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Abstract

Sakharov’s induced gravity is a semiclassical mechanism where classical space-
time dynamics emerge from quantised matter fields. In this thesis, we find the
Lagrangian terms from Sakharov’s induced gravity where the matter fields are
exclusively right-handed neutrinos. The right-handed neutrino induced terms
consist of two main types: gravitational and fermionic. Our key result from
the gravitational piece is a Newton constant that is consistent with observation,
whence it is possible for the Einstein-Hilbert action to be an emergent conse-
quence of right-handed neutrinos alone. We also obtain a cosmological constant
and gravitational couplings of curvature-squared order, but these are incompat-
ible with existing bounds and can be discarded. The fermionic piece leads to
a seesaw mechanism, which gives active (left-handed) and sterile (right-handed)
neutrino masses. The active neutrino masses turn out to be consistent with ex-
perimental data, but this comes at the expense of naturalness and staying within
the perturbative coupling domain. The sterile neutrino masses lead to a potential
neutrino dark matter candidate. Hence, we observe that right-handed neutrino
induced gravity accounts for the combination of realistic spacetime dynamics,
neutrino masses and a dark matter candidate, which is unaccounted for by the
Standard Model. The right-handed neutrino induced Einstein-Hilbert term in
particular further motivates right-handed neutrino existence.

In the non-commutative formulation of geometry due to Connes, coordinates
under multiplication do not commute. A simple matrix model within Connes’
non-commutative geometry is considered. It is observed that the full action of
this model is emergent in a manner akin to Sakharov’s induced gravity. In the
model, this induced gravity perspective provides further explanation for a non-
commutative geometry principle which is a stronger version of diffeomorphism-
invariance at the level of the action. The findings are restricted to our model
and constitute work in progress. It is hoped that non-commutative geometry

will gain more understanding due to the induced gravity perspective.
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Notation and conventions

These follow Barrett [1], which follows Misner-Thorne-Wheeler [2].
We assume natural units 7 = ¢ = 1.

Index notation for spacetime:

o Greek indices denote spacetime indices.
o Latin letters a, b, c, ... denote local tangent space indices.

« For simplicity, we use the same spacetime indices in both the Lorentzian

and Euclidean. The same holds for the tangent indices.
Metric signatures:

o In the Lorentzian, we use (—, +,+,+), i.e. Ny = diag(—1,1,1,1).

e The Euclidean regime just has (4, +,+,+), i.e. dg = diag(1,1,1,1).

The Euclidean Ricci scalar R on S? is assumed to be positive.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Context of Sakharov’s induced gravity

Our most experimentally successful understanding of the matter in our universe
is encapsulated in the Standard Model (SM): this gives the fundamental matter
fields, their interactions via gauge bosons, and the Higgs boson, in a unified de-
scription according to quantum field theory. However, the SM does not include
gravity, which is currently best described by the classical theory of general rela-
tivity. Finding the correct quantum description for gravity remains a significant
unsolved problem.

The problem of gravity has seen the development of several candidates for
quantum gravity (see [3] for a history). These candidates all take spacetime as
quantised, i.e. at the Planck length spacetime has a particular discrete structure
(depending on the candidate). The quantum gravity candidates have differ-
ent treatments of gravity and matter, but generally work as follows: prioritise
the quantisation of gravity and afterwards incorporate matter (c.f loop quantum
gravity [3] and causal dynamical triangulations [4]), or consider gravity and mat-
ter fields within a unified quantum framework (c.f string theory [5, 6] and causal
fermion systems [7, 8]).

In this thesis, we focus on another approach to a quantum description of

gravity: Sakharov’s induced gravity. According to this concept, matter fields



are considered fundamental, and the dynamics of classical gravity (but not the
gravitational field itself) emerge from the matter fields upon their quantisation.
These roles of matter and gravitation contrast with those in general quantum
gravity candidates. For general matter fields, the induced gravitational dynamics
is given by an Einstein-Hilbert action and cosmological constant term in addition
to terms of curvature-squared order (the latter terms can be viewed as general
relativity corrections arising from a classical limit of quantum gravity). Thus,

there are several merits of Sakharov’s induced gravity:

o The Einstein-Hilbert action gains a new layer of meaning: it is an emergent

quantity coming from quantised matter, rather than being innate;
o Any curved spacetime quantum field theory admits gravitational dynamics;

o The origin of gravitational dynamics may be semiclassical and may not

need quantum gravity.

Correspondingly, the advent of Sakharov’s induced gravity spawned a line of
research in this area, including extensions to the basic concept. We now outline

some of the key developments in this research line.

1.1.2 Previous developments in Sakharov’s induced grav-
ity

We start with Sakharov’s concise introduction of his induced gravity [9]. Ac-

cording to this original version, the source of spacetime dynamics is fluctuations

of the quantum vacuum. This fact is an immediate consequence of Lagrangian

quantum field theory as follows. One assumes the background spacetime (M, g)

(in the Lorentzian regime, see appendix A) as well as a quantum vacuum. One

lets L4 be the Lagrangian of spacetime curvature due to the quantum vacuum

fluctuations. The form of the Lagrangian is given by the curvature expansion
Lune =2 [ Kok + 2 ( / kdk)R + O(R?) (1.1)

where ¢y, ¢; are dimensionless constants of order unity and R is the Ricci scalar.
Equation (1.1) comes about as follows: it is an expansion in all diffeomorphism-

invariants given by ¢, with coefficients proportional to momentum integrals for



virtual particles produced by quantum vacuum fluctuations, and dimensional
analysis gives the integrand powers. Equation (1.1) gives a cosmological con-
stant at leading order and an Einstein-Hilbert term immediately above leading
order. The Einstein-Hilbert term leads to a Newton constant G given by (in

our conventions)

1
_ . 1.2
167G, Cl/ Rk (1.2)

The leading term in equation (1.1) is (in our conventions) —-2Az

167Gt

where Ay is the

induced cosmological constant, hence using equation (1.2) gives

G [ k3dk
Ap=—-2 . 1.
™ 798, [kdk (13)

The momentum integrals give rise to UV divergences, which make equations
(1.2) and (1.3) ill-defined. These divergences are regularised by introducing a
UV momentum cutoff A which is set at the Planck scale. This gives a non-
zero Newton constant that fits observation. However, the cutoff also means
the cosmological constant A; has size of order A% and is thus much larger than
experiment [10, 11]. Neglecting the cosmological constant, one is left with the
Einstein-Hilbert term. As a corollary of his mechanism, Sakharov showed free
particles source dynamics of spacetime, since applying the mechanism to free
particles of masses A leads to a Newton constant G = A~2.

Sakharov’s original concept was given a reformulation by Visser [12]. This
reformulation used the conventional language of quantum field theory, in partic-
ular the functional integral quantisation and the method of regularisation. One
starts with a theory of quantum matter fields F in classical curved spacetime
(M, g). Given action S, for the matter fields, quantisation gives the functional
integral

Z=|_. P DE = e (1.4)

where I' is the quantum 1-loop effective action [13] induced by the matter. The

regularisation of I' is given by the expression

Coofo) = | Q(WlGl< oA+ R) 4 O(R2)) (1.5)

giving an Einstein-Hilbert term with cosmological constant and curvature-squared

terms. Visser showed that the mechanism works with scalars, spinors and other
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field types (including supermultiplets). He also identified several pathways for
induced gravity, which propose differing sets of conditions that are enforced on
the induced gravitational constants.

The effective action regularisation involves a technique known as the heat ker-
nel expansion [14, 15], which expresses the solution of the heat equation on curved
spacetime as an asymptotic expansion whose coefficients are diffeomorphism-
invariants depending on spacetime curvature. Denardo and Spallucci were the
first to employ the heat kernel expansion in induced gravity (see [16] and refer-
ences therein). The heat kernel expansion was also used early in induced gravity
within the Kaluza-Klein model of [17]. Induced gravity now has the heat kernel
expansion as a standard component. We will discuss the heat kernel expansion
in more detail in chapter 2.

The induced gravity mechanism has also been considered for a curved space-
time with non-zero torsion. This was done first for a Euclidean formalism [18]
and later for a Lorentzian formalism [19]. In these cases, the induced regularised
effective action also encodes the dynamics of torsion. We only mention torsion
for completeness purposes and will not give explicit consideration to torsion in
this work.

The mechanism has been extended by Broda and Szanecki [16]: in addition
to spacetime dynamics corresponding to gravitational coupling constants, this
extended mechanism gives rise to the dynamics of gauge fields. A special case of
this is the SM, for which it is shown that matter fields comprising the SM fermions
and the Higgs field furnish SM gauge coupling constants. Values for the induced
gravitational and gauge couplings that are a good match with experiment are
derived from the mechanism.

For the purposes of the historical background for the present thesis, an impor-
tant extension to the basic induced gravity mechanism is the 'induced Standard
Model” [20]. In this model, the matter fields are taken to be all fermions of the
SM where the right-handed counterparts to the neutrinos are also added. These
matter fields are integrated out giving an effective action that is purely bosonic:
the action contains the gauge-Higgs Lagrangian of the SM coupled to curved

spacetime in addition to cosmological, Einstein-Hilbert and curvature-squared

11



terms. Hence, the induced Standard Model provides a mechanism for dynami-
cal spacetime in the SM, thus proposing a solution to the lack of gravitational
dynamics within the SM. The effective bosonic action has connections with the
Connes-Chamseddine action of non-commutative geometry (which will be dis-
cussed in chapter 4) and is compatible with the state sum formalism of quantum

gravity.

1.2 Main contribution

1.2.1 Outline

Our main contribution in this thesis! is finding the effective action terms in-
duced by integrating out only right-handed neutrinos. In this induced gravity
mechanism, the initial matter theory is taken as three right-handed neutrinos
minimally coupled to the SM within curved spacetime. This theory is physically
observable in the Lorentzian regime, so our mechanism starts here. However,
in the Euclidean regime, the standard techniques of induced gravity, in particu-
lar the heat kernel expansion, are better suited than they are to the Lorentzian
regime. Hence, a significant fraction of our calculations are done in the Euclidean
regime. Here, we introduce a real singlet scalar needed to fix problems in the
Higgs sector within a non-commutative geometry formulation of the SM (for non-
commutative geometry, see section 4.2). It is in the Lorentzian regime where we
give our results, and this is to ensure they can (in principle) be observed. The
integration out of the right-handed neutrinos ultimately gives an effective action
containing a gravitational part and a fermionic part. The gravitational part gives
rise to cosmological, Newton and curvature-squared constants of which the New-
ton constant turns out to have a value which is consistent with observation (for
the cosmological and curvature-squared constants, see subsection 1.2.3). The
fermionic term leads to a real scalar modification of the standard (type-1) seesaw
mechanism for neutrino masses (see section 4.1). The active (left-handed) neu-

trino masses from the seesaw turn out to be consistent with experimental results.

!The original work in this thesis has not yet been published. The author expects to prepare

a paper on this work and submit the paper to an appropriate journal in due course.
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The seesaw also gives rise to a sterile (right-handed) neutrino state that may be

a candidate for dark matter.

1.2.2 Novelty and impact statement

In [20] the total bosonic effective action induced by all SM fermions and right-
handed neutrinos was found, but decomposing the action into contributions from
each species of fermion has not been done. One can in principle start to fill this
gap by considering any fermion species. We choose the right-handed neutrinos
since these give the case that is simplest and is valid in the largest energy range
of all fermions in the induced Standard Model. To our knowledge, we are the
first to consider the case of an induced gravity mechanism from right-handed
neutrinos. In the gravitational sector, the key new result is that right-handed
neutrinos furnish an observationally consistent Newton constant and thus real-
istic dynamics of spacetime. This result implies the Einstein-Hilbert action is
possibly not innate but rather emergent from right-handed neutrinos. The main
new result from the fermionic sector is the emergence of the scalar modified
seesaw within Sakharov’s induced gravity.

The right-handed neutrinos are already known to have implications for par-
ticle physics phenomenology, in particular explaining neutrino masses and dark
matter (see section 4.1). Even though the explanations of neutrino masses and
(potentially) dark matter in our right-handed neutrino induced gravity mecha-
nism are not new, the explanation of the Einstein-Hilbert term is new, and thus
the emergence of the combination of all three properties in our mechanism is
a new result. This emergence of all three aspects in our mechanism potentially
solves three deficiencies in the SM (see chapter 4). In particular, our result of the
emergence of realistic spacetime dynamics from right-handed neutrinos provides

an additional motivation for the existence of right-handed neutrinos.

1.2.3 Limitations

The main limitations of our right-handed neutrino mechanism are as follows:

e Due to the heuristic nature of functional integrals and some details of the

13



treatment of the effective action, our right-handed neutrino mechanism is

heuristic;

e Our mechanism uses a spacetime M with several assumptions (see ap-

pendix A). These assumptions give physical inconsistencies:

— Assuming M is compact but boundaryless rules out R™ topology and a

fully physical Lorentzian structure but makes the mathematics easier?.

— The manifold M admits unphysical (Euclidean) fields on the same
footing as physical (Lorentzian) fields. Ghost fields are unphysical
fields that can arise in gauge theories via gauge fixing, but the Eu-

clidean fields are not ghosts.

The first point means that the Lorentzian regime of our right-handed neu-
trino mechanism approximates Lorentzian physics. Nevertheless we use
the Lorentzian regime since it is closer to observable physics than the Eu-

clidean. Resolution of the above points is left to further work;

e The right-handed neutrino induced cosmological constant is much larger

than the experimental value;

e The curvature-squared couplings give rise to undesirable tachyonic be-

haviour;

o The experimentally consistent active neutrino masses come at the expense
of neutrino Yukawa couplings that are large enough to be in the unnatural

and non-perturbative regime;

o We have omitted a full analysis to check the viability of the dark matter

candidate due to our seesaw;

o Our seesaw gives sterile neutrino states of masses well above current accel-

erators;

» For the whole effective action due to the right-handed neutrinos, one should

ideally conduct a comprehensive parameter space search to investigate

2The author thanks John W. Barrett for raising this point to the author.
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which regions give experimentally consistent induced quantities. Instead
of this, we simply provide one region of this parameter space. Further

exploration of the parameter space is beyond our scope.

1.3 Literature survey

Our right-handed neutrino induced gravity mechanism is new as a whole, but
particular aspects of it have antecedents in the literature. These particular as-
pects are surveyed in this section. We have already given a historical survey of

Sakharov’s induced gravity, but this section is more general.

Sakharov’s induced gravity

We discuss some earlier concepts that are similar to models in Sakharov’s induced
gravity. There is the proposal that fermionic matter comprises the gauge bosons
and graviton [21, 22, 23, 24|, and this is similar to the induced Standard Model.
In [25], the Einstein-Hilbert action with cosmological constant emerges from a
flat-spacetime model of a Higgs field in six dimensions. Emergent spacetime
dynamics due to gauge fields in addition to scalars and spinors was considered
in [26].

Another earlier proposal [27, 28, 29, 30] is that spontaneous symmetry break-
ing furnishes the Einstein-Hilbert action. This is similar to our right-handed
neutrino mechanism (see section 5.4.3), where gravitational corrections will arise
upon spontaneous real scalar symmetry breaking.

The induced Standard Model was introduced in [20]. This reference is the
only substantial work on the induced Standard Model (to the present author’s
knowledge).

Heat kernel expansion

The standard reference for the heat kernel expansion is the book of Gilkey [14].
Another notable reference is the review article of Vassilevich [15], which shows
the universal nature of the heat kernel expansion by treating in detail many

different cases. However, the heat kernel expansion is only well-defined in the
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Euclidean regime (this is discussed in chapter 2 using the discussion from [15]).
To the present author’s knowledge, a Lorentzian formulation of the heat ker-
nel expansion is not generally accepted. We remark that a candidate for this
Lorentzian formulation is Hadamard expansions [31, 32|, but these are not con-
sidered in this thesis as it is unclear how these can be applied to our right-handed
neutrino mechanism. To the author’s knowledge, the optimal definition of the

heat kernel expansion is in the Euclidean.

Lorentzian-Euclidean transition

In chapter 3, we discuss a particular framework for transitioning between the
Lorentzian and Euclidean regimes, and this framework (here called the Lorentzian-
Euclidean transition) was introduced in [1] and has not received further work (to
the present author’s knowledge). We remark on connections the Lorentzian-

Euclidean transition has to the literature:

e An antecedent for the Lorentzian-Euclidean transition is the Wick rotation.
The Wick rotation (along with some of its previous references) is discussed

in chapter 3.

o We state connections to the older framework of Euclidean quantum grav-
ity. The Lorentzian-Euclidean translation uses the practice of Hawking
[33] of using the first-order formalism for spacetime, i.e. tetrads and
spin connections. Also, Gibbons-Hawking-Perry end up with a patholog-
ical Euclidean Einstein-Hilbert term [34], which is what one gets in the
Lorentzian-Euclidean transition. Both Gibbons-Hawking-Perry in [35, 34]
and the Lorentzian-Euclidean transition use contour rotations, but in dif-
ferent forms: the Gibbons-Hawking-Perry rotation was used to cure the
Einstein-Hilbert problem in a purely Euclidean framework, while in the
Lorentzian-Euclidean transition the rotation is a key step in going to the

Euclidean theory from the Lorentzian.

o In the Lorentzian-Fuclidean transition, the functional integrals of the Lorentzian
and Euclidean theories are equated using the contour rotation. This re-

sembles the situation in [36] and attempts along these lines in [37, 38, 39].

16



In this thesis, we use the Lorentzian-Euclidean transition since this turns out to

fit naturally with our right-handed neutrino mechanism.

Connes’ non-commutative geometry

We discuss this area in section 4.2 and give references later in this chapter. In
the older non-commutative geometry references (e.g. [40, 41]), there is one type
of dimension corresponding to the 'metric’ dimension. Then in [42, 43], it was
found that two dimension types (‘metric’ and 'KO’) are needed to fix certain
problems within a non-commutative formulation of the SM (with right-handed
neutrinos). The two dimensions are discussed in section 4.2.

In references 3-7 in [44], there are considerations of coupling to the Higgs
a (possibly complex) scalar field transforming as a singlet under the internal
SM symmetry. This has two main effects. Firstly, it allows the selection of the
experimental value of the Higgs mass. Secondly, it fixes the problem identified
in [45] that at high energies the Higgs self-coupling runs negative and hence
the Higgs vacuum becomes unstable. These ideas have been realised within the
non-commutative geometry description of the SM and right-handed neutrinos.
In [46], a real singlet scalar was introduced through the right-handed neutrinos
and furnished the same Higgs couplings, though the scalar couplings were not
considered to run. In the follow-up [44], the running scalar couplings were ac-
counted for and this resulted in both of the effects on the Higgs sector. The
non-commutative geometry real singlet scalar has couplings to the Higgs which
emerge from the coupling of the scalar to right-handed neutrinos. Given the
neutrino-scalar coupling, the scalar is naturally compatible with right-handed
neutrino induced gravity. This form of scalar induced gravity has not been con-
sidered in the induced Standard Model [20] or (to the present author’s knowledge)
in the wider literature.

We remark that a similar complex scalar field is derived in [47]. From the
view of non-commutative geometry, this complex field is more natural than the
real field. However, here we just consider the real field, and leave the complex
field to future work.

With respect to the induced Standard Model, we remark that [48] contains a

17



related proposal where a fermionic action quantum property leads to a bosonic

action within a non-commutative setting.

Weinberg operator and beyond

In the framework of Broncano-Gavela-Jenkins [49, 50], the right-handed neutri-
nos are integrated out resulting in non-renormalisable fermionic terms, one of
which is the Weinberg operator [51]. We remark that the Weinberg operator
also comes from the effective framework in [52, 53]. These articles are set in flat
Minkowski spacetime. Thus, without gravity, the right-handed neutrinos still
induce fermionic terms. Having gravitational terms along with fermionic terms
emerge from right-handed neutrinos a la induced gravity has not been studied
in the literature (to the author’s knowledge). We consider such a simultane-
ous induction here, and use the Broncano-Gavela-Jenkins framework to com-
pare fermionic terms. The non-renormalisable terms and the Broncano-Gavela-

Jenkins framework are discussed in chapter 4.

Integration out

The integration out of the right-handed neutrinos typically means (e.g. [52, 49])
restricting to the locus of right-handed neutrino configurations satisfying the
right-handed neutrino equations of motion. In terms of the functional integral
view on this, the explicit evaluation of the functional integral over right-handed
neutrinos has not been done in the literature (to the author’s knowledge). The
evaluation of the right-handed neutrino functional integral is a key problem in
this work. This problem is non-trivial since functional integrals are generally

intractable. Some hints for the integration out are found in the literature:

 In [54], a functional integral of a similar form to ours is worked out within
the framework of Euclidean finite non-commutative geometries. The result
of the integral in [54] is a Pfaffian, i.e. a function whose square is the

determinant.

e A problem in the non-commutative SM and right-handed neutrinos is

fermion doubling [55, 56, 57] (see also [58] for a particularly clear account).
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This has a solution [43]: a functional determinant to the power of 1/4 cures
all fermion doubling. This precise expression was found for the Pfaffian in

[54].

