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Abstract

In this thesis, we investigate discrete breathers in nonlinear mechanical lattices

through numerical and asymptotic methods. First, in a one-dimensional mass-

in-mass Fermi–Pasta–Ulam–Tsingou (FPUT) chain with internal oscillators,

we identify stable stationary breathers and long-lived weakly unstable station-

ary and moving breathers and breather–kinks. Second, in two-dimensional

hexagonal lattices, we use multiple scales analysis, we derive the equations

governing wave propagation and reduce them to Nonlinear Schrödinger (NLS)

equations. We identify the ellipticity condition and a focusing condition for

the exist of fully localised NLS solutions in triangular geometries, and derive

(2+1)-dimensional and coupled (2+1)-dimensional NLS subsystems in honey-

comb structures. The latter arise from critical points of the dispersion relation

and yield existence criteria for small-amplitude breathers. These results are

relevant for predictive models for energy localisation in mechanical metamate-

rials as they link lattice symmetry, nonlinearity and breather stability.
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Chapter 1

Introduction and Literature

Review

In this introductory chapter, we review the various types of solitons: breather,

pulses and travelling kink waves are introduced, and some historical devel-

opments are illustrated. It is shown that discrete nonlinear systems play an

important role in the analysis of complex dynamical behaviour, as in elec-

tronic and mechanical dynamics. These are pivotal in applications related to

advanced materials, such as graphene and metamaterials, where understand-

ing interactions at the microscopic level can lead to the manipulation of wave

propagation through engineered nonlinearity. These findings may contribute

to the development of next generation technologies.

This chapter therefore presents a motivation for the thesis and for the thesis

structure.

1.1 Historical developments

The study of lattice dynamics is fundamental to understanding the intrinsic

properties of crystalline solids. Lattices, understood as the periodic arrange-

ment of atoms or molecules in a crystal, exhibit harmonic and anharmonic

behaviours that significantly influence a material’s physical characteristics. In
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the harmonic regime, atoms oscillate about their equilibrium positions due

to forces proportional to their relative displacements, allowing for analytical

simplifications in predicting crystal behaviour.

However, real world crystals deviate from purely harmonic behaviour due to

anharmonicity. These nonlinear effects arise when atomic displacements are

sufficiently, resulting in interactions beyond the harmonic approximation. Such

phenomena manifest in optics, electronics and acoustics. This transition from

harmonic to anharmonic dynamics reflects the movement from idealised sys-

tems to realistic models that account for fluctuating mechanical interactions.

Translational symmetry allows a lattice to extend across thousands of atoms,

producing a regular repeating pattern. This periodicity is essential in defining

the a crystal’s electronic band structure and phonon dispersion relations. How-

ever, defects or vibrational excitations may break the symmetry, introducing

localised states or scattering centres that significantly alter the lattice’s overall

behaviour.

Solitons, including breathers and kinks, emerge as distinct solutions to nonlin-

ear partial differential equations (PDEs) in nonlinear wave dynamics. Solitons

are localised waves that retain their shape and velocity post interaction, thus

distinguishing them from typical dispersive waves. Travelling waves, a broader

category, include pulses and kinks each characterised by specific propagation

and localisation features. A pulse is a localised wave packet with a peak that

propagates while maintaining its form. By contrast, a kink features a transi-

tion in amplitude across the medium, connecting distinct asymptotic states.

1.1.1 Breathers and Localised Oscillations

Breathers, or Discrete Breathers (DBs), represent localised oscillatory modes

that concentrate energy in discrete systems [3]. These modes have also been re-

ferred to by various other terms: Intrinsic Localised Modes (ILMs) emphasise

their emergence in defect-free lattices; Self-Localised Modes (SLAMs) highlight
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the self-trapping mechanism; and Nonlinear Localised Excitations (NLEs) de-

scribe their general nonlinear nature. The term ”Discrete Breather” was coined

by Flach and Willis [3], whose framework is adopted throughout this thesis.

DBs have been studied in quasi one dimensional lattices, where high energy,

fully localised solutions exist even in higher-dimensional configurations [4]. In

some systems, such as those governed by the sine-gordon (SG) equation

∂2u

∂t2
− ∂2u

∂x2
+ sin(u) = 0, (1.1.1)

breathers appear as bound states of kink-anti-kink pairs. However, in many

discrete systems, DBs are better viewed as individual entities, exhibiting robust

propagation similar to travelling kinks.

1.1.2 Breather Existence

Breathers exist in nonlinear discrete systems due to two fundamental features:

first, discreteness introduces an upper limit to the dispersion relation, allowing

the breather frequency and its harmonics to lie outside the phonon bands; and

second, nonlinearity ensures that the breather frequency and its harmonics

can avoid resonances with linear modes, enabling the solution to remain long

lived.

0 2 4 6 8 10 12 14

0
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1.5

2
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Figure 1.1: Illustration of the dispersion relation (2.2.6) [1] for 0 < k < 4π, and
ρ = 3, µ = 3. The solid line represents the acoustic branch, while the dashed line
corresponds to the optical branch.
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For example (Figure 1.1), a frequency gap lies between the two branches, and

the frequency of a breather may occur either above the optical branch or below

the acoustic branch. Breathers can also exist in continuous systems, provided

that nonlinear and dispersive effects are in balance.

1.1.3 Wobbling Kinks

A wobbling kink is a kink soliton that exhibits internal periodic oscillations

while maintaining its shape. The ”wobbling” describes internal oscillations

of the kink’s shape that occur during its propagation. Instead of moving

smoothly, it ”wobbles” around its equilibrium [5]. The potential function in

the φ4 model has two symmetric minima, and the equation of motion is derived

from the Hamiltonian

H =
1

2

((
∂φ

∂t

)2

+

(
∂φ

∂x

)2
)

+ V (φ), (1.1.2)

where the potential is given by

V (φ) =
1

4
φ4 − 1

2
φ2. (1.1.3)

The corresponding equation of motion is

∂2φ

∂t2
− ∂2φ

∂x2
− φ+ φ3 = 0. (1.1.4)

The stationary kink solution connecting φ = −1 as x → −∞, and φ = 1 as

x→∞, is

φ(x, t) = tanh

(
x√
2

)
. (1.1.5)

To study wobbling behaviour, we introduce a small perturbation

φ(x, t) = φkink(x) + εη(x, t), (1.1.6)
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with ε� 1. Linearising (1.1.4) leads to

∂2η

∂t2
− ∂2η

∂x2
+
(
3φ2(x, t)− 1

)
η = 0. (1.1.7)

Here, (3φ2(x, t)− 1) represents the effective potential generated by the kink,

with the φ4 model yielding

U(x) = 2− 3 sech2

(
x√
2

)
, (1.1.8)

resulting in the perturbation equation

∂2η

∂t2
− ∂2η

∂x2
+ U(x) η = 0. (1.1.9)

Assuming a separable solution η(x, t) = eiωtΨ(x), we reduce the (1.1.9) to a

time-independent Schrödinger-type equation

− d2Ψ

dx2
+ U(x)Ψ = ω2Ψ, (1.1.10)

which allows us to identify the internal (wobbling) modes of the kink.

1.1.4 Lattice models: mass-spring systems and nonlin-

ear potentials

We now illustrate the theoretical frameworks and computational models used

to describe discrete mass-spring systems in one dimension (1D), focusing on

the Fermi–Pasta–Ulam–Tsingou (FPUT) and Klein–Gordon (KG) lattices. A

mass-spring chain represents a straightforward 1D atomic lattice or crystal

model. This system is typically formulated as a dynamical system with the

Hamiltonian

H(p, q) =
∑
n

1

2m
p2
n +

∑
n

W (qn) +
∑
n

V (qn+1 − qn), (1.1.11)
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where m is the mass of each particle, pn is the momentum conjugate to dis-

placement qn, and V and W are real valued potential functions. As illustrated

in Figure 1.2, the quantity qn measures the displacement of the n-th particle

from its equilibrium position. Let φ = qn+1 − qn denote the strain between

neighbouring particles.

Figure 1.2: Schematic illustration of a 1D mass-spring chain model.

Different choices of V and W yield various well-known lattice models, includ-

ing:

• FPUT lattice

W (q) = 0, V (φ) =
1

2
φ2 + α

φ3

3
+ β

φ4

4
, (1.1.12)

where α and β represent the strengths of cubic and quartic nonlinearity,

respectively. The cases β = 0 and α = 0 correspond to the α-FPUT and

β-FPUT models respectively.

• Klein–Gordon (KG) lattice

W (q) =
∞∑
r=2

arq
r, V (φ) = c

φ2

2
, (1.1.13)

where the coefficients ar arise from the Taylor expansion of the on-site

potential W (q), and c is a coupling constant.

For asymptotic methods applied to small amplitude solutions, only the leading-

order terms in the Taylor expansion of the potential functions are typically
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considered. Combining the Hamiltonian (1.1.11) with the FPUT potential

(1.1.12) yields the equation of motion

d2qn
dt2

= (qn+1−2qn+qn−1)+a(q2
n+1−2q2

n+q2
n−1)+b(q3

n+1−2q3
n+q3

n−1), (1.1.14)

where a and b relate to the nonlinear terms in the interaction potential. This

discrete second-order equation reflects the interplay between linear coupling

and nonlinear interactions, governing the evolution of nodal displacements

qn(t) in the mass-spring chain.

1.1.5 Alternative potentials: Toda and Morse models

Beyond polynomial potentials, other forms are prominent in the literature on

nonlinear lattice dynamics.

Toda potential

V (φ) =
α

β

(
e−βφ + βφ− 1

)
, V ′(φ) = α(1− e−βφ), (1.1.15)

where α controls the amplitude, and β determines how rapidly the potential

decays with increasing φ. The Toda lattice is notable for admitting exact solu-

tions [6]. For small displacements φ, a Taylor expansion of the Toda potential

yields terms resembling the FPUT model with polynomial nonlinearity.

Morse potential

V (φ) = α
(
1− e−β(φ−φ0)

)2
, (1.1.16)

commonly used to model molecular vibrations, particularly where bond-breaking

occurs [7]. Here, φ0 is the equilibrium position, β controls the width of the

potential well, and α represents the depth of the potential.

In this thesis, we focus primarily on onsite potentials W (q) and polynomial

8



interaction potentials V (φ), as given in equations (1.1.12) and (1.1.13). In the

next section, we will discuss the NLS equations.

1.2 Nonlinear Schrödinger equation

The Nonlinear Schrödinger (NLS) equation plays a vital role in many

areas of mathematical physics, as it describes the slow modulation of envelope

solitons in dispersive nonlinear media. The general form of the NLS equation

in d-dimensions with power-law nonlinearity 2σ is given by

iψt +D∇2ψ +B|ψ|2σψ = 0, ψ(x, 0) = φ(x), (1.2.1)

where ψ(x, t) is a complex-valued wave function, with t ∈ [0,∞) and x ∈ Rd.

Here, ∇2 denotes the Laplacian in d dimensions, D is the dispersion coefficient,

and B is the nonlinear coefficient.

The classification of the NLS equation (2.2.9) depends on the sign of the prod-

uct BD:

• If BD < 0, the equation is defocusing, supporting dark solitons.

• If BD > 0, the equation is focusing, supporting bright solitons.

This classification is not original to the present work but is established in

seminal works (see, e.g., [8–10]) and has been extensively studied (see, e.g.,

[11, 12]). Coupled NLS systems are discussed in [13, 14].

Rasmussen [10] used the method of moments (also called virial theory) to derive

sufficient conditions for blow-up, where a localised wave can collapse and its

amplitude becomes unbounded in finite time. Two conserved quantities in the

NLS equation (2.2.9) are
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H =

∫ (
D|∇ψ|2 − B

σ + 1
|ψ|2σ+2

)
ddx, N =

∫
|ψ|2 ddx, (1.2.2)

where H is the Hamiltonian (conserved energy) and N is the norm (conserved

mass). Blow-up can occur if: H < 0, and N0 > Nc, where Nc is the critical

norm which depends on the spatial dimension d.

For initial data with N0 < Nc and H > 0, the solution tends to disperse or

decay. The parameter σc = 2
d

defines three key regimes:

Subcritical: σ < σc; Critical: σ = σc; and Supercritical: σ > σc.

Figure 1.3: Left: the relationship between the nonlinearity power σ and critical
threshold σc in dimensions d = 1, 2, 3. Green indicates a subcritical regime; red a
supercritical regime. Right: regions of blow-up and dispersion depending on the
initial norm N0 and energy H.

A notable solution of the focusing NLS equation is the Townes soliton [15],

which arises when σ = 1, d = 2. This one parameter family of solutions can

be analysed via asymptotic and numerical methods [8, 13, 14, 16–18].

1.2.1 Coupled nonlinear Schrödinger equations

The coupled NLS equations describe the interaction between two or more non-

linear wave components. They are widely used in nonlinear optics, Bose Ein-

stein condensates (BECs) and plasma physics [13]. A general 1D system for
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two interacting wave fields ψ1(x, t) and ψ2(x, t) is

i
∂ψ1

∂t
+
∂2ψ1

∂x2
+ γ1|ψ1|2ψ1 + β|ψ2|2ψ1 = 0, (1.2.3)

i
∂ψ2

∂t
+
∂2ψ2

∂x2
+ γ2|ψ2|2ψ2 + β|ψ1|2ψ2 = 0, (1.2.4)

where γ1, γ2 are the nonlinear interaction coefficients for each wave respec-

tively, and β is the nonlinear interaction coefficients between the two waves.

If γ1, γ2, β are equal, then the model (1.2.3)-(1.2.4) simplifies to the Manakov

model as

i
∂ψ1

∂t
+
∂2ψ1

∂x2
+ γ

(
|ψ1|2 + |ψ2|2

)
ψ1 = 0, (1.2.5)

i
∂ψ2

∂t
+
∂2ψ2

∂x2
+ γ

(
|ψ1|2 + |ψ2|2

)
ψ2 = 0. (1.2.6)

Here, γ is a common nonlinear interaction strength between and within the

fields. This unified form simplifies the analysis of vector soliton solutions. The

solutions of the Manakov model include Dark–Bright (D–B) and Dark–Dark

(D–D) solitons [13]. Bright solitons are localised peaks in the wave amplitude

and are usually observed in focusing NLS equations. Dark solitons, on the

other hand, occur in defocusing NLS equations. These can be derived using

analytical techniques, including the multiple-scales method (see Section 1.3.2).

In [13], the authors consider a generalisation of the Manakov model given by

i
∂ψ1

∂t
+
∂2ψ1

∂x2
+ γ

(
|ψ1|2 + |ψ2|2 + µ+ V (x)

)
ψ1 = 0, (1.2.7)

i
∂ψ2

∂t
+
∂2ψ2

∂x2
+ γ

(
|ψ2|2 + |ψ1|2 + µ+ V (x)

)
ψ2 = 0, (1.2.8)

where γ = 1, µ , and V (x) are potentials relevant to BEC systems. The

dark–bright (D–B) soliton solution of the generalised Manakov model is ex-

pressed in terms of two real-valued amplitude functions |ψ1| and |ψ2|. These

describe the density profiles of the dark and bright components respectively
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|ψ1| = µ cos2(δ)−
(
µ cos2(δ) cos2 φ− η2 sin2(δ)

)
sech2(ξ)

−√µη sin(2δ) [sinφ sin(kx+ θ(t)) + cosφ cos(kx+ θ(t)) tanh(ξ)] sech(ξ),

(1.2.9)

|ψ2| = µ sin2(δ)−
(
µ sin2(δ) cos2 φ− η2 cos2(δ)

)
sech2(ξ)

+
√
µη sin(2δ) [sinφ sin(kx+ θ(t)) + cosφ cos(kx+ θ(t)) tanh(ξ)] sech(ξ),

(1.2.10)

where the parameters are defined as follows: µ is the background amplitude of

the dark component; δ the mixing angle controlling the amplitude ratio of the

dark and bright components; η is the amplitude of the bright soliton (setting

η = 0 yields a dark–dark soliton); φ is the phase angle determining the soliton

type; the ξ = D(x−x0(t)) is the moving spatial coordinate with inverse width

D and soliton centre x0(t); the k = D tanφ is an associated wavenumber; and

the θ(t) = 1
2
(D2 − k2)t+ θ0 is the phase shift, with θ0 a constant phase offset.

The parameters must satisfy the balance condition

D2 = µ cos2 φ− η2,

to ensure a stable coupling between the dark and bright components.

1.3 Asymptotic analysis

Asymptotic analysis provides powerful tools for understanding complex

systems by examining their behaviour in limiting regimes often described by

partial differential equations (PDEs). This approach is particularly useful

when seeking explicit approximate solutions, such as breathers that are other-

wise difficult to obtain. A substantial body of research has focused on deriving

such approximate solutions.

In this context, we focus on two primary techniques, which are often used in
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conjunction with each other: the Continuum Approximation and the method

of Multiple Scales. The Continuum Approximation allows discrete systems to

be represented as continuous media on a macroscopic scale. By contrast, the

multiple scale method is designed to handle problems where different temporal

and spatial scales influence the system dynamics. We now briefly outline how

these techniques are employed to construct analytical solutions.

1.3.1 Continuum approximation

In the continuum approximation, a discrete physical system such as a lattice

composed of interacting particles is modelled as a continuous medium, to inves-

tigate phenomena on length scales much greater than the lattice spacing [19].

This allows the discrete variables n to be replaced by continuous x = εn and

ε � 1. For example, instead of tracking the displacement of each atom in a

crystal lattice by φn(t), one approximates the configuration using a field that

varies continuously in both space and time φ(x, t). The governing PDEs are

then derived from the original discrete model through suitable approximations.

Consider a 1D FPUT lattice, where the relative displacements between neigh-

bouring particles are given by φn = qn+1−qn. The discrete equation of motion

is given by

d2φn(t)

dt2
= V ′(φn+1)− 2V ′(φn) + V ′(φn−1), (1.3.1)

where the derivative of the interaction potential V (φ) (1.1.12) takes the form

V ′(φ) = φ+ αφ2 + βφ3. (1.3.2)

d2φn(t)

dt2
= φn+1 − 2φn + φn−1 + α

(
φ2
n+1 − 2φ2

n + φ2
n−1

)
(1.3.3)

To derive the continuum limit for the case β = 0, we introduce a continuous

spatial variable x = εn, assuming a small lattice spacing ε. The key assumption

is that φn(t) varies slowly in space, allowing us to approximate φn(t) ≈ φ(x, t),
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where φ(x, t) is a smooth function. Furthermore, we assume a small amplitude

expansion such that φ = O(ε2), implying that φ2 = O(ε4) and φ3 = O(ε6),

ensuring weak nonlinearity.

Expanding φn±1(t)=φ(x± ε, t) in a Taylor series yields

φ(x± ε, t) = φ(x, t)± ε∂φ
∂x

+
ε2

2

∂2φ

∂x2
± ε3

6

∂3φ

∂x3
+ · · · . (1.3.4)

Substituting into the discrete equation (1.3.1) and keeping terms up to fourth

order in ε, we obtain

∂2φ

∂t2
= ε2 ∂

2

∂x2

(
φ+ αφ2

)
+
ε4

12

∂4

∂x4

(
φ+ αφ2

)
+ · · · . (1.3.5)

∂2φ

∂t2
= ε2∂

2φ

∂x2
+
ε4

12

∂4φ

∂x4
+ αε2∂

2φ2

∂x2
+O(ε6). (1.3.6)

Now, consider a travelling wave solution of the form φn(t) = φ(ε(n − ct)) =

φ(z), where z = ε(n− ct) and c denotes the wave speed. Substituting into the

original discrete equation (1.3.1) gives

ε2c2∂
2φ

∂z2
= ε2∂

2φ

∂z2
+
ε4

12

∂4φ

∂z4
+ αε2∂

2φ2

∂z2
+O(ε6). (1.3.7)

assuming φ = ε2ψ , ψ = O(1), we get

ε4(c2 − 1)
∂2ψ

∂z2
=
ε6

12

∂4ψ

∂z4
+ αε6∂

2ψ2

∂z2
+O(ε6). (1.3.8)

To balance term, we consider speed near unity, specifically (c2 − 1) ≈ O(ε2),

we simplify (1.3.8) to

(c2 − 1)

ε2

∂2ψ

∂z2
=

1

12

∂4ψ

∂z4
+ α

∂2ψ2

∂z2
+ · · · . (1.3.9)
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We consider a small amplitude solitary wave solution of the form

φ(z) =
3

2α

(c2 − 1)

ε2
sech

(
3(c2 − 1)

ε2
z

)
. (1.3.10)

In this limit, the solitary wave retains its structure and smoothness, consistent

with the expectations of the continuum approximation.

1.3.2 Multiple scale approximation

An effective method for determining an approximation for breather so-

lutions is the multiple scales method that is frequently used in perturbation

theory, nonlinear dynamics, and wave propagation, as well as when a system

features behaviour on multiple scales that interact with each other, such as a

slow modulation of a fast oscillation [19, 20] . In this method, we introduce

multiple independent scales, such as a very long time scale, i.e. T = ε2t for

the oscillation; a long time scale, i.e. τ = εt; and a slow space scale X = εm

in one dimension for the modulation of breather amplitude. Then, we apply

the asymptotic expansion of the solution in terms of a small parameter ε� 1,

where each term in the expansion depends on these multiple scales. Therefore,

expanding the solution and considering interactions between different scales

can cover the system’s behaviour. The phase θ of linear waves characterizes

the oscillatory behaviour of the wave and depends on the wave number and spa-

tial dimensions. In a 1D chain, the phase can be displayed as θ = km+ω(k)t,

where k is the wave number, m represents the position along the chain and

ω(k) is the frequency of the wave. By considering the displacements um as the

function of the independent variables m, t,X, τ and T , the ansatz solution for
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1D lattices has the form

um(t) = εeiθF (x, τ, T ) + ε2(e2iθG2(x, τ, T ) + eiθG1(x, τ, T ) +G0(x, τ, T ))

+ ε3(e3iθH3(x, τ, T ) + e2iθH2(x, τ, T ) + eiθH1(x, τ, T ) +H0(x, τ, T ))

+ ...+ c.c, (1.3.11)

where the c.c is the complex conjugate.

In [21], Butt & Wattis considered a 1D FPUT chain whose particles interact

with their nearest neighbours. They sought small amplitude breather-kink

solutions by performing a standard multiple-scale asymptotic expansion for

the difference of displacements same, as (1.3.11) in the form

φn(t) = εeiωt+ikmF (Z, T ) + . . . , (1.3.12)

where ε� 1 is a small parameter, T = ε2t is a very long timescale, and Z is the

slow travelling wave coordinate (see equation 1.3.14). This ansatz leads to an

NLS equation for F with cubic nonlinearity. Substituting the ansatz solution

(1.3.11) in the equation of motion (1.1.14), equating the similar orders of ε,

we get

• at order O(εeiθ), the linear dispersion relation

ω(k) = 2 sin

(
k

2

)
, (1.3.13)

• at O(ε2eiθ), a modulation equation

Fτ = cFX , with Z = X − cτ, F (x, τ, T ) = F (Z, T ), c = cos

(
k

2

)
,

(1.3.14)
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• at O(ε2e2iθ), second harmonic correction

ω2G2 = sin2(k)(G2 + aF 2) ⇒ G2 = a cot2

(
k

2

)
F 2, (1.3.15)

• at O(ε3eiθ), the (NLS) equation arises

iFT + Fττ = FXX cos k − 12b|F |2F sin2

(
k

2

)
− 8a sin2

(
k

2

)
[F (G0 +G∗0) + F ∗G2] , (1.3.16)

where G0 = −a csc2
(
k
2

)
|F |2.

Reduction to Standard NLS equation Form: by expressing this in the standard

form and changing variables (1.3.14), we get

iFT = DFZZ +B|F |2F, (1.3.17)

with

D =
1

4
sin

(
k

2

)
, B =

2a2 cos2
(
k
2

)
− 4a2 + 3b sin2

(
k
2

)
sin2

(
k
2

) .

The reduction results in an NLS equation with (1+1)-dimensions that are

either focusing, i.e. BD > 0, or defocusing BD < 0. The standard breather

solution of the NLS equation is

F (Z, T ) = A exp

(
iBA2T

2

)
sech

(
AZ

√
B

2D

)
, (1.3.18)

where A is breather amplitude.

Wattis et al. [22] extended and improved upon earlier work [21] by applying an

asymptotic reduction approach, which reduces the FPU lattice equations to

a modified Korteweg–de Vries (mKdV) equation. This equation is integrable

and supports interactions between multiple solitons, including breather-kink
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solutions. The ansatz solution is given in the form

um(t) = εF (x1, t1, x2, t2, . . . ) + ε2G(x1, t1, x2, t2, . . . )+

+ ε3H3(x1, t1, x2, t2, . . . ) + ...+ c.c, (1.3.19)

where xj = εjn, tj = εjt, (j ∈ N). By equating terms at equal orders of

ε� 1, the resulting mKdV equation takes the form

0 =4FT + DFZZZ + 3bF 2FZ . D =
1

12
, b > 0, (1.3.20)

where z = x1− t1, τ = t1, T = t3 +x3, and Z = x3− t3. Wattis et al [22] em-

ployed the Bäcklund transformation, which is used in the study of integrable

PDEs to construct explicit solutions; this transformation enables the construc-

tion of new solutions from the known ones, generating complex versions, such

as combined breather-kink solutions.

Further, when this concept is extended to 2D lattices, such as square or hexag-

onal lattices, the phase θ generalises to

θ = km+ hln+ ω(k, l)t, (1.3.21)

where k and l are the wave numbers in the two spatial directions, m and n

denote the positions along the respective axes and ω(k, l) is the corresponding

frequency.

For a square lattice, where the axes are orthogonal, the parameter h = 1.

However, in hexagonal lattices, where the axes are angled, h =
√

3, reflecting

the different geometric structure. This formulation allows for an accurate

description of both the symmetry and dimensionality of wave propagation in

different lattice types. Here, we follow [23–26].
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The aim is to find the leading-order expressions for the functions Gi, Hi, and

F , where i = 1, 2, . . .. This method proceeds order by order in ε, collect-

ing harmonics in the expansion of um(t) and vn(t). At each order, resonant

terms (such as eiθ) may introduce secular growth, unless they are cancelled

by suitable corrections to the amplitude or by satisfying a solvability condi-

tion. In this way, the solution is systematically constructed by balancing fast

oscillations and slow modulations at each order.

1.4 Literature review

1.4.1 Background and motivation

The FPUT system was among the earliest numerical experiments in nonlinear

dynamics [27]. It revealed the unexpected recurrence of initial conditions after

long simulations, now known as FPUT recurrence. This phenomenon sparked

extensive research in nonlinear wave propagation. Zabusky and Kruskal [28]

later explained recurrence in the Korteweg–de Vries (KdV) equation in terms of

elastic collisions between travelling waves, introducing the concept of solitons.

Since then, many nonlinear wave structures have been studied, including dis-

crete breathers and breather–kink modes. Discrete breathers are spatially lo-

calised and time periodic solutions in nonlinear lattices. They have attracted

significant attention due to their role in energy localisation in coupled os-

cillator systems. Rigorous existence and stability proofs for such solutions

in conservative systems were established by MacKay and Aubry [29], using

the anti-continuum limit approach, where coupling between (KG) lattice sites

tends to zero. A more comprehensive review of mathematical and physical as-

pects of discrete breathers can be found in Flach and Willis [3]. The existence

of breathers in the FPUT chain was proven by James [30], with generalisations

for broader classes of FPUT-type models presented by Livi et al. [31].
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1.4.2 The diatomic and monoatomic FPUT systems

In nonlinear lattice theory, monoatomic systems consist of identical particles,

whereas diatomic systems alternate between two types of masses, typically

labelled as “light” m and “heavy” M . The mass ratio ρ = M/m and 0 < ρ < 1

between these particles significantly shapes the chain’s spectral and dynamical

properties, especially regarding localised modes and wave propagation.

Vainchtein et al. [32] captured both slow and fast timescale dynamics for ρ� 1,

linking the original system to an effective nonlinear envelope equation. Un-

like earlier WKB-based approaches when focused on fast dynamics [33], their

method yielded more accurate approximations particularly through Padé-type

expansions which were effective for modelling the slow dynamics [34].

Pelinovsky etal [35] recently derived error bounds for approximating diatomic

system dynamics using a monoatomic model for small mass ratio limit ρ� 1.

Their energy analysis ensures long-term accuracy, particularly when large mass

displacements remain small.

Monoatomic FPUT chains subjected to longitudinal tension support rich trans-

verse wave dynamics, including stable soliton solutions. Cadet [36] explored

monoatomic chain and identified both linearly and circularly polarised enve-

lope solitons. By reformulating the system in complex variables and applying

semi-discrete approximations, he reduced the dynamics to a NLS equation

(see Section 1.2) that governs the envelope evolution. This model revealed

how longitudinal-transverse coupling can generate localised wave structures.

In subsequent work [37], Cadet included tension effects and examined how

longitudinal displacements impact transverse mode stability. He found that

circularly polarised solitons are generally robust, while linearly polarised waves

show stability only under specific material and wave parameters. Later [38]

expanded the model to include higher-order nonlinearities, identifying stability

regimes for transverse waves and showing that linearly polarised solitons often
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transition to elliptical polarisation upon interacting with other waves.

Collectively, these studies show that both monoatomic and diatomic FPUT

systems exhibit a wide variety of localised excitations. Their dynamics depend

sensitively on parameters such as mass ratios, interaction strengths and lattice

geometry.

1.4.3 Second neighborhood interaction

Second-neighbour interaction (SNI) extends the concept of nearest-neighbour

interaction (NNI) by allowing particles to influence others two lattice sites

away. These longer range interactions significantly affect lattice dynamics,

particularly in biological and mechanical systems.

Christiansen et al. [39] investigated soliton dynamics in a zigzag lattice incor-

porating both NNI and SNI (Figure 1.4). Inspired by structures such as DNA

strands and protein helices, their model permits longitudinal and transverse

motion, capturing richer dynamical behaviour. In the absence of SNI, the sys-

tem remains weakly nonlinear; its inclusion supports stable solitons, including

kinks and breathers.

n+ 1n− 1 n+ 3

nn− 2 n+ 2

Figure 1.4: Illustration of a zigzag chain system where the red particles form the
upper chain and the blue particles the lower.

Khusnutdinova et al. [2] developed a bilayer lattice model to examine wave

propagation in systems undergoing delamination, where chains composed of

distinct masses may separate in regions of weak interlayer bonding (Figure 1.5).

Applying a long wave approximation, they derived coupled KG equations and

showed that wave dynamics depend critically on the mass ratio; light upper

chains dominate at low ratios; heavier lower chains at high ratios, and strong

coupling enables energy exchange when masses are comparable. Further anal-
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Upper chain

Lower chain

unun−1 un+1

vnvn−1 vn+1

Figure 1.5: Illustration of model used in [2], with upper chain in red and lower
in blue. The dashed (springs) lines show the upper chain and lower chain. Dashed
black lines connect particles between the upper and lower chains.

ysis using Lie symmetry methods [40] yielded exact and self similar solutions

standing waves, kink–kink structures and complex patterns whose behaviour

varies with wave speed, amplitude and interlayer mass ratio. Extending this

work, Khusnutdinova et al. [41] examined coupled dipole chains with soft bond-

ing, revealing that weak coupling induces dispersive effects and leads to solitary

waves with oscillatory, unstable tails.

Truskinovsky et al. [42] studied a monatomic mass spring chain with NNI and

SNI, showing that the strength and sign of SNI are crucial for wave stabil-

ity. Competitive interactions where SNI counteracts NNI can still support

solitary waves, but with subsonic or supersonic speeds depending on system

parameters.

