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Abstract 

 

Data collected under a transition period monitoring service, from 133 herds over 

the course of 2 years, were utilised in order to build predictive models for 

disease, production and reproductive outcomes. Both cow level and pen level 

variables were used as potential predictor variables, while a variety of methods 

including linear regression, decision tree, random forest, multiple adaptive 

regression splines (MARS) and artificial neural networks (ANNs) for continuous 

outcomes; and logistic regression, decision tree, random forest, ANNs, support 

vector machines (SVM) and naïve Bayes for binary outcomes. Models 

generating predictions on both the individual and the herd/quarter-year group 

level were produced. 

Various health outcomes (occurrence or not of milk fever, LDA, RFM and 

metritis, as well as a collective disease status outcome) were explored. On the 

individual lactation level all models lacked predictive value; the best performing 

model was that for collective disease outcome, with a kappa value (measuring 

agreement between predicted and observed data) of 0.16, although accuracy 

was relatively high at 0.86. When building models on the herd/quarter-year 

level, the best performing model was for the milk fever outcome; predicted 

group prevalence of milk fever explained around 44% of variation in observed 

prevalence, suggesting relatively low predictiveness. Better prediction 

performance was revealed when individual lactation level model predictions 

were aggregated at herd-quarter-year level and compared with observed 

aggregated disease prevalences; just over two thirds (67%) of the variation in 
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observed outcome was explained by the aggregated predictions for occurrence 

of metritis. 

Moving to the reproductive outcomes, probability of insemination success, as 

well as time from calving to successful insemination, were investigated. Kappa 

values for the former ranged from 0.04 to 0.17, while the R2 value describing 

the relationship between aggregated predictions and actual aggregated values 

on the herd-quarter-year level was found to be 0.37. When building models on 

the aggregated level instead, the maximum R2 value was found to be at 0.24 

for the MARS model. Regarding the time to insemination outcome, the 

maximum R2 value calculated was found just at 0.024 for the linear regression, 

indicating very low predictive value. Interestingly, while no strong predictive 

value was found in these models, inferential models were built for those same 

outcomes and found strong associations between insemination success and 

lactation number, calving month, as well as calf mortality; and between time to 

insemination and metritis, corrected protein percentage in milk, calving month 

and lactation number. 

For the production outcomes, models for both the 305-day predicted milk yield 

and the daily residual milk yield (difference between observed yield for a given 

cow on a given day, and expected daily yield based on lactation curve shape 

for the appropriate parity in the cow’s herd) were built. For the individual 

lactation level of the 305-day milk yield models, R2 values were again relatively 

low, at around 0.1, with the exception of the random forest that had a value of 

0.34. Similarly, when comparing aggregated predictions using the individual 

lactation models and actual aggregated values, the R2 was as low as 0.024. 

Building models on a herd/quarter-year level yielded similar results with R2 
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ranging from 0.12 to 0.39 for the linear regression and the random forest 

models respectively. For the daily residual milk yield outcome, the R2 values of 

individual lactation models had a maximum value of 0.21 for the random forest 

model, while regarding the aggregated models the maximum value was at 

0.134. When using the individual lactation level models to compare aggregated 

predictions with actual aggregated values the R2 was found to be at 0.34. Not 

unlike our results on the reproductive outcomes, various strong inferential 

associations were identified for these outcomes, regardless of the predictive 

models’ performance.  

Since transition management is key to successful dairy farming, machine 

learning would be useful both in terms of predicting which individuals may get 

a negative outcome and possibly require enhanced observation or other 

preventive interventions, and also in providing a potential monitoring metric. 

The latter would mean that even if individual predictions are not good, knowing 

the predicted disease prevalence, insemination success or yield ineach group’s 

cows could be used as a measure of overall transition “success”. Overall, very 

few of our models were predictive enough to be useful in either context most 

likely, but that could perhaps improve if we had other data available such as 

sensor data or history from previous lactations. The project as a whole provides 

a good example of why it is important to be cautious with choice of prediction 

performance metrics and avoid accuracy as the main measure in unbalanced 

data, and of how in many areas inferential models can find strongly significant 

associations but still generate very poor predictions when applied to new data. 
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Chapter 1 - Introduction 

The transition period is commonly defined as 3 weeks pre to 3 weeks post 

calving (Menta et al., 2022)  and has been recognised as a phase of the utmost 

importance for the dairy cow (AlZahal et al., 2014, Esposito et al., 2014). 

The majority of metabolic, as well as many infectious diseases in the cow are 

associated with the transition period. Examples of these include milk fever, 

ketosis, retained foetal membranes, metritis and displaced abomasum and are 

manifested mainly within the first 2 weeks postpartum (Caixeta and Omontese, 

2021). There are however, other diseases such as endometritis that are 

clinically diagnosed at a later stage, yet they are linked to this period (Melendez 

and Risco, 2005). Metabolic disorders, infections of the mammary gland and 

reproductive disorders that manifest around this time, are also important issues, 

as their respective incidences have been reported to be from 7.8% to 16.8%, 

2.8% to 12.6% and 6.7% to 19.2% (Wankhade et al., 2017). Therefore, since 

the importance of monitoring and addressing metabolic disorders like 

hypocalcaemia during the transition period has been emphasized to enhance 

the profitability of dairy herds, it is a phase of great interest for the dairy cow 

industry (Saed et al., 2020). 