1.4 Organisation

Chapters 2 to 4 are review chapters that form the core background of this thesis,
and these chapters contain no original material. Chapters 5 and 6 contain all
the original content of this thesis: chapter 5 has the bulk of this content, and
the remainder is in chapter 6. In all these chapters, our presentation is from
the perspective of a physicist, i.e. we use heuristic definitions and omit some

rigorous proofs. We now give a chapter summary.

Chapter 2: Induced gravity and induced Standard Model

Chapter 2 is a review of Sakharov’s induced gravity, and in particular includes
the induced Standard Model as a generalisation of the concept.

A large part of the review is the key steps and technical details of induced
gravity. This mainly follows Visser’s induced gravity reformulation [12], used
since it contains a full exposition of the steps and details without torsion, the
latter of which is not explicitly considered in this thesis. In [19] there is an
induced gravity mechanism with torsion containing the steps and details, and we
use these in our presentation (but torsion is neglected in our case). We remark
that our presentation also uses effective field theory in the form of a clear lecture
by Melville [59].

The induced gravity regularisation includes several standard techniques, which

we discuss in subsection 2.1.3:

e One such technique is the Schwinger proper-time formalism. This is found
in the more recent induced gravity articles (e.g. [12, 16, 19]) and is dis-

cussed in [60];

o We also discuss the heat kernel expansion, which in this subsection follows
the Euclidean formulation in the review article of Vassilevich [15]. The rel-

evant but more lengthy formulae in that review article are not reproduced
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in this subsection since there is little advantage to doing so. We choose the
Vassilevich article [15] as it has the same Ricci scalar conventions as this
work. Henceforth in this work, we assume the heat kernel expansion as set

out in this subsection.

In subsection 2.1.4, we further discuss torsion and other modifications to the
standard induced gravity mechanism, but these specific modifications are not
considered in further detail in this thesis.

In section 2.2, we discuss the induced Standard Model. This section follows
[20] since there are no other articles to use. In his induced Standard Model,
Barrett assumes the Euclidean regime to find the SM fermion and right-handed
neutrino contribution. In contrast, the present work will use a scheme to tran-
sition to the Euclidean from the Lorentzian, and we will review this scheme in

the next chapter.

Chapter 3: Lorentzian-Euclidean transition

We clarify what is meant here by a Lorentzian geometry on spacetime mani-
fold M. A classical Lorentzian geometry is given by appendix A as either: a
Lorentzian metric g which is a pseudo-Riemannian metric of signature (—, +, +, +)
(second-order formalism) or; or a tetrad (* defined by equation (A.5) (first-order
formalism), and both descriptions are equivalent. A quantum Lorentzian geom-
etry can be defined as a particular discrete geometry emerging from quantum
gravity (with quantised M) e.g. casual dynamical triangulation [4], causal sets
[61], and loop quantum gravity [3], that corresponds to a Lorentzian metric in
the classical limit. Our notion of Lorentzian geometries includes both classical
and quantum geometries. One can set matter on a Lorentzian geometry, which
corresponds to classical or quantum fields. By a Lorentzian theory, we mean a
set of matter fields in a Lorentzian geometry on M. Since the universe is set in
Lorentzian spacetime, Lorentzian theories are the experimentally observable the-
ories. However, one encounters problems in Lorentzian theories, in particular (for
this work) divergent functional integrals and ill-defined heat kernel expansions.
One has similar notions in the Euclidean regime, except with metric signa-

ture (4, +,+,+). In contrast with Lorentzian theories, Euclidean theories are
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unphysical but allow for better functional integral convergence and greater com-
patibility with existing frameworks, in particular the heat kernel expansion. Thus
in induced gravity which is centered around functional integrals and heat kernel
expansions, the optimal choice is to start with the measurable Lorentzian physics
and then perform the computations in the more tractable Euclidean regime.

Given the complimentary nature of Lorentzian and Euclidean theories, one
wishes to transition between them. A standard procedure for this is known from
flat-spacetime quantum field theory as the Wick rotation. In chapter 3 we discuss
a different scheme herein called the Lorentzian-Euclidean transition, which is the
transition procedure used in this work. The Lorentzian-Fuclidean transition was
recently introduced in [1], which is the reference this chapter follows (and the
notion of geometry we use comes from this reference). The idea of the Lorentzian-
Euclidean transition is to start from a Lorentzian theory and relate this via a
series of steps to a similar Euclidean theory. A caveat is that the manifold does
not rotate, but the geometries and matter on the manifold do, which is a different
situation to the Wick rotation. One of the steps of the Lorentzian-Euclidean
transition is 'Euclideanisation’ [1], which is itself significant and thus gets its
own discussion in section 3.2. In [1], the transition was explicitly considered in
the direction of Lorentzian to Euclidean, but the reverse transition is in theory
allowed. Correspondingly, the chapter concludes with remarks on the transition
from the Euclidean to the Lorentzian. This section emphasises practical results
with relatively few technical aspects, and we defer to [1] for the details.

A major reason why we use the spinor presentations [62, 1] is because these are
used for the Lorentzian-Euclidean transition [1]. In addition, these frameworks
use the same manifold M, and we follow this practise. Thus, our use of these

frameworks is consistent.

Chapter 4: Beyond the Standard Model

Chapter 4 concerns three main relevant areas of beyond-SM physics.
The first section of this chapter discusses right-handed neutrinos (in the
Lorentzian). The main element of this section for the next chapter is the SM

and right-handed neutrinos, which is used as the origin for right-handed neu-
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trino induced gravity. The main contribution is also supplemented by discussion
in this section on neutrino mass ranges, seesaw mechanisms and a certain SM
plus right-handed neutrino regime. This section approximately follows Drewes’
review article [52] that proved to be a useful source of material and references.
Drewes’ article describes Majorana and Dirac neutrinos, but we do not explicitly
consider this distinction in this work. This section also uses the review article
[63] in covering other (non type-I) seesaw mechanisms.

The second section (section 4.2) reviews elements of Connes’ non-commutative
geometry, which we place under the label of beyond-SM physics since there is a
non-commutative formulation of the SM and right-handed neutrinos. Whereas
a Riemannian geometry is defined by a smooth manifold, a non-commutative
geometry is defined by an algebra, a Hilbert space and a set of operators on
the Hilbert space, and the algebra does not commute under multiplication of
its elements. The presence of the ingredients for a non-commutative geome-
try ensures consistency with the cases of the Riemannian spacetime in isolation
and as a background for the SM with right-handed neutrinos. Hence, despite
non-commutative geometry having origins in pure mathematics, it has links to
physics. There are non-commutative analogues of several concepts from Rieman-
nian geometry including spacetime, metric, dimension, orientability and geodesic
distance. In particular, the analogue of the action for SM bosons and spacetime
is the Connes-Chamseddine action. In addition to Riemannian spaces that have
in a sense infinite size, non-commutative geometry admits finite spaces.

Section 4.2 does not follow any one single reference. The standard refer-
ence for non-commutative geometry is the book of Connes [64]. The axioms for
Connes’ framework come from [40]. There is also a recent set of general non-
commutative geometry lectures by Barrett [65], which the special case of the
Riemannian manifold follows herein. The Euclidean SM and right-handed neu-
trino case is discussed in [42, 43, 46]. The first reference in particular discusses
non-commutative analogues of gauge symmetries as well as two separate non-
commutative dimensions, namely metric and KO (more in chapter 4), and the lat-
ter two references give a general overview of non-commutative geometry. We use

the definition of the metric dimension from [66]. Non-commutative symmetries
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are automorphisms, and this is discussed in [67, 40], the latter of which in partic-
ular introduces the inner automorphisms and inner fluctuations and that these
give rise to SM bosons. The spectral action principle and Connes-Chamseddine
action come from [67, 41|, the latter of which also gives a physics-friendly dis-
cussion of general non-commutative geometry aspects. The non-commutative
fermionic action comes from [42, 43]. The real singlet scalar appeared in [46]. A
clear and more explanatory account of the scalar and its properties is given in
[68] and references therein, as well as [69]. The effects of the scalar interactions,
in particular the experimental Higgs mass and vacuum stability, were fully cap-
tured and worked out in [44]. The section concludes with finite spectral triples,
which are non-commutative geometries that are in a sense finite dimensional.
The finite spectral triple discussion mainly uses [70], the article [71] containing
special finite spectral triples, and the recent article of Barrett [54].

In the last section, we consider a specific class of Lagrangian terms which: are
non-renormalisable (mass dimension > 4 in our units), are invariant under SM
gauge symmetries and have two SM lepton doublets and feature the Higgs twice.
One such term is the Weinberg operator, which we cover first. The Weinberg
operator was introduced in [51], and useful discussions of the term are found in
[52, 49]. We remark on other fermionic terms, but we stay below mass dimension
7 in this work. Lastly, we review the Broncano-Gavela-Jenkins framework [49,
50], which we compare our right-handed neutrino induced gravity mechanism to
in the next chapter.

The first and last sections of this chapter are elsewhere typically in flat
Minkowski spacetime. However, to ensure our discussion is consistent with in-
duced gravity, for the first and last sections, we take the setting of the curved
spacetime manifold M assuming the Lorentzian regime. The fields are assumed
to be minimally coupled to M, thus the first and last sections are effectively not

changed compared to the literature.
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Chapter 5: Beyond Standard Model physics from right-handed neu-

trinos

Chapter 5 contains the main original contribution of this thesis: the Lagrangian
terms due to an induced gravity mechanism sourced by right-handed neutrinos.
In this chapter, our mechanism is in a sense commutative, but we use non-
commutative geometry as a conceptual and structural tool for some steps.

The opening section of this chapter starts with the Lorentzian regime since
this is physical. In particular, we have the functional integral for quantised right-
handed neutrinos and the classical SM set on classical M. We then transition to
the analogous Euclidean functional integral, which is more compatible with our
main methods and techniques, in particular the heat kernel expansion.

In the next section, we conduct the evaluation of the Fuclidean right-handed
neutrino functional integral, which is the first significant stage of this chapter.
The right-handed neutrino functional integral evaluation follows [54]. The key
result is that the Fuclidean functional integral gives a Pfaffian and an extra
fermionic piece due to couplings between the right-handed neutrinos and SM
leptons.

The next section sees the Euclidean functional integral defining an effective
action containing bosonic and fermionic pieces, where the bosonic piece comes
from the Pfaffian. For the schematic effective action, we transition back to the
Lorentzian.

The rest of this chapter concerns the individual bosonic and fermionic terms
of the effective action. The next section is a study of the bosonic piece, and
the fermionic term is looked at in the section after. In both sections, we start
in the Euclidean regime and perform the transition to the Lorentzian regime in
more detail. In both regimes, the sections also give the explicit calculations and
comparisons of results produced by the corresponding terms to frameworks in
the literature.

The bosonic term is the subject of the next section (section 5.4), which be-
gins in the Euclidean. We conduct the evaluation of the Pfaffian using results
from [54], and we end up with the Pfaffian as a functional determinant 4th root

(neglecting a trivial index term). This functional determinant gives the bosonic
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term. For this bosonic term, we use standard regularisation techniques from
induced gravity, including the Schwinger proper-time formalism and the heat
kernel expansion, though at this point we keep our formulae general. We re-
mark that we are still in the Euclidean and thus the heat kernel expansion is
well-defined. Now, we bring into our framework the non-commutative geome-
try real singlet scalar (slightly modified), which gives an additional internal Zs
symmetry. We now compute the specific details of the induced gravity regu-
larisation. Putting together our results for the regularisation gives the bosonic
action in terms of curvature and scalar terms, where the bosonic action is Zs-
invariant. A provisional comparison of our bosonic action with the (Euclidean)
Connes-Chamseddine action from non-commutative geometry gives good agree-
ment between both actions. The real scalar Z, symmetry is then spontaneously
broken, which leads to a non-zero scalar vacuum expectation value that collapses
the scalar terms to pure gravity terms. The resulting pure gravity action is tran-
sitioned to the Lorentzian. We then extract the gravitational constants from
the pure gravity action. The constants depend on three right-handed neutrino
mass parameters, and our framework is consistent for two large masses and one
small mass. This mass regime turns out to give a Newton constant, but we
also get a cosmological constant that is too large and tachyons coming from the
curvature-squared terms. We remark that tachyons arise in string theory, and
correspondingly our reference for tachyons is [5].

In the last section of this chapter, we start from the Euclidean effective
fermionic action and the corresponding Lagrangian. Some of the steps for the
fermionic action are identical to those for the bosonic action, and for these steps
the order is unchanged. This ensures that the bosonic and fermionic terms are
treated consistently in the full effective action. We put the (modified) non-
commutative geometry scalar into the fermionic term. We then expand the
fermionic Lagrangian in the right-handed neutrino mass parameters, and in this
section restrict to leading order. After some manipulation of the fermionic term,
we assume the Zs-breaking scalar vacuum expectation value. We now transition
back to the Lorentzian. The resulting fermionic Lagrangian is a Weinberg oper-

ator, which upon further electroweak symmetry breaking gives physical masses
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for the left-handed neutrinos. Compared to the Lorentzian Broncano-Gavela-
Jenkins framework [49, 50], our left-handed neutrino masses have an extra factor
due to the scalar. For one small right-handed neutrino mass parameter and two
large, one gets experimental active neutrino masses that come with the cost that
the couplings between the SM and right-handed neutrinos are of large enough
magnitude to be unnatural and non-perturbative. In addition, we get sterile

neutrino masses and comment on their values.

Chapter 6: Further aspects of induced gravity models

In chapter 6 we consider a continuation of the right-handed neutrino induced
gravity mechanism as well as other models of induced gravity, but this material
is currently incomplete and hoped to be continued in further work.

In the first section, we consider the next-to-leading term in the expansion of
the fermionic Lagrangian. The procedure for this term is similar to that for the
leading term, but both procedures are not exactly identical since their details
differ. In the Lorentzian, and after electroweak and real scalar Z, breaking,
we end up with a kinetic term for left-handed neutrinos. Again comparing to
Broncano-Gavela-Jenkins [49, 50|, our kinetic term differs by a scalar factor,
which gives additional suppression in the right-handed neutrino mass parameter
regime.

The next section gives some remarks on the integration out of fields other
than right-handed neutrinos. We provide such remarks for SM fermions, in
particular the top quark, the SM gauge fields and the metric. In addition, we
discuss approaches and further work for the induced Standard Model.

For the last section, we attempt to realise the induced gravity mechanism
in the framework of non-commutative geometry. This involves building upon
previously obtained results for integration on finite non-commutative geometries.
The background of this section is finite spectral triples, which have the function
of being useful toy models for non-commutative geometry. More specifically, we
restrict to a certain finite spectral triple model. The main element of this model
is a functional integral over geometries and fermionic fields, which contains an

action with geometry and matter terms. Within this setting, one can view the
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Connes-Chamseddine action as being induced from the fermion integration. The
geometry action (with a further constraint) may be also considered induced by

a field resembling a Higgs field coupled to geometry.
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Chapter 2

Induced gravity and induced

Standard Model

This chapter is an introduction to the relevant background of induced gravity
(without original material). Section 2.1 mostly concerns the basic induced grav-
ity mechanism. In subsection 2.1.1, we outline the key steps of the mechanism.
In subsection 2.1.2, we specialise to simple cases to illustrate how the mecha-
nism works in more detail. The presentation in these two subsections follows
the presentation of [12], which formulates Sakharov’s idea in terms of the func-
tional integral quantisation of field theory!. Our presentation also uses the steps
and details as shown in [19] but we do not include torsion. Some important
techniques in induced gravity are discussed in subsection 2.1.3, and we give the
references for this in chapter 1. Particular ways of modifying the basic induced
gravity mechanism are discussed in subsection 2.1.4, which is short since the
precise modifications covered therein are outside the scope of the present thesis.
This subsection serves as a natural preamble to the modification in section 2.2,
which reviews an induced gravity structure in the SM (modified by right-handed
neutrinos) named the induced Standard Model. For this section we follow [20],
which is the only available reference on the induced Standard Model (to the
present author’s knowledge). We remark that the level of detail possible in sec-

tion 2.2 is constrained by the fact that the discussion in [20] is largely qualitative

!The conventions of [12] are different to ours, and our presentation translates to our own

conventions.
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and no original content is in our section.

2.1 Sakharov’s induced gravity

The main steps of induced gravity are given below. Later in this section, these

steps will be precisely formulated in special cases.

2.1.1 Main steps

o We start with the spacetime manifold M (see appendix A) endowed with
Lorentzian metric g and a space of matter fields F. At this point, we assume

an action containing only matter terms, i.e. (M, g) is non-dynamical.

o In the functional integral quantisation the matter fields are quantised but
(M, g) remains classical throughout, i.e. one has the functional integral

Z = eSmlPlpp (2.1)
FeF

where 5, is the action functional for matter fields F' € F and may also
depend on the metric g (the action S, will take specific forms later). Note
that due to the still non-dynamical (M, g), one has a quantum field theory

in curved spacetime.

e One has the following result from curved spacetime quantum field theory
[13]:
7 =l (2.2)

where I'[g] is the 1-loop effective action? depending on the metric g. Hence,
this step consists of integrating out the matter fields F to get the 1-loop

effective action I.

e The 1-loop effective action is regularised, and we denote the result of
this by I'y¢s. The regularisation procedure involves three key techniques:

Schwinger’s proper time formalism, cutoff regularisation and heat kernel

2In this formalism gravitons are fluctuations of an ambient metric, and any number of them

can couple to the 1-loop Feynman diagrams, and the sum of all such diagrams gives I'.
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expansion (we will see how these work in more detail later). However, no

renormalisation is performed. Generically, one ends up with

Lreg = /M Q(mi@( —2Ar + R) + O(R2)) (2.3)

where ) is the spacetime volume form (see appendix A). From the per-
spective of effective field theory, equation (2.3) is the low-energy effective

action that is induced from the matter theory present at high energies.

o The spacetime (M, g) now obtains dynamics described by the regularised
1-loop effective action as expressed in equation (2.3). Hence, one gets a
cosmological constant Aj, a Newton constant G; and curvature-squared
coupling constants. These constants have cutoff dependence as well as

dependence on the parameters of the matter fields.

We make some general remarks on induced gravity. Given the induced grav-
itational constants, one has the option to introduce additional constraints (e.g.
Sakharov’s 1-loop dominance and Pauli’s 1-loop finiteness), none of which are
physically privileged [12]. As a whole, the induced gravity mechanism is semi-
classical since quantisation is only applied to matter while the spacetime (M, g)
remains purely classical. A consequence of the mechanism is that quantum field
theory in curved spacetime comes at once with induced gravity. Note that the
matter only induces the dynamics of (M, g) but not (M, g). Hence, if quantum
gravity is needed to account for (M, g), induced gravity should be viewed as a
complimentary piece towards an understanding of all spacetime features.

We now go into detail for the workings of the induced gravity mechanism. To
do this, we consider the standard cases of scalar and pure Dirac spinor fields set on
M. Our presentation is based on the presentation in [12]: we find the effective
action contributions of the individual fields, then combine these contributions

before regularisation.
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2.1.2 Technical details
Scalar field

Let ¢ € C*(M) be a scalar field of mass m. with non-minimal coupling term
x —ER@* where R is the Ricci scalar and € is a (real) dimensionless constant
[72]. Using notation from section A.1, the matter action in this case is the action
of ¢:

Sulosdl = [ 0= 51V Vio) - gt - SERF).  (2.4)

Equivalently, we can write

Slorgl = [ (500 -~ €R)o) 2.5

where [ = n“bvla Vi, = g"'V,V, is the d’Alembertian®, and we used the Leibniz
rule and neglected a boundary term. We quantise the scalar only so that the

functional integral is

oo = /eiSsc[¢;g]D¢ (2.6)

A standard fact is that the result of a complex Gaussian integral is proportional
to the inverse square root of a determinant. Equations (2.5) and (2.6) constitute

an infinite-dimensional generalisation of this case. Hence, we have

[NIE

Zg = Det(0 —m?2, — ER)™ (2.7)

where Det is the functional determinant and we neglected an infinite multiplica-

tive constant that does not change the correlation functions. The 1-loop effective
action is given by Z,, = elsc, thus

)

Iy = =In Det(0 — m?2, — £R)

3 (2.8)

= §Tr Ln(0 - m?, — ¢R)

where in the second line we used the relation In Det = Tr Ln involving the

functional trace Tr and the functional logarithm Ln. We note both Det and Tr

run over points on M, but there may also be indices (e.g. spinor, internal) in

which case all indices are run over as well.