Duran et al. [43] explored nonlinear lattices with long-range interactions via

the α-FPU model. They demonstrated that solitary travelling waves become

unstable when the derivative of wave energy with respect to velocity is negative.

Together, these studies demonstrate that extending lattice models beyond NNI

to include SNI and long-range coupling leads to fundamentally different wave

phenomena, influencing the existence, shape and stability of nonlinear excita-

tions in discrete media.

1.4.4 Mass-in-Mass systems

The mass-in-mass (MiM) lattice system, illustrated in Figure 1.6, consists of

an infinite chain of identical beads, each coupled nonlinearly to its nearest
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neighbour and internally connected to a resonator mass. While numerous

studies have considered the case of linear interactions between inner and outer

masses, MiM systems with nonlinear features continue to reveal rich dynamics.

Figure 1.6: Mass-in-Mass (MiM) system: qn(t) is the inner mass, and Qn(t) is the
outer mass. This configuration forms the basis for the MiM system studied in this
thesis.

Kevrekidis et al. [44] explored the interaction between a defect and a train

of solitary waves in a granular MiM chain, where a bead was coupled to an

internal harmonic oscillator. Using asymptotic and numerical techniques, they

demonstrated that the defect influenced wave propagation by reflecting part

of the energy and trapping the rest in localised oscillations, a phenomenon

absent in systems lacking the MiM structure.

Extending this work, Kevrekidis et al. [45] investigated travelling wave so-

lutions in a chain of beads, each connected to an internal resonator. They

identified “anti-resonance” conditions under which stable, pulse-like travelling

waves emerge. Similarly, Liu et al. [46] studied discrete breathers in diatomic

chains with linear internal resonators with mass m2 and nonlinear outer inter-

actions with mass m1. By applying multiple-scale analysis (see Section 1.3.2),

they reduced the system to a NLS equation (see Section 1.2), whose parame-

ters are determined by the mass ratio ρ = m2/m1. Their results showed that

for 0 < ρ < 2.356, the NLS equation is focusing, supporting bright breather

solutions. Even at large mass ratios (e.g. ρ = 10), the focusing behaviour

persists. In contrast, as ρ → 0, the system becomes defocusing, giving rise

to dark solitons. Faver et al. [47] further examined solitary waves in related

systems, showing that the MiM model reduces to a monatomic FPUT lat-
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tice in two limiting cases: when the resonator mass is small; or when internal

spring stiffness is large. These studies collectively demonstrate how internal

resonators enrich the range of localised wave behaviours in diatomic lattices.

Wallen et al. [48] analysed discrete breathers in MiM chains, focusing on the

impact of coupling stiffness κ. In the anti-continuum limit (κ→ 0), the system

supports highly localised, single-site breathers. As κ increases, these structures

broaden but remain localised due to nonlinearities, with the governing equa-

tions reducing to an NLS-type equation.

Bonanomi et al. [49] conducted experimental, numerical and theoretical stud-

ies of travelling waves in MiM chains composed of aluminium outer masses,

steel inner masses, and a polymer spring. Their work showed that internal res-

onator vibrations can filter mechanical waves within tunable frequency bands

adjustable via static pre compression leading to localised modes.

Porter et al. [50] explored the propagation of highly nonlinear solitary waves

in Hertzian bead chains. They compared wave shapes and speeds across differ-

ent dimer configurations, such as alternating light and heavy beads, as well as

sequences consisting of N heavy beads followed by one light bead. Their analy-

sis combined experimental observations with long wave asymptotics, revealing

how nonlinear contact mechanics shape wave propagation.

Theocharis et al. [51] studied breather-kink solutions in compressed diatomic

chains of alternating heavy and light beads. They found two types of discrete

gap breathers: one centred on a heavy bead (unstable across all frequencies);

and another on a light bead, which is stable over a broad frequency range.

Recently, Wattis [1] provided an analytical study of the MiM system using

multiple-timescale analysis (see Section 1.3.2). He demonstrated that, un-

der certain linear coupling and nonlinear interactions, the system reduces to

an NLS equation. However, when both inner and outer interactions exhibit

quadratic nonlinearities, the reduction leads to a Complex Ginzburg–Landau

(CGL) equation instead. These results motivate the numerical investigations

presented in Chapter 2.
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1.4.5 Discrete breathers in two dimensions

In nonlinear lattice studies, the term “hexagonal lattices” can refer to distinct

but related geometries, including honeycomb, triangular or kagome lattices.

Although all exhibit hexagonal symmetry, their structural differences have

significant implications for wave propagation, breather dynamics and potential

applications in metamaterials.

Honeycomb and triangular lattices, for example, differ in unit cell composition

and neighbour connectivity. The honeycomb lattice (on left of Figure 1.7)

features two nodes per unit cell, whereas the triangular lattice (on right )

connects each node to six equidistant neighbours. While hexagonal lattices

are less studied than square lattices in mechanical contexts, understanding

their behaviour may inform the design of advanced materials.

m

n

m

n

Figure 1.7: Left: Honeycomb lattice with red rectangle highlights the unit cell.
Right: Triangular lattice with the unit cell outlined in red; axes are labelled as m
and n.

Maŕın et al. [52] were among the first to study discrete breathers in 2D sine-

Gordon triangular lattices. They found that breathers could propagate with

minimal dispersion in specific directions, particularly when initial perturba-

tions deviated by 15◦ from the lattice axis. By incorporating nonlinear cou-

plings between atoms in adjacent planes and applying an onsite potential, they

revealed that hexagonal symmetry supports directionally mobile breather so-

lutions.

Bajars et al. [53] extended this model to include more general atomic interac-

tions. Their results demonstrated the formation of long lived mobile breathers

that retain energy and remain spatially localised over time. In particular, these

breathers exhibit frequency focusing: initial oscillations gradually narrow into
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a single dominant frequency band, enhancing temporal coherence and reducing

dispersion.

Kevrekidis et al. [54] examined breather stability in 2D KG and FPUT models.

They linked stability to the derivative H ′(ω), where H(ω) is the system’s en-

ergy as a function of frequency for hard and soft nonlinear potentials, providing

a general framework for assessing breather stability across lattice types. The

stability of a breather with respect to H ′(ω) depends on the type of potential.

If H ′(ω) > 0, the breather is stable in hard potentials and unstable in soft

potentials. Conversely, if H ′(ω) < 0, the breather is stable in soft potentials

and unstable in hard potentials.

These insights into discrete breather dynamics in 2D lattices provide a founda-

tion for exploring their dynamics across different physical settings, including

electrical and mechanical lattice systems.

1.4.6 Electrical and mechanical lattices

The 2D square electrical transmission lattice (ETL) consists of repeating unit

cells comprising two linear inductors and a nonlinear capacitor. Butt and

Wattis [24] analysed such systems, based on the FPUT lattice, by applying

Kirchhoff’s laws to derive governing equations for charge dynamics at each site.

Through a multiple-scale asymptotic expansion (see Section 1.3.2), they iden-

tified small amplitude breather solutions localised in both spatial directions.

The envelope of the breather evolves according to a reduced 2D NLS equation,

with ellipticity conditions on wave numbers constraining the breather’s speed,

frequency and profile.

This approach was later extended to other geometries. In [23], triangular lat-

tices were examined, while honeycomb lattices were considered in [55]. In

both cases, similar asymptotic techniques were applied, yielding comparable

breather solutions. These studies incorporated both quadratic and cubic non-

linearities and continued to rely on Kirchhoff’s framework for charge evolution.
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Parallel developments occurred in mechanical systems. Wattis and Alzaidi [26]

investigated a 2D square mechanical lattice with each node connected by non-

linear springs to its nearest neighbours and by linear springs to diagonal ones.

Each node moved freely within the plane and was subject to an onsite potential.

A multiple-scale analysis (see Section 1.3.2), led to a generalised KG system,

which was reduced to a (2+1)-dimensional NLS equation. The existence of

breathers was shown to depend on both ellipticity and focusing conditions.

Although considerable attention has been devoted to square, triangular and

honeycomb geometries, the Kagome lattice characterised by its unique sym-

metry and band structure remains relatively underexplored in mechanical con-

texts. Its ability to sustain localised wave phenomena in mechanical systems

remains less well understood, despite extensive studies in photonic and topo-

logical contexts. Some progress has been made in identifying localised modes

in Kagome structures [56–61], yet many questions remain.

In contrast to the well established electrical models of triangular and honey-

comb lattices, their mechanical analogues particularly in the context of small

amplitude breathers have not been systematically studied. This thesis ad-

dresses this gap by investigating breather existence and behaviour in 2D me-

chanical triangular and honeycomb lattices, as presented in Chapters 3 and 4.

1.4.7 Application: metamaterials

Metamaterials are artificially engineered structures designed to exhibit prop-

erties not typically found in natural materials. Their unique geometries allow

them to manipulate energy mechanical, optical or acoustic in unconventional

ways. Increasingly, DBs have been observed in various metamaterial configu-

rations, both theoretically and experimentally.

Koukouloyannis et al. [62] studied 1D nonlinear left handed metamaterials

(LHMs), characterised by a negative refractive index in which energy propa-

gates opposite to the wave vector. Using a multiple scale asymptotic expansion
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(see Section 1.3.2), they reduced the governing equations to a NLS equation

(see Section 1.2), thereby demonstrating the existence of bright breather solu-

tions.

In a mechanical context, Duran et al. [63] modelled a metamaterial composed

of square rigid units connected via flexible hinges, allowing rotational motion

between neighbouring cells. Their system incorporated both translational and

rotational degrees of freedom, and through asymptotic reduction, also yielded

an NLS equation supporting discrete breather solutions.

Experimental confirmation of such behaviours has emerged in several systems.

For example, Deng et al. [64] reported the observation of solitary travelling

waves in rotating square metamaterials, where square units are connected by

flexible hinges and rotate about their corners or centres. These structures

have been proposed for applications in waveguiding and mechanical signal

processing.

Chong et al. [65] reviewed nonlinear wave dynamics in granular crystal chains

mechanical metamaterials governed by FPUT models. They highlighted the

influence of mass variation and geometric configuration on wave propagation.

Specially, increasing the mass ratio in diatomic chains leads to wave attenua-

tion, while smaller ratios promote resonant wave transmission. Strong inter-

particle interactions yield fast, highly localised waves with strong nonlinearity;

in contrast, weak interactions result in slower, less localised dynamics.

Together, these studies demonstrate the versatility of metamaterials in sup-

porting discrete breathers, with structural parameters such as mass ratio, ge-

ometry and coupling strength playing key roles in determining wave behaviour.

1.5 Overview of the Thesis

This thesis presents a comprehensive study of discrete nonlinear lattice sys-

tems, focusing on the dynamics of soliton-like structures, including breathers,

travelling waves and kink solutions. It is organised into five chapters, each
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addressing distinct aspects of nonlinear wave behaviour in 1D and 2D lattice

configurations through analytical and numerical methods.

Chapter 1 introduces soliton phenomena and highlights the role of discrete

nonlinear systems in modelling complex dynamical behaviours. The chapter

outlines various waveforms, in particularly, breather solutions, and their rele-

vance in electrical, mechanical and metamaterial contexts.

Chapter 2 investigates the MiM FPUT system using numerical simulations.

The study explores the interplay between outer masses and inner nonlinear

oscillators and derives reduced models, including the NLS and CGL equations.

The system is classified into four cases based on the presence or absence of

quadratic nonlinearities a, α: Case I: a = α = 0; (symmetric breathers); Case

II: α 6= 0, a = 0 (non-symmetric breathers); Case III: a 6= 0, α = 0 ( breather-

kink); Case IV: a 6= 0, α 6= 0 (CGL regime).

The analysis covers both optical and acoustic modes, considering various

wave numbers k and mass ratios µ. Stability regions for stationary and mov-

ing breathers are mapped out. For instance, in the optical mode at k = 0,

breathers in Cases I and III remain stable, while Cases II and IV show marginal

or full instability depending on linear interaction ρ. Moving breathers are long-

lived in Case I, while Cases II and III exhibit stability only for large ρ. Case

IV, the NLS equation, applies only at k = 0 and k = π, where stationary

breathers show marginal stability for large ρ, while at k = 0.1 and 3.1, the

system yields a CGL equation.

Chapter 3 develops a 2D mechanical triangular lattice model in which each

node connects to six neighbours, forming a hexagonal pattern. The analysis

distinguishes between optical and acoustic modes via dispersion relations, and

derives a generalised KG system. Through multiple-scale analysis, the sys-

tem reduces to a 2D NLS equation. Ellipticity and focusing conditions for

breather existence are identified. This work is currently under preparation for

publication.

Chapter 4 extends the analysis to a mechanical honeycomb lattice, composed
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of left- and right-facing nodes within each unit cell. Using the multiple-scale

method, the reduced dynamics are shown to yield distinct forms of NLS equa-

tions, depending on the wave vector (k, l). Five distinct cases are identified:

Case 1: global minimum; Case 2: global maximum; Case 3: Dirac point refers

to a conical intersection in the dispersion surface where two branches meet at

a single point; Cases 4 and 5: acoustic and optical saddle points, respectively.

In Cases 1 and 2, the reduction leads to coupled NLS equations, while in

Cases 4 and 5, the system reduces to a single (2+1)-dimensional NLS equation.

Case 4 supports stationary breather modes, whereas the optical saddle (Case

5) does not. This chapter also is being prepared for publication.

Chapter 5 concludes the thesis by summarising the key results across all

chapters. It also outlines several open questions and directions for future

research, particularly concerning breather dynamics in 2D mechanical lattices

and potential extensions to other geometrical configurations.
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Chapter 2

Numerical simulation of a fully

nonlinear mass-in-mass FPUT

chain

This chapter presents numerical simulations of discrete breathers in the fully

nonlinear MiM FPUT system. In this model, each outer mass is coupled to its

nearest neighbours and to an inter nal nonlinear oscillator, creating a complex

network of interactions. We focus specifically on the case where both the

internal couplings and NNIs are governed by nonlinear forces.

The simulations confirm that the MiM FPUT system supports a variety of

breather solutions, including stationary breathers both stable and unstable

as well as breather-kink forms. Further, the results show the existence of

moving breather and breather-kink solutions, which, even though unstable,

exhibit long-lived behaviour before decay. This interplay between stability and

instability highlights the diverse nonlinear behaviour of the MiM FPUT system

and enhances our understanding of the mechanisms driving the emergence and

longevity of these localised excitations.
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2.1 Introduction

In this chapter, we numerically simulate a fully nonlinear MiM FPUT chain.

We consider the case where all interactions have nonlinear components, fol-

lowing Wattis [1]. We simulate the system with different combinations of

quadratic and cubic nonlinearities, and investigate the robustness properties

of various breather and breather-kink modes derived therein. The system’s

linear frequency spectrum comprises two branches: an “optical” branch of

higher frequency modes, and a lower-frequency “acoustic” branch. Nonlinear

modes may exist in the gap between these, and above the optical branch. In

Section 2.2 we summarise the asymptotic analysis of the fully nonlinear MiM

chain, then we use solutions from this weakly nonlinear analysis as initial con-

ditions for simulations. In sections 2.3 to 2.7, results of our simulations on

stationary and moving modes are presented, illustrating the robustness and

stability of these modes in terms of their lifetimes and measurements of decay

rates. In section 2.13, we discuss the significance of these results and finish

with concluding remarks.

2.2 Numerical investigation of breathers and

breather-kink modes

2.2.1 The model

Here, we focus on the breather solution, that is, modes with small amplitude

and whose envelope varies slowly over both space and time compared to the

linear carrier oscillations. We summarise the asymptotic results of [1], using n

to denote the position of the mass along the lattice or chain; the displacements

of the outer oscillators of mass m are defined by qn(t), and the corresponding

momenta are defined by pn(t). These outer particles are connected to their

nearest neighbours (n±1), as well as to their inner masses (M), whose displace-
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ments and momenta are given by Qn(t), Pn(t), respectively. The equations of

motion are derived from the Hamiltonian

H =
∑
n

p2
n

2m
+
P 2
n

2M
+ V (qn+1 − qn) +W (qn −Qn), (2.2.1)

where the potential energies, with a, α, b, β denoting the coefficients of the

cubic and quartic nonlinear terms respectively, are given by

V (φ) =
φ2

2
+ a

φ3

3
+ b

φ4

4
, W (ψ) = ρ

ψ2

2
+ α

ψ3

3
+ β

ψ4

4
, (2.2.2)

for some linear interaction ρ > 0, with a, b, α, β of either sign. The equations

of motion are thus

m
d2qn
dt2

= F1(qn, Qn) := V ′(qn+1−qn)− V ′(qn−qn−1)−W ′(qn−Qn),

M
d2Qn

dt2
= F2(qn, Qn) := W ′(qn −Qn). (2.2.3)

A small parameter ε� 1 is introduced, which is proportional to the amplitude

of the breather solution; the mass ratio is defined by µ = M/m. A large space

scale y = εn and two long timescales τ = εt, T = ε2t are introduced to make

use of multiple-scale methods [20]. To find general breather modes, we use the

ansatz

qn(t) = εeiθF1(y, τ, T ) + εF0(y, τ, T ) + ε2[e2iθG2 + eiθG1 +G0] (2.2.4)

+ε3[e3iθH3 + e2iθH2 + eiθH1 +H0] + ...+ c.c,

Qn(t) = εeiθP1(y, τ, T ) + εP0(y, τ, T ) + ε2[e2iθS2 + eiθS1 + S0] (2.2.5)

+ε3[e3iθR3 + e2iθR2 + eiθR1 +R0] + ...+ c.c,

where eiθ, with θ = kn−w(k)t describes the carrier wave; Fj(y, τ, T ); Pj(y, τ, T )

are the leading order shapes of the envelope and zero mode; and Gj;Hj;Sj;Rj

are higher-order correction terms in ε, which are all functions of (y, τ, T ).

These define the amplitudes of higher harmonic correction terms to the fun-
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damental modes, which are generated by nonlinearities. After substituting

these formulae into the equations of motion (2.2.3), all terms are expanded in

powers of ε. The time derivative is expanded as d/dt = ∂t + ε∂τ + ε2∂T . By

combining terms with equal powers of ε and frequencies eijθ, j = 0, 1, 2, ..., a

sequence of connected pairs of equations determines the form of the envelopes

Fj;Pj;Gj;Sj, etc.

As a result of equating terms at O(εeiθ), nonzero solutions for P1, F1 must

satisfy the dispersion relation

ω2 =
1

2mM

[
ρM + ρm+ 4M sin2 k

2
±
√
D

]
, (2.2.6)

D =

(
ρM + ρm+ 4M sin2 k

2

)2

− 16Mmρ sin2 k

2
.

This has two branches: acoustic, ωac with a lower frequency, corresponding

to the “ − ” sign in (2.2.6); and optical, ωop that has higher frequency, cor-

responding to “ + ” sign in (2.2.6). In the zero limit of wave number k, the

speed of sound c0 is obtained as

c0 = lim
k→0

ωac(k)

k
=

1√
m(1 + µ)

. (2.2.7)

In both acoustic and optical cases, the ratio of the amplitude of inner and

outer mass oscillations, C(k) = P1/F1, is given by

C(k) =
ρ

ρ−Mω(k)2
. (2.2.8)

As the parameters ρ, µ change, the system exhibits various behaviours. To

demonstrate these, we consider mass ratios µ on both sides of unity, namely 3

and 1/3, as well as spring constants above and below unity, namely ρ = 1/3,

and 3. At O(ε2e0),O(ε2e2iθ), we find expressions for the second and zeroth

harmonics G2, Q2, G0, Q0. At O(ε2e1), we obtain the corrections to the leading

order mode and the speed of the envelope c, so that subsequent terms can be
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written in terms of the travelling wave coordinate Z = y − cτ .

At O(ε3eiθ), corrections terms Gi combine with the leading order terms F0, F1,

to yield the NLS or CGL equation

iΩF1,T = D3F1,ZZ + (η + iζ)|F1|2F1, (2.2.9)

where

Ω = −2mω(ρ+ µρC − µmω2)

(ρ− µmω2)
, (2.2.10)

D3 =
(µmωc)2C

ρ−µmω2
+ (1+µC)mc2 − cos k

+2ργ1(sin k − (1−µ)mωc), (2.2.11)

η =
µmω2(C−1)

(ρ− µmω2)
[3β(C−1)2 + 2α(α̂g−α̂s) + 4(γ0−σ0)]

+48b sin4 k

2
+ 16a2φ0 sin2 k

2
+ 32aâg sin3 k

2
cos

k

2
, (2.2.12)

ζ = 32aα̂g sin3 k

2
cos

k

2
− 2αµmω2(C − 1)(âg − âs)

(ρ− µmω2)
, (2.2.13)

where φ0, α̂g, α̂s, γ0, σ0, âg, and âs are given in [1]. Thus, the NLS equation

(2.2.9) has been obtained, with an additional ζ term in front of the nonlinearity.

If one or both of α and a are equal to zero, and if

ηD3 > 0, (2.2.14)

then we have the focusing form of NLS and localised breather solutions are

given by

F1 = Ae−iηA
2T/2Ωsech

(
AZ

√
η

2D3

)
, (2.2.15)

where A is the amplitude and Z = y − cτ is a coordinate system moving with

the wave. From equations of O(ε3e0iθ) the zero mode, F0 is determined by

F0 =
4Aa sin2(k

2
)

(1 + µ)mc2 − 1

√
2D3

η
tanh

(
AZ

√
η

2D3

)
, (2.2.16)
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which has the form of a kink travelling at speed c. This term only enters

2.2.4-2.2.5 when a 6= 0.

The behaviour of the system can be classified into four cases depending on the

presence or absence of quadratic nonlinearities, namely:

• Case I: α = 0, a = 0, where F0 = 0, so breathers have the classic form

and are symmetric (in that qn(t +
Tp
2

) = −qn(t), where Tp is the period

of oscillation, with a similar result holding for Qn(t));

• Case II: α 6= 0, a = 0, where F0 = 0, so breathers have the classic form

(but are not symmetric);

• Case III: α = 0, a 6= 0, where F0 6= 0, so modes are a combination of

breather; and kink forms (the breather component being symmetric);

• Case IV: α 6= 0, a 6= 0, where F0 6= 0 and, for general k, ζ 6= 0 so (2.2.9)

is CGL. However, at some values of the wavenumber k, such as k = 0, π,

ζ = 0 and the NLS will still be relevant. In such cases, the mode is a

combination of breather and kink.

2.2.2 Numerical implementation

In this section, we explain the numerical simulation algorithm used to solve

the equations of motion governing the MiM lattice (2.2.3). This infinite set of

coupled second-order nonlinear ordinary differential equations are truncated to

finite size N , and periodic boundary conditions (BCs) are applied. Typically,

we choose lattice sites with N ≥ 200 for wave numbers k = 0, π, since these

wave numbers give stationary modes. We initiate the simulation with the wave

centred at lattice site n = N/2. For other wave numbers, e.g. k = 0.1, 3.1,

we use larger values of N ≥ 103, since these cases allow moving waves, and we

wish to follow the system’s evolution for a considerable time (t ∼ 103) without

the body of the wave interacting with the boundary conditions. In these cases,

we start the simulation with the mode at lattice site N/4 and with velocities

36



chosen so that it starts moving towards the centre.

We use the analytic equation for breather solutions presented in (2.2.15) and

(2.2.16) to construct initial conditions setting t = 0 to determine initial data

of (2.2.3 ) at each lattice site. From (2.2.15)- (2.2.16), we obtain

qn(0) = 2εA cos

(
(kn− n0)− ε2A2η(k))

2Ω(k)

)
sech

(
εA(n− n0)

√
η(k)

2D3(k)

)

+
4Aa sin2(k

2
)

(1 + µ)mc2 − 1

√
2D3

η
tanh

(
AZ(n− n0)

√
η

2D3

)
, (2.2.17)

from the leading order terms in (2.2.4)–(2.2.5), qn = εF0 + εeiθF1 + c.c. and

Qn = εF0 +εeiθCF1 +c.c., and corresponding expressions for the initial veloci-

ties pn(0)/m = dqn/dt|t=0 and Pn(0)/M = Cpn(0) . We introduce the concept

of the breather’s half-height width, which helps determine the spread of the

solitary wave. From (2.2.15), the width Wb is given by

Wb =
2 log(2 +

√
3)

εA

√
2D3

η
. (2.2.18)

This width Wb helps us identify suitable parameter values of bright breathers,

as illustrated in figure 2.1. If the width is too large (e.g. Wb > 100), then an

extremely large value of N would be required, and so it is difficult to perform

numerical simulations. If the width is too narrow (e.g. Wb < 10), then the

quasi-continuum approximation used in the asymptotic analysis is not valid,

and we would not expect the approximate breather solution (2.2.4)–(2.2.5) to

be accurate where the breather may fall between two lattice sites. Hence, we

choose values for b, β so that the width is at least ten lattice sites, but not so

large that computations become impractical.

We use the MATLAB package ode45 to solve the equations of the motion

(2.2.3). This is 4the or 5the-order Runge-Kutta-Fehlberg (RKF45). In section

2.3 and 2.7, we present our findings regarding simulations of stationary and
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Figure 2.1: Plot of squared width of breather against parameter values of β and
b for optical case I: a = α = 0 when k = π and ρ = 3, µ = 3. The region where
squared width is negative corresponds to the defocusing case.

moving breathers in MiM lattices in the four cases listed at the end of Section

2.2.1. We investigate whether the shape of the wave changes over time.

Since simulations are performed on a finite lattice, we choose to use periodic

boundary conditions (BCs), which are implemented via

q0(t) = qN(t)− Φ, qN+1(t) = q1(t)− Φ, (2.2.19)

d

dt
q0(t) =

d

dt
qN(t),

d

dt
qN+1(t) =

d

dt
q1(t) (2.2.20)

where Φ is the amplitude of any kink-component contained in the initial con-

ditions (2.2.16), namely Φ = limN→∞ qN(0)− q−N(0) 6= 0, or

Φ =
8Aa sin2(k

2
)

(1 + µ)mc2 − 1

√
2D3

η
= lim

z→∞
F0(z)− F0(−z). (2.2.21)

At early times, a small amount of radiation is sometimes emitted as the wave

adjusts more precisely to the lattice. This radiation arises because the initial

conditions are based on a leading-order, weakly nonlinear approximation. The

transient radiation, resulting from initial conditions that only approximate the

breather, does not propagate through the lattice or interfere with the main

mode at later times. To mitigate this effect, we apply a small damping factor

(λ = 10−7) to the final 10% of lattice sites.
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Hence for our numerical simulations, (2.2.3) is replaced by

d2qn
dt2

= F1(qn, Qn)− λdqn
dt
, (2.2.22)

d2Qn

dt2
= F2(qn, Qn)− λdQn

dt
, (1 ≤ n ≤ N/10 and 9N/10 ≤ n ≤ N),

where F1(qn, Qn),F2(qn, Qn) are given by (2.2.3), and typically N ≈ 103.

2.2.3 Numerical assessment of robustness

k Type Case Waveform Stability

0 Opt I Breather Stable
0 Opt II Breather Marginal (large ρ), Unstable (small ρ)
0 Opt III Breather Stable
0 Opt IV Breather Unstable
π Opt I Breather Stable
π Opt II Breather Marginal (large ρ, small µ)
π Opt III Breather-Kink Stable (large ρ, small µ)
π Opt IV Breather-Kink Stable (large ρ, small µ)
π Ac I Breather Stable
π Ac II Breather Unstable (small ρ), Marginal (large ρ)
π Ac III Breather-Kink Stable small ( ρ)
π Ac IV Breather-Kink Unstable

Table 2.1: Summary of stability status of stationary breather modes based on nu-
merical simulations of fully nonlinear MiM FPUT lattice: Case I corresponds to
a = 0 = α; Case II to a = 0 6= α, Case III to a 6= 0 = α, and Case IV to a 6= 0 6= α.
α, a are coefficients of quadratic nonlinear in 2.2.2.

We local energy en(t) investigate the position and lifetime of breather modes

and to confirm the validity of asymptotic analyses. We aim to understand

whether the energy remains localised or disperses. We define the local energy

at lattice site n at time t as

en(t) =
p2
n

2m
+
P 2
n

2M
+

1

2
(V (qn+1 − qn) + V (qn − qn−1)) +W (qn−Qn). (2.2.23)

The total energy is then H =
∑N

n=1 en(t), which should be constant. While

qn(t) and Qn(t) oscillate rapidly in both n and t, the quantity en(t) is strictly

positive and varies much more slowly over both n and t. Consequently, en(t)
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is a much more useful way of determining the location of the breather mode

at each value of t. In particular, the breather location can be defined by

L(t) =

∑
n ne

v
n(t)∑

n e
v
n(t)

, (v ≥ 1), (2.2.24)

where the exponent v ≥ 2 gives us the Lv norms. This is particularly important

for moving breathers, where L(t) is used to determine the velocity of moving

waves. After calculating the location of the breather, we measure the localised

energy as the energy within two breather widths (2.2.18) of its location

LocEn(t) =

L(t)+Wb∑
n=L(t)−Wb

en(t), ∆E =
H(t)− LocEn(t)

H(t)
. (2.2.25)

Here, the relative change in the energy ∆E is given by the proportion of

energy outside the breather. This quantity helps us determine how significant

is energy loss to the rest of the lattice. The total energy H(t) will only decrease

from H(0), due to the absorption of radiated energy by the ends of the lattice,

because of the damping terms λ in (2.2.22). A summary of our study of

stability, robustness and lifetime results is given in Tables 2.1 and 2.2.

2.3 Numerical Results for Stationary Modes

In this section, we consider three types of stationary breather: (i) optical

breathers with k = 0, which are slowly varying over lattice sites n and have

inner and outer particles moving out of phase (so that q̇n+1 ≈ q̇n ≈ Q̇n/C

with C < 0); (ii) optical breathers with k = π, where nearest neighbours

move out of phase, as well as inner and outer particles being out of phase

(so that −q̇n+1 ≈ q̇n ≈ Q̇n/C with C < 0); and (iii) acoustic breathers with

k = π, where inner and outer oscillators are in phase but neighbouring nodes

are out of phase (so that −q̇n+1 ≈ q̇n ≈ Q̇n/C with C > 0). The fourth

combination, of acoustic mode with k = 0, occurs when both motions are
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Wave- Optical/ Case Waveform Stability / Lifetime

number Acoustic

k = 0 Ac cubic Travelling kink Long-lived

k = 0 Ac quartic Travelling kink Splits in two

k = 3.1 Opt / Ac I Moving breather Long-lived
k = 3.1 Opt II Moving breather Long-lived for ρ = 3, µ = 1/3

Ac II Moving breather Long-lived for ρ = 3
k = 3.1 Opt III Moving breather-kink Long-lived for ρ = 3, µ = 1/3
k = 3.1 Ac III Moving breather-kink Long-lived for ρ = 3, µ = 3
k = 3.1 n/a IV n/a - CGL with ζ 6= 0 n/a
k = 0.1 Opt I Moving breather Long-lived for ρ = 3,

unstable for ρ = 1/3
k = 0.1 Opt II Moving breather Long-lived for ρ = 3

Unstable for ρ = 1/3
k = 0.1 Opt III Moving breather Long-lived
k = 0.1 n/a IV n/a/ - CGL since ζ 6= 0 n/a
k = 0.1 Ac I Moving breather Unstable
k = 0.1 Ac II Moving breather Unstable
k = 0.1 Ac III (defocusing) n/a
k = 0.1 n/a IV n/a - CGL since ζ 6= 0 n/a

Table 2.2: Summary of stability status of moving kink, breather, and kink-breather
waves based on numerical simulations of fully nonlinear MiM FPUT lattice: Case I
corresponds to a = 0 = α; Case II to a = 0 6= α, Case III to a 6= 0 = α, and Case
IV to a 6= 0 6= α.

in phase (q̇n+1 ≈ q̇n ≈ Q̇n/C with C > 0) and leads to kink-type travelling

waves, which are considered separately in Section 2.8. In each of these cases,

we discuss simulations of four sub-cases corresponding to smaller and larger

values of the nearest-neighbour interaction constant ρ and smaller and larger

values of the mass ratio µ.