The transition period, being associated with such conditions, is the source of 

great economic losses due to efforts of preventing disease, managing and 

treating cows. However, at the same time our current understanding on how to 

prevent them is lacking (Eckel and Ametaj, 2016). In total, up to 50% of the 

cows develop either a metabolic or infectious disease during this period, which 

is attributed to a decline in immune function, and metabolic events such as 
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reduction in feed intake, negative energy balance, and insulin resistance due 

to calving (LeBlanc, 2010, Melendez and Risco, 2005, Moreira et al., 2018). By 

the end of the transition period milk yield, along with milk fat, protein and lactose 

increase much faster than feed intake, while at the same time in most 

management systems the cows’ diet changes from mainly forage-based to 

being concentrate-rich. These demands for milk production along with the 

necessary nutritional adaptation predispose the cow to a negative energy 

balance (NEB) state (Bekuma, 2019, Bertoni et al., 2009). The dry matter intake 

(DMI) during the transition period can drop by 10-30% (Esposito et al., 2014), 

while the energy requirements rise (Imhasly et al., 2015). The overall 

profitability of the cow depends on a successful transition period, as nutritional 

and management factors can prevent them from producing milk to their full 

potential as well as cause decreased reproductive performance, increased 

treatment costs, and even a shortened lifespan for the cows (Hailemariam et 

al., 2014). 

A great focus has been given by researchers into developing methods 

monitoring transition period cows (Lukas et al., 2015). As a result, techniques 

such as body condition scoring and blood or urine sampling have been 

developed to help provide insight on the transition cows’ health 

status(Hachenberg et al., 2007, LeBlanc, 2010). Laboratory measurements 

most frequently used are serum non esterified fatty acids (NEFA) pre-partum, 

blood β-hydroxybutyrate (BHBA) post-partum and serum Ca the days around 

calving (Vergara et al., 2014). It can be argued, however, that blood and urine 

sample have the drawback of increasing labour and cost when routinely 

implemented on farm (Hachenberg et al., 2007). Other more low cost 
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monitoring methods include body condition scoring, which is associated with 

energy balance, and locomotion scoring, which was found to be linked with 

post-partum disease (Calderon and Cook, 2011, Cook, 2003, Espejo and 

Endres, 2007, Hoedemaker et al., 2009, Ingvartsen, 2006, Machado et al., 

2011). In addition, risk factors such as milk yield during the previous lactation, 

dry period and gestation length, twining, stillbirths and dystocia can also provide 

useful information on the cows’ expected health and performance, however 

they have not been used collectively into predictive models (Fleischer et al., 

2001, Ingvartsen, 2006, LeBlanc et al., 2006). Lukas et al (2015) developed 3 

transition period monitors that used daily milk yield in order to evaluate the 

success of the transition period on both herd and individual cow level. A recent 

study (Wisnieski et al., 2019) has used a variety of predictive models using 

various biomarkers to predict metabolic stress in the transition period and has 

suggested that predictive modelling should be applied to other outcomes, 

including culling rates, reproductive and milk production outcomes and could 

potentially be used on farm through monitoring applications. It is without doubt, 

that such models can predictive models can be of practical use to the farmers 

when used as management tools and it is the primary goal of this project to 

investigate this potential, develop and present practical models that can be then 

used on-farm to ensure an improved transition period for the cows. 
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1.1 Physiology of Transition 

1.1.1 Immune system 

There is a reduction in immune function around the calving period (Overton and 

Waldron, 2004). The cause of this phenomenon is multifactorial and it results 

in the cows being particularly susceptible to invading pathogens and infectious 

diseases such as mastitis, during the periparturient period (Sordillo, 2016).  

The aetiology of immunosuppression around calving is complex. Maternal 

immune responses are naturally supressed up until calving, in order to prevent 

a reaction against the allogeneic conceptus. Among the factors that cause this 

immunosuppressive response is progesterone secretion and regulatory 

immune cell differentiation (Esposito et al., 2014). Furthermore, the 

periparturient period is characterized by intense lipolysis in adipose tissues, 

leading to the release of free fatty acids into circulation, which can impact 

immune function (Contreras et al., 2017). Metabolic profiling during the 

periparturient period has shown changes in serum concentrations of macro 

minerals and a drop in feed intake, which may contribute to immunological 

dysfunction (Kabir et al., 2022). Additionally, the association between 

prepartum feeding behaviour and periparturient health disorders highlights the 

importance of nutrition in maintaining immune function during this critical period 

(Luchterhand et al., 2016). The severe negative energy balance experienced 

by dairy cows during early lactation, due to insufficient dry matter intake to meet 

the demands of high milk production, has been linked to impaired immune 

function (Gümen et al., 2011, Gross et al., 2013).  
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The reported negative impact of ketosis on immune responses could be linked 

to the effects of fatty liver on the immune function (Overton and Waldron, 2004). 

Leukocytes in ketotic cows lack in chemotactic differentials and leucocytes in 

general show limited chemotactic capacity in a ketotic environment (Esposito 

et al., 2014).Immune function deficiencies have also been reported in diseases 

other than ketosis. Kimura et al. (2002) also reported declined chemotactic 

capacity and cellular killing function in neutrophils in cows with retained 

placenta. 

1.1.2 Metabolism 

The role of the liver in adapting metabolic pathways and supporting lactation is 

key to a successful transition period.  Dietary supplements of folic acid and 

vitamin B12 on the metabolism of dairy cows in early lactation, showing 

improved metabolic efficiency and liver function (Graulet et al., 2007). 

