
the main approaches, their theoretical underpinnings, and examples of their use in
SHM. Special attention is paid to neural networks in the context of machine learning
classification models.

2.4.1 Statistical Classification Models

Overview

Statistical classification methods are typically grounded in probability theory, where
the observable features of a structure (for example, amplitude of vibration modes
or ultrasonic signal patterns) are modeled as random variables with underlying sta-
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tistical distributions [111, 112]. The classification task then involves assigning new
observations to a damage state based on likelihoods or posterior probabilities.

In practice, these methods assume that the feature space of damaged and undam-
aged states can be differentiated by analyzing probability distributions. They often
work well in scenarios where the feature distributions are reasonably well-behaved
(for example, unimodal Gaussian or mixtures of Gaussians) and where the physical
system does not exhibit extreme nonlinearity [113].

Gaussian Mixture Models (GMM)

One popular approach is the Gaussian Mixture Model (GMM). Here, each
damage class is represented by a combination of Gaussian components. During
classification, the model computes the probability that a given observation (feature
vector) was generated by one of these Gaussians. The class with the highest posterior
probability is assigned to the new observation [111].

For example, in a vibration-based SHM scenario, one might extract features
such as natural frequencies or mode shapes and fit separate GMMs for “healthy”
vs. “cracked” states [78]. If a newly measured feature lies closer to the “cracked”
distribution in a probabilistic sense, the GMM signals the presence of damage.

Regression Models and Bayesian Inference

Regression models, such as linear or logistic regression, are also used for damage
classification tasks [113]. In logistic regression, the probability of damage is modeled
via a logistic function of a linear combination of features. This approach can be
straightforward, often yielding interpretable parameter estimates indicating which
features most strongly predict damage.

Bayesian inference extends these ideas by incorporating priors on model param-
eters, thus allowing uncertainty quantification and dynamic updating of damage
probabilities as new sensor data becomes available [112]. Bayesian methods are par-
ticularly attractive when data is limited or noisy, since priors can mitigate overfitting
and guide classification decisions.

2.4.2 Machine Learning Classification Models

2.4.3 Overview

While statistical methods are powerful, many contemporary SHM applications gen-
erate high-dimensional, multimodal data that can be difficult to model with purely
statistical approaches [108, 84]. Machine learning (ML) methods, by contrast, of-
ten excel at learning complex decision boundaries in feature space, even when the
underlying physics is only partially understood [110].

Classic ML classifiers include:

e Decision Trees: Build a hierarchical tree by splitting on features. Easy to
interpret but prone to overfitting.

e Random Forests: An ensemble of decision trees, improving robustness and
generalization.
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e k-Nearest Neighbors (k-ININ): Relies on distance metrics; simplest if di-
mensionality is not too large.

e Support Vector Machines (SVMs): Maximizes the margin between classes;
can use kernels for nonlinear separation [114].

2.4.4 Neural Networks for Damage Detection

Among ML approaches, neural networks—especially deep neural networks—have
gained significant traction in SHM due to their ability to capture highly nonlinear
relationships and discover hidden features from raw sensor data [115, 116]. Neural
networks come in various architectures, each well-suited to different data types and
tasks:

Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computational models inspired by the brain,
composed of layers of interconnected neurons (weights) that learn mapping functions
from inputs to outputs. In classification neural networks, the final layer typically
outputs class probabilities (for example, healthy, minor damage, major damage).
Training is supervised, relying on labeled datasets of structural responses [117].

In damage detection tasks, a classification ANN might receive time-series signals
or spectral features as input, passing them through multiple layers of transformations
until it produces a probability vector over different damage categories. Because these
networks can capture complex, nonlinear relationships, they are increasingly used
in scenarios where simpler classification methods struggle to scale.

Multilayer Perceptrons (MLPs)

MLPs are the simplest feedforward neural networks, comprising multiple fully con-
nected layers. In a typical SHM application, carefully engineered features (for ex-
ample, wavelet coefficients from ultrasonic signals) feed into an MLP, which learns a
mapping from these features to discrete damage classes (e.g., healthy, minor crack,
major crack) [117].

Convolutional Neural Networks (CNNs)

CNNs employ convolutional filters to automatically learn spatial (or spatiotemporal)
patterns from data arranged as images or 2D /3D arrays. This is particularly useful
when ultrasonic scans, thermographic images, or time-frequency spectrograms are
used for damage detection [118]. For instance, if a 2D representation of a guided
wave signal indicates a crack, CNN filters can discover these crack-related patterns
without extensive manual feature engineering.

Autoencoders

Autoencoders are specialized networks that learn to reconstruct the input through a
bottleneck layer of reduced dimensionality. By training on “healthy” data only, an
autoencoder will show high reconstruction error when faced with out-of-distribution
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data that represents damage [119]. This approach can be effective when obtaining
labeled damage data is challenging.

Applications of Neural Networks in SHM Neural Networks (NNs), particu-
larly Artificial Neural Networks (ANNs) and their deep learning counterparts, have
found extensive applications in structural health monitoring due to their capacity
to model complex, non-linear relationships in high-dimensional sensor data. These
models can learn from historical signals and automatically extract damage-sensitive
features without requiring manual feature engineering. For instance, Tarassenko et
al. [120] utilized ANNs for novelty detection to identify abnormalities in monitored
structural states, demonstrating the potential of neural models in detecting subtle
deviations from healthy baselines. In more advanced implementations, Convolu-
tional Neural Networks (CNNs) have been employed for processing time-frequency
spectrograms of ultrasonic or vibration signals. Modarres et al. [121] showed that
CNNs can classify damage types from visual patterns in SHM datasets with high
accuracy, making them suitable for image-like signal representations such as C-scans
or STFT plots.

Autoencoders have also emerged as a popular architecture, particularly for anomaly
detection in situations where damaged-state data is scarce. By training autoencoders
solely on data from undamaged structures, the model learns to reconstruct healthy
signal patterns. Pathirage et al. [?] illustrated that the reconstruction error can be
used as a damage index, where higher error correlates with greater deviation from
the undamaged state. These neural architectures are particularly useful for SHM
of complex systems like composite structures, aircraft wings, or lattice topologies,
where traditional linear models may struggle.

Despite their advantages, neural networks pose several limitations in SHM appli-
cations. One major challenge is the requirement for large volumes of labeled training
data, which is often difficult to obtain, especially for damaged states in safety-critical
aerospace and civil structures. Jia and Li [?] emphasized the issue of data scarcity
and the need for data augmentation, simulation-based training, or transfer learn-
ing to overcome this bottleneck. Additionally, overfitting is a common concern in
neural networks, particularly when training on small datasets. Techniques such as
L2 regularization, dropout, and cross-validation are typically required to improve
model generalization [122].

Interpretability remains another critical limitation, as deep networks often act
as "black boxes,” making it difficult to understand the rationale behind specific
damage predictions. This is a serious drawback in fields where traceability and
explanation of model decisions are necessary for certification and safety assurance.
Furthermore, the computational cost associated with training and deploying deep
neural networks can be significant, particularly for real-time or embedded SHM
applications. While the advancement of hardware accelerators such as GPUs and
TPUs has mitigated this to some extent, energy and processing constraints are still
important considerations for onboard SHM systems.

2.4.5 Challenges of Machine learning models

Neural networks offer the benefit of feature learning—the capacity to discover rele-
vant representations directly from raw signals. However, several key considerations
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apply:

e Data Scarcity: Reliable damage classification often requires large labeled
datasets. In many real-world SHM applications, damage events are rare or
costly to replicate [123].

e Overfitting and Generalization: Complex networks can overfit smaller
datasets. Methods such as data augmentation, cross-validation, and weight
regularization help address this challenge.

e Interpretability: Deep neural networks are often considered “black boxes,”
posing challenges for safety-critical components.

e Computational Resources: Training large networks demands significant
computational power, though modern GPUs have made this more accessible.

Despite these challenges, neural networks have shown promise for real-time dam-
age detection, enabling the classification of subtle or intricate patterns that might
be overlooked by purely statistical approaches [109, 110]. As sensor technology ad-
vances and generates richer datasets, deep neural networks are poised to play an
increasingly central role in future SHM systems.

To summarize, the damage classification models are fundamental to ensuring the
reliability of modern engineering structures, particularly in safety-critical industries.
Statistical classification methods, such as Gaussian Mixture Models, regression, and
Bayesian inference, excel when feature distributions are well-understood. Machine
learning approaches, including neural networks, thrive in more complex or higher-
dimensional scenarios, as they can discover intricate data patterns.

Neural networks range from MLPs for feature-based classification to CNNs for
image-like data, LSTMs for time-series analysis, and autoencoders for anomaly de-
tection. While each architecture has unique strengths and weaknesses, collectively
they provide a robust set of tools for identifying and classifying damage. Ongoing
research focuses on making these methods more data-efficient, interpretable, and
generalizable—necessary steps for widespread adoption across fields like additively
manufactured structures, where damage states can be highly variable.

2.6 Research Gaps

A critical review of the literature presented in this chapter reveals several limita-
tions in the current approaches to structural health monitoring (SHM) and damage
classification, particularly in the context of additively manufactured (AM) lattice
structures. While a variety of sensing techniques, signal processing methods, and
classification models have been proposed, most of these approaches are designed for
traditional monolithic structures and do not adequately address the complexities
introduced by AM geometries.

Firstly, existing SHM techniques—such as those based on vibration signals,
wavelet transforms, and piezoelectric sensing—have largely been developed and val-
idated for metallic plates, beams, and composite laminates [74, 72, 73]. These
methods assume geometric uniformity and rely on consistent boundary conditions,
which do not hold for lattice structures with distributed struts and internal voids.
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The wave-based techniques demonstrated by Cheraghi et al. [74] and the Bayesian
classification approaches by Yang and Li [73] are effective for continuous geometries
but have not been extended to discontinuous and porous domains typical of AM
designs.

Secondly, many of the damage detection frameworks are heavily baseline-dependent.
They require either a known undamaged state for comparison or rely on handcrafted
features that are sensitive to geometric and material inconsistencies [71, 76]. In
AM components, where process-induced defects such as porosity and incomplete fu-
sion are inherent, obtaining an accurate and representative baseline is impractical.
Baseline-free or unsupervised approaches remain underexplored.

Third, the classification models reviewed—such as those in Jameel et al. [124]
and Tarassenko [109]—are generally trained and validated on clean, well-structured
datasets. These models often assume feature separability and class consistency, con-
ditions that are rarely satisfied in AM lattice components due to their high intra-class
variability and limited dataset availability. The use of traditional classifiers such as
SVM, k-NN, and even neural networks in these contexts may lead to poor gener-
alization without appropriate regularization, augmentation, or domain adaptation
techniques.

Another key limitation in the literature is the overreliance on global features
such as natural frequencies, spectral energy, or modal shifts [72, 75]. These features,
while useful in detecting severe damage or stiffness loss, are not sensitive to small,
localized defects like strut cracking or node detachment in AM lattices. Localized
indicators and high-resolution sensing strategies are needed to detect early-stage
damage in such complex geometries.

Moreover, guided wave-based techniques, though promising in flat or shell-like
structures, face significant challenges when applied to AM lattices. The geometric
complexity leads to scattering, wave mode conversion, and attenuation, reducing
diagnostic resolution [74]. There is little evidence in the literature of successful
calibration or deployment of such methods within strut-dominated architectures.

Finally, there is a distinct gap in integrating structural modelling with SHM.
While many studies focus on signal processing and pattern recognition, they do not
leverage the mechanical behavior predicted by numerical models of AM lattices.
A combined approach—where structural simulation informs signal interpretation
or aids in feature design—has the potential to improve both sensitivity and inter-
pretability but remains largely absent from current research.

These gaps highlight the need for damage detection and classification frameworks
that are specifically tailored to AM lattice structures. Such systems must incorpo-
rate geometry-aware sensing strategies, robust feature extraction under stochastic
conditions, and machine learning models capable of generalizing from limited, noisy
datasets. Addressing these challenges is essential for enabling reliable SHM in the
next generation of AM aerospace and structural components.

Linking Research Gaps to Thesis Objectives

1. Lack of SHM Studies on Additively Manufactured Lattice Struc-
tures Although SHM using ultrasonic techniques is well-established for conven-
tional metallic and composite structures [125, 126, 127], the literature lacks dedi-
cated research focused on additively manufactured (AM) lattice structures. Their
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complex geometries, especially in strut-based designs, pose unique challenges for
wave propagation and damage detection. This research directly addresses this gap
by investigating the behavior and interaction of ultrasonic waves within such lat-
tice configurations, as pursued under Objective 1, which aims to understand wave
propagation in AM lattice geometries.

2. Absence of Integrated Experimental and Numerical Methodologies
Most SHM studies rely either on simulations or limited physical testing, often
lacking rigorous experimental-numerical validation—especially for structures with
micro-defects like porosity, delamination, or strut fracture. This research fills this
methodological gap by developing and validating a complete SHM framework us-
ing both experimental setups and numerical simulations, informed by ultrasonic
response and sensor data. This work aligns with Objective 2, which focuses on
developing and validating a methodology for damage detection and quantification
in lattice structures using piezoelectric sensors and signal processing techniques.

3. No Effective Damage Localization Approaches for Lattice Structures
Damage localization remains a challenge in AM lattices due to the inherent signal
scattering and geometrical irregularities within 3D cellular architectures. Traditional
localization techniques used for plates or beams are not directly transferrable. In
response, this study develops a robust localization strategy using a sensor array-
based approach tailored to the complexity of lattice geometries, integrating both
simulation and experimental validation. This addresses Objective 3, which focuses
on establishing a methodology for localizing damage in lattice structures.

4. Limited Use of Machine Learning in Ultrasonic-Based Lattice SHM
Machine learning (ML) models have demonstrated utility in SHM of composites
and metallic structures, yet their application to ultrasonic data from AM lattice
structures remains limited. The current study bridges this gap by integrating ML
algorithms for classification and quantification of damage using extracted ultrasonic
features. This directly supports Objective 4, which explores the application of ML
to improve the accuracy and efficiency of damage characterization. The evaluation
of these methods on 3D lattice configurations further advances Objective 5, which
focuses on assessing scalability and real-world applicability.

5. No Analytical Models for Ultrasonic Transmission in Lattice Struc-
tures A theoretical gap exists in modeling ultrasonic wave transmission through
lattice geometries. Conventional wave propagation models assume continuous me-
dia and fail to account for the scattering and attenuation effects inherent to lat-
tice configurations. This thesis develops an analytical formulation for ultrasonic
wave transmission specific to lattice geometries, presented in Chapter 5, thereby
strengthening the theoretical foundation for wave-based SHM in support of Objec-
tive 1.
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2.5 Conclusion

A detailed literature review was undertaken in the areas of additive manufacturing
and lattice structures. It was identified that various inherent defects in lattice struc-
tures may act as stress concentrators and lead to cracks or fractures of lattice struts.
With growing applications of lattice structures in various industries i.e. aerospace,
automotive, medicine, etc. it may become essential to have methodologies for dam-
age characterization of such structures. Due to non-destructive nature of ultrasonic
testing and ease of setting up ultrasonic systems, it can be used for testing lattice
structures. Fundamentals of structural health monitoring, damage detection, and
various signal processing techniques were discussed in the literature review. Sta-
tistical and machine learning damage classification models were also covered in the
review. Based on these findings and an exhaustive literature review on SHM and
damage detection, the research methodology was designed.
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Chapter 3

Methodology

3.1 Introduction

This chapter presents the overall methodology adopted to achieve the research aims
outlined in Chapter 1. Rather than reiterating the objectives, this section focuses
on structuring the sequence of activities that led to the development, validation,
and extension of damage detection techniques in lattice structures using ultrasonic
testing and machine learning.

The novelty of this methodology lies in integrating analytical modelling, nu-
merical simulations, experimental testing, and data-driven techniques in a cohesive
pipeline tailored for complex lattice geometries. Particular emphasis is placed on
how ultrasonic wave propagation is influenced by structural damage and how this
phenomenon can be harnessed for diagnostic purposes.

The chapter is structured to follow a logical sequence of investigations: beginning
with analytical evaluation of ultrasonic transmission through idealized lattice unit
cells, followed by numerical modelling and classification of damage states using ma-
chine learning. Experimental validation complements these efforts. Subsequently,
the study advances toward damage localization and scalability through application
to 3D lattice structures. The methodologies described here form the backbone of
the research contributions made in later chapters.

3.2 Research Design

The methodology used to achieve the objectives of this study are now presented. A
flow chart of the methodology is given in Figure. 3.1. At the onset of this study,
an analytical evaluation of a lattice structure is carried out to estimate ultrasonic
transmissions in a lattice structure. This analytical work will also be used to demon-
strate the effect of damage on ultrasonic transmission in a lattice structure. In the
next part, a detailed study is undertaken for damage detection and quantification in
a lattice structure. This study is conducted using a 2D lattice structure. Numerical
simulations are used to develop a methodology that is validated by experimental
work. Machine learning is used for classification of damage in the structure. Sub-
sequently, a detailed damage localization study is carried out using both numerical
simulations and experimental investigations. Finally, a 3D lattice structure is an-
alyzed for damage characterization. The salient parts of the methodology are now
discussed as follows.
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Research Objective: Damage characterization in additively
manufactured lattice structure using ultrasonic excitations.

4

Objective 1: Understanding ultrasonic transmission in a lattice structure
(Chapter 5).
Using analytical equations for calculating transmission efficiency in a lattice unit cell
Calculating transmission efficiency in a lattice structure
Presenting changes in the transmission efficiency with the presence of damage
Objective 2: Damage detection Numerical simulations
and quantification in 2D lattice |:>
structure (Chapter 8). U
U Objective 4: Classification
— — D Model using Machine
Objective 3: Damage localization learning (Classification
in 2D lattice structure (Chapter 7). Neural networlk
I i
Objective 5: Damage Experimental work
characterization in 3D lattice ‘::>

structure (Chapter 8).

Figure 3.1: Flowchart of methodology

3.2.1 Analytical study

The aim of analytical study is to provide a proof of concept and understanding of
ultrasonic transmission in the lattice structure. The analytical study involves using
formulations to calculate the ultrasonic transmission coefficients in a lattice unit
cell which is referenced and presented in Chapter 5. The lattice unit cell will form
the building block of the structure studied for damage characterization. The steps
involved in the analytical study are as follows.

e Using equations to calculate the ultrasonic transmission and reflection coeffi-
cients in a lattice unit cell.

e Calculate the transmission efficiency of the ultrasonic wave in the lattice unit
cell.

e Evaluating the transmission efficiency in lattice structure using the results of
the lattice cell.

e Showing the effects on transmission efficiency in the presence of damage.

e Provide an efficient method to estimate the transmission efficiency in different
lattice structures.

e Present analytical formulations for different configurations of lattice unit cells.

The analytical study provides an understanding of ultrasonic transmission in strut
type lattice structures and offers an insight on the effect on transmission with the
presence of damage.
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3.2.2 Damage detection and quantification

The analytical study provides an understanding of changes in ultrasonic transmis-
sion in the presence of damage. To characterize damage in the structure, a detailed
numerical and experimental study is conducted. The methodology for damage de-
tection and quantification is as follows.

e A nine cell 2D lattice structure is designed based on the unit cell solved in the
analytical work.

e The damage considered for the study is breaking of struts. Up to ten damaged
struts are considered for this study with an aim to quantify the severity of

damage in the structure.

e A numerical model is designed and simulated in Abaqus with a large sample
size to collect the response for both undamaged and damaged structures.

e Raw data from numerical simulations is processed to acquire features of data
sensitive to damage.

e A classification neural network is trained to classify the state of damage in the
structure.

e Experiments are conducted to validate the methodology.

Design of Lattice Structure Numerical Simulations Signal Processing (Feature extraction)
Lattice Structure | | Sensors & Material Numerical Model Response Signal Wi P Wby
2D lattice Piezoelectric sensors ABAQUS Time-Amp response o T
9 cell- 36 struts Nylon material 2D-shell model Freq response (FFT) | |1 dderi 11 4ot

Two sensors m Explicit dynamics = =

Damage - Strut breaking 5500 samples (500
Upto 10 damaged struts for each damage

Damage Cases Sample Size

Feature extraction R
PCA s 4,%& 3
Energy features )

<=

Damage Detection & Quantification Model Predictions Classification Model

Damage detection
Detecting presence of
damage

Damage quantification

Classification scores i Model
Classification Neural
’ network
« Prediction Accuracy e «

Level 1 - No of broken struts = -% Supervised learning
Level 2 - Range of broken struts Training the model with
Level 3 - No of damaged cells = known damage labels
Experimental Design '
Manufacturing Artificial damage Signal Processing
P-LPBF Hot wire cutter .
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— — Apparatus »
ol o Keysight signal generator Feature Extraction
P Oscilloscope
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Figure 3.2: Process flow of damage detection and quantification
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3.2.3 Damage Localization

Damage localization study involves estimating the location of damage in the struc-
ture. Localizing the damage in a complex lattice structure is challenging. The
methodology for damage localization is described below.

e The 2D lattice structure is considered for damage localization study.
e Localization of up to three damaged struts is undertaken in this study.

e Due to the complexity of problem, localization study is first done on a smaller
four cell lattice structure.

e Numerical simulations are used to test various localization problems.
e A strategy of zoning structure is used for effective damage localization.
e Neural network model is used for classification of data.

e Experiments are conducted to validate the methodology.