30ne has V,, = Vo, where d,, is the standard partial derivative.
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Dirac spinor field

A pure Dirac spinor field is understood in the usual sense as a section of a
corresponding spinor bundle. We follow similar steps as those for the scalar.
In the present spinor case (and referring to the definitions in section A.1), the
matter action is the action for an anti-commuting pure Dirac spinor ¢ of mass
m:

Suligl = [ (00— mw). (29

The functional integral is taken to be
Z,p = / ¢S l6:539) i Do (2.10)

where we adopt the standard practice of integrating independently over v and
its conjugate 1. The infinite-dimensional generalisation of the multi-variable

Grassmann integral yields
Zyp = Det(i() —m)). (2.11)
Given Z,, = e=r we have

[, = —iln Det(i(}) —m))
(2.12)

= —iTr Ln(i() —m))
where we again used In Det = Tr Ln. At this point, we have an issue: equation
(2.12) has a first-order differential operator (see section A.1), but the heat kernel
expansion (more about this later on) requires a second-order differential operator.
This issue is resolved using the following method from [19]. The spinor chirality

operator y,, and its properties are given in appendix A.1. Since -, is involutive

and anti-commutes with the Dirac operator, one has

YDy = —D. (2.13)
Now, one defines

D= Z( - m)>

D = —i(I) +m). (2.14)
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Using this, we have

Dy =D (2.15)

where we used equation (2.13) and the fact that ~ is involutive. Taking the

functional logarithm of both sides of equation (2.15) gives

Ln(D) = Ln(D) (2.16)

where we again used the involutory property of v,,. Given equation (2.12), we

have

I's, = —iTr Ln(D)
. ) (2.17)
= —iTr Ln(DD)

where in the first line we used equation (2.14), and to get the last line we used
equation (2.16). The differential operator in the second line of (2.17) is second-
order and thus compatible with the heat kernel expansion. However, we can do

further manipulations. Using DD = I)° — m2, we have
I, = —%Tr Lo(° — m?). (2.18)
In [73], Lichnerowicz derived the formula
2 1
D =0- ZR. (2.19)
One substitutes this into equation (2.18) to get
i 5 1
I'yy=—-TrLn(0O-m"—-R). (2.20)
2 4
This result has the same form as equation (2.8). Hence, we can now treat both
the scalar and spinor fields on equal footing.
Combining scalars and spinors

Let us now have a collection of scalars and Dirac spinors where each field is
labelled by an index k. Supersymmetry [74, 75] provides the supertrace of an

arbitrary operator O as
Str(0) := > Tr((-1)F0) (2.21)
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F

where for scalars (—1)¥ = 1 and for spinors (—1) = —1. Hence, combining

equations (2.8) and (2.20), we write the total scalar-spinor effective action as
Tior = %Str Ln(0 — m? — (R) (2.22)

where we have assumed all fields have the same mass m (c.f [12]), and for scalars
v = & and for spinors ¢« = 1.

We now perform the regularisation. Using the Schwinger proper time formal-
ism (more about this and the cutoff regularisation later in this section), which

gives relative but not absolute results, we have
1 o]
unlg] = Luanloo) = g8tr [~ (expl—~(Dlg) — m? - eRlgl) 1
dt

~ expl—(Clgo] — m” — 1R{go]) 1))

(2.23)

where we defined an auxiliary metric go on M. The cutoff regularisation is
implemented in equation (2.23) by introducing a UV cutoff A at the Planck

scale:

[iot [g] = Iot [90] - ;Str /OO (eXP[_(D[Q] —m® — LR[QD t]

A72

4 (229
— expl—(Dllgo] = m* — eRlgn]) 1) 5
The operator exponential in equation (2.24) has the expansion ([12])
xpl=(Olg] —m* — oRlg) 1'% o Snl e (229
(47Tt)2 n=0 "

where b,, are combinations of local diffeomorphism invariants and encode the
parameters m and ¢. Equation (2.25) is the heat kernel expansion, and b, are
heat kernel coefficients.

We pause to discuss the heat kernel expansion. As discussed in [15], the
expansion faces a potential problem of unsuppressed contributions from non-local
geometry: in the Euclidean regime this does not arise so the expansion is well-
defined, but in the Lorentzian regime the problem does occur so the expansion is
ill-defined. In particular, equation (2.25) is Lorentzian and thus poorly defined.
However, this issue will be ignored for now (i.e. we view equation (2.25) as
a formal power series). After this subsection we will not use equation (2.25),
but will only consider a Euclidean version which is discussed in more detail in

subsection 2.1.3.

34



Substituting equation (2.25) into equation (2.24) gives
il 22 Tonlin] — 558t (balal — bulanl) ([ 02 %). 2:26)
tot |9 tot |90 o(dm2 " & nl9 n 90 2 i) .
The first three integrals (with n € {0,1,2}) are

/OO t—Q@ — 1/\4
A-2 t 27

/oo tflﬁ — A2
A2 t ’

d 2
/“7 In(A2) + div (2.27)

<1n (A?) — )) + <ln(m2) + div>

ln(AQ) +div’
m

where div and div’ are divergences coming from the infrared regime. For now
these infrared divergences will be neglected, but later we will return to them
and discuss how to systematically treat them. One substitutes equation (2.27)

n (2.26), which leads to

Ciot]g] t_>0+rtot [90] — 2(4iﬂ>28tr<(b0 [g] — bo [QOD ;A‘l

A2 (2.28)
+ (b1lg) — bilgo]) A% + (balg] — balgo]) m( >+O(A ))

where the form of the O(A~2) terms was deduced from the next ¢ integral. Equa-
tion (2.28) has the typical quantum field theory UV divergence configuration.
The first three heat kernel coefficients by, by, by are given by ([12])

by =1,
by =m? — kR, (2.29)
Ly 2 2 -2 2
bg = §m —m klR + kgWeyl + kgRZC + k‘4R — ]{?5|:|R
Here Weyl and Ric are respectively the Weyl and Ricci tensors, and k1, ..., ks
are dimensionless numbers containing . The heat kernel coefficients given by
equation (2.29) are sufficient since they correspond to the dominant contributions

to the supertrace in equation (2.28), and thus we will neglect the O(A™2) terms.

For an arbitrary operator O, let
Str[0] = /M Q(str]0)). (2.30)
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By using this and equation (2.29), one can re-cast by using the Chern-Gauss-

Bonnet and divergence theorems:
1

| )= [ Q(m4 ~m2k R+ K, Weyl? + kgR2> (2.31)
M M 2

where ks, k3, ks are absorbed into new numbers £} and k). The remaining &
numbers are specified in Table 1 in [12]. Substituting equations (2.29), (2.30)
and (2.31) into equation (2.28) gives

+
Liot]g ]HO Lot [90]
2

o e ), 1t
+ str — kA2 — mPk 1n(;:;>] (/M Rlg] Q[g] — R[g0] Q[Qo])
+ str k’ < ﬂ / Weyl[g]* Qlg] — Weyl[go]? Q[go])

+ str k:’ In <22>} (/M R[g]* Q[g] — R[go]? Q[Qo]))

(2.32)

where €2 depends on the metric g via the tetrad [ (see section A.1). The induced

gravitational constants are given in a model-independent form by

]' e
Dot = /M Q<167T Gmd(—ZAmd +R) + le/dylWeyF + KRd Rz) (2.33)

Matching this with equation (2.32) gives

2N i 1 1 A2
nd_ _ tr AT+ mPA% 4 St In( )
167Ging 2(4#)2sr[2 L e ey A
1 i

A2
167Goma _2(47r)28tr[ - m2klln<nz2)]’

Weyl i A2
KU = s [k:; 1n(m2)},

o A2
K’ind = —Wstr [kﬁl IH(W)] .

Equation (2.34) gives the induced cosmological, Newton and curvature-squared

(2.34)

constants due to a collection of scalars and Dirac spinors. One has the problem
that the last three gravitational constants in equation (2.34) are imaginary, and
we attribute this to the ill-definedness of the Lorentzian heat kernel expansion.

We will define the heat kernel expansion in a consistent manner later.
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According to induced gravity, one takes A;,q as the induced value for the cos-
mological constant, despite the lack of renormalisation. From equation (2.34),
we see that (the modulus of) Ay,g is of order A%. Given the experimental cos-
mological constant value AP ~ 107122A2 [10, 11], one has A,y >> AP which
is the cosmological constant problem [76]*. We remark that the cosmological

constant problem commonly arises in induced gravity models.

2.1.3 Regularisation toolkit

We cover in more details some techniques used in the regularisation of the 1-loop
effective action.

Schwinger proper time formalism

This comes in the form of the integral

Bl [ _p
Lol ) == [ [

where A and B are positive operators. In induced gravity, the operators A and

dt

; (2.35)

B have mass dimension 2, hence the dummy variable ¢ has mass dimension —2,
i.e. is a genuine proper time parameter. Equation (2.35) gives a UV divergence
coming from 1/t ast — 0F. The UV cutoff A is needed for the UV regularisation,
which is done in the t-integral in equation (2.35) by letting t = 0 — ¢t = A2
which preserves the dimensions of proper time. The cutoff A is taken to be at
the Planck scale (c.f Sakharov [9]). The curvature-squared terms give another
divergence (see earlier and [16, 19]), this one due to the limit ¢ = oo in equation
(2.35) and thus the infrared regime. This infrared divergence gets regularised by

a separate IR cutoff e.

Heat kernel expansion

Here, we introduce the heat kernel expansion used in this work, and this is done in

the Euclidean regime on M (see appendix A). Given that M is a 4-dimensional

4For completeness, we mention a more precise formulation of the cosmological constant
problem in [77]. However, we keep with the formulation in [76] since it is simpler to use (the

cosmological constant problem does not play a huge role in the present thesis).
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compact boundary-less manifold, the heat kernel expansion takes the form

Te[e ] 27 3 % a, (1, P) (2.36)

n>0

where P is a second-order differential operator and a, (1, P) are the heat kernel
coefficients. Equation (2.36) is given by equation (2.21) in [15] for the special
case of dim(M) = 4 and f = 1, which we consider in this work. Locally, the

operator P is a generalised Laplacian of the form
P=—gyV,V,@13—FE (2.37)

where V,, = Vj,, and E is a function from M to matrices. All odd-labelled
heat kernel coefficients a,, vanish and the even-labelled a, are expressed exclu-
sively in terms of local coordinate invariants: the first four even coefficients are
given by (4.26 - 4.29) in [15]. In particular, a4 corresponds to curvature-squared
terms. The coefficients beyond this correspond to terms of order greater than
curvature-squared and are thus suppressed compared to the terms at curvature-
squared order and below. Given this, in the present work we only consider heat
kernel coefficients not exceeding a4, and this allows us to describe the impor-
tant semiclassical gravitational contributions. We remark that the heat kernel

expansion is universal, i.e. lots of different situations have the same a,,.

2.1.4 Modifications

The gravity-gauge extension of the original induced gravity mechanism [16] also
produces kinetic terms in arbitrary gauge fields (but the gauge fields themselves
do not get induced), and specialises to where SM gauge couplings are induced
from the SM fermions and Higgs. We remark that one may view their formalism
as anticipating the induced Standard Model (section 2.2).

In the models involving spacetime with torsion [18, 19] one splits the torsion
into several components, and the induced 1-loop contributions are terms in cur-
vature and terms in the components of the torsion. The mechanism of [19] also
gives rise to curvature-torsion interactions.

One can consider a spacetime boundary dM. The (Euclidean) heat kernel

expansion for the case with a boundary [15] has coefficients with additional
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boundary terms which involve invariants of M. The boundary modification
may be worth consideration of others as it would remove an unphysical property

of the Lorentzian regime corresponding to M (see subsection 1.2.3).

2.2 Induced Standard Model

This is set in the manifold M, and one first considers the Lorentzian regime
(see appendix A). For a precise formulation of the induced Standard Model, we
follow a Lorentzian non-commutative geometry model of spacetime and fermions
[1] (the Euclidean SM non-commutative geometry will be discussed in section
4.2). The induced Standard Model starts with fundamental matter consisting of
all SM fermions in addition to right-handed neutrinos (for more details about

the latter, see section 4.1). Correspondingly, the space of matter fields is
S:=C%®M,5) ®Sp (2.38)

where C'*(M, S ) is the space of Dirac spinors corresponding to spinor bundle
S and Sp ~ C% with basis corresponding to SM fermions and right-handed
neutrinos (assuming three of the latter). Any element of S is given by ¥ = ¢ @ f
where ¢ € C*°(M, S’) and f € Sy and has a conjugate ¥ € S given by analogy

with section A.1. Given this, the Dirac inner product on S is given by

(W, 9 0 = (0 0) (F-r 1) (2.39)

where (-, -) is the standard spinor Dirac product (see section A.1) and - is the
dot product on Sg. The gravitational and bosonic fields are encoded in a Dirac

operator® on S of the form
D =D @1+ (i7m) @ Dyem + B (2.40)

where Dyerp, is a Dirac operator encoding all right-handed neutrino Majorana
masses (more about these in section 4.1) and Yukawa couplings, and B is an
operator on S that encodes the SM gauge and Higgs bosons. One defines the

matter action as

Sysar = /M Q( (U, D0),,, — on) (2.41)

5For further discussion on the notion of a Dirac operator, see sections 4.2 and A.1.
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where Ag is a cosmological constant counter-term introduced in anticipation that
the cosmological constant problem will arise. Note equation (2.41) does not have
curvature or bosonic terms, and this is in line with the standard induced gravity
mechanism. Only the SM fermions and right-handed neutrinos are quantised,

leading to the functional integral
Zrsn = / ¢iS15M DT D Dy (2.42)

where the integrations over W, U € S are independent. The metric functional
integral is only approachable with quantum gravity (as is done in [20]) and
thus outside our semiclassical scope, but the integration out of the fermions is a

standard quantum field theory result giving

Zrsn = / Det(iD) ¢ 14" <2A°) Dy. (2.43)

In this expression, the most important part is the determinant which gives the
effective action contributions, and thus one may drop everything else.

The mechanism now goes over to the Euclidean regime. The rules for doing
this will be given in chapter 3, but for now we note that for the spacetime Dirac

operator I) = il and Dy, does not change ([1]). Thus ® = i®Dp where
Dp=Dp @147 ® Dierm + B (2.44)
where we assumed B = 1B g. Hence, we get
Det(i®) = Det D (2.45)

where a multiplicative constant with no effect on the induced dynamics was

neglected. The effective action I'g induced by the fermions is defined by
e "B .= Det Dp. (2.46)

Hence

FB = —In Det @E
=—Tr Ln Op (2.47)

1
= —iTI' Ln QQE
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where the second line used In Det = Tr Ln. The IR regularisation in this case
occurs by modifying (2.47) as

1 1
[y =~ TrLn 0% - ( ~ TrIn ©%o> (2.48)

where © g is another Dirac operator, and the regularisation happens via the
elimination of divergent contributions due to the logarithmic pole. The UV
regularisation is then given as standard by the UV cutoff A. The regularised
effective action is
I'p= —;Tr Ln(i?) - (— ;Tr Ln(%)). (2.49)
This can be approximated as
I'p = ;Tr El(?\%) — ;Tr Ei(%) (2.50)
where Ei is the exponential integral. It turns out [20] that equation (2.50) has
an expansion giving curvature terms as well as SM gauge and Higgs terms. With
respect to the Connes-Chamseddine action of non-commutative geometry (see
section 4.2), equation (2.50) turns out [20] to be approximately equal to the
Connes-Chamseddine action on the condition of a fourth SM fermion genera-
tion. Hence, the fact that the fermionic integration out gives a result depending
only on Dirac operator eigenvalues implies that the same holds for the Connes-

Chamseddine action, i.e. the spectral action principle (discussed in section 4.2).
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Chapter 3

Lorentzian-Euclidean transition

The need for going between Lorentzian and Euclidean theories is motivated as
follows. One ought to start with the Lorentzian physics since this is what can be
probed in experiments. On the other hand, the Euclidean theories are unphysical
in the sense that they cannot be measured, but are mathematically well-defined
and compatible with existing techniques (as will be seen later in this chapter).
This suggests that the Lorentzian physics should be the starting point, but it
is more mathematically convenient to perform the required calculations in the
Euclidean regime. This necessitates having a method to go between Lorentzian
and Euclidean theories. This chapter is a review of the Lorentzian-Euclidean
transition from [1]. The material covered here is not standard since it was in-
troduced recently (in [1]), hence why we dedicate a chapter to reviewing the
material. This chapter has no original material, but the material herein will be
used as part of our original work in chapter 5.

A well-known procedure for mapping between Lorentzian and Euclidean theo-
ries is the Wick rotation. This procedure is conventionally formulated in Minkowski
spacetime by making the time coordinate imaginary. For curved spacetime, the
Wick rotation has a second-order formulation as a complexification of the space-
time metric [78] or a first-order formulation as a complexification of the tetrad
[79, 58]. As will be seen later, the Wick rotation is inequivalent to the Lorentzian-
Euclidean transition, but both have aspects in common. This leaves the question
of why one may wish to forgo the Wick rotation in favour of the Lorentzian-

Euclidean transition. To answer this, we compare the two schemes as follows:
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« The Wick rotation acts at the level of the metric, and maps between a
Lorentzian spacetime and an inequivalent Euclidean spacetime. Hence,

the Lorentzian and Euclidean theories have different physical properties.

o Fundamentally, the Lorentzian-Fuclidean transition is at the functional
integral level. However, the functional integrals of both theories are not
just related, but identical (more below). This gives an immediate bridge

between the Lorentzian and Euclidean theories.

Thus, compared to the Wick rotation, the Lorentzian-Euclidean transition
is more practical for the functional integral quantisation (and this will apply
to chapter 5) and connects the Lorentzian and Euclidean theories in a more
physically robust manner. These reasons make it physically advantageous to use
the Lorentzian-Fuclidean transition over the Wick rotation, as we do in chapter

D.

3.1 Functional integrals

The Lorentzian-Euclidean transition is centered around a pair of Lorentzian and
Euclidean functional integrals. We define these first.

One considers the Lorentzian functional integral

Z = / / GSINFI D DY (3.1)
el JFeF

where L is a real vector space of Lorentzian geometries, F is a space of matter
fields and S is the action. Equation (3.1) corresponds to a theory of matter
fields F set in geometries £ where both are quantised. Such a theory could be
ordinary field theory in Lorentzian spacetime, but is an abstraction of this since
the geometries in £ are allowed to be classical or quantum. In particular, the
theory can be the matter phase of induced gravity (neglecting the £ integral) as
in chapter 2. Since the Lorentzian theory is typically known from experiment,
the corresponding functional integral (3.1) gives the physical amplitudes and
observables and is thus sought after. On the other hand, since equation (3.1) is
an extrapolation of quantum field theory to the Planck scale, the equation is not

expected to exactly describe all details of physics down to that scale. In addition,
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since the complex exponential integrand in equation (3.1) is highly oscillatory,
the functional integral will not converge.

A Euclidean version of the functional integral is given by

T = / / ¢=SEIBFEl D Fp DT (3.2)
EJFg

with similar Euclidean definitions. This also gives an abstract Euclidean theory,
which may in particular be non-commutative geometry (see chapter 4). The

integral (3.2) does converge if

Sg >o0as 'y = 00
(3.3)
min Sg > —00

where the first condition applies in some sense and requires that the rate of in-
crease of Sg is not too small'. This is because (3.3) means the integrand of (3.2)
is upper bounded and goes to zero as needed. Note (3.3) is not applicable to
fermions since these are required to be anticommuting variables. In addition to
having better convergence, the Euclidean functional integral is more amenable
to mathematical physics tools, e.g. the heat kernel expansion (chapter 2), com-
pared to the Lorentzian integral. However, the Euclidean integral is not directly

relevant to observable physics.

The key proposal of the Lorentzian-Euclidean transition is
Z = Zg. (3.4)

We have chosen not to label this result as a theorem since a rigorous proof is
unavailable. Indeed, the intractability of functional integrals is expected to be a
barrier to getting a proof. Instead, equation (3.4) should currently be understood
as a conjecture.

A motivation of (3.4), which may be viewed as an informal proof for the
special case of Lorentzian and Euclidean structures on M, was given by Barrett
[1]. This has three main stages, which we cover in the following. We give the
main results of each stage and relegate any further technical details to [1].

One starts with the Lorentzian functional integral (3.1).

'The author acknowledges comments by John W. Barrett.
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o Complexification

The complexification of L is given by the space of geometries C. Into this,

one takes the real subspace £ C C and the analytic continuation of S.

e Rotation

One considers another subspace £’ C C defined by real and imaginary
tetrads and spin connection coefficients. The subspace L is rotated to £’

while keeping in C. The result from this step is
/ ¢Spr= [ Spr. (3.5)
c o
This requires the vanishing of the integral over a contour C.

e Fuclideanisation

As vector spaces,

L ~E&, (3.6)
i.e., there is a correspondence between imaginary Lorentzian geometric data
and real Euclidean data. Concretely, this applies to frames and metrics. A

general result of Euclideanisation is the relation
S =1iSg (3.7)
on the imaginary contour £'. Equations (3.6) and (3.7) give

/ ¢S DU = / ¢S5 Dl (3.8)
c £

This (with the right continuation of matter fields) gives the right-hand side
of (3.4).

In this method, the Lorentzian functional integral is used to define the Eu-
clidean functional integral via the relations (3.4) and (3.7). In other words, the
FEuclidean theory is determined by the Lorentzian theory and thus the observable
physics. Using (3.4) and (3.7), one can transition from the Lorentzian theory to
the Euclidean theory.