2.4 Optical modes for k = 0

In this section, we systematically investigate the four fundamental cases that

arise depending on whether the coefficients a and α of the quadratic nonlin-

earities are zero or non-zero. For each case, we explore two different values

of the mass ratio, µ = 3, 1/3 and the linear interaction strength ρ = 3, 1/3,
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focusing on their impact on breather formation and stability.

2.4.1 Case I: even potentials (a = 0 = α)

(a) (b)

(c) (d)

Figure 2.2: Stationary breather profiles for Optical Case I (k = 0, α = 0, a = 0)
showing qn(t) plotted against (n, t). Top row: ρ = 3; bottom row: ρ = 1/3; left
column: µ = 3; right column: µ = 1/3. For full parameter values, see Table A.1 in
Appendix A.

Figure 2.2 displays simulations for all combinations of weak (ρ = 1/3) and

strong (ρ = 3) linear coupling, as well as small (µ = 1/3) and large (µ = 3)

mass ratios. The selected parameters (b, β) satisfy the NLS focusing crite-

rion (2.2.14) and yield suitable breather widths when ε = 0.1. In all cases,

over 99% of the energy remains confined within the central breather width Wb.

A small energy loss due to edge damping is observed, but remains negligible.

Each simulation begins with the breather centred within the lattice. As shown

in Figure 2.2, the breather maintains localisation throughout the entire simu-

lation time (tend = 2000), shedding only minor radiation.

Figure 2.2(d), corresponding to ρ = 1/3, µ = 1/3, shows a localised breather.

Figure 2.3(d) further supports this by illustrating parallel evolution of total

energy H(t) and localised energy LocEn(t), indicating minimal radiation loss.
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Figure 2.3: Time evolution of localised and total energy H(t) =
∑

n en and
LocEn(t) defined in (2.2.23) and (2.2.25), for 0 ≤ t ≤ 2000, under Optical Case
I. Top row: ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3.
See Table A.1 in Appendix A for parameter details.

The small gap between the two curves is consistent with minor energy loss

due to damping at the lattice boundaries. Compared to Case (b), Case (d)

demonstrates superior long term localisation and dynamic stability.

2.4.2 Case II: potentials at (a = 0, α 6= 0)

We now examine the case where α = 1, introducing a quadratic nonlinearity in

the interaction between the inner and outer masses, while maintaining a = 0.

We choose values for β and b that satisfy the focusing condition (2.2.14) and

ensure that the resulting breather width remains within relevant range.

Figure 2.4 illustrates the qualitative behaviour of breather modes under varying

strengths of linear coupling ρ and mass ratio µ. For strong coupling (ρ = 3),

stationary breathers are long-lived regardless of the value of µ. In contrast, for

weak coupling (ρ = 1/3), the breathers exhibit instability and decay quickly,

again independently of the value of µ.
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(a) (b)

(c) (d)

Figure 2.4: Evolution of qn(t) versus (n, t) for Optical Case II with k = 0, showing
the central region of the lattice for early times (N = 400, t = 1000). Top row: ρ = 3;
bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3. Full simulation
parameters of Case II are provided in Table A.1 in Appendix A.

2.4.3 Case III: potentials at (a 6= 0, α = 0)

Here, we investigate the case where only the along-chain interactions have

quadratic nonlinearity, setting a = 1 and α = 0. Although equation (2.2.16)

permits breather-kink solutions for a 6= 0, the choice k = 0 eliminates the kink

component, resulting in pure breather waves.

Simulations for this case, conducted with tmax = 1000, N = 1000, and various

values of β, demonstrate that the breather remains highly stable. No significant

deformation or amplitude decay is observed in the interval 500 < t < 1000.

This confirms that the breathers in Case III are long-lived and structurally

robust over time.

The corresponding simulation parameters for Case III are summarised in Ta-

ble A.1 in Appendix A, including the values of β, Wb, and mass ratio µ under

each (ρ, µ) configuration.
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2.4.4 Case IV: the general case (a 6= 0, α 6= 0)

We now consider the general scenario where both the along-chain and inner-

outer mass interactions possess quadratic nonlinearities, setting a = 1 and

α = 1. The parameters are chosen to satisfy the focusing condition (2.2.14).

Figure 2.5(a) and (b) show breather profiles over the intervals 0 < t < 250

and 100 < t < 500, respectively; panel (c) displays the local and total energy

for 0 < t < 200. The parameters are b = 1, β = 2.98, Wb = 20.3510, and

ω = 0.6667.

Unlike the stability seen in Case III, the breather mode in Case IV is short-

lived. As shown in Figure 2.5, a rapid decline in amplitude occurs within the

early simulation 0 < t < 200. Panel 2.5(a) clearly illustrates the onset of

breather destabilisation and energy dispersion around t > 100. Panel 2.5(c)

confirms this with a sharp drop in localised energy, indicating a loss of coher-

ence and structural integrity.

These results underline the sensitivity of breather dynamics in fully nonlin-

ear systems, where even minor adjustments in nonlinearity parameters can

significantly influence stability.

(a) (b)
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Figure 2.5: Breather evolution for Optical Case IV with k = 0, ρ = 1/3, µ = 3,
N = 1000, and tmax = 1000.

Thus far, we have examined all four combinations of nonlinear coefficients

(a, α) under stationary optical modes with k = 0. For each case, we varied the

mass ratio µ and the linear coupling strength ρ, revealing a rich diversity of
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breather behaviours from long-lived to rapidly-unstable regimes.

Next, we turn our attention to the case k = π, where adjacent lattice sites

oscillate out of phase, introducing new dynamics and stability patterns in the

breather solutions.

2.5 Optical modes for k = π

Continuing with optical modes, where the inner and outer masses oscillate out

of phase (Q̇n = Cq̇n, with C < 0), we now shift from the case k = 0 (in

phase motion, q̇n+1 ≈ q̇n) to the case k = π, where adjacent nodes oscillate in

opposite phase (q̇n+1 ≈ −q̇n). This phase inversion leads to distinct breather

dynamics, which we explore across four nonlinear interaction cases.

2.5.1 Case I: even potentials (a = 0 = α)

(a) (b)

Figure 2.6: Optical Case I for k = π, with tmax = 2000 and N = 400, under the
condition a = α = 0. Left column: ρ = µ = 3, β = 1, b = 0.001, Wb = 16.0573;
right column: ρ = µ = 1/3, β = 1, b = 0, Wb = 12.8933.

Simulations performed with N = 400 and over a time interval up to tmax =

2000 indicate that the breather remains well localised and dynamically stable

in both strong and weak coupling regimes, such as in the cases (ρ = µ = 3)

and (ρ = µ = 1/3) shown in Figure 2.6. These results confirm the robustness

of breather dynamics in systems governed by even potentials.
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2.5.2 Case II: potentials with (a = 0, α 6= 0)

Numerical simulations with α = 1 indicate that breathers are long-lived un-

der strong coupling (ρ = 3) with small mass ratio (µ = 1/3), but unstable

under other parameter combinations. Figure 2.7 shows how varying ρ and µ

influences stability.

(a) (b)

(c) (d)

Figure 2.7: Optical Case II for k = π, tmax = 1000, N = 400, a = 0, α = 1. Top
row: ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3. The
parameters used in this case are summarised Table A.2 in Appendix A.

2.5.3 Cases III & IV: potentials with a 6= 0

With a = 1 and k = π, simulations of the optical mode reveal the emergence

of breather-kink and wobbling kink modes. These structures are generally

unstable across all combinations of (ρ, µ), with one notable exception: when

ρ = 3 and µ = 1/3, a wobbling-kink mode develops that retains coherence over

a longer duration and undergoes comparatively less amplitude reduction. In

contrast, all other parameter settings result in rapid destabilisation and decay

of the breather lattice structure. Figures 2.8 and 2.9 illustrate the correspond-

ing time evolving profiles and energy decay.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Breather-kink profiles (top) and energy evolution (bottom) for Optical
case III with a = 1, α = 0, k = π, N = 1000, tmax = 1000. Parameters for this case
are listed in Table A.2 in Appendix A.

These complex oscillations are referred to as wobbling kinks, which retain their

kink-like structure. Thus, Figure 2.9(b) appears to exhibit a wobbling-kink

type mode. In contrast, Figures 2.9(a) split in two kinks, (c), and (d) lose their

kink structure. This behaviour, extensively studied in φ4 models [5, 66, 67],

reflects the dynamically rich and non-integrable nature of the MiM system.

Our findings show that the presence of dual nonlinearities (a 6= 0, α 6= 0)

significantly amplifies instability in the system.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.9: Profiles and energy decay for Optical Case IV with full nonlinearity
(a = α = 1), k = π, tmax = 1000, N = 1000. Refer to Table A.2 in Appendix A for
the parameters used in this case.

In this section, we have examined four principal nonlinear configurations for

optical modes at k = π. The simulations demonstrate that, while both the

even potential and the potential with α 6= 0 at ρ = 3 and µ = 1/3 yield

stable breathers, the presence of dual nonlinearities gives rise to complex and

unstable breather–kink dynamics.

We now proceed to investigate the acoustic modes for k = π, where energy

transfer and stability profiles reveal additional nonlinear behaviours in MiM

systems.

2.6 Acoustic modes for k = π

For acoustic modes, we present simulation results under both strong and weak

linear interaction regimes (ρ = 3, 1/3) and for large and small mass ratios

(µ = 3, 1/3). The simulation parameters are configured as follows: lattice size

N = 400 for Cases I and II, and N = 1000 for Cases III and IV, so the decay of

the mode dose not interact with the body of the wave. The values of ε = 0.1,
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along with appropriately chosen β and b, ensure the formation of breathers with

reasonable spatial width, while satisfying the NLS focusing condition (2.2.14).

In all cases, the breather or breather-kink is initially positioned at the centre

of the lattice (n = N/2). Simulations are run up to tmax = 2000 for Cases I

and II, and tmax = 1000 for Cases III and IV.

2.6.1 Case I: potentials with a = 0 = α

(a) (b)

(c) (d)

Figure 2.10: Plots of qn(t) against (n, t) for Acoustic Case I at k = π, taken in
the late simulation 950 < t < 2000, with N = 400. Top row ρ = 3, bottom row
ρ = 1/3; left column µ = 3, right column µ = 1/3. Specific parameter sets of Case
I are provided in Table A.3 in Appendix A.

Figure 2.10 presents the simulation results towards the end of the simulation

period (tmax = 2000). Across all combinations of ρ and µ, the wave profiles

remain spatially localised and maintain a steady amplitude. This demonstrates

that under even potential conditions (a = α = 0), acoustic breather modes are

dynamically stable for the full simulation duration, regardless of the interaction

strength or mass ratio.

50



2.6.2 Case II: potentials with (a = 0, α 6= 0)
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Figure 2.11: Plots of qn(t) against (n, t) for Acoustic Case II (α = 1, a = 0) at
k = π. Simulations are run with ε = 0.1, up to tmax = 2000, with N = 400; only
the range 100 ≤ n ≤ 300 is shown. The parameter values for this case are provided
in Table A.3 in Appendix A.

In this case, where α = 1, acoustic breather modes display strong dependence

on the strength of the linear interaction. Figure 2.11(a)–(b): The parameters

are ρ = µ = 3, with β = b = 0.15, yielding Wb = 21. Panel (a) shows the wave

profile at late times; panel (b) shows the corresponding local and total energy,

with only 0.58% loss in localised energy over 2000 time units.

For large coupling (ρ = 3), the breathers are long-lived and retain their struc-

ture over the entire simulation duration. This is evident in the upper panels

of Figure 2.11, where the energy decay is minimally less than 1 × 10−5 per

unit time. Similar stable behaviour is observed for ρ = 3, µ = 1/3, as seen

in Appendix A.3. In contrast, for weak coupling (ρ = 1/3), the breathers

are highly unstable. Figure 2.11 (c)–(d): The parameters are ρ = µ = 1/3,

with β = 2.82, b = 4.5, Wb = 14.89. Panel (c) shows the early-time breather

profile, which decays rapidly; panel (d) confirms this instability via a sharp
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decline in local and total energy. As seen in the lower panels of Figure 2.11,

the wave rapidly loses coherence, with its structure deteriorating within the

first 100 time units. The accompanying energy plot shows a significant decline,

confirming the short-lived nature of the breather under these conditions.

Overall, the stability of acoustic breathers in the presence of (α = 1) is strongly

enhanced by stronger linear coupling and unstable under weak coupling.

2.6.3 Case III: potentials with (a 6= 0, α = 0)

In this case, we investigate the dynamics when only the along-chain interac-

tions are nonlinear, setting a = 1 and α = 0, with k = π. The resulting

wave solutions in (qn(t)) exhibit a combination of breather and kink modes as

presented in Figure 2.12.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.12: Wave profiles and energy evolution for Acoustic Case III at k = π,
with tmax = 1000, N = 1000, a = 1, α = 0. The (a) ρ = 3 = µ, (b)ρ = 3, µ = 1/3,
(c)ρ = 1/3, µ = 3, and (d) ρ = µ = 1/3. (a)-(d): Plots of qn(t) against (n, t); (e)-(h):
Corresponding log energy plots. The relevant parameters for this case are listed in
Table A.3 in Appendix A.

Across all parameter regimes, we observe initial transients characterised by

small amplitude kinks. The simulations reveal that instability is more pro-

nounced under strong coupling (ρ = 3). In contrast, for weak coupling (ρ =
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1/3), the breather-kink may exhibit a wobbling behaviour involves a dynamic

oscillation of the kink core, sustained over time before eventual decay and pos-

sible long-live as seen in Figure 2.12(h). This wobbling mode illustrates the

interplay between localised breather dynamics and kink structure.

These findings highlight the emergence of complex breather–kink dynamics

when only along-chain nonlinearity is present, with stability strongly influenced

by the coupling strength. Further analysis of the combined nonlinear case

(a 6= 0, α 6= 0) is presented in the next section.

2.6.4 Case IV: the general case (a 6= 0, α 6= 0)

We now consider the fully nonlinear scenario with a 6= 0 and α 6= 0, focusing

on the behaviour of breather-kink structures in the acoustic regime at k = π.

Simulation results are summarised in Table A.3 for a total run time of tmax =

1000. As shown in Figure 2.13, the system exhibits unstable behaviour under

strong coupling (ρ = 3), while for weak coupling (ρ = 1/3) the dynamics

become defocusing.

Figures 2.13(a)–2.13(b) display short-lived breather-kink modes for ρ = 3,

µ = 1/3. Initially, the structure retains coherence, but energy loss from the

body of the wave becomes significant as time progresses. In Figures 2.13(c)

and 2.13(d), we observe that instability begins to emerge around t = 200. By

t = 300 in Figure 2.13(d) and t = 500 in Figure 2.13(c), the kink has extended

and begins to separate into two distinct structures. This behaviour may be

attributed to energy redistribution within the breather-kink mode. In the

early stages, the breather and kink act as a single, coupled entity. However, as

instability grows, internal energy shifts from the breather to the kink, leading

to a breakdown of coherence and the eventual formation of two decoupled

kink-like modes.

In this section, we examined acoustic breather and breather-kink dynamics

under four distinct nonlinear configurations at k = π. For even potentials
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(a) 0 < t < 1000 (b) 0 < t < 1000

(c) ρ = 3, µ = 3 (d) ρ = 3, µ = 1/3

Figure 2.13: Breather-kink evolution for Acoustic Case IV at k = π, with tmax =
1000, N = 1000, a = 1, α = 1. (a)-(b): Profiles of qn(t) for ρ = 3, µ = 3 (right)
and µ = 1/3 (left); (c)-(d): Corresponding local and total energy plots. Parameter
values are given in Table A.3 in Appendix A.

(a = 0 = α), breathers remained well-localised and stable across all parameter

regimes. When nonlinearity was applied only to the inner mass interaction

(a = 0, α 6= 0), long-lived breathers were sustained under strong coupling,

while weak coupling led to rapid decay. The introduction of a long-chain

nonlinearity (a 6= 0, α = 0) produced breather-kink modes, with wobbling be-

haviour observed under weak coupling and instability under strong coupling.

Finally, in the fully nonlinear case (a 6= 0, α 6= 0), instability dominated, cul-

minating in energy redistribution and kink separation. These results highlight

the sensitive dependence of breather stability on the nonlinear structure and

interaction strength of the system.

We now turn our attention to the dynamics of moving modes.

2.7 Numerical results for moving modes

In the previous section, we focused on stationary wave configurations at

k = 0 and k = π for both optical and acoustic modes, where the breather
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structures were centred and static within the lattice. Motivated by a desire to

explore the effects of small deviations in the wave number, we now examine the

dynamic response of the system under slight perturbations in k, specifically at

k = 0.1 and k = 3.1, where we anticipate the formation of slow moving waves.

This section is structured in two parts. The first case investigates acoustic

travelling waves at k = 0, where a pure travelling wave is expected; that is,

there is no breather component. The second part is divided into two subsec-

tions: one devoted to moving wave behaviour at k = 0.1; and the other at

k = 3.1 in both these cases we expect breather or breather-kink modes. For

each case, we examine the four standard interaction regimes Cases I to IV

in order to assess whether the introduction of movement produces significant

changes in wave stability, structure or localisation compared with the station-

ary configurations. We consider four combinations of the mass ratio µ and the

linear interaction strength ρ.

To quantitatively evaluate wave propagation, we compare numerically com-

puted wave speeds cn with analytically derived asymptotic predictions ca, as

given by Wattis [1]. The relative error between the numerical and analytical

speeds is defined as

Relative Error =
|ca − cn|

ca
. (2.7.1)

The asymptotic wave speed is given by

c(k) =
sin(k)

mω (1 + µC2)
, (2.7.2)

where C is defined in equation (2.2.8).

In all simulations, the wave is initiated at position n = N/4, and the lattice

size is fixed at N = 1000. Each simulation is run up to time units tmax = 1000

, with ε = 0.01, and parameters are selected to satisfy the NLS focusing

criterion (2.2.15).
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It is important to note that in Case IV, where both a 6= 0 and α 6= 0, the

system no longer permits a reduction to the NLS equation, as ζ 6= 0. Instead,

the dynamics are governed by a CGL system, introducing significantly more

complex behaviours that lie beyond the scope of this thesis. Consequently,

Case IV is excluded from the moving wave simulations.

In the following sections, we focus on Cases I, II, and III. We begin with the

travelling wave solutions for k = 0, followed by a detailed analysis for k = 0.1

and k = 3.1.

2.8 Numerical simulations of travelling kinks

In this section, we numerically investigate the mobility of travelling waves in

lattices governed by either a cubic (b = 0, a 6= 0) or quartic (b 6= 0, a = 0) NNI

potential. These modes represent the limiting case as k → 0 in the acoustic

regime, where the kink–breather solution simplifies into a pure travelling kink

wave without a breather component. The asymptotic form of these kink solu-

tions, which is considerably simpler than that of breathers, is outlined in the

appendix of Wattis [1].

2.8.1 Kinks in the cubic lattice (a 6= 0, b = 0)

We consider several configurations of mass ratio and linear interaction param-

eters, specifically ρ, µ ∈ {3, 1/3}, along with fixed nonlinear parameters a = 2,

b = 0, and α = β = 2. Following the approach in Wattis [1], we adopt the

approximate formula for slowly varying travelling kink solutions, which is de-

rived under the assumptions of small lattice spacing h, and rescaled coordinate

z = h(n− ct) = O(1). To leading order, the kink solution is given by

Qn(t) = qn(t) =
3h

a

√
2γc1 tanh

(
z

√
c1

γ

)
, z = h(n− ct), (2.8.1)
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were

γ =
1

12
+

µ2

ρ(1 + µ)2
, c = c0(1 + c1h

2), c0 =
1√

m(1 + µ)
=

1√
m+M

.

(2.8.2)

(a) (b)

(c) (d)

Figure 2.14: Evolution of a travelling kink in a lattice with cubic NNI potential
from initial conditions (2.8.1).

Figure 2.14 illustrates the evolution of kink waves under both strong (ρ = 3,

top row) and weak (ρ = 1/3, bottom row) linear coupling, with large (µ = 3,

right column) and small (µ = 1/3, left column) mass ratios. We plot the

displacements of the outer masses, qn(t), for 850 < t < 1000 and 650 < n <

850, using the parameter values: a = 2, b = 0, N = 1200, α = 2, β = 2,

c1 = 0.5, h = 0.1. Top row: ρ = 3; bottom row: ρ = 1/3; left column:

µ = 1/3; right column: µ = 3.

In each simulation, we initiated the kink at lattice site n = N/4 = 300.

Over the duration 0 < t < 1000, the kink propagates to approximately n =

800, yielding a numerically observed speed of c ≈ 0.5. This result is in close

agreement with the theoretical sound speed c0 = 0.5, given by equation (2.8.2),

using m = 3,M = 1 or m = 1,M = 3. Overall, the travelling kink solutions

remain long-lived and structurally stable across all configurations considered.
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2.8.2 Kinks in the quartic lattice (a = 0, b 6= 0)

In this subsection, we present the results from simulations of travelling kinks in

a quartic lattice. We consider a purely quartic interaction scenario with a = 0

and b = α = β = 2, and investigate both strong (ρ = 3) and weak (ρ = 1/3)

linear coupling regimes, along with varying mass ratios (µ = 3 and µ = 1/3).

According to Wattis [1], the leading order asymptotic approximation for kinks

in a lattice with quartic NNI is given by

Qn(t) = q(z) = ±
√

2γ

b
tan−1

(
sinh

(
z

√
2c1

γ

))
, z = h(n− ct), (2.8.3)

where γ, c are defined in equation (2.8.2), Qn(t) = qn(t), and c1 arbitrary.

Following the simulations, we observed that the initial kink often bifurcates

into two distinct waves propagating in opposite directions through the lattice.

Figures 2.15 and 2.16 illustrate the kink dynamics for the full range of tested

parameter regimes: ρ = 3, 1/3 and µ = 3, 1/3. The Figures 2.15 and 2.16

correspond to the parameter values: a = 0, b = 2, N = 1200, α = 2, β = 2,

h = 0.1, tmax = 1000. In panels (a)–(d), a splitting into two kinks is visible at

0 < t < 100, with approximate speeds: Panel (a) ca11 = 0.46, ca12 = −0.36;

Panel (b) cb11 = −0.5, cb12 = 0.5. Panel (c) shows minimal splitting.

The kinks propagate at a speed similar to that observed in the cubic lattice

case, though the quartic kinks exhibit slightly higher amplitude profiles.
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(a) (b)

(c) (d)

Figure 2.15: Propagation of kink waves in a lattice with quartic NNI potential.
Displacements of the outer masses qn(t) are shown at early times (200 < t < 400)
within the window 0 < n < 400. Top row: ρ = 3; bottom: ρ = 1/3; left column:
µ = 1/3; right column: µ = 3.

(a) (b)

(c) (d)

Figure 2.16: Later-time evolution of kink waves (850 < t < 1000) in a quartic
lattice. Displacements qn(t) are shown with the same parameter values as in Fig-
ure 2.15. Top row: ρ = 3; bottom: ρ = 1/3; left column: µ = 1/3; right column:
µ = 3.
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In this study of quartic lattice kink dynamics, we observed interesting be-

haviour associated with strong linear coupling. Initially, as shown in Fig-

ure 2.15, the kink is localised around n = 300. By the middle of the simulation

(200 < t < 400), the kink begins propagating, reaching approximately n = 800

by the end of the simulation (850 < t < 1000), as shown in Figure 2.16. The

propagation speed was measured to be c ≈ 0.5 in most configurations, aligning

well with the asymptotic sound speed given in equation (2.8.2). One excep-

tion is the case ρ = 1/3, µ = 3, where a slightly higher speed of c ≈ 0.55 was

observed (see Figure 2.16(c)).

During the early stages shown in Figure 2.15, the original kink was found

to bifurcate into two distinct wave forms. These kinks then propagated in

opposite directions: the larger amplitude component continued towards higher

n values with positive speed, while the smaller amplitude component moved

in the opposite direction with speed approximately c ≈ −0.5. This behaviour

highlights the capacity of quartic lattices to support kinks across a range of

amplitudes and under varying values of interaction parameters.

2.9 Optical breather at k = 0.1

In this section, we investigate moving breather solutions for the optical case

at wave number k = 0.1, where wave propagation is expected to be slow. We

select appropriate parameter values for b and β to ensure a reasonable breather

width, as summarised in Table A.6. The analysis is structured according to

the four standard cases, beginning with Case I: even potentials (a = 0 = α).

The asymptotic wave speeds, derived from equation (2.2.8), for each panel in

Table A.6 are:

(a) ca = 0.037, (b) ca = 0.0041, (c) ca = 0.1126, (d) ca = 0.0126.

(2.9.1)
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2.9.1 Case I: even potentials (a = 0 = α)

Figure 2.17 presents simulation results for Case I. Across all configurations,

the breather waves appear long-lived but slightly unstable, exhibiting minor

radiation. Particularly, the measured breather speeds remain consistent within

each panel. The numerical speeds for panels (a)–(d) are cn = 0.037, 0.0041,

0.113, and 0.013 respectively, with the first two matching the theoretical pre-

dictions exactly, and relative errors of 0.36% and 3.17% for panels (c) and (d)

respectively.

These results confirm the reliability of the asymptotic theory and indicate that,

even in weakly moving regimes, the breather maintains coherence over time.

(a) (b)

(c) (d)

Figure 2.17: Optical Case I at k = 0.1, for tmax = 1000, N = 1000. Top row:
ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3. Displayed
region: 200 ≤ n ≤ 450. Parameter values are given in Table A.6 in Appendix A.

In summary, breather modes for even potentials at k = 0.1 are characterised by

slow movement, high persistence and marginal instability. The next subsection

will explore the effect of introducing a non zero quadratic interaction potential

(α 6= 0) in Case II.
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2.9.2 Case II: potentials with a = 0, α 6= 0

In this subsection, we present numerical simulations for the system with setting

α = 1 at k = 0.1. Appropriate values were chosen for the parameters b and

β to ensure reasonable breather widths. The simulation results, shown in

Figure 2.18, reveal that the breathers remain long-lived under strong coupling

(ρ = 3), but become significantly unstable in cases with weak coupling (ρ =

1/3). In particular, the waveform increasingly distorts over time in the weaker

interaction regimes.

The computed wave speeds for panels (a) and (b) are cn = 0.036 and cn =

0.004 respectively. When compared with the theoretical speeds from equa-

tion (2.9.1), these yield relative errors of 2.70% and 2.44% as defined in equa-

tion (2.7.1). For panels (c) and (d), reliable speed measurements are not fea-

sible due to early waveform distortion, which makes precise tracking difficult.

(a) 0 < t < 1000 (b) 0 < t < 1000

(c) 0 < t < 200 (d) 0 < t < 200

Figure 2.18: Optical Case II at k = 0.1, with tmax = 1000, N = 1000, a = 0,
α = 1. Top row: ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column:
µ = 1/3. See Table A.6 in Appendix A for the corresponding parameter set.

Overall, in cases with α 6= 0, the breather modes demonstrate significantly

unstable behaviour under weak coupling (ρ = 1/3), whereas strong coupling
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(ρ = 3) maintains long-lived coherence. These findings highlight that even a

slight deviation from k = 0 to k = 0.1 can drastically affect breather stability,

with strong coupling yielding much more robust solutions. The next subsection

explores the dynamics of moving breathers with (a 6= 0).

2.9.3 Case III: potentials with a 6= 0, α = 0

In this subsection, we present numerical simulations for the case a = 1 and

k = 0.1, representing a scenario where nonlinearity is applied along the chain,

but not between the inner and outer masses. The results show that the breather

maintains a long-lived, marginally unstable profile under movement. The tran-

sition from the stationary case at k = 0 to the slowly moving case at k = 0.1

does not significantly compromise the stability of the breather. The numerical

speeds obtained for panels (a)–(d) are cn = 0.037, 0.0040, 0.113, and 0.013,

respectively, with corresponding relative errors of 0%, 2.44%, 0.36% and 3.17%.

These speeds are in strong agreement with the theoretical predictions listed

in equation (2.9.1), and are nearly identical to those observed for the even-

potential case (Case I; see Subsection 2.9.1). This suggests that the along-

chain nonlinearity (a 6= 0) does not disrupt breather coherence in the k = 0.1

regime.

In summary, for a 6= 0 and k = 0.1, the breather exhibits consistent, long-lived

dynamic structure with only marginal instability across tested configurations.

The comparison between numerical and asymptotic speeds confirms that the

theoretical framework remains robust even when breather movement is intro-

duced. Although motion at k = 0.1 slightly modifies the waveform, it does not

compromise stability in otherwise stable regimes, and only slightly exacerbates

instability in more sensitive cases.

In the following section, we investigate how similar movement influences the

acoustic cases at k = 0.1.

63



(a) (b)

(c) (d)

Figure 2.19: Optical Case III at k = 0.1, with tmax = 1000, N = 1000, a = 1,
α = 0. Plots show late-time behaviour over 250 < n < 400. Top row: ρ = 3; bottom
row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3. A summary of the
parameter choices appears in Table A.6 in Appendix A.

2.10 Acoustic breather at k = 0.1

Following the optical cases, we now present results for acoustic wave dynam-

ics at k = 0.1, as summarised in Table A.7. Since k = 0.1 is close to the

stationary case k = 0, we might anticipate the emergence of kink-like struc-

tures, as previously observed in Section 2.8, or breather solutions, as seen in

Sections 2.4.3 and 2.4.4. However, the simulations in Subsection 2.10.1 show

that the breather–kink component may split into separate breather and kink

structures as it propagates.

2.10.1 Case I and Case II: potentials with a = 0, α = 0

and α 6= 0

This subsection presents results for acoustic breathers with even potentials

(a = 0) and both α = 0 and α 6= 0 at k = 0.1. For the case α = a =
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0, the waveforms exhibit significantly broader spatial widths than in other

configurations. Despite their breadth, these breathers demonstrate unstable

dynamics.

In Figure 2.20, the top row is ρ = µ = 1/3. Early and later time panels show

the transition from breather-kink to kink–anti kink dynamics, with parameters:

b = β = 10, Wb = 61, ω = 0.0499, and energy loss ∆E = 0.0095. Bottom row

is ρ = 1/3, µ = 3, with b = β = 10, Wb = 156.5307, ω = 0.0496, cn = 0.478,

ca = 0.48 with error 0.41%, and ∆E = 2× 10−6.

As shown in Figure 2.20, panels from both the early and later stages of the

simulation are presented for ρ = 1/3 with µ = 1/3, or ρ = 3 with µ = 3. In

the case ρ = µ = 1/3, a breather-kink splits into two modes: a kink–anti kink

pair moving in opposite directions at speeds cn = 0.5, as shown in Figure 2.20,

panel (c). The corresponding theoretical value is ca = 0.497, resulting in a

small relative error of just 0.60%, confirming the accuracy of the asymptotic

prediction.

(a) 0 < t < 100 (b) 750 < t < 1000 (c) 750 < t < 1000

(d) 0 < t < 200 (e) 900 < t < 1000 (f) 980 < t < 1000

Figure 2.20: Acoustic Case I at k = 0.1, for N = 3000, tmax = 1000.