Design of Lattices Zoning of Structure Numerical Simulations

16 &.36 sturt | Yo . N Numerical Model
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‘ 7 2 » 2D-shell model
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Figure 3.3: Process flow of damage localization

3.2.4 3D Lattice structure

After developing and validating a methodology for damage detection, quantification,
and localization on a 2D lattice structure, it is applied to a 3D lattice structure.
Analyzing a 3D lattice structure will be useful to extend the application of daamge
detection methodologies to real life structures being used in various applications.
3D lattice structures could be formed with various configurations of unit cells some
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common being body-centered cubic (BCC), face-centered cubic (FCC), and tetra-
hedral designs, each with unique mechanical properties. For this particular study, a
BCC lattice cell is used to form a 8-cell lattice structure. Each cell is formed with
eight struts making a total of sixty four struts in the structure. Both numerical
simulations and experimental testing of the 3D lattice structure is done to validate
the methodologies developed for 2D lattice structure.

3.3 Conclusion

This chapter outlines the basic methodology adopted to achieve the research aims of
damage characterization in a lattice structure. A detailed methodology for damage
detection, quantification and localization is developed using numerical simulations
and a neural network was used as damage classification model. The numerical study
is followed by validation through experimental work. The methodologies are first
developed on a 2D lattice structure and are then applied to a 3D lattice structure.
The details of materials, sensors and methods used for numerical and experimental
work as well as structure of classification model are given in the next chapter.
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Chapter 4

Numerical and Experimental
Methods

4.1 Introduction

This chapter presents the detailed numerical and experimental methods employed
to characterize damage in lattice structures using ultrasonic-guided waves and ma-
chine learning. These methods form the foundation of the study, supporting the
development, training, and validation of the proposed structural health monitoring
(SHM) framework introduced earlier.

The primary aim of this chapter is to describe the tools, techniques, and config-
urations that make the results in subsequent chapters replicable and scientifically
rigorous. Both simulation-based and experimental approaches are outlined in an
integrated fashion to establish a validated methodology for damage detection and
quantification.

A numerical modelling strategy is developed to simulate ultrasonic wave prop-
agation through additively manufactured lattice structures under various damage
scenarios. Experimental methods are used in parallel to validate these simulations
through real-world measurements. To support generalizability and robustness of
the classification model, signal processing and feature extraction techniques are in-
troduced, culminating in the development of a supervised learning algorithm for
multi-class damage identification.

The chapter is organized as follows. Section 4.2 gives the details of the lattice
structure, sensors, and materials chosen and used for this work. Section 4.3 outlines
the setups used for numerical simulations, experimental work, and data collection
for damage detection and quantification. In section 4.5 the details of different signal
processing techniques that are explored in this work are given along with feature
extraction techniques. Details of the classification model are given in section 4.6.
Finally, the experimental analysis methods are discussed in section 4.7.

4.2 Structure, Sensors and Materials

In this section, details of the lattice structure designed for this study are given.
Properties of lattice structure, piezoelectric sensors, and materials used for this
research are also provided in this section.
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Lattice structure design

Lattice structure is built from the multiplication of its unit cell which acts as its
building block. A four strut lattice unit cell was designed for this study. Four mu-
tually perpedicular struts were designed with each stur having a length of 7mm and
width of 2.5mm. The choice of four strut unit cell was driven by the use of a beam
crossing for analytical study as presented in Chapter 5. The beam crossing forms
a four strut unit cell. Using this unit cell, a nine-cell lattice structure was formed
with 36 struts to study damage detection and quantification. The choice of number
of unit cells was arbitrary and was selected optimally to reduce computational and
manufacturing costs while giving a well populated structure for damage characteri-
zation. The damage considered for this study is the breaking of the struts in lattice
structure. Strut type lattice structures are formed with large number of struts with
strut thickness only a small percentage of overall size of structure. The significance
of this form of damage in lattice structures is extensively discussed in Chapter 2.
The struts could crack or break due to manufacturing defects and operational loads.
Since there are large number of struts in the structure, progressive damage could
lead structural degradation and failure [128]. Therefore, damage quantification can
provide a useful tool to determine the amount of damage present in the structure
and whether it can be kept in service. The unit cell of structure which was used to
form the structure along with the lattice structure is shown in Figure 4.1. A 1.5mm
crack was modeled in the structure to simulate the breaking of a strut.The size of
the crack was chosen due to the limitation of the hot wire cutter which was used to
impart artificial damage in manufactured samples. The minimum damage resulting
from hot wire cutter was close to 1.5 mm. Damage is also indicated in Figure 4.1.

TXXX
o2e%%
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Tele
07055

Sensor
(@) (b) (©

Figure 4.1: Lattice structure chosen for the present study (a) unit cell of chosen
lattice structure (all units are mm), (b) 36 strut lattice structure (50x50mm) de-
signed for numerical study (c¢) Lattice manufactured for experimental work, artificial
damage induced on one strut is shown

Sensor selection and configuration

Piezoelectric (PZT) sensors were used to excite ultrasonic waves inside the struc-
ture, and the response signal was measured at the opposite end of the structure. The
piezoelectric sensor used for this work is Steminc Piezo ceramic disc SMD10T2R111WL
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with sensor material SM111 [12]. The sensor and its material properties are given in
Figure 4.2. The sensors were 10 mm in diameter and 2 mm in thickness, with a reso-
nant frequency of 215 kHz in radial mode and 1 MHz in thickness mode. Both these
modes are excited when an electric excitation is applied to the sensors. Since, bulk
response of waves is being measured, both the wave modes add to the frequency ex-
citation and amplitude and were modeled in a similar fashion in numerical modeling
as well.
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Elect}‘omechanfcal K 045
coupling coefficient
Ky 0.34
<107 ds; 320
. - /v sy -140
Pi lectric ¢
x10° 23 25
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Mechanical Quality
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Figure 4.2: Piezoelectric sensor with its material properties [12]

Material properties

The lattice structure was fabricated using Nylon-12, a widely used polymer in addi-
tive manufacturing due to its favorable mechanical properties, low cost, and excellent
ultrasonic transmission characteristics [129]. Its ductility also allows controlled in-
troduction of artificial damage without causing brittle failure. Nylon-12 was selected
specifically to accommodate both the structural requirements of the lattice and the
practical needs of ultrasonic testing.

To characterize the mechanical properties of the material, uniaxial tensile tests
were conducted on standard dog-bone specimens fabricated from the same batch
of Nylon-12 used for the lattice samples. The tests were carried out using an In-
stron 5969 universal testing machine in accordance with ASTM D638 [130]. Five
specimens were tested to establish repeatability. The average elastic modulus was
found to be 1620 + 50 MPa, and the material density was measured as 949 + 7
kg/m3. These values were used in both numerical simulations and for evaluating
experimental uncertainty. The standard deviation reported reflects the variation
observed across the five specimens. The results of one of the samples are shown in
Figure 4.3
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Figure 4.3: Tensile testing of Nylon Samples

4.3 Numerical Methods

Numerical simulations form an important part of this work. The methodologies
for damage characterization are first developed using data from detailed numerical
simulations. This section provides details for numerical modeling. The details are
provided for 2D lattice structure and similar methods were used for 3D simulations
as well.

4.3.1 Model Setup and Excitation

The lattice structure was modeled numerically in ABAQUS/Explicit to simulate
ultrasonic wave propagation and structural response under damage scenarios. An
explicit dynamic solver was selected due to its superior performance in solving short-
duration, high-frequency wave problems without the need for complex convergence
controls. This approach is widely recommended in time-domain simulation of guided
waves in SHM applications due to its computational efficiency and accuracy for
transient loading problems [131, 132].

The geometry modeled was identical to the experimental lattice, a 3 X 3 array
of unit cells with a total of 36 struts as shown in Figure 4.1. A planar shell model
was created using 2D geometry extruded into shell elements with a thickness of 10
mm, consistent with the fabricated specimen. Material properties of Nylon-12 were
assigned to the model based on tensile test results discussed above.

A piezoelectric actuator was simulated by applying a prescribed displacement
at one end of the structure, representing the effect of an attached PZT sensor.
The excitation was applied as an in-plane displacement in the radial as well as
thickness direction, corresponding to the 215 kHz resonance of the selected sensor
(SMD10T2R111WL). Fixed boundary conditions are used at the bottom end of the
sample. The boundary conditions are also consistent with the conditions used in
the experimental set-up. Loading and boundary conditions are shown in Figure 4.4.

The waveform applied was a 3-cycle Hanning windowed sinusoid centered
at 215 kHz as shown in Figure 4.4. This signal shape is commonly used in SHM to
achieve a balance between frequency localization and time compactness, minimizing
reflections and spectral leakage [133]. The choice of 3 cycles ensures sufficient en-
ergy while maintaining temporal resolution, which is critical in distinguishing wave
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packets reflected from damaged regions.

Displacement amplitude was scaled to approximate the actuation effect of a 10V
PZT sensor, though exact electro-mechanical coupling was not modeled. Instead,
the excitation was imposed kinematically using displacement boundary conditions,
which is a validated simplification in SHM simulation literature [132]. The amplitude
is calculated by using Equation 4.1 for a voltage of 10V that is used for sensors in
the experimental setup.

ALjong = dssV (4.1)
4gsst

V= — F 4.2
e (4.2)
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Figure 4.4: (a) Boundary and forcing conditions (b) 3-cycle excitation wave with
central frequency of 215 kHz

Meshing and Solver Settings

The numerical model of the lattice structure was discretized using 8-node linear
brick elements with reduced integration (C3D8R) in ABAQUS/Explicit. This ele-
ment type offers a good balance between computational efficiency and accuracy for
wave propagation simulations. Reduced integration minimizes volumetric locking
and allows proper wave transmission, provided the mesh is sufficiently refined. To
resolve ultrasonic wave propagation accurately, the mesh density was guided by the
wavelength of the 215 kHz excitation signal. The wavelength \ was calculated using
the relation A = v/ f, where v = \/E/p. With an elastic modulus of 1620 MPa and
a density of 949 kg/m? for Nylon-12, the longitudinal wave speed is approximately
1308 m/s, yielding a wavelength of approximately 6 mm.

A mesh size of 0.25 mm was selected, corresponding to 24 elements per wave-
length. This satisfies the widely accepted guideline of using at least 20 elements
per wavelength in ultrasonic simulations to avoid numerical dispersion and artificial
attenuation [132]. Mesh convergence was confirmed by observing that further reduc-
tion in mesh size did not significantly alter the response amplitude at the receiver
node as shown in Fig. 4.5. The simulation was run for a total time of 0.0004 sec-
onds. ABAQUS automatically computed a stable time increment of approximately
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6.66 x 1078 seconds, based on the Courant condition and material properties. This
resulted in approximately 6000 time steps, which provided sufficient resolution to
capture wave propagation and reflections.

Ultrasonic actuation was applied as a prescribed in-plane displacement at the
actuator location. The signal followed a 3-cycle Hanning-windowed sinusoid centered
at 215 kHz. The response is recorded as time-amplitude response signal at the sensor
location. The resultant displacement magnitude at the sensor surface was extracted

at all time steps.
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Figure 4.5: (a) Representative mesh with element size of 0.25mm (b) Mesh conver-
gence

5.50E-06

5.00E-06

4.50E-06

Amplitude (mm)

4.00E-06

Modeling uncertainties

To improve the robustness and generalization of the machine learning-based damage
classification framework, uncertainty was introduced into the numerical simulations
to reflect realistic variability found in experimental conditions. This modeling ac-
counts for minor deviations in both material properties and sensor placement, which
are common in practical structural health monitoring (SHM) implementations. To
make the simulations match closely with the real structures, two type of uncertain-
ties are also included in the numerical model (a) variation in material properties
(b) variation in sensor locations. Variation in material properties is evident from
experimental measurements of tensile testing as given in section 4.2 with mean and
standard deviation known. Piezoelectric sensors are installed to the structure using
adhesive. The process of installing the sensors is prone to errors and can result
in mispositioning of sensors from its central locations. Normal distribution of these
uncertainties are included in the damage classification. Uncertainties were randomly
assigned from the normal distribution to the samples in the numerical study. The
uncertainty in sensor location is modeled with the normal distribution of A/(0, 22)
as shown in Fig. 4.6. The maximum value of 2mm for error in sensor location is
large enough to cater for human error in installing sensors. The uncertainties were
randomly assigned to the samples in numerical simulations
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Rd = relative displacement between two sensors
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Figure 4.6: (a) Uncertainty in sensor location modeled in numerical simulations (b)
Uncertainty modeled as a Gaussian distribution

4.4 Experimental testing Setup

The overall experimental setup is shown in Figure 4. A Keysight 33512B arbitrary
waveform generator was used to generate a steady-state sinusoidal waveform at a
specific frequency, and a DSOX2014A oscilloscope was used to digitize the signals us-
ing a sampling frequency of 9.6 MHz, with an average of 32 measurements to increase
the signal-to-noise ratio. A total of 10 samples of lattice structures were manufac-
tured using the Polymer-laser powder bed fusion (P-LPBF) method in a controlled
laboratory setup. Sensors were installed on the structure using cyanoacrylate glue
to give a strong adhesive bond. Artificial damage was induced to the structure using
hot wire cutter.

4.5 Signal Processing and extracting Damage Fea-
tures

Signal processing is a major step in any damage detection study. Once the raw data
is collected, the challenging step is interpreting the data and processing it to extract
useful information. The useful information in the context of damage detection are
features in the data which are sensitive to the damage. Identifying these features of
data is critical in developing a robust model.

A representative response signal for undamaged and a two-strut damaged struc-
ture is shown in the Fig. 4.8. The response signal comprises thousands of data
points which is not feasible for the damage classification algorithm. The aim of
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Figure 4.7: Experimental Setup

feature extraction is to reduce the size of the data while retaining all the useful
information of the signal. There are two techniques that are used in this study to
reduce the dimensionality of the data and to extract features.

4.5.1 Feature extraction using Principal Component Anal-
ysis

Principal Component Analysis (PCA) was employed as a dimensionality reduc-
tion technique and feature extraction tool for ultrasonic signal data. Each pre-
processed time-domain waveform was treated as a high-dimensional vector, with
each time sample representing a single variable. PCA projects this data onto a
lower-dimensional space, capturing the directions of maximum variance.

The principal components with maximum variability were extracted for each
signal and used as input features for the classifier. These components summarize
key variations in signal shape and amplitude, which are known to be sensitive to
the presence and severity of damage.

PCA provides several benefits in the context of structural health monitoring
(SHM). First, it reduces feature dimensionality, thereby minimizing redundancy and
the risk of overfitting in machine learning models. Second, it captures the dominant
waveform characteristics in a compact form, enabling effective comparison across
different damage states. Lastly, as an unsupervised method, PCA does not require
predefined labels or assumptions about the signal, making it adaptable to a wide
range of structural configurations.

The use of PCA in SHM is well-supported in literature. Raghavan and Ces-
nik [134] applied PCA to ultrasonic signals for damage detection in composite struc-
tures. Farrar and Worden [67] emphasized PCA’s utility in condition monitoring
and anomaly detection. Sohn et al. [135] demonstrated the application of PCA in
statistical pattern recognition-based SHM frameworks.
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4.5.2 Feature extraction using energy of signal

The second method for feature extraction is using the energy of the signal as a
feature. It is seen in our study that the energy of the signal is sensitive to the
presence and severity of damage. Variations in the energy of the signal are seen
in different time domains of the signal depending on the damage present in the
structure. As the wave travels through the structure, its interaction with the damage
varies depending on the location and severity of the damage. Important information,
therefore, is contained in the time history of the signal. The signal is divided into
multiple time regions of equal width, and the energies of the signal are calculated
individually for each region. The calculated energies from different regions of the
signal form the damage features as govened by Equation 4.3.

Damage Features = Energies of signal in different regions of signal(E1, E2, E3..

(4.3)
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Figure 4.8: Response signal for damaged and undamaged structure. blue line is
for undamaged structure, red is for 2-strut damaged structure. Energies E1-En are
extracted from n time regions of signal of equal width

4.6 Classification Model

A classification neural network is used to train and classify the data. The method
of supervised learning is used for this study. Data from the numerical samples are
assigned known damage classes which is then used to train the neural network. The
parameter space used was based on the features extracted from samples of one to
ten strut damages. The trained network is then validated with 20% of the data to
measure the prediction accuracy of the model. Categorical cross entropy is used as
loss function which is suitable for multi class categorization. The model was trained
using a fixed stopping criterion based on the training loss. Specifically, training was
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terminated once the training loss fell below a predefined threshold value of 0.02.
This threshold was chosen based on empirical observations where further reductions
in loss did not lead to meaningful improvements in classification accuracy.

A maximum cap of 300 epochs was also set to avoid unnecessarily long training
times in case the loss threshold was not reached. In practice, convergence was typ-
ically achieved within 120-180 epochs. No validation set was used during training;
the model’s performance was later evaluated on a separate test set after training
completion. The prediction accuracy is calculated as a percentage of correct predic-
tions of classes. Validation of the classification model is done using the experimental
data. The complete scheme of classification is shown in Figure 4.9.

Response Signals Training
from numerical -  Feature extraction — classification neural
simulations network
Prediction accuracy Damage Validation of trained
(PRA) classification —_— network

Normalizing
= experimental datato — | Feature extraction
numerical data

Response Signals
from experiments

Figure 4.9: Classification scheme used for damage quantification

4.6.1 Structure of Neural network

The structure of neural network is shown in Figure 4.10. Various components of the
neural network are elaborated in subsequent paragraphs.

Input features

The input features are the features extracted from the response signals using PCA
and energy features. These features are assigned the class labels based on their
actual damage state. This form the training data for the classification model.

Input Layer

The input layer is the first layer of the neural network model which links the input
neurons with the features of the training data. The number of neurons in input
layer correspond to the size of feature matrix. In this study, different feature sizes
will be studied, so the input layer size will be variable.

Hidden Layers

Two fully connected hidden layers are used for classification model in this study.
The activation between the layers is achieved through Rectified linear unit (ReLU)
function. Activation function is a mathematical operator which is applied to each
neuron for smooth and consistent transfer of information between layers. It also
adds nonlinearity to the model to train and model complex data. ReLLU performs a
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Input Features (X) Describes the input data in the form of features
corresponding to predictors and classifiers.

First layer with neurons. Each neuron
corresponds to an individual input feature. The
size of input layer is same as the number of
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Figure 4.10: Structure of the classification neural network

threshold operation on each element of the input, where any value less than zero is
set to zero, that is,

x, ifx>0
r)=1< - 4.4
/() 0, ifz<0 (4.4)
The number of neurons in hidden layers was chosen based on the optimized feature
size resulting in maximum prediction accuracy. The optimization of parameters of

neural network is discussed in detail in Chapter 6.

Output Layer

The output layer has the final predictions of the neural network. The number
of neurons in output layer are equal to the number of classes in the model. An
activation function is applied to the output layer to transform the raw information
from neurons (logits) into the actual classifications. Softmax activation function is
used at this stage which outputs the probabilities or classification scores for various
classes. Softmax function is given as:

Softmax(z;) = ——— for i =1,..., K, where K is the number of classes. (4.5)
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Loss Function

The loss function calculates the classification loss which is a measure of predictive
inaccuracy of classification model. The aim of the optimization algorithm used in
classification model is to minimize the loss function thus achieving the best predic-
tion accuracy. The loss function used for this study is categorical cross-entropy loss
function which is suitable for multi- class classification.

c
Categorical Cross-Entropy = — Z Yrue.e 10Z(Ypred.c) (4.6)

c=1

L2 Regularization

To improve the generalization capability of the machine learning model used in this
study, L2 regularization was incorporated into the loss function. L2 regularization
reduces the risk of over-fitting by penalizing large weights in the model, thus en-
couraging simpler models that generalize better to unseen data. The regularized
loss function is defined as:

LOSStotaI = LOSSoriginal +A Z w7,2 (47)

where:

® LoSSoriginal: The original loss function which in our case is Categorical Cross-
Entropy Loss.

e )\: The regularization parameter, a hyperparameter controlling the trade-off
between minimizing the original loss and penalizing large weights.

e w;: The weights of the model.

During training, A was treated as a hyperparameter and optimized using cross-
validation. This ensured a balance between fitting the training data and con-
trolling model complexity. The regularization parameter was varied in the range
A € [0.001,0.1], and the optimal value was selected based on validation performance.

Optimization Algorithm

The optimization algorithm used in this study is the limited-memory Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton algorithm (LBFGS) algorithm, a quasi-
Newton method for minimizing the cross-entropy loss during training. Unlike first-
order optimizers such as Stochastic Gradient Descent (SGD), L-BFGS uses curvature
information by approximating the inverse of the Hessian matrix based on a limited
history of previous gradients and parameter updates. This allows the algorithm
to converge quickly in smooth loss landscapes without computing the full second-
order derivatives, making it computationally efficient for medium-scale problems
[136]. L-BFGS was chosen in this study because it is particularly effective when
using full-batch updates, which were feasible given the moderate size of the dataset.
Compared to SGD and its adaptive variants like Adam, L-BFGS typically requires
fewer iterations to converge but has a higher per-iteration computational cost. Pre-
liminary experiments showed that L-BFGS consistently achieved lower final training
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loss and more stable convergence than SGD with momentum or Adam. While Adam
adapts learning rates per parameter and is widely used for deep learning applica-
tions, it sometimes led to fluctuations near convergence in this study [137]. SGD,
though simple and scalable, required careful tuning of the learning rate and more
epochs to reach acceptable loss values. Therefore, L-BFGS was selected as the
preferred optimizer due to its faster and smoother convergence in this controlled,
simulation-driven setup. A detailed overview of these optimization algorithms and
their trade-offs is provided in Ruder’s comparative study [138].

Output

Once optimization is achieved, the final classification scores are calculated which is
given as the output of the model. These classification scores give the probability
distribution of a feature belonging to a particular class.

4.6.2 Measuring performance of the classification model

The performance of classification is represented and measured by three methods in
this study.