Furthermore, Li et al. (2020) emphasized the crucial role of the liver in metabolic 

adaptation to support pregnancy and lactation through nutrient coordination 

and interconversion, especially during the transition from late gestation to early 

lactation, while Ringseis et al. (2014) discussed the molecular mechanisms 

underlying liver-associated diseases in transition dairy cows, underscoring the 

importance of understanding these mechanisms to prevent liver disorders and 

enhance production.  

It was proposed by Allen and Bradford (2009) that the oxidation of fuels that 

occurs in the liver elevates adenosine triphosphate concentrations that trigger 

the hepatic vagus nerve and send a message to the brain’s feeding centre to 

reduce feed intake. These fuels include fatty acids, propionate, lactate and 

amino acids, therefore NEFA mobilization, which is common during the 
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transition period, may cause the DMI decrease. NEFA mobilization is in turn 

amplified by a decrease in plasma insulin concentration and insulin sensitivity 

by up to 50% (Wankhade et al., 2017). 

Accumulation of triglycerides within the hepatocytes can lead to fatty liver 

syndrome or ketosis (Eckel and Ametaj, 2016) and is considered to be caused 

by the negative energy balance (NEB) state during the early stages post-partum 

(Melendez and Risco, 2005). Fatty liver is characterized by the storage of 

triglycerides within hepatocytes (Eckel and Ametaj, 2016). At least half of the 

cows could be experiencing subclinical ketosis during the first month after 

calving (Esposito et al., 2014), while ketosis has been associated with 

conditions such as metritis and displacement of the abomasum (LeBlanc, 

2010). Decreased DMI seemed to significantly influence the development of 

both milk fever and retained foetal membranes (Kimura et al., 2006).Therefore, 

maintaining appropriate body weight during the transition period is pivotal for 

the cow’s health and performance. To do so it is important to minimize all factors 

that could affect feed intake. For instance, moving and regrouping cows, 

especially around calving is shown to reduce DMI and subsequently delay 

calving, increase calf mortality and the incidence of retained placenta 

(Schirmann et al., 2011, Nordlund and Cook, 2004, von Keyserlingk et al., 

2008). 
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1.2 Management 

1.2.1 Body Condition Score 

The Body Condition Score (BCS) reflects the nutritional status of the cow and 

therefore the stage of lactation, but can also be affected by a number of cow-

level factors, such as parity, age, season of calving and genetics, as well as on 

a herd-level, such as stocking rate, and type of diet (Berry et al., 2003, Berry et 

al., 2006, Butler, 2014, Coffey et al., 2004, Koenen et al., 2001, Macdonald et 

al., 2008, Lean et al., 2022, McCarthy et al., 2007, Pryce et al., 2001, Pryce 

and Harris, 2006, Roche et al., 2006, Roche et al., 2007). 

BCS can be a very quick and effective monitoring tool for nutritional 

management and health outcomes (LeBlanc, 2010, Melendez and Risco, 

2005). Low scores correspond to emaciation and high scores to obesity (Roche 

et al., 2009).Although traditionally a BCS of 3.5 to 3.75 (using a 1 to 5 scale) 

was considered ideal at dry-off, more recent studies have suggested that 3.0 to 

3.2 or even lower than 3.0is a more efficient aim (Contreras et al., 2004, 

LeBlanc, 2010, Melendez and Risco, 2005, Overton and Waldron, 2004). This 

could potentially be attributed to the link between decreased DMI and a high 

BCS (Esposito et al., 2014, Hayirli et al., 2002, Overton and Waldron, 

2004).Overall, studies suggest that a BCS lower than the traditional 3.5 - 4 is 

preferred in order to have the desired transition period outcomes (Overton and 

Waldron, 2004). As the loss of body condition in the weeks postpartum is 

related to NEB (Roche et al., 2009) the BCS score is a useful, easy to apply 

on-farm health indicator (Danicke et al., 2018). Reducing BCS or body weight 

of dry cows is not recommended at any point of the dry period (Melendez and 
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Risco, 2005). Higher BCS used to be the target, since it has been established 

that it is associated with greater milk yield potential (Zahrazadeh et al 2017, 

Berry et al., 2007; Jamali Emam Gheise et al., 2017), however it is also linked 

with higher serum NEFA levels and increased incidence of reproductive and 

health issues (Berry et al., 2007, Jamali Emam Gheise et al., 2017, Zahrazadeh 

et al., 2018). BCS score may not have a very high sensitivity and specificity 

when used on its own to predict health and production outcomes (LeBlanc, 

2010), however when combined with other predictors it could potentially be a 

very useful predictive tool.  

1.2.2 Rumen Fill Score 

Feed intake monitoring can be useful to assess the cow’s energy status, 

however it can also be difficult to perform on a routinely basis on commercial 

dairy farms. A simple and feasible method of assessing feed intake is the 

Rumen Fill Score (RFS) as they are shown to be associated (Burfeind et al., 

2010). Burfeind et al. (2010) also suggested that RFS should be routinely 

measured at the same time of day in order to draw conclusions on the DMI. 

Kawashima et al. (2016) further supported the association between RFS and 

feed intake and suggested that RFS did not change in dry cows until close to 

the calving date. Overall, RFS during the close-up dry period can be used as a 

predictor of metabolic status and consequently health and production 

outcomes. 

1.2.3 Housing 

The comfort of the cows has been recognised as an important factor 

contributing to optimization of milk production (Schirmann et al., 2011, Wilkes 

et al., 2008). Among the indicator of cow comfort, the lying-down behaviour has 
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been reported to be pivotal (Broucek et al., 2017). In a study investigating the 

effect of reduced competition for feeding and lying space on the health and 

immune function it was found that cows kept in lower stocking density pens had 

improved blood metabolites both pre- and post-calving (Miltenburg et al., 2018). 