When either ρ or µ is small, the system exhibits initial breather-kink behaviour

that evolves over time into a broader breather, as seen in panels (d) and (e) of
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Figure 2.20. A special delocalised mode is depicted in panel (f) of Figure 2.20.

These modes are weakly unstable but persist over long durations.

2.10.2 Case III: potentials with a 6= 0, α = 0

For the acoustic case with a = 1 and α = 0, in the parameter range (−10 ≤

β, b ≤ 10). We explored all configurations; the system consistently exhibited

defocusing behaviour.

In summary, for acoustic waves at k = 0.1, breather-kink or kink–anti kink

dynamics are observed when both ρ and µ are small or large. These solutions

are marginally unstable. Similar behaviour is observed when α 6= 0. Theo-

retical and numerical speeds agree closely. In contrast, systems with a 6= 0

consistently show defocusing behaviour, with no coherent localised structures

observed.

2.11 Optical breather at k = 3.1

In Section 2.5, we analysed the stationary case at k = π, where the system

exhibited distinct dynamical properties, as summarised in Table 2.1. In this

section, we explore how a small deviation from the stationary case specifi-

cally, setting k = 3.1 affects breather dynamics. This allows us to assess the

sensitivity of the system’s behaviour to perturbations in wavenumber.

We begin by investigating Case I: even potentials. For each configuration, we

compute the asymptotic breather speed using equation (2.2.8), and compare

it with the numerically observed speeds. The asymptotic values for panels (a)

to (d) are

(a) ca = 0.0142, (b) ca = 0.0026, (c) ca = 0.0199, (d) ca = 0.0110.

(2.11.1)
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2.11.1 Case I: even potentials (a = 0 = α)

We now consider even potentials with α = a = 0. The wave forms correspond-

ing to all four parameter combinations are shown in Figure 2.21. In each case,

the breather remains long-lived and exhibits only marginal instability.

To quantify the stability of these modes, we computed the energy difference

between the localised and total energy. The results showed minimal energy

loss over the course of the simulation ∆E ∼ 3× 10−6 (a), ∆E ∼ 6× 10−5 (b),

∆E ∼ 1.7 × 10−6 (c), and ∆E ∼ 2 × 10−6 (d), indicating strong localisation

and excellent energy retention throughout the breather’s evolution.

The numerically measured speeds for the same panels are (a) cn = 0.014, (b)

cn = 0.003, (c) cn = 0.020; and (d) cn = 0.011. These values yield relative

errors of (a) 1.41%, (b) 0.50%, (c) 4.52%; and (d) 0%, all of which show an

agreement with the asymptotic predictions in equation (2.11.1).

(a) (b)

(c) (d)

Figure 2.21: Optical Case I at k = 3.1, with tmax = 1000, N = 1000, a = α = 0.
Top row: ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3.
All parameter settings applied in this case are detailed in Table A.4 in Appendix A.

In conclusion, while the stationary case at k = π yields robust, localised solu-

tions, a small deviation to k = 3.1 produces slowly moving, long-lived breathers

with negligible energy loss. The close match between asymptotic and numerical

speeds confirms the persistence of coherent structures under weak perturba-
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tions in wave number.

2.11.2 Case II: Potentials with a = 0, α 6= 0

We now present numerical simulations for the system with k = 3.1 and α = 1,

as illustrated in Figure 2.22. The breather behaviour strongly depends on the

interaction strength ρ and mass ratio µ. For small ρ, the breathers are short-

lived and unstable, whereas for large ρ when µ is small, the breather becomes

more localised and longer-lived. These trends are confirmed in the energy plots

of Figure 2.23, where the breather for small µ (panel b) remains confined with

minimal energy dispersion.

Further insight is gained by comparing the numerical and theoretical wave

speeds. However, in Figure 2.22 (a), (c), and (d), the breather decays signifi-

cantly, resulting in distorted waveforms. As such, the measured wave speeds

in these cases become meaningless, and any comparison with the theoretical

predictions is unreliable. Only in Figure 2.22 (b) does the breather maintain

coherence, allowing a meaningful comparison. Here, the numerically measured

speed is cn = 0.0020, with an associated energy difference of ∆E ∼ 3× 10−6.

When compared to the asymptotic prediction from equation (2.11.1), this cor-

responds to a relative error of approximately 23.08%, reflecting a reasonable

agreement.

In conclusion, although breathers remain relatively long-lived at k = 3.1 under

strong coupling their stability is significantly affected by the mass ratio. Small

µ enhances localisation and energy retention, while large µ increases instability.

The numerical speeds align poorly with asymptotic predictions in cases where

energy dispersion dominates, especially for panels (a), (c) and (d). The next

section investigates the role of a non-zero a.
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(a) (b)

(c) (d)

Figure 2.22: Optical Case II at k = 3.1, with N = 1000, a = 0, α = 1. Top row:
ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right column: µ = 1/3. Complete
details of the simulation parameters can be found in Table A.4 in Appendix A.

(a) (b)

Figure 2.23: Energy plots for Optical Case II at k = 3.1, N = tmax = 1000,
corresponding to panels (a) and (b) in Figure 2.22. Shared parameters: a = 0,
α = 1.

2.11.3 Case III: potentials with a 6= 0, α = 0

In this section, we present numerical results for breathing–kink modes with

a = 1, α = 0 and k = 3.1, as shown in Figure 2.24. The aim is to assess how a

small shift from the stationary case at k = π affects the dynamics, particularly

regarding the persistence and stability of breather- kink structures.

The simulations reveal varying behaviours across configurations. In panel (b),

corresponding to ρ = 3, µ = 1/3, the breather-kink mode persists over time,

demonstrating a long-lived but unstable structure. In contrast, panel (a) and
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panel (d) show it splitting into two separate kinks, indicating significant dif-

ferent response. In panel (c), the breather- kink decays rapidly, providing

evidence of strong instability under this configuration.

The numerically observed in cases (a), (c), and (d), the wave structure breaks

down as the breather splits into multiple parts, making the notion of a numer-

ically speed meaningless. Only in case (b) does the breather retain a coherent

structure, allowing a meaningful and reasonably accurate comparison with the

theoretical prediction in equation (2.11.1) as cn = 0.010, error = 29.58%.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.24: Evaluation of qn(t) and log energy plots for optical case III at k = 3.1,
with tmax = 1000, N = 1000, a = 1, α = 0. The (a) ρ = 3 = µ; (b) ρ = 1/3, µ = 3;
(c) ρ = 1/3, µ = 3;(d) ρ = µ = 1/3. All parameter settings applied are detailed in
Table A.4 in Appendix A.

Log energy plots corresponding to Figure 2.24, as shown in panels (e) to (h),

indicate that, in most configurations, the breather–kink structure eventually

splits into two distinct modes. In particular, panel (g) exhibits rapid energy

dispersal and significant waveform distortion, highlighting the strong instabil-

ity present in this case.

The results demonstrate that even a small deviation from k = π affects the

breather-kink stability to a significantly extent. Configurations with large ρ

and small µ produce longer-lived modes.

Having examined the optical breather dynamics at k = 3.1, we now turn

our attention to the acoustic case. This section explores how small deviations
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from the stationary state at k = π influence the behaviour of acoustic breather

modes under various nonlinear interaction regimes.

2.12 Acoustic Breather at k = 3.1

In this section, we extend our investigation to the acoustic regime at k = 3.1.

Previously, we analysed the stationary case at k = π (see Subsection 2.6),

where the system exhibited stable dynamics in Case I, and long-lived behaviour

for large ρ and weak instability for small ρ in Case II. Case III showed promi-

nent instability, at ρ = 3, µ = 1/3.

Here, we evaluate how introducing a small deviation in wave number, specifi-

cally k = 3.1, influences the acoustic breather dynamics. This approach allows

us to explore how near-stationary movement affects breather localisation and

energy propagation. To quantify these effects, we compute both asymptotic

and numerically obtained wave speeds, enabling comparison of analytical pre-

dictions with simulated behaviour. The asymptotic speeds for panels (a)–(d)

are

(a) : ca = 0.00381, (b) : ca = 0.00867,

(c) : ca = 0.00027, (d) : ca = 0.00070 (2.12.1)

2.12.1 Case I: even potentials (a = 0 = α)

We first consider the case of even potentials, with α = a = 0. As shown in

Figure 2.25, the acoustic breather remains long-lived across all tested config-

urations of ρ and µ. These results closely resemble the behaviour observed in

the optical counterpart at the same wave number (see Subsection 2.11.1).

The numerical simulations yield the following wave speeds and energy varia-

tions: (a) cn = 0.004, ∆E ∼ 1.5 × 10−6; (b) cn = 0.009, ∆E ∼ 7 × 10−7; (c)

cn = 0, ∆E ∼ 4 × 10−8; and (d) cn = 0.0010, ∆E ∼ 2 × 10−6 faster than

expected.
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The relative error between the analytical and numerical speeds, calculated

using equation (2.12.1), is given by: (a) 5.07%; (b) 3.75%; (c) 100%; and (d)

43.53%.

(a) (b)

(c) (d)

Figure 2.25: Acoustic Case I at k = 3.1, simulated for tmax = 1000 with N = 1000,
a = 0, α = 0. Top row: ρ = 3; bottom row: ρ = 1/3; left column: µ = 3; right
column: µ = 1/3. A summary of the parameter choices appears in Table A.5 in
Appendix A.

The results for Case I at k = 3.1 show that breather modes remain long-lived,

regardless of the interaction strength.While the energy loss is minimal, the

numerical speeds cn deviate from the asymptotic predictions ca. The agreement

is significantly less accurate for ρ = 1/3, but remains reasonable for ρ = 3. This

discrepancy may be due to the sensitivity of the system for a small deviation

in wave number. In the following subsection, we investigate the influence of

non-zero α.

2.12.2 Case II: potentials with a = 0, α 6= 0

We now consider the acoustic breather modes at k = 3.1 in the presence of

nonlinear coupling, with α = 1 and a = 0. Figure 2.26 illustrates the behaviour

of the breather across two configurations with strong linear interaction (ρ = 3),
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for both large and small mass ratios. In both cases, the breather remains long-

lived but exhibits weak instability. The numerically observed wave speeds are

(a) cn = 0.004 and (b) cn = 0.009.

These values are consistent with those found in Case I (see Subsection 2.12.1).

The corresponding relative errors, computed using the asymptotic predictions

in Equation (2.12.1), are 5.07% and 3.75% respectively.

For weak linear interactions (ρ = 1/3), we were unable to satisfy the NLS

focusing condition (2.2.15) within the range −10 ≤ b, β ≤ 10. As a result, no

breather modes could be identified in these parameter regimes, as the system

exhibited defocusing behaviour.

(a) (b)

Figure 2.26: Acoustic Case II at k = 3.1, with tmax = 1000, N = 1000, a = 0,
α = 1. This figure at ρ = 3 corresponds to the setup described in Table A.5 in
Appendix A. Configurations with ρ = 1/3 were found to be defocusing.

These results indicate that in the acoustic regime at k = 3.1, a non-zero

α leads to weakly unstable, but long-lived breather dynamics under strong

coupling. In contrast, weak coupling (ρ = 1/3) prevents the formation of

localised breathers, underscoring the importance of interaction strength in

maintaining wave coherence. The following subsection investigates the effect

of a non-zero a.

2.12.3 Case III: potentials with a 6= 0, α = 0

This subsection presents the acoustic case at k = 3.1 for a = 1, illustrated

in Figure 2.27. Under strong linear interactions (ρ = 3), the system exhibits

breather-kink dynamics that vary significantly with the mass ratio µ. For large
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µ, the kink mode is long-lived but weakly unstable. In contrast, for small

µ, the mode becomes highly unstable and splits into two components. This

behaviour contrasts with the optical regime discussed in Subsection 2.11.3,

where the dynamics were more stable for small mass ratios.

A notable case arises for µ = 1/3, as shown in Figure 2.27(b), where the

kink amplitude diminishes and subsequently divides into two distinct kink

structures. Conversely, for µ = 3 (Figure 2.27(a)), the breather-kink maintains

its form but exhibits reduced amplitude and gradual dispersion.

(a) (b)

(c) (d)

Figure 2.27: Acoustic Case III at k = 3.1, with tmax = 1000, N = 1000, a = 1,
α = 0. Bottom panels show corresponding log energy plots. The relevant parameters
for this case at ρ = 3 are listed in Table A.5 in Appendix A. Configurations with
ρ = 1/3 are defocusing. Only 100 ≤ n ≤ 400 is displayed.

The log energy plots in Figures 2.27(c)–2.27(d) confirm significant energy dis-

persal, especially for small µ. In panel (a), the breather-kink shows mild energy

loss, with ∆E ∼ 8.1 × 10−6 whereas in panel (b), stronger energy dispersion

occurs, with ∆E ∼ 7.4× 10−4.

The comparison between the numerical and asymptotic wave speeds is ulti-

mately meaningless in this context. In panel (a), the wave remains stationary

at n = 250 throughout the simulation, indicating no actual propagation. In
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panel (b), the initial wave splits into two distinct components, further compli-

cating the interpretation due to the lack of coherent wave motion.

In summary, the results reveal that the breather-kink structure at k = 3.1

is highly sensitive to the mass ratio µ. For smaller values of µ, the mode

becomes unstable and splits; while, for larger values, it remains coherent, but

loses amplitude. These findings contrast with those of the optical case and

emphasise the impact of acoustic dynamics on breather-kink behaviour under

nonlinear interactions.

2.13 Discussion

This chapter presented a numerical investigation into the robustness and

dynamics of the MiM FPUT lattice. Initial conditions were derived from

asymptotic reductions to the NLS equation, as described in [1]. The lattice was

shown to support localised modes when the focusing condition η(k)D3(k) > 0

is met, imposing constraints on the wave number k; the nonlinear parameters

a, b, α, β; the mass ratio µ; and the linear interaction strength ρ.

We analysed both stationary and moving cases for a range of interaction

settings labelled as Cases I to IV under four primary configurations: (a)

ρ = 3, µ = 3; (b) ρ = 3, µ = 1/3; (c) ρ = 1/3, µ = 3; and (d) ρ = 1/3, µ = 1/3.

To satisfy the focusing condition, we selected parameter values within the range

−10 < b, β < 10. Our simulations included both stationary modes (k = 0, π)

and slow moving cases (k = 0.1, 3.1), across optical and acoustic regimes. In

addition, we examined travelling kink solutions in the cubic and quartic lat-

tice configurations, using the approximate solutions (2.8.1) and (2.8.3). These

results reveal a nuanced relationship between system parameters and the emer-

gence, persistence and decay of localised modes.

While analytical results exist for stationary breather solutions [68, 69], there

are no general results for moving breathers in such discrete systems. Our

numerical simulations demonstrate how stability is maintained or lost under
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perturbations in both wave number and system parameters.

Across many simulations, the observed numerical speeds cn closely matched

the asymptotic predictions ca, notably in Subsections 2.9.1, 2.9.2 and 2.11.1.

This agreement indicates that the speed is primarily governed by ρ, µ, m, M

and ω(k), with minimal influence from nonlinear coefficients a, b, α, β. How-

ever, other cases, particularly those presented in Subsections 2.11.2, 2.11.3,

and 2.12.3, are also rendered meaningless due to the lack of coherent motion.

In stationary simulations (k = 0 and k = π), Case I (a = α = 0) demon-

strated persistent, stable behaviour for both optical and acoustic regimes. In-

troducing non-zero α destabilised the breather at small ρ, particularly in the

acoustic case. The mass ratio µ emerged as a key factor at k = π: lower µ

values found long-lived modes, even under strong nonlinearity.

For Case III (a 6= 0, α = 0), we observed breather-kink structures. These

remained intact when ρ was large (optical) or small (acoustic), but otherwise

split into two propagating kinks. This behaviour, detailed in Subsections 2.6.3

and 2.6.4, is consistent with energy redistribution, damping and loss of coher-

ence. Our findings indicate that small µ and large ρ resulting in wobbling-kink

behaviour aligns with the work by Wattis [1].

Moving wave simulations (k = 0.1, 3.1) showed slower evolution compared

to stationary modes. In Cases I and II, long-lived solutions persisted for large

µ. Case III yielded more distinctive dynamics: for k = 3.1 in the optical

regime, kinks remained long-lived only when ρ was large and µ was small.

Conversely, in the acoustic case, large µ improved stability. These trends echo

the findings of Wallen et al. [48], Kevrekidis et al. [44, 45], and Liu et al. [46],

which underscore the mass ratio’s critical influence on breather stability.

In the acoustic regime at k = 0.1, Case III exhibited defocusing behaviour,

preventing the formation of stable breathers. Additionally, travelling kinks in
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the quartic NNI case at k = 0 were observed to split into two distinct struc-

tures during propagation. Case IV across several simulations was not analysed

further due to the emergence of CGL dynamics, making direct comparisons

inappropriate.

At k = 0.1, breather-kink modes in Case III frequently split into separate

breather and kink–antikink structures. This behaviour reported by Alonso-

Izquierdo et al. [70], who examined resonant energy transfer in kink dynamics

within scalar field models. Although their context differs, a continuous system

with multiple shape modes, the underlying mechanism of energy redistribution

is likely comparable. Similar interpretations arise in the works of Cadet [36, 37]

and Theocharis et al. [51], who reported energy bifurcation and asymmetric

breather behaviour in heterogeneous nonlinear lattices.

The stationary regime at k = 0 showed stability for all ρ, while the introduc-

tion of non-zero α caused decay for small ρ. At k = 0.1, splitting dynamics

emerged. For k = π, low µ supported stability at large ρ, whereas at k = 3.1,

long-lived behaviour required large µ in the acoustic regime and small µ in

the optical case. The deviation from the stationary state (k = 0, π) to moving

regimes (k = 0.1, 3.1) consistently demonstrated heightened sensitivity to µ, ρ

and weak nonlinear interactions.

In this chapter, we have numerically simulated the dynamics of MiM

FPUT chains. The insights gained highlight the intricate relationship be-

tween mass ratio, coupling strength, and nonlinearity in shaping the localised

solutions. In Chapter 2, we turn to the analytical investigation of breather

propagation in mechanical triangular lattices, extending our exploration to

more complex geometries.
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Chapter 3

Breather modes in mechanical

triangular lattice

This chapter presents a 2D mechanical triangular lattice in which each node is

connected to six nearest neighbours, forming a symmetric hexagonal arrange-

ment. The model incorporates linear NNI and a nonlinear onsite potential at

each node. Two types of mode: optical and acoustic are identified from the dis-

persion relation, each supporting distinct propagation characteristics. Using

asymptotic techniques, we derive small amplitude breather solutions, leading

to a NLS equation. The existence of these breathers requires the satisfaction

of ellipticity and focusing conditions, which are analysed in detail. Part of this

chapter are being prepared for publication.

3.1 Introduction

In this chapter, we investigate the existence and properties of discrete sta-

tionary breather modes in a 2D mechanical triangular KG lattice. Each node

connects to six nearest neighbours, resulting in a triangular configuration.

The primary objective is to establish the dynamic behaviour of these lo-

calised modes through analytical methods. To achieve this, we apply multiple

scale techniques to systematically derive the conditions under which discrete
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breathers emerge. It is important to acknowledge certain modelling simplifi-

cations adopted in this study. Specifically, we assume only linear NNIs and

simplify the onsite potential. These assumptions facilitate the tractability of

the analysis without significantly altering the core dynamic insights.

The chapter is structured as follows. Section 3.2 derives the fundamental equa-

tions of motion for the triangular lattice. In Section 3.3, we perform a multiple

scale expansion of the equations. Section 3.3.5 simplifies the expanded system

to a (2+1)-dimensional NLS equation. To support the existence of localised

breather solutions, we introduce the focusing condition and the ellipticity cri-

terion [15]. Finally, in Section 3.4, we further simplify the model enabling

explicit determination of stationary breather solutions.

3.2 Derivation of model equations

In this section, we analyse a symmetric triangular lattice of particles connected

as illustrated in Figure 3.1. We define the orthonormal basis vectors B = {i, j},

where i = [1, 0]T and j = [0, 1]T . The position of the (m,n)-th node in the

triangular lattice is rm,n = mi + n
√

3 j , which ensures the regularity of the

triangular structure. Each particle is connected to its six nearest neighbours,

and the position of each node is allowed to vary within the plane of the lattice

through perturbations denoted by (um,n(t), vm,n(t)). Consequently, we have a

fully 2D Hamiltonian H(um,n, vm,n), neglecting nonlinear NNI.

3.2.1 Horizontal spring extension and potential energy

In order to derive the equations of motion for the lattice, we first calculate the

horizontal distance between neighbouring nodes. Consider two adjacent nodes

located at (m,n) and (m+ 2, n) in the triangular lattice. Their displacements

are given by (um,n, vm,n) and (um+2,n, vm+2,n), respectively. The rest length

between these nodes is denoted by h. The relative displacements are ∆u =

um+2,n − um,n,∆v = vm+2,n − vm,n. The deformed relative vector is ∆r =
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m

n

(m,n)

(m+ 1, n+ 1)

(m+ 1, n− 1)

(m+ 2, n)(m− 2, n)

(m− 1, n+ 1)

(m− 1, n− 1)

Figure 3.1: A mechanical triangular lattice.

(h+ ∆u,∆v). Thus, the actual distance between the nodes becomes

d =
√

(h+ ∆u)2 + (∆v)2 (3.2.1)

= h

√
1 +

2

h
∆u+

1

h2
((∆u)2 + (∆v)2). (3.2.2)

Introducing the notation δ2 = (∆u)2 + (∆v)2, we can write

d = h

√
1 +

2

h
∆u+

1

h2
δ2. (3.2.3)

For small displacements, (∆u,∆v � h), we apply a Taylor expansion for the

square root keeping terms to first order, we obtain

√
1 +

2

h
∆u+

1

h2
δ2 ≈ 1 +

1

2

(
2

h
∆u+

1

h2
δ2

)
. (3.2.4)

Thus, the deformed distance is approximated by

d ≈ h+ ∆u+
1

2h
δ2. (3.2.5)

The spring extension relative to the rest length, denoted by φm,n,ho, where the
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subscript h refers to the horizontal NNI, is given by

φm,n,h = d− h (3.2.6)

= (um+2,n − um,n) +
1

2h

[
(um+2,n − um,n)2 + (vm+2,n − vm,n)2

]
. (3.2.7)

The potential energy associated with the horizontal spring, Vh, is given by

Vh(φ) =
1

2
ρ φ2. (3.2.8)

3.2.2 Diagonal spring extensions and potential energy

To derive the diagonal spring extension, denoted by d subscript, in a manner

similar to the horizontal case discussed in Section 3.2.1, we consider neigh-

bouring nodes located at (m,n) and (m + 1, n + 1). Their displacements

are (um,n, vm,n) and (um+1,n+1, vm+1,n+1), respectively. The reference (unde-

formed) vector between these nodes has components
(
h
2
,
√

3h
2

)
. The relative

displacements are defined as ∆u = um+1,n+1 − um,n, ∆v = vm+1,n+1 − vm,n.

The deformed relative vector becomes ∆r =
(
h
2

+ ∆u,
√

3h
2

+ ∆v
)

. Thus, the

squared distance is

d2 =

(
h

2
+ ∆u

)2

+

(√
3h

2
+ ∆v

)2

(3.2.9)

= h2 + h(∆u+
√

3∆v) + δ2, (3.2.10)

taking the square root and expanding for small displacements, we find

d = h

√
1 +

∆u+
√

3∆v

h
+
δ2

h2
(3.2.11)

≈ h+
1

2
(∆u+

√
3∆v). (3.2.12)
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The diagonal spring extension relative to h, denoted by φm,n,d, is therefore

φm,n,d = d− h (3.2.13)

=
1

2

(
um+1,n+1 − um,n +

√
3(vm+1,n+1 − vm,n)

)
. (3.2.14)

Thus, to leading order,

φm,n,d ≈
1

2
(∆u+

√
3∆v). (3.2.15)

The potential energy associated with these diagonal interactions, Vd, is given

by

Vd =
ρ

8
(∆u)2 +

3ρ

8
(∆v)2 +

√
3ρ

4
(∆u)(∆v). (3.2.16)

Similarly, for the diagonal spring denoted by e subscript, which connects nodes

(m,n) and (m−1, n−1), defining ∆u = um−1,n−1−um,n,∆v = vm−1,n−1−vm,n,

the corresponding potential energy Ve is

Ve =
ρ

8
(∆u)2 +

3ρ

8
(∆v)2 −

√
3ρ

4
(∆u)(∆v). (3.2.17)

3.2.3 Hamiltonian of the System

The full Hamiltonian for the two-dimensional triangular lattice is given by

H(um,n, vm,n) =
∑
m

∑
n

{
m

2

(
dum,n
dt

)2

+
m

2

(
dvm,n
dt

)2

+ Vo(um,n, vm,n) + Vh(φm,n,h) + Vd(φm,n,d) + Ve(φm,n,e)

}
,

(3.2.18)
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where Vo is the onsite potential energy, given by

Vo =
1

2
Ω2(u2

m,n + v2
m,n) +

1

4
λ(u2

m,n + v2
m,n)2

+
1

3
η um,n(u2

m,n − 3v2
m,n) +

1

3
ζ vm,n(v2

m,n − 3u2
m,n), (3.2.19)

where Ω represents the harmonic frequency, λ characterises the isotropic quar-

tic nonlinearity, and η, ζ quantify the degree of anisotropy.

When η = ζ = 0, the onsite potential Vo is isotropic, meaning the restoring

force is the same in all directions. However, if either η or ζ is nonzero, the

onsite potential becomes anisotropic, leading to direction-dependent restoring

forces.

The onsite potential must be symmetric under reflections k ↔ −k, and in-

variant under 120◦ rotations. In multilayer configurations, the arrangement

of atoms can produce anisotropy, even if the distance and angles between

neighbouring atoms remain unchanged. Such cases with nonzero η and ζ are

illustrated in Figures 3.2 and 3.3.

n

m

n

Figure 3.2: A 2D triangular lattice configuration shows the onsite potential Vo,
which arises due to atoms in the layers above and below.
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(a) (b)

(c) (d)

(e)

Figure 3.3: 3D plots of the onsite potential energy Vo. (a) η = 0, ζ = 2
√

2; (b)
η = 0, ζ = −2

√
2, Ω = 1, λ = 1; (c) η = ζ = 0, Ω = 1, λ = −1; (d) η = 0, ζ = 1,

Ω = 1, λ = −1; (e) η = 0, ζ = −1, Ω = 1, λ = −1.

The equations of motion derived from the Hamiltonian (3.2.18) are given by

m
d2um,n
dt2

= − Ω2um,n − λum,n
(
u2
m,n + v2

m,n

)
− ηu2

m,n + ηv2
m,n + 2ζum,nvm,n

+ ρ (um+2,n − 2um,n + um−2,n)

+
ρ

4
[um+1,n+1 − 4um,n + um−1,n−1 + um+1,n−1 + um−1,n+1]

+

√
3ρ

4
[vm+1,n+1 + vm−1,n−1 − vm+1,n−1 − vm−1,n+1] , (3.2.20)

m
d2vm,n
dt2

= − Ω2vm,n − λvm,n
(
u2
m,n + v2

m,n

)
+ 2ηvm,num,n − ζv2

m,n + ζu2
m,n

+
3ρ

4
[vm+1,n+1 − 4vm,n + vm−1,n−1 + vm−1,n+1 + vm+1,n−1]

+

√
3ρ

4
[um+1,n+1 + um−1,n−1 − um+1,n−1 − um−1,n+1] . (3.2.21)
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3.3 Asymptotic Analysis

To obtain an asymptotic solution to the equations of motion, we introduce

a small parameter ε � 1, representing the amplitude of the leading-order

envelope. We define a long spatial scale via the transformations x = εm and

y = εn
√

3, along with two time scales τ = εt and T = ε2t, following the

method of multiple scales [20]. The phase of the linear waves is represented by

θ = km+ l
√

3n− ω(k, l)t, where ω(k, l) is the dispersion relation. We denote

F (x, y, τ, T ) and P (x, y, τ, T ) as the slowly varying complex envelopes of the

um,n and vm,n, respectively. We seek solutions in the form

um,n(t) = εeiθF (x, y, τ, T ) + ε2
[
e2iθG2 + eiθG1 +G0

]
(3.3.1)

+ ε3
[
e3iθH3 + e2iθH2 + eiθH1 +H0

]
+ · · ·+ c.c.,

vm,n(t) = εeiθP (x, y, τ, T ) + ε2
[
e2iθQ2 + eiθQ1 +Q0

]
(3.3.2)

+ ε3
[
e3iθR3 + e2iθR2 + eiθR1 +R0

]
+ · · ·+ c.c.,

where Gj, Qj represent second-order corrections in ε, and Hj, Rj represent

third-order corrections, with j = 0, 1, 2. All correction terms are functions

of (x, y, τ, T ) and account for nonlinear contributions that generate additional

harmonic modes. Substituting the expansions (3.3.1)–(3.3.2) into the equa-

tions of motion (3.2.20)–(3.2.21), we expand all terms in powers of ε. The

time derivative expanded as

d

dt
=

∂

∂t
+ ε

∂

∂τ
+ ε2 ∂

∂T
(3.3.3)

By collecting terms of the same order in ε and harmonics esiθ for s = 0, 1, 2, . . .,

we derive a hierarchy of equations that determine the evolution of the envelope

functions F , P , and their associated correction terms.

To perform a systematic asymptotic analysis, we expand the right-hand side of

the equations of motion (3.2.20)–(3.2.21) term by term, and collect coefficients
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of each harmonic component at successive orders of the small parameter ε.

This expansion allows us to isolate the behaviour of each mode and extract the

relative amplitudes, including the relative amplitude C(k, l), which describes

the coupling between F and P components.

3.3.1 Dispersion relation at O(εeiθ)

At leading order O(εeiθ), the reduced system yields the linear dispersion rela-

tion:

M

F
P

 =

0

0

 , (3.3.4)

where the coefficient matrix M is given by

M =

Ω2 − ω2 + 4ρ sin2 k + ρ− ρ cos k cos(
√

3l)
√

3ρ sin k sin(
√

3l)
√

3ρ sin k sin(
√

3l) Ω2 − ω2 + 3ρ− 3ρ cos k cos(
√

3l)

 .

(3.3.5)

A non-trivial solution (F, P ) 6= 0 exists only if det(M) = 0. Solving this

condition yields a quartic equation in ω, which can be expressed as

ω4 − trω2 + det = 0,

where

tr = 2Ω2 + 4ρ sin2 k + 4ρ− 4ρ cos k cos(
√

3l),

det =
(

Ω2 − ω2 + 4ρ sin2 k + ρ− ρ cos k cos(
√

3l)
)
,(

Ω2 − ω2 + 3ρ− 3ρ cos k cos(
√

3l)
)
− 3ρ2 sin2 k sin2(

√
3l). (3.3.6)

Solving the resulting equation provides two branches of the dispersion relation

ω2(k, l) =
1

2

(
tr±

√
tr2 − 4 det

)
. (3.3.7)

We identify DB solutions either on the upper (optical) or lower (acoustic)
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Figure 3.4: Contour plots of ω2
ac, ω

2
op for Ω = ρ = 1. Wavenumbers span the ranges

−π ≤ k ≤ π, −2.5 ≤ l ≤ 2.5.

branches, or at specific Dirac points, special points in the dispersion relation

where two branches intersect linearly, leading to conical band crossings. To

minimise resonance with linear waves, DBs are typically near band edges (max-

ima or minima) or Dirac crossings. Figure 3.4 shows contour plots of ω(k, l)

for ρ = Ω = 1. The Dirac points are located by solving tr2 = 4 det, and five

special points are summarised in Table 3.1.