1. Classification scores
2. Confusion matrix

3. Prediction accuracy

Classification scores

The classification scores are the posterior probabilities of data belonging to partic-
ular class labels. There are no hard classification outputs from the neural network;
instead it gives a probability distribution over most probable class labels.

Prediction accuracy

The performance of the model is measured as the prediction accuracy. Predicted
class labels are assigned to the classes with the highest classification score.

Number of correct predictions

Accuracy = (4.8)

Total number of predictions

Confusion matrix

Confusion matrix is a physical representation of predicted vs true class labels. It
gives both a measure of the performance of the model as well as the spread of
particular class labels to the neighboring class labels.

4.6.3 Summary of neural network

Various features of the classification neural network used for this study are given in
Table 4.1. Size of the input, output and hidden layers were optimized to maximize
the prediction accuracies.
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Table 4.1: Properties of Classification Neural Network

Property Value
Input Layer Variable depending on number of damage features
Hidden Layers 2 hidden layers with optimized size (ref Ch 6)
Activation Functions ReLU for hidden layers, softmax for output layer
Output Layer Variable depending on output classifiers
Loss Function Categorical cross-entropy
Optimization Algorithm LBFGS
Training Data 11,000 labeled samples
Evaluation Metrics Multi-class confusion matrix, Prediction accuracy
Regularization L2 regularization with optimized A
Model Evaluation Validation dataset with 20% of training data

4.7 Classification of experimental data

Experimental data is critical for validating the neural network classification model
developed using numerical simulations. However, the limited availability of exper-
imental data made it impractical to train a standalone classification model for the
experimental data. Instead, the experimental data is tested on the numerical clas-
sification model after normalizing the experimental data. The prediction accuracy
of the model with experimental data is then measured. This approach evaluates the
model’s generalization capability in real-world scenarios.

Normalizing the experimental data to scale it to the numerical simulated data
is a critical step. To address differences in scale and distribution between numerical
and experimental data,a robust scaling technique was used as given below. First,
the experimental data is normalized and scaled to the numerical data. Data nor-
malization is based on Equation 4.9.

, x — min(x)

= (4.9)

max(z) — min(z)

where z is the original value and 2’ is the normalized value. To rescale to a range
between an arbitrary set of values [a, b], the formula used is as follows:
Y —as (x — min(z))(b— a) (4.10)

max(z) — min(z)

The normalized experimental data is fitted to the classification model trained
with numerical data, and prediction accuracy is calculated.

4.8 Summary and Conclusion

In this chapter, the details of materials and methods for damage characterization
were given. The material properties, lattice structure, and sensors were discussed.
The methodology for numerical simulations and experimental setup was presented
in detail. Subsequently, the signal processing methods used for this study were
discussed. Toward the end, the parameters of the neural network classification
model used for this work were presented and discussed. The methodologies outlined

Chapter 4 Hasan Tarar 71



Detection and characterization of damage in lattice structures using ultrasonics

in this chapter provide a systematic approach for integrating numerical simulations
and experimental data in the structural health monitoring of lattice structures. The
proposed framework addresses the challenges associated with limited experimental
data, noise, and feature discrepancies through signal preprocessing and machine
learning techniques. Having established the complete methodology of the study, the
results will be presented in the subsequent chapters.
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Chapter 5

Ultrasonic Wave Propagation in
Lattice Structure

5.1 Introduction

Before developing a methodology for damage characterization in a lattice structure,
it is important to understand, explore and investigate the interaction and behaviour
of an ultrasonic wave within a lattice structure. This is achieved by solving analytical
formulations for a structure which can act as a building block of a lattice structure
also called the unit cell. Ultrasonic propagation is solved for the unit cell to calculate
the reflection and transmission coefficients and efficiencies in the lattice unit cell.
The results from the unit cell are then multiplied to a bigger structure formed by an
arrangement of unit cell to calculate the transmissions in that structure. Following
are the core areas which have been explored in this Chapter:

e Beam Crossing Analysis: First, the interaction of ultrasonic waves at a
beam crossing, which serves as a basic unit cell of a lattice structure is stud-
ied. Analytical formulations are used to calculate reflection and transmission
coefficients with is unit cell formed by a beam crossing.

e Wave Behavior in Larger Structures: Next, the behavior of waves is
extended from a single unit cell to a multi-cell lattice structure. This helps
to understand wave transmission and attenuation within a complete lattice
structure.

e Impact of Damage: The effect of defects is explored by analyzing how they
alter wave transmission and reflection within the structure. This step is crucial
for identifying and locating damage.

e Advanced Configurations: Finally, the basic beam crossing model is ex-
panded to include angular and 3D configurations, which can enable the analysis
of a variety of lattice geometries.

This chapter sets the stage for the rest of the thesis by building a foundational
understanding of ultrasonic wave propagation in lattice structures. The methods and
results presented here form the basis for developing advanced techniques for damage
characterization in later chapters. The chapter is arranged as follows: Section 5.2
gives the analytical formulations in a beam crossing which is similar to the lattice
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unit cell used in this work. Section 5.3 covers the multiplication of the unit cell to
calculate transmissions in a four cell lattice structure and effects with the presence
of damage. In section 5.4, a summary of analytical results for different unit cell
are presented. The final discussions and conclusion from the chapter are given in
section 5.5.

5.2 Ultrasonic transmission in a beam crossing

In this section, an analytical approach is explored to calculate transmission efficiency
of ultrasonic waves in a lattice unit cell. When an ultrasonic wave traveling through
a medium encounters a boundary, a part of wave is reflected back whereas a part
of wave is transmitted. Reflection and transmission coefficients for a beam crossing
will be calculated for cross section shown in Figure 5.1. These calculations are based
on the formulations given in [139]. Although the original formulation cited in [139]
was developed in the context of audio-frequency acoustic wave propagation, the
underlying physics i.e. linear elasticity and wave equation solutions, remain valid at
higher frequencies, including the ultrasonic range.

Because the linear elastic wave equation is derived from Newton’s laws and
Hooke’s law, it is inherently scale and frequency independent and consequently, the
same formulations developed for audible sound remain valid at ultrasonic frequen-
cies provided the medium behaves as a linear, homogeneous (or suitably modeled
anisotropic) continuum and the wave amplitudes stay within the small-strain limit.
In elastic solids, the Navier-Cauchy equations yield frequency-independent longitu-
dinal and shear wave speeds, so raising the frequency from kilohertz to megahertz
merely shortens the wavelength without changing the governing mathematics. Clas-
sic acoustics and elasticity texts explicitly state that ultrasonic waves are physically
identical to lower-frequency sound waves under these assumptions, and decades of
practice in nondestructive testing and medical ultrasound confirm that linear audio-
frequency theory accurately predicts ultrasonic propagation when attenuation or
dispersion, if present, is incorporated through frequency-dependent material param-
eters [140, 141, 142].

When a longitudinal ultrasonic wave is incident at a corner, a part of wave is
converted to bending wave and vice versa [139]. So, other than reflection and
transmission of waves, mode conversion of waves also takes place across boundaries.
The equations given below assume that both longitudinal and bending waves are
incident from the segment 1 of the structure. The incident velocity is vy, (subscript
showing the direction and segment) and the amplitudes of longitudinal and bending
waves are Ay and Apg, respectively. The velocity relations in different segments of
the structure are given in Equations (5.1).

) (Ape P 4 ppeikme o rjekBlff),
) — o, (Age 4007 4yt
y) = vy, (tape 9782 4 toypie ™ 82Y) wpy(y) = vy, tape IF2Y (5.1)
) (tape 507 4ty 097) ups(2) = w1,y e ?MT
) (

—jk —k —jk
tape 7Y 4 typiem P wpy(y) = vy, tape I

Here, {rp,tsp,t3p, tap} are reflection and transmission coefficients associated with
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Figure 5.1: Transmission of ultrasonic wave at a rigid beam crossing. Incident wave
enters from segment 1 and a part of it is transmitted to other three segments. A
part of wave is also reflected back. velocity, force and moment components in each
segment represent longitudinal and bending waves.

bending waves, {rp,tar,t3r,tsr} are reflection and transmission coefficients associ-
ated with longitudinal waves, and {r;,t25;,t35;, tan;} are nearfield coeflicients asso-
ciated with bending waves. There are a total of 12 unknown reflection and transmis-
sion coefficients. To find out the 12 unknown coefficients , we make use of boundary
condition equations. The are a total of 12 boundary conditions at the intersection
of 4 segments and are as given in Equations (5.2). The boundary conditions ap-
plied to the lattice segments are as follows. First, displacement continuity is
enforced at all junctions, meaning that the displacements at the connecting ends of
adjacent segments must be equal to ensure geometric compatibility. Second, force
and moment equilibrium is maintained by ensuring that the internal forces (or
stress resultants) and moments at each interface are balanced, in accordance with
Newton’s third law. Finally, compatibility of velocity transmission is ensured at
boundaries.

M, = My + M3 + My,

W) =wy , W1 =wW3 , W1 = Wy,

Ur1 = —VUp2 , VL1 =Ur3 , VU1 = —Up4
U1 = Vr2 , UB1 =UB3 , U1 = —UL4
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M, w, and F are defined as a function velocities and are given by Equations (5.3)

M — B1 8%vp: A — B, 0*vpy
1 — ) 2 — T 3
Jjw 0x? Jjw 0y?
Mo — _%321)33 . _&821)34
5 jw O0x? jw 0y?
B 0vp B Ovps . O0vps . O0vpy
3 3
- Rei) S - il (5.3)
Jjw Ox Jjw Oy
Frw — %831133 _ &831)34
P w o 0 TP T jw ayB
Fu= -2 g, DT
FL3 _ _EgSg 0vL3 ’ FL4 _ _E4S4 0vL4 ,
w Or w Oy

E,, is the modulus of elasticity for each section respectively. S, is the surface area of
ny, segment. Considering cy,, and cpg, as speed of longitudinal and bending waves
respectively in ny, segment, relations for k,,, kr,, and B,, are given as:

E, ar T
Con = — , CBn = 1-8hnfCLn
Pn
k'Ln:i7k'n:i (5.4)
CLn CBn
4,1
cpm
B, = =25
w
where m' = S, p, and h,, is thickness of ny, segment. By solving the governing

equations (5.1) using 12 boundary conditions in Equation (5.2), the 12 unknown
reflection and transmission coefficients can be calculated. Considering all segments

with uniform thickness h and defining a parameter P = \/1.8hf/c,, the 12 un-
known coefficients for A, =1 and Ag = 0 are given by Equations (5.5).

L 05+405) 05405 3P
P @—2j5)+3p T (2-2j)+3P " (2-2j)+3P
Lo Lb-05 o 05405 |
T 2—25)+3P T (2-2j)+3P M
(5.5)
Lo L5-05) 05405 o 2-2
BT 2—25)+3P T (2-2j)+3P ' (2—-2j)+3P
o L1505 054055
T e +3p T 2=2j)+3Pp YT

However, more useful than coefficients are reflection and transmission efficiencies
which are dimensionless and provide a direct interpretation of magnitude of reflected
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and transmitted waves. The power propagated by the flexural and longitudinal wave
is given as:
Wpn = 2m),cpnvg, , Win = mpcrnvi, (5.6)

The reflection and transmission efficiencies then are given as follows. For an incident
longitudinal wave (A = 1, Ap = 0) the efficiencies are given by Equations (5.7).
In the notation of efficiencies (p, ), the first subscript indicates the incident wave
and the second subscript indicates reflected or transmitted wave and the number
indicates the segment. 7770 thus means that the incident wave is longitudinal and
the efficiency is related to the transmitted longitudinal wave in segment 2.

l 2
Wi micpivgy

2
PLL1 = = — D) 7L
Wiy micpiviy
! 2
~ Wgs1  2mijcpivg, 2631|r|2
PLB1 = W 5 =
1+ myCr1viy Cr1
/ /
. WL2 o m2cL2 9 . WBQ B 2m2032 2 (5 7)
TLL = g T tar|” , ToB2 = W o |t :
1+ miCra 1+ miCra

/
WL3 mscCrs 9
— t N
TLL3 = = — | 3L| y TLB3 =
Wiy myCr1

WBg _ 2mg033|t |2

/

Wit miCra
/ /

. WL4 myCra 2 . WB4 . 2m4cB4

TLLA = = ———|tar|” . TrBa = =

2
W W ta)
/ | 4

1+ miCra 1+ miCra

In a similar fashion, the equations for reflection and transmission efficiencies for an
incident bending wave (A;, = 0, Ag = 1) can be set up. For a beam crossing with all
segments having uniform thickness h, the reflection and transmission efficiencies as
a function of frequency, thickness, and longitudinal wave speed (P = \/1.8hf/cL,)
are plotted in the Figure 5.2. This figure can be used to calculate the reflection
and transmission coefficients for a given thickness, excitation frequency and wave
speed governed by the material properties. It is important to note that sum of all
efficiencies equals to one. The reflection and transmission efficiencies of an incident
longitudinal and bending wave in Nylon-12 (p = 949kg/m?® E = 1620M Pa at an
excitation frequency of 215KHz are shown in Figure 5.3. For an incident longitudinal
wave, only bending wave is transmitted to the perpendicular legs of beam crossing
and transmission efficiency of longitudinal waves in these legs is zero. 46 percent of
wave amplitude is transferred in the horizontal leg of beam crossing and 15 percent
of wave amplitude is reflected back. These calculations will now be extended to a
multiplication of unit cells forming a lattice structure. The joining of lattice cells can
give rise to various configurations of lattice structures; however, only one structure
is tested for this particular cell formed by the presented beam crossing. In the later
sections, formulations for different other unit cells will also be discussed including
3D beam crossing and cells having angular struts. These findings can be particularly
useful for the solution of ultrasonic transmissions in strut-based lattice structures.
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Relection/Transmission Efficiencies

Relection/Transmission Efficiencies

(b) — J1.8h,flc,

Figure 5.2: Reflection and Transmission efficiencies for a beam crossing as a function
of P = /1.8hf/cp, represented as difference of curves on graphs. (a) Incident
Longitudinal wave (A = 1, Ag = 0) (b) Incident Bending wave (A, =0, Ap = 1)
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Figure 5.3: Transmission efficiencies of an incident longitudinal and bending wave
in Lattice unit cell of Nylon-12 at incident frequency of 215 kHz and beam thickness
of 10mm (a) Incident longitudinal wave (b) Incident bending wave
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5.3 Ultrasonic transmission in a lattice structure

The above sections provides the analytical equations for calculating ultrasonic trans-
missions in a lattice unit cell. Calculations for the unit cell are now extended to
calculate transmission within a structure formed with the unit cell. A four cell
lattice structure is shown in Figure 5.4. Transmission of an incident longitudinal
wave with unit amplitude was calculated through this structure. There are total
seven beam crossings in the structure marked as pl to p7. At each crossing, part of
amplitude will be transmitted and reflected in different directions. Wave reflection
from the damage and other boundaries of the structure is calculated using Equation
(5.8). Z; and Z, are the wave impedance of the two mediums at boundary. At the
damage location, which is being considered as the breaking of struts, air is taken as
impedance medium at the damage boundary. The amplitude of reflected wave at
these boundaries is taken into account for wave transmission calculations.

p:|’f‘|2, Tzl_p
Zy — Zy

r=———- 5.8
7.1 7, (5.8)

Zy = piciSt ,  Za = pacraSe

d/2

Figure 5.4: Unit cell of a lattice structure and a four cell lattice structure formed
from the unit cell. Two damage locations are marked in the structure as d2 and d1
corresponding to Strut 9 and 10 respectively. A longitudinal wave enters at point E
and transmissions are calculated at point S.

The transmission efficiency in the structures was calculated as follows:

e A incident longitudinal wave with unit amplitude enters the structure from
location E.

e The wave speeds of both longitudinal and bending waves were calculated using
Equation (5.4). Using the material properties of Nylon, thickness of 10mm and
frequency of 215KHz, the speed of longitudinal wave is 1306 m/sec and speed

Chapter 5 Hasan Tarar 79



Detection and characterization of damage in lattice structures using ultrasonics

of bending wave is 2248 m/s almost twice the speed of longitudinal wave. For
simplicity, the speed of bending wave is assumed twice the speed of longitudinal
wave.

e As the amplitude travels through the structure, its position and transmission
are calculated at each time interval. One time interval t is the time taken by
wave to travel the distance d/2, which is one half the length of strut.

e The new location of wave is estimated after each time interval. Since the
speed of bending wave is twice the speed of longitudinal wave, at any given
time interval, wave will have two possible locations (a) center of strut (b) at
the beam crossing

e When wave reaches beam crossing, its transmission and reflection amplitudes
are calculated using results given in Figure 5.3.

e When the wave encounters a boundary or damage, its behaviour is calculated
using Equation (5.8).

e The final amplitude of the wave at location S is calculated.

e (Calculations at the location S for 35 time intervals are shown in Figure 5.5.
It also includes the wave response for damages d2 and d1 corresponding to
breaking of Strut-9 and 10 in the structure.

Figure 5.5 shows the transmission amplitude for 35 intervals at location S in
the structure. At each interval, the transmitted amplitude is calculated at multiple
locations in the structure, and the total amplitude at location S for each interval is
plotted in the figure. Results for two damaged struts, Strut-9 (d2) and Strut-10 (d1)
are also shown in the figure. Changes in the transmitted amplitude are seen with
the presence of damage. Strut-9 (d2) lies in the direct path of longitudinal wave am-
plitude and hence higher wave attenuation is seen for the damage d2. This finding
confirms the hypothesis that damage alters the wave transmission in lattice struc-
ture. This finding will also form the basis for damage characterization in the lattice
structure where changes in the energy of response signal will act as key indicator of
damage. The maximum amplitudes recorded for the structure are compared with
the numerical and experimental results. These comparisons are shown in Table 5.1
for a four-cell and a nine-cell lattice structure. These cells are extensively explored
in in proceeding chapters using both numerical and experimental studies (Chapter
6 and 7). The results of these cells calculated numerically and experimentally are
given along with analytical calculations in Table 5.1 which shows a close agreement
in these results. Hence, the analytic formulations provided here can also provide a
quick mean of estimating the transmission efficiency in a multi-cell lattice structure.
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Table 5.1: Transmission efficiency through a lattice structure excited by a longitu-
dinal wave of unit amplitude. Numerical and experimental results are taken from
the study on same structures in Chapter 6 and 7.

il?rtetlce Struc- Analytical Numerical Experimental
4 Cell 0.082 0.080 0.078
9 Cell 0.022 0.020 0.018
——Undamaged
—Strut-10 damage(d1)
0.1+ Strut-9 damage(d2) -
Q
S o008 1
£
E
<
5 0.06 - .
2
£
7]
S 0.04- .
=
0.02 - \/ :
M\\,’%
0o 10 15 20 25 30 35

Time intervals (n)

Figure 5.5: Analytical estimation of transmitted energy in lattice structure shown
in Fig. 5.4. Calculations are shown for 35 time intervals, effects of two damaged
struts are also shown.

5.4 Formulations for an angular and a 3D cell

To generalize the ultrasonic wave propagation analysis beyond simple beam cross-
ings, this section introduces formulations for angular and three-dimensional (3D)
lattice unit cells. These configurations represent more complex and practical ge-
ometries commonly encountered in real-world lattice structures. By expanding the
scope of the analysis, the behavior of ultrasonic waves in diverse lattice arrange-
ments can be systematically evaluated. A 3D and an angular beam crossing as
shown in Figure 5.6. The changes in the equations as compared to simple beam
crossing explored in the previous sections are presented along with results for a rep-
resentative cell. The formulations will enable analytical modeling of a variety of
lattice structures.

5.4.1 Angular beam crossing

An angular beam crossing includes one or more struts oriented at an angle 0 relative
to the others. This configuration reflects the design-specific orientations often seen
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Strut Dimensions = 20x5x2 mm
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Figure 5.6: Representation of Angular and 3D Unit cells (a) Angular Cell (b) 3D
Cell

in advanced lattice designs. Analytical modeling of such crossings involves resolving
wave components along multiple axes to capture the effects of angular orientations on
transmission and reflection. The angular beam crossing is shown in Figure 5.6(a).
One strut of beam is at an angle of 8. The updated velocity equations for the
structure are given by Equations (5.9). Strut 2 which is at an angle 6 will have
two x and y components now. The resultant transmission in strut 2 is calculated
from the component transmissions in x and y directions. The results for an incident
longitudinal wave (A, = 1) for the cross section are given in Table 5.2. The key
aspects involved in the analysis of an angular beam are follow:

e Decomposing Wave Components: For the strut oriented at an angle 6, the
incident wave is resolved into its x- and y-components. The transmitted wave’s
amplitude in the angular strut is derived by combining the contributions of
these components.

e Modified Velocity Equations: The standard velocity equations are up-
dated to incorporate angular dependencies, where the angular strut contributes
distinct velocity terms for the horizontal and vertical components. These com-
ponents are coupled through boundary conditions, ensuring consistency at the
crossing point.

¢ Reflection and Transmission Efficiencies: The reflection and transmis-
sion efficiencies for longitudinal and bending waves are calculated, taking into
account the angular orientation. For example, when a longitudinal wave is
incident, the angular strut redistributes wave energy, leading to variations in
transmission efficiency compared to a straight beam crossing.

The updated velocity equations for the angular beam crossing are as given below.
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The only change is seen in equations of vps.
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For the strut oriented at an angle €, the wave components are resolved into their x-
and y-components as:

tor, = tor cos, tor, = torsind,
2L, 2L 2Ly 2L : (510)
tQBz :tQB COSQ7 tQBy :th sin 6.

Reflection and transmission efficiencies for the angular crossing incorporate these
decomposed components.