Recommendations state that overcrowding at transition pens should be 

avoided with 80% cows to stalls and the recommended feeding space for cows 

is a minimum of 76cm and even wider for cows at late stages of gestation 

(Miltenburg et al., 2018, Nordlund et al., 2006). The association between the 

housing environment of transition cows and metabolic health has not been 

thoroughly examined, however two existing studies support no increase in RFM 

and metritis incidence, or blood metabolite levels (Silva et al., 2014, Silva et al., 

2013). 

1.2.4 Heat Stress 

Heat stress in cows leads to decreased milk yield and reproductive function, as 

well as a worsening health status (Lamp et al., 2015).The thermal neutral zone 

for dairy cattle is generally between 5 and 20°C (NRC, 2001), therefore high-

yielding dairy cows start experiencing heat stress in temperatures above 21°C 

(Hahn, 1999). Despite taking measures such as installing intensive cooling 

systems, the economic toll on farms in the USA was estimated to approximate 

897 million dollars yearly (St-Pierre et al., 2003). A measure frequently used to 

access the presence of heat stress in livestock is the Temperature-Humidity 

index (THI) (Ansari-Mahyari et al., 2019, Polsky and von Keyserlingk, 2017).  

The most common index in cattle is calculated as: 

THI = (1.8*T+32)-(0.55-0.0055*H) 
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where T is the dry light bulb temperature (°C) and H is the relative humidity of 

the air (%) (Díaz et al., 2017). 

Dairy cattle may start experiencing heat stress at indexes over 68 to 72, with 

some variations across different climatic regions (Díaz et al., 2017, Polsky and 

von Keyserlingk, 2017). Heat stress has been reported to decrease DMI, 

negatively affect milk production, reproductive performance and to be a major 

risk factor for lameness (Polsky and von Keyserlingk, 2017). The mechanism 

through which heat stress affects lameness is not known (Polsky and von 

Keyserlingk, 2017), but it is speculated to be either via increasing the standing 

times (Cook et al., 2007) or through changes in nutrient metabolism caused by 

the decline of DMI (Cook et al., 2004). Vitali et al. (2009) reported that for a 

minimum index of 70 the risk of death in dairy cows starts to increase.  
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1.3 Economic Impact 

Even though research has focused on transition period of dairy cows it is still a 

challenging area with great economic losses for the farmers (Overton and 

Waldron, 2004). A study in Minnesota indicated that 25% of cows removed from 

the herd left during the first 60 DIM with an additional percentage leaving due 

to difficulties associated with transition period difficulties (Godden et al., 2003). 

Decrease of reproductive performance and milk yield are the most significant 

sources of economic loss for the farmers due to the cost of treatments and 

increased culling rate (Grohn et al., 2003, Melendez and Risco, 2005). This 

decrease is linked with periparturient disease (Melendez and Risco, 2005). In 

a recent study, the cost of RFM in the United States was calculated as a total 

$386, $287 attributed to milk yield reduction, $73 attributed to an increase in 

days open, $25 for an increase in the risk of disease and $1 for an increase in 

culling risk (Gohary and LeBlanc, 2018).For displaced abomasum, the cost per 

diagnosis may reach up to $700 due to direct and indirect costs (Caixeta et al., 

2018). The estimated cost of milk fever in the United Kingdom was estimated 

at £220 or $343 (Saborío-Montero et al., 2017). Even though it was previously 

considered that twinning in dairy cows was profitable due to an increase in milk 

production it is now controversial due to the losses from a higher incidence of 

dystocia, RFM and stillbirths (Cabrera & Fricke, 2021). The frequency of 

twinning in dairy cattle has been estimated to be approximately 5%, resulting in 

annual losses to the industry ranging from $22.5 to $112.5 million, assuming a 

US national herd of 9 million cows (Lett & Kirkpatrick, 2018). It is, therefore, 

evident that preventing transition period related issues before they manifest 

would greatly impact the farmers’ profits. 
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1.4 Statistical Methods 

1.4.1 Explanatory vs Predictive Modelling 

A great number of studies on transition period diseases have focused on 

identifying risk factors for disease outcomes, suggesting a possible causal link 

between the two (Daros et al., 2017, Huzzey et al., 2007, LeBlanc et al., 2004, 

LeBlanc et al., 2005). This method is called explanatory modelling and it aims 

to interpret the outcome utilising the independent, or explanatory, variables, 

without however attempting to make predictions about said outcomes (Shmueli, 

2010). In summary, explanatory modelling involves applying statistical 

techniques to evaluate causal hypotheses, where the underlying factors are 

believed to drive the observed effect (Sainani, 2014, Shmueli, 2010, Vergara et 

al, 2014). Models that seek to forecast specific outcomes using given predictors 

are called predictive models. The model building process differs between the 

two (Sainani, 2014) and the resulting models often differ in variables and 

predictive value (Shmueli, 2010). An area that focuses on building predictive 

models is that of machine learning. Veterinary epidemiology utilises both 

explanatory and predictive modelling in its research (Froud et al., 2017, Vergara 

et a., 2014) 

1.4 2 Building a predictive model using machine learning 

Machine learning approaches in data science are increasingly popular methods 

of identifying patterns in data (Biffani et al., 2017). Their main purpose is making 

predictions on new unobserved datasets, while as it gets exposed to more data 

the algorithm is adapted and improved (Hudson et al., 2018).  