We remark that the Euclideanisation stage gives similar results to the Wick
rotations defined in [79, 58]. However, & directly relates to £’ but not to L.
Hence, the method in this section is distinct from (but resembles) the Wick

rotation.
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3.2 Euclideanisation

Euclideanisation [1] is perhaps the most significant and well-formulated stage
of the method. This stage has given practical results for theories without and
with matter. Several of these results are reviewed below and are taken from [1].
Note all relations from Euclideanisation are assumed on £’ as only here can one

compare imaginary Lorentzian and real Euclidean geometries.

o Spacetime only

For N = 040 + 00 + dc0 — 00, the Lorentzian and Euclidean curvature

tensors are related by
ERcJ:cab = (_i)NRgab‘ (3.9)
The Lorentzian and Euclidean Ricci scalars match:
R = Rg. (3.10)
The Lorentzian and Euclidean volume forms obey

Q= —iQp. (3.11)

The Einstein-Hilbert action (with cosmological constant)

1
= — —2M)Q 12
SGTav 167G /M(R ) (3 )
satisfies
SGrav = Z‘ESGrtw (313)
where
1
E = —— —2A0)Q2 .14
SGrav 167G /M(RE ) E (3 )

is the corresponding Euclidean action. Note the sign differences of the
Lorentzian and Euclidean gravitational actions. It was pointed out in [34]
that the Euclidean action (3.14) violates the second condition in (3.3) as
the action admits contributions beyond the Planck scale. In this work, we
assume the Planck scale is sufficient to restore the convergence condition
for any theory containing the action (3.14) (c.f [1]). This is natural to
impose in induced gravity (2) in which the effective action is regularised by
a cutoff and consists of the action (3.14) with additional curvature-squared

terms.
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o Scalar fields

For a scalar field @, the Euclideanisation of the action (3.7) is satisfied
given

=Dy (3.15)

o Dirac spinor fields

The relation (3.7) holds (including Majorana mass terms) if, in going from
Lorentzian to Euclidean, the spinor v is unchanged and one replaces the
conjugate ¢ (see section A.1) by an independent spinor @E Given chiral
1, the independent Euclidean counterpart spinor zZ has opposite chirality,

and thus this property is preserved from the Lorentzian.

One also has the Dirac operator Euclideanisation
D =iDg. (3.16)

We assume Euclideanisation leaves mass and coupling parameters invari-

ant.

In this whole section, we discussed only the transition from the Lorentzian to
Euclidean theory. However, we will require the reverse transition, i.e. Euclidean
to Lorentzian. We assume it is sufficient to just use (3.4) and (3.7) and the rest
of the Euclideanisation relations. In other words, we use only the Euclideanisa-
tion stage and leave out the complexification and rotation stages. Any rigorous

formulation of the transition (either way) is beyond our present scope.
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Chapter 4

Beyond the Standard Model

In particle physics, the SM is the theory that gives the most comprehensive ac-
count of observed phenomena and has the most experimental verification. How-

ever, one can determine that the SM is not complete as:

» Observations of solar neutrinos suggest left-handed neutrinos exhibit flavour
oscillations, which occur if left-handed neutrinos have masses m,, # 0.

However, the SM has m,, = 0.
o The SM particle spectrum has no dark matter candidates.

e The SM has not explained the fact that the universe has a baryon asym-

metry, i.e. a larger number of baryons than anti-baryons.

o Gravity is absent from the SM.

This serves as a motivation to consider physics beyond the SM, which modifies
the SM or constructs new theories with the SM as a special case. Physics beyond
the SM is a broad area, so we will focus on certain aspects of this here.

This chapter is organised as follows. Section 4.1 is a review of known material
concerning right-handed neutrinos, and this is set in the Lorentzian regime. The
SM with three right-handed neutrinos, as well as the type-I seesaw, are stan-
dard, but the alternative seesaws and Neutrino Minimal Standard Model are not
(hence why this section is not an appendix). All this will be needed for our
original work in chapter 5. Section 4.2 is a review of non-commutative geometry.

This has the SM with right-handed neutrinos as a special case and therefore
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appears in this chapter. In section 4.3, we review the Weinberg operator and
higher-dimensional invariants with two lepton doublets and two Higgs, as well
as the work of Broncano-Gavela-Jenkins [49, 50] which includes such terms. The
material in sections 4.2 and 4.3 is not new, but is placed into this chapter since
the material is non-standard. Sections 4.2 and 4.3 will be important for our

original work later on.

4.1 Right-handed neutrinos

Our point of view is that right-handed neutrinos are outside the SM particle
spectrum!. This does not necessarily rule out the existence of right-handed
neutrinos. Assuming that right-handed neutrinos do exist, continuing the SM
particle classification, we see that they would be right-handed fermions that
are SM gauge singlets. Hence, right-handed neutrinos interact very little with
baryonic matter. As such, the existence of right-handed neutrinos has not been
unambiguously verified by experiments.

Right-handed neutrinos may be added to the SM particle spectrum, and
one can add any number of them. In this work, we consider the special case
of the SM with three right-handed neutrinos (which naturally fits into grand
unified theories of SO(10) [81, 82] and Pati-Salam [83]). Hence, we consider one
extra right-handed neutrino per SM generation but with no other changes to
the SM particle spectrum and keeping the same SM gauge group (i.e. minimal
modification). The three right-handed neutrinos are right-handed Dirac spinors
with Majorana mass terms (see appendix A) and the right-handed neutrinos
couple to the SM only via Yukawa couplings to the left-handed neutrinos. We
denote the right-handed neutrinos by v/}, where the generational indices p, g, . ..
are valued in {1,2,3}. Using notation from appendix A, the three extra right-

handed neutrinos contribute the following terms to the SM Lagrangian:
Ly =UryPvh+ Ly + Ly (4.1)

where 7, = Cvp and the last two terms will be discussed. The indices p,q, . ..

IFor completeness, we acknowledge two different views: the one we adopt (c.f [52]) and that

where right-handed neutrinos are SM particles (c.f [80]).
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can be arbitrarily raised and lowered since this is done by the flat metric d,,.

Equation (4.1) has the Yukawa term

Ly =Yy (I8 -c2 o)k + c.c. (4.2)

where the Yukawa matrix Y is a 3 x 3 complex matrix, I5 = (ey v)T"

the SU(2) left-handed lepton doublets, ¢ is the Higgs doublet and -2 is the

are

dot product on C? with respect to the internal SU(2) indices. The electroweak
symmetry is spontaneously broken by the Higgs vacuum ¢, = (0 %)T where
v ~ 246GeV. This reduces the Yukawa term (4.2) to a Dirac mass term of the
form (A.18):

[‘CY]¢:¢U = mquﬁV% + c.c. (43)

where the mass parameter is now a 3 X 3 mass matrix mp = %Y. The right-
handed neutrinos vg have no other SM couplings in the electroweak broken
regime.

The last term in (4.1) is a Majorana mass term (A.24):
1 P a
Ly = §MpquyR + c.c. (4.4)

with a 3 x 3 complex symmetric matrix M as the Majorana mass for three
generations. The diagonalisation of M is given in appendix B and results in the
Majorana mass eigenvalues.

We consider the magnitudes of Y and M to be respectively given by the
elements of Y and eigenvalues of M. Existing constraints on the Y and M
magnitudes appear to be weak (see [52, 84, 53]). Several bounds on M have
been motivated by phenomenology and grand unified theory [52]: M = 0 gives
pure Dirac right-handed neutrinos whose Y must be unnaturally smaller than
those of SM fermions so that mp matches experimental (left-handed) neutrino
masses; M of order keV gives right-handed neutrinos that are candidates for
stable dark matter (see also [85]); M of grand unification order (91 ~ 10GeV)
is the type-I seesaw regime (more below). One can have theories with multiple
bounds at once, and examples of these are later considered.

There is a pair of (left-handed) neutrino mass orderings given by (m¥)? <

(m)? < (m&)? and (mf)? > (ml)? > (m%)?, which respectively are the normal
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and inverted hierarchies. These come about from a sign ambiguity in a squared
mass difference. However, the hierarchies will not be important here as we only
consider orders of neutrino masses.

We discuss in more detail the emergence of neutrino masses for M ~ 9.
This occurs via the type-I seesaw mechanism [86, 87, 88, 89] (our presentation

is based on [52]) as follows. After electroweak breaking,

0 mp CVL

1
Ly + Ly = 3 { (CVL I/R> : (4.5)

m% M VR

where we used (A.20) and the Majorana product symmetry. In the above, the
matrix consisting of Dirac and Majorana blocks is complex symmetric and is
hence diagonalisable (appendix B). The full diagonalisation (see [52]) results
in three left-handed active neutrinos and three right-handed sterile ones? with
respective masses m,, ~ Y2M ' and M,, ~ M. The active and sterile masses
scale in opposite fashion as M increases, which gives the seesaw. In the seesaw
regime M ~ 9 with Y ~ 1, one gets small active masses m,,, of experimental
order and large sterile masses M,, ~ 9 whose significance is only felt around
grand unification. A Yukawa coupling ¥ ~ 1 is natural relative to the SM3,
which is an improvement on M = 0 right-handed neutrinos.

We comment on other seesaw mechanisms that are reviewed in [63]:

o In general, the seesaws share the type-I properties of seesaw mass behaviour

and small active neutrino masses but replace the right-handed neutrinos.

o The type-1 seesaw can be modified by a complex scalar field due to an

additional U(1)x gauge symmetry.

o Type II has a scalar SU(2); triplet and type III uses several leptonic
SU(2) triplets.

2Precisely, these eigenstates are linear combinations of v;, and vgr and their conjugates.
However, the terms of opposite chirality are suppressed by powers of M !, which is small in

the seesaw regime M ~ 9.
3The largest SM Yukawa coupling, which corresponds to the top quark, is of order ¥; ~ 1

approximately [90].
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o Seesaws of the form [+II and I4III give active neutrino masses by adding

pieces from the individual seesaws.

Also, the type I x II seesaw of Wong and Chen [91] multiplies the active mass
pieces. The authors order types I-III and their model by the seesaw scale and
find theirs is the lowest entry.

A special case of the earlier SM with three right-handed neutrinos is the Neu-
trino Minimal Standard Model (vMSM) (see [52] and references therein) where
M does not exceed the electroweak scale. The theory gives a sterile neutrino
that is keV dark matter and two electroweak-GeV sterile neutrinos that give rise
to the type-I seesaw and baryon asymmetry from the mechanism in [92].% The
heavy sterile neutrinos are approximately degenerate.

In this review section, we have seen that three right-handed neutrinos as a
minimal modification to the SM account for the neutrino masses, dark matter
and baryon asymmetry, and all three of these phenomena cannot be explained
by the SM without right-handed neutrinos. In our original work in chapter 5,
we will see that the right-handed neutrinos also source gravitational dynamics,
thus accounting for another beyond-SM phenomenon.

The right-handed neutrino Majorana mass terms can give a scalar modifica-

tion to the SM and right-handed neutrinos. This will arise in the next section.

4.2 Connes’ non-commutative geometry

In the SM the leptons and quarks as well as the gauge and Higgs bosons form
separate sectors. This has motivated attempts to find a structure underpin-
ning the SM, e.g. grand unified theories [94, 81] and supersymmetry [74, 95].
One such attempt is Connes’ non-commutative geometry, which is a distinct
approach to geometry based on non-commuting coordinates and spectra of op-
erators. Connes’ framework gives Euclidean-signature spacetime and the SM
fields (plus right-handed neutrinos) a unified geometrical description, which pro-
vides accurate predictions for the top quark and Higgs masses [46, 44]. The

non-commutative description of the SM also leads to further insights: gravity is

1A different mechanism for baryon asymmetry is found in [93].
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included along with realistic dynamics [43], and the action for SM bosons coupled
to gravity only depends on the eigenvalues of a certain differential operator (the
spectral action principle) [67, 41]. Non-commutative geometry also naturally
admits beyond-SM physics [68, 69] and grand unification [96]. Lastly, Connes’
framework gives rise to matrix models for quantum gravity without matter [97]
and with matter [54, 98, 99]. Hence, the physics connections of non-commutative
geometry make it a subject of significant interest.

A non-commutative geometry is specified by a spectral triple (A, H, D). The
first entry A is a *-algebra, which is an associative algebra with an anti-linear

map *: A — A such that Va,b € A

(4.6)
(ab)* = b*a™.

The second entry H is a Hilbert space. The third entry is a Dirac operator,

which is an operator D : H — H which is self-adjoint (D* = D) with compact

resolvent (D — wI)™! where w € C here®’. We also have (see [71]) a faithful

representation 7 : A — End(H) that commutes with *, thus 7 represents A

by bounded operators in the Hilbert space®. There are two distinct notions

of dimension in non-commutative geometry. The first is the metric dimension,

which is a non-negative integer d,, where the eigenvalues A\ (D) of the inverse
D1 satisfy

Ae(DY) ~ k" (4.7)

The second is the KO dimension, which is an integer s € % specified by the
axioms of non-commutative geometry (as will be seen later).

The non-commutative geometry data are subject to a set of axioms [40]:

o Orientability:

An even spectral triple has even s, and in this case there is a chirality

>The compact resolvent property means that D has a real discrete spectrum (see Theorem

4.28 in [100]).
6We will abuse notation by not explicitly showing the representation, hence the algebra

elements and operators on H are denoted the same.
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operator (or Z/2-grading) v : H — H satisfying

v =1,
2
=1
(4.8)
{7,D} =0,

[v,a] =0 Va € A.

The first and second entries implies v has the real eigenvalues 1 and —1.
The corresponding eigenspaces are respectively H, and H_, and these
decompose the Hilbert space as H = Hy & H_. The third entry means
D maps H, to H_ and vice versa. The fourth entry is non-trivial for
non-commutative geometry but trivial for commutative geometry (such as

Riemannian geometry).

For odd s, we have an odd spectral triple where the chirality operator is
replaced with the identity 1.

Reality:

A real spectral triple is equipped with a real structure [101], which is an

anti-linear isometry J on H satisfying

J? =¢,
JD =¢DJ,
(4.9)
Jy = ¢e"~vJ,

[a, Jb*J '] =0 Va,bec A

where €, €, ¢ are signs depending on s as shown in Table 4.1. For commu-

tative geometry, the fourth relation is replaced with JaJ~! = a* Va € A.

An even real spectral triple is a spectral triple that is both even and real.

1st order condition:
[[D,a], Jb*J '] =0 Va,bec A (4.10)

This is the statement that D is local in the sense that the derivation [D, -]

on A acts locally.
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s € € "
0 + + +
1 + -
2 - + -
3 - +
4 - + +
5 _ _
6 + + -
7 + +

Table 4.1: Signs €, €,€¢’ as functions of s, reproduced from [40]. The sign €”
(such that Jv = €’v.J) only exists if a chirality operator exists, i.e. for even s,

which is why there are gaps in the ¢ column for odd s.

e Smooth coordinates, finiteness and Poincaré duality:

These are not important for this work. Furthermore, Poincaré duality does

not always hold and is not actually necessary”.

A concrete example of a Connes-like structure is given by the spacetime
manifold M in the Euclidean signature (see appendix A). This is given by
an even real spectral triple with the algebra C'*°(M) of smooth functions on
M, the Hilbert space L*(M,S) of square-integrable spinor fields on M, the
Dirac operator in (A.31), the chirality operator on spinors (A.3) and the real
structure equal to the Fuclidean charge conjugation operator C'y. The manifold
M corresponds to a commutative geometry. Connes’ article [40] contains the
axioms for such a geometry, some of which coincide with the non-commutative
axioms stated earlier, but we do not state all commutative axioms here. In the
manifold case, the commutative axioms are satisfied with metric dimension 4 and
KO dimension 4 mod 8. The manifold commutative geometry is subject to the
reconstruction theorem due to Connes [102], which states that given the even
real spectral triple, one can reconstruct the manifold (M, gg). This means the

Riemannian and spectral triple descriptions of the manifold are equivalent. For

"The author acknowledges correspondence with John W. Barrett on this point.
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example, in the spectral triple description, the geodesic distance is given by

d(z,y) = sup{la(z) — a(y)| : a € C=(M), [P, a]l| < 1}, (4.11)

which reproduces the standard Riemannian geodesic distance [40]. Hence, the
Dirac operator D is the non-commutative analogue of the Riemannian metric.

There is also a non-commutative notion of a point in M as a complex-valued

homomorphism of C'*(M).

4.2.1 Non-commutative Standard Model

As a key example of Connes’ framework, the SM and right-handed neutrinos set
in M in the Euclidean regime can be embedded into a bona fide non-commutative
geometry®. The key postulate is that spacetime is the manifold M times a finite
non-commutative space F', i.e. spacetime takes the form M x F. This resembles
the form of spacetime under compactification of dimensions as in Kaluza-Klein
theories [104, 105] and string theory [5, 6]. The space F' is given by a finite
even real spectral triple (more on finite spectral triples in section 4.2.2) of metric
dimension 0 and where 6 mod 8 is the KO dimension®. The metric and KO
dimensions are additive over Cartesian products, hence M x F' has metric di-
mension 4 + 0 = 4 and KO dim 4+ 6 = 10 = 2 mod 8. Denoting the data of the
finite spectral triple with a subscript F', the even real spectral triple of M x F

is given by the following product non-commutative geometry:

Ap = C®(M) ® Ap (4.12)
where Ap = C ® H @ M;3(C) is the direct sum of the *-algebras of complex
numbers, quaternions and 3 x 3 complex matrices;

Hp = L*(M,S) ® Hp (4.13)

where Hp is a 96-dimensional Hilbert space with basis enumerated by the SM

fermions and right-handed neutrinos;

Dp=Dp®1+vy®Dp (4.14)

8More precisely, this is an almost-commutative geometry [103] because it has commutative

and non-commutative components.
9Connes showed [42] that KO(F) = 6 mod 8 eliminates several problems, in particular

fermion doubling. Before this (and thus distinct dimensions), F' had dimension 0 mod 8.
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where Dp is a 96 x 96 matrix encoding the SM parameters and right-handed

neutrino Majorana mass matrix;

P =Y @ VF; (4.15)

Je=Cp® Jp. (4.16)

The SM gauge group is given by the special unitary group for the finite space:
SU(Ap) ={u € A : v'u = uu” = 1,det(u) = 1} (4.17)

whose adjoint action on Hp gives the gauge group action on SM fermions.

The symmetries of the modified SM in question here are spacetime diffeomor-
phisms and internal gauge symmetries. In the non-commutative structure, all
symmetries are unified together in one group: the automorphism group Aut(Ap).

A special class of automorphisms of Ap are the inner automorphisms, i.e. the
automorphisms given by conjugation of elements of Ap with unitary elements.
The group of inner automorphisms is a normal subgroup of Aut(Ap), and as-
sumes the role of the gauge symmetries. The inner automorphisms give rise to
an equivalence class generated by a metric as follows: given the product Dirac

operator Dp, the inner fluctuations are defined as Dp — D4 where
Dp = Dp+ A+ TgATg" (4.18)

with the self-adjoint operator A = Y, a;[Dp, b;] where a;,b; € Ap. The inner
fluctuations (4.18) furnish the SM gauge and Higgs bosons given the unimodu-
larity condition

Tr(A) =0, (4.19)

which gives the SU(3) gauge fields and removes U(3) fields. The real singlet
scalar o also appears, but not from inner fluctuations. This is because the Dirac
operators (4.18) also satisfy the 1st order condition (4.10) which cancels the
o part (see [69, 68]). The o field instead comes in through the right-handed

neutrino Majorana mass terms as
M — Mo. (4.20)

The o field gives an additional Zs internal symmetry leading to ¢ — —o and

invariance for all other fields. We remark on, but do not consider further, options
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to get o as an inner fluctuation by modifying the finite algebra [69] or throwing
the first-order condition (4.10) out [96]. This latter point raises the question of
whether the first-order condition is a required axiom.

The action in the spectral triple description is given by the ’spectral action
principle’ [67, 41]: the action is invariant under Aut(Ap), and hence is a function

exclusively of the Dirac operator spectrum. This principle is satisfied by
S = Scc+ Scom (4.21)

where both terms will be discussed in the following. To our knowledge, the
presence of the spectral action principle has not been explained.

The first term is the Connes-Chamseddine action:

Seo = Tr f(DA’é) (4.22)
where A is a UV cut-off and f(z) is a cut-off Fermi-Dirac function that cuts
off smoothly around x = 1. One assumes the inner fluctuations (4.18) satisfy
the unimodularity condition (4.19) and the o field has entered via (4.20). The
Connes-Chamseddine action admits a heat kernel expansion in Sakharov terms,
SM bosonic terms, Higgs couplings to the Ricci scalar and ¢ and terms in o
(the full formula is (5.49) in [46]). The running of the resulting gravity and
gauge couplings gives rise to several predictions [43, 46]: these include consistent
Newton and curvature-squared couplings, grand unification gauge coupling and
weak mixing angle relations as well as an experimentally consistent top quark
mass. Initially, by taking ¢ constant and treating it as a spectator during the
running, the resulting Higgs mass was too large to fit with experiment [46]. The
subsequent incorporation of the running o couplings [44] led to the admission
of the experimental Higgs mass in addition to a stable Higgs vacuum at high
energies.