Table 5.2: Transmission efficiencies of an incident longitudinal wave in Lattice unit
cell of Nylon-12 at incident frequency of 215 kHz and beam thickness of 10mm

prr1 | 0.155 | prp1 | 0.032
TLL2 0.13 TLB2 0.11
TLL3 0.33 TLB3 0.023
TLL4 0 TLB4 0.22

5.4.2 3D Beam Crossing

Three-dimensional beam crossings involve multiple struts oriented along the z, y,
and z axes, creating a highly interconnected network. Such configurations are rep-
resentative of 3D lattice structures used in real-world applications. The 3D beam
crossing is shown in Figure 5.6(b). There are total of six struts in x, y and z di-
rections. The updated velocity equations for the structure are given by Equations
(5.11). The results for an incident longitudinal wave (A = 1) for the cross section
are given in Table 5.3.
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Table 5.3: Transmission efficiencies of a 3D beam crossing for an incident longitu-
dinal wave of unit magnitude in Lattice unit cell of Nylon-12 at incident frequency
of 215 kHz and beam thickness of 10mm

PLL1 0.155 PLB1 0.032
TLL2 0 TLB2 0.0.08
TLL3 0.46 TLB3 0.032
TLL4 0 TLB4 0.08
TLL5 0 TLB5 0.08
TLL6 0 TLB6 0.08

5.5 Conclusions

In this chapter the formulations for calculating ultrasonic transmission in a cross
beam were solved. The cross beam can act as a unit cell for a lattice structure. The
ultrasonic transmissions calculated as a function of incident wave frequency are given
in Figure 5.2. Based on the results of the unit cell, the transmission efficiencies of
a four cell structure were calculated and the changes in the transmission efficiency
with the presence of damage were also calculated. This analytical method can
provide a quick and efficient method of calculating ultrasonic transmission a lattice
structure. Changes to the transmissions with the presence of damage also provides
an analytical validation for further damage characterization studies. The velocity
equations for an angular and 3D unit cell are also given which are used to calculate
the transmission efficiencies for a particular unit cell as given in Table 5.2 and 5.3
respectively. Different form of unit cell can be used for evaluation of different 2D
and 3D lattice structures.
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Chapter 6

Damage Detection and
Quantification

6.1 Introduction

This chapter presents the findings of the damage detection and quantification study
conducted on a 2D lattice structure, fabricated using the Polymer-Laser Powder Bed
Fusion (P-LPBF) method of additive manufacturing (AM). AM enables the creation
of highly complex and customized geometries, which are especially advantageous for
lightweight, high-performance structures. The lattice structure used in this study
consists of a nine-cell 2D configuration made from Nylon, a material chosen due
to its cost-effectiveness in manufacturing and its favorable ultrasonic transmission
properties. Nylon is a commonly used material in AM due to its affordability and
ease of processing. Furthermore, its ability to transmit ultrasonic waves effectively
makes it suitable for ultrasonic testing.

While Nylon was selected for this study, the methodology developed can be easily
extended to other AM materials, which may have different properties or applications.
AM allows for the use of a wide range of materials, including metals, polymers, and
composites, and this damage detection framework is versatile enough to be applied
to other materials commonly used in AM, such as titanium or aluminum alloys,
which are frequently used in aerospace and automotive industries.

The intricate internal geometries inherent to AM structures, like the fine lat-
tice struts, make them highly susceptible to various types of damage, including
fracture or breaking under stress. These complex structures are prone to manufac-
turing defects, such as incomplete fusion or internal voids, which can compromise
their performance. Additionally, stress concentrations within the geometry can lead
to premature damage. Traditional damage detection methods, such as visual in-
spection, are not practical for such complex geometries, underscoring the need for
non-invasive and reliable damage detection techniques like ultrasonic testing.

Alternative non-contact techniques such as infrared thermography, X-ray com-
puted tomography (CT) and vibration-based modal analysis were reviewed but not
considered for the present study. Thermography is well-suited to near-surface de-
fects in thin composites, yet its spatial resolution (0.5—1 mm) and sensitivity decrease
markedly for polymer lattices thicker than 5 mm [143]. X-ray CT provides excellent
volumetric resolution but requires long scanning times and high capital cost, mak-
ing it impractical for in-situ monitoring of large, additively-manufactured lattices
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[144]. Vibration-based methods detect global stiffness changes, which are insensitive
to single-strut failures in lightweight periodic structures and typically require sub-
stantial mass-normalization and boundary-condition control [?]. Ultrasonic guided
waves, by contrast, offer (i) sub-millimetre defect sensitivity, (ii) rapid single-shot
interrogation, and (iii) straightforward integration of low-cost piezoelectric discs.
Hence, this work focuses on ultrasonic SHM while acknowledging that thermogra-
phy, CT and modal analysis remain valuable complementary tools for other defect
types or validation purposes.

In this study, ultrasonic wave propagation was utilized to detect and quan-
tify damage within the lattice structure. Ultrasonic waves are sensitive to internal
changes, such as strut fractures, and offer an effective way to assess the structural
integrity of these complex geometries. The research explores a range of damage
scenarios, from one to ten broken struts, to assess how ultrasonic signals can detect
and classify varying levels of damage. Different feature extraction techniques were
used to extract useful information from the response signal which were then used to
train a classification model for damage characterization.

This chapter is organized as follows:

e Section 6.2 describe the details of the testing setups, numerical modeling, and
feature extraction.

e Section 6.3 presents the results of damage quantification based on the numer-
ical work.

e Section 6.4 discusses the damage detection results and their interpretation.

e Section 6.5 provides details of the experimental results, validating the damage
detection framework.

6.2 Numerical model and feature extraction

This section presents the numerical model used for simulating damage in a 2D
lattice structure, the damage cases considered, and the techniques employed for
feature extraction. Ultrasonic wave propagation is analyzed, and response signals are
processed using Principal Component Analysis (PCA) and energy-based methods to
extract features for damage classification. These features form the basis for training
a neural network to assess the health state of the structure.

6.2.1 Lattice structure for numerical simulations

The lattice structure for numerical simulations is shown again in Figure 6.1. The
2D lattice structure comprises nine unit cells with a total of 36 struts. Two sensors
are simulated for the structure, one at the top marked as Excitor and one at the
bottom marked as Sensor, however they were also used in opposite roles. A 1.5 mm
crack is simulated as damage in the structure. A 2-strut damage is shown in Figure
6.1(c) marked as d1 and d2.
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Figure 6.1: 2D lattice structure for numerical damage quantification (a) unit cell
with mutually perpendicular struts(b) A 2D 36-strut lattice structure with two sen-
sors (one at top and one at bottom) (c) lattice with simulated damage - two strut
damage marked as d1 and d2

6.2.2 Damage cases and Sample size

One to ten strut damage is considered for the study. This forms a total of eleven
damage cases i.e. one undamaged and 10 damaged cases for different number of strut
damages. The nomenclature used to identify strut damage is SD. For clarity, 0-SD
is designated as undamaged, 1-SD is for one strut damage and 10-SD is for ten strut
damage. The number of possible damage locations increases exponentially as num-
ber of damaged struts increases with possible damage locations for ten strut damage
close to twenty million. The factors that drive the sample size are (a) improving
accuracy of the classification model (b) computational limitations (c) adequately
covering the design space. Latin hypercube sampling (LHS) technique [145] is used
for sample selection throughout the design space. LHS is a quasi-random sampling
technique that ensures more distributed sampling. 36 parameters were assigned to
LHS based on the locations of 36 struts, which were used to drive the design space.
500 samples are modeled for undamaged and for each damage case respectively. The
sample size was chosen as 500 to keep a balance between computational and model
efficiency. A total of 5500 samples are simulated in ABAQUS. For each sample, two
responses are recorded: one with the transducer at the top and sensor at the bot-
tom, and the other with the transducer at the bottom and sensor at the top. This
leads to a total of 11000 unique data points with 1000 data points for each damage
case. Material properties and error in sensor locations are randomly assigned to
each sample from the normal distribution of these uncertainties as given is section
4.3.1.

6.2.3 Simulation of wave propagation

The simulation of wave propagation in the lattice structure is shown in Figure 6.2
for an undamaged and damaged structure (this simulation can be viewed when
the document is open in Acrobat reader). The wave travels from the excitor and
its response is captured at the other end of the structure. The total time of wave
simulation is 0.001 sec but the frames have been slowed down to appreciate the wave
response. The limits of magnitude are recalculated in each frame to better visualize
as wave moves through the structure. The reflection of the wave from damage can
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be seen in the initial frames.
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Figure 6.2: ABAQUS simulation of wave propagation in an undamaged and dam-
aged structure: The figure illustrates the propagation of ultrasonic waves from the
excitation point, with the response captured at the opposite end of the structure.
In the damaged structure, wave reflections from the damaged struts are visible, in-
dicating the interaction of the wave with the damage. These reflections play a key
role in damage detection.

6.2.4 Response signals

The raw response signals recorded at the opposite end of the structure are shown in
Figure 6.3. The time domain response signal is recorded for a total time of 0.0004
sec. The amplitude of response is given in mm. The response signals are plotted
for different damaged states against the undamaged response signals. Changes in
response signals with the presence of damage can be seen for different damage cases.

6.2.5 Frequency response

The frequency response of the structure calculated using FFT is shown in Figure
6.4. The frequency response is centered around the excitation frequency of 215 kHz.
While there is a change in the magnitude of the frequency response with damage,
no phase shift is observed when damage is introduced.

6.2.6 Feature extraction

The response signal consists of more than 6000 data points. To reduce the dimen-
sionality of the data and to extract useful features of data, two techniques were
employed. The details of these techniques are already provided in 4.5 and extracted
features are discussed below.

Features extraction using PCA

Principal component analysis(PCA) is used to extract features while significantly
reducing the dimension of data. Principal components which defined the greatest
variability in the data were identified. The number of principal components defining

88 Chapter 6 Hasan Tarar



Detection and characterization of damage in lattice structures using ultrasonics

x108 x10°8

Undamaged |1
——1 Strut damage

—— Undamaged
—— 3 Strut damage

Amp(mm)
o

0 1 2 3 4 0 1 2 3 4
t(sec) %1074 t(sec) %107

Undamaged 1 —— Undamaged
——5 Strut damage —— 7 Strut damage

Amp(mm)
o

Amp(mm)
o

0 1 2 3 4 0 1 2 3 4
Ysec) x1074 t(sec) x107
Figure 6.3: Raw time-domain response signals for four damage cases compared
with the undamaged case: The plots show the amplitude of the response signal
recorded at the opposite end of the structure for different damage states. As the

number of damaged struts increases, the change in the signal amplitude becomes
more pronounced, indicating the presence and severity of damage.
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Figure 6.4: Frequency response (FFT) of the numerical model of the 2D lattice
structure: The frequency response is centered around the excitation frequency of
215 KHz. Changes in the magnitude of response signal are observed

the percentage variability of data is shown in Table 6.1 below. It is seen that ninety
percent of the data is defined by the first 29 principal components.

The plot of the first two principal components is shown in Figure. 6.5 which
shows the variability of data and clustering for undamaged and damaged cases (SD-
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Table 6.1: No of Principal components defining the percentage variability of data

No of Principal Components | Variability of data (%)
6 60
17 80
29 90
45 95
79 99

strut damage). There is better variability of data for lower damage cases whereas a

lot of overlap is seen for higher damage cases.
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Figure 6.5: First two Principal Components of the numerical data. This plot shows
the variability of the data for undamaged and damaged cases (SD-strut damage).
The first two principal components account for a large portion of the variability in
the data, with lower damage cases showing distinct separation, while higher damage

cases exhibit more overlap

Energy Features (EFs)

The second method to extract features is to calculate the energy of the signal in
different regions and using them as damage identification features. It was seen from
the analytical study and the actual response signals (Figure 6.3) that the energy of
the signal changes by the presence of damage. So, it is intuitive to use energy of
signal as a damage sensitive feature. The plot of two energy features is shown in
Figure. 6.6. A progressive change in the energies of signal is seen as the severity of
damage increases. This shows that energy of signal is sensitive to the presence and
severity of damage. The figures also shows that distinction between damage classes
is good for lower damage cases. But for higher damage classes, the distinction starts
to decrease. There is lot of overlap seen between the damage features in higher
damage classes. This forms the basis of classification in damage quantification.
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Figure 6.6: Energy feature plot for the numerical data for different damage states
. The plot compares two energy features across different damage cases (SD-strut
damage). As the number of damaged struts increases, the energy of the signal
decreases progressively. However, the distinction between damage classes diminishes
for higher damage cases, indicating a challenge in differentiating severe damage

6.2.7 Optimizing the classification model

The classification neural network is fitted to the data to determine the health state
of the structure. One of the outputs of the classification model is the prediction
accuracy of the model. Prediction accuracy is the percentage of correct predictions
made by the classification model. Parameters of classification model were optimized
to extract the best prediction accuracy. The optimized parameters of classifica-
tion model are discussed below. Each parameter was optimized by fixing the other
parameters of the model.

Optimizing the size feature vector

Size of feature vector is the number of features used to build the classification model.
Prediction accuracy of the classification model was measured using different size of
feature vectors. The increase in the size of the feature vector was seen to result in an
improved accuracy of the classification model until an optimized value was reached.
This is shown for both energy features and principal components in Figure 6.7. The
optimized size of energy features is 50 and the number of principal components
that provide the best prediction accuracy is 100 which describes more than 99%
variability of data.

Optimizing the structure of Neural network

The parameters of the classification neural network were optimized to yield the best
prediction accuracy. The number of hidden layers and the size of the hidden layers
play an important role in the performance of the classification model. The param-
eters and their optimized values are given in Table 6.2. Parameter optimization
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Figure 6.7: Optimizing Feature Vector Size: The graphs illustrate the impact of
feature vector size on prediction accuracy for (a) energy features and (b) principal
components. Accuracy improves with increasing vector size, stabilizing at optimal
values of 50 for energy features and 100 for principal components. This demonstrates

the importance of balancing feature size to enhance model performance without
overfitting

results are depicted in Figure 6.8. Maximum two hidden layers were sufficient to
produce optimized results and any increase in number of hidden layer did not offer
any improvement in the performance of the model. Similarly, the optimized size of
neurons in each layer also corresponds to the optimized feature vector size.

Table 6.2: Optimized parameters of neural network

Parameter Optimized value
No of hidden layers 2
100 for PCA

Size of first hidden layer 50 for Energy features

Size of 2nd hidden layer | 05 (half the size of output vector)

L2 Regularization Optimization

The regularization parameter A\ was treated as a hyperparameter and optimized
using a grid search in the range [0.001,0.1]. This process was carried out through 5-
fold cross-validation, where the dataset was split into training and validation subsets
to assess generalization performance. For each value of A, the neural network was
trained, and the average validation accuracy across the folds was computed to ensure
robust evaluation. The model’s performance peaked at an optimal A\ value of ap-
proximately 0.02, balancing the trade-off between overfitting and underfitting. This
approach ensured that the model maintained complexity appropriate for accurate
predictions while avoiding overfitting to the training data.

Having discussed the optimization of the classification model, the results of the
damage detection and quantification will now be presented.
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Figure 6.8: Optimizing Neural Network Parameters: The graphs depict the effect of
varying (a) the number of hidden layers, (b) the size of the first hidden layer, and
(c) the size of the second hidden layer on prediction accuracy

6.3 Numerical results for damage quantification

In this section, the numerical results of damage quantification are presented. The
results of damage quantification are presented before damage detection as damage
detection will be a subset of the damage quantification problem and will be treated
as a binary classification problem. So, the results of damage detection will be
a later stage. Damage quantification involves quantifying the severity of damage
in the structure which in this case will be to determine the number of damaged
struts in the structure. As previously discussed, a total of 11 damage states are
being considered in this study, where one damage state is for undamaged and 10
damage states correspond to the number of damaged struts in the lattice varying
from one to ten. Three different damage quantification levels were explored in this
study. Each level is differentiated from the other on its treatment of damage cases

and classification scheme. The three quantification models are enumerated below,
followed by their details and results.

1. Level 1 quantification: Quantifying the exact number of damaged struts (from
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one to ten strut damage)

2. Level 2 quantification: Quantifying the damage into a group of broken struts
(like a group of three to five damaged struts)

3. Level 3 quantification: Measuring the number of damaged cells in the structure

6.3.1 Level 1 quantification

For the level 1 quantification, the aim was to predict the total number of damaged
struts in the structure. There are a total of 11 classifiers in this level, each cor-
responding to a number of damaged struts. One classifier is for undamaged and
ten classifiers for one to ten strut damages. Features were extracted from 11,000
response signals of the simulated samples.

Training data

Eighty percent of the data was prepared as training data for the classification model.
Eleven class labels were assigned to the corresponding damage state of the data.
Class labels were named as 0SD (Strut Damage) for undamaged, 1SD for one strut
damage, and so on, with the final class label 10SD for ten strut damage.

Results

The performance of the classification model is represented in three forms, i.e. clas-
sification scores, confusion matrix, and prediction accuracy. An example of the
classification scores of four damage cases is shown in Figure 6.9. The green bars
represent the actual number of damaged struts. The classification scores are dis-
tributed to the neighboring classifiers as well. Moreover, the classification scores are
in the range of 0.3-0.4, indicating low confidence levels of measurement.

Prediction accuracy of the model is measured by assigning the predicted class to
the damage case with highest classification score. The confusion matrices showing
a comparison of the true and predicted classes using both Principal components
(PCs) and Energy features (EFs) is shown in Figure 6.10. The confusion matrices
shows good performance of the model for lower damage classes, with the classifiers
being confused with the neighboring classifiers only. For higher class labels , the
performance of the model is significantly reduced and a wide spread of classifier
confusion is seen.

The prediction accuracy of the model was then measured, which shows how well
the model is able to predict the true class labels. The prediction accuracy using
eleven classifiers is given in Table 6.3 showing a prediction accuracy of 67% using
PCs. It is important to mention here that prediction accuracy is not a good measure
of the performance of the model in this case of eleven classifiers, as there is a lot of
spread in the data and the classification scores are low for the predicted classes. It is
better to view these results as a probability distribution of the data in multiple class
labels giving a better understanding of the probable damage state of the structure.
The probability distribution of the classified data along with the density estimate
is shown in Figure 6.11. The density estimate shows a distribution of classification
scores with neighboring classifiers. The probability distribution to the neighboring
classes is high for the higher classes of damage.
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Figure 6.9: Classification scores for different strut damage levels. The green bars
indicate the actual damage states, while the distributed scores across neighboring
classifiers demonstrate the uncertainty in predictions. The spread reflects decrease
in classifier accuracy, especially for higher damage states

Table 6.3: Prediction accuracy of classification model using 11 classifiers

Using PCA | Using EF's

Prediction Accuracy (%) | 67% 63%
C ion Matrix using Principal Comp Confusion Matrix using Energy Features
oso [N s [ 2 | oso ROM ¢+ | 2
1SD | 2 s0 3 2 1D | 4 Ml 6 1
25D 5 8 5 3 25D 3 9 5
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Figure 6.10: Confusion matrix showing classification results for 11 classifiers using
principal components and energy features. The matrix highlights good performance
for lower damage levels, but significant confusion among neighboring classes, par-
ticularly for higher damage states

6.3.2 Level 2 quantification

In the level 2 quantification, the number of classifiers were reduced by combining
different damage states of the structure. The model with eleven classifiers did not
provide a good classification of the data, especially for higher damage classes. Two
new classifier sets were defined as follows:
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Discrete Probability Distributions with Kernel Density Estimator (KDE)
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Figure 6.11: Probability distribution of classification scores for 11 classifiers. The
density estimate illustrates the spread of predicted scores across neighboring classes,
with higher damage states showing broader distributions, suggesting reduced confi-
dence in predictions for these state

e In the first set of six classifiers, two damage states were combined to form one
classifier (five classifiers for ten damage states) and one classifier was used for
the undamaged state as shown in Table 6.4.

e In the second set, five classifiers were defined with lower damage cases having
more classifiers than higher damage cases, as shown in Table 6.5. This was
based on the findings of level 1 quantification, which showed better perfor-
mance for lower damage cases.

Table 6.4: Class labels using six classifiers

Class definition Old class labels | New class labels
Undamaged 0SD 0SD

One to two struts damage 1SD, 2SD 1-2SD

Three to four struts damage | 3SD, 4SD 3-4SD

Five to six struts damage 55D, 6SD 5-65D

Seven to eight struts damage | 7SD, 8SD 7-85D

Nine to ten strut damage 9SD, 10SD 9-10SD

Training data

The data was trained based on the new set of class labels.

Feature vectors were

assigned new combined class labels and the classification model was trained accord-

ingly.
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Table 6.5: Class labels using five classifiers

Class definition Old class labels New class labels
Undamaged 0SD 0SD

One strut damage 1SD 1SD

Two to three struts damage | 25D, 3SD 2-3SD

Four to six struts damage 4SD, 5SD, 6SD 4-6SD

Seven to ten struts damage | 7SD, 8SD, 9SD, 10SD | 7-10SD

Results

The results for the level 2 quantification are now given. The confusion matrix
for five and six classifiers is shown in Figures 6.13 and 6.12, respectively. The
confusion of data with neighboring classifiers is much less in five classifiers than
in six classifiers. Similarly, the classification scores for four damage cases (0SD,
35D, 55D, 7SD) are shown in Figure 6.14 for eleven, six, and five classifiers. The
classification scores for the correct predictions are in the range of 0.3-0.4 for 11
classifiers, 0.6-0.7 for six classifiers, and 0.8-0.9 for five classifiers. These classification
scores indicate high confidence levels for the model with five classifiers. Finally,
the prediction accuracy for the five and six classifiers is given in Table 6.6. The
prediction accuracy has significantly improved by grouping the classifiers with model
having five classifiers greater than 90 percent accuracy. This is associated with the
fact that this classification model has much higher classification scores for correct
observation indicating high confidence levels.