Description Frequency Example Points

Case 1:

Global minimum ω = Ω (0, 0),

(
0,
±2π√

3

)
,

(
±π, ±π√

3

)
Case 2:

Saddle points ωac =
√

Ω2 + 2ρ

(
0,
±π√

3

)
,

(
±π
2
,
±π
2
√

3

)
Case 3:

Global maximum ωop =
√

Ω2 + 6ρ Same as Case 3 points
Case 4:

Dirac ω =
√

Ω2 + 4.5ρ

(
±π
3
,
±π√

3

)
,

(
±2π

3
, 0

)
Case 5:

Saddle points ωop =
√

Ω2 + 5ρ
(
± cos−1

(−1
8

)
, 0
)
,(

±1

2
cos−1

(−1
8

)
,
±
√

3

2
cos−1

(−1
8

))
Table 3.1: Summary of special points, including Dirac points.

The condition det(M) = 0 ensures the existence of non-trivial solutions (F, P ) 6=

0 in equation (3.3.5). To determine C, we define the vector (1, C)T to lie in the

null space of the matrix M. This vector is orthogonal to the range of M, which
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(a) ω2
ac (b) ω2

op

(c) ωac (d) ωop

Figure 3.5: 3D plots of ω2 and ω for both optical and acoustic branches, with
Ω = ρ = m = 1, over the domain −π ≤ k, l ≤ π.

is spanned by (C,−1)T . We now determine the corresponding relative ampli-

tude by the form (F, P ) = F (1, C)T , which then allows us to solve explicitly

for C yields

Cop =
−
√

3ρ sin k sin(
√

3l)

−
(
Ω2 − ω2

op + 3ρ(1− cos k cos(
√

3l))
) , (3.3.8)

Cac =
−
√

3ρ sin k sin(
√

3l)

−
(
Ω2 − ω2

ac + 3ρ(1− cos k cos(
√

3l))
) . (3.3.9)

Figure 3.6 shows 3D plots of C for both optical and acoustic branches.

3.3.2 Zeroth harmonic O(ε2e0) terms

We now calculate the zeroth harmonic terms arising at order O(ε2e0), ob-

tained by substituting the expansions (3.3.1)–(3.3.2) into the equations of mo-
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(a) tan−1(Cac) (b) tan−1(Cop)

Figure 3.6: Plots of Cac and Cop, including tan−1(C), for Ω = ρ = m = 1. The
wavenumber ranges are given by −π ≤ k, l ≤ π.

tion (3.2.20)–(3.2.21). This yields the following equations

0 = −Ω2 (G0 +G∗0)− 2η|F |2 + 2η|P |2 + 2ζ
(
PF̄ + FP̄

)
, (3.3.10)

0 = −Ω2 (Q0 +Q∗0) + 2η
(
FP̄ + F̄P

)
+ 2ζ

(
|F |2 − |P |2

)
, (3.3.11)

where we assume G0 = G∗0 and Q0 = Q∗0, such that the imaginary parts

Im(G0) and Im(Q0) vanish. This assumption is justified since the imaginary

components do not appear in the leading-order ansatz expansions for um,n and

vm,n in equations (3.3.1)–(3.3.2). Using the relation P = CF , the expressions

simplify, yielding

G0 = |F |2 (η(C2 − 1) + 2Cζ)

Ω2
= |F |2γ0, (3.3.12)

Q0 = |F |2 (2Cη − ζ(C2 − 1))

Ω2
= |F |2γ̄0, (3.3.13)

where γ0 and γ̄0 are the corresponding nonlinear coefficients.
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3.3.3 Second harmonic O(ε2e2iθ) terms

Next, we collect the second harmonic terms at order O(ε2e2iθ), resulting in the

matrix equation

M2

G2

Q2

 =

η(C2 − 1) + 2Cζ

2Cη − (C2 − 1)ζ

F 2, (3.3.14)

where the matrix M2 is defined as

M2 =

−4ω2 + Ω2 + 4ρ sin2(2k) + ρa1

√
3ρ sin(2k) sin(2

√
3l)

√
3ρ sin(2k) sin(2

√
3l) −4ω2 + Ω2 + 3ρa1

 , (3.3.15)

with a1 = 1− cos(2k) cos(2
√

3l). Solving equation (3.3.14) gives

G2

Q2

 = F 2M−1
2

η(C2 − 1) + 2Cζ

2Cη − (C2 − 1)ζ

 . (3.3.16)

Expanding the inverse explicitly, we obtain

G2 = F 2M22 (η(C2 − 1) + 2Cζ)−M21 (2Cη − (C2 − 1)ζ)

M11M22 −M2
12

= F 2γ2, (3.3.17)

Q2 = F 2M11 (η(C2 − 1) + 2Cζ)−M12 (2Cη − (C2 − 1)ζ)

M11M22 −M2
12

= F 2γ̄2. (3.3.18)

The γ2 and γ̄2 are the coefficients of second-harmonic generation in the system.

3.3.4 Harmonic O(ε2eiθ) terms

Following the asymptotic expansion, we obtain the system

M

G1

Q1

 =

A1

B1

 , (3.3.19)
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where the matrix M is defined in equation (3.3.5), and the right-hand side

components A1 and B1 are given by

A1 = 2iωFτ − 4iρ sin(2k)Fx

+
√

3ρ
(
iCFx cos(k) sin(

√
3l) + i

√
3CFy sin(k) cos(

√
3l)
)

+ iρFx sin(k) cos(
√

3l) + iρ
√

3Fy cos(k) sin(
√

3l), (3.3.20)

B1 = 2iωPτ +
√

3ρ
(
iFx cos(k) sin(

√
3l) + i

√
3Fy sin(k) cos(

√
3l)
)

+ 3ρ
(
iCFx sin(k) cos(

√
3l) + i

√
3CFy cos(k) sin(

√
3l)
)
. (3.3.21)

Since the right-hand side of equation (3.3.19) contains only first-order deriva-

tives of F and P , we seek a travelling wave solution. Substituting P = CF

and introducing the travelling variables

F (x, y, τ, T ) = F (Z,W, T ), P (x, y, τ, T ) = P (Z,W, T ),

Z = x− Uτ, W = y − V τ, (3.3.22)

where Z,W are travelling wave coordinates, the expressions for A1 and B1

become

A1 = − 2iω(FZU + FWV ) + 4iρ sin(2k)FZ

+ ρ
(
iCFZ

√
3 cos(k) sin(

√
3l) + i3CFW sin(k) cos(

√
3l)
)

+ iFZ sin(k) cos(
√

3l) + i
√

3FW cos(k) sin(
√

3l), (3.3.23)

B1 = − 2iωC(FZU + FWV ) +
√

3ρ
(
iFZ cos(k) sin(

√
3l) + i

√
3FW sin(k) cos(

√
3l)
)

+ 3ρ
(
iCFZ sin(k) cos(

√
3l) + i

√
3CFW cos(k) sin(

√
3l)
)
. (3.3.24)

To solve for G1 and Q1, we derive the consistency condition

A1 + CB1 = 0. (3.3.25)

The system has a solution only if the right-hand side vector (A1, B1)T lies in
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the range of M. Since the range of M is orthogonal to the vector (1, C), then

solvability condition is given by

0 = 2iωU(1 + C2)FZ + 2iωV (1 + C2)FW

+ iρFZ

[
4 sin(2k) + 2

√
3C cos(k) sin(

√
3l) + (1 + 3C2) sin(k) cos(

√
3l)
]

+ iρFW

(
6C cos(

√
3l) sin(k) +

√
3(1 + 3C2) cos(k) sin(

√
3l)
)
. (3.3.26)

Solving this condition yields expressions for the group velocities U and V

U =
−ρ

2ω(1 + C2)

[
4 sin(2k) + 2

√
3C cos(k) sin(

√
3l) + (1 + 3C2) sin(k) cos(

√
3l)
]
,

(3.3.27)

V =
−ρ

2ω(1 + C2)

[
6C cos(

√
3l) sin(k) +

√
3(1 + 3C2) cos(k) sin(

√
3l)
]
.

(3.3.28)

These velocity components are illustrated in Figure 3.7. The total wave speed

is given by S =
√
U2 + V 2.

The general solution to equation (3.3.19) takes the form

G1

Q1

 = Ĝ

1

C

+ G̃

 C

−1

 , (3.3.29)

where (1, C)T lies in the kernel of M. The term Ĝ can be absorbed into F

via the transformation F → F + εĜ, and without loss of generality, we take

Ĝ = 0. Thus, we solve A1

B1

 = G̃M

 C

−1

 . (3.3.30)

The solution for G̃ can be written as

G̃ = iŨFZ + iṼ FW , (3.3.31)
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(a)

Figure 3.7: The plots of optical and acoustic mods of U, V for both
(U, V )ac, (U, V )op , and at Ω = ρ = m = 1, and wave number −π ≤ k ≤ π,−π ≤ l ≤
π.

which leads to the expressions

G1 = −iCŨFZ − iCṼ FW , Q1 = iŨFZ + iṼ FW . (3.3.32)

Here, Ũ and Ṽ are defined as

Ũ =
2ωCU + ρ

[√
3 cos(k) sin(

√
3l) + 3C sin(k) cos(

√
3l)
]

Cρ
√

3 sin(k) sin(
√

3l)−
[
Ω2 − ω2 + 3ρ(1− cos(k) cos(

√
3l))
] , (3.3.33)

Ṽ =
2ωCV + ρ

[√
3 sin(k) cos(

√
3l) + 3

√
3C cos(k) sin(

√
3l)
]

Cρ
√

3 sin(k) sin(
√

3l)−
[
Ω2 − ω2 + 3ρ(1− cos(k) cos(

√
3l))
] . (3.3.34)

These quantities are illustrated in Figure 3.8. The Ũ and Ṽ correspond to

spatial shifts in the Z and W directions and describe corrections to the phase

propagation of the breather. The total correction is given by S̃ =
√
Ũ2 + Ṽ 2,

analogous to the group speed S =
√
U2 + V 2. Both are plotted in Figure 3.9.

93



(a)

Figure 3.8: The plots of tan−1 of optical and acoustic mods of Ũ , Ṽ for both
(Ũ , Ṽ )ac, (Ũ , Ṽ )op , and at Ω = ρ = m = 1, and wave number −π ≤ k ≤ π,−π ≤
l ≤ π.

3.3.5 Harmonic at O(ε3eiθ) terms

At this order, we collect the asymptotic terms to O(ε3eiθ). This yields the

following

M

H1

R1

 =

A2

B2

 , (3.3.35)
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Figure 3.9: Contour plots of optical tan−1(S), tan−1(S̃) in right panel and acoustic
mods in left panel , both at Ω = ρ = m = 1, and wave number −4 ≤ k ≤ 4,−4 ≤
l ≤ 4.

where M is defined in equation (3.3.5), and the components A2 and B2 are

given explicitly by the following expressions

A2 =2iω (FT +G1τ )− Fττ + 2η
(
PQ0 + P̄Q2 + PQ̄0 − F̄Q2 − FG0 − FḠ0

)
+ 2ζ

(
G2P̄ + FQ0 + F̄Q2 + PG0 + PḠ0 + FQ̄0

)
− λ

(
3|F |2F + 2|P |2F + F̄P 2

)
+ 4iρ sin(2k)G1Z + 4ρ cos(2k)FZZ

+
ρ

4

[
4i cos(l

√
3) sin(k)G1Z + 4i

√
3 sin(l

√
3) cos(k)G1W

+ cos(l
√

3) cos(k)(2FZZ + 6FWW )− 4
√

3 sin(l
√

3) sin(k)FZW

]
+

√
3ρ

4

[
4i cos(k) sin(l

√
3)Q1Z + 4i

√
3 sin(k) cos(l

√
3)Q1W

− sin(l
√

3) sin(k)(2PZZ + 6PWW ) + 4
√

3 cos(l
√

3) cos(k)PZW

]
.

(3.3.36)
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B2 =2iω (PT +Q1τ )− Pττ + 2η
(
PQ0 + P̄Q2 + PQ̄0 − F̄Q2 − FG0 − FḠ0

)
+ 2ζ

(
G2P̄ + FQ0 + F̄Q2 + PG0 + PḠ0 + FQ̄0

)
− λ

(
3|P |2P + 2|F |2P + P̄F 2

)
+

3ρ

4

[
4i cos(l

√
3) sin(k)Q1Z + 4i

√
3 sin(l

√
3) cos(k)Q1W

+ cos(l
√

3) cos(k)(2PZZ + 6PWW )− 4
√

3 sin(l
√

3) sin(k)PZW

]
+

√
3ρ

4

[
4i cos(k) sin(l

√
3)G1Z + 4i

√
3 sin(k) cos(l

√
3)G1W

− sin(l
√

3) sin(k)(2FZZ + 6FWW ) + 4
√

3 cos(l
√

3) cos(k)FZW

]
.

(3.3.37)

We now substitute the expressions forG1Z , G1W , Q1Z , Q1W using equations (3.3.22),

(3.3.32), (3.3.33),(3.3.34), and set P = CF , where C =
√

3. By applying the

solvability condition A2 + CB2 = 0., we collect and simplify terms to obtain

the governing evolution equation for F . Rearranging the terms, we express the

resulting evolution equation in the form of a 2D NLS equation

0 = iΘFT +DZFZZ +DWFWW +DZWFZW +DN |F |2F, (3.3.38)

where the coefficients Θ, DZ , DW , DZW , and DN are defined by

Θ = 2ω(1 + C2), (3.3.39)

DZ = −(1 + C2)U2 + 4ρ cos(2k) + 4CŨρ sin(2k)− 2CŨρ sin(k) cos(l
√

3)

+
√

3Ũρ(C2 − 1) cos(k) sin(l
√

3) + 1
2
(1 + 3C2) cos(k) cos(l

√
3)

−
√

3ρC sin(k) sin(l
√

3), (3.3.40)

DW = −(1 + C2)V 2 − 3
√

3C sin(k) sin(l
√

3)− 2ρC
√

3Ṽ sin(k) cos(l
√

3)

+ 3ρ(C2 − 1)Ṽ sin(k) cos(l
√

3) + 3
2
ρ(1 + 3C2) cos(k) cos(l

√
3),

(3.3.41)
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DZW = −2UV (1 + C2) + 4CṼ ρ sin(2k)− 2CṼ ρ sin(k) cos(l
√

3)

+
√

3Ṽ ρ(C2 − 1) cos(k) sin(l
√

3)

+ ρŨ
[
3(C2 − 1) cos(l

√
3) sin(k)− 2

√
3C sin(l

√
3) cos(k)

]
+ 6Cρ cos(k) cos(l

√
3)−

√
3ρ(1 + 3C2) sin(k) sin(l

√
3), (3.3.42)

DN = 4η
(
2Cγ̄0 + γ0(C2 − 1)

)
− 3λ(1 + C2)2 + 2η

(
2Cγ̄2 + γ2(C2 − 1)

)
+ 4ζ

(
2Cγ0 − γ̄0(C2 − 1)

)
+ 2η

(
2Cγ2 − γ̄2(C2 − 1)

)
. (3.3.43)

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Top-view plots of H(E(k, l)) for the acoustic(top) and optical(bottom)
branches at Ω = 0.5 (left), Ω = 1 (middle), and Ω = 5 (right), with λ = 1, ζ = 0,
and η = 0. The yellow region corresponds to E > 0, while the blue region indicates
E < 0.

To eliminate the mixed derivative term FZW , we apply the change of variables

ξ = W − DZW

2DZ

Z, (3.3.44)

which diagonalises the dispersive part of the equation. Under this substitution,
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(a) H(Eac)H(DNDZ)ac (b) H(Eac)H(DNDZ)ac (c) H(Eac)H(DNDZ)ac

(d) H(Eop)H(DNDZ)op (e) H(Eop)H(DNDZ)op (f) H(Eop)H(DNDZ)op

Figure 3.11: Top-view plots of the product H(E(k, l))H(DNDZ) for acoustic (blue)
and optical (yellow and blue) branches, with ζ = 0, η = 0, λ = 1, and ρ = 1. Panels
from left to right correspond to Ω = 0.5, Ω = 1, and Ω = 5. Star markers denote Case
1, circles represent Case 2 and 3, squares indicate Case 4, and diamonds highlight
the optical Case 5 from Table 3.1.

the differential operators transform as

∂Z = ∂Z −
DZW

2DZ

∂ξ, ∂W = ∂ξ,

and the NLS equation simplifies to

iΘFT = DN |F |2F +DZ (FZZ + EFξξ) , (3.3.45)

equation (3.3.45) is a 2D NLS whose qualitative behaviour depends critically on

the sign of the dispersion and nonlinearity coefficients DN , DZ . The coefficient

E(k, l) = 4DWDZ −D2
ZW > 0 (3.3.46)

is known as the ellipticity condition. It ensures that the spatial part of the NLS

equation is elliptic rather than hyperbolic. Only in the elliptic regime corre-

sponding to the yellow regions where both the ellipticity condition E(k, l) > 0

is satisfied does the equation support solutions that are localised in both spatial
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(a) H(Eac)H(DNDZ)ac (b) H(Eac)H(DNDZ)ac (c) H(Eac)H(DNDZ)ac

(d) H(Eop)H(DNDZ)op (e) H(Eop)H(DNDZ)op (f) H(Eop)H(DNDZ)op

Figure 3.12: Top-view plots of H(E(k, l))H(DNDZ) for optical (blue) and acoustic
(yellow and blue) branches with ζ = 0, η = 0, λ = −1, and ρ = 1. Panels correspond
to Ω = 0.5 (left), Ω = 1 (middle), and Ω = 5 (right). Marker symbols indicate special
cases from Table 3.1.

directions [8], [15]. In contrast, the blue regions represent non-elliptic domains

where such solution becomes hyperbolic, and no localised soliton solutions are

supported in 2D. These results demonstrate the sensitivity of breather exis-

tence to both the wave numbers and the choice of Ω, with the elliptic regime

becoming more notable as Ω increases. Figure 3.10 presents top-view con-

tour plots of the ellipticity condition H(E(k, l)) for both optical and acoustic

branches, evaluated at three different values of the on-site potential parameter

Ω = 0.5, 1, and 5.

In addition, the product

F(k, l) = DNDZ > 0, (3.3.47)

defines the focusing condition, which determines whether the nonlinearity and

dispersion act constructively to support bright breather-type solutions. If the

focusing condition F(k, l) > 0 is satisfied, this together with (3.3.46) indicates

parameter regimes where the NLS equation is of the focusing elliptic type and
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capable of supporting breather solutions [8, 9, 19]. Figure 3.11 demonstrates

the sensitivity of the breather-supporting regions to changes in Ω under an

isotropic onsite potential (ζ = η = 0) with (λ = 1), while Figure 3.12 explores

the impact of a negative quartic nonlinearity (λ = −1) on the existence zones.

Together, the constraints E > 0 and F > 0 identify the regions in wavenumber

space (k, l) where spatially localised breather modes can exist.

3.4 Simplification of the System at ζ = η = 0

While the methodology developed in previous sections yields valid results for

most values of (k, l), singularities arise at certain key points. For instance,

the expressions for C in equations (3.3.8) and (3.3.9) become undefined at

(k, l) = (0, 0). In this section, we simplify the governing system by setting

ζ = η = 0, which implies G0 = Q0 = G2 = Q2 = 0. However, for non-zero

values of either Ũ or Ṽ , the terms G1 and Q1 may still contribute.

A summary of the key stationary cases is presented in Table 3.2, with the

corresponding derivations detailed in Appendix B. Cases 1 and 2, as well as

the Dirac points, are analysed in Section 3.4.1.

Table 3.2: Summary of stationary optical and acoustic properties for λ > 0, ρ > 0,
and Ω > 0. Positive ellipticity (E > 0) and focusing (F > 0) indicate a focusing,
elliptic NLS; in contrast, E < 0 corresponds to a hyperbolic NLS.

Description Points C E F
Case 2

Saddle(acustic)

(
0,
±π√

3

)
0 < 0(

±π
2
,
±π
2
√

3

)
±
√

3 < 0

Case 3

Global maximum

(
0,
±π√

3

)
∞ > 0 > 0(

±π
2
,
±π
2
√

3

)
± 1√

3
> 0 > 0

Case 5
Saddle(optical)

(
± cos−1

(−1
8

)
, 0
)

0 > 0 > 0(
±1

2
cos−1

(−1
8

)
,
±
√

3

2
cos−1

(−1
8

))
±
√

3 > 0 > 0
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3.4.1 Cases 1 at global minima, and Case 4 at Dirac

points

At orderO(εeiθ), we consider Case 1 , which correspond to the global minimum

at (k, l) = (0, 0), where ω = Ω. Similarly, the Dirac point (k, l) =
(

2π
3
, 0
)

yields ω =
√

Ω2 + 4.5ρ. For clarity, we perform calculations explicitly for

(k, l) = (0, 0), noting that the Dirac point case leads to similar results.

The O(ε2eiθ) harmonic terms

From the asymptotic expansion, we obtain

M

G1

Q1

 =

A1

B1

 leading to 0 =

A1

B1

 , (3.4.1)

where A1 and B1 are defined in equations (3.3.20)–(3.3.21). Using the substi-

tution P = CF with, we obtain

0 = −2iω(FZU + FWV ), (3.4.2)

0 = −2iωC(FZU + FWV ). (3.4.3)

These equations imply U = V = 0, while C remains undetermined. Conse-

quently, the solution is (G1, Q1)T = (0, 0).

The O(ε3eiθ) harmonic terms at the global minimum

At third order, and under the simplification η = ζ = 0, the asymptotic equa-

tions become

M

H1

R1

 =

A2

B2

 , (3.4.4)
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where M = 0 as defined in (3.3.5), and the right-hand side is

A2 = 2iωFT − λ
(
3|F |2F + 2|P |2F + F̄P 2

)
+
ρ

2
(9FZZ + 3FWW ) + 3PZW ,

(3.4.5)

B2 = 2iωPT − λ
(
3|P |2P + 2|F |2P + P̄F 2

)
+

3ρ

2
(PZZ + 3PWW ) + 3FZW .

(3.4.6)

For this specific case, no choice of C with P = CF allows the system to reduce

to a single NLS equation for F .

3.5 Discussion

In this chapter, we applied asymptotic analysis to investigate breather modes in

a mechanical triangular lattice shown in Figure 3.1, incorporating a symmetric

on-site potential and NNI. We began by deriving the equations of motion

for the lattice, and then applied the method of multiple scales to reduce the

governing equations to a NLS equation, as shown in equation (3.3.45). We

subsequently determined the focusing condition (3.3.47) and the ellipticity

condition (3.3.46) that enables discrete breather solutions in the triangular

lattice.

The motivation for this work was to extend the asymptotic framework used

for square mechanical lattices to a 2D triangular configuration, following the

methodology of Wattis et al. [26]. The ansatz used in our analysis is struc-

turally similar to that employed by Butt et al. [23, 24], who examined square

and triangular electrical lattices and derived 2D cubic NLS equations. Compa-

rable results were also obtained by Wattis et al. for mechanical square lattices,

where an NLS equation similar in form to our equations (3.3.45).

In Section 3.3.1, we examined the linear dispersion relation, which revealed

two distinct branches: optical and acoustic. These branches intersect at Dirac

points, as detailed in Table 3.1. The relative amplitude between the two com-
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ponents F and P was determined via the relation P = CF , with C plotted

across wavevector space in Figure 3.6. In certain cases, however, C was found

to be undefined, indicating singular behaviour.

Section 3.4 focused on simplifying the system by setting ζ = 0 and η = 0. This

allowed us to explore the behaviour of the system at specific special points,

again as listed in Table 3.1, and to summarise stationary breather cases in

Table 3.2.

We identified stationary breather solutions in mechanical triangular lattices

under these simplified conditions. Our approach contrasts with that of Yi

et al. [71], who also considered a triangular (hexagonal) lattice, but reduced

their analysis to three chains only (n = 0,±1) using a simplified multiple-scale

expansion. While they did not perform asymptotic analysis across the entire

lattice as in our study, their numerical simulations confirmed the existence of

long-lived moving breathers.

Marin et al. [52] were among to point out that hexagonal lattices are capable of

supporting breather solutions. Similar conclusions were later drawn by Bajars

et al. [72], who investigated a symmetric hexagonal lattice with Lennard-Jones

and on-site potentials; their numerical results also supported the existence of

long-lived breathers.

The findings of this chapter are valid for systems with symmetric interactions

and a nonlinear on-site potential (i.e., with ζ = 0, η = 0). This analysis may

also be extended to the study of mechanical hexagonal lattices often referred

to as honeycomb lattices which will be addressed in the following chapters.
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Chapter 4

Breather modes in mechanical

honeycomb lattice

In this chapter, we present results on a 2D mechanical honeycomb lattice, in

which each node is connected to three nearest neighbours. The arrangement is

such that each node is linked to either one neighbour on the left and two on the

right, or vice versa, forming a honeycomb structure. We assume a quadratic

NNI and a quartic and cubic onsite potential energy at each node. For the KG

system, we derive four equations of motion for the displacements, based on

the Hamiltonian, corresponding to two degrees of freedom at each of the two

types of node. The method of multiple scales is used to obtain the governing

equations, and we show that the system supports discrete breather solutions.

Five distinct types of points in the dispersion relation are identified, at which

stationary breather solutions may exist. A single nonlinear NLS equation is

derived for the saddle cases, while a more complex coupled NLS system is

found for the global maximum and minimum cases. Parts of this chapter are

being prepared for publication.
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4.1 Introduction

The previous chapter focused on a 2D mechanical triangular lattice, which is

one form of a hexagonal lattice. Another form is the honeycomb lattice, in

which each node has three connections, in contrast to the six in the triangular

lattice considered in Chapter 3.

A honeycomb lattice consists of hexagonally arranged nodes and comprises

two types of node: left-facing and right-facing 4.2. This structure is commonly

found in systems such as graphene and in certain crystal layers (e.g., mica).

In this chapter, we apply analytical methods to obtain approximate solutions

for breather modes in a 2D symmetric mechanical honeycomb lattice. We

restrict our attention to small-amplitude breathers with slowly varying en-

velopes. Our aim is to investigate how the geometry of the honeycomb lattice

influences the properties of discrete breathers.

To this end, we follow an analytical procedure similar to that used in Chapter

3. The analysis of the honeycomb lattice is expected to be more complex,

potentially resulting in governing equations that are less straightforward than

those found in the triangular lattice case.

The outline of the chapter is as follows. In Section 4.2, we derive the equations

of motion and present the Hamiltonian of the system. In Section 4.3, we

apply an asymptotic expansion to the equations of motion and derive the

system’s dispersion relation, identifying special wave number cases, including

Dirac points. In Sections 4.4 to 4.7, we investigate the system under different

cases, some of which yield complex coupled NLS equations. In Section 4.6, we

derive a 2D NLS equation. Finally, Section 4.8 concludes the chapter with a

summary and discussion of the results.
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4.2 Derivation of model equations

In this section, we derive the mechanical model equations of a symmetric

honeycomb lattice composed of interconnected particles, as illustrated in Fig-

ure 4.1, with the unit cell shown in Figure 4.2. In this system, each particle is

connected to three nearest neighbours—either two on the left and one on the

right, or vice versa.

The equations of motion for each node in the lattice plane are derived based on

this configuration. When the displacements are denoted by (um,n(t), vm,n(t)),

the node is connected to one neighbour on the left and two on the right. Con-

versely, for (ûm,n(t), v̂m,n(t)), the configuration is reversed, with two neighbours

on the left and one on the right.

We consider a 2D Hamiltonian H(um,n, vm,n, ûm,n, v̂m,n), assuming only linear

NNIs and neglecting nonlinear contributions in the coupling. To derive the

equations of motion for the honeycomb lattice, we follow a similar analytical

procedure to that outlined in Chapter 3.

We compute the potential energy associated with particle separations φm,n,∗,

where ∗ = h, d, e, representing horizontal and two types of diagonal interac-

tions respectively. The subscript h corresponds to the horizontal direction, i.e.

in line with m-axis; the subscript d corresponds to the northeast–southwest

(upper-right to lower-left) direction, i.e. along the line n = m; and the sub-

script e corresponds to the northwest–southeast (upper-left to lower-right) di-

rection, i.e. along the line n = −m. Here, Φ denotes the distance between

interacting particles. The corresponding distances for the left-facing and right-

facing nodes are denoted by φm,n,∗ and φ̂m,n,∗, respectively.

The general form of the potential energy is given by

V (φ) =
1

2
ρφ2 +

1

3
aφ3 +

1

4
bφ4, V ′(φ) = ρφ+ aφ2 + bφ3. (4.2.1)

In the case (a = b = 0), this simplifies to V ′(φ) = ρφ. The corresponding
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Figure 4.1: Illustration of a mechanical honeycomb lattice in which each particle
is connected to three nearest neighbours, arranged either as two on the left and one
on the right, or vice versa. These configurations are highlighted in blue and red,
respectively.

(ûm,n, v̂m,n)(um,n, vm,n)

(um−1,n+1, vm−1,n+1)

(um−1,n−1, vm−1,n−1)

(ûm+1,n+1, v̂m+1,n+1)

(ûm+1.n−1, v̂m+1,n−1)

(um+2,n, vm+2,n)(ûm−2,n, v̂m−2,n)

m

n

Figure 4.2: A mechanical honeycomb lattice cell illustrates two distinct arrange-
ments of nearest-neighbour connections, highlighted in blue and red.

left-facing node interaction energies in each direction (∗ = h, d, e) are given as

Vφm,n,h
=
ρ

2
(um+2,n − ûm,n)2, Vφ̂m,n,h

=
ρ

2
(ûm−2,n − um,n)2, (4.2.2)

Vφm,n,d
=
ρ

8
(ûm+1,n+1 − um,n)2 +

3ρ

8
(v̂m+1,n+1 − vm,n)2

+

√
3ρ

4
(ûm+1,n+1 − ûm+1,n−1)(v̂m+1,n+1 − v̂m+1,n−1), (4.2.3)

Vφ̂m,n,e
=
ρ

8
(um−1,n+1 − ûm,n)2 +

3ρ

8
(vm−1,n+1 − v̂m,n)2

−
√

3ρ

4
(um−1,n+1 − um−1,n−1)(vm−1,n+1 − vm−1,n−1). (4.2.4)
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The on-site potential energies are defined as

Vo(um,n, vm,n) =
1

2
Ω2(u2

m,n + v2
m,n) +

1

4
λ(u2

m,n + v2
m,n)2

+
1

3
ηum,n(u2

m,n − 3v2
m,n) +

1

3
ζvm,n(v2

m,n − 3u2
m,n), (4.2.5)

V̂o(ûm,n, v̂m,n) =
1

2
Ω2(û2

m,n + v̂2
m,n) +

1

4
λ(û2

m,n + v̂2
m,n)2

− 1

3
ηûm,n(û2

m,n − 3v̂2
m,n)− 1

3
ζv̂m,n(v̂2

m,n − 3û2
m,n). (4.2.6)

The total Hamiltonian of the mechanical honeycomb system is therefore given

by

H(u, v, û, v̂) =
∑
m,n

{
M

2

(
dum,n
dt

)2

+
M

2

(
dvm,n
dt

)2

+
M

2

(
dûm,n
dt

)2

+
M

2

(
dv̂m,n
dt

)2

+ Vo(um,n, vm,n) + V̂o(ûm,n, v̂m,n)

+ V (φm,n,h) + V (φm,n,d) + V (φm,n,e)

}
. (4.2.7)

The corresponding equations of motion are

M
d2um,n
dt2

= − Ω2um,n − λum,n(u2
m,n + v2

m,n)− ηu2
m,n + ηv2

m,n + 2ζum,nvm,n

+ ρ(ûm−2,n − um,n) +
ρ

4
(ûm+1,n+1 − 2um,n + ûm+1,n−1)

+

√
3ρ

4
(v̂m+1,n+1 − v̂m+1,n−1), (4.2.8)

M
d2vm,n
dt2

= − Ω2vm,n − λvm,n(u2
m,n + v2

m,n) + 2ηum,nvm,n

− ζv2
m,n + ζu2

m,n +
3ρ

4
(v̂m+1,n+1 − 2vm,n + v̂m+1,n−1)

+

√
3ρ

4
(ûm+1,n+1 − ûm+1,n−1), (4.2.9)
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M
d2ûm,n
dt2

= − Ω2ûm,n − λûm,n(û2
m,n + v̂2

m,n) + ηû2
m,n − ηv̂2

m,n

− 2ζûm,nv̂m,n + ρ(um+2,n − ûm,n)

+
ρ

4
(um−1,n+1 − 2ûm,n + um−1,n−1)

−
√

3ρ

4
(vm−1,n+1 − vm−1,n−1), (4.2.10)

M
d2v̂m,n
dt2

= − Ω2v̂m,n − λv̂m,n(û2
m,n + v̂2

m,n)− 2ηv̂m,nûm,n

+ ζv̂2
m,n − ζû2

m,n +
3ρ

4
(vm−1,n+1 − 2v̂m,n + vm−1,n−1)

−
√

3ρ

4
(um−1,n+1 − um−1,n−1). (4.2.11)

Here, M represents the mass, which may be set to unity (M = 1) to simplify

further analysis.