We remark on an interpretation of the Connes-Chamseddine action in terms
of induced gravity. Recall that in chapter 2 we covered a link between the
Connes-Chamseddine action and the 1-loop effective action from quantised SM
fermions and right-handed neutrinos. Barrett [20] has justified the spectral action

principle using the link. The justification should be unchanged by the o field.
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The other piece in (4.21) does not play a key role in this work, but for
completeness we briefly discuss it. The term is the Connes-Chamseddine-Marcolli
action (see [42, 43])

Scem = ; (Te¥, Dp¥) (4.23)

where (-,-)p is the inner product on Hp and we make the same assumptions
of unimodularity condition and o. Equation (4.23) gives the action for the SM

fermions and right-handed neutrinos coupled to curved spacetime [43, 46].

4.2.2 Finite spectral triples

The spectral data is now a matrix algebra A, a finite-dimensional Hilbert space
H, a matrix Dirac operator D on H and (for the even and real cases) matrix
operators v and J. Specialising the non-commutative axioms to the finite case
[70] preserves the algebraic ones and makes the rest trivial (excluding Poincaré
duality).

Examples of finite spectral triples are provided by matrixz geometries and fuzzy
spaces, which were expounded by Barrett in [71]. The matrix geometries were
constructed from an initial space by taking products with spinor spaces. Each
matrix geometry is a set of spectral triple data with KO dimension (signature)
s := ¢ — p mod 8 where the type is two non-negative integers (p,q). Matrix
geometries are of physical interest since they are effectively Riemannian finite
spectral triples. The fuzzy spaces arise from constraining the matrix geometries.
The specifics of these particular spaces are not required in this work and are
given in [71].

A finite spectral triple admits quantum geometry in the sense of promoting
D to an integral over a vector space G of matrices [71]. This gives the partition
function

7z = / e=SdD. (4.24)
g

Integrals of this form have been numerically computed in [97, 106].
We review recent results from defining fermionic Grassmann integration for
finite spectral triples found by Barrett [54] (which is in the Euclidean regime).

We assume D is fixed. Given (-,-),, is the inner (Dirac) product on H, the
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complex integral over ¢ € H and 1) € H of the form

F[D] = /H /H 51 dipd (4.25)

where the action is
Sy = (¥, Dib)y, (4.26)

gives a determinant of D. A Majorana product on H is defined by analogy with
(A.20):
(b1, Yol = (1, o)y - (4.27)

The real integral over only 1) € H given by
F[D] = / eS1 dy (4.28)
H

where

Sy = iw, Dy (4.29)

produces a Pfaffian whose modulus is basis independent. The integration over
chiral fermions works similarly to the real case. However, an important example
of this ("Example 2” in [54]) occurs for a s = 4 spectral triple. In this case,
two copies of the triple combine to give a new s = 2 spectral triple and a basis-
independent Pfaffian in terms of the 4th root of a functional determinant of D.

We remark that similar results to [54] are given in [98].

4.3 Weinberg operator and beyond

Here, we refer to the terms specified in the introduction to this chapter. The
Weinberg operator (see below) is a source of neutrino masses that only re-
quires SM fields. Furthermore, the higher-dimensional terms have effects on
phenomenology involving left-handed leptons. Hence, the Weinberg and higher-
dimensional terms are of phenomenological interest. We restrict to these terms
in our discussion in this section, which is in the Lorentzian regime.

For mass dimension 5, one can only write the Weinberg operator [51]

Ow = & fallh -2 )14 2 ") + cec. (4.30)
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where f,, is a 3 x 3 coefficient matrix. In the electroweak broken regime, equation
(4.30) becomes a v, Majorana mass term

1
[OW]¢=¢1; = impqyfyg + c.c. (431)

where m,, = % fpq 1s the active neutrino mass matrix.

We now consider mass dimension 6. Several operators of this form have been
found to give corrections to interactions involving left-handed leptons and SM
bosons [107, 108]. Hence, more than one dimension 6 operator is allowed.

In the SM coupled to right-handed neutrinos (section 4.1), integrating the
right-handed neutrinos out (in the informal sense) is known to give an effec-
tive Lagrangian containing the Weinberg term and higher dimensional operators
(see [52, 49]). This happens in the framework in [49, 50] of Broncano-Gavela-
Jenkins'®, which we will now discuss. The effective Lagrangian the authors find

has the following expansion (using their notation) in terms of dimension d:
Eeff = §L4=° + s L£4=6 + ... (432)

where the d = 5 term is of order 1/M, the d = 6 term is of order 1/M? etc.. The
d = 5 term is the Weinberg operator with coefficient matrix |¢4=5| ~ |[Y2M 1.
We remark that the full coefficient expression (14) in [49] has a matrix 1 of phases
used to rotate the right-handed neutrino basis to set up the integration out. The
d = 5 coefficient matrix gives the standard type-I seesaw active masses (section

4.1). The d = 6 term is the operator (see [49, 50] for notation)
0L = ([19)id(c™=% 1) (4.33)

where the Hermitian matrix [¢?=5| ~ |Y2M~2|. This operator is composed of
other d = 6 operators and furnishes corrections to (left-handed) neutrinos in

their gauge couplings and oscillations.

10Some of the conventions used by the authors for the right-handed neutrino terms differ

from ours. We will factor this in later.
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Chapter 5

Beyond Standard Model physics

from right-handed neutrinos

The modern scope of Sakharov’s induced gravity is such that matter fields give
rise to spacetime dynamics in addition to the dynamics of gauge fields. This is
encapsulated by the induced Standard Model (see section 2.2) in which the SM
fermions including right-handed neutrinos furnish the purely bosonic action for
the spacetime metric and all SM bosons, and this is a potential solution to the
problem of coupling the SM to dynamical spacetime. What is missing from the
induced Standard Model is the contributions to the induced action from each
individual fermion species. In order to start filling this gap, we specialise to the
right-handed neutrinos for two reasons. Firstly, right-handed neutrinos are the
only fermions leaving the gauge sector unaffected and thus constitute the simplest
case of induced spacetime dynamics in the induced Standard Model. Secondly,
considering all fermions, and assuming a GUT seesaw scale, the effective theory
due to right-handed neutrinos is valid in the largest energy range, and thus
the right-handed neutrino induced action is applicable and testable at the most
scales. Hence, we make it the goal of this chapter to find the terms induced by
right-handed neutrinos with GUT seesaw scale.

This chapter is organised as follows. In section 5.1, we prepare the right-
handed neutrino functional integral, which contains the induced terms we seek.
The functional integral is evaluated in section 5.2. This step is necessarily heuris-

tic since functional integrals are too. A real fermion integral involving Majorana
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mass terms was evaluated in [54], and this case is built upon in section 5.2 by
including Yukawa terms and three fermion generations due to right-handed neu-
trinos. Our functional integral evaluation gives a bosonic action and a fermionic
action, the latter of which does not arise in the induced Standard Model [20].
Section 5.3 gives the total effective action. In section 5.4, we show that the
bosonic piece gives a Newton constant as well as cosmological and curvature-
squared constants, and we discuss the values of the constants. In section 5.5, the
fermionic action receives a 1/M expansion since it is of the right form for this,
and we consider only the leading term since this is the dominant contribution.
The leading term results in an active neutrino mass term that agrees with [49,
50] up to a new real scalar factor. We show in subsection 5.5.1 this new factor
leads to a seesaw mechanism that gives experimentally consistent active neutrino

masses at the price of unnaturally large neutrino Yukawa couplings.

5.1 Setting up the functional integral

We consider the minimal modification of the SM with three right-handed neutri-
nos in curved spacetime M (section 4.1). The inclusion of right-handed neutri-
nos accounts for particle physics phenomena left unexplained by the SM alone,
namely neutrino mass, dark matter and the baryon asymmetry of the universe
[52]. In particular, we are interested in the extent to which the right-handed
neutrinos give rise to realistic spacetime dynamics. In this chapter, our origi-
nal contribution is to show that right-handed neutrinos simultaneously induce
spacetime curvature terms along with a new real scalar modification to the type-I
seesaw. This contribution starts with quantised right-handed neutrinos and all
other fields being classical, which means we consider the functional integral over
right-handed neutrinos only. The functional integral is central to the goal of this
chapter since the resulting 1-loop effective action contains all the right-handed

neutrino induced terms.
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Lorentzian

We begin with the Lorentzian physics since this is already known or interpolated

from experiments. Our functional integral is given by
Ty = / SN DR D (5.1)
and the action consists of only right-handed neutrino terms;

7 1
Sw = [ TPk + Vol -2 )8 + 5 Myl + e

) (5.2)

where +c.c. applies to the terms in the square brackets. Note equation (5.1)

integrates over v and 7x independently. In contrast to the induced Standard

Model ([20], also see section 2.2), we omitted a cosmological constant counter-

term and an integration over geometries since both are spectators in the following.

We assume a type-I seesaw scale 9t (see section 4.1) at the grand unification scale.

We now write equation (5.2) in full. Using the properties of the Dirac and
Majorana products, we write

_ 1.
c.c. =YIUh(13 c2 %) + §M;qyf%y% (5.3)
where * denotes complex conjugation. Hence, equation (5.2) becomes
S = [ QTR+ Yol -c2 O+ ViRl 0 6

(5.4)

1 | J—
+ §Mpqyﬁu}§ - 2Mpquﬁy}§).

Lorentzian — Euclidean

We want to integrate out the right-handed neutrinos from equations (5.1) and
(5.4). This relies on a choice of basis for the right-handed neutrinos, and crucially
the result of the integration out must be basis-independent. This requirement
has been met in a finite dimensional NCG model for Y = 0 and one fermion
generation with KO dimension corresponding to the Euclidean signature [54],
and thus an infinite dimensional extension of this result is possible. However, an
analogous result for the Lorentzian regime (which has a different KO dimension)
has not been found. In order to guarantee ourselves a chance of our integration

out being basis-independent, we now go over to the Euclidean regime®, which

LA basis-independent integration out in the Lorentzian regime is beyond our scope.
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will be important when we consider the heat kernel expansion (section 5.4.2).
We use the Lorentzian-Euclidean transition scheme reviewed in chapter 3, and
this scheme fits most naturally to our right-handed neutrino model since both
originate at the functional integral level.

We denote the Euclidean functional integral by ¥ Zy and the Euclidean action
by ¥Sy. Using the Lorentzian-Euclidean transition rules (see chapter 3), we find
the action Euclideanises in the expected manner as Sy — i(¥Sy) from which
we find an explicit expression for Sy. The functional integral Euclideanises as
EZn = Zy, which gives ¥ Zy upon substituting in the action Euclideanisation

and the replacement of 7z with the independent spinor vg.

Euclidean

The resulting explicit expressions for the functional integral and action are
By = / e~ ("S¥) Dip Dug (5.5)

and

£y == [ O (TpliBp)y + Yo 0 -2 O+ Vi 1 2 )

5.6)

1 1 (
—+ iMqu%V% -+ 2Mpql/prRq>

where [}, is the independent spinor counterpart to Iy,.

Before we move on, we do some book-keeping for the action (5.6). In most

of the following, the lepton doublets and Higgs are spectators. Hence, for the

Yukawa terms, we define

Vrp = V(4 ¢ 67) (57)
which is a left-handed spinor with a free generation index, and the counterpart
spinor

Vip = (I} c2 )Y (5.8)

Substituting these definitions into equation (5.6) gives

Oy = = [ (T D)+ T+ 0,0
M (5.9)

1 Loy
5 Mygrhvhy + QM;qVRPVRQ).
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5.2 Evaluating the functional integral

First, we re-cast each class of terms in equation (5.9) but omit any — signs for

now. We find

/M Qp (ﬁ};p(upE)yg) _ /M Qp <yg(upE)%> (5.10)

where we used the Majorana product symmetry on fermions, the property

[0, ] = (Crp, Q) (5.11)

the relation PpCr = CplPg, and the self-adjointness of ) with respect to
S QE((:,-)) since we assume no torsion (for these properties, see appendix A).

Thus, in equation (5.9), the kinetic term becomes

//vl Qg <V7gp(i¢E)V%) = / QE< VRp(ZlDE)VR + ;VR(MDE)VR:D)
= / QE< (CEVRy, (leE)VR) ; (CgVy, (UDE)VA}J%HE)
(5.12)

where we used equation (5.11) in line two. Using equation (5.11) and the fact
that the spinor chirality operator acts on chiral spinors as v,,(r, = (1 and vy (g =

—(gr, we write the Majorana mass terms in equation (5.9) as
1 oy

1 (5.13)

= / QE( (Crviy MypginVi) g + 5 (CpVR", Mpgyu V") )

After combining equations (5.12) and (5.13), the sum of the kinetic and Majorana

mass terms becomes

1 , ~
[, 95 (5 (Comy, Do) + 5 (Covh, (De)my)
1 1 N N (5.14)
3 (Cuvi, Mpgymvh) g + 3 (CpvR?, My ymVRY) )
Lastly, using equation (5.11) and the symmetry of [-, -] on fermions, we write the

Yukawa terms in equation (5.9) as

[ (T, + i) = [ 0n((Coto, )+ (Cotiy )y ). (5.15)

We now consider the Hilbert space H/ = L*(M, S) ® C3. The Dirac product

on H’ is denoted by (-,-)% and is a simultaneous (-, ), and dot product on C3.
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Given (r,Cr € H' and the basis e, € H/, we have

(CL: Cr)p = (CLens Chq)
= (CL: Cr)p (€ 0o &) (5.16)
= <C§, <§>E
where in the last line we used e, 'cs ¢, = d,,. In terms of elements of H/, we

write equation (5.14) as

1 . o 1 . __\o

/ Qp ( (Crvr, (iPp)vr)p + 5 (Cpvr, (i) VR)p
M 2 2

1 T B . (5.17)

3 (Crvr, Mymvr)p + 5 (CrUg, M*’YMVR>E)

where vp = vje, with similar expressions for other fermions and we used the

result of (5.16). By similar means, equation (5.15) becomes

/. 9((Crvn 7w + (Cotnvm)y ) (5.18)

We now consider the ’doubled’ Hilbert space H} = #/ & #/, which has the
Dirac product ((-,-)), that combines (-, )%, and -c2. Equation (5.17) can now be

written as
1 .
/. 9(5 (CoNn, iDENR)) ) (5.19)

where we define

n
Np = ( R) e M, (5.20)

VR

)
Cp = (5.21)
Cr

where empty entries are block zeroes, and
i —-M
iDp = ( D W) (5.22)

and the last two equations define operators on ’H% . Similarly, equation (5.18)

becomes
/M QE< (Co, NR)>E> (5.23)
where N
vy [V el (5.24)
Ur
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Compared to Example 2 in [54], we have 3 x 3 complex matrices in place of
complex numbers, which does not affect the KO dimensions. For the Hilbert

space ’Hg , we define the Majorana product
[0, @] = ((Co¥, )y, U, b eHj. (5.25)
Using this, we express equation (5.19) as

/M Qp (;[[NR, mENR]]> (5.26)

and equation (5.23) as
/. (w2, Nal)). (527

In equation (5.9), we replace the kinetic plus Majorana terms by (5.26) and the
Yukawa terms by (5.27), and doing this gives

1 :
"8y = = [ (5 [[Na iDeNg] + [[¥2, Nl ). (5.28)
Hence, the Euclidean functional integral in equation (5.5) becomes
1 :
vz = | exp{ /M Qs <2[[NR, iDeNg]] + [V, NR]]H DNg. (5.29)
We now consider the substitution
Nr — Np — (iDg) "y (5.30)
This gives
1 , 1 : 1 N1
S[INr, (@Dp)NE]+{[Yr, Nr]] = S[[Nr, ((Pp)Nr]]=5[[Ye, (D) V1], (5.31)

i.e. the term linear in Ny is eliminated. Thus, making the substitution in

equation (5.29) gives
“2y = [exp [ 0 (5[Nn, (1De)Na]) -

2
- (/exp{/M QE@[[NR,(@'DE)NR]])]DNR)

8 exp[/M QE( - ;H\DLv (iDp) U] } (5:32)

where Pf[iMp] is the Pfaffian [1, 54] and Mp is the matrix of elements of the

Dirac operator Dg in a chosen basis. The Pfaffian is well-defined since Mp
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is anti-symmetric for our case where s = 2 [54]. In the last line of equation
(5.32), the first factor (Pfaffian) is purely bosonic and the second factor is purely
fermionic.

We remark on comparisons with integrals in [54] (also see section 4.2.2). The
Euclidean functional integral (5.5) is complex since it integrates over the right-
handed neutrinos vg and their ’conjugates’ vg independently. Equation (5.5)
was then expressed as a real integral (5.29) with operators and fermions that
are twice as large (in terms of matrices). Hence, our functional integral gives a
Pfaffian, rather than the determinant due to a genuine complex integral. Overall,
the current section is essentially a generalisation of Example 2 in [54] where we

have three right-handed neutrinos and additional Yukawa terms.

5.3 Total effective action

In the last line of equation (5.32), the Pfaffian encodes a 1-loop effective bosonic

action denoted by £Sp, and this action is defined as
Pf[iMp) := ¢~ 55. (5.33)
In the second factor, there is a 1-loop effective fermionic action
E 1 .y \—1
Sei= [ 501, (Dp) 01|, (5.:34)

Note £Sp and £ Sy are respectively bosonic and fermionic as their labels suggest,
but both originate from integrating out right-handed neutrinos. We can now

write the last line of (5.32) as
Egy=e TN (5.35)
where the full 1-loop effective action is
Ery :=FS5 + 7S5 (5.36)

Equation (5.36) applies below the type-I seesaw scale 9t.

Euclidean — Lorentzian

We transition back to the Lorentzian regime to obtain the physics that can

be measured (whereas the Euclidean ’'physics’ cannot be). To return to the
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Lorentzian regime, we use the Lorentzian-Euclidean transition (chapter 3) but
in reverse. We assume the Euclidean-to-Lorentzian transition works similarly to
the Lorentzian-to-Euclidean transition.

For completeness, we formally apply the Euclidean-to-Lorentzian transition
to the full effective action. Under Euclideanisation, the Euclidean and Lorentzian
versions of each piece in (5.36) are related by S = —iS. Hence, Euclideanisation
gives

ETy = —i(Sp + Sr) (5.37)

where we have the Lorentzian bosonic and fermionic 1-loop effective actions on
the right-hand side. Substituting equations (5.37) and (5.35) into Zy = £Zy
gives

Iy = et~ (5.38)

where the Lorentzian 1-loop total effective action is
'y =5+ SF. (539)

For the bosonic and fermionic terms on the right-hand side of (5.39), we must
now perform an explicit Euclidean-to-Lorentzian transition as well as explicitly
conduct the necessary analysis. This occupies the rest of the present chapter. In
the next section we consider the bosonic action, and in section 5.5 we consider

the fermionic action.

5.4 Bosonic action

5.4.1 Evaluating the Pfaffian

Euclidean

We start by recalling that we derived the Pfaffian Pf[iMp] in the Euclidean
regime, where we remain for the time being. The Pfaffian is over spacetime
and fermion generations. To deal with the generations, we assume the Pfaffian
decomposes into a product of Pfaffians that each correspond to a generalisation

of a finite spectral triple contribution from [54]. Thus, we write
PfliMp] = IL,Pf,[iMp] (5.40)
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where Pf,[iMp] is a spinor Pfaffian of iMp for a given p.

We consider the second-order differential operator
2
Dy + M (5.41)

where |M[*> = M*M. In equation (5.41) some Kronecker products are sup-

pressed, and writing these in full makes the equation read

Pre1+1e |MP (5.42)

which is a Kronecker sum [109]. A generalised definition of | - |* for any square

matrix R is

IR]> := R'R. (5.43)

A result due to appendix B is that
|M|* = Updiag ({M2})UY; (5.44)

where U), is a unitary matrix and the eigenvalues Mg > (. Using this, we write
(5.42) as
Dy @ Ui UL +1 @ Updiag({M2}) UL, (5.45)

where we used Uj,;Ul; = 1. Equation (5.45) factorises as
(1@ Ui (Pr®1+1diag({M2})(1 © UY). (5.46)
The middle factor of this is
Dy ® 1+ 1@ diag({M2}) = diag(D3, + M?). (5.47)
Thus, we have the block diagonalisation
Drel+1@ M) = (10 Uj)diag(Dy, + M?)(1 @ UL). (5.48)
Given this, applying the functional determinant over H; to both sides gives
Det[Dy, + |M[?] = TL,Det 2. D5 + M?] (5.49)

where Detr2(rq,s) is the determinant over spinors on M. This step used the fact

that multiplying block determinants gives the determinant of a block diagonal
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matrix and that 1 ® Uy, is unitary. We take the fourth root of equation (5.49),

which must be the positive choice since ]DQE + |M|?* is positive:
2 1 2 1
Det[Dy, + |[M|?]7 = I,Det 2.5 [P + M) (5.50)
Example 2 in [54] gives
2 1 . _io'p
Detr2(am,s) [Py + M1 = PL,[iMple 7 (5.51)

s

where Ip is the Dirac operator index and for us § = % as we have real M.