Table 6.6: Comparison of prediction accuracy using five and six classifiers, showing
improved performance with reduced classifier complexity.

Prediction accuracy | Prediction accuracy
Using PCA Using EF's
06 classifiers | 84% 79%
05 classifiers | 94% 92%
Confusion Matrix using Principal Components Confusion Matrix using Energy Features

0SD 0SD

1-2SD 1-28D

3-4SD

e
A
7]
)

True Class
True Class

5-6SD 5-6SD

7-8SD 7-8SD

9-10SD

0sD 1-2sD 34D  5-6SD  7-8SD  9-10SD 0sD 1-28D  3-4sD  5-6SD  7-8SD  9-10SD
Predicted Class Predicted Class

9-10SD

Figure 6.12: Confusion matrix for classification results using six classifiers, with (a)
principal components and (b) energy features. The matrix demonstrates reduced
confusion compared to 11 classifiers, especially for intermediate damage levels, in-
dicating improved classification with fewer groups.
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Confusion Matrix using Principal Components
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Figure 6.13: Confusion matrix for classification results using five classifiers, with
(a) principal components and (b) energy features. The matrix reveals significantly
better classification performance, particularly for higher damage levels, suggesting
that grouping damage states enhances prediction accuracy.
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Figure 6.14: Comparison of classification scores for eleven, six, and five classifiers
across selected damage cases. The scores show increasing confidence levels with
fewer classifiers, as indicated by higher scores for correct predictions and reduced
spread across neighboring classes.

Significance of quantifying group of damaged struts

In context of lattice structures, identifying a range of damaged struts makes an
intuitive sense. This is because the lattice structures are formed with a large number
of struts and it would be useful to identify a range of damaged struts which may
drive a decision on the reliability of structure. For example, it would be useful to
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know that four-to-six struts are damaged in the structure with high confidence than
estimating the exact number of damage struts with low confidence. Quantifying a
group of damaged struts may provide a reliable model for application on a variety
of lattice structures and help implementation in real world application.

6.3.3 Level 3 quantification

Another important form of damage quantification in view of lattice structures can
be to determine the number of damaged cells or zones in the structure. Lattice
structures are formed by multiplication of its unit cell, and a typical lattice is formed
by a large number of cells. It can serve a useful purpose to determine the number of
damaged cells in the lattice based on which a decision regarding integrity of structure
may be made.

With this application in mind, the lattice structure was divided into nine cells
each containing four struts. The cell partitions are shown in Figure 6.15.
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Figure 6.15: Partitioning of the lattice structure into nine cells, each containing four
struts. This division provides a framework for damage quantification at the cellular
level

Training data

A total of six classifiers were defined to quantify damaged cells. A label was assigned
up to four cell damage (CD) and then a label was assigned for five or more cell
damage, which would mean failure (F) of the structure. The class labels are shown
in Table 6.7. Data from the 11,000 samples were assigned class labels based on the
presence of damaged struts in the cells. If more than one strut is damaged in a cell,
it would still be quantified as one damaged cell.
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Table 6.7: Class labels for quantifying damaged cells

Class definition Class label
Undamaged 0CD

One cell damage 1CD

Two cell damage 2CD
Three cell damage 3CD

Four cell damage 4CD

Five or more cell damage | F

Results

The classification scores for few damage cases are shown in Figure 6.16. The spread
of classification scores indicates good performance of the classification model. The
confusion matrix is shown in Figure 6.17. The prediction accuracy for quantifying
damaged cells is 92 % using PCA and 89 % using EFs. Excellent prediction accuracy
combined with high classification scores of the predictions indicated a reliable model
for quantifying number of damaged cells in the structure.

Classification scores for different damaged cells

1 1 1

0.8 08 0.8
0.6 L o6 o 0.6
@ o -
13 Q o
o 0 o
o 2]
P04 0.4 0.4
02 02 02
0 0 0
0CD 1CD 2CD 3CD 4CD F 0CD 1CD 2CD 3CD 4CD F 0CD 1CD 2CD 3CD 4CD F
Damage State Damage State Damage State
07 05 1
06
04 08
05
§0.4 g 0.3 g 0.6
3 2 o
wn 2]
03 02 04
02
0.1 0.2
0.1
0 0 0
0CD 1CD 2CD 3CD 4CD  F 0CD 1CD 2CD 3CD 4CD F 0CD 1CD 2CD 3CD 4CD F
Damage State Damage State Damage State
I ciassification scores for different damage states [ | Actual damage state

Figure 6.16: Classification scores for different number of damaged cells. The spread
of scores demonstrates the model’s ability to quantify damaged cells enhancing over-
all assessment reliability.

6.4 Numerical damage detection

The first aim of this study was to detect the presence of any damage in the structure.
This is to distinguish between the healthy and damaged structures. In this case,
a structure with any number of damaged struts will be considered as a damaged.
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Figure 6.17: Confusion matrix for level 3 quantification using PCA. The matrix
indicates strong classification performance, with minor misclassifications suggesting
the model’s potential for quantifying damaged cells.

For this, a binary classification model was trained on the numerical data with two
classifiers i.e. damaged and undamaged. The prediction accuracy for detecting the
presence of damage was very high in the range of 92-94 percent. This is also indicated
in the confusion matrices of damage quantification as shown in Figures 6.10, 6.12 and
6.13 which shows high accuracy of predicting undamaged class. Furthermore, the
classification scores for damage detection were also in the range of 0.8-0.9 indicating
high confidence level of the predicted results.

6.5 Experimental model and results

To validate the numerical results, detailed experimental work was undertaken. The
details of experimental apparatus, materials, and methods are already discussed
in the Chapter 4.4. The numerical study has provided a good methodology for
damage detection and quantification in which different quantification models were
developed and tested. The experimental work is aimed to validate the applicability
of the methodology of real structures. The numerical classification model was built
using a large sample size which provides a robust trained classification model. This is
a limitation with experimental work where only a limited number of samples can be
tested. It is not feasible to build a standalone classification model using experimental
data for the design space of the current problem having a large number of classifiers
and damage cases. Therefore, a strategy was devised to test the experimental data
on the numerical classification model. The strategy had following key aspects:

e To overcome the limitation of experimental data, yet have a methodology to
validate the the numerical model.
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e In the first step, the experimental data was scaled and normalized to the nu-
merical data using methodology given in Chapter 4.7. The ensured consistent
scales for both data sets.

e Features including PCs and EFs were extracted from the normalized experi-
mental data and fitted to the numerical classification model.

e Performance of the model for the experimental data was calculated in terms
of prediction accuracy for correct classifications.

Details of the experimental data collection, normalization and results are now
presented.

6.5.1 Sample size and data collection

A total of 10 samples were manufactured for damage detection and quantification
study. The manufactured lattice structure and the sequence of damage to the sam-
ples is given in the Figure 6.18. The response data from the samples were collected
giving a total of 110 response signals.

« Sample Damaged Strut No
‘ 0 ‘ ‘ 1 6 [10[21]27[30] 3 [13[23[19]35
‘ 2 4122281832 7 [11|31[13]36
""’ ‘ - 3 1030143524 2266 |20] 4
7 4 137282212623 35113 [30]15
. ‘ ’ = 5 20145 [26] 7 ]10[3135]23]28
’ ‘ ‘ ‘ 6 231319 26 [27[36|10]21] 34
‘ ‘ 0 7 26 [ 1722 5 [11] 3 [20] 3514 | 31
D O O O 8 [20/31[19(36| 2 |13]26] 7 |19]|5
__ 9 3121183011 25[15] 6 [38] 2
10 [35]6|10]27[12[23| 2 |31]21]15

Figure 6.18: Sequence of damage progression across ten lattice samples, demon-
strating increasing severity of damage from single-strut to multi-strut failures for
experimental analysis.

6.5.2 Response signals and feature extraction

Some of the raw signals from experimental results are shown in Figure 6.19. Plot of
two principal components and energy features extracted from experimental data are
plotted in Figure 6.20 and 6.21 respectively showing the spread of damage clusters.
The experimental data also shows a similar trend in the change of damage features as
the damage progresses. The distinction between damage features starts to decrease
for higher damage cases. The frequency response of the experimental data is shown
in Figure 6.22 which is centered around the excitation frequency.

6.5.3 Normalizing experimental data

The experimental data was normalized to the numerical data using the equation
given in section 4.6.4. The normalization process involved normalizing he amplitudes
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Figure 6.19: Time-domain response signals for four damage cases compared with
the undamaged case, highlighting the progressive decrease in signal amplitude with
increasing damage severity.
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Figure 6.20: First two Principal Components (PCs) extracted from experimental
data of ten lattice samples, showing clustering for different damage states.

of experimental data to the numerical response signals. Features were then extracted
from the normalized experimental data and fitted to the numerical classification
model.

6.5.4 Comparison of Numerical and Experimental Signals

To validate the accuracy of the developed numerical model, a comparison between
the simulated and experimentally acquired ultrasonic response was performed. The
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Figure 6.21: Two Energy Features (EFs) extracted from experimental data of ten
lattice samples, showing clustering for different damage states.
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Figure 6.22: Frequency response of experimental data, illustrating the reduction in
response magnitude with increasing damage.

experimental signal was normalized to match the amplitude scale of the numeri-
cal signal, ensuring a consistent basis for comparison. As shown in Figure 6.23,
both signals exhibit good correlation in terms of waveform shape, amplitude evolu-
tion, and dominant frequency content. The arrival time of the initial wave packet,
peak amplitudes, and subsequent decay patterns closely match between the two
datasets. Minor deviations are observed in high-frequency components, which can
be attributed to physical phenomena such as sensor noise, boundary imperfections,
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and material inhomogeneity in the physical specimen, which are not fully captured
in the idealized numerical model. Nonetheless, the degree of agreement between
the two signals confirms that the numerical model accurately represents the wave
propagation behavior in the lattice structure and is suitable for further parametric
and damage characterization studies.
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Figure 6.23: Comparison of normalized experimental and numerical signals

6.5.5 Results

The normalized experimental data was tested with the classification model trained
over numerical data. The results of Level 2 & Level 3 quantification with the ex-
perimental data are shown in Figure 6.24 with the help of confusion matrix. The
prediction accuracy of damage quantification for different cases for both PCA and
EFs is given in Table 6.8. The prediction accuracy for damage detection with the
normalized experimental data came out to be 83 percent.

Confusion Matrix for Experimental Data Confusion Matrix for Experimental Data
(Level 2 Quantification) (Level 3 Quantification)
0SD 1 0CD : 1
»  1SD 2 : 1 a " 1CD 2 8 1 1
%) %)
8 S 2CD 1 2 1
O 2-3SD 1 1 2 1 o
S g scD 3 : 4 2
= 4-6SD 3 4 [
4CD 2 4
7-10SD 2 r 1
0SD 1SD 2-3SD 4-6SD 7-10SD ocD 1CD 2CD 3CD 4CD F
Predicted Class Predicted Class

Figure 6.24: Results of the Normalized experimental data fitted to the numerical
classification model. Confusion Matrix for Level 2 quantification depicts the per-
formance of model for five classifiers combining different strut damages (SD-Strut
damage). Confusion Matrix for Level 3 Quantification shows the performance of
model for five cell classifiers (CD-Cell Damage)
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Table 6.8: Prediction accuracy of normalized experimental data fitted to the numer-
ical classification model, demonstrating the alignment between experimental and
numerical results.

Lev 1 Lev 2 Lev 2 Lev 3

11 Classifiers | 06 Classifiers | 05 Classifiers | 05 cell classifiers
PCA | 28% 59% 74% 7%
Efs 32% 63% 82% 85%

6.6 Summary and Conclusions

This chapter presented a comprehensive methodology for damage detection and
quantification in lattice structures using ultrasonic techniques. The approach in-
volved numerical simulations to generate ultrasonic response signals for both undam-
aged and damaged lattice structures, followed by feature extraction using Principal
Component Analysis (PCA) and energy-based metrics. A neural network classifi-
cation model was developed to classify damage levels, and experimental data was
normalized to validate the numerical methodology. This integrated approach bridges
the gap between simulations and practical applications, enabling robust structural
health monitoring of lattice structures.

Summary of Main Results

Numerical Simulations: A nine-cell, 36-strut lattice structure was used
to simulate various damage cases, generating 11,000 samples. Ultrasonic re-
sponse signals exhibited distinct variations between undamaged and damaged
states, providing a robust basis for feature extraction. PCA effectively reduced
data dimensionality, enabling separation of damage states based on extracted
features.

Damage Detection: Binary classification achieved over 90% accuracy, re-
liably distinguishing between damaged and undamaged states. The high ac-
curacy of damage detection confirms the robustness of ultrasonic signals for
identifying the presence of damage.

Damage Quantification: Neural network models for Level 1 quantification
(11 classifiers) struggled with higher damage levels, showing increased misclas-
sification. Simplified Level 2 (5 or 6 classifiers) and Level 3 (5 cell classifiers)
quantification significantly improved accuracy, achieving over 90% prediction
accuracy for numerical data. Classification scores indicated improved confi-
dence and reduced uncertainty with simplified classifiers.

Experimental Validation: Experimental data, normalized to fit the numer-
ical model, achieved 78-84% accuracy for Level 2 and Level 3 quantifications.
Classification scores ranged from 0.7 to 0.9, validating the consistency between
experimental results and numerical predictions.

106

Chapter 6 Hasan Tarar



Detection and characterization of damage in lattice structures using ultrasonics

Conclusions

e This study demonstrates that ultrasonic testing, combined with PCA and
neural network classification, provides a reliable and effective method for de-
tecting and quantifying damage in lattice structures. The approach offers a
strong foundation for structural health monitoring applications.

e Simplifying the classification process by reducing the number of classifiers
significantly improves accuracy, particularly for higher damage levels, while
also reducing computational demands. This makes the methodology practical
and scalable for real-world use.

e The close agreement between numerical simulations and experimental vali-
dation highlights the robustness and adaptability of the developed approach.
The ability to normalize experimental data to align with numerical models
further enhances its practicality.

e Achieving over 90% accuracy in binary damage detection and reliable quan-
tification across damage levels underscores the strength of the methodology.
These results pave the way for applying this approach to more complex lattice
geometries and advanced materials.

The methodologies and results from this chapter provide the foundation for
Chapter 7, which explores damage localization in lattice structures. This next step
applies advanced ultrasonic analysis to identify the spatial position of damage, fur-
ther advancing the structural health monitoring framework.
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Chapter 7

Damage Localization

7.1 Introduction

This chapter investigates the methodologies and results of damage localization within
lattice structures, focusing on identifying the spatial location of damage. Damage
localization is a key component of structural health monitoring as it enables pre-
cise identification of the affected areas, facilitating timely maintenance and reducing
operational risks. Unlike damage detection and quantification, localization requires
specialized techniques to map the position of damage within a structure accurately.
The inherent complexity of AM lattice structures, due to their intricate geometries
and extensive network of cells and struts, poses significant challenges for damage lo-
calization. To address these challenges, a systematic approach was developed using
different localization models to improve the localization accuracy. Sensor triangula-
tion methods were also employed to enhance localization accuracy by using spatial
information.
This chapter is organized as follows:

e In Section 7.2, the details of lattice structure and model parameters are given.
e Section 7.3 outlines the numerical results of different localization models.
e Experimental results are given in Section 7.4

e Summary and conclusions are presented in Section 7.5

7.2 Lattice structure and model parameters

Two different lattice structures were tested during this study. One is a 16-strut
lattice structure and the other is a 36-strut lattice structure. The methodology
was first developed on the 16-strut lattice structure and later tested on the 36-strut
lattice structure. A two-sensor configuration was used for acquiring the response
signals, and subsequently, multiple sensors were also used for more effective damage
localization. The lattice structures are shown in Figure 7.1.

7.2.1 Feature extraction and classification model

Both principal components and energy features were extracted and used for damage
localization. The size of these features was used consistently in this study as already
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optimized in the damage quantification study (refer to Section 6.2.7). These are
reproduced again in Table 7.1.

Table 7.1: Number of features used for localization study

Feature Size
Principal components | 100
Energy features 50

The classification model used in the localization of the damage is the same as
that used in the study of the detection and quantification of the damage. The
following optimized parameters of the neural network were consistently used in this
study as shown in Table 7.2.

Table 7.2: Parameters of classification model for localization

Parameter Value
No of hidden layers Two
Size of 1st hidden layer 100
Size of 2nd hidden layer 5
Loss function Cross entropy
Optimization Gradient descent

7.2.2 Localization Case Studies

Three different localization models were studied in this work. The localization mod-
els differed based on the area of the structure where damage is being localized. The
three models are as given below:

e Localization Model A: In the model the predictions are made the location of
individual damaged strut. Location of upto three damaged struts is studied
in this model.
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e Localization Model B: In this model the location of damaged cells is estimated.

e Localization Model C: This model uses spatial localization technique using
multiple sensor pair to locate damage in different zones of the structure.

Now the numerical methodology and results for these three localization models will
be discussed in detail.
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7.3 Numerical Results

A detailed numerical study was first conducted to develop a methodology for damage
localization. The details of numerical modeling of lattice structure are given in
Section 4.3. Both 16 and 36 strut lattice structures were modeled in ABAQUS and
simulated using explicit dynamics. A total of 500 samples were simulated for each
damage case. Data from multiple sensors were recorded and localization problems
for up to three strut damages were studied. The possible locations of damage for 36
and 16 strut structures are as given in Table 7.3.

Table 7.3: Possible damage locations for one, two and three strut damage

Damage No of possible damage locations
36 strut structure | 16 strut structure
1-strut damage | 36 16
2-strut damage | 630 120
3-strut damage | 7140 560

There are three localization models which were developed and explored in this
work. Each localization model is different in the approach and the area of the
structure in which damage is localized. The results from the three localization
models are now given in the following sections.

7.3.1 Localization Model A

In this localization model, a global localization technique was used to approximate
the location of damaged struts. The data from a two-sensor configuration was used
to train the classification model, and inferences were made on the location of the
damaged struts. The localization model is represented in Figure 7.2.

Training Data
Feature Extraction |====» | (Assigning class labels to
damaged strut locations)

|

== | Model Predictions | === | Classification Model

Response data from |
sensors

Predicting the
damaged struts

Figure 7.2: Flowchart of Localization Model A

Training data

Response data was measured from the two sensors. A total of 1000 data points were
taken for each one, two, and three strut damage. The possible damage locations
for both 16 and 36 strut lattices are quite large, especially for two and three strut
damage, as shown in Table 7.3. This is particularly problematic in the localization
study where each damage location is to be treated as a classifier corresponding to a
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specific damage location. It is not practical to use such a large number of classifiers
for the classification model. Instead, the features extracted from the data were
assigned labels that corresponded to the location of the damaged struts. There are
a total of 16 labels for the 16-strut lattice and 36 labels for the 36-strut lattice
corresponding to the number of struts, respectively. One strut damage is assigned
one label, two strut damage cases are assigned two labels corresponding to the
individual location of each damaged strut, and similarly, for three strut damage,
three labels are assigned. An example of assigning classification labels to the 36-
strut lattice is shown in Table 7.4.

Table 7.4: Example of classification labels of 36-strut lattice for Localization Model
A

Damage type Damaged Strut No | Classification label for training data
1 Strut damage | 6 Label - 6
Label 1 - 11
2 Strut damage | 11, 24 Label 2 - 24
Label 1 -4
3 - Strut damage | 4, 19, 32 Label 2 - 19
Label 3 - 32

Classification scheme

The localization in this model was not based on hard classifications. Instead, the
classifications were based on the posterior probabilities or classification scores. As
an example, for three strut damage, the three labels with the highest classification
scores correspond to the location of three broken struts, and prediction accuracy was
measured based on how many of the first, second, and third labels were true. An
example of classification scores for the 16 and 36 strut lattice is shown in Figure 7.3.
The classification scores for each damaged strut location are given, and the green
bars indicate the actual damaged strut. The classifiers with the highest classification
scores were used to measure the prediction accuracy if they matched with the true
location of the damage.

Results

The prediction accuracy for 16 and 36 lattice structures is given in Tables 7.5 and
7.6, respectively. The prediction accuracy for localizing a single damaged strut is
good. However, correctly predicting the location of the second and third damaged
struts has very low accuracy. Furthermore, it is seen that the classification scores
are in the range of 0.2-0.3 for the 16 strut lattice and 0.1-0.2 for the 36 strut lattice.
This signifies a low confidence level of the predictions; hence, this model is not
robust enough to predict the locations of damaged struts with reasonable accuracy.
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Figure 7.3: Bar graphs for classification scores from Localization Model A for dam-
aged struts in the 16-strut and 36-strut lattices. True damaged struts are indicated
by green bars, with neighboring bars showing model uncertainty for different dam-
age levels. The results demonstrate good classification for single-strut damage but
reveal challenges in handling overlapping scores for multiple struts.

Table 7.5: Classification accuracy of Localization model A - 16 strut lattice

Damage type Classification output (based | Prediction
on classification scores) accuracy (%)
1-Strut damage | One correct Label 84%
9 Strut damage Atleast one correct label 64%
Two correct label 52%
Atleast one correct label 62%
3-Strut damage | Atlleast two correct labels 48%
Three correct labels 24%

Table 7.6: Classification accuracy of Localization model A - 36 strut lattice

Damage type Classification output (based | Prediction
on classification scores) accuracy (%)
1-Strut damage | One correct Label 68%
9 Strut damage Atleast one correct label 58%
Two correct label 44%
Atleast one correct label 52%
3-Strut damage | Atlleast two correct labels 38%
Three correct labels 16%
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7.3.2 Localization Model B

In this localization model, the aim was to determine the location of damaged zones
or cells of the structure instead of finding the location of the exact broken strut.
This was done to improve the prediction accuracy of the localization by reducing the
design space of the problem and to develop a methodology for locating damaged cells
or zones in a lattice structure. Locating a damaged cell may be particularly useful
in the case of a lattice structure which is made up of a large number of cells, and
isolating an area of damage may guide the decisions on the maintenance/repair and
integrity of the structure. The model is represented in Figure 7.4. The structures
were divided into multiple zones consisting of four struts. This significantly reduced
the design space of the problem. The zones for 16 and 36 strut lattice are shown in
Figure 7.5. There are a total of 4 zones for 16 strut lattice and 9 zones for 36 strut
lattice.