4.3 Asymptotic analysis

4.3.1 Preliminaries

To derive an asymptotic solution to the equations of motion, we introduce a

small parameter ε� 1, where ε is a dimensionless quantity used to systemat-

ically expand the solution, capturing the system’s slow spatial and temporal

variations. We define the scaled spatial and temporal variables as x = εm,

y = εn
√

3, τ = εt, and T = ε2t.

We follow the multiple scales approach described in Chapter 3, using the

method outlined by Bender and Orszag [20]. To characterise the phase of lin-

ear waves, we define θ = km + l
√

3n + ω(k, l)t, and express the leading-order

solution (ansatz) in terms of slowly varying amplitude envelopes F (x, y, τ, T ),

P (x, y, τ, T ), F̂ (x, y, τ, T ), and P̂ (x, y, τ, T ) as follows
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um,n(t) = εeiθF (x, y, τ, T ) + ε2
[
e2iθG2 + eiθG1 +G0

]
+ ε3

[
e3iθH3 + e2iθH2 + eiθH1 +H0

]
+ · · ·+ c.c., (4.3.1)

vm,n(t) = εeiθP (x, y, τ, T ) + ε2
[
e2iθQ2 + eiθQ1 +Q0

]
+ ε3

[
e3iθR3 + e2iθR2 + eiθR1 +R0

]
+ · · ·+ c.c., (4.3.2)

ûm,n(t) = εeiθF̂ (x, y, τ, T ) + ε2
[
e2iθĜ2 + eiθĜ1 + Ĝ0

]
+ ε3

[
e3iθĤ3 + e2iθĤ2 + eiθĤ1 + Ĥ0

]
+ · · ·+ c.c., (4.3.3)

v̂m,n(t) = εeiθP̂ (x, y, τ, T ) + ε2
[
e2iθQ̂2 + eiθQ̂1 + Q̂0

]
+ ε3

[
e3iθR̂3 + e2iθR̂2 + eiθR̂1 + R̂0

]
+ · · ·+ c.c., (4.3.4)

Here, Gj, Qj, Ĝj, Q̂j represent second-order corrections in ε, and Hj, Rj, Ĥj, R̂j

denote third-order corrections for j = 0, 1, 2. All functions depend on (x, y, τ, T ).

As in Chapter 3, we adopt the simplifying assumption η = 0, ζ = 0 throughout

this analysis. To determine the leading-order envelopes F, P, F̂ , P̂ , we begin

by considering the linear dispersion relation at order O(εeiθ).

4.3.2 The dispersion relation O(εeiθ) terms

At O(εeiθ), we substitute the asymptotic ansatz expressions (4.3.1)–(4.3.4)

into the equations of motion (4.2.8)–(4.2.11). We then collect terms at order

O(εeiθ), and the resulting system describes the linear wave propagation in the

mechanical honeycomb lattice as

M1



F

P

F̂

P̂


=



0

0

0

0


, (4.3.5)

where the matrix M1 is defined as
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M1 =



Ω2 − ω2 +
3ρ

2
0 −ρe−2ik − ρ

4
β −

√
3ρ

4
β̂

0 Ω2 − ω2 +
3ρ

2
−
√

3ρ

4
β̂ −3ρ

4
β

−ρe2ik − ρ

4
β∗

√
3ρ

4
β̂∗ Ω2 − ω2 +

3ρ

2
0

√
3ρ

4
β̂∗ −3ρ

4
β∗ 0 Ω2 − ω2 +

3ρ

2


, (4.3.6)

with β = 2eik cos(l
√

3), β̂ = 2ieik sin(l
√

3), and ∗ denoting complex conjuga-

tion.

The matrix M1, introduced in the dispersion relation is Hermitian. This means

that it is equal to its own Hermitian conjugate, denoted by M†
1 = M1. The

Hermitian conjugate of a matrix is obtained by taking the complex conjugate

of each entry and then transposing the matrix. This structure leads to several

important mathematical properties. First, all eigenvalues δi of the Hermitian

matrix M1 are real involving wave frequencies, as these must be real-valued.

Second, the eigenvectors vi associated with distinct eigenvalues are orthogonal,

satisfying 〈vi,vj〉 = 0 for i 6= j, where 〈·, ·〉 denotes the standard inner prod-

uct. Finally, each eigenvector satisfies the eigenvalue relation M1vj = δjvj,

meaning that the matrix M1 acts by scaling the eigenvector vj by its corre-

sponding eigenvalue δj. These properties will be used later to simplify the

system and isolate independent wave modes corresponding to each branch of

the dispersion relation.

To obtain non-trivial solutions for F, P, F̂ , P̂ , we require the determinant of

M1 to vanish

det(M1) = −3

(
Ω2

3
− ω2

3
+ ρ

)(
Ω2 − ω2

) [
cos2(l

√
3)ρ2 + cos(l

√
3) cos(3k)ρ2

− 2

(
Ω2

2
− ω2

2
+ ρ

)(
Ω2 − ω2 + ρ

) ]
= 0. (4.3.7)
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Solving this yields four distinct branches of the linear spectrum

ω2
1 = Ω2, ω2

2 = Ω2 + 3ρ, (4.3.8)

ω2
3ac = Ω2 +

3ρ

2
− 1

2

√
4 cos2(l

√
3)ρ2 + 4 cos(l

√
3) cos(3k)ρ2 + ρ2, (4.3.9)

ω2
4op = Ω2 +

3ρ

2
+

1

2

√
4 cos2(l

√
3)ρ2 + 4 cos(l

√
3) cos(3k)ρ2 + ρ2. (4.3.10)

(a) (b)

Figure 4.3: Combined dispersion surfaces of all four branches ω1, ω2, ω3, and ω4.
The left panel shows ω3 and ω4, while the right panel displays all four branches.
Parameters: ρ = Ω = 1; −π ≤ k, l ≤ π.
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(d)

Figure 4.4: Dispersion surfaces of ω2 for the acoustic ω2
3 and optical ω2

4 branches.
The top panels show surface plots. The bottom panels display the corresponding
contour plots. Parameters: ρ = Ω = 1; −π ≤ k, l ≤ π.

Thus, the linear spectrum consists of four branches: ω1, ω2, ω3, and ω4. The

two flat bands, ω1 and ω2, are shown in Figure 4.3(b). The branch ω3 represents
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the acoustic band, while ω4, corresponding to the optical band, is illustrated

in Figure 4.4.

We expect to find DB solutions within both the acoustic and optical branches

of the dispersion relation. These DB frequencies may possess higher harmon-

ics that lie beyond the linear spectrum. Since we have four distinct expres-

sions for the dispersion relation ωj(k, l), for j = 1, 2, 3, 4, we can compute the

corresponding horizontal and vertical group velocities as the partial deriva-

tives with respect to the wave numbers Uj =
∂ωj

∂k
, Vj =

∂ωj

∂l
. In particu-

lar, the two flat bands ω1 and ω2 exhibit zero group velocity in all directions

U1 = U2 = 0, V1 = V2 = 0, indicating that waves in these bands do not

propagate.

(a) (b)
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Figure 4.5: Total wave speeds Sj =
√
U2
j + V 2

j for j = 3, 4, computed over −π ≤
k, l ≤ π with ρ = Ω = 1. Panels (a) and (b) show surface plots of S3 and S4; panels
(c) and (d) display the corresponding contour plots.

The symmetry of the honeycomb lattice is further illustrated in Figure 4.5,

where we plot the total speed for the acoustic and optical bands given by

S3 =
√
U2

3 + V 2
3 , S4 =

√
U2

4 + V 2
4 .
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Later, the quantities U and V are defined at specific points in wavevector space

(k, l).

Table 4.1: Summary of special points in wave vector space (k, l) which will be
investigated in more detail later; Case 1: global minimum , Case 2: global maximum,
Case 3: Dirac points, Case 4: saddle acoustic, and Case 5: saddle optical.

(k, l) ω ω
a=(0, 0) ,b=(2π/3, 0),c=(−2π/3, 0) Case 1: Case 2:

d=

(
π

3
,
π√
3

)
& e=

(
−π

3
,
π√
3

)
ω1 = Ω ω2 =

√
Ω2 + 3ρ

& f=

(
π

3
,− π√

3

)
& g=

(
−π

3
,− π√

3

)

a=

(
π

3
,
π

3
√

3

)
& b=

(
−π

3
,
π

3
√

3

)
Case 3:

& c=

(
π

3
,− π

3
√

3

)
& d=

(
−π

3
,− π

3
√

3

)
ω =

√
Ω2 + 3ρ/2

e=

(
0,

2π

3
√

3

)
& f=

(
0,
−2π

3
√

3

)
a=

(
π

6
,
π

2
√

3

)
& b=

(
−π

6
,
π

2
√

3

)
Case 4: Case 5:

& c=

(
π

6
,− π

6
√

3

)
& d=

(
−π

6
,− π

2
√

3

)
e=
(π

3
, 0
)

& f=
(
−π

3
, 0
)

g=

(
0,

π√
3

)
& h=

(
0,
−π√

3

)
ω3 =

√
Ω2 + ρ ω4 =

√
Ω2 + 2ρ

To guide our subsequent nonlinear analysis, we identify specific wave number

pairs (k, l) where stationary breather solutions are expected to arise. These

points correspond to special locations in Figure 4.4, such as global extrema,

Dirac points, and saddle points of the dispersion surfaces. Each of these config-

urations is associated with either the acoustic or optical branches of the linear

spectrum and represents a significant location where velocity vanishes or the

band structure is critical.

Table 4.1 summarises these special points, grouped into five representative

cases: Case 1 (global minimum), Case 2 (global maximum), Case 3 (Dirac

points), Case 4 (acoustic saddle points), and Case 5 (optical saddle points).

In the remainder of this chapter, we first proceed with a general nonlinear

asymptotic analysis and then investigate each of these cases in detail. Our
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primary interest lies in stationary breather-type solutions, which are often

associated with such critical points. These discrete breathers may emerge

either above the optical band or below the acoustic band and, in some cases

such as the Dirac points, may also be linked to modulational instabilities.

4.3.3 The relative amplitude

At leading order, we have M1v = 0, where v = (F, P, F̂ , P̂ )T lies in the null

space (or kernel) of the singular matrix M1. The relative amplitudes of the

components can therefore be expressed as



F

P

F̂

P̂


= F



1

Ceiγ

eiψ

±Cei(γ+ψ)


, (4.3.11)

where eiψ, eiγ, ei(ψ+γ) are complex phase factors determined from the kernel of

M1.

4.3.4 Zeroth harmonic terms O(ε2e0)

At order O(ε2e0), we collect the coefficients of the zeroth harmonic from the

equations of motion (4.2.8)–(4.2.11). This yields the following relations

0 = −Ω2 (G0 +G∗0)− 2η|F |2 + 2η|P |2 + 2ζ
(
PF̄ + FP̄

)
, (4.3.12)

0 = −Ω2 (Q0 +Q∗0)− 2η
(
FP̄ + F̄P

)
+ 2ζ

(
|F |2 − |P |2

)
, (4.3.13)

0 = −Ω2
(
Ĝ0 + Ĝ∗0

)
+ 2η|F̂ |2 − 2η|P̂ |2 − 2ζ

(
P̂

¯̂
F + F̂

¯̂
P
)
, (4.3.14)

0 = −Ω2
(
Q̂0 + Q̂∗0

)
+ 2η

(
F̂

¯̂
P − ¯̂

FP̂
)
− 2ζ

(
|F̂ |2 − |P̂ |2

)
. (4.3.15)

In this study, we assume the imaginary parts of G0, Q0, Ĝ0, and Q̂0 vanish, as

they do not contribute to the um,n, vm,n, ûm,n, and v̂m,n.
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G0 =
−2

Ω2

(
η|F |2 − η|P |2 − ζ

(
PF̄ + FP̄

))
, (4.3.16)

Q0 =
−2

Ω2

(
η
(
FP̄ + F̄P

)
− ζ

(
|F |2 − |P |2

))
, (4.3.17)

Ĝ0 =
−2

Ω2

(
−η|F̂ |2 + η|P̂ |2 + ζ

(
P̂

¯̂
F + F̂

¯̂
P
))

, (4.3.18)

Q̂0 =
−2

Ω2

(
−η
(
F̂

¯̂
P − ¯̂

FP̂
)

+ ζ
(
|F̂ |2 − |P̂ |2

))
. (4.3.19)

Applying the simplifying assumption η = 0, ζ = 0, with Ω 6= 0 the above

expressions reduce to

G0 = 0, Q0 = 0, Ĝ0 = 0, Q̂0 = 0. (4.3.20)

These results confirm that, under the assumption η = 0 and ζ = 0, the zeroth

harmonic contributions vanish identically, simplifying the system at this order.

4.3.5 Second harmonic terms O(ε2e2iθ)

At the order O(ε2e2iθ), we collect all second harmonic terms resulting from

the substitution of the asymptotic ansatz (4.3.1)–(4.3.4) into the equations of

motion (4.2.8)–(4.2.11). Since we assume η = ζ = 0 throughout this chapter,

the right-hand side of the system becomes zero, yields

M2



G2

Q2

Ĝ2

Q̂2


=



0

0

0

0


, (4.3.21)

where M2 is a Hermitian matrix, given explicitly by
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M2 =



Ω2 − 4ω2 +
3ρ

2
0 −ρe−4ik − ρ

4
β1 −

√
3ρ

4
β̂1

0 Ω2 − 4ω2 +
3ρ

2
−
√

3ρ

4
β̂1 −3ρ

4
β1

−ρe4ik − ρ

4
β∗1

√
3ρ

4
β̂∗1 Ω2 − 4ω2 +

3ρ

2
0

√
3ρ

4
β̂∗1 −3ρ

4
β∗1 0 Ω2 − 4ω2 +

3ρ

2


,

(4.3.22)

where β1 = 2eik cos(2l
√

3), β̂1 = 2ieik sin(2l
√

3), and ∗ denotes complex conju-

gation. If η = 0, ζ = 0, then, the solution reduces to

G2 = 0, Q2 = 0, Ĝ2 = 0, Q̂2 = 0. (4.3.23)

These results indicate that, all second harmonic contributions vanish, and the

solution at this order is zero.

4.3.6 Harmonic terms at O(ε2eiθ)

At the order O(ε2eiθ), we collect the terms corresponding from the substituted

ansatz (4.3.1)–(4.3.4) into the equations of motion (4.2.8)–(4.2.11). This yields

the following

M1



G1

Q1

Ĝ1

Q̂1


=



A1

A2

B1

B2


, (4.3.24)

where M1 is the same matrix defined in equation (4.3.6), and the terms

A1, A2, B1, and B2 are given by
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A1 = −2iωFτ +
ρ

2
eik
(
cos(lh)− 4e−3ik

)
F̂x +

√
3ρ

2
ieik sin(lh)F̂y

+

√
3ρ

2

(
ieik sin(lh)P̂x +

√
3eik cos(lh)P̂y

)
, (4.3.25)

A2 = −2iωPτ +
3ρ

2
eik cos(lh)P̂x +

3ρ

2
i
√

3eik sin(lh)P̂y

+

√
3ρ

2

(
ieik sin(lh)F̂x +

√
3eik cos(lh)F̂y

)
, (4.3.26)

B1 = −2iωF̂τ +
ρ

2

(
−e−ik(cos(lh)− 4e3ik)Fx + i

√
3e−ik sin(lh)Fy

)
+

√
3ρ

2

(
ie−ik sin(lh)Px −

√
3e−ik cos(lh)Py

)
, (4.3.27)

B2 = −2iωP̂τ +
3ρ

2

(
−e−ik cos(lh)Px + i

√
3e−ik sin(lh)Py

)
+

√
3ρ

2

(
ie−ik sin(lh)Fx −

√
3e−ik cos(lh)Fy

)
. (4.3.28)

At this stage, we have derived general expressions for the harmonic terms

A1, A2, B1, and B2 at order O(ε2eiθ), as given in equations (4.3.25)–(4.3.28).

These expressions remain valid for arbitrary wavevector values (k, l), and will

be used as input in the analysis of specific cases.

Due to the complexity of solving for G1, Q1, Ĝ1, Q̂1 in the general case, we post-

pone the full evaluation of these quantities until we consider specific special

points in wavevector space in subsections 4.4 to 4.7. In the following sub-

sections, for each special choice of (k, l), we apply the corresponding relative

amplitude structure, then introduce travelling wave coordinates Z = x− Uτ ,

W = y − V τ , and determine the appropriate values of U and V . This ap-

proach allows us to simplify and solve the governing equations systematically,

and derive explicit formulae for the first-order corrections G1, Q1, Ĝ1, Q̂1 as

needed.

We now proceed to compute the harmonic terms atO(ε3eiθ), which will be used

in conjunction with the previous results to derive the corresponding governing

equations for the envelope dynamics.
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4.3.7 Harmonic terms at O(ε3eiθ)

At this order, we substitute the ansatz (4.3.1)–(4.3.4) into the equations of

motion (4.2.8)–(4.2.11) and collect terms at order ε3eiθ. As in previous sec-

tions, we continue under the simplifying assumption that η = ζ = 0, which

eliminates cubic nonlinearities from the system. This yields the following

M1



R1

H1

R̂1

Ĥ1


=



A31

A32

A33

A34


, (4.3.29)

where M1 is defined in equation (4.3.6), and the terms A31, A32, A33, A34 are

given below

A31 = 2iωFT − λ
(
3|F |2F + 2|P |2F + F̄P 2

)
+
ρ

2

[
1
2
eik
(
cos(lh) + 8e−3ik

)
F̂xx + 3

2
eik cos(lh)F̂yy +

√
3ieik sin(lh)F̂xy

]
+
ρ

2

[
Ĝ1xe

ik
(
cos(lh)− 4e−3ik

)
+
√

3ieik sin(lh)Ĝ1y

]
+

√
3ρ

2

[
1
2
ieik sin(lh)P̂xx + 3

2
ieik sin(lh)P̂yy +

√
3eik cos(lh)P̂xy

+ieik sin(lh)Q̂1x +
√

3eik cos(lh)Q̂1y

]
, (4.3.30)

A32 = 2iωPT − λ
(
3|P |2P + 2|F |2P + P̄F 2

)
+

3ρ

2

[
1
2
eik cos(lh)P̂xx + 3

2
eik cos(lh)P̂yy +

√
3ieik sin(lh)P̂xy

+
√

3ieik sin(lh)Q̂1y + eik cos(lh)Q̂1x

]
+

√
3ρ

2

[
1
2
ieik sin(lh)F̂xx + 3

2
ieik sin(lh)F̂yy +

√
3eik cos(lh)F̂xy

+ieik sin(lh)Ĝ1x +
√

3eik cos(lh)Ĝ1y

]
, (4.3.31)
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A33 = 2iωF̂T − λ
(

3|F̂ |2F̂ + 2|P̂ |2F̂ +
¯̂
FP̂ 2

)
+
ρ

2

[
1
2
e−ik

(
cos(lh) + 8e3ik

)
Fxx + 3

2
e−ik cos(lh)Fyy −

√
3ie−ik sin(lh)Fxy

]
− ρ

2

[
eik
(
cos(lh)− 4e−3ik

)
G1x −

√
3ieik sin(lh)G1y

]
−
√

3ρ

2

[
1
2
ie−ik sin(lh)Pxx + 3

2
ie−ik sin(lh)Pyy −

√
3e−ik cos(lh)Pxy

−ie−ik sin(lh)Q1x +
√

3e−ik cos(lh)Q1y

]
, (4.3.32)

A34 = 2iωP̂T − λ
(

3|P̂ |2P̂ + 2|F̂ |2P̂ +
¯̂
PF̂ 2

)
+

3ρ

2

[
1
2
e−ik cos(lh)Pxx + 3

2
e−ik cos(lh)Pyy −

√
3ie−ik sin(lh)Pxy

+
√

3ie−ik sin(lh)Q1y − e−ik cos(lh)Q1x

]
−
√

3ρ

2

[
1
2
ie−ik sin(lh)Fxx + 3

2
ie−ik sin(lh)Fyy −

√
3e−ik cos(lh)Fxy

−ie−ik sin(lh)G1x +
√

3e−ik cos(lh)G1y

]
. (4.3.33)

Following the general asymptotic analysis in Subsections 4.3.2 to 4.3.7, we now

turn our attention to a detailed investigation of the five representative wave

number configurations introduced in Table 4.1.

In the following sections, we apply the analytical framework produced above

to each case individually. Our aim is to derive the governing nonlinear en-

velope equations, identify the conditions under which DBs may form, and

examine their properties. The analysis proceeds by substituting the corre-

sponding wave numbers (k, l) into the results from the dispersion relation and

subsequent asymptotic expansions. It is worth noting that, for this configura-

tion, both the zeroth harmonic terms (Subsection 4.3.4) and second harmonic

terms (Subsection 4.3.5) vanish due to symmetry and the chosen simplifying

assumptions.
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4.4 Case 1: Global minimum

In this case, we examine the behaviour of the system at the global minimum of

the dispersion relation, occurring at (k, l) = (0, 0). This point corresponds to a

flat band where the group velocity vanishes. We apply the asymptotic frame-

work developed earlier to derive the associated envelope equations governing

the breather dynamics if possible.

4.4.1 Harmonic terms O(εeiθ)

In the global minimum case, we consider the wave number pair (k, l) = (0, 0),

for which the frequency is ω1 = Ω.

M1



F

P

F̂

P̂


=



0

0

0

0


. (4.4.1)

The corresponding matrix M1 takes the form

M1 =
3ρ

2



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


, (4.4.2)

which is singular, with a 2D kernel. The matrix has a double eigenvalue Λ = 0,

with two linearly independent eigenvectors n1 = (1, 0, 1, 0)T , n2 = (0, 1, 0, 1)T .

Therefore, the solution is spanned by

(F, P, F̂ , P̂ )T = F



1

0

1

0


+ P



0

1

0

1


,
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implying that F = F̂ and P = P̂ . Thus, F and P represent the two indepen-

dent degrees of freedom at this order, and Ĝ1 = −G1, Q̂1 = −Q1.

4.4.2 Harmonic terms O(ε2eiθ)

At (k, l) = (0, 0), we substitute into the expressions (4.3.25) to (4.3.28) to

evaluate the right-hand side vector d0 of the system

M1



G1

Q1

Ĝ1

Q̂1


=



A11

A12

B21

B22


= d0, (4.4.3)

where the components of d0 are

A11 = −3ρ

2
Fx +

3ρ

2
Py, A12 =

3ρ

2
Px +

3ρ

2
Fy, (4.4.4)

B21 =
3ρ

2
Fx −

3ρ

2
Py, B22 = −3ρ

2
Px −

3ρ

2
Fy. (4.4.5)

Solving the system with the singular matrix M1, we obtain

G1 =
1

2
(Py − Fx), Q1 =

1

2
(Px + Fy),

Ĝ1 = −G1, Q̂1 = −Q1. (4.4.6)

In general, at this order we find the velocities U, V ; here we have U = V = 0,

so the speed zero as well.

4.4.3 Harmonic terms O(ε3eiθ)

To evaluate the nonlinear correction at this order, we use the full expressions

for A31–A34 from equations (4.3.30)–(4.3.33). At the point (k, l) = (0, 0), we

simplify using F̂ = F, P̂ = P, Ĝ1 = −G1, Q̂1 = −Q1, and the derivative

122



expressions from equation (4.4.6)

G1x =
1

2
(Pyx − Fxx), G1y =

1

2
(Pyy − Fxy),

Q1x =
1

2
(Pxx + Fyx), Q1y =

1

2
(Pxy + Fyy). (4.4.7)

Applying the consistency conditions n1 · d0 = 0 and n2 · d0 = 0, where n1 =

(1, 0, 1, 0)T and n2 = (0, 1, 0, 1)T are the basis vectors for the kernel of M1, we

obtain

A31 + A33 = 0, (4.4.8)

A32 + A34 = 0. (4.4.9)

Substituting and simplifying using the assumptions at (k, l) = (0, 0), the re-

sulting coupled envelope equations are

−4iωFT − 2λ
(
3|F |2F + 2|P |2F + F̄P 2

)
+

3ρ

2
Fxx = 0, (4.4.10)

−4iωPT − 2λ
(
3|P |2P + 2|F |2P + P̄F 2

)
+

3ρ

2
Pyy = 0. (4.4.11)

This coupled system of nonlinear NLS equations governs the evolution of the

slowly varying envelope functions F (x, y, T ) and P (x, y, T ) at the global mini-

mum point. The resulting system cannot be reduced to a single NLS equation,

owing to the coupled nature of the envelope functions F and P .

4.5 Case 2: Global maximum

In this section, we analyse the system at the global maximum of the disper-

sion relation, located at (k, l) = (0, 0) with frequency ω2 =
√

Ω2 + 3ρ. We

follow the same asymptotic procedure outlined earlier to derive the governing

equations, starting with the first harmonic terms.
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4.5.1 Harmonic terms O(εeiθ)

In the global maximum case at (k, l) = (0, 0), we have ω2 =
√

Ω2 + 3ρ.

M1



F

P

F̂

P̂


=



0

0

0

0


. (4.5.1)

The corresponding matrix M1 is

M1 =
3ρ

2



−1 0 −1 0

0 −1 0 −1

−1 0 −1 0

0 −1 0 −1


, (4.5.2)

The kernel of M1 is spanned by the vectors

(F, P, F̂ , P̂ )T = F



1

0

−1

0


+ P



0

1

0

−1


,

implying the relations F = −F̂ and P = −P̂ . Additionally, at this order, we

have Ĝ1 = G1 and Q̂1 = Q1. The vectors normal to the range of M1 are

n1 = (1, 0,−1, 0)T , n2 = (0, 1, 0,−1)T .
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4.5.2 Harmonic terms O(ε2eiθ)

We now solve the second-order system from Subsection 4.3.6 at the point

(k, l) = (0, 0), which yields

M1



G1

Q1

Ĝ1

Q̂1


=



A11

A12

B21

B22


, (4.5.3)

with M1 given in (4.5.2), and

A11 =
3ρ

2
Fx −

3ρ

2
Py, A12 = −3ρ

2
Px −

3ρ

2
Fy, (4.5.4)

B21 =
3ρ

2
Fx −

3ρ

2
Py, B22 = −3ρ

2
Px −

3ρ

2
Fy. (4.5.5)

Solving the system, we obtain

G1 =
1

2
(Py − Fx), Q1 =

1

2
(Px + Fy),

Ĝ1 = G1, Q̂1 = Q1. (4.5.6)

At this order, we typically determine the group velocity components U, V ;

however, in this case we have U = V = 0, confirming that the solution is

stationary.

4.5.3 Harmonic terms O(ε3eiθ)

At this order, we again apply the system from Subsection 4.3.7 at the point

(k, l) = (0, 0), given by
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M1



H1

R1

Ĥ1

R̂1


=



A31

A32

A33

A34


= d1, (4.5.7)

where M1 is given in (4.5.2), and the right-hand side terms A31–A34 are defined

in 4.3.30 to 4.3.33, evaluated at (k, l) = (0, 0). We substitute

F̂ = −F, P̂ = −P, Ĝ1 = G1, Q̂1 = Q1,

along with the derivatives from (4.5.6)

G1x =
1

2
(Pyx − Fxx), G1y =

1

2
(Pyy − Fxy),

Q1x =
1

2
(Pxx + Fyx), Q1y =

1

2
(Pxy + Fyy). (4.5.8)

We apply the consistency conditions

n1 · d1 = 0, n2 · d1 = 0,

which yield

A31 − A33 = 0, (4.5.9)

A32 − A34 = 0. (4.5.10)

Substituting the terms and simplifying, we obtain the coupled nonlinear NLS

equations

0 = 4iωFT − 2λ
(
3|F |2F + 2|P |2F + F̄P 2

)
− 3ρ

2
Fxx, (4.5.11)

0 = 4iωPT − 2λ
(
3|P |2P + 2|F |2P + P̄F 2

)
− 3ρ

2
Pyy. (4.5.12)

These equations are structurally similar to those derived in Case 1 (Sec-
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tion 4.4). However, the specific symmetry F = −F̂ , P = −P̂ changes the

interpretation of the coupled modes. The system again remains coupled and

cannot be reduced to a single NLS equation due to the independence of the F

and P components.

4.6 Case 3: Dirac point

At the Dirac point (k, l) =

(
0,

2π

3
√

3

)
, the dispersion relation yields a frequency

of ω =

√
Ω2 +

3ρ

2
. The expansion of the solution takes the form



u

v

û

v̂


= εeiθ



F

P

F̂

P̂


+ ε2eiθ



G1

Q1

Ĝ1

Q̂1


+ c.c., (4.6.1)

where θ = km+l
√

3n+ωt defines the phase. As in previous sections, we analyse

the system at successive harmonic orders O(εeiθ), O(ε2eiθ), and O(ε3eiθ). We

begin by determining the leading-order amplitudes F, P, F̂ , P̂ , and the second-

order corrections G1, Q1, Ĝ1, Q̂1.

4.6.1 Harmonic terms O(εeiθ)

At this order, we obtain a degenerate system governed by the Hermitian ma-

trix M1, whose properties were discussed in Subsection 4.3.2. Specifically,

Hermitian matrices possess real eigenvalues and orthogonal eigenvectors, and

their kernel (null space) can be used to simplify coupled wave systems. Here,
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M1 takes the form

3ρ

4



0 0 −1 −i

0 0 −i 1

−1 i 0 0

i 1 0 0





F

P

F̂

P̂


=



0

0

0

0


. (4.6.2)

This matrix has eigenvalues ±3ρ

2
, 0, 0, indicating a doubly degenerate kernel.

The corresponding null vectors are r1 = (0, 0,−i, 1)T , r2 = (i, 1, 0, 0)T . To

reduce the system, we apply the framework formulated in Appendix C.1, using

the decomposition

M11 = M22 = 0, M12 =
3ρ

4

−1 −i

−i 1

 , M21 = M∗T
12 .

This leads to the reduced system

M12 F̂ = 0, M∗T
12 F = 0, (4.6.3)

where F = (F, P )T and F̂ = (F̂ , P̂ )T . Explicitly, this becomes

−1 −i

−i 1


F̂
P̂

 =

0

0

 ,

−1 i

i 1


F
P

 =

0

0

 .