2
Putting (5.51) into (5.50) leads to
Al
Det [, + [ M) = (TP, [iMp]) (TT,e ™ F). (5.52)

The first factor is Pf[iMp] by definition (equation (5.40)). There is also an extra

factor of exp[—i2T Z2]. Hence, (5.52) gives
. 2 2 1 37T _[D
Pf[iMp] = Det[ID}, + |M|?]7 exp [z??}. (5.53)

In equation (5.53), the index Ip is an invariant [71] and the determinant is a
spectral function, and thus the Pfaffian is independent of the basis expressing the
matrix Mp. Also, equation (5.53) ensures the cancellation of fermion doubling
as in [43]. Compared to the result of Example 2 in [54], our result (5.53) is an
extension to 3 x 3 internal mass matrices. This is expected since both results
emerge from similar methods.

The exponential in (5.53) gives an action term —i27 2. This is an index term

(c.f [54]) which is purely topological. Since the physics is not changed by the

index term, we now drop it.

5.4.2 Bosonic action

Substituting equation (5.53) (with no index part) into (5.33) gives
e 58 = Det[ D5, + | M| (5.54)
We let Dy be a Dirac operator whose square is
D% = Py, + |MJ? (5.55)
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where Dy itself is to be found. Equation (5.55) is the functional determinant

argument in equation (5.54), i.e.
e "S5 = Det[ D], (5.56)
Taking the logarithm gives
ESp = —iTr Ln[D3] (5.57)

where Tr is the functional trace and we used Ln Det = Tr Ln. Equation (5.57)

is now approached with standard induced gravity methods.

Induced gravity methods

For this we follow the regularisation procedure of Visser [12] (also see section
2) but work in the Euclidean regime. This sub-subsection is independent of the
precise form of Dy. Viewing the bosonic action (5.57) as a function of Dy, we

introduce a reference Dirac operator Dyg so that
1
£SpIDx] = ESp[Do] — {Tr [Ln[D]ZV] - Ln[Divo]} (5.58)

This permits the use of the Schwinger parameterisation identity

m(Z) — /OOO {ebt - eat} Cit, (5.59)

which gives

dt

1 0o
ESpDx] = ESp[Dnol + 7 | [Tr e PR _ Ty ethzVO} " (5.60)
0

We introduce a UV cutoff A on the order of the Planck mass and an IR cutoff
€ where we assume € << A (c.f [16, 19]). In this case, given the suggestion in
section 3.2, the cutoff A plays the role of fixing the conformal factor-induced
divergence in the path integral. The Schwinger parameter ¢ has mass dimension
—2, hence keeping track of dimensions and sizes dictates that we must replace

the integration limits as
E E 1 672 —tD? —tD?2 dt
Sp[Dy] ~ “Sg[Dno] + 1/ , {Tr e "N —Tr e N0 n (5.61)
A—

For now we keep our formulae general, but it will be shown that the second-

order differential operator D3 is of the Laplace form (2.37), thus permitting us
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to use the heat kernel expansion. The heat kernel expansion is well-defined in
the Euclidean regime but not in the Lorentzian regime (see subsection 2.1.2),
hence our use of the Euclidean regime. The heat kernel expansion in this case is

given by (2.36) with P = D%

Tr e % 707 S "9 a0, (1, D). (5.62)

n>0
Given that a,, = 0 for odd n, and for the remaining (even) terms we put n = 2m,

we have

Tr e % 707 ST 42, (1, D). (5.63)

m>0

We may substitute this into (5.61), which upon re-arranging yields
E 1 et 2
SelDw)~ 1 5 ([, 7% )aam(1. D) (5.64)
ms0 \ /AT t

where we neglected the reference action which has the role of a spectator?.

Introducing the real singlet scalar

We now specialise the heat kernel coefficients to our Dirac operator (5.55). We
use the real singlet scalar from non-commutative geometry (see section 4.2) since
this is needed (in the non-commutative SM) to ensure an experimentally consis-
tent Higgs mass and a stable Higgs self-coupling [44].

We first need an explicit formula for the Dirac operator Dy, or the square

root of equation (5.55). This is given by
Dy =Dp®I3+ vy ®|M| (5.65)

where |M| = v/ M*M is the positive matrix square root since M? > 0. A check
shows that (5.65) squares to (5.55) and hence is a good square root. In terms
of the non-commutative SM (section 4.2.1), equation (5.65) can be interpreted
as the vacuum SM Dirac operator (4.14) with the internal space F restricted so
that Dp = |M].

Our real singlet scalar is the field o from the non-commutative SM (see section

4.2.1). This scalar enters via

M — Mo(z) (5.66)

2This neglect plays out via the reasoning in [19], which applies since M is compact.
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where M is a constant non-zero 3 x 3 symmetric matrix. We invoke the additional
assumption o # 0, which will be used later. In our mechanism, the o field and
the metric gg are the only fields coupling to right-handed neutrinos. We choose
to put the mass dimension 1 into M , so that ¢ is dimensionless.

Making the scaling (5.66) into the Dirac operator (5.65) gives

This replaces the Dirac operator (5.65).

Computing the integrals and heat kernel coefficients

The heat kernel coefficients depend on the coefficients of the Laplace form (2.37),

which we must find for our case P = D%. Explicitly this operator is given by
2 —~ —
D% = Iy @ Is + Yy (0,)0]) @ | M| + T @ | M[?02. (5.68)

The Lichnerowicz formula [73] states that the squared Dirac operator lD%E is the

Laplace-Beltrami operator up to a scalar curvature term:
2 w 1
Dy =95 V.V, + ZRE (5.69)

where ¢f~ are the components of the inverse Euclidean metric, V,, are the com-
ponents of the covariant derivative (which will be specified later), and R is the
Euclidean Ricci scalar®. Substituting equation (5.69) into equation (5.68), we

get the Laplace form (2.37) for P = D% where
1 —~ —
~Bi= Rp® I+ (Virar ® |M[)8,lo] + 1 @ |M[*0>, (5.70)

We remark on why we introduced the real singlet scalar o where we did (in the
previous sub-subsection). We followed the non-commutative SM [46] in the sense
of introducing the scalar at the level of the internal space in the (undoubled)
Dirac operator. Furthermore, if we introduced o at the |M|* level as in the
Dirac operator squared (5.55), in equation (5.70) the term on the right-hand side

involving d,|o| would be absent. This missing term will turn out to correspond

3The Euclidean equation (5.69) is related to the Lorentzian equation (2.19) via the

Lorentzian-Euclidean transition in chapter 3.
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to a scalar kinetic term in the bosonic action (c.f equation (5.89)), and this term
is consistent with the heat kernel expansion of the Connes-Chamseddine action
[46]. Since the heat kernel coefficients in equation (5.64) are at the D3 level,
introducing o in the heat kernel coefficients would lead to the missing scalar
kinetic term. Hence, our choice of location to introduce o ultimately ensures
our mechanism is consistent with non-commutative geometry, and we will check
this later. The consistency is important since it functions as a verification of our
mechanism.

For our case, we now compute the integrals over ¢t and heat kernel coefficients
up to m = 2 inclusive.

m=0:

The integral over ¢ is
< dt 1
/ Tz oz (5.71)

where we have dropped terms below leading order in the cutoffs. The lowest heat

kernel coefficient is of the form

ao(1, D) = (47)~? /M dV<tr 1) (5.72)

where tr is the trace over spinor and generational indices and dV = /det(gg)d"x.
The trace evaluates to tr(1) = 12 due to 4 spinor index values times 3 generation

index values, thus giving
ao(1, D%) = (4@*212/ av. (5.73)
M

m = 1:

The integral to leading order is

2
/ @t—l ~ A%, (5.74)
A2 L
The heat kernel coeflicient is
as(1, D%) = (4m)~267* /M dv (tr[6E + RE]>. (5.75)

Substituting in (5.70) and evaluating the traces gives
ar(1, D) = —(4m)* | dV<RE + 4002) (5.76)
M
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where we have defined ¢ := tr |M|? (c.f non-commutative geometry e.g. [43, 46]).

To get this, we used the trace identity

tr(vgym) =0 (5.77)

due to the trace containing an odd number of gamma matrices.
m = 2:

We have
2 dt A2
/ Ty = ln() (5.78)

A-2 €2

and the heat kernel coefficient
as(1, D3;) =(47) 72360~ /M dv (tr [GOE;“M +60RpE + 1805 + 12Rp” + 5Ry,
— 2Ric2 + 2Riem?% + 3032D
(5.79)

where the subscript ; denotes a covariant derivative; Ricg and Riempg are re-
spectively the Euclidean Ricci and Riemann tensors and; the 2-form § is the

curvature of a connection 1-form § defined by
V=04 f. (5.80)
The Euclidean spin connection action (A.29) gives
fo = —WuapS. (5.81)
Hence, reading off from known results [15, 46] gives
S = ~ReuwaSh - (5.82)
By substituting (5.70, 5.82) into (5.79) and evaluating the traces, we find
ai(1, D}) = (4m) 2 [ dv<2143§3 - 115Rz'c2E 2

15
1
+ gcREa2 +2¢(V|o|)? + 2da4>

2
Riemy,

(5.83)

where d := tr |M]* (again c.f e.g. [43, 46]). In deriving this, we used the trace
identities
tr(Veym VM) = 495,
P " (5.84)
tl"[S%bSEd] — 4(5ad5bc - 5bd5ac)

and dropped all total derivative terms of the form S Some results for the

parameters ¢ and d are given in appendix B, in particular ¢, d > 0.
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Explicitly deriving the bosonic action

We return to the bosonic action form (5.64), for which we only consider the
m < 2 terms. Substituting in the expressions for the integrals and heat kernel

coefficients gives

1
FSp ~ 4 (4m) 72 [6A" /M O
-2 [ qy (RE 4 4002)
M
A2 1 1, 29
s ) [, Qe (gphe - phick — pRient 69

+ 2do* + ;)CREU2 + 20(V6|0D2>
+ (’)(6_2a6)}

where the form of the remainder O(e 2ag) is determined from writing out the
m = 3 term in equation (5.64). For the above result, we assumed dV = Qp,
which holds if the Lorentzian-Euclidean transition (chapter 3) has a suitably
performed rotation [1]. The curvature-squared terms can be reduced further due
to the result that a particular curvature-squared combination is a topological

term (i.e. Chern-Gauss-Bonnet theorem):
Riemy, — 4Ricy, + R% = Top (5.86)

where the right-hand side integrates to (a multiple of) the Euler characteristic
of M. Hence, eliminating Riem?, gives

1 1. 29 . 79 39 . 29

ﬂR?E - BRZC% - BRzem% = ZOR% - ngzE — 1—5T0p. (5.87)

Moreover from V., |o| = (sgn 0)V,.,o we have
(Velo|)? = (Vo) (5.88)

In this working one gets a factor of (sgn 0)? = 1. If we did not impose o # 0, the

2

factor (sgn ¢)* would give a non-physical discontinuity at o = 0. Substituting

(5.87) and (5.88) into the bosonic action gives

1
E ~ Q A4 o AQ 4 2
SB 4(47?)2 /,/\/1 E(G [RE + 4co ]

A%\ [79 39 .

1
+ gcREa2 + 2do* + QC(Vea)Q] + (’)(6%%))
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where we omitted a non-dynamical topological term and put the remainder terms
involving the non-integrated heat kernel coefficient ay into the Lagrangian. This
result contains curvature terms, the o* Lagrangian and a scalar-curvature cou-
pling through the term oc Rgo? in a combination possessing scalar Z, symmetry.
There are no SM bosons since the right-handed neutrinos couple only to gg and
o in the high-energy fermionic theory. The cosmological constant and Einstein-
Hilbert term have the signs of Euclidean signature (see equation (3.14)).

We can perform a sanity check by making a rough comparison between equa-
tion (5.89) and the gg-o part of the Connes-Chamseddine action (5.49 in [46)):
both have the same signs and invariants, but the numerical coefficients are not
equal. The latter observation can be attributed to the differences in the high-
energy geometry and matter actions. The comparison excludes the curvature-
squared terms due to differing invariant choices, and we do not pursue this fur-
ther. A more rigorous comparison between the bosonic and Connes-Chamseddine

actions is deferred to further work.

5.4.3 Bosonic action under scalar symmetry breaking
Euclidean

We wish to find the ¢ potential for symmetry breaking. The kinetic ¢ term is

normalised by defining ¢ such that

= (dﬁ%) 5. (5.90)

Note o # 0 means ¢ # 0. We now define

2 e 2A2
T A2/’

In(A?/€?) (5.91)
s 2(4m)?

T rIn(A2/&)
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where r := % in the above*. Given the range of r in appendix B, both expressions

in (5.91) are positive. The normalisation with the parameters gives

Eg /Q( S VR S
B P\ 242 A(4m)2 "

In(A%/e2) 779 , 39 _
iy »> Ny ») 2.92
4(47)?2 {40 BT e (5.92)

1 1

+ Ry + (V3 + V) + (9(6_2@'6)>
with the scalar potential
1 1
V(5] := —§u§52 + 1)\0&4. (5.93)

The pure o terms in (5.92) and (5.93) have suitable symmetry breaking forms
(given m? — —p?) (c.f [110]).

In what follows, we explicitly break Z, and find symmetry broken quantities.
1

. . . ~ 2 E .
The global minima of (5.93) are given by ¢ = i(’;z) , which are non-zero as
w2, Ay > 0 and are Z, equivalent. The scalar Z, breaking is done by the choice of

pe

o vacuum (7) := w where w = ( ,\0> * is the vacuum expectation value (VEV).

Fluctuations around the vacuum give the usual singlet scalar mass

2A
a In(A%/e?)2

where we used (5.91). The above expression gives m, ~ 2 x 10'® GeV taking

(5.94)

€ ~ m® where m&P ~ 107" GeV is the active neutrino mass scale datum®.
Since the scale of ¢ fluctuations m, >> 9, we may neglect them in the effective
action (including the fermionic piece). Thus, fixing & = w in the induced action

(5.92) gives the curvature expansion

4 (47r)2A ?;9 . (5.95)
s T p2 Yy -2
+ (47r)2<m0> [4ORE 5 RZCE]

+ O(E—Qag))

4Note that subscript labels ¢ apply to the re-scaled scalar &.
SOur estimating e follows [19] except with different active mass, but this is insignificant

as we also only see € inside the logarithm (as for the fermionic action later). Constraints
reported in [52] imply a total active mass ~ 0.1eV, and we estimate mS*P as a third of this,

i.e. m&P ~ 0.01eV = 10~ 1 GeV.
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To get this, we used the following results: equation (5.94), which gives

2

2

uﬂzgzzgg, (5.96)
and putting this into (5.93) gives
2,2 4
paw mg
Viw] = — T (5.97)

Further, note w goes through V., thus the scalar kinetic term disappears.

Euclidean — Lorentzian

The transition to the Lorentzian theory follows chapter 3. Equation (5.95) shows
that we need the Euclideanisation of the square of the Ricci tensor. From the pure

gravity relations of section 3.2, we have the Riemann tensor Euclideanisation

ERZab = (_i)NR({ab

(5.98)

where N = 6,0+ 0p0+ 90 — 0. In other words, for (contractions of) the Riemann
tensor, each upper tangent space index gives a factor ¢ and each lower index gives

—1. These factors for the squared Ricci tensor cancel, giving in MTW conventions
Rick = Ric*. (5.99)

Now, we can get the Lorentzian action. Using the Euclideanisation relations

(including the above result) on (5.95) gives ¥Sp = —iSp where
3A1 m?
5o 1,2~ (o~ )
LY 2(4m)2 16\,
1/ A? m?2
S o
]. A 2 79 2 39 .92 —21/
+ 7(47_(_)2 <777,J> [— ZOR + ERZC :| + O(E b6)>

where b is the result of transitioning the Euclidean ay to the Lorentzian regime.
We interpret (5.100) as the Lorentzian heat kernel expansion of the action in our

case.
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Lorentzian

Equation (5.100) can be alternatively written as

o1 2 T 2> 2
55 /MQ< 2(47r)2<3A 1Mo ) A

A? r
= (1-- .
4 4<4W>2( 3)1% (5.101)
1 A 2 79 2 39 .92 —21/
+ (47’(’)2 <777,g> [— ZOR + ERZC :| + O(E bG))

where in the first two terms we used the )\, expression in (5.91) and (5.94) to

eliminate a factor of m?2.

5.4.4 Gravitational constants

From here, we neglect the remainder terms O(e 2bj) (which are highly sup-
pressed). We define the right-handed neutrino induced gravitational constants

implicitly by

1
=/ Q —2A 2 ‘ 2>. 102
SB /M (167TGN( N +R) —|—CLNR +bNRZC (5 0 )

We remark that this is the higher-derivative gravity action [111, 112], which is
mathematically well-defined. Equation (5.101) is equated to (5.102). By match-
ing terms, we can read off the gravitational constants. The Einstein-Hilbert term

gives a Newton constant such that

LA (1 - T) (5.103)
167Gy 4(4r)2 3/ '

The cosmological constant from the cosmological term can be cast using equation

(5.103) into the form

3A2 — m?

This and Gy in (5.103) are singular at thz value r = 3, which we therefore
exclude from the r bound in appendix B so that now 1 < r < 3. A separate
result is m, < A as we later show. Both bounds give ﬁ,AN > 0, which
ensures Lorentzian signs for these terms. From the curvature-squared terms, we

find

(5.105)




The scalar had no couplings to curvature squared, and hence the curvature-
squared couplings did not receive corrections depending on r when Z, was broken.
This has resulted in (5.105) having no dependence on the Majorana mass regime.

Together, the induced constants are

_ ima
Ax -
A2
(1-35)
167rG’N T 4(4m)2 (5.106)
1 A '
= 2(m>( 40)’
1 AN2/39
b5 = o) (5)

where 1 < r < 3.
For the spectrum of M (see appendix B), we assume two eigenvalues Mp ~ M
and one Mp << M. To motivate this regime, we consider a slightly more general

one with &k heavy eigenvalues (for non-negative k£ < 3). From (B.3) we have in

r= (ZP@ (5.107)

PP

whence for k heavy eigenvalues r ~ (k9)2/(k9M*) = k. The r bound prefers a

general

k value away from the limits, with particular disfavour of the degenerate regime
k = 3 near the singularity of (5.106). The optimal choice is k = 2, i.e. our chosen
regime. This somewhat relates our theory to the vMSM (section 4).

For one eigenvalue Mp << 9 and the other two Mp ~ M (sor =2), we find,

using my, ~ 2 x 10¥GeV,

Ay ~ 9A%

N
167Gy 12(4m)2’ (5.108)
an ~ —04,

We now discuss these values.
The induced cosmological constant is positive, as is the case for fermionic
spinors (c.f [19]). The cosmological constant from experiment [10, 11] is AP ~

107'2A%. Thus, we have the cosmological constant problem (section 2). We
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expect that also integrating out SM fermions would make this worse since these
would give additional cosmological contributions.
Equation (5.108) gives Gy = 12rA~2 The classical Newton constant G =
A~2 is smaller. The sign ambiguity mentioned in [19] is ruled out since Gy > 0.
Only very weak bounds on the curvature-squared couplings appear to exist
via experiment: [113] shows
lal, |b] < 10% (5.109)
and other bounds therein are only weaker. The bounds (5.109) have sufficiently
large tolerance to admit (5.108) and possibly additional SM contributions. The

curvature-squared couplings also have the tachyon-free constraints [111, 112]

(also see [113])

b <0,
(5.110)
3a+b>0.

The first bound is violated by (5.108) (but the second is satisfied). Hence, our
effective action is tachyonic (has particles with —m?), i.e. the vacuum state of
the effective action is uncertain (if it exists). Attempting to find the genuine

vacuum state is left as an open problem.

5.5 Fermionic action

Euclidean

We recall the fermionic part of the total effective action:

Esp= [ QE(;[[\I/L, (m@l%]]) (5.111)
where N
v, = [V (5.112)
(3
and
iDp = ihp =M} (5.113)
M*ym llpE

The Lagrangian term is given by S = [, Qp(PLr) where
1 o
Eﬁp = 5[[\IJL, (ZDE) 1\I}LH- (5114)
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We now impose the same o modification as for the bosonic action:
M — Mo, (5.115)

which gives
Dy — NUDE —Moma ) (5.116)
(Mo)*yu  ip
The above makes the action (5.111) violate the scalar Z, symmetry. This will
later be realised in full.
We now take a 1/M expansion. To prepare, we make a Dirac-Majorana split

of (5.116) such that
Dy = Dp + Dus (5.117)

where
Dp = [Dgs=o0,

Dy = [DElp,-o

(5.118)

and the evaluations on zero are only used here to keep the notation economical.