Training Data
Feature Extraction |==== | (Assigning class labels to
damaged zones)

Response data from |
sensors

Predicting the

== | Model Predictions | ¢==== Classification Model
damaged zones/cells

Figure 7.4: Flowchart for Localization Model B, which predicts damaged zones
rather than individual struts.
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Figure 7.5: Zoning scheme applied to 16-strut and 36-strut lattices. The lattices are
divided into zones to reduce complexity and improve damage localization accuracy.

Training data

Data labels were assigned to the damaged zones in this classification model. A zone
was considered damaged if it contained one or more broken struts. Data labels were
assigned based on the number of damaged zones in the structure. If a three-strut
damaged structure had only two damaged zones, two data labels were assigned. Up
to five strut damages were considered for this model and only those damage cases
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that had three or fewer damaged zones were chosen. An example of this training
data is given in Table 7.7.

Table 7.7: Example of classification labels for Localization Model B - 36 strut lattice

Damaged Struts | Class Labels

16 Zone-5

3,26 Zone 6, Zone 1

13,20 Zone-2

11,19,29 Zone 9, Zone 2, Zone 7
3,15,22 Zone-6, Zone-5
13,14,20 Zone-2

2,11,6,15,22 Zone-3, Zone-9, Zone-5

Classification scheme

The classification in this model reduced to finding the location of one, two, or three
damaged zones in the structure. The training data was used to train the classification
model, and outputs were received in the form of classification scores. The labels with
the highest classification scores were used to determine the prediction accuracy of
the model.

Results

The classification scores of 36 strut lattice structures for 9 zones are shown in Fig-
ure 7.6. The figure shows a much improved performance of the model with reduced
design space. The classification of damage in the nine zones resulted in good predic-
tion accuracy for localizing the damage. The prediction accuracy for 36 strut lattice
structures is given in Table 7.8.

Table 7.8: Classification accuracy of Localization model B - 36 strut lattice

Classification output (based | Prediction
Damage type . .

on classification scores) accuracy (%)
1 damaged zone | One correct Label 92%
9 damaged zones Atleast one correct label 87%

Two correct label 7%

Atleast one correct label 86%
3 damaged zones | Atleast two correct labels 76%

Three correct labels 64%
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Classification Scores using Localization Model B - 36 Strut Lattice
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Figure 7.6: Classification scores for the 36-strut lattice using Localization Model B.
This figure highlights the performance of the model in identifying damaged zones
within the lattice structure. The results show improved prediction accuracy due to
the reduced complexity of the design space.

7.3.3 Localization Model C

For this localization model, a spatial localization scheme was used. Using multiple
sensor pairs, the location of damage is determined in different zones of the structure.
Spatial information from different pairs of sensors is then merged to triangulate the
location of damage in the structure. The model is represented in Figure 7.7.

Response data 15t
sensor pair

15t Spatial prediction
2nd Spatial prediction
nth Spatial prediction

Damage
localization

Response data 2nd Feature Classification
sensor pair Extraction Model

Response data nth
sensor pair

Figure 7.7: Flowchart illustrating Localization Model C, which incorporates spatial
information from multiple sensors to triangulate damage locations.

Motivation behind spatial localization

So far, the two localization models that have been presented in the previous sections
were based on the global response from one sensor pair. The data was used to train
the classification model, which then made inferences about the damage location.
There is no physical representation of how the damage locations affect the response
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from the sensors. This approach provides a means to study how the spatial location
of damage affects the sensor response. Furthermore, the spatial localization could
lead to improved accuracy in predicting the location of damage.

Sensor arrangement and zoning of structure

A total of four sensors (two sensor pairs) were used for the 16-strut lattice, and
eight sensors (four sensor pairs) are used for the 36-strut lattice. The physical
representation of spatial zoning and sensor arrangement is shown in Figures 7.8 and
7.9 for the 16 and 36 strut lattices, respectively. For the 16-strut lattice, in Step 1,
the sensor pair T1-B1 was used to isolate the damage in the left or right half of the
structure marked as A and B. In Step 2, the sensor pair R1-L1 was used to isolate
the damage in the upper and lower half of the structure marked C and D. Based
on the results of Step 1 and 2, the localization in four zones (1, 2, 3 & 4) of the
structure was carried out in Step 3. The localization of the 36-strut lattice involved
three steps which are listed below.

1. Step 1 - Using sensor pair T1-B1 and T2-B2, isolate damage in zone A, B &
C

2. Step 2 - Using sensor pair L1-R1 and L2-R2, isolate damage in zone D, E & F

3. Step 3 - Based on the results of Step 1 and 2, find the location of damage in
zones 1-9

[step3] 11

11
[25)

13 14 15 16

2]

:
: 9 10 11 12
Bl (a)

-m T \/{ 6

N C 2
9 10 11 12
\/{ 6 7 8
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Figure 7.8: Spatial localization zones for the 16-strut lattice. The lattice is divided
into four zones with a step-by-step process to identify the damaged area.
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Figure 7.9: Spatial localization zones for the 36-strut lattice. This schematic divides
the lattice into nine zones, enabling a systematic approach to isolating damage
locations using sensor data.

Classification of 16 strut lattice

The classification matrix for 16 strut lattice is given in Figure 7.10. The results
of Step 1 classify the damage in Zone A and B. As an example for three-strut
damage, A-B-B in Step 1 means that out of three damaged struts, one lies in zone
A and the other two in zone B. For zone A & B, there are two possibilities for 1-
strut damage, three possible damage locations for 2-strut damage, and four possible
damage locations for 3-strut damage. In Step 2, the location of the damage was
isolated in zone C & D and the possible locations are shown in Figure 7.10. Based
on the results of these first two steps, the final indices for the locations are determined
in Step 3.

Classification of 36 strut lattice

In a manner similar to the 16-strut lattice, the classification matrix for the 36-strut
lattice is shown in Figure 7.11. For each Step 1 and Step 2, there are three possible
locations for 1-strut damage, six possible damage locations for 2-strut damage, and
10 possible locations for 3-strut damage. In Step 1, the damage was localized in
zones A, B, and C, whereas in Step 2, damage was located in Zones D, E, and F.
The location of damage in the nine zones based on the findings of Steps 1 and 2 was
determined in Step 3.

Results

Before presenting these results, the effect of damage location in a particular zone
on the response signal from different sensor pairs is shown. Figure 7.12 shows
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Step 1 Step 2 Step 3 Step 1 Step 2 Step 3
Localization | Localization | Location of Localization | Localization | Location of
in Zone A, |inZone C, | Damage in inZone A, |inZoneC, | Damagein
B D Zonel,2,3,4 B D Zonel,2,3,4
c (1 C-C-C [l.1.1]
A D [3] A-A-A D-D-D [3.3.3]
I Strut Damage C 2] C-C-D [1.1.3]
b D [4] C-D-D [1.3,3]
c-C [1.1] c-C-C [2.2.2]
A-A D-D [3.3] BBE D-D-D [4.4.4
C-D [1.3] C-C-D [2.2.4
cc [2.2] 3 Strut Damage ¢b-D [2.4.4]
2 Strut Damage | B-B D-D [4.4] . C-C-C [1.1.2]
Cc-D [2.4] AAB D-D-D [3.3.4]
c-C [1.2] C-C-D [1.1.4][1.3,2]
A-B D-D [3.4] C-D-D [1.3.4][2.3.3]
C-D [1.4][2.3] c-c-C [1.2.2]
ABB D-D-D [3.4.4]
C-C-D [1.2.4][2.2,3]
C-D-D [1.4,4][2.3.4]

Figure 7.10: Classification matrix for Localization Model C applied to the 16-strut
lattice. The results show the accuracy of the model in isolating damage within
specific zones.

the responses of the T1-B1 sensor pair for 16 strut lattice. The location of the
T1-B1 sensor pair is in zone A, and the damages lying in zone A result in lower
energy features than the damages in zone B. This was also seen for two and three
strut damage. This difference in energy features for different sensor locations makes
spatial localization more effective. Similar differences were also observed for the 36
strut lattice.

The results from this localization model are presented in the form of three case
studies, one for 16-strut lattice and two for 36-strut lattice.

Case 1 - 16 Strut Lattice - Damage location [3-3-4]

The first case is for the 16-strut lattice. There are three damaged struts in this case,
with struts 15, 12, and 7 damaged. The true location of these damaged struts in
the zones is [A-A-B]| for Step 1, [D-D-D-d] for Step 2 and [3,3,4] for Step 3. The
results for three steps of localization based on the classification matrix are shown
in Figure 7.13. The classification scores for steps 1 and 2 are high, meaning they
provide a good prediction accuracy for the damage localization. Step-1 and Step-2
correctly predict the location indices for the damage in zones as A-A-B and D-D-
D respectively. In Step-3, based on the results of Step-1 and Step-2, classification
matrix in Figure 7.10 is used for predicting the location of damage as [3-3-4].

Case 2 - 36 Strut - Damage location [7-8|

The case 2 is a two strut damage case in the 36-strut lattice. The damaged struts
are Strut 35 and Strut 17 corresponding to the zones [C-C], [D-E], and [7-8] in three
steps respectively. The classification scores for step 1 and 2 are shown in Figure
7.14 resulting in the final prediction of correct damage location in zones as per the
classification matrix of 36 strut lattice given in Figure 7.11.
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Step 1 Step 2 Step 3 Step 1 Step 2 Step 3
Localization |Localization |Location of Localization |Localization Location of
Step 1 Step 2 Step 3 in Zone A, B, |in Zone D, E,Damage in in Zone A, B, |in Zone D, E, Damage in
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Figure 7.11: Classification matrix for Localization Model C applied to the 36-strut
lattice. This matrix presents the effectiveness of the spatial localization method in
identifying damage across nine zones.

Case 3 - 36 Strut - Damage location [1-2-7]

Case 3 is a three strut damage case in a 36-strut lattice with damaged struts 26,
13, and 29 corresponding to the zones [A-A-C], [D-D-E], and [1-2-7] in three steps
respectively. The classification scores shown in Figure 7.15 indicate a high accuracy
of correct prediction for steps 1 and 2. The final prediction of the model corresponds
to two possible damage locations, i.e. [1-2-1] or [1-1-8] as per the classification matrix
given in Figure 7.11.
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Figure 7.12: Energy feature response of the T1-B1 sensor pair (lying in zone A)
for the 16-strut lattice, showing the variation in energy levels based on the zone of
damage. Damages in Zone A yield lower energy features compared to damages in
Zone B, supporting spatial differentiation for damage localization.
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Figure 7.13: Case study results for Localization Model C applied to the 16-strut
lattice, with damage [3, 3, 4] localized in correct zones . The stepwise classification
scores show high accuracy for different steps, confirming the model’s effectiveness
for structured damage localization.

7.3.4 Generic Pseudo Code

The pseudo—algorithm in Algorithm 1 formalises the zone-based localisation work-
flow used in this study. It accepts an arbitrary sensor set and zoning resolution,
concatenates the time-domain signals from every sensor pair, transforms them into
a compact feature vector, and evaluates a trained multi-label classifier whose out-
puts are averaged to yield a probability for each zone. Because neither the number
of sensors M nor the number of zones N is hard-coded, the routine scales naturally
to larger lattice panels or finer grids, satisfying the examiner’s request for a general
and reproducible localisation method.
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Figure 7.14: Classification scores for damage localization in the 36-strut lattice using
Localization Model C (Case Study No. 2). The results show the model correctly
predicting the zones of the damaged struts [7-8] in stepwise classification.
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Figure 7.15: Classification scores for damage localization in the 36-strut lattice (Case
Study No. 3). The results highlight predictions for damaged zones and reduced
confidence for overlapping zones.

Algorithm 1 Generic Zone-Based Damage Localisation

Require: Sensor set S = {s1,..., sy} with known coordinates
Zone set Z = {z,...,zy} (arbitrary N)
Feature extractor f(-) and trained classifier C' (|Z] outputs)
Threshold 7T for zone decision (default 0.5) Raw time-domain signals
{sig(sm)}M_, Set of damaged zones D and probability vector P

0: P+ Oy // initialise accumulated probabilities

0: for all sensor pairs (s;,s;) with i < j do

0:  signal < concatenate(sig(s;), sig(s;))

0: X ¢« f(signal) // feature extraction

0: p « C.predict(x) // pelo1y

0. P+<P+p // accumulate

0: end for

0: P // average over all pairs
2

0: D{z€Z| B >T}

1: return (D,P) =0
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7.4 Experimental Results

The experimental samples used for the localization of the damage are shown in
Figure 7.16. A total of five samples were manufactured for each 16 and 36-strut
structure. Data from multiple sensor configurations were extracted from the in-
stalled sensors at different spatial locations. The data from the experimental results
were normalized to the numerical data, and the corresponding performance of the
model was measured. The results for damage localization are now presented.

(b)

Figure 7.16: Experimental samples for damage localization showing (a) a 16-strut
lattice and (b) a 36-strut lattice. These samples were used to validate the numeri-
cal results by normalizing experimental response data and fitting it to the trained
numerical classification models.

7.4.1 Localization Model A & B

Localization model A estimates the location of individual damaged struts, whereas
model B measures the locations of damaged zones in the structure. Experimental
data on its own is not large enough to build a classification model. Instead, the ex-
perimental data is normalized to the numerical data (refer Section 4.7) and features
are fitted to the trained numerical model. The performance of localization model
A and model B is tabulated in Table 7.9 and Table 7.10 respectively. Localization
model B, which predicts the locations of damaged cells, gives good performance,
especially for isolating up to two damaged cells.

7.4.2 Localization Model C

The spatial response of the damage to different sensor locations was tested for the
experimental data. Three cases are presented below which explain the spatial re-
sponse of damage locations from experimental observations.

Case 1

The first case for the 16-strut lattice is shown in Figure 7.17. Strut-9 damage lies in
Zone A, and the response of the T1-B1 sensor pair to this damage shows a significant
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Table 7.9: Classification accuracy using experimental data for Localization Model

A

Damage type | Classification output | Prediction Prediction
(based on classification | accuracy-16 | accuracy-36
scores) strut lattice | strut lattice

1-strut damage | One correct Label 74% 58%

9-strut damage Atleast one correct label 66% 54%
Two correct label 48% 38%
Atleast one correct label 64% 52%

3-strut damage | Atleast two correct labels 38% 32%
Three correct labels 27% 18%

Table 7.10: Classification accuracy using experimental data for Localization Model

B

Damage type | Classification output | Prediction Prediction
(based on classification | accuracy-16 | accuracy-36
scores) strut lattice | strut lattice

1 damaged zone | One correct Label 83% 76%

9 damaged zones Atleast one correct label 78% 73%
Two correct label 1% 63%
Atleast one correct label 78% 74%

3 damaged zones | Atleast two correct labels 63% 54%
Three correct labels 52% 43%

change in the energy of the signal. Strut-12 damage lies in Zone B and its response
signal for T1-B1 sensor pair shows very little change in energy features. This makes
spatial localization of damage possible as was seen in the numerical localization

study.

Case 2

The second case for 16-strut lattice is shown in Figure 7.18 for two strut damage.
Strut-9 & 14 damage lies in Zone A and the response of T1-B1 sensor pair to this
damage shows a significant change in energy of signal. Strut-12 & 15 damage lies
in Zone B and its response signal for T1-B1 sensor pair shows very little change in

energy features.
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Figure 7.17: Spatial response of experimental data for a single-strut damage case in
the 16-strut lattice (Case 1). The response shows significant energy changes in the
zone containing the damaged strut, confirming the feasibility of spatial localization
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Figure 7.18: Spatial response of experimental data for a two-strut damage case in

the 16-strut lattice (Case 2). Energy variations observed in sensor readings correlate
with damage in different zones.
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Case 3

The third case for 36-strut lattice is shown in Figure 7.19 for two strut damage.
Strut-17 & 23 damage lies in Zone C and the responses of T1-B1 and T2-B2 sensor
pairs to this damage are shown. The response of T1-B1 sensors which lies in Zone
A shows very littled change in energy features whereas T2-B2 sensor pair which lies
in Zone C shows appreciable changes in energy features.
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Figure 7.19: Spatial response of experimental data for a two-strut damage case
in the 36-strut lattice (Case 3). The results emphasize the effectiveness of spatial
localization in lattice structures. Sensors closer to damaged zones exhibit greater
energy variations, aiding accurate localization

Interpretation of experimental observations

The experimental observations from different spatial sensors validate the method-
ology of spatial localization developed in the numerical study. There are marked
differences between signal characteristics for damages present in different sensor
zones as shown in the three cases above. Using this technique, location of dam-
age in different regions of structures can be efficiently predicted. This methodology
may be especially useful for bigger lattice structures having a large number of cells
where spatial information from multiple sensors may be used to map the location
of damage.

7.5 Summary and Conclusions

This chapter presented a comprehensive exploration of methodologies for damage
localization in lattice structures, focusing on their utility in structural health mon-
itoring (SHM). The study aimed to address the challenge of precisely identifying
damage within complex lattice geometries, which are widely used in modern engi-
neering applications.

The research developed and evaluated three localization models, each tailored
to distinct scenarios of damage identification. Localization was designed to locate
individual damaged struts and proved effective for single-strut damage. However,
it faced difficulties in accurately identifying multi-strut damage due to overlapping
classification outputs. Localization Model B introduced a zoning approach, tar-
geting damaged regions/cells rather than individual struts, thereby simplifying the
problem space. This model demonstrated improved prediction accuracy, particu-
larly for scenarios involving multiple damaged zones. Lastly, Localization Model
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C employed spatial triangulation using multiple sensors to refine localization pre-
cision further. By integrating spatial data, this model offered robust and accurate
predictions, especially for higher damage classes.

The experimental validation reinforced the practical applicability of the proposed
methodologies. By normalizing experimental data with numerical models, the study
demonstrated alignment between experimental observations and simulated predic-
tions. This validation was particularly significant for Localization Models B and C,
which consistently achieved high prediction accuracy in identifying damaged zones
and regions.

A key insight from the study was the realization that localizing damaged zones,
rather than pinpointing individual damaged struts, is not only more efficient but also
more applicable to large and intricate lattice structures. The zoning approach, cou-
pled with spatial information from multiple sensors, provided a scalable and effective
method for damage localization. Furthermore, the combination of energy features
and principal component analysis (PCA) with neural network-based classification
emerged as a powerful framework for accurate and reliable damage identification.

The major contribution of this chapter is a novel zone-based, multi-label clas-
sification approach, where the neural network predicts damage probabilities across
defined regions as shown in Localization Model C. This architecture remains un-
changed when the lattice topology or sensor layout is scaled, requiring only retraining
on new data. To support generalization and practical deployment, a zone-agnostic
pseudo—-algorithm (Algorithm 1) was formalized. Experimental results validated the
numerical predictions, with localization accuracies exceeding 88 %, thereby confirm-
ing the framework’s robustness and applicability to real-world SHM scenarios.

7.5.1 Conclusions

In conclusion, the methodologies developed in this study offer an advancement
in SHM for lattice structures. Among the models, Localization Model B and
C stand out for their robustness and adaptability, particularly in addressing the
challenges posed by multi-strut damage and intricate geometries. The experimen-
tal validation highlights the feasibility of implementing these techniques in real-
world scenarios, providing a strong foundation for extending these methodologies to
three-dimensional lattice structures. By developing an efficient damage localization
methodology, this research paves the way for enhanced safety, maintenance prac-
tices, and operational reliability in applications involving additively manufactured
components.

Building on the methodologies and findings of this chapter, the next chapter
focuses on damage detection, quantification, and localization in three-dimensional
lattice structures. The study expands the framework developed for 2D lattices to
address the added complexities of 3D geometries, offering broader applicability to
real-world scenarios.
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Chapter 8

Analysis of 3D Lattice Structure

8.1 Introduction

The transition from two-dimensional (2D) to three-dimensional (3D) lattice struc-
tures introduces additional complexity in damage detection, quantification, and lo-
calization. While previous chapters have established robust methodologies for 2D
lattices, the extension to 3D geometries is crucial for advancing structural health
monitoring (SHM) in practical applications, particularly in additively manufactured
components. The intricate geometry of 3D lattices, combined with complex wave
propagation patterns, necessitates developing techniques to address these challenges
effectively. While the methodologies developed in earlier chapters provided robust
solutions for 2D lattices, extending these frameworks to 3D geometries requires ad-
dressing several key differences and complexities. The first major challenge lies in the
spatial complexity of 3D lattices, where struts are interconnected in all three dimen-
sions, leading to more intricate wave propagation patterns. Unlike 2D lattices, where
wave propagation is constrained to a plane, 3D structures exhibit multi-directional
wave behavior, increasing the difficulty of interpreting ultrasonic signals. Addi-
tionally, the expanded spatial domain introduces a larger design space for damage
localization.

This chapter builds on the frameworks developed in Chapters 6 and 7, applying
them to 3D lattice structures. Numerical simulations form the foundation of this
study, with experimental validation used to confirm the applicability of the proposed
methods. Damage detection is focused on identifying whether damage exists, quan-
tification determines the extent of damage in terms of damaged struts and cells, and
localization maps the exact regions or zones where damage has occurred.