It is important to note that both M12 and M21 are singular, but only singly

degenerate. Solving these equations yields the relative amplitudes

P = −iF, P̂ = iF̂ ,
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so the relative amplitude can be expressed as

F
P

 = F

 1

−i

 ,

F̂
P̂

 = F̂

1

i

 . (4.6.4)

The corresponding normal vectors to the ranges of M12 and M21 are their

Hermitian adjoints

n∗1 = (1, i)T , n∗2 = (1,−i)T . (4.6.5)

These satisfy

〈n∗1, r1〉 = 0, 〈n∗2, r2〉 = 0,

confirming the orthogonality of left and right nullspaces, as guaranteed by the

Hermitian structure of M1, discussed earlier in Subsection 4.3.2.

4.6.2 Harmonic terms O(ε2eiθ)

We continue our analysis at the Dirac point (k, l) =

(
0,

2π

3
√

3

)
, for which

the corresponding frequency is given by ω =
√

Ω + 3ρ
2

. At this point, the

governing system at O(ε2eiθ) takes the form

M1



G1

Q1

Ĝ1

Q̂1


=



A1

A2

B1

B2


, (4.6.6)
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where M1 is the Hermitian matrix defined in equation (4.6.2). We substitute

the leading-order solution

(
F, P, F̂ , P̂

)T
= F



1

−i

0

0


+ F̂



0

0

1

i


.

The right-hand side vectors A1, A2, B1, B2 are derived from equations (4.3.25)–

(4.3.28) at the Dirac point. This yields

A1 = −2iωFτ +
ρ

4
(3iF̂y − 9F̂x) +

3iρ

4
(iF̂x − F̂y),

A2 = −2ωFτ +
3iρ

4
(3iF̂y − F̂x) +

3ρ

4
(iF̂x − F̂y),

B1 = −2iωF̂τ +
ρ

4
(3iFy + 9Fx)−

3iρ

4
(iFx + Fy),

B2 = 2ωF̂τ −
3iρ

4
(3iFy + Fx) +

3ρ

4
(iFx + Fy). (4.6.7)

To simplify the analysis, we transition to the travelling wave coordinates

Z = x− Uτ, W = y − V τ,

so that time derivatives transform as Fτ = −UFZ − V FW . Substituting these

into equations (4.6.7), we obtain

A1 = 2iω(UFZ + V FW )− 3ρF̂Z , A2 = 2ω(UFZ + V FW )− 3ρF̂W ,

B1 = 2iω(UF̂Z + V F̂W ) + 3ρFZ , B2 = −2ω(UF̂Z + V F̂W ) + 3ρFW .

(4.6.8)

Since M1 is singular, the consistency conditions require that the right-hand

side vectors lie within the range of the respective matrices. Hence, we impose

n∗1 ·A = 0, n∗2 ·B = 0,
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where n∗1 = (1, i), n∗2 = (1,−i). These yield

A1 + iA2 = 0,

B1 − iB2 = 0. (4.6.9)

Substituting the expressions for A1, A2, B1, B2 into (4.6.9) results in

4iω(UFZ + V FW )− 3ρ(F̂Z + iF̂W ) = 0,

4iω(UF̂Z + V F̂W ) + 3ρ(FZ − iFW ) = 0. (4.6.10)

These relations involve a mix of real and imaginary parts. The asymmetry

between them suggests that a fully localised 2D solution not exist. Instead, we

could seek a solution in the form of a plane wave extended in one direction. If

U, V 6= 0, system (4.6.10) can be rewrite as

MD1

FZ

FW

 = MD2

 F̂Z

F̂W

 , (4.6.11)

where γ =
4iω

3ρ
, and

MD1 =

Uγ V γ

− 1
γ

i
γ

 , MD2 =

1 i

U V

 .

Assuming both MD1 and MD2 are invertible, we may write

FZ

FW

 =
1

γ(iU + V )

−γ2UV + i −V 2γ2 − 1

U2γ2 + 1 γ2UV + i


 F̂Z

F̂W

 , (4.6.12)

 F̂Z

F̂W

 =
1

γ(iU − V )

−γ2UV − i −V 2γ2 − 1

U2γ2 + 1 γ2UV − i


FZ

FW

 . (4.6.13)

To simplify the dimensionality of the system F (Z,W, T ), we introduce a re-
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duced coordinate

Z̃ = Z − µW, F̃ (Z,W, T ) = F̃ (Z̃, T ), (4.6.14)

where µ is a real parameter chosen to eliminate the mixed derivative. Substi-

tuting into the characteristic PDE results in a quadratic equation for µ

F̃Z̃Z̃
[
(−V 2γ2 − 1)µ2 + 2γ2UV µ− (U2γ2 + 1)

]
= 0.

This shows that the solution is not fully localised but rather extends in one

direction, exhibiting quasi-one-dimensional behaviour. A non-trivial real solu-

tion for µ exists when the discriminant is positive, which is satisfied if

U2 + V 2 >
9ρ2

16ω2
,

where ω2 = Ω2 +
3ρ

2
6= 0. Since the solution has already been assumed in

the form F̃ (Z̃, T ), where Z̃ = Z − µW , it is not necessary to further express

G1, Q1, Ĝ1, Q̂1 in terms of both Z and W . The envelope is treated as quasi-one-

dimensional along the direction defined by Z̃, and thus all relevant derivatives

and corrections naturally reduce to functions of Z̃ and T . We therefore proceed

using the 1D form in the subsequent analysis.

4.6.3 Harmonic terms O(ε3eiθ)

We now proceed to the analysis by substituting the dirac point in subsection

4.3.7. Using the established relations (4.6.4) (F, P, F̂ , P̂ )T = F (1,−i, 0, 0)T +

F̂ (0, 0, 1, i)T , and incorporating the results for (G,Q)T and (Ĝ, Q̂)T , we obtain

the system
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M1



R1

H1

R̂1

Ĥ1


=



A31

A32

A33

A34


, (4.6.15)

where the matrix M1 is given in (4.6.2), and the expressions A31, A32, A33, A34

are derived from (4.3.30)–(4.3.33), evaluated at the Dirac point. Applying the

consistency conditions at ρ = 1, as defined by the inner products with the

adjoint kernel vectors n∗1,n
∗
2 in (4.6.5), we obtain

A31 + iA32 = 0, (4.6.16)

A33 − iA34 = 0, (4.6.17)

Since we assume a reduced solution of the form F̃ (Z̃, T ), where Z̃ = Z − µW ,

we define F̂ = eiυF̃ , with υ ∈ R. Substituting This yields the coupled NLS

equations

0 = 4iωF̃T − 10λ|F̃ |2F̃ +
3

2
eiυ(1− µ2 + 2iµ)F̃Z̃Z̃

+ 2(U2 + V 2µ2 − 2UV µ)F̃Z̃Z̃ , (4.6.18)

0 = 4iωeiυF̃T − 10λeiυ|F̃ |2F̃ +
3

2
(1− µ2 − 2iµ)F̃Z̃Z̃

+ 2eiυ(U2 + V 2µ2 − 2UV µ)F̃Z̃Z̃ . (4.6.19)

By subtracting (4.6.18) from (4.6.19), we obtain

0 = eiυ(1− µ2 + 2iµ)− e−iυ(1− µ2 − 2iµ), (4.6.20)

which leads to µ = tan(υ/2), hence υ = 2 tan−1(µ). Adding (4.6.18) and

(4.6.19) results in
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0 = 4iωF̃T − 10λ|F̃ |2F̃ +D F̃Z̃Z̃ , (4.6.21)

where the dispersion coefficient D is given by

D = 2

(
U2 + V 2µ2 − 2UV µ+

1

2
(1 + µ2)

)
.

In (4.6.21), the dispersion coefficient D is always positive for real values of µ,

indicating a defocusing regime when λ > 0. Conversely, for λ < 0, the system

enters a focusing regime, which may lead to modulational instability.

4.7 Case 4 and 5: Acoustic and Optical Sad-

dles

4.7.1 Harmonic terms O(εeiθ)

In this subsection, we analyse both the acoustic and optical saddle cases.

To simplify the calculations, we consider the saddle point located at (k, l) =(π
3
, 0
)

, where the corresponding frequencies are ω4 =
√

Ω2 + ρ for the acoustic

mode, and ω5 =
√

Ω2 + 2ρ for the optical mode. At this point, the leading-

order system yields the following equation relating F, F̂ , P, and P̂

M1



F

P

F̂

P̂


=



0

0

0

0


, (4.7.1)

where the matrix M1 takes the form
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

±ρ
2

0
ρ

2
eiπ/3 0

0 ±ρ
2

0 −3ρ

2
eiπ/3

ρ

2
e−iπ/3 0 ±ρ

2
0

0 −3ρ

2
e−iπ/3 0 ±ρ

2





F

P

F̂

P̂


=



0

0

0

0


, (4.7.2)

with the positive sign (+) corresponding to the acoustic saddle and the negative

sign (−) to the optical saddle.

To determine the leading-order components, we reduce the matrix M1 to

echelon form. This reduction allows us to express the solution vector v =(
F, P, F̂ , P̂

)T
in a normalised form. In particular, the components are related

in magnitude and phase as

(
F, P, F̂ , P̂

)T
= F

(
1, 0,±e−iπ/3, 0

)T
, (4.7.3)

with the (−) and (+) signs representing the acoustic and optical cases, respec-

tively.

4.7.2 Harmonic terms O(ε2eiθ)

In this subsection, we analyse the second-order harmonic terms for both acous-

tic and optical saddle cases. We focus on the point (k, l) = (π/3, 0), where

the acoustic and optical frequencies are ω4 =
√

Ω2 + ρ and ω5 =
√

Ω2 + 2ρ,

respectively. The governing system is given by

M1



G1

Q1

Ĝ1

Q̂1


=



A1

A2

A3

A4


= d2, (4.7.4)
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where M1 is defined in (4.7.2), and we substitute the leading-order approxi-

mation (
F, P, F̂ , P̂

)T
= F

(
1, 0,±e−iπ/3, 0

)T
,

with (+) for the optical case and (−) for the acoustic case (4.7.3).

We evaluate A1, A2, A3, A4 at (k, l) = (π/3, 0). These are derived from equa-

tions (4.3.25) to (4.3.28) in Subsection 4.3.6, we obtain

A1 = 2iωFτ +
5ρ

2
eiπ/3F̂x, A2 =

3ρ

2
eiπ/3F̂y,

A3 = 2iωF̂τ −
5ρ

2
e−iπ/3Fx, A4 = −3ρ

2
e−iπ/3Fy. (4.7.5)

Introducing the travelling wave coordinates Z = x − Uτ , W = y − V τ , we

rewrite these as

A1 = −2iω(UFZ + V FW ) +
5ρ

2
eiπ/3F̂Z , A2 =

3ρ

2
eiπ/3F̂W ,

A3 = −2iω(UF̂Z + V F̂W )− 5ρ

2
e−iπ/3FZ , A4 = −3ρ

2
e−iπ/3FW . (4.7.6)

For the acoustic case, using
(
F, P, F̂ , P̂

)T
= F

(
1, 0,−e−iπ/3, 0

)T
, we get

A1,ac = −2iω(UFZ + V FW )− 5ρ

2
FZ , A2,ac = −3ρ

2
eiπ/3FW ,

A3,ac = 2iωe−iπ/3(UFZ + V FW )− 5ρ

2
e−iπ/3FZ , A4,ac =

3ρ

2
e−iπ/3FW . (4.7.7)

For the optical case, with
(
F, P, F̂ , P̂

)T
= F

(
1, 0, e−iπ/3, 0

)T
, we find

A1,op = −2iω(UFZ + V FW ) +
5ρ

2
FZ , A2,op =

3ρ

2
FW ,

A3,op = −2iωe−iπ/3(UFZ + V FW )− 5ρ

2
e−iπ/3FZ , A4,op = −3ρ

2
e−iπ/3FW .

(4.7.8)

To determine the velocities U, V and the coefficients G1, Q1, Ĝ1, Q̂1, we rewrite
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system (4.7.4) in reduced 2× 2 block matrix C.1 form

M11 M12

M21 M22


G1

Ĝ1

 =

A

B

 , (4.7.9)

where M11 = M22 = ±ρ
2
I, with (+) for acoustic and (−) for optical. Also,

M12 =
ρ

4
(1 + i

√
3)

1 0

0 −3

 , A =

A1

A2

 , B =

A3

A4

 .

Following the reduction in Appendix C.1.9, assuming ρ = 1, we find

(
M11 −M12M

−1
22 M

∗
12

)
G1 = A−M12M

−1
22 B, (4.7.10)

where

M11 −M12M
−1
22 M

∗
12 =

0 0

0 ±4

 ,

where (−) corresponds to the acoustic case, and (+) to the optical case. This

leads to the kernel formG1

Q1

 = µ

1

0

+ G̃

0

1

 , without loss the generate, we take µ = 0.

Starting with the acoustic case, we apply the consistency condition using the

normal vector n = (1, 0)T , and obtain

1

0

 ·
−4ωi (UFZ + V FW )

3FW

 = 0. (4.7.11)

This leads to the condition

− 4ωi (UFZ + V FW ) = 0. (4.7.12)
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Since ω 6= 0 and that the derivatives FZ and FW are not identically zero, we

must conclude

U = 0, V = 0. (4.7.13)

Thus, the group velocity vanishes at this saddle point. Then for the acoustic

case, we find

G̃ac

 0

−4

 =

−4ωi (UFZ + V FW )

3FW

 , (4.7.14)

− 4G̃ac = 3FW ⇒ G̃ac = −3

4
FW . (4.7.15)

Substituting into the reduced system, we find



G1,ac

Q1,ac

Ĝ1,ac

Q̂1,ac


=



0

−3
4
FW

−5e−iπ/3FZ

3
4
e−iπ/3FW


. (4.7.16)

Returning to equation (4.7.10), we now analyse the optical case, we have

G̃op

0

4

 =

−4ωi(UFZ + V FW )

6FW

 . (4.7.17)

We now apply the consistency condition using the normal vector n = (1, 0)T ,

we obtain 1

0

 ·
−4ωi(UFZ + V FW )

6FW

 = 0. (4.7.18)

For the system to be consistent, this expression must vanish:

− 4ωi(UFZ + V FW ) = 0. (4.7.19)
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Since ω 6= 0 and FZ , FW 6= 0, this implies

U = 0, V = 0. (4.7.20)

Hence, for both acoustic and optical saddle points, the group velocity vanishes.

For the optical case in (4.7.17), where G̃op = 3
2
FW , we obtain



G1,op

Q1,op

Ĝ1,op

Q̂1,op


=



0

3
2
FW

5e−iπ/3FZ

−3
2
e−iπ/3FW


. (4.7.21)

4.7.3 The acoustic saddle harmonic O(ε3eiθ) terms

From Subsection 4.3.7, evaluated at the point (k, l) = (π/3, 0), and using the

results from Subsection 4.7.2, we obtain

M1



H1

R1

Ĥ1

R̂1


=



A31

A32

A33

A34


= d3. (4.7.22)

Here, A31, A32, A33, A34 are obtained after transforming to the travelling wave

coordinates, we have

A31 = 2iωFT − λ
(
3|F |2F

)
− ρ

4
(9FZZ + 3FWW ) +

5ρ

2
eiπ/3Ĝ1Z +

3ρ

2
eiπ/3Q̂1W ,

A32 =
3ρ

2
eiπ/3Q̂1Z +

3ρ

2

(
eiπ/3Ĝ1W − FZW

)
,

A33 = −2iωe−iπ/3FT + λe−iπ/3
(
3|F |2F

)
+
ρ

4
e−iπ/3 (9FZZ + 3FWW )

− 5ρ

2
e−iπ/3G1Z −

3ρ

2
e−iπ/3Q1W ,

A34 =
3ρ

2
e−iπ/3Q1Z +

3ρ

2
e−iπ/3 (FZW −G1W ) .

(4.7.23)
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As in previous sections, we reduce the matrix M1 in (4.7.2) into block form

appendix C.1. The system can then be written as

M11 M12

M21 M22


H1

R1

 =

A

B

 , (4.7.24)

where M11 = M22 = ρ
2
I, M21 = M∗T

12 , and A = (A31, A32)T , B = (A33, A34)T .

Also, H1 = (H1, R1)T , R1 = (Ĥ1, R̂1)T .

Thus, the system becomes

M11 H1 +M12 R1 = A, (4.7.25)

M∗T
12 H1 +M22 R1 = B. (4.7.26)

By eliminating R1, we obtain

(
M11 −M12M

−1
22 M

∗T
12

)
H1 = A−M12M

−1
22 B. (4.7.27)

Let n = (1, 0)T be the vector normal to the range of the M1 in (4.7.2) . The

consistency condition is then

n ·
(
A−M12M

−1
22 B

)
= 0,

which leads to the NLS equation

θiFT +DN |F |2F +DZFZZ +DWFWW +DMFZW = 0. (4.7.28)

Here, the coefficients are defined as

θ = 4
√

Ω2 + ρ, DZ = −17ρ, DW = −3

2
ρ, DM = 0, DN = −6λ.

(4.7.29)
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Furthermore, the ellipticity condition [8, 15] is given by

E = 4DZDW −D2
M > 0, (4.7.30)

which evaluates to

E = 4(−17ρ)

(
−3

2
ρ

)
= 102ρ2 > 0. (4.7.31)

Hence, the system is elliptic. The focusing condition [8, 9, 19] is

DZDN = 90λρ > 0 if λ > 0, (4.7.32)

so a bright breather exists when λ > 0.

4.7.4 The optical saddle harmonic O(ε3eiθ) terms

Using the optical results from Subsection 4.7.2, and following a procedure

similar to the acoustic case at order O(ε3eiθ), we obtain

M1



H1

R1

Ĥ1

R̂1


=



A31

A32

A33

A34


= d22. (4.7.33)

Here, M1 is given in equation (4.7.2), and the components A31, A32, A33, A34
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are expressed as

A31 = 2iωFT − λ
(
3|F |2F

)
+
ρ

4
(9FZZ + 3FWW ) +

5ρ

2
eiπ/3Ĝ1Z +

3ρ

2
eiπ/3Q̂1W ,

A32 =
3ρ

2
eiπ/3Q̂1Z +

3ρ

4

(
FZW + eiπ/3Ĝ1W

)
,

A33 = 2iωe−iπ/3FT − λe−iπ/3
(
3|F |2F

)
+
ρ

4
e−iπ/3 (9FZZ + 3FWW )

− 5ρ

2
e−iπ/3G1Z −

3ρ

2
e−iπ/3Q1W ,

A34 =
3ρ

2
e−iπ/3Q1Z +

3ρ

4
e−iπ/3 (FZW −G1W ) . (4.7.34)

Using the relation in equation (4.7.25), the solvability (consistency) condition

becomes

n ·
(
A−M12M

−1
22 B

)
=

1

0

 · (A−M12M
−1
22 B

)
= 0. (4.7.35)

Thus, the resulting NLS equation takes the form

4i
√

Ω2 + 2ρFT − 6λ|F |2F + 17ρFZZ − 3ρFWW = 0. (4.7.36)

In contrast to the acoustic saddle case, the ellipticity condition for the optical

saddle is not satisfied

E = 4DZDW −D2
M = −204ρ2 < 0, (4.7.37)

which indicates that the governing system is hyperbolic, The breather can be

localised in only one direction, not both.

4.8 Discussion

In this chapter, we have investigated a mechanical symmetric honeycomb lat-

tice interacting via linear NNIs and a nonlinear onsite potential. First, it was

shown that the derived model of the equations of motion preserves symme-
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try. This was demonstrated by applying asymptotic methods using a solution

ansatz similar to those employed in [24], [23], and [26]. The dispersion relation

was derived, which exhibits the expected symmetric behaviour and features

both lower and upper flat bands, as well as acoustic and optical branches

yielding a total of four dispersion surfaces (see Figures 4.4, 4.3, and 4.5).

Although the resulting system could not be solved in full generality for arbi-

trary wave numbers (k, l), we reduced it by considering special cases of specific

wave numbers. This enabled a more tractable analysis of breather dynamics. A

similar strategy was used by Wattis et al. [55], who reduced scalar honeycomb

lattice under conditions when the symmetric potential terms were either zero

or non-zero, leading to insights into breather behaviour in electrical lattices.

Next, we analysed the minimum and maximum of ω(k, l), deriving a coupled

NLS equation in F and P , at k = 0, l = 0 as shown in Sections 4.4–4.5. A cou-

pled NLS system was obtained which, due to the complexity of the coupling,

could not be reduced to a single NLS equation similar to the cases treated in

Section 3.4.1 of Chapter 3. In the Dirac case (Section 4.6), two elements in the

kernel were considered, and the relative amplitudes were identified. By apply-

ing the coordinate transformation Z̃ = Z − µW , we reduce the problem to a

single spatial dimension. This enables the analysis of modulational instability:

for λ < 0, the 1D NLS equation becomes focusing and supports ID breather

solutions.

Finally, we demonstrated that the lattice equations can be reduced to a single

cubic NLS equation in two saddle point cases (Section 4.7). An ellipticity

condition on the wavevector was examined, allowing us to identify stationary

breather solutions in the case of the acoustic saddle.

Conversely, for the optical saddle, a hyperbolic NLS equation was found. Al-

though the theoretical framework for the mechanical triangular lattice (Chap-

ter 3) and the mechanical honeycomb lattice (Chapter 4) is similar, key differ-

ences arise during analysis. For instance, stationary breather solutions were

identified in the honeycomb lattice at the acoustic saddle, and modulational
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instability emerged in the Dirac case when λ < 0. In contrast, the global

maximum and minimum cases for the honeycomb lattice reduce to coupled

NLS systems similar to the global minimum case in the mechanical triangular

lattice.

It is important to note that the results presented in this chapter are entirely

analytical, based on asymptotic analysis of breather solutions in the mechan-

ical honeycomb lattice. From a practical perspective, it would be valuable to

extend this work to include numerical simulations of honeycomb networks with

both linear and nonlinear NNIs. Previous numerical studies have shown that

hexagonal lattices can support breather solutions, as noted by [52], [53], and

[73].

144



Chapter 5

Conclusion

In this thesis, we have explored discrete breathers, spatially localised, time-

periodic, and long-lived solutions, which are found in many nonlinear lattice

structures, including MiM chains and mechanical triangular and honeycomb

lattices in 2D. In Chapter 1, we illustrated how the interplay between non-

linearity and discreteness enables DBs to form and maintain their envelope

over long durations, even in the presence of phonon resonances that might

otherwise induce decay. DBs occur in various lattice models, including elec-

trical and mechanical systems, within both square and hexagonal geometries.

We reviewed several foundational works, including those demonstrating the

existence of DBs in diatomic, MiM, and 2D hexagonal lattices, and outlined

current research directions focused on DBs in both electrical and mechanical

settings. In Section 1.3, we discussed common analytical techniques for de-

riving approximate small-amplitude solutions. Section 1.3.2 summarised the

multiple scales approximation, as presented in [19, 20], and applied it within

this thesis. This method has been widely employed in nonlinear systems, as

illustrated by works such as [1, 21, 23, 26, 55, 74]. In Section 1.4.5, we fo-

cused on key results concerning hexagonal lattices, with selected applications

presented in Section 1.4.7.

In Chapter 2, we conducted a numerical investigation of the fully nonlinear

MiM system introduced in [1]. We assessed the robustness of the MiM model
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by using initial conditions derived from asymptotic reductions to the NLS

equation. Our findings revealed that localised structures such as breathers

and breather-kinks emerge under certain conditions involving wavenumber k,

quadratic nonlinearities α, a, and interaction strength ρ. Numerical simula-

tions confirmed the presence of stationary breathers at k = 0, π, and moving

breathers at other wavenumbers for both optical and acoustic branches. The

stability of these modes is primarily governed by ρ, and to a lesser extent by

the mass ratio µ. In symmetric cases (Case I), stationary DB solutions are

more stable in the optical branch at k = 0 and k = π, with long-lived acoustic

modes occurring for large ρ. In Case III, breather-kink solutions were observed

in both stationary and moving forms, with stability varying based on ρ and µ.

Moreover, we observed that in moving modes for Case I (k = 0.1, 3.1), both

optical and acoustic waves displayed long-lived behaviour for large ρ, whereas

weak instabilities were noted at lower ρ. Similar trends were found in Cases II

and IV. In some configurations within Case IV, the governing equation reduces

to a CGL equation. Generally, moving modes tend to be more stable at higher

values of ρ across all µ. Appendix A presents detailed visualisations illustrating

how µ and ρ affect breather stability and dynamics, including breather-kinks

or wobbling kinks.

In Chapter 3, we developed a model for a mechanical triangular lattice, al-

lowing in-plane motion with two degrees of freedom per node, and applied

asymptotic analysis incorporating symmetric onsite potentials and NNIs. The

dispersion relation in Section 4.3.2 produced two branches acoustic and opti-

cal enabling the study of stationary breathers, including Dirac points (see Ta-

ble 3.1). Using multiple scales analysis, we derived the NLS equation (3.3.45)

and identified the focusing condition and the ellipticity condition (3.3.47) and

(3.3.46), respectively for DB solutions. In Section 3.4, we simplified the system

by neglecting quadratic nonlinearities, summarising the stationary results in

Table 3.2 (see Appendix B for details). We established stationary breather so-

lutions for symmetric triangular lattices in Case 3 (global maximum) and Case
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5 (optical saddle). This work extends prior results on square lattices to 2D

triangular configurations, confirming that triangular lattices support breather

solutions.

In Chapter 4, we studied a symmetric mechanical honeycomb lattice with

linear NNIs and onsite potential energy. Using asymptotic techniques, we de-

rived and validated the symmetry of the governing equations. The dispersion

relation exhibited the expected symmetry with lower and upper flat bands,

and both optical and acoustic branches. By selecting special wavenumbers,

we simplified the analysis, following the approach of Wattis et al. [55]. We

derived coupled NLS equations for specific wavenumber points, as presented

in Sections 4.4, 4.5, and 4.6. In contrast, for the saddle point cases optical

and acoustic considered in Section 4.7, the system reduces to single NLS equa-

tions. Stationary breather solutions were identified at acoustic saddle points,

while optical saddle points exhibited more defocusing propagation dynamics.

Whereas the triangular lattice supports breather solutions in case 3 (Global

maximum) and case 5 (saddle point), this is notably not the case for the honey-

comb lattice. The results are fully analytical and offer insights into the nature

of DBs in honeycomb structures.

Future investigations could focus on extending MiM systems into two dimen-

sions, considering triangular and hexagonal configurations with both scalar

and vector displacements. Further research could also explore breather-kink

interactions, examining their mechanisms, stability, and possible applications

in nonlinear wave systems.

It would also be worthwhile to generalise the asymptotic approximation to

mechanical triangular and honeycomb lattices with cubic onsite nonlinearities,

supported by numerical simulations. Additional directions include examining

alternative 2D lattice geometries such as square, 2D diatomic, kagome, and

diamond lattices, as discussed by Vainchtein [75].

Given the complexity of discrete breather dynamics, particularly in triangular

and honeycomb geometries, numerical simulations are essential for validating
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analytical results and exploring regimes beyond the reach of asymptotic meth-

ods.
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Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals,
volume 221. Springer, 2015.

[5] I V Barashenkov and O F Oxtoby. Wobbling kinks in φ4 theory. Phys.
Rev. E., 80(2):026608, 2009.

[6] T Morikazu. Vibration of a chain with nonlinear interaction. J. Phys.
Soc. Jpn, 22(2):431–436, 1967.

[7] P M Morse. Diatomic molecules according to the wave mechanics. ii.
vibrational levels. Phys. Rev., 34(1):57, 1929.

[8] P L Sulem, C Sulem. The Nonlinear Schrödinger Equation: Self-Focusing
and Wave Collapse . Applied mathematical sciences (Springer-Verlag New
York Inc.) ; 139. Springer, New York, 1999.

[9] M J Ablowitz and T P Horikis. Interacting nonlinear wave envelopes and
rogue wave formation in deep water. Phys. Fluids, 27(1), 2015.

[10] J J Rasmussen and K Rypdal. Blow-up in nonlinear Schrödinger
equations-I a general review. Phys. Scr., 33(6):481–497, 1986.

[11] P G Kevrekidis, K O Rasmussen, and A R Bishop. The discrete nonlinear
Schrödinger equation: a survey of recent results. Int. J. Mod. Phys. B,
15(21):2833–2900, 2001.

[12] A Vainchtein. Solitary wave propagation in a two-dimensional lattice.
Wave Motion, 83:12–24, 2018.

[13] P G Kevrekidis and D J Frantzeskakis. Solitons in coupled nonlinear
Schrödinger models: a survey of recent developments. Rev. Phys., 1:140–
153, 2016.

149



[14] Y Chen and X Xiao. Vector soliton pairs for a coupled nonautonomous
nls model with partially nonlocal coupled nonlinearities under the external
potentials. Nonlinear Dyn, 109(3):2003–2012, 2022.

[15] R Y Chiao, E Garmire, and C Townes. Self-trapping of optical beams.
Phys. Rev. Lett., 13(15):479, 1964.

[16] D Del Vescovo and I Giorgio. Dynamic problems for metamaterials: re-
view of existing models and ideas for further research. Int. J. Eng. Sci.,
80:153–172, 2014.

[17] H Ding, Z Zhen, H Imtiaz, W Guo, H Zhu, and B Liu. Why are most
2d lattices hexagonal? the stability of 2d lattices predicted by a simple
mechanics model. Extreme Mechanics Letters, 32:100507, 2019.

[18] L Zhang and X Wang. Analysis of exact solutions and stability analysis
of a (2+1)-dimensional nonlinear schrödinger equation. Optik (Stuttg.),
269:169905, 2022.

[19] M Remoissenet. Waves Called Solitons: Concepts and Experiments.
Springer Science and Business Media, New York, 1999.

[20] C.M. Bender and S.A. Orszag. Advanced Mathematical Methods for Sci-
entists and Engineers I: Asymptotic Methods and Perturbation Theory.
Springer New York, New York, NY, 1999.

[21] I A Butt and J A D Wattis. Asymptotic analysis of combined breather–
kink modes in a Fermi-Pasta-Ulam chain. Physica D., 231(2):165–179,
2007.

[22] J A D Wattis, A Pickering, and P R Gordoa. Combined breathing–kink
modes in the FPU lattice. Physica D, 240(7):547–553, 2011.

[23] I A Butt and J A D Wattis. Discrete breathers in a two-dimensional
hexagonal Fermi-Pasta-Ulam lattice. J. Phys. A Math, 40(6):1239, 2007.

[24] I A Butt and J A D Wattis. Discrete breathers in a two-dimensional
Fermi-Pasta-Ulam lattice. J. Phys. Math. Gen., 39(18):4955, 2006.

[25] J A D Wattis and L M James. Discrete breathers in honeycomb Fermi–
Pasta–Ulam lattices. Journal of Physics A: Mathematical and Theoretical,
47(34):345101, 2014.

[26] J A D Wattis and A S Alzaidi. Asymptotic analysis of breather modes in
a two-dimensional mechanical lattice. Physics. D, 401:132207, 2020.

[27] E Fermi, P Pasta, S Ulam, and M Tsingou. Studies of the nonlinear
problems. Collect. Work. E. Fermi, 2(5):978–988, 1955.

[28] N J Zabusky and M D Kruskal. Interaction of solitons in a collisionless
plasma and the recurrence of initial states. Phys.Rev.Lett, 15(6):240, 1965.

150



[29] R S MacKay and S Aubry. Proof of existence of breathers for time-
reversible or Hamiltonian networks of weakly coupled oscillators. Nonlin-
earity, 7(6):1623–1643, 1994.

[30] G James. Existence of breathers on FPU lattices. C. R. Acad. Sci. Ser.,
332(6):581–586, 2001.