34 
 

Machine learning techniques are steadily becoming more widely used over the 

past years, along with the advent of “Big Data”. Biffani et al. (2017) 

demonstrated that in just 16 years the number of publications related to 

machine learning have increased drastically, from 10,690 in 2000 to 1,211,400 

in 2016, and even though the peak rate was between 2011 and 2013 it steadily 

continues to increase. 

The techniques are categorised in various ways in different areas, but a 

distinction between supervised and unsupervised methods is widely recognised 

(Lanier et al. 2020, Patel & Jhaveri, 2015, Moujahid et al., 2018). The first of 

these aims to predict chosen outcomes based on various variables, while the 

second aims to identify clusters in the data without a specified outcome. Some 

research questions fall naturally into one of those categories, however there 

are instances where it is logistically difficult to collect the response variable, a 

combination of the two may be used (James et al., 2014). 

A way of differentiating between the various supervised methods is whether 

they can be used to model quantitative (numerical) or qualitative 

(categorical/factor/binary) responses (James et al., 2014). The former are 

referred to as regression methods, while the latter as classification methods 

(Yang et al., 2022). However, the distinction is not always clear as quantitative 

responses coded as binary can be handled with classification techniques and 

similarly, binary qualitative responses can be modelled using logistic 

regression, which is considered a regression method due to the fact that it 

estimates class probabilities. Furthermore, there are some statistical methods 

that can handle both qualitative and quantitative responses, such as k-nearest 

neighbours (James et al., 2014). 
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Machine learning algorithms offer great flexibility with regards to problems of 

multicollinearity, missing values, or complex interactions among variables 

(Kuhn and Johnson, 2013). A potential issue with some of these techniques is 

that they may be affected by noise in the data. Modelling this noise can lead to 

overfitting the data and it results into models that have low accuracy when 

predicting responses on new datasets. As the model fits too closely to the 

existing data, it may follow their pattern too closely resulting in an overly 

complicated model that cannot perform well on new observations as it is 

basically built on idiosyncrasies of the original dataset (James et al., 2014, 

Yeom et al., 2018). One way to overcome this issue is by using robust ways of 

evaluating the models’ performance, involving resampling methods, such as k-

fold cross-validation and bootstrapping (Hartono and Ongko, 2022, Kernbach 

and Staartjes, 2021, Kuhn and Johnson, 2013). The theory behind it is to split 

the dataset into two parts (usually multiple times), build the model using the first 

part (train set) and then use the algorithm developed to make predictions on 

the second part (test set). Afterwards, the model is evaluated based on the 

comparison of the predictions with the true values of the test dataset. For k-fold 

cross validation the dataset is split randomly into k parts of equal size and each 

time a model is fit for the entirety of the dataset excluding one part (fold) that 

acts as the test set (Ayranci et al., 2021, Baykan & Yilmaz, 2011). The estimates 

of performance for all the models are then summarized (Kuhn and Johnson, 

2013). The difference in bootstrapping is that each data point is taken with 

replacement, meaning that it can be selected multiple times when sampling and 

the final bootstrapping sample is the same size as the original data set (Kuhn 

and Johnson, 2013 Waitman et al., 2003). The process can be computationally 
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expensive, however with the advances in computing power over the past years, 

this is becoming less of an issue and these techniques have become a pivotal 

tool in the practical applications of machine learning methods (James et al., 

2014).  

In some models there are parameters whose optimum value cannot be 

calculated by an analytical formula, such as the choice of k in k-nearest 

algorithms. The selection of inappropriate values for these parameters may 

result to overfitting the data. There are many approaches to defining the 

optimum value for a parameter and the process is called parameter tuning 

(Kuhn and Johnson, 2013, Yang and Shami, 2020). There are several 

approaches to deciding the most appropriate parameters, generally by defining 

a set of possible values, generating reliable estimates of model utility across 

said values, then selecting the optimal settings. Many researchers opt to 

complete this process manually, however in order to do so a clear 

understanding of the different parameters for each corresponding machine 

learning method is needed (Abreu, 2019). After determining a set of values we 

can get the estimates of model performance using resampling methods, which 

are then aggregated into a performance profile to help choose the final 

parameters, which will be used for the model building (Kuhn and Johnson, 

2013). 

1.4.3 Assessing the model’s predictive power 

There are many methods to access model accuracy, meaning how well the 

predictions match the actual observed data. In the regression setting one such 

measure of accuracy is the mean squared error (MSE), given by the square of 

the difference between the observed and predicted values over the total 
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number of observations The closer the predictions are to the true values the 

smaller the MSE will be (James et al., 2014, Joham et al., 2012). For 

classification problems, a common way of describing model performance is the 

confusion matrix (cross-tabulation of the observed and predicted classes of the 

data, indicating the true positives (TP), true negatives (TN), false negatives 

(FN) and false positives (FP)), where we can calculated metrics such as the 

overall accuracy (TP + TN / TP + TN + FP + FN), the Kappa statistic, sensitivity 

(TP / TP + FN), specificity (TN / TN + FP), positive predictive value (PPV) (TP 

/ TP + FP) and negative predictive value (NPV) (TN / TN + FN) (Kuhn and 

Johnson, 2013). The Kappa statistic in particular is a measure designed to 

assess the agreement between two raters, assuming that a proportion of the 

agreement can be due to chance alone (Warrens, 2010). It can be calculated 

as the difference between observed accuracy and expected accuracy (based 

on marginal totals of the confusion matrix) over the difference between 1 and 

the expected accuracy, with values ranging from -1 (total disagreement) to 1 

(total agreement) (Kuhn and Johnson, 2013). The interpretation of Kappa has 

been described by Landis and Koch (1977) and can be found in Table 1.1. In 

contrast with other metrics such as accuracy, kappa takes into account the 

prevalence of the outcome (Viera and Garrett, 2005), meaning that it can be of 

particular interest in datasets where the outcome is rare. 
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Table 1.1 Kappa value interpretation (Vierra and Garrett, 2005) 