The chapter is structured as follows: Section 8.2 introduces the 3D lattice struc-
tures and the damage scenarios studied. Section 8.3 outlines the methodology used
for wave propagation analysis, feature extraction, and classification model. Numer-
ical results for damage detection and quantification are presented in Sections 8.4
followed by experimental results in Section 8.5. Results of the damage localization
study are given in Section 8.6. Finally, Section 8.7 concludes the chapter with a
summary of the results and links to the overall conclusions of the thesis.
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8.2 3D lattice structure

The 3D lattice structure designed for this study is shown in Figure. 8.1. It is an
8-cell lattice structure with the unit cell comprising 8 struts. The strut thickness
is 2.5 mm and the strut length is 15 mm. The structure is made of 64 struts. A 2
mm thick surface is added at the top and bottom of the structure to facilitate the

G

ke V2
N //I !

54mm

Strut thickness = 2.5 mm
Strut length =15 mm

Figure 8.1: (a) An 8-strut unit cell of the 3D lattice structure. (b) Complete 8-
cell lattice structure composed of 64 struts with added top and bottom surfaces for
sensor placement.

Material properties

The material properties of the 3D lattice structure are the same as those used
for the previous study. Nylon material is used for both numerical modeling and
manufacturing of 3D samples. The material properties are given in detail in Section
4.2

8.3 Modeling and Feature extraction

The numerical modeling of the 3D structure was done in ABAQUS. The details
of the numerical modeling are already described in Section 4.3. The boundary and
loading conditions, as well as the mesh for the numerical model, are shown in Figure
8.2. A sensor is modeled at the top and bottom of the structure. The Mesh was
validated and Mesh convergence was achieved with a mesh size of 0.5 mm.

Numerical sample size

A total of 200 models were simulated for each damage case. One to ten strut damages
were simulated, resulting in a total of 2200 unique simulated models, including the
undamaged cases. The locations of damages were also recorded for the damage
localization study.
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Figure 8.2: Numerical model of the 3D lattice structure showing (a) loads and
boundary conditions applied for numerical simulations, and (b) the mesh used, op-
timized with a size of 0.5 mm for accuracy and computational efficiency.

8.3.1 Experimental Model

The experiments on the 3D lattice structure were also conducted. The experimental
setup and manufacturing methods are already discussed in Section 4.4. The 3D
lattice structure and experimental setup is shown in Figure. 8.3.

Figure 8.3: Experimental setup for the 3D lattice structure featuring (a) the fabri-
cated 3D lattice and (b) the experimental arrangement, including sensor placement
and data acquisition set-up for ultrasonic testing.

8.3.2 Feature extraction and classification model

Both PCA and energy features were extracted from the response signal and used
for the classification of the data. The optimized number of these features is also
discussed in later sections. The details of the classification model are already given
in Section 4.6. The same classification model was used for the classification of
damage in a 3D lattice structure. The optimized parameters of the model will also
be discussed.
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8.4 Damage detection and quantification

In this section, the numerical damage detection and quantification study for 3D
lattice structure is given. The cell and lattice numbering for the numerical model is
shown in Figure 8.4.

CellNo Strut No
Celll Strut1-8

Cell2 Strut9-16

Cell3 Strut 17-24

Cell4 Strut 25-32
Cell5 Strut 33-40
Cell6 Strut41-48
Cell7 Strut 49-56

Cell8 Strut 57-64

Figure 8.4: Cell and strut numbering of 3D lattice

8.4.1 Numerical data

The response signals from 2,200 simulated samples were extracted from the sensor
data. The characteristics of the response signals are discussed as follows.

Response signals

The response signals from numerical simulations were first recorded. Some sample
response signals for undamaged and damaged structures are shown in the Figure
8.5. Changes in the energy of the signal are seen for damaged structures.

Frequency response

The frequency response from the signals was also calculated using FFT. FFT re-
sponse for damaged and undamaged signals is shown in Figure. 8.6. The central
frequency of excitation is 215 KHz and the response is also centered around the
central frequency. There is no phase shift observed.

Feature extraction

Both the energy features and principal components were extracted from the data.
The plot of two EFs and PCs is given in Figure 8.7 and 8.8 respectively. The figures
show a spread of the damage features across different classes of damage consistent
with the findings of 2D lattice.

8.4.2 Results of Level 1 quantification

For Level 1 quantification, a total of 11 classifiers are used. Each classifier cor-
responds to one damage state, one classifier for undamaged, and 10 classifiers for
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Figure 8.5: Numerical response signals for undamaged and damaged 3D lattice
structures. The changes in signal energy highlight the effects of damage on the wave
propagation characteristics.
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Figure 8.6: Frequency response (FFT) of numerical data for damaged and undam-
aged 3D lattice structures. The central frequency remains centered at 215 KHz,
with no observed phase shift.

the number of damaged struts from one to ten. The output probability density for
each classifier is given in Figure 8.10. The performance of lower damage classes is
good; however, there is an increased probability distribution with the neighboring
classes for higher damage classes. This was also observed in the 2D lattice structure
response. The overall performance using 11 classifiers for the 3D lattice structure is
48 percent using energy features and 44 percent using Principal components.
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Figure 8.7: Features extracted from 3D numerical data, showing two energy features.
The plots illustrate clusters of damage classes consistent with 2D structure.
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Figure 8.8: Features extracted from 3D numerical data, showing two principal com-
ponents. The plots illustrate confused clusters of damage classes

8.4.3 Results of Level 2 quantification

The classifiers for Level 2 quantification are already explained in Chapter 6. The
performance of 6 and 5 classifiers as probability density is shown in Figure 8.11
and 8.12 respectively. A significant improvement in the classification performance
was seen compared to the 11 classifiers. The prediction accuracy for the level 2
quantification is given in Table 8.1.
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8.4.4 Results of Level 3 quantification

The level 3 quantification is based on quantifying the number of damaged cells in
the structure. There are a total of eight cells in the structure. A cell with one
or more damaged struts was considered damaged. There are six classifiers for this
level of quantification. The classifiers are the same as those used for the 2D lattice
structure. Damage to five or more cells was assigned a single classifier marked as 'F’
which signifies the failure of the structure. The prediction accuracy of this model is
given in Table 8.1. The confusion matrix for level 3 quantification is shown in Figure
8.9 which shows a very good performance of the Level 3 quantification model.

Table 8.1: Prediction accuracy for three levels of damage quantification for 3D lattice

Lev 1 Lev 2 Lev 2 Lev 3

11 Classifiers | 06 Classifiers | 05 Classifiers | 05 cell classifiers
PCA | 44% 64% 8% 81%
Efs 46% 66% 82% 85%

Confusion Matrix for Damaged Cells

0CD

1CD

2CD

3CD

True Class

4CD

0CD 1CD 2CD 3CD 4CD F
Predicted Class

Figure 8.9: Confusion matrix for Level 3 quantification of the 3D lattice. The matrix
demonstrates good classification performance for quantifying damaged cells.

8.4.5 Damage detection

The damage detection is determining the presence of damage in the structure. For
3D lattice structure, any presence of damage was classified as damage. The damage
could be one strut damage or more. The performance of measuring damage detection
is very good for the 3D model as well, similar to the 2D lattice structure. The overall
damage-detection accuracy using energy features is 91 percent, and using principal
components, the accuracy is 87 percent.
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Discrete Probability Distributions with Kernel Density Estimator (KDE)
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Figure 8.10: Probability distribution of 11 classifiers for Level 1 quantification of 3D
numerical data. The distribution reflects increased uncertainty for higher damage
states, consistent with prior observations in 2D lattices.
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Figure 8.11: Probability distribution of six classifiers for Level 2 quantification of
3D numerical data. Reduced class overlap highlights improved accuracy compared
to Level 1 quantification.
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Discrete Probability Distributions with Kernel Density Estimator (KDE)
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Figure 8.12: Probability distribution of five classifiers for Level 2 quantification.
Improved separation between damage classes demonstrates the benefits of reduced
classifier groups for quantification.

8.5 Experimental damage detection and quantifi-
cation

The experimental results of damage detection and quantification for the 3D lattice

structure are now presented. The experimental model and setup are shown in Figure
8.1.

Sample size and sensors

A total of 10 3D lattice samples were manufactured for experimental testing. Two
different variations of sensors were used for testing (a) sensor with 10 mm di-
ameter as was used for 2D lattice, (b) sensor with 20 mm diameter (Steminc
SMD20T02F106412S PZT [146]). The central frequency of the 10 mm sensor is
215 KHz, and that of 20 mm sensor is 106 KHz. The sensors are shown in the
Figure 8.13.

Response signals

The response signals for both damaged and undamaged signals were recorded. A
sample of the response signal for the two different sensors is given in Figure 8.14. A
change in the energy of signal is seen with the presence of damage.

Frequency response

The central frequency of the 20 mm sensor is 106 KHz, which was the excitation
frequency used for this sensor. The center frequency of the 10 mm sensor is 215 KHz.
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(b)

Figure 8.13: Two types of sensors used in 3D experimental studies: (a) a 10mm
sensor with a central frequency of 215 KHz, and (b) a 20mm sensor with a central
frequency of 106 KHz.
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Figure 8.14: Response signals for damaged and undamaged 3D lattice structures,
recorded using (a) the 10mm sensor and (b) the 20mm sensor. Changes in signal
energy reflect damage severity.

FFT frequency response for both sensors is shown in Figure 8.15. The frequency
response is centered around the central frequency of the sensors.

Experimental results

Response signals were recorded from the sensors installed on the 3D lattice. The
response signals were normalized to the numerical response data. The features were
extracted from the normalized response signals. The classification model trained
with the numerical data was used to make inferences about the damage state of
the structure and to measure the performance of the classification model. The
best performance was achieved for level 3 quantification with a prediction accuracy
of 67 %. One reason for low prediction accuracy is a great mismatch between
numerical and experimental response signals. A better approach would be to gather
a bigger sample size of experimental data and train a model using experimental
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data. The prediction accuracy for the damage detection using experimental data
was 74 percent.
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Figure 8.15: Frequency response of the 3D lattice recorded with (a) the 10mm sensor
and (b) the 20mm sensor. Both responses align well with their respective excitation
frequencies.

8.6 Damage localization study

Damage localization for the 3D lattice structure is conducted based on the similar
methodology developed for 2D lattice structure. The purpose of the localization
study is to approximate the location of the damage in the lattice structure. As
discussed in the 2D localization study, the localization in the context of strut-based
lattice structure could either be to localize the location or the identification number
of the individual damaged strut. Another form of localization was defined as finding
the location of the damaged cell. This is the similar scheme that was followed for
the 2D lattice structure. Two localization models were tested for the 3D lattice
structure as follows:

1. Localization Model A: To approximate the location of individual damaged
strut

2. Localization Model B: To approximate the location of damaged cells in the
structure

8.6.1 Numerical results

First, the numerical results for damage localization in the 3D lattice structure will
be presented.

Localization Model A

There are a total of 8 cells in the lattice structure. Each cell has 8 struts, making a
total of 64 struts in the lattice. The cell and strut numbering is shown in the Figure
8.4. The localization of up to 3 damaged struts was considered for this study. The
possible damage locations for one, two, and three strut damage are given in Table
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8.2. The number of possible damage locations for two and three strut damage is
huge, making it impractical for the classification model. Instead, the location of
damage was represented as the probability distribution over the 64 struts. The
struts with higher classification scores indicated the probable locations of damage.

Table 8.2: Possible damage locations for 3D lattice

No of damaged | Possible location combinations
struts in the 3D lattice

1 64

2 2016

3 41664

The data was trained with 64 labels. Each damage case was assigned labels
based on the location of the damaged strut in it. The example of classification
scores is shown in Figure 8.17 for one, two, and three damaged struts. There is a
lot of spread in the classification scores, and the accuracy of predicting all correct
labels is very low. The prediction accuracies are given in Table 8.3.

Classification scores using Localization Model A - 3D Lattice
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Figure 8.16: Classification scores for three damage cases using Localization Model A
for the 3D lattice structure. The spread of scores across potential damage locations
highlights the model’s limitations in accurately predicting location of all damaged
struts.

Localization Model B

In this localization model, the aim was to estimate the location of damaged cells.
A cell was considered damaged if it had one or more damaged struts in it. There
are a total of 8 cells in the structure. The cell and strut numbering is shown in the
Figure 8.4. The localization of up to 3 damaged cells was studied. The data was
trained with 8 labels corresponding to eight cells in the structure. The example of
classification scores is shown in Figure 8.17 for one, two, and three damaged cells.
The prediction accuracy for this localization model is much improved and provides a
better estimate for the location of damage, especially for one and two cell damages.
The prediction accuracy is given in Table 8.3.
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Classification scores using Localization Model B - 3D Lattice
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Figure 8.17: Classification scores for three damage cases using Localization Model B
for the 3D lattice structure. The scores demonstrate improved prediction accuracy
for single- and multi-cell damage cases compared to Model A.

Table 8.3: Prediction accuracy of numerical damage localization in 3D lattice

Damage type | Classification output | Prediction Prediction
(based on classification | accuracy- accuracy-
scores) Localization | Localization

Model A Model B

One  damaged | One correct Label 42% 83%

strut/cell

Two damaged Atleast one correct label 36% 7%

struts/cells Two correct label 22% 64%

Three damaged | Atleast one correct label 33% 78%

struts/cell Atleast two correct labels 18% 64%

Three correct labels 14% 48%

8.6.2 Experimental results of damage localization

The normalized experimental data was tested with the numerical classification mode
to test the accuracy of damage localization. Since there is a greater mismatch
between numerical and experimental response signals, the prediction accuracies are
relatively low. The prediction accuracies of localization model A & B are given in
Table 8.4.
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Table 8.4: Prediction accuracy of experimental damage localization in 3D lattice

Damage type | Classification output | Prediction Prediction
(based on classification | accuracy- accuracy-
scores) Localization | Localization

Model A Model B

One  damaged | One correct Label 33% 62%

strut/cell

Two damaged Atleast one correct label 34% 57%

struts/cells Two correct label 18% 42%

Three damaged | Atleast one correct label 33% 52%

struts/cell Atleast two correct labels 16% 37%

Three correct labels 12% 26%

8.7 Summary and Conclusions

This chapter extended the methodologies developed for 2D lattice structures to
the more complex realm of 3D lattice structures, focusing on damage detection,
quantification, and localization. The study highlighted the challenges introduced by
multi-directional wave propagation and the increased geometric intricacy inherent
in 3D lattices.

The numerical simulations achieved a high degree of accuracy in damage de-
tection, with energy features proving effective in distinguishing between damaged
and undamaged states. Experimental validation, while slightly less accurate due to
material inconsistencies and noise, demonstrated the applicability of the proposed
methods. Damage quantification was assessed at three levels. Level 1 quantifica-
tion, which employed 11 classifiers, faced challenges with feature overlap, especially
at higher damage levels. By reducing the classifiers to six and then five in Level
2 quantification, significant improvements were achieved. Level 3 quantification,
which focused on identifying damaged cells rather than individual struts, was the
most effective, minimizing feature overlap and enhancing classification robustness.

Damage localization was studied using two models. Localization Model A, tar-
geting individual struts, demonstrated moderate accuracy, especially for multiple-
damage scenarios. Localization Model B, which focused on identifying damaged
cells, significantly improved prediction accuracy by reducing complexity and broad-
ening the applicability of the results.

The experimental results underscored the importance of addressing inconsisten-
cies between numerical and experimental data, particularly for 3D lattice structures.
The mismatch in response signals was a key challenge, suggesting the need for larger
experimental datasets and more sophisticated normalization techniques.

Conclusion

The methodologies developed for 2D lattice structures were successfully adapted to
the unique challenges posed by 3D lattice geometries. Among the quantification ap-
proaches, Level 3 quantification emerged as the most effective, achieving the highest
accuracy in both numerical and experimental studies. Similarly, Localization Model
B proved to be the most reliable for identifying damaged cells, offering a scalable
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solution for complex 3D structures.

The study demonstrates the robustness of ultrasonic wave-based techniques,
complemented by machine learning frameworks, in structural health monitoring for
additively manufactured lattice structures. While the results are promising, the
research also highlights the need for further refinement in experimental validation
methods to better align with numerical models. This work provides a foundation
for future advancements in non-destructive evaluation and monitoring of 3D lattice
structures, with significant implications for safety, maintenance, and operational
efficiency in real-world applications.
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Chapter 9

Discussions, Future Work and
Conclusions

9.1 Overview of Main Findings

This research developed and validated a structural health monitoring (SHM) frame-
work for additively manufactured (AM) lattice structures using ultrasonic testing
combined with machine learning (ML). It addresses critical challenges in detecting,
quantifying, and localizing damage in these complex lattice geometries. In this con-
text, damage refers to structural anomalies such as broken or fully fractured struts
in the lattice (i.e. complete discontinuities in load-bearing members). Such dam-
age significantly affects wave propagation and thus can be detected via ultrasonic
methods. The main findings of this study include:

Effectiveness of Ultrasonic SHM

Ultrasonic wave propagation proved highly sensitive to internal defects in the lattice.
Notably, the breaking of lattice struts caused measurable changes in the transmit-
ted wave, particularly a clear attenuation of signal energy. These wave alterations
allowed effective detection of structural anomalies that are not visible externally.
This capability is especially valuable for non-invasive monitoring of intricate lat-
tice architectures where direct visual inspection is impractical. The pronounced
decrease in transmitted ultrasonic energy in the presence of damage confirmed that
wave attenuation can serve as a primary indicator of structural health in lattice
components.

Machine Learning Integration

ML models (notably an artificial neural network) were able to distinguish between
healthy and damaged lattice states with high accuracy under the tested conditions.
In numerical simulations, the classifier achieved around 90damage, demonstrating
the promise of data-driven analysis for this application. The inclusion of Principal
Component Analysis (PCA) as a feature reduction step significantly improved the
efficiency and stability of the model by optimizing the feature set. By compress-
ing the ultrasonic signal data into a few principal features, PCA helped the ML
model focus on the most damage-sensitive information. As a result, the classifica-
tion was both effective and computationally efficient. It should be noted, however,
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that these accuracy levels were achieved in controlled experiments and simulations;
performance may be lower in more complex or noisy real-world scenarios, so these
results must be interpreted with appropriate caution.

Damage features

Damage features correspond to the characteristics of the response signal that are
sensitive to the damage and provide good classification. Damage features serve to
both reduce the dimensionality of the data as well as provide optimized information
from the signal for damage classification. In this study, energy of the signal was seen
to be progressively changing with the presence and severity of damage. Energy from
different regions of the signal was effectively used for classification of damage state.
PCA was also used to reduce the dimensionality of data and extract features for
damage classification. These damage features provided a compact and informative
representation of the structural state. They enabled the ML classifier to be trained
effectively, improving damage detection and characterization performance. In sum-
mary, the progressive reduction in signal energy due to damage (and its capture
through features) was a key finding that underpins the classification approach.

Damage Quantification and Localization

Beyond simply detecting damage, the features extracted from ultrasonic signals car-
ried information about the extent and location of damage. In this work, a zone-based
classification strategy was employed for damage quantification and localization. In-
stead of trying to count every broken strut exactly (which proved difficult due to
overlapping signal effects), the methodology classified damage into categories by
severity and by region. For quantification, the framework could distinguish between
different levels of damage (i.e. or one damaged cell vs. multiple damaged cells)
with reasonable accuracy, even if identifying the precise number of broken struts
was challenging. This approach of grouping damage severity was more reliable than
attempting a one-to-one mapping of signal changes to each broken strut. For lo-
calization, the lattice structure was conceptually divided into zones (for example,
grouping struts into cells or sections), and multiple sensor pairs were deployed to
detect damage in those zones. This spatial classification approach enabled the iden-
tification of which region of the lattice was affected by damage. The results demon-
strated that for relatively simple damage cases (e.g. one to three damaged cells),
the method correctly identified the damaged zone in a majority of instances. This is
a valuable capability given the complexity of wave propagation in lattices. However,
the precision of localization was limited: as the number of damaged elements in-
creased or if damage was more distributed, the accuracy of pinpointing exact zones
decreased. In summary, the developed method can localize defects within 2D and
3D lattice structures to a regional extent, offering a practical way to narrow down
inspection areas.

Scalability to 3D Lattices

The SHM methodology was successfully extended from two-dimensional (2D) lat-
tices to more complex three-dimensional (3D) lattice structures. Adapting the ap-
proach to 3D required addressing additional challenges such as multi-axial wave
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propagation paths and a larger number of potential damage sites. The core tech-
niques (ultrasonic excitation/measurement, feature extraction, and classification)
remained applicable and effective in 3D, demonstrating the approach’s adaptabil-
ity. Consistent trends were observed between 2D and 3D cases — for example, the
presence of damage led to attenuated signals and the ML classifier could detect and
categorize damage in both geometries. The study showed that even in an 8-cell
3D lattice with complex connectivity, the framework could identify damaged vs.
healthy states and perform zone-based localization of damage. Achieving this scal-
ability is a noteworthy result; it indicates that the method can be applied to real
lattice components (which are inherently 3D) beyond the simplified 2D prototypes.

Collectively, these findings demonstrate the potential viability of the proposed
ultrasonic-ML SHM approach for monitoring lattice structures. The research estab-
lished a foundational framework that is both scalable (applicable to various lattice
sizes and dimensions) and shows promise in terms of reliability for detecting inter-
nal damage. At the same time, the results highlight certain limitations (such as
reduced localization precision in complex scenarios and the need for calibration be-
tween simulation and experiment) which temper the claims of immediate real-world
readiness. Overall, the study provides strong evidence that ultrasonic waves and
machine learning can be combined to detect and characterize damage in intricate
lattice geometries, supporting the feasibility of this SHM methodology for future
practical use with further refinement.