Inverting (5.117) gives the Maclaurin series in M ™!
D' =Dy} — Dy DpDif + ... (5.119)

and we assume the convergence condition p(DpD;;) < 1. Substituting this into
(5.114) gives
1 , _ 1 1. _
PLp= 5[Yz, (D) ")+ 5[[\IJL,DMl(mD)DMlxlfL]] +...

2 (5.120)
~ 5[[%7 (iDpr) W]

where for now we only preserve the leading order term in M1, which is most
significant.

We find an explicit formula for D;,/. By the definitions in (5.118)

iMo
Dy = N T (5.121)
—i(Mao)* v
We write
1 a B
Dyt = (5.122)
v 0



where a, 3,7/,8 are block matrices to be found. Imposing D;;/Dy = 1 and

solving gives
a=0=0,
B =iyu(Mo)* !, (5.123)
Y = —iyu(Mo) ™.
We now express the Lagrangian (5.120) via formulae from the high-energy
theory (section 5.2). We have

L ; (CoWy, (iDa) L)), (5.124)

where [[¥, ®]] = ((Cx¥, ®)) . The inverse of D;; can be given as

M)
(iDy)" = -~ me(Mo)™ (5.125)
—yar(Mo)™!
Taking the product of this with (5.112) leads to
Mo)*1
(iDyy) 1y, = ( - gl (5.126)
(Mo)™ 4y,
In addition, using
C
Cr = 71, (5.127)
Cr
we have
C
cpvy = |7V (5.128)
Cpr
Substituting equations (5.128) and (5.126) into equation (5.124) gives
1 —~ o 1 — —~ —~ 0o
PLp ~ 5 (Cr¥r, (M) "r)p + 5 (Crtr, (M) Y1) g (5.129)

where we used the decomposition of the doubled Dirac product ((-,-)); into
the dot product on C? and the Dirac product (-,-)}, on generational triplets.

Equation (5.129) in terms of generational components reads
L Vo) L= P9
ELp ~ §<Ma)pq ' <CEw§7¢%>E + §(M0)pq1 (CpYr Y1 ) g (5.130)

where we used (5.16). Restoring the Majorana product through [¢, (] = (Cre, () 5

yields
1~ x—1 1D 1q 1 ~ —1- P4
f(MJ) UL+ §(M0)pq v Y. (5.131)

E
EFN2 pq
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This gives the action
E 1 ~ *—1 D 14q 1~ -1 P4
S~ /M (5 (Mo vt + 5 (M) 0n 6. ). (5.132)

We exchange the book-keeping field and its conjugate for the original lepton and
Higgs fields via (5.7) and (5.8):

E5p e [ 0p(3h0 0 0200 020 + 5 207 (2 ) B2 6)) (5.139)

where

f=Y* MYt (5.134)

The results of the real scalar symmetry breaking were shown in section 5.4.3
and are unaffected by the fermionic action. From this point until the end of the

section, we impose symmetry breaking, i.e. we take

_ (47)? )§~
°(@) (c m(A2/e2)) 7 (5135)
and evaluate this on the ¢ VEV to get

o(w) = <cln(AA22r/62)>;’ (5.136)

which is positive.

Euclidean — Lorentzian

By making the transition to the Lorentzian theory using the rules in chapter 3,

we have Sp — —iSp = —i [, Q(LFr) where
1
Lp~ —§frsa(w)_1(lz c2 )15 -c2 @) + c.c. (5.137)

with coefficient matrix (5.137). This corresponds precisely to the Weinberg op-
erator (section 4.3).

We remark that the potential fermion doubling in the Euclidean from taking
spinors and their charge conjugates as independent fields was restricted to the

Euclidean, and this fermion doubling disappears in going back to the Lorentzian.
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Lorentzian

The electroweak breaking from ¢ = ¢, leaves unchanged the induced bosonic
action due to the absence of Higgs terms, and thus transforms our Weinberg

operator (5.137) into the Majorana mass term
1
Lp ~ _§mrsV£V}§ +c.c. (5.138)

where

v?
m, = Efa(w)_l. (5.139)
The mass matrix contains the piece from the type-I seesaw (section 4):
v~
m! = EY*M*—IYT : (5.140)

However, our mechanism is not strictly type-I due to the ¢ field. Indeed, the

mass matrix (5.139) factorises as
m, = mlo(w)™". (5.141)

This makes our mechanism a form of multiplicative seesaw [91], in our case
Type I x 0.
We compare our results to those of [49, 50]. To change sign and notation

conventions between the former and the latter, we use
Y = -Y,, M — —M, ¢ — &, I) —ilp. (5.142)
In the special case where M is real and diagonal, this gives
f— =5, (5.143)

To ensure this we have the constraint n = 1, which is a natural correspondence
to our formalism where we assume positive Majorana mass eigenvalues. Given

the invariance of the Majorana mass traces and cutoffs, we simply have
o(w) — o(w). (5.144)
Putting the transformations together gives
Lr— L~ L0 (w) ™ (5.145)
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Our Lagrangian has an additional factor of o(w)~!, which arises through (5.66)
with the ¢ fluctuation terms neglected. We can succinctly express this deviation
in the form

m — ma(w) ™ (5.146)

Hence, it is sufficient to consider the impact of the ¢ factor on the active neutrino
masses and their agreement with experiment. This is the subject of the next

subsection.

5.5.1 Induced neutrino masses

We found the masses to be
m, =mlo(w)™. (5.147)

The mass matrix (5.147) is complex symmetric and thus diagonalisable by a
unitary matrix (see appendix B) since (5.140) is exactly likewise. Thus, the

relation (5.147) also holds in eigenvalue form:

My, = mio(w) ™. (5.148)

Consider the regime where one Mp << MM and the other two Mp ~ M. Of
the M, eigenvalue contributions to active masses, we assume those from the light
M, are negligible (in a similar fashion to the ¥MSM [52]). Hence, in (5.148), the

first factor is the standard type-I expression

I U2|Y20q|2

14
"™ Tom (5.149)
and we cast the second factor using (5.136) as
Mgy
~—Z 5.150
o(w) ~ o (5.150)

where we used m, = 2A/In(A%/e2)z ~ 10*8GeV. Making the substitutions gives

- U2|Y;)q’2.

Mo

(5.151)

Myp

Setting this of order m&P ~ 107'GeV, we solve for the Yukawa couplings to get

Y, ~ 20. The SM Yukawa couplings are about an order of magnitude below
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this, which leads us to view our Yukawa scale as unnatural®. Furthermore, our
Yukawa couplings lie in the strong coupling range, i.e. outside the perturbative
range. Given that fermions with real scalar Yukawa coupling exhibit fermionic
confinement at large Yukawa coupling magnitude [114], we speculate that a sim-
ilar effect occurs for the right-handed neutrinos and thus one would get a vgTR
bound state (assuming vg and 7g are not Majorana spinors). Compared to to-
ponium [115], our proposed bound state is expected to be much heavier since
the right-handed neutrino mass scale is significantly greater than the top mass.

The sterile neutrino masses are given in our Type I X o seesaw by

M,, ~ Myo(w). (5.152)
Using (5.150) results in
m,. —
M,, ~ —ZM,. 1
Sy Mo (5.153)

Hence, in our chosen regime, we have one M,, << m, and two M,, ~ m,.
Relative to the YMSM [52], our spectrum admits a keV neutrino but a far greater
heavy scale.

We remark on our Type 1x o seesaw. This is different to type-I, but originates
in the manner of type-I, i.e. from right-handed neutrinos coupling to the SM.
The seesaw scale is the singlet scalar mass m, due to the o factor trading this for
the type-1 seesaw scale M ~ 10°GeV. In contrast to type-I, our scale is bosonic
instead of fermionic. Further m, >> 9, placing our seesaw higher than type I
(and type 3) in the seesaw ordering by new scales in [91], which was the cause
of our unnatural Y. Our seesaw is similar in form to the type-I mechanism in a
modified SM with further gauge symmetry U(1)x [63].

Our last remark is on equation (5.151). This equation determines the active
neutrino masses. However, we already assumed their experimental value m;® ~
10~ GeV in order to compute m,. This appears to be a circular argument, but
we now explain why it is not. The experimental value for the active masses was
taken as part of the input data for equation (5.151), along with v ~ 246GeV and

the cutoffs € ~ m&*® and A of Planck order. This leaves |Y,,| as the only unknown

6 Another reason for our view is that our Yukawa coupling exceeds the natural type-I Yukawa

coupling Y7 ~ 1 by a factor ~ 20.
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in equation (5.151), and this unknown was subsequently computed. We now see
that there is no over-determination of any parameters in equation (5.151), and

hence there is no circular argument.
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Chapter 6

Further aspects of induced

gravity models

In the previous chapter, we derived the right-handed neutrino induced fermionic
action, and we considered the leading O(M ') term only. The term immedi-
ately above leading order is considered in this chapter. The present chapter also
presents results for additional induced gravity models, which are motivated by
a need to account for SM fields and problems in non-commutative geometry.
All projects in this chapter are currently work in progress, and we hope further
work on them will give important insights and applications corresponding to the
induced gravity models in question.

This chapter is organised as follows. In section 6.1, we briefly investigate the
next-to-leading order term from our right-handed neutrino induced fermionic
action. Section 6.2 concerns qualitative discussions of integrating out SM fields
and the metric. Lastly, section 6.3 gives induced gravity interpretations to a

simple random non-commutative geometry with fermions.

6.1 Right-handed neutrino induced fermionic ac-
tion: next-to-leading term

Recall that the 1/M expansion of the right-handed neutrino induced fermionic
action in the Euclidean regime is given by equation (5.120) (in section 5.5). Our

interest in the next-to-leading term is twofold. Firstly, given our methodology
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in section 5.5, it will be fairly straightforward to compute the next-to-leading
term. Secondly, Broncano-Gavela-Jenkins [49, 50] have found a dimension-6
term along similar lines to ours, so our next-to-leading term provides another

test of our right-handed neutrino mechanism.

Euclidean

Equation (5.120) gives the above leading order (i.e. O(M~2)) term as

EsLp = ;[[\I/L, D,} (iDp)D;y/ V]| (6.1)

This is written in terms of the doubled Dirac product via [[U, ®]] = ((Cg¥, D))
so that
1 . _
PoLp = 5 ((CoVr, Dy (iDp)Daf W) (6.2)

The anti-linear entry is given by the previous chapter (equation (5.128)):

C
e, — [ 7). (6.3)
Cryr
We now explicitly find the linear entry. From the last chapter,
1 Mo) !
Dy} = - (M) (6.4)
—Z"}/M<M0')_1

and

Dp = P (6.5)

D

where we suppress Kronecker products with identities. A matrix product gives

M) Mo)™!

’YM(]\AJU)_IIDE’YM(]\7‘7)*_1
(6.6)

We exploit the commuting of the Majorana matrices with the data on M. This
gives factors of (M) !(Mo)*' = |Mo|™2 and the transpose by M, and

WPy = —DPg (6.7)
due to 42, = 1 and {va, P} = 0. Thus, equation (6.6) becomes

—~ T
DplMo|™2
DM iDp)D;f = —i sl Mo - . (6.8)
Dg|Mo|™?
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This acts on U, = (¢, ;)T as

(6.9)

(D3 (iDp) Dy )Wy, = —i (M02 lDEwL) :

|MU|72lpE¢L

For equation (6.2), we substitute in (6.3) and (6.9) and then decompose the
doubled Dirac product to get

56Lr = —3 | (Covw. W0 D) + (ot [No| *Duin)y ] (6.10)
In component form, this is (c.f equation (5.16))
55L5 = — || Mol (Covt, Dein 'y + [Vlol,? (Coti” Dt | (610
The first term in the square brackets gives upon integration over M
[ e(IMol Covh Bein®)s ) = [ 0p(1Mof 20 Bevt) (612

where we used the self-adjointness of ) (since torsion vanishes), the relation

D pCp = CplPg and the properties of [-,-]. Similarly, from the second term
[ e (102 (Cote” D)y ) = [ Qu (1Mol 20 Pevt ). (613

We see the equality of (6.12) and (6.13), which is analogous to the computation
in [49]. Hence, defining #6Sp = [ Qe (F0Lr), we have

“o5p = [ Qu( = (Mol 2. (iDs)vt ). (614)
Equations (5.7) and (5.8) give the original fields:
fo5p = [ Qe( = gnalol 200w )P0 07))  (6.15)

where

g=Y|M| YT (6.16)

For the normalised scalar ¢ given by

o(3) = (clrf?zzje?)) 7, (6.17)

we impose the VEV ¢ = w.
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Euclidean — Lorentzian

Using the transition rules from chapter 3, we have £6Sr — —idSy with the

Lorentzian action §SF = [, Q(dLp) where

0Lp = gTSO'(U)>72(E 2 Qﬁ)lD(ZZ C2 ¢*) (618)

Lorentzian

Equation (6.18) under electroweak breaking ¢ = ¢, becomes

1)2

6Lp = Egma(w)*?ypy;. (6.19)

This contributes to the SM v, kinetic term.
The term (6.19) is compared to the d = 6 operator in [49, 50]. This follows
the comparison done for the leading term in the last chapter. For Majorana mass

real and diagonal, both terms deviate as
SLp — 6L b0 (w) 72, (6.20)

which is natural at order M~2. The term 6£9=% involves a Hermitian matrix \

((48) in [50]). Our case sees this replaced by X', which is related to A as
N = o(w)™2 (6.21)

This is equivalent to (6.20). In other words, with respect to Broncano-Gavela-
Jenkins [49, 50], our next-to-leading term is in agreement up to a real scalar factor
that does not significantly alter the agreement since it amounts to a rescaling of
the parameters.

Analysis of the effects of the O(M~2) term is conducted in [49, 50]. Our only
desire here is to estimate the contributions of the ¢ factor. Using appendix B,

we get the eigenvalue form of (6.21):
)\/
L= g(w)2 (6.22)
A
For one Mp << M and two Mp ~ M, the above is
o(w)? ~107° (6.23)

where we used (5.150) with m, ~ 10'8GeV. Hence, the O(M~2) effects in our

case are suppressed by an extra factor given by (6.23).
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6.2 Integrating out other fields

We have seen that right-handed neutrinos do not induce the pure gauge or Higgs
terms of the SM. However, we know from the induced Standard Model [20] that
these pure bosonic terms do arise from the set of all SM fermions and right-
handed neutrinos. This suggests it is important to consider integrating out the
SM fermions in order to account for the pure bosonic terms. The SM fermion
integration out is considered in this section. Induced gravity from SM fermions
has been considered before in [16], but our discussion of induced fermionic terms
is new to our knowledge. For completeness, we also consider integrating out
gauge bosons and (very briefly) the metric. Lastly, we suggest some approaches
to further develop the induced Standard Model beyond its current early stages.
This is new to our knowledge since [20] constitutes the only work on the induced
Standard Model. The discussion in this section is currently qualitative, and a
quantitative formulation is left to future work.

For an SM fermion f, the (Lorentzian) functional integral is similar to the

right-handed neutrino case:
Z; = / ¢S1DFDf (6.24)

where Sy is the relevant action. In the integration out, the fermion f would have
extra gauge couplings that should add difficulty, but however S; has no gauge-
violating Majorana mass terms initially present. Compared to the right-handed
neutrino case, the effective action I'y works at smaller scales because f has mass
my << 9. A rule of thumb is that I'y contains terms for fields that couple
to f in the high-energy matter theory. Given the results from chapter 5, we
expect that I'y will contain two parts: a heat kernel expansion in curvature and
SM bosonic terms and a series of higher-dimensional fermionic operators due to
Yukawa couplings.

The SM fermion falling immediately below the right-handed neutrinos (via
mass scales) is the top quark f = ¢ with mass m; ~ 173GeV. The effects of
the effective action I'; are significant below m; and thus in the range of present
experiments. Hence, the special case of just integrating out f = t is a natural

possibility for further work which gives testable induced gravity.
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One can also consider the integration out of the SM gauge bosons. This
is inconsistent with the induced Standard Model since the latter theory only
integrates out fermions. Despite this, results have been found for gauge bosons
in more general induced gravity models [12], and this suggests integrating out
SM gauge bosons is allowed within general induced gravity. In the case of the
SM gauge bosons, one has to handle the gauge kinetic terms and gauge-fermion
interactions. In addition, to integrate out the gauge bosons, one must fix a gauge
and thus introduce additional ghost fields.

The metric integration in the induced Standard Model (see chapter 2) needs
quantum gravity, e.g. causal dynamical triangulations [4] or spin foams [3].

The methods seen in chapters 3 and 5 as well as the o field from chapter
4 may be used in future work to fill in more details of the induced Standard
Model as presented by Barrett [20]. A test for the induced Standard Model is to
do comparisons with the induced Lorentzian curvature and SM bosonic terms,
because Barrett [20] used the Euclidean. Assuming the Lorentzian physics works,
the induced Standard Model would be a natural compliment to the SM with three
right-handed neutrinos, which already has wide physical breadth (see section 4.1
and [52]).

An alternative approach to the induced Standard Model of Barrett [20] is to
perform the integration out stepwise for each fermion species. In this case, the
order of integration should be important. For example, starting with vg and
integrating this out before I, gives higher-dimensional terms in [;, (see sections
5.5 and 6.1) which are absent if one starts with [, and then vg. The higher-
dimensional fermionic operators from SM fermions and right-handed neutrinos

were not found by Barrett [20] and may complicate the integration out.

6.3 Non-commutative induced gravity

In this section, we make a first attempt at interpreting pure Connes’ non-
commutative geometry in terms of Sakharov’s induced gravity. Previously, the
induced Standard Model has explained the spectral action principle for the case

of the non-commutative SM [20] (also see section 2.2). However, to our knowl-
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edge the spectral action principle justification in the strictly non-commutative
case has not been done. This gap is the motivation behind the present section,
where we consider an induced gravity perspective of pure non-commutative ge-
ometry in an attempt to fill the gap. A caveat is that we restrict to a simple
finite toy geometry containing additional fermionic fields, and defer the general
case to future work.

We are concerned with (Euclidean) finite spectral triples from section 4.2.2.

Our focus is the type (0, 1) functional integral [54, 98]
Z - / =SV gpd D (6.25)

where

S[D, 9] = tr[gaD* + g2 D*] + (1, D) . (6.26)

We assume all D eigenvalues are non-zero and the restrictions g, > 0 and g, > 0.

The integral over fermions 1 is known from [54, 98]:
F[D] = / =51 dip = det(D) (6.27)

where S¢[D, | = (¢, Dy). We assume this is regularised as in [98], i.e. via an

internal modification to the Dirac operator. Equation (6.27) gives
Z = / e=5¢ F[D]dD (6.28)
with the pure geometry term
Sq[D] = tr[goD* + g4 D). (6.29)

We discuss aspects of interpreting the fermionic action!. The fermionic inte-

gral is positive? and so can be written as
F[D] = ¢~51P) (6.30)

where

Si[D] = —;tr In(D?), (6.31)

which comes from In det = tr In. Convergence of the integral over geometries

requires Sg # 0, in which case (6.31) is the action the fermions induce.

IThe author attributes this to private communications with John W. Barrett.
2 Also see [98].
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We now consider fixed D with eigenvalues \;. Equation (6.31) corresponds

to the Connes-Chamseddine action with, for x # 0,

—3ln(z?) 2? < A2

flz) = e (6.32)

0 2 > \?

max

where A4, is the maximum eigenvalue. This cutoff function includes all \; and
is free from singularities as D? is positive. Thus, one has a well-defined induced
Connes-Chamseddine action assuming S # 0. This explains the spectral action
principle along similar lines to [20] but in a purely non-commutative setting in
our case. We remark that a similar result was found in [48], but this was for the
non-commutative SM and had a key role played by anomalies.

Moreover, we may also consider the pure geometry action where we set g4 = 0.
This case of the pure geometry action has been considered®, and we wish to see if
the geometry action also has an induced gravity interpretation. Equation (6.29)
for g, =0 is

SelD] = ¥ g2 (6.33)
i

Substituting this into (6.28) gives

e3Pl — TTe~o2N. (6.34)
The Hubbard-Stratonovich transformation [116, 117] gives each factor on the
right-hand side as

1 o 2 g
e 9N = ; / ¢ o PNy (6.35)
(ﬂg2)§ —00

and hence (up to an overall constant)
o—SalD] _ /e‘“{gzxz“mx] aX (6.36)

where the dummy matrix X has real eigenvalues. Hence, we can interpret Sg as
being induced by a self-adjoint field X with action
1
SsalX; D] = tr{X2 + 21DX|. (6.37)
g2
Referring to the non-commutative matrix model in [99], we see that X is a Higgs

field (without self-coupling) with a coupling to D and a quadratic coefficient

3The author again acknowledges John W. Barrett for this.
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satisfying

1
A9 = —. 6.38
? 92 ( )

Equation (6.38) is characteristic of induced gravity since it relates parameters
corresponding to pure geometry (left-hand side) and pure matter (right-hand
side). Hence, one can regard the geometry coupling as being induced by the
Higgs-like field X, and one has a similar viewpoint for the pure geometry action
as a whole. Thus, in this model we have shown that all geometry terms arise via

an induced gravity mechanism from fundamental bosonic and fermionic fields.
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Chapter 7

Conclusions

A major outstanding problem is to explain gravity in terms of quantum the-
ory. One mechanism for this is the semiclassical concept of Sakharov’s induced
gravity, which proposes the emergence of the Einstein-Hilbert action plus cos-
mological constant and curvature-squared terms from 1-loop quantised matter.
Since Sakharov’s induced gravity was introduced, it has been shown to work
for bosonic and fermionic matter, give rise to gravitational as well as gauge bo-
son terms, and work for spacetimes without or with torsion. In particular, the
action for gravity coupled to SM bosons has been shown to emerge from SM
fermions and right-handed neutrinos, and this is the induced Standard Model
[20]. However, the induced Standard Model does not resolve the total action
into individual fermion contributions. In this work, we found the terms induced
only by right-handed neutrinos, which compared to SM fermions give a model
that is simpler and valid for a larger range of energies.