Kappa Agreement 

<0 Less than chance agreement 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 0.99 Almost perfect agreement 

 

Another method to evaluate the class probabilities and access the sensitivity 

and specificity thresholds is the receiver operating characteristic (ROC) curves. 

The combinations of specificity and sensitivity for different cut-off points are 

plotted against each other and in the resulting plot the area under the receiver 

operating characteristic (AUROC) can be calculated as a measure of predictive 

value for the model (Ho, 2017, Kuhn and Johnson, 2013). Values closer to 1 

are optimal, whereas those close to 0.5 indicate that the model has no 

predictive value (Lin et al., 2021). A disadvantage of this metric is that there can 

be a loss of information when evaluating models, as the shape of the curve 

might be a better way of comparing models instead of just reporting the AUROC 

(Kuhn and Johnson, 2013).  
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1.5 Machine learning in the dairy industry 

It has been emphasized that clinicians in farm animal practice, need to focus 

on consulting their clients on farm management in order to prevent disease, 

rather than just offering treatment (Hudson et al., 2018). Machine learning 

techniques have recently started being used in veterinary medicine to help 

improve farm management. There have been some recent studies trying to 

utilize various methods in order to develop predictive models and explore 

different aspects of the dairy cow’s health and performance. 

Most papers have focused on developing predictive models for reproductive 

outcomes. In a study by Caraviello et al. (2006) an alternating decision tree 

model was developed to predict first-service conception rate by the frequency 

of hoof trimming, type of bedding in dry pens, restraint system and duration of 

the voluntary waiting period. The model correctly classified 75.6% of the 

records, using 10-fold cross-validation, with 99.3% of the incorrectly classified 

being false negatives and the AUROC was 0.68. Using a similar model, they 

also identified variables such as bunk space per cow, number of cows in 

maternity the pen, BCS, strategy for using clean-up bulls, temperature of 

thawing semen and milk yield at first service informative predictors for 

insemination outcomes at 150 DIM. This model correctly classified 71.4% of 

cows, using 10-fold cross-validation, with 16.3% of the incorrectly classified 

being false negatives and the AUROC was reported to be 0.73. Fenlon et al. 

(2017a) also tried to predict the probability of conception in heifers, with an 

overall prediction accuracy between 77.1% and 78.9%. However due to low 

specificity the models were not successful at identifying failed services and they 

were thought to be of little predictive value. Machine learning methods have 
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also been used to determine the time-to-calving (Miller et al., 2020) with models 

for dairy cows showing in increase of predictive performance up to 4 hours 

before calving (Matthew’s correlation coefficient increasing from 0.06 to 0.14) 

and the highest AUROC, sensitivity and specificity combination 2 hours before 

calving (95.4%, 91.3% and 93.5% respectively). Borchers et al. (2017) used 

techniques, such as random forests, linear discriminant, and neural network 

analyses, along with precision technology to predict the time of calving, with the 

method yielding the best sensitivity/specificity combination being ANN (100% 

sensitivity and 86.8% specificity when the variables were summarized at the 

daily level, 82.8% sensitivity and 80.4% specificity when analysing bihourly 

increments). In a study with similar outcomes, Keceli et al. (2020) utilised 

activity and behavioural data providing models with sensitivity, specificity, PPV 

and NPV for the day before calving reaching 100%. Vázquez-Diosdado et al. 

(2023) also investigated calving prediction using sensors with the best results 

being achieved when inputting data from 2 days prior to calving (87.81 % 

accuracy, 92.99 % specificity, 75.84 % sensitivity, 82.99 % PPV, 78.85 % F-

score, and 90.02 % NPV). Ιn another study by Fenlon et al. (2017b), four 

machine learning methods were compared to identify the most suitable model 

for predicting calving difficulty in dairy heifers and cows. Using the AUROC, 

which for all models ranged from 0.64 to 0.79 they reported that all models had 

good discriminatory power with ANN and multinomial regression performing 

best (75% cases correctly classified). Avizheh et al. (2023) utilised historical 

data, also for the prediction of calving difficulty, producing models with low 

AUROC and F1-score due to an imbalanced dataset. Sampling methods were 

found to improve the metrics, however the remained in overall low levels (F1-
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score ranging between 0.38 to 0.42). Brand et al. (2021) utilised milk spectral 

data to predict pregnancy, reporting a model with a sensitivity of 0.89, a 

specificity of 0.86, and prediction accuracy of 0.88. A few recent studies have 

used similar models to predict insemination outcomes (Hempstalk et al., 2015, 

Shahinfar et al., 2014). Zaborski et al. (2018) utilised a range of techniques, 

such as ANN and logistic regression, to identify dystocia in Holstein-Friesian 

cows, with the maximum overall accuracy being 0.589 for heifers (using a 

multivariate adaptive regression splines model) and 0.649 for cows (using a 

ANN model). Dolecheck et al. (2015) explored oestrus detention using random 

forests, linear discriminant analysis and neural networks, with the overall 

accuracy for all models ranging from 91.0% to 100.0%. Higaki et al. (2019) also 

tried to detect oestrus with ANNs, SVMs and decision trees utilising vaginal 

temperature and conductivity data, with an ANN model having the numerically 

(but not statistically) higher values of sensitivity and precision (both at 0.94). 