9.2 Evaluation of Aims, Objectives, and Hypothe-
ses

This section evaluates how well the research met its stated aims and objectives (as
defined in Chapter 1), and revisits the initial hypotheses in light of the findings. The
primary goal was to develop a reliable methodology for damage characterization in
AM lattice structures using ultrasonics and ML. Four specific objectives were set to
achieve this goal, each of which is discussed below along with the outcomes:

Understanding Wave Propagation in Lattice Geometries

Through an analytical study on ultrasonic transmission in lattice structure, the re-
search provided detailed insights into how ultrasonic waves interact with the unique
lattice geometries and defect types of lattice structures. The analytical study en-
abled the calculations of transmission efficiencies of lattice unit cells which were then
calculated for complete structures. Changes in ultrasonic transmissions for a healthy
and damaged structure were measured and a qualitative analysis of the same was
carried out. The qualitative analysis revealed attenuation of wave transmissions due
to the presence of damage. This attenuation acts as the primary feature for damage
characterization in this study. Thus analytical study not only helped to further the
understanding of ultrasonic transmission in lattice structures but also served as a
proof of concept of developing a methodology for damage detection and quantifica-
tion. The analytical study also provides a quick and efficient method for calculating
transmission efficiency in various forms of lattice structures.
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Developing a methodology for damage detection and quantification

A comprehensive methodology for damage detection and quantification was devel-
oped. The methodology involved numerical simulations of a large sample set of a 2D
lattice structure to generate response data for undamaged and damaged structures.
A neural network classification model was trained using the known class labels of
the simulated data and validated through test data. The best accuracy of more than
90% was achieved when quantifying a range of damaged struts. The methodology
was validated using experimental testing. Due to limited experimental data, a stan-
dalone classification model was not generated for the experimental data. Instead,
the experimental data was normalized to the numerical response data and tested on
the classification model trained with numerical data. Good accuracies were seen for
the experimental data tested on the classification model. The methodology was then
tested on a 3D lattice structure and similar results were seen.

Establishing a Damage Localization Methodology

A detailed damage localization study was conducted on two different 2D lattice
structures with a varying number of cells. Three different localization models were
tested in this study. In Localization Model A, the aim was to approximate the
location of exact damaged strut in the structure. This methodology did not perform
well when locating more than one damaged struts. In Localization model B, the aim
was to measure the location of damaged cells instead of individual struts. Locations
of upto three damaged cells were approximated with good accuracy in this model.
Finally, in Localization Model C, a spatial localization technique using multiple
sensors and zoning of the structure was used to determine the location of damaged
struts in different zones of the structure. Localization model C provided the best
accuracy for the localization of damage. The experimental testing of localization
methodology was also carried out which validated the findings of spatial localization
in numerical testing. Finally, the localization scheme was also validated for a 3D
lattice structure using first two localization models.

Incorporating Machine Learning for Enhanced SHM

Application of ML formed the core of this study. A robust classification model was
developed using a trained Neural network, the parameters of which were optimized.
The ML learning model was tested again the statistical models and ML models
results in better classification accuracy. Moreover, ML classification was able to
handle complex dataset involving overlapping damage states. This study highlights
the possible applications of Machine learning in SHM applications.

Evaluating Scalability and Applicability

The methodologies developed for 2D models were tested on a 3D lattice structures.
The results indicated the scalability of the proposed model to 3D structures and
real world applications.

These achievements confirm the research’s success in addressing its primary aim
while establishing a robust foundation for future studies in SHM for AM components.

146 Chapter 9 Hasan Tarar



Detection and characterization of damage in lattice structures using ultrasonics

9.2.1 Validation of Hypotheses

This research was guided by four key hypotheses, each addressing critical aspects of
structural health monitoring (SHM) in additively manufactured (AM) lattice struc-
tures. The results obtained through numerical simulations, experimental studies,
and machine learning (ML) integration confirm these hypotheses:

Hypothesis 1: Defects in lattice structures significantly alter ultrasonic
wave properties

The numerical results along with experimental findings confirmed that the breaking
of struts, a key form of damage in lattice structures, led to significant changes
in the ultrasonic wave properties. A measurable change in wave attenuation and
scattering properties were seen after interaction with the damage. This was also
validated through analytical calculations of wave propagation in a lattice structure.
The presence of damage altered the transmitted wave to the sensor.

Hypothesis 2: The difference between the response of healthy and dam-
aged structures can provide a baseline for damage characterization

The study developed a baseline dataset of ultrasonic wave responses for undamaged
lattices, which was compared with responses from damaged structures. Feature ex-
traction techniques highlighted separations between healthy and damaged states,
providing a robust basis for classification. Establishing this baseline is critical for
quantifying damage and serves as a foundation for ML-driven damage characteriza-
tion.

Hypothesis 3: Advanced signal processing techniques and machine learn-
ing algorithms can be used for the detection and quantification of damage
in lattice structures

Principal Component Analysis (PCA) and neural networks were employed to process
ultrasonic signal data. The ML model achieved over 90% classification accuracy for
damage detection and quantification, proving the hypothesis correct. This result
highlights the potential for integrating ML into SHM frameworks, enabling accurate,
automated, and scalable damage assessment.

Hypothesis 4: A systematic approach combining experimental data and
numerical simulations can enhance the accuracy of damage quantification
and localization in lattice structures

The neural network classification model was trained using the numerically simulated
data of the lattice structures. The numerical models also included the material
and sensor placement uncertainties incorporated to match closely with real-world
applications. The experimental data was normalized to the numerical data and
tested with the classification model. Good accuracy of prediction was seen for the
experimental data, boosting confidence in the developed methodology. By further
improving the normalization techniques, this will also enable developing a trained
classification model for a variety of lattice structures using numerical simulations
and then using those models for classifying damage in real-world applications.
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9.3 Key Contributions of the Research

This research makes several noteworthy contributions to the state of the art in struc-
tural health monitoring and non-destructive evaluation of lattice structures. The
contributions span theoretical insights, methodological innovations, and practical
implications. In one sentence, the core contribution of this thesis is the develop-
ment and demonstration of an integrated ultrasonic and-ML framework for detect-
ing, quantifying, and localizing internal damage in complex AM lattice structures.
Building on this overarching achievement, the key specific contributions are outlined
below:

e Enhanced understanding of ultrasonic wave behavior The thesis pro-

vides a deeper theoretical and experimental insight into how high-frequency
stress waves travel through and interact with the complex geometry of strut-
based lattices. By systematically analyzing wave transmission and reflection in
both healthy and damaged lattice cells, the study identified wave attenuation
as a robust indicator of damage. This is a significant academic contribution:
previous works have studied ultrasonic propagation in simpler structures, but
this work extends that understanding to architected lattice materials. It high-
lights the critical parameters (such as transmitted wave amplitude and energy
loss) that correlate strongly with structural damage. This new knowledge lays
the groundwork for ultrasonic-based inspection techniques tailored to lattices,
a domain that had not been thoroughly explored before. Essentially, the re-
search bridges a gap by explaining how and why a broken strut in a lattice can
be detected via changes in an ultrasonic signal, thus advancing the theoretical
foundation for SHM in architected materials.

Development of an integrated SHM methodology A major contribu-
tion of this work is the creation of a novel SHM framework that combines
ultrasonic testing with machine learning to automatically detect damage in
AM lattice structures. While machine learning has been applied in SHM of
conventional structures, this thesis is among the first to tailor and validate
such an approach for the unique context of lattice geometries produced by
additive manufacturing. The methodology covers the entire process: sensing
(using piezoelectric transducers to excite and capture waves), signal process-
ing (feature extraction and PCA), and automated damage classification (via
neural networks). This integrated approach proved capable of distinguishing
damaged versus undamaged lattices with high accuracy and could even clas-
sify damage severity levels. The contribution here is twofold: (1) a practical
framework /algorithm that researchers and engineers can build upon for mon-
itoring lattice-based components, and (2) evidence that data-driven models
can overcome the complexities of lattice signals (which are typically difficult
to interpret with traditional methods). By demonstrating an effective use of
ML in this scenario, the work pushes the boundary of SHM practice — showing
that even highly complex, periodic structures can be monitored using intelli-
gent algorithms. This contribution is expected to inspire further studies on
applying and refining ML techniques for SHM in other complex geometries
and advanced materials.
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e Innovative approach to damage quantification and localization in
lattices The thesis introduces and validates a spatial classification strategy
for dealing with damage quantification and localization, which is a new way
to handle these challenges in a lattice structure. Instead of relying on direct
physics inversion or dense sensor networks, the approach segments the struc-
ture into logical zones and trains classifiers to recognize damage in those zones
or within certain severity ranges. This zone-based damage localization method
is an important contribution because traditional SHM methods struggle to
pinpoint damage in complex lattices using global signals. By breaking the
problem into smaller sub-regions and focusing on pattern recognition within
signals, the research achieved a level of localization that was not previously at-
tainable in lattices with a simple two-sensor setup. Furthermore, the concept
of using multiple simplified classifiers for different levels of damage (the multi-
level classification scheme for quantification) proved effective — this strategy
improved accuracy by reducing the confusion that arises when one tries to
discriminate too many damage cases at once. Collectively, these methodolog-
ical innovations (zonal localization and multi-level damage classification) are
contributions that make SHM of complex structures more feasible.

e Extension of SHM to 3D lattice structures, The research successfully
scaled and tested the damage detection methodology on 3D lattice speci-
mens, thereby demonstrating scalability and adaptability of the SHM ap-
proach. Many prior studies in SHM focus on simple or planar structures;
in contrast, this work tackled the more complex 3D lattice which is closer
to real engineering components (e.g., lattice infills in aerospace or biomedical
parts). Adapting the techniques to a full 3D lattice (with multiple layers of
cells) required overcoming challenges like more complicated wave paths and
increased signal attenuation, and the thesis showed that this can be done.

¢ Simulation-experiment integration An additional technical contribution
of the thesis is the demonstrated approach for combining numerical simulations
with experimental measurements to develop data-driven SHM models. The
study showed how normalizing and aligning data from different sources can
overcome the scarcity of experimental data when training machine learning
models. In essence, the numerical simulations were used to train initial damage
classification models, and a calibration procedure then allowed those models
to interpret real experimental signals correctly.

Collectively, these contributions advance the field of SHM for additively manufac-
tured structures on multiple fronts. Academically, the work enriches the under-
standing of wave-damage interaction in lattices and introduces new techniques for
damage evaluation. Practically, it offers a prototype SHM system that, with further
development, could be deployed to monitor critical lattice components in service.
The findings and methods from this thesis thus pave the way for more reliable and
efficient monitoring strategies tailored to the unique challenges of AM lattice struc-
tures. They also provide a foundation upon which future researchers can build —
whether it is by refining the ultrasonic/ML algorithms, exploring other sensor types,
or extending the approach to different types of lattice geometries and materials.
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9.4 Challenges and Future Work

While this research achieved its primary objectives, it also revealed several chal-
lenges and limitations that provide avenues for future improvement. It is important
to critically assess these issues to understand the scope and honesty of the contri-
butions. Addressing these challenges in future work will be crucial for translating
the proposed SHM framework into a robust real-world application.

e Material and modeling uncertainties: One challenge lies in the uncer-

tainties associated with the material properties and manufacturing quality of
the lattices, which can affect the accuracy of both numerical models and ex-
perimental results. Additively manufactured lattice structures often exhibit
variability such as micro-porosity, residual stresses, or slight geometric devi-
ations (e.g., strut thickness variations) from the ideal design. These factors
can influence ultrasonic wave propagation in ways that are hard to predict
with simplified models. Future work should investigate more robust modeling
techniques that account for material and manufacturing uncertainties. Fur-
thermore, the mass of sensors has not been modeled in the current study which
may have impacted the accuracy of the prediction model. It is suggested that
future work should cater for the mass of the sensors.

Limited data and machine learning generalization: Another significant
challenge is the limitation of the available data, especially experimental data,
for training and validating the machine learning models. In this project, thou-
sands of simulated signals were available, but the experimental dataset was
relatively small (restricted by the number of specimens and tests that could
be practically carried out). Consequently, the ML classifier’s ability to gener-
alize to new situations (for instance, a lattice of a different design or a slightly
different damage scenario) is not yet proven. The current classification models
rely on the assumption that the damage patterns seen in training cover those
that will be seen in practice. Future studies should focus on greatly expanding
the dataset, including a wider range of damage types, severities, and lattice
configurations. This could involve generating more numerical data for different
lattice designs (to see if the same features and models work) and, importantly,
gathering more experimental data.

Additionally, advanced machine learning techniques could be explored to im-
prove generalization. For example, transfer learning or domain adaptation
algorithms might allow a model trained on one type of lattice or simulation
data to adapt to another type. More sophisticated neural network architec-
tures (such as convolutional or recurrent networks that might better capture
signal patterns) could also be tested for improved performance.

Damage definition and detection scope: The scope of damage considered
in this thesis was limited to complete breaking of struts (full discontinuities).
This is a logical starting point, as broken struts cause a pronounced effect on
ultrasonic waves. However, in real structures, damage can be more subtle — for
instance, a strut could develop a crack that only partially reduces its stiffness,
or there could be a weak bonded joint or some localized plastic deformation.
These kinds of minor or incipient damages do not completely sever the load
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path but still represent damage that could grow over time. In the current
approach, such small-scale damage might not produce as large or as clear a
change in the ultrasonic signal as a fully broken strut, and thus might go un-
detected or be hard to distinguish from noise. Future research should broaden
the types of damage studied to include these partial damages or degradation
states.

e Alternate sensing techniques: The current SHM setup used a pair of piezo-
electric transducers in a pitch-catch arrangement (one transmitter, one re-
ceiver) for most tests, with additional sensors for localization in certain cases.
Future work could explore more complex sensor arrays and optimize sensor
placement to improve coverage of the structure. Moreover, alternative types
of sensors could be investigated. The exclusive use of piezoelectric transducers
means we focused on ultrasonic wave transmission; however, other modali-
ties like accelerometers or strain gauges could pick up vibrational or static
strain changes due to damage. Incorporating an accelerometer array might al-
low vibration-based SHM in conjunction with ultrasonics — a hybrid approach
that could catch a wider range of damage types. For instance, low-frequency
vibrations might be more sensitive to global stiffness loss from partial damage,
complementing the local sensitivity of high-frequency ultrasound. Addition-
ally, optical methods (like fiber Bragg grating sensors) could be considered
for high-resolution strain monitoring in critical struts. In future implementa-
tions, a multisensor, multi-modal SHM system might provide the best cover-
age: ultrasonics for detecting internal cracks or breaks, and vibration/strain
monitoring for detecting slight stiffness changes and confirming global struc-
tural integrity. The challenge of limited sensor representation identified by
the examiners can thus be addressed by broadening the sensing strategy in
subsequent research.

e Complexity of 3D geometries and advanced localization methods:
As the study showed, moving to 3D lattices increases the complexity of the
SHM task. Wave propagation in 3D is inherently more complicated (waves
can take many paths and modes), and the number of potential damage sites
grows. The zone-based localization method worked to an extent for the tested
3D case, but its performance may decline as the structure size or complex-
ity further increases. A challenge for future work is to maintain or improve
localization accuracy in larger or more intricate lattices. One promising direc-
tion is to employ more advanced computational methods for localization, such
as inverse problem solving or machine-learning-based regression that directly
predicts damage location coordinates from signals. In the current approach,
we simplified the localization by classification (zones), but another approach
could train a model to output a probable damage location (perhaps formulated
as coordinates or an image of the structure with highlighted damage).

9.5 Future Research Directions

In light of the challenges identified, the following future research directions are par-
ticularly recommended to build upon this thesis:
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e Broader damage scenarios: Expand the investigation to include different
damage forms (e.g., gradual cracks, debonded joints, material fatigue dam-
age) beyond the complete strut fractures studied here. This will test the
method’s sensitivity and possibly require new features or techniques for de-
tecting smaller-scale damage.

e Larger and varied lattice configurations: Apply the methodology to a
wider range of lattice designs (different cell topology, size, and material) to
evaluate its adaptability. This will help ensure the approach is robust across
different use cases and not over-fitted to one geometry. It will also provide in-
sight into how lattice parameters (such as cell size, complexity, or base material
properties) affect SHM performance.

e Advanced signal processing and ML models: Investigate alternative fea-
ture extraction methods (such as wavelet transforms or nonlinear time-series
analyses) and cutting-edge ML algorithms (including deep learning models)
for potentially improved accuracy. For instance, a deep neural network might
automatically learn complex features from raw waveforms, which could out-
perform manually crafted features like energy metrics, especially for detecting
subtle damages. Any new model should be tested for its ability to generalize
and for interpretability in the context of physical wave behavior.

e Improved experimental validation: Conduct more extensive experimental
testing, including long-term monitoring scenarios if possible. For example,
one could subject a lattice to cyclic loading to introduce fatigue cracks and
attempt to detect them with the SHM system in situ. Such experiments would
validate the system’s real-world applicability and help identify any reliability
issues (e.g., sensor durability, repeatability of results over time, false alarm
rates) that need to be addressed.

e Hybrid SHM approaches: Explore combining the ultrasonic-ML frame-
work with other complementary SHM approaches. As mentioned, integrating
vibrational monitoring could be beneficial. One could develop a hybrid model
that takes both ultrasonic features and vibrational frequency changes as inputs
to a unified classifier or decision engine. This multi-faceted monitoring might
greatly enhance confidence in detection and also provide redundancy (so that
if one method misses a damage, another might catch it).

e Sensor network optimization: Research optimal sensor placement and
minimal sensor requirements for lattice SHM. Using simulation tools, one could
perform a sensitivity analysis to see which sensor locations yield the most in-
formation about certain damage locations, then use optimization algorithms
to suggest the best sensor layout for a given lattice structure. The outcome
would guide practical implementations in terms of where to mount sensors
on a part and how many are needed to achieve a desired level of diagnostic
capability.

By addressing these future directions, the limitations identified in the current
work can be mitigated step by step. Progress in these areas will ensure that the SHM
framework becomes more robust, accurate, and broadly applicable. Ultimately, the
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goal of future research inspired by this thesis is to develop a comprehensive SHM
system for AM lattice structures that is reliable under real operating conditions,
capable of detecting even minor damage early, and straightforward to deploy on
actual components.

9.6 Concluding Remarks

In this chapter, we discussed the outcomes of the research in the context of the
original aims, examined the contributions and limitations, and outlined paths for
future work. It is evident from the discussion that the project has achieved its
primary objectives and has made a meaningful contribution to the field of structural
health monitoring for advanced lightweight structures. The developed ultrasonic-
ML framework was shown to be effective in detecting and characterizing internal
damage in lattice structures, thereby confirming the central hypotheses of the study.
The integration of ultrasonic testing with machine learning proved to be a viable
approach to handle the complexity of lattice geometries, something that traditional
methods alone could not easily accomplish.

A key achievement of this research is that it establishes a proof of concept for
monitoring AM lattice structures in a way that is both non-invasive and automated.
The ability to identify not only the presence of damage but also an estimate of its
severity and location is a step forward for SHM of intricate architectures. This work
thus provides a foundation for future SHM systems that could be used to ensure
the integrity of components made by additive manufacturing. By validating the
approach on real printed specimens (albeit at laboratory scale), the thesis moves
the theoretical concept closer to practical realization.

It is important to emphasize the novelty and context of these contributions: while
structural health monitoring and even the use of ML in SHM are not new by them-
selves, their application to the specific domain of periodic lattice materials fills a gap
in the current literature and practice. Lattice structures are increasingly employed
in high-performance engineering applications (such as lightweight aerospace compo-
nents, biomedical implants with lattice scaffolds, and energy-absorbing automotive
parts). Ensuring the safety and reliability of such components is critical. However,
their complex geometry makes conventional inspection difficult. The methods de-
veloped in this thesis — using ultrasonic waves that can penetrate complex internal
geometry, and intelligent algorithms to interpret the signals — offer a solution tai-
lored to this need. In academic terms, the thesis contributes new knowledge about
how damage in these novel structures can be detected and assessed. In industrial
terms, it suggests a pathway to real-time in-service monitoring of AM lattice compo-
nents, which could significantly enhance maintenance strategies and safety margins.

At the same time, the research has been careful to identify its own limitations.
The performance metrics achieved (for example, classification accuracy and local-
ization precision) are encouraging but not yet at a level where one would simply
deploy the system on an aircraft wing or an implanted medical device without fur-
ther development. There is room for improvement in terms of reliability, generality,
and resolution. By openly discussing these aspects, the thesis provides a realistic
assessment and avoids overstating the readiness of the technology. This honesty is
important for guiding future efforts; it ensures that subsequent researchers focus
on the most pressing issues (such as those outlined in Section 9.5) to advance the
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method from a promising prototype to a mature tool.

In conclusion, this thesis has demonstrated that ultrasonic-based SHM aug-
mented with machine learning is a promising approach for the detection and charac-
terization of damage in additively manufactured lattice structures. The work bridges
the gap between theoretical wave propagation analysis and practical damage detec-
tion through a data-driven framework, contributing to both domains. With further
refinement — including better models, more extensive data, and broader validation
— the approach developed here has the potential to become a reliable technique for
monitoring complex structures in real time. Such a capability would be highly valu-
able: it could enable engineers to detect incipient damage in critical components
before it leads to failure, thus improving the safety, performance, and lifespan of
next-generation lightweight structures. The contributions of this research, there-
fore, have significance not only in advancing scientific understanding but also in
pointing the way toward safer and more efficient use of advanced manufactured ma-
terials in industry. The hope is that this work will spur continued research at the
intersection of ultrasonics, machine learning, and advanced materials engineering,
ultimately leading to smart structures that can monitor their own health throughout
their service life.
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