Our mechanism started with three quantised right-handed neutrinos mini-
mally coupled to the classical SM within classical curved spacetime. This was
set in the regime of the measurable Lorentzian physics. However, our calcula-
tional techniques, including the integration out and heat kernel expansion, were
used in the Euclidean regime where they are well grounded in the literature (un-
like in the Lorentzian regime). Our final results were given in the Lorentzian
regime. We transferred between the two regimes using the Lorentzian-Euclidean
transition (chapter 3).

In the Euclidean regime, we found that the effective action was the sum
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of a purely bosonic part, which was given by a Pfaffian, and a fermionic part
involving the SM leptons and Higgs. This constitutes the first appearance in
Sakharov’s induced gravity (to the author’s knowledge) of a 1-loop fermionic
action and therefore of 1-loop bosonic and fermionic actions simultaneously. The
total effective action was induced from the integration out of the right-handed
neutrinos. This mirrored a case of finite spectral triple fermion integrals [54], but
we also had three fermion generations and Yukawa couplings. The generations
were included simply by enlarging the spinor Dirac product. More substantially,
the Yukawa couplings gave rise to the fermionic term, which was absent from
the finite spectral triple case.

Using the Lorentzian-Euclidean transition, we found a similar result for the
effective action in the Lorentzian. Then, starting in the Euclidean, we explicitly
transitioned and analysed each part of the effective action.

First, in order to get the bosonic action, we evaluated the Pfaffian. A key
assumption we made was the split of the Pfaffian into generational contributions
which each behave like the Pfaffian for a finite spectral triple [54]. The evalu-
ation gave an expression for the Pfaffian in terms of a functional determinant
4th root, and thus the Pfaffian is basis-independent. We remark that ideally one
would have more rigorous procedures for the functional integral and Pfaffian,
which are left to future work. Applying standard induced gravity methods to
the functional determinant gave an expansion of the bosonic action in curvature
terms coupled to a real singlet scalar ¢ which came from the Majorana mass ac-
cording to non-commutative geometry. Our bosonic action had good agreement
with the relevant sector of the Connes-Chamseddine action, though this finding
was provisional.

We then implemented the real scalar Z, symmetry breaking. This sent the
scalar terms in the induced bosonic action to cosmological and Einstein-Hilbert
corrections without fundamentally affecting the curvature-squared sector. We
then transitioned the resulting pure gravitational action to the Lorentzian.

The pure gravitational action gave cosmological, Newton and curvature-
squared constants. These were computed in the regime where one Majorana

mass eigenvalue is much below the type-I seesaw scale 91 and two Majorana
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eigenvalues are on the order of 9. We chose this regime because it was the
only one (of the ones we considered) that is allowed by the model and gives no
unphysical divergences. Observations of the induced gravitational constants are

as follows:

o The induced cosmological constant far exceeds the experimental value, i.e.
we have the cosmological constant problem. This can be resolved simply by
cancelling the induced cosmological constant by restoring the cosmological
counter-term we initially neglected (c.f [20], also see section 5.1). A more
sophisticated option, which furnishes a small value of the cosmological con-
stant, is sequestration of the vacuum energy [118,; 119, 120, 121], which is
discussed in the context of induced gravity in [19]. We leave a solution to

our cosmological constant problem to future work.

¢ The induced Newton constant Gy = 127A~2 > G (where G is the classical
Newton constant). Given that an induced Newton constant has a tolerance
of within two orders of magnitude [16], this suggests our induced Newton

constant is consistent with observation.

e The induced curvature-squared constants give rise to tachyonic behaviour,
which is physically problematic since it means the effective action does not

necessarily have a true vacuum state.

Invoking the Sakharov version of induced gravity [12], we can discard the inad-
missible cosmological and curvature-squared constants, leaving us with the ad-
missible Newton constant. Thus, the main result of our bosonic action is that the
right-handed neutrinos induce a viable Newton constant, which is a new result
(to the author’s knowledge). Our result has the implication for induced gravity
that only the right-handed neutrinos are needed to obtain realistic spacetime dy-
namics. Furthermore, our result leads to the possibility that the Einstein-Hilbert
action is not fundamental, but is an emergent property of right-handed neutrinos
alone.

The observations that the induced Newton constant Gy > G, as well as that
the effective theory favours our chosen Majorana mass regime and disfavours

degeneracy, remain fundamentally unexplained.
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We now start from the Euclidean fermionic action. This had a 1/M expansion
where the Majorana mass was modified by the real singlet scalar o. Initially, we
kept and worked out only the dominant leading term. Upon scalar Z, breaking
and transitioning to the Lorentzian, we found the fermionic action (leading term)
was the Weinberg operator. After electroweak breaking, the operator furnished
active neutrino masses corresponding to a Type I X o seesaw. To our knowledge,
this is the first time such a seesaw has emerged from Sakharov’s induced gravity.
Compared to the standard type-I seesaw, our active masses deviated only by a
factor involving o, and we have a larger seesaw scale given by the mass m, of the
o field'. Our seesaw also gave sterile neutrino masses, and we computed both
active and sterile masses in the Majorana mass regime used earlier. From this,

we have the following observations:

o The active masses matched experiment, but the large size of the seesaw
scale m, led to a Yukawa coupling in the unnaturally large and non-
perturbative regime. A prospect for future work is to restore a natural
Yukawa coupling, and this may happen if additional factors due to other

fields are included in the mechanism.

o We found that one sterile mass is small enough to be keV. Hence, the cor-
responding neutrino state is a dark matter candidate (according to section
4.1). Checking the stability of the dark matter candidate is left as an open
problem. Furthermore, we found two large sterile masses that were of or-
der m,, thus the corresponding neutrino states are above the type-I seesaw

scale and so even further beyond current accelerators.

Hence, we have solved the problem in the induced Standard Model of finding
the dominant contributions due to right-handed neutrinos. We have shown for
the first time that integrating out right-handed neutrinos alone has the three
consequences of an Einstein-Hilbert action, active neutrino masses and a poten-
tial dark matter candidate. This means the integration out of the right-handed
neutrinos has the potential to solve three problems within the SM. Given right-

handed neutrino phenomenology [52], the new contribution to this from our

I The mass m, is also one of the scales governing the induced gravitational constants.
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findings is realistic gravitational dynamics, which gives another motivation for
right-handed neutrino existence. We have assumed that one can cope with the
caveats of a large Yukawa coupling and heavy sterile neutrino states (the latter
of which already appear in the type-I seesaw), and we defer further consideration
of these caveats to further work.

Starting in the Euclidean, we briefly considered the next-to-leading fermionic
term. Via a similar procedure as for the leading term, we found the next-to-
leading term gave an active neutrino kinetic term in the Lorentzian regime under
electroweak and Z, symmetry breaking. Our result agrees with the literature up
to a new ¢ factor that merely rescales parameters. In the earlier Majorana mass
regime, the o factor significantly suppresses the next-to-leading order effects.
We deduce that computations of next-to-leading effects in our mechanism must
account for the suppression due to o. This is deferred to future work.

Moreover, we discussed integration out of individual fields from the induced
Standard Model. The highlight from this was the hint towards a formulation
of SM fermion induced gravity, which is expected to give new fermionic terms.
It is hoped that this formulation will allow for fermionic beyond-SM physics to
be incorporated into the induced gravity models. Furthermore, we discussed
advancing the induced Standard Model, which is a new development. This came
in the form of gaps to fill and alternative perspectives, and it is hoped that
this will contribute towards the considerable explanatory power of the induced
Standard Model. We hope that our qualitative discussion will be quantitatively
developed and thus lead to novel contributions to induced gravity in future work.

Finally, we set down the first case (to our knowledge) of providing pure non-
commutative geometry with an induced gravity interpretation. We considered
a particular simple finite spectral triple with fermions where there is an action
consisting of geometry and fermionic terms. In this case, we found the first
explanation of the purely non-commutative spectral action principle, which was
given by the fermionic integration out. Another original finding was that the
geometry term in this model could also be viewed as induced, in this case by
a Higgs-like field coupling to geometry. The key merit of the induced gravity

interpretation is that the non-commutative spectral action principle would be
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mysterious without it, hence one has a conceptual use for induced gravity. Of
course, our findings here only hold for our specific toy model. Future work could
be to see if the induced gravity interpretation, including the spectral action
principle justification, continues to hold similarly for more complicated finite
geometries. In the long term, our hope is for the induced gravity interpretation
to give a general explanation for other mysterious aspects of non-commutative

geometry, e.g. the presence of the first-order condition.
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Appendix A

Lorentzian and Euclidean spinors

in curved spacetime

In this appendix, we review Lorentzian and Euclidean spinors in curved space-
time. None of this is original, but it underpins a large part of the present thesis,
which concerns fermions on curved spacetime. Our review corresponds to stan-
dard well-known material, but uses a more modern presentation.

We start with a brief discussion of the spacetime manifold we use.

Lorentzian spinors are reviewed in section A.1. For this, we closely follow the
recent presentations in [62, 1], the first of which is set in Minkowski spacetime but
readily generalises to curved spacetime via the principle of general covariance.
Standard spinor presentations exist for Minkowski spacetime [110, 122] and for
curved spacetime [13]. Compared to these standard presentations, the ones used
here are notationally distinct but physically identical. The presentations followed
herein use a certain charge conjugate definition and introduce the Majorana
product, both of which are not typically seen in standard presentations from the
experience of the author.

The presentation of Euclidean spinors in section A.2 closely follows [1]. A
more standard Euclidean presentation is in [123], but we have similar compar-
isons that we made for the Lorentzian case. For Euclidean spinors, as well as
for Lorentzian spinors, we use the presentations in [62, 1] since they simplify
spinor calculations and are compatible with the Lorentzian-Euclidean transition

(chapter 3), which is used in this work.
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Spacetime manifold

In this work, we let M be a spacetime manifold that is 4-dimensional, oriented,
compact, smooth and without boundary or torsion. We assume M admits geo-
metric data and bundles (for scalars, spinors, gauge fields, etc.) for Lorentzian
theories, and that the analogous Euclidean structures are also set on M. The
properties of M are assumed throughout this work. These assumptions are mo-
tivated by the need to have consistent notation throughout the sections of this

thesis and ensure all frameworks seen in this thesis are compatible.

A.1 Lorentzian spinors

The Clifford algebra for Lorentzian Dirac spinor fields is

(72"} = —29* (A1)

where the generators are the gamma matrices 7. We assume the Hermitian

conjugation relations

(A.2)
(V) ==
where j € {1,2,3}. The gamma matrices determine a chirality operator on
spinors given by
e =0 (A.3)

which is also called the fifth gamma matrix v°. This chirality operator satisfies

7}\4 =M, (A)
e = 1.
These properties restrict the distinct eigenvalues of the chirality operator to the
real numbers 1 and —1. The eigenspinors with these respective eigenvalues are
the purely left-handed spinor ¢, and the purely right-handed spinor ¥ g, which
decompose a general Dirac spinor as ¢ = ¥, + Yg.

In this spinor formalism, the fundamental geometric structure on M is a

frame, which is a set of four vector fields [, = [#0,. The dual of the frame is a

108



tetrad, which is a set of four one-forms [* = [jdz" on M. The tetrad and frame

respectively determine a Lorentzian metric and its inverse by

9= 1al* @1,
(A.5)
g—l — nabla ® lb'
Since M is oriented, it is equipped with a non-zero volume form, which is deter-

mined by the tetrad as

Q=PCANFAPAP. (A.6)
In this work, we choose the positive sign for this volume form, which corresponds
to us choosing the positive orientation.

We equip M with a spin connection V. Given a vector field X on M, the

spin connection defines a map X — Vx acting on a Dirac spinor ¢ as
Vxt = X1+ ox2 Sy (A7)

where the matrix of Lorentzian 1-forms o} gives the linear map X — ox whose
components are the numbers ox{; and the generators of the Lorentzian spinor
representation are the matrices

1

53 = Znacwba 'YC]- (A'S)

The spin connection action (A.7) defines a first-order differential operator on

Dirac spinors called the Dirac operator:
D =iy"V,,. (A.9)
The Dirac and chirality operators satisfy

YD = —Dyu. (A.10)

This means the Dirac operator maps a left-handed spinor to a right-handed one
and vice versa.
Charge conjugation of Lorentzian spinors is implemented by an operator C'

which is anti-linear and satisfies
C? =1,
Cyn = —vuC, (A.11)
Cp=DC.
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In particular, the second entry implies C' reverses chirality of chiral spinors in
the same manner as ). The other entries will come in later. Equation (A.11)
defines C' as the Lorentzian charge conjugation operator.

For a spinor ¢, one has the charge conjugate spinor [62, 1]
= C (A.12)
and the first entry of (A.11) gives
Cp =1, (A.13)

where we assume that the conjugate of v is defined by (A.12). This replaces
the Dirac adjoint ? = 9 in standard spinor notation (e.g. [110]). The
conjugate (A.12) equals the standard charge conjugate ¢¢ = Mg (¢P)T where
M¢ is a charge conjugation matrix [62]. The second relation in (A.11) gives the
following: for a left-handed spinor 1, the spinor v;, is right-handed and for a
right-handed spinor g, the spinor ¥y is left-handed.

The spinors ¢, and ¥ are Weyl spinors and have 4 components. In other
places (e.g. [110, 122]), the Weyl spinor name is applied to 2-component chiral

spinors given by x and xg. Both Weyl spinor definitions are related via

X 0
Y, = r , Yr= : (A.14)
0 XR

In this work, we will only consider 4-component spinors. Though we will not use

Majorana spinors, these are present in the formalism as spinors 1, such that

Given Dirac spinors ¢ and , their Dirac inner product is defined as

(¥, x) = v¥x. (A.15)

Note this definition uses the conjugate (A.12). The Dirac product is sesquilin-
ear, i.e. antilinear in the first argument and linear in the second. Complex

conjugation sends (A.15) to

¥, x)" = (x, ). (A.16)
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Thus, for m € R, the Dirac mass term ma) is real. Assuming M has no torsion,

the Dirac operator (A.9) is self-adjoint in that

/M (v, Dx) Q= /M (DY, x) Q. (A.17)

The Dirac operator gives the kinetic term v Ipv. Thus, the Lagrangian for a pure

Dirac spinor coupled to M is

(W, (D —m)v) =Py — mip. (A.18)

The corresponding equation of motion
(B —m)p =0 (A.19)

holds for 1 and 1 by the third property of (A.11) (as required by C' symmetry).
We also define the Majorana inner product® [62, 1]

[, x] == (C¥, x) . (A.20)

Since C? = 1, we may write the Majorana product as

[, x] = ¥x. (A.21)

Note this is still a pairing on spinors with particular properties. The Majorana
product is bilinear (linear in both arguments) since (-,-) and C' are anti-linear.

We assign + to anti-commuting spinors and — to commuting spinors. Then

[, x] = £[x, ¥]. (A.22)

Upon complex conjugation,

[ Y] = [C, Cxl. (A.23)

This is independent of the sign and hence the commuting properties of the
spinors. The Dirac Lagrangian (A.18) may be equivalently written in terms

of the Majorana product. In addition, the Majorana product gives a new term

;Mww + c.c. (A.24)

!Similar notation appears in the book of Srednicki [122] and supersymmetry (see [74, 95]).
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where M is a mass parameter (independent from the Dirac mass m). This
term breaks U(1) due to the bilinearity of [-,-]. The expression 1) is not real
due to (A.23) so the complex conjugate +c.c. is needed to give a real term.
Equation (A.24) is the Majorana mass term, which has consequences for beyond-
SM neutrino physics as we see in chapter 4. Note spinors with Majorana mass

terms (M # 0) are generally distinct from Majorana spinors (i) = ).

A.2 Euclidean spinors

The manifold M remains unchanged. In this formalism, several data are defined
either by analogy with or directly from the Lorentzian case. For example, the

Euclidean versions of the gamma matrices are the anti-Hermitian matrices

-0
vy,

o
I

! (A.25)

,yj

mh.

v

where again j € {1,2,3}. These matrices 7% generate the Clifford algebra

(Vg R} = —20. (A.26)

The Euclidean chirality operator is vy, from (A.3). This gives similar decom-
positions of Euclidean spinors in terms of chiral spinors as in the Lorentzian.
There is a fundamental Euclidean frame e, = /0, and a dual tetrad e* =

ede” which determine a Euclidean metric and its inverse as

g5 = Sape” ® €’

(A.27)
g,}l = 0%, R ey
The tetrad gives the Euclidean volume form as
Qp =" ANet Ae? Aé? (A.28)

where we again fix the positive orientation.
One has the same spin connection V but a different action of it on a Euclidean

Dirac spinor ¢: for a vector field X,
Vxp = Xo+wxiSeip (A.29)
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where there is an analogous definition of wx§{ in terms of a matrix of Euclidean
1-forms wy; and the generators for the Euclidean spinor representation are given

as

1
SEZ = Zaach/bEa ’7%} (ASO)

The Euclidean Dirac operator is defined in terms of (A.29) as

lDE = 7%v6a7 <A31)

which anti-commutes with ~v,,.

The charge conjugation operator C'g in the Euclidean is anti-linear and sat-

isfies
C% = —1,
Cevm = Y CE, (A.32)
Cplbg = DpCh.

These are similar to the Lorentzian identities (A.11) but have some signs flipped.
The positive sign in the second equation of (A.32) implies spinor chirality does
not change under the action of Cg, which is different to the Lorentzian case.
The third equation of (A.32) corresponds to the Lorentzian version so that Cg
implements the Fuclidean charge conjugation symmetry.

Given Euclidean Dirac spinors ¢ and (, the Euclidean Dirac inner product is

(0, Q=" s € (A.33)

As with the Lorentzian Dirac product, this is sesquilinear. The self-adjoint prop-
erty of the Dirac operator holds similarly in the Euclidean case in that (neglecting
torsion):

D500 = [ (Pre.C) s 0. (A.34)

We remark that the operators [P, v and Cg as well as the inner product
S (-, ) g Qe are indicative of a structure in Connes’ framework. This applies
to the whole manifold M given the Euclidean structure in this sub-section, and
more detail on this will be given in chapter 4.

The Euclidean Majorana product [1] is (A.20) given also that

[p,¢] = (Crp, () - (A.35)
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The Lagrangian terms for Euclidean spinors are similar to those in the Lorentzian.
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Appendix B

Complex symmetric matrices

The first topic is diagonalisation. For this, we follow [124]. As in the main text,
all matrices are 3 x 3 matrices (i.e. 3 generations). The diagonalisation of a

complex symmetric matrix M is
M = Uydiag({M,})Uy; (B.1)

for unitary Uy and M, > 0. The M, are not eigenvalues since Uy, is not an

eigenbasis. For the Hermitian matrix |M|? := M*M, the above result gives
|MJ? = Uy, diag({M]})UY;. (B.2)

In this case, the Mg are positive and do correspond to a genuine eigenbasis U)y,.
Thus, we will anyway apply the name eigenvalue to M, (as elsewhere e.g. [52]).
The next results are used in the right-handed neutrino induced effective the-

ory.
Lemma B.0.1. Let ¢ := tr|M|? and d := tr{M|*. Then
c= ZM;,
p

d=> M.
p

(B.3)

Proof. Both of these follow quickly from cyclic permutation of the trace and the
unitarity of Uy,. O

A corollary of the above lemma is that ¢, d > 0.
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Lemma B.0.2. Let r := <. Then

c
aq-

1<r<3. (B.4)

Proof. The three-variable HM-GM-AM-QM inequality (see [125]) immediately
gives

c® < 3d. (B.5)

Also, we can write ¢ = Y, (M, M,)?. We observe that
p.g\Mpilg

> (MpM,)* >3 M, (B.6)

p.q

as the non-diagonal remainder terms are positive since M, > 0. Thus
¢ > d. (B.7)
Joining (B.5) with (B.7) and eliminating d gives the claim. O

Remark. The upper limit r = 3 corresponds to the degenerate case My = My =

Ms.

Remark. Lemma B.0.2 is also given by results in [{3], except here (B.7) gives

a strict lower bound.
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