Cairo et al. (2020) also focused on the prediction of oestrus using behavioural 

data, reporting high values of accuracy. Another similar study (Hemalatha et 

al., 2021) utilized milk parameter data also reporting high accuracy, as well as 

precision, recall, specificity and F1 score, while Schweinzer et al. (2019) used 

accelerometer data to build a model with over 90% sensitivity, specificity, PPV 

and NPV. Another study (Wang et al., 2020) used accelerometer as well as 

location data for their predictions with their best performing model being a 

neural network predicting within a 30-minute time window (sensitivity = 99.36%, 

specificity = 53.33%, PPV = 95.76%, NPV = 93.72%, accuracy = 95.36%, F1 = 

97.51%). Romadhonny et al. (2019) built a classification model for oestrus 

reporting over 80% accuracy, however the model only correctly classified 
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oestrus being late at a rate of 6.4%. In an attempt to classify bovine semen 

based on mineral imbalances Aguiar et al. (2012) managed to almost halve the 

predictors needed for the classification, with the highest accuracy model being 

at 97.25%. Grzesiak et al. (2010) presented models detecting artificial 

insemination difficulties with an AUROC value of almost 0.9. Bates and Saldias 

(2019) demonstrated a comparison of regression and machine learning 

methods by building models predicting the 21-day submission rate in dairy 

cows. The study concluded that no significant differences in predictive power 

were found and that even though models had a good enough AUROC (0.68-

0.73) the positive outcomes had a better chance at being predicted than the 

negative outcomes. Keshavarzi et al. (2020) built predictive models detecting 

abortion incidence, with a mean AUROC of 0.863 and F1 score of 0.520, which 

showcased an improvement after sampling methods (AUROC 0.893 and F1 

0.610 when up-sampling/AUROC 0.897 and F1 0.626 when down-sampling). 

Another part of the research has primarily investigated milk production. Murphy 

et al. (2014) compared 3 different predictive models that focused on predicting 

milk production, with the reported root mean square error (RMSE) being ≤ 

12.03%. Njubi et al. (2010) also explored the same area, presenting ANN 

models with an estimated accuracy of 79%, that predicted next month and first 

lactation 305-day milk yield of Holstein-Friesian cows in Kenya. ANNs which 

are among the most common method used in animal sciences for various 

models, were also used in other papers to develop algorithms predicting milk 

yield (Gianola et al., 2011, Grzesiak et al., 2006) and breeding values in dairy 

cattle (Shahinfar et al., 2012). Sefeedpari et al. (2015) focused on milk yield 

forecast in Iranian farms utilising energy consumption, producing models with 
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R2 values ranging between 0.65 and 0.93. Zegler et al. (2020) investigated 

potential pasture milk production using regression trees and finding that out of 

the variables explored, the ones most associated with this outcome were 

improved legume cover, residual sward height, and non-improved grass cover. 

Nguyen et al. (2020) analysed the associations between fat/protein content and 

milk yield, stating that while their random forest model achieved the best 

performance with an average R2 value of 0.734, their SVM model followed 

closely with a value of 0.712 and significantly less computational time, making 

the latter overall more efficient. Dallago et al. (2019) explored the prediction of 

first day milk yield in heifers and provided three different models with less than 

4kg MSE, out of which the ANN was considered the best. Important milk 

metabolites that could be used to predict milk traits have also been identified in 

a study by Melzer et al. (2013). Frizzarin et al. (2021) also focused on the 

prediction of milk traits utilising both regression and classification methods and 

using milk spectra. Fuentes et al. (2020) analysed feed, weight and weather 

data to develop models predicting milk yield, protein and fat content as well as 

concentrated feed intake, with the model for all cows achieving a correlation 

coefficient of 0.86 and slope of 0.74. Muniz et al. (2020) built linear regression 

and ANN models predicting lactose, protein, fat and solids-non-fat parameters 

in milk, with ANNs achieving overall lower bias. Pietersma et al. (2003) 

conducted lactation curve analysis, presenting classification tree models with 

different levels of intensity when it came to outlier removal, achieving 

sensitivities of 52%, 68% and 92% for each increasing level of intensity. More 

recently, Anglart et al. (2020) focused their research on the prediction of 

monthly composite somatic cell count, concluding to some MSE disparity 
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among the different predictor variable setups (0.09 to 0.17 for the generalized 

additive model). Ji et al. (2022) explored various production measures, such as 

the daily milk yield, fat and protein content in milk, as well as frequency of 

individual cow milking during the next 28 days, proposing models with good 

results (R2 > 0.90 and overall accuracy > 80%). Farah et al. (2021) explored the 

prediction of milk adulteration showcasing that their optimal model was a 

random forest with 100% on the training set and 88.5% accuracy on the test 

set. In a study with a similar aim, Neto et al. (2019) utilized spectral milk data 

and proposed a neural networks model with 98.76% classification accuracy. 

Conde et al. (2020) also investigated milk adulteration, this time with the 

addition of whey, and provided an ANN model with 15 hidden layers to which 

the most influential variables were the milk’s fat content and density. 