[31] R Livi, M Spicci, and R S MacKay. Breathers on a diatomic FPU chain.
Nonlinearity, 10(6):1421–1434, 1997.

[32] A Vainchtein, and Wright J D Starosvetsky, Y, and R Perline. Solitary
waves in diatomic chains. Phys. Rev. E, 93(4):042210–042210, 2016.

[33] K R Jayaprakash, Y Starosvetsky, and A F Vakakis. New family of solitary
waves in granular dimer chains with no precompression. Phys.Rev. E,
83(3):036606, 2011.

[34] S Sen, J Hong, J Bang, E Avalos, and R Doney. Solitary waves in the
granular chain. Phys. Rep, 462(2):21–66, 2008.

[35] D Pelinovsky and G Schneider. The monoatomic FPU system as a limit
of a diatomic FPU system. Appl. Math. Lett., 107:106387, 2020.

[36] S Cadet. Transverse envelope solutions in an atomic chain. Physics Letters
A, 121(2):77–82, 1987.

[37] S Cadet. Coupled transverse-longitudinal envelope modes in an atomic
chain. J. Phys., C., 20(30):L803, 1987.

[38] S Cadet. Propagation and interactions of nonlinear shear waves in a
discrete lattice. Wave ,Motion, 11(1):77–97, 1989.

[39] P L Christiansen, A V Savin, and A V Zolotaryuk. Zig-zag version of the
frenkel-kontorova model. Phys. Rev. B., 54(18):12892–12902, 1996.

[40] K Khusnutdinova. Coupled Klein–Gordon equations and energy exchange
in two-component systems. EP J ST, 147(1):45–72, 2007.

[41] K Khusnutdinova, A Samsonov, and A Zakharov. Nonlinear layered lattice
model and generalized solitary waves in imperfectly bonded structures.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 79(5):056606, 2009.

[42] L Truskinovsky and A Vainchtein. Strictly supersonic solitary waves in
lattices with second-neighbor interactions. Physica D., 389:24–50, 2019.

[43] H Duran, H Xu, P G Kevrekidis, and A. Vainchtein. Unstable dynamics
of solitary traveling waves in a lattice with long-range interactions. Wave
Motion, 108:102836, 2022.

[44] P G Kevrekidis, A Vainchtein, M S Garcia, and C Daraio. Interaction
of traveling waves with mass-with-mass defects within a Hertzian chain.
Phys.l Rev. E., 87(4):042911, 2013.

151



[45] P G Kevrekidis, A G Stefanov, and H Xu. Traveling waves for the mass
in mass model of granular chains. Lett. Math. Phys., 106(8):1067–1088,
2016.

[46] L Liu, G James, P G Kevrekidis, and A Vainchtein. Breathers in a locally
resonant granular chain with precompression. Physica D, 331(C):27–47,
2016.

[47] T E Faver, R H Goodman, and J D Wright. Solitary waves in mass-in-
mass lattices. Z. Angew. Math. Phys., 71(6):1–20, 2020.

[48] S P Wallen, J Lee, D Mei, C Chong, P G. Kevrekidis, and N. Boechler.
Discrete breathers in a mass-in-mass chain with Hertzian local resonators.
Phys. Rev. E, 95(2), 2017.

[49] L Bonanomi, G Theocharis, and C Daraio. Wave propagation in granular
chains with local resonances. Phys. Rev. E, 91(3):033208, 2015.

[50] M Porter, C Daraio, EB Herbold, I Szelengowicz, and P G Kevrekidis.
Highly nonlinear solitary waves in periodic dimer granular chains. Phys.
Rev. E, 77(1):015601, 2008.

[51] G Theocharis, N Boechler, P G Kevrekidis, S Job, M A Porter, and
C Daraio. Intrinsic energy localization through discrete gap breathers in
one-dimensional diatomic granular crystals. Phys. Rev. E, 82(5):056604,
2010.

[52] J L Marin, J C Eilbeck, and F M Russell. Localized moving breathers in
a 2D hexagonal lattice. Phys. Lett. A, 248(2):225–229, 1998.

[53] J Bajars, J C Eilbeck, and B Leimkuhler. Nonlinear propagating localized
modes in a 2D hexagonal crystal lattice. Physica D, 301-302:8–20, 2015.

[54] P G Kevrekidis, J Cuevas-Maraver, and D E Pelinovsky. Energy Criterion
for the Spectral Stability of Discrete Breathers. Phys. Rev. Lett., 117(9):1–
5, 2016.

[55] J A D Wattis and L M James. Discrete breathers in honeycomb Fermi-
Pasta-Ulam lattices. J. Phys. A Math, 47(34):345101, 2014.

[56] K J H Law, A Saxena, P G Kevrekidis, and A R Bishop. Localized
structures in kagome lattices. Phys. Rev. A, 79(5):053818, 2009.

[57] R A Vicencio and M Johansson. Discrete flat-band solitons in the kagome
lattice. Phys. Rev. A., 87(6):061803, 2013.

[58] M A J Herrera, S N Kempkes, M B De Paz, A Garćıa-Etxarri, I Swart,
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Appendix A

Supplementary material:
Chapter 2

Appendix A: Introduction

This appendix presents supplementary figures corresponding to the numerical
simulations discussed in Chapter 2. We provide a set of visual results illustrat-
ing the spatial profiles and temporal evolution of optical and acoustic discrete
breather solutions in the fully nonlinear MiM FPUT chain. The figures cover
various parameter regimes, including both zero and non-zero internal coupling
(α) and outer mass nonlinearities (a), across different values of wave number k.
These cases demonstrate the qualitative behaviour of the system under weak
and strong nonlinearity (ρ), and the persistence or decay of localised modes
over time.
The inclusion of these results serves two key purposes. First, it validates
the numerical analyses carried out in Chapter 2, showing how breather and
breather -kink solutions evolve under fully nonlinear dynamics. Second, it of-
fers detailed insight into the localisation properties of both optical and acoustic
branches, thereby supporting the broader discussion on the stability and ro-
bustness of breather and breather-kink modes. These visualisations enhance
the connection between the theoretical predictions and the observed long-lived
behaviours identified in the simulations. To avoid excessive length and visual
density in Chapter 2, all corresponding figures have been compiled here in Ap-
pendix A. Variations in breather amplitude arise from the plotting of solutions
at different time points.
Table A.1 displays optical breather profiles at wave number k = 0, evaluated
at t = 2000 (with N = 400 or 1000 as appropriate), across four model cases
defined by nonlinear parameter combinations:

• Case I (a = 0, α = 0). Subfigures: (a) ρ = 3, µ = 3, β = −0.3, b =
1,Wb = 22.086; (b) ρ = 3, µ = 1

3
, β = −0.01, b = 1,Wb = 13.441; (c)

ρ = 1
3
, µ = 3, β = −0.35, b = 1,Wb = 20.448; (d) ρ = 1

3
, µ = 1

3
, β =

−0.01, b = 1,Wb = 13.441.

• Case II (a = 0, α = 1). Subfigures: (a) β = 0.18, b = 1,Wb = 27.726;
(b) β = 0.367, b = 1,Wb = 23.153; (c) β = 2.92, b = 1,Wb = 19.289; (d)
β = 3.33, b = 1,Wb = 23.281.
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Case (a)ρ = 3, µ = 3 (b)ρ = 3, µ = 1
3

(c) ρ = 1
3
, µ = 3 (d)ρ = 1

3
, µ = 1

3

I

II

III

IV

Table A.1: Optical breather profiles at k = 0 for Cases I–IV.

• Case III (a = 1, α = 0). Subfigures: (a) β = −0.20, b = 1,Wb = 27.050;
(b) β = −0.01, b = 1,Wb = 13.441; (c) β = −0.20, b = 1,Wb = 27.050;
(d) β = −0.10, b = 1,Wb = 13.441.

• Case IV (a = 1, α = 1). Subfigures: (a) β = 0.08, b = 1,Wb = 22.449;
(b) β = 0.366, b = 1,Wb = 20.332; (c) β = 2.98, b = 1,Wb = 20.351; (d)
β = 3.33, b = 1,Wb = 23.281.

Each panel shows the range 400 ≤ n ≤ 600, where breather localisation is
most evident.
Table A.2 presents optical breather profiles at wave number k = π, recorded at
tmax = 2000 (or t = 1000) across four different model cases. The simulations
use either N = 400 or 1000, and only selected spatial ranges are shown to
focus on breather localisation.

• Case I (a = 0, α = 0). Subfigures: (a) β = 1, b = 0.001,Wb = 16.057;
(b) β = 0, b = 0.2,Wb = 12.022; (c) β = 1, b = 0.01,Wb = 19.089;
(d) β = 1, b = 0,Wb = 12.893; all for N = 400, with 100 ≤ n ≤ 300
displayed.

• Case II (a = 0, α = 1). Subfigures: (a) β = b = 0.1,Wb = 21.000; (b)
β = b = 0.335,Wb = 19.235; (c) β = b = 0.33,Wb = 19.104, N = 500;
(d) β = b = 0.67,Wb = 15.569; all with 100 ≤ n ≤ 300 displayed.

• Case III (a = 1, α = 0). Subfigures: (a) β = b = 1.28,Wb = 18.033;
(b) β = b = 0.21,Wb = 18.511; (c) β = b = 1.31,Wb = 20.696; (d)
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Case (a)ρ = 3, µ = 3 (b)ρ = 3, µ = 1
3

(c)ρ = 1
3
, µ = 3 (d)ρ = 1

3
, µ = 1

3

I

II

III

IV

Table A.2: Optical breather profiles at k = π for Cases I–IV.

β = b = 1.19,Wb = 21.321; all for N = 1000, displaying 400 ≤ n ≤ 600
at early simulation times.

• Case IV (a = 1, α = 1). Subfigures: (a) β = b = 1.3,Wb = 21.000;
(b) β = 0.6, b = 0.3,Wb = 11.119; (c) β = b = 1.6,Wb = 16.678; (d)
β = b = 1.8,Wb = 16.036; with 400 ≤ n ≤ 600 shown in each case.
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Case (a)ρ = 3, µ = 3 (b)ρ = 3, µ = 1
3

(c)ρ = 1
3
, µ = 3 (d) ρ = 1

3
, µ = 1

3

I

II defocusing

III

IV defocusing defocusing

Table A.3: Acoustic breather profiles at k = π for Cases I–IV.

Table A.3 presents acoustic breather profiles at wave number k = π, evaluated
at either t = 2000 or t = 1000, depending on the case. The simulations use
N = 400 or 1000, and the displayed spatial range is restricted (e.g., 150 ≤ n ≤
300 or 400 ≤ n ≤ 600) to emphasise localisation. Each case explores a distinct
nonlinear configuration:

• Case I (a = 0, α = 0). Subfigures: (a) β = 1, b = 0.001,Wb = 16.057;
(b) β = 1, b = 0.06,Wb = 21.567; (c) β = 0.0001, b = 0.01,Wb = 15.097;
(d) β = 0.0001, b = 0.01,Wb = 22.602; all for N = 400, with 150 ≤ n ≤
300 displayed.

• Case II (a = 0, α = 1). Subfigures: (a) β = b = 0.15,Wb = 21.239; (b)
β = b = 0.07,Wb = 21.205; (d) β = 2.82, b = 4.5,Wb = 14.899; all for
N = 400, displaying 150 ≤ n ≤ 300. For ρ = 1

3
, µ = 3, the system is

defocusing for all −10 ≤ β, b ≤ 10.

• Case III (a = 1, α = 0). Subfigures: (a) β = b = 1.28,Wb = 18.033;
(b) β = b = 1.4,Wb = 20.369; (c) β = 0, b = 1.6,Wb = 10.412; (d)
β = 0.01, b = 0.02,Wb = 2.940; all for N = 1000, with 400 ≤ n ≤ 600
displayed.

• Case IV (a = 1, α = 1). Subfigures: (a) β = b = 1.35,Wb = 21.239;
(b) β = b = 1.4,Wb = 21.285; all for N = 1000, with 400 ≤ n ≤ 600
displayed. When ρ = 1

3
, the system remains defocusing.
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Table A.4 presents optical breather profiles at wave number k = 3.1, with
simulations at t = 1000 and N = 1000. The spatial range is restricted to
200 ≤ n ≤ 350 to highlight localisation effects. Each case investigates different
combinations:

• Case I (a = 0, α = 0). Subfigures: (a) β = 1, b = 0,Wb = 16.123; (b)
β = 0.019, b = 0.01,Wb = 15.556; (c) β = 1, b = 0.018,Wb = 18.191;
(d) β = 1, b = 0,Wb = 12.887; all for t = 1000, N = 1000, displaying
200 ≤ n ≤ 350 at the end time.

• Case II (a = 0, α = 1). Subfigures: (a) β = b = 0.1,Wb = 21.007; (b)
β = b = 0.33,Wb = 25.615; (c) β = b = 0.32,Wb = 20.579; (d) β =
b = 0.67,Wb = 15.618; all for t = 1000, N = 1000, with 200 ≤ n ≤ 350
displayed at early time.

• Case III (a = 1, α = 0). Subfigures: (a) β = b = 1.27,Wb = 19.392;
(b) β = 0.01, b = 1.31,Wb = 29.058; (c) β = 0.01, b = 1.41,Wb = 19.596;
(d) β = 0.1, b = 1.4,Wb = 18.612; all for t = 1000, N = 1000, displaying
200 ≤ n ≤ 350.

Case (a) ρ = 3, µ = 3 (b) ρ = 3, µ = 1
3

(c) ρ = 1
3
, µ = 3 (d)ρ = 1

3
, µ = 1

3

I

II

III

Table A.4: Optical breather profiles at k = 3.1 for Cases I–III.
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Case (a)ρ = 3, µ = 3 (b) ρ = 3, µ = 1
3

(c)ρ = 1
3
, µ = 3 (d)ρ = 1

3
, µ = 1

3

I

II defocusing defocusing

III defocusing defocusing

Table A.5: Acoustic breather profiles at k = 3.1 for Cases I–III.

Table A.5 presents acoustic breather profiles at wave number k = 3.1, with
simulations carried out at t = 1000 and N = 1000. The spatial domain is
limited to 200 ≤ n ≤ 350 to emphasise localisation. Each case explores distinct
nonlinear parameter regimes, with detailed values for β, b, and breather width
Wb summarised below.

• Case I (a = 0, α = 0). Subfigures: (a) β = 1, b = 0,Wb = 16.147;
(b) β = 1, b = 0.07,Wb = 20.023; (c) β = 0, b = 0.1,Wb = 17.016;
(d) β = 0, b = 0.1,Wb = 17.019; all displayed at the end time over
200 ≤ n ≤ 350.

• Case II (a = 0, α = 1). Subfigures: (a) β = b = 0.15,Wb = 21.210;
(b) β = b = 0.07,Wb = 21.207; displayed at early simulation time over
200 ≤ n ≤ 350.

• Case III (a = 1, α = 0). Subfigures: (a) β = 0.01, b = 1.41,Wb =
19.233; (b) β = 0.1, b = 1.4,Wb = 20.509; simulated over 0 ≤ t ≤ 850,
with 200 ≤ n ≤ 350 displayed throughout.

Table A.6 shows optical breather profiles at wave number k = 0.1, simulated
over t = 1000 with N = 1000. The range 200 ≤ n ≤ 350 is used for visualisa-
tion. Each case explores a distinct nonlinear configuration listed below.
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Case (a)ρ = 3, µ = 3 (b)ρ = 3, µ = 1
3

(c)ρ = 1
3
, µ = 3 (d) ρ = 1

3
, µ = 1

3

I

II

III

Table A.6: Optical breather profiles at k = 0.1 for Cases I–III.

• Case I (a = 0, α = 0). Subfigures: (a) b = 1, β = −0.3,Wb = 22.066;
(b) b = 1, β = −0.009,Wb = 14.167; (c) b = 1, β = −0.3,Wb = 22.330;
(d) b = 1, β = −0.009,Wb = 14.440; all with 200 ≤ n ≤ 350 displayed.

• Case II (a = 0, α = 1). Subfigures: (a) b = β = 0.09,Wb = 22.825;
(b) b = β = 0.366,Wb = 20.330; (c) b = β = 3,Wb = 21.185; (d)
b = β = 3.33,Wb = 23.716; all with 200 ≤ n ≤ 350 displayed, taken at
early time 0 ≤ n ≤ 250.

• Case III (a = 1, α = 0). Subfigures: (a) b = 10, β = −0.20,Wb =
27.043; (b) b = β = −0.003,Wb = 24.535; (c) b = 10, β = −0.20,Wb =
27.366; (d) b = β = −0.003,Wb = 25.008; all with 200 ≤ n ≤ 350
displayed.

Case (a) ρ = 3, µ = 3 (b)ρ = 3, µ = 1
3

(c)ρ = 1
3
, µ = 3 (d)ρ = 1

3
, µ = 1

3

I

Table A.7: Acoustic breather profiles at k = 0.1 for Cases I–II.

Table A.7 presents acoustic breather profiles at wave number k = 0.1, simu-
lated with t = 1000 and N = 1000. The spatial region 500 ≤ n ≤ 1000 is used
to highlight the localisation range, and the parameter values are summarised
below.

160



• Case I (a = 0, α = 0). Subfigures: (a) b = β = 10,Wb = 61.278;
(b) b = β = 10,Wb = 38.031; (c) b = β = 10,Wb = 156.601; (d)
b = β = 10,Wb = 61.631; with 500 ≤ n ≤ 1000 displayed for subfigures
(a), (b), and (c).

• Case II. The breather dynamics and parameter regimes are the same as
in Case I.
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Appendix B

Supplementary material:
Chapter 3

This section addresses Cases 2, 3, and 5 from Table 3.2, extending the analysis
of stationary optical and acoustic properties previously discussed for Cases
1 and 4 in Section 3.4. We begin with Case 2 (a saddle point) and Case 3
(a global maximum), focusing on their corresponding stationary optical and
acoustic characteristics. Subsequently, we examine Case 5 (the saddle point)
to explore its distinct behaviour.

B.1 Cases 2: Saddle Point and 3: Global Max-

imum

In Cases 2 and 3 (optical and acoustic), we focus on special wave num-
bers: (±π/2,±π/(2

√
3)) and (0,±π/

√
3). These are labelled as follows b

= (k, l) = (π/2, π/(2
√

3)), f = (−π/2, π/(2
√

3)), c = (π/2,−π/(2
√

3)), e =
(−π/2,−π/(2

√
3)).

The quantities Cac and Cop are defined in equations (3.3.8) and (3.3.9), re-
spectively. Due to the system’s symmetry, the results for points b and e are
identical, as are those for f and c. To avoid redundancy, we report only the
results for wave vectors b and f. For Cases 2b and 3b, from Table 3.1, the
coefficients are given by

ω2(k, l) ≈ 1

2

(
tr±

√
tr2 − 4 det

)
, ω2

ac ≈ Ω2 + 2ρ, ω2
op ≈ Ω2 + 6ρ.

(B.1.1)

using (3.3.8) and (3.3.9), we have

Cop =
−
√

3ρ sin(k) sin(l
√

3)

Ω2 − ω2
op + 3ρ

(
1− cos(k) cos(l

√
3)
) =

1√
3
,

Cac =
−
√

3ρ(1)(1)

Ω2 − ω2
ac + 3ρ(1− 0)

= −
√

3. (B.1.2)

Evaluating U , V , Ũ , and Ṽ using equations (3.3.27)–(3.3.28) and (3.3.33)–
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(3.3.34) at point b and with the values from (B.1.1) and (B.1.2), we find

U = V = 0, Ũ = Ṽ = 0,

in both optical and acoustic cases. The NLS coefficients for the acoustic case
are

Θac = 8
√

Ω2 + 2ρ, DZac = −ρ, DWac = 9ρ, (B.1.3)

DMac = −10
√

3ρ, DNac = −12λ, (B.1.4)

Eac = 4(−ρ)(9ρ)−
(
−10
√

3ρ
)2

= −36ρ2 − 300ρ2 < 0. (B.1.5)

Hence, the system is not elliptic at Case 2 b and e, which agrees with the
numerical results in Figure 3.11. For the optical case, we find

Θop =
8

3

√
Ω2 + 6ρ, DZop = −5ρ, DWop = −3ρ, (B.1.6)

DMop = −2
√

3ρ, DNop = −3λ(1.3), (B.1.7)

Eop = 4(−5ρ)(−3ρ)−
(
−2
√

3ρ
)2

= 48ρ2 > 0, (B.1.8)

Fop = (−3λ)(1.3)(−5ρ) = 20λρ > 0, λ > 0. (B.1.9)

This confirms that Case 3 b and e satisfy both the focusing and elliptic condi-
tions, as supported by the simulation results in Figure 3.11.

B.2 At Saddle Case 5

To begin the analysis, we consider the case (k, l) = (cos−1(−1/8), 0), as the
case with negative k is analogous due to symmetry. Using the value of ω from
Table 3.1, we have ωop =

√
Ω2 + 5ρ. For this case, the calculations proceed

via direct substitution

Cop =
−
√

3ρ sin(k) sin(l
√

3)

Ω2 − ω2
op + 3ρ(1− cos(k) cos(l

√
3))

= 0. (B.2.1)

Evaluating the quantities U , V , Ũ , and Ṽ using equations (3.3.27)–(3.3.28)
and (3.3.33)–(3.3.34), we find

U = V = 0, Ũ = Ṽ = 0.

The corresponding NLS coefficients are

Θop =
√

Ω2 + 5ρ, DZop = −3.9, DWop = −0.18, (B.2.2)

DZWop = 0, DNop = −3λ, Eop = 4(−3.9)(−0.18) = 2.8 > 0, (B.2.3)

Fop = (−3.9)(−3λ) = 11.7ρλ > 0. (B.2.4)

Therefore, the system is elliptic and focusing provided that λ > 0.
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B.2.1 Cases 5 (b) and (e)

We now consider point b, defined as b =
(

1
2

cos−1(−1/8),
√

3
2

cos−1(−1/8)
)

.

The case e =
(
−1

2
cos−1(−1/8),−

√
3

2
cos−1(−1/8)

)
is symmetric and hence

yields identical results. In both cases, we have ωop =
√

Ω2 + 5ρ, and

Cop =
−
√

3ρ sin(k) sin(l
√

3)

Ω2 − ω2
op + 3ρ(1− cos(k) cos(l

√
3))

=
√

3. (B.2.5)

From equations (3.3.27)–(3.3.28) and (3.3.33)–(3.3.34), we obtain

U = V = 0, Ũ = Ṽ = 0.

The resulting NLS coefficients are

Θop =
√

Ω2 + 5ρ, DZop = −4.5ρ, DWop = −12ρ, (B.2.6)

DZWop = −12ρ, DNop = −48λ, (B.2.7)

Eop = 4(−4.5)(−12)− (−12ρ)2 = 72ρ2 > 0, (B.2.8)

Fop = (−4.5)(−48λ) = 216ρλ > 0. (B.2.9)

Thus, the system remains elliptic and focusing for λ > 0.

B.2.2 Cases 5 (c) and (f)

Finally, we consider case c =
(
−1

2
cos−1(−1/8),

√
3

2
cos−1(−1/8)

)
. The corre-

sponding value of ω is

ω2(k, l) = Ω2 + 5ρ, (B.2.10)

and the coupling coefficient becomes

Cop =
−
√

3ρ sin(k) sin(l
√

3)

Ω2 − ω2
op + 3ρ(1− cos(k) cos(l

√
3))

= −
√

3. (B.2.11)

Again, from equations (3.3.27)–(3.3.28) and (3.3.33)–(3.3.34), we have

U = V = 0, Ũ = Ṽ = 0.

The associated NLS coefficients are
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Θop =
√

Ω2 + 5ρ, DZop = −4.5ρ, DWop = −12ρ, (B.2.12)

DZWop = 12ρ, DNop = −48λ, (B.2.13)

Eop = 4(−4.5)(−12)− (12ρ)2 = 72ρ2 > 0, (B.2.14)

Fop = (−4.5)(−48λ) = 216ρλ > 0. (B.2.15)

Therefore, the system is again elliptic and focusing for λ > 0.
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Appendix C

Supplementary material:
Chapter 4

C.1 Reduction of the system

In this section, we reduce the 4 × 4 system in 4 to a pair of 2 × 2 matrix
equations in order to simplify the analysis of the special points identified in
Table 4.1, specifically Cases 3, 4, and 5.
The system introduced in Section 4.3.6 can be rewritten in block matrix form
as

m1

(
F

F̂

)
=

(
A
B

)
, (C.1.1)

or equivalently (
M11 M12

M21 M22

)(
F

F̂

)
=

(
A
B

)
, (C.1.2)

where F = (F, P )T , F̂ = (F̂ , P̂ )T , and A = (A1, A2)T , B = (B1, B2)T are the
right-hand side vectors defined in equations (4.3.25)–(4.3.28).
The diagonal blocks M11 and M22 are equal and take the form

M11 = M22 =

Ω2 − ω2 +
3ρ

2
0

0 Ω2 − ω2 +
3ρ

2

 , (C.1.3)

where ω2 6= Ω2 +
3ρ

2
. The off-diagonal block M12 is given by

M12 =

−eik (2ρe−3ik + ρ cos(l
√

3)
)
− i

2

√
3ρeik sin(l

√
3)

− i
2

√
3ρeik sin(l

√
3) −3ρ

2
eik cos(l

√
3)

 , (C.1.4)

and the lower-left block M21 is simply the Hermitian transpose of M12, i.e.,

M21 = M∗T
12 ,
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where ∗ denotes complex conjugation and T the transpose.
Thus, the reduced system may be expressed as

M11 F +M12 F̂ = A, (C.1.5)

M∗T
12 F +M11 F̂ = B. (C.1.6)

Solving equation (C.1.6) for F̂ gives

F̂ = M−1
11

(
−M∗T

12 F + B
)
. (C.1.7)

Since M11 = M22, both can be expressed in terms of the identity matrix as

M11 = M22 =

(
Ω2 − ω2 +

3ρ

2

)
· I, (C.1.8)

where I is the 2 × 2 identity matrix. Substituting the expression for F̂ from
equation (C.1.7) into equation (C.1.5), we obtain

M11 F +M12M
−1
22

(
−M∗T

12 F + B
)

= A, which leads to(
M11 −M12M

−1
22 M

∗T
12

)
F = A−M12M

−1
22 B. (C.1.9)

This reduced form will be used in Sections 4.6 and 4.7 to simplify the analysis
of the Dirac point and saddle point cases, respectively.
To solve the coupled block matrix system in equations (C.1.5) and (C.1.6), we
proceed as follows

1. To compute M−1
11 From equation (C.1.8), we know that both M11 and

M22 are scalar multiples of the identity matrix. Since the inverse of a
scalar multiple of the identity is just the reciprocal of the scalar times

the identity, we have M−1
11 =

1

Ω2 − ω2 +
3ρ

2

· I.

2. Solve the reduced linear system
Equation (C.1.9) is a 2 × 2 linear system in the unknown vector F =
(F, P )T . Compute

F =
(
M11 −M12M

−1
11 M

∗T
12

)−1 (
A−M12M

−1
11 B

)
.

This inversion is non-singular. The right-hand side is known, and the
matrices involved are computable from the system parameters. Back-
substitute into equation (C.1.7). Once F is found, substitute it into

F̂ = M−1
11

(
−M∗T

12 F + B
)
,

to find the corresponding components F̂ = (F̂ , P̂ )T .

167


	Acknowledgements
	List of Abbreviations
	Abstract
	Introduction and Literature Review
	Historical developments
	Breathers and Localised Oscillations
	Breather Existence
	Wobbling Kinks
	Lattice models: mass-spring systems and nonlinear potentials
	Alternative potentials: Toda and Morse models

	Nonlinear Schrödinger equation
	Coupled nonlinear Schrödinger equations

	Asymptotic analysis
	Continuum approximation
	Multiple scale approximation

	Literature review
	Background and motivation
	The diatomic and monoatomic FPUT systems
	Second neighborhood interaction 
	Mass-in-Mass systems
	Discrete breathers in two dimensions
	Electrical and mechanical lattices
	Application: metamaterials

	Overview of the Thesis

	Numerical simulation of a fully nonlinear mass-in-mass FPUT chain
	Introduction
	Numerical investigation of breathers and breather-kink modes
	 The model
	 Numerical implementation
	Numerical assessment of robustness

	 Numerical Results for Stationary Modes
	Optical modes for k = 0
	Case I: even potentials (a = 0 = )
	Case II: potentials at (a = 0, =0)
	Case III: potentials at (a =0, = 0)
	Case IV: the general case (a =0, =0)

	Optical modes for k = 
	Case I: even potentials (a = 0 = )
	Case II: potentials with (a = 0, =0)
	Cases III & IV: potentials with a =0

	Acoustic modes for k = 
	Case I: potentials with a = 0 = 
	Case II: potentials with (a = 0, =0)
	Case III: potentials with (a =0, = 0)
	Case IV: the general case (a =0, =0)

	Numerical results for moving modes
	Numerical simulations of travelling kinks
	Kinks in the cubic lattice (a =0, b = 0)
	Kinks in the quartic lattice (a = 0, b =0)

	Optical breather at k = 0.1
	Case I: even potentials (a = 0 = )
	Case II: potentials with a = 0, =0
	Case III: potentials with a =0, = 0

	Acoustic breather at k = 0.1
	Case I and Case II: potentials with a = 0, = 0 and =0
	Case III: potentials with a =0, = 0

	Optical breather at k = 3.1
	Case I: even potentials (a = 0 = )
	Case II: Potentials with a = 0, =0
	Case III: potentials with a =0, = 0

	Acoustic Breather at k = 3.1
	Case I: even potentials (a = 0 = )
	Case II: potentials with a = 0, =0
	Case III: potentials with a =0, = 0

	Discussion

	Breather modes in mechanical triangular lattice
	Introduction
	Derivation of model equations
	Horizontal spring extension and potential energy
	Diagonal spring extensions and potential energy
	Hamiltonian of the System

	Asymptotic Analysis
	Dispersion relation at O(ei)
	Zeroth harmonic O(2 e0) terms
	Second harmonic O(2 e2i ) terms
	Harmonic O(2 ei ) terms
	Harmonic at O(3 ei ) terms

	Simplification of the System at = = 0
	Cases 1 at global minima, and Case 4 at Dirac points

	Discussion

	Breather modes in mechanical honeycomb lattice
	Introduction
	Derivation of model equations
	Asymptotic analysis
	Preliminaries
	The dispersion relation O(ei) terms
	The relative amplitude
	Zeroth harmonic terms O(2 e0)
	Second harmonic terms O(2 e2i )
	Harmonic terms at O(2 ei )
	Harmonic terms at O(3 ei )

	Case 1: Global minimum
	Harmonic terms O(ei )
	Harmonic terms O(2 ei )
	Harmonic terms O(3 ei )

	Case 2: Global maximum
	Harmonic terms O(ei )
	Harmonic terms O(2 ei )
	Harmonic terms O(3 ei )

	Case 3: Dirac point
	Harmonic terms O(ei )
	Harmonic terms O(2 ei )
	Harmonic terms O(3 ei )

	Case 4 and 5: Acoustic and Optical Saddles
	Harmonic terms O(ei )
	Harmonic terms O(2 ei ) 
	The acoustic saddle harmonic O(3 ei ) terms
	The optical saddle harmonic O(3 ei ) terms

	Discussion

	Conclusion
	Bibliography
	Appendices
	Supplementary material: Chapter 2
	Supplementary material: Chapter 3
	Cases 2: Saddle Point and 3: Global Maximum
	At Saddle Case 5
	Cases 5 (b) and (e)
	Cases 5 (c) and (f)


	Supplementary material: Chapter 4
	Reduction of the system