Amongst the health outcomes, mastitis appears to be among the most 

frequently explored with predictive models. Kim and Heald (1999) compared 

decision tree classification of mastitis with culture diagnosis and estimated a 

58-61% accuracy for the former. Several studies have utilised a variety of 

methods, such as  decision trees, SVMs and ANN to investigate clinical and/or 

subclinical mastitis (Ebrahimie et al., 2018b, Ebrahimie et al., 2018a, Kamphuis 

et al., 2010, Kamphuis et al., 2008, Luo et al., 2023, Mammadova et al., 2013, 

Panchal et al., 2016, Sharifi et al., 2018).Sun et al. (2010) also attempted to 

identify mastitis from data collected by automatic milking systems, using cluster 

analysis. The correct classification rate of the models generated ranged from 

86.9% to 91.6%. Dhoble et al. (2019) attempted predictions utilising cytometric 

fingerprints. Their four outcomes included identifying the source cow of the milk 

sample, distinguishing pathogens in infected samples and recognizing healthy 
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samples, determining the lactation stage of the sample, and gauging the 

severity of infection. The best models proposed for all four outcomes had an 

accuracy of over 99%. Post et al. (2020) and Post et al. (2021) focused on the 

classification of mastitis, as well as lameness, utilising a vast variety of 

methods, including logistic regression, SVM, k-nearest neighbours, naive 

bayes, decision trees and random forests, while emphasising the effect of 

imbalanced datasets on the metrics. Maciel-Guerra et al. (2021) presented 

models on the success of the treatment of mastitis caused by Streptococcus 

uberis reporting an accuracy of 92.2% and kappa of 84.1%. Douphrate et al. 

(2019) debated the reliability of person vs machine-based hygiene scores for 

the teat. While investigating Staphylococcus aureus antibiotic resistance 

Esener et al. (2021) used ten different machine earning methods including 

SVM, logistic regression, naïve Bayes and MLP neural networks. Hyde et al. 

(2020) presented random forest models with 98% accuracy, 86% PPV and 99% 

NPV (when distinguishing between environmental and contagious diagnoses) 

and 78% accuracy, 76% PPV and 81% NPV (when distinguishing between 

environmental dry period and environmental lactation period diagnoses). Srikok 

et al. (2020) took advantage of the presence of mRNA in milk to determine 

infection and reported models with AUROC ranging between 0.77 and 0.89. 

Regarding the environmental and contagious distinction of mastitis caused by 

Streptococcus uberis, Esener et al. (2018) presented models with high 

accuracy and kappa for an individual farm classifier and a global classifier after 

cross-validation, that however decreased after external validation (70.67% 

accuracy and 0.34 kappa). When investigating the possibility of subclinical 

mastitis prediction Ebrahimie et al. (2021) proposed the use of a classification 
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based on associations (CBA) model which utilises scaled data and generates 

rules that define sub-groups in complex datasets, thus increasing the 

generalisability of the model. A paper by Hassan et al. (2009) presented both 

supervised and unsupervised ANNs to help detect mastitis pathogens based 

on alterations in milk parameters, with unsupervised ANNS yielding overall 

greater sensitivity and specificity. A few years prior, Heald et al. (2000), had 

also developed an ANN model for mastitis detection, that was reported to offer 

a greater predictive value compared to classical statistical methods, the 

classification rate ranging from 57 to 71%. Even further back, two studies 

(Nielen et al., 1995a, Nielen et al., 1995b) used neural network models 

alongside logistic regression models for the detection of both clinical and 

subclinical mastitis.  

Lameness has also been a significant part of machine learning based research. 

Shahinfar et al. (2021) also attempted to predict lameness, using a naïve Bayes 

model, amongst other methods, with an AUROC of 0.66 and an F1 value of 

27%. Warner et al. (2020) proposed the use of machine learning for the 

prediction of lameness with their best performing model achieving an AUROC 

of 0.76, a sensitivity of 0.54 and specificity of 0.94. Volkmann et al. (2021) 

focused on the identification of claw lesions by analysing the acoustics of the 

animals' gait, while Barney et al. (2023) utilised computer vision to detect 

lameness. Haladjian et al. (2018) also investigated lameness and proposed a 

motion sensor with 91.1% accuracy, while Shrestha et al. (2018) suggested 

radar sensing with over 85% accuracy in dairy cows. Alsaaod et al. (2012) 

proposed the use of pedometers recording activity, lying time, and temperature, 

with the resulted model having an accuracy of 81% for non-lame cows and 72% 
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for lame ones. In yet another study using sensor data, Taneja et al. (2020) 

proposed a model able to identify lame animals up to 3 days before visual 

confirmation with an accuracy of 87%. Boghart et al. (2021) presented a model 

using behavioural metrics, milk production and animal characteristics, with 85% 

AUROC. After investigating the possibility of prediction of digital dermatitis, 

Cernek et al. (2020) reported a model with 71% accuracy and 051 Cohen’s 

kappa before external validation and 88% accuracy and 0.36 kappa value after. 

In recent years, metritis has been the subject of several machine learning 

studies. Vidal et al. (2023) provided some models with high F1 scores, utilising 

sensor data from accelerometers. Risvanli et al., 2024 used a sensor 

measuring intrauterine gases, and provided models with high accuracy 

(71.22%), precision (64.4%) as well as recall (71.2%). De Oliveira et al. (2021) 

investigated the treatment success of metritis, presenting models with high F1 

(0.81), sensitivity (0.85) and PPV (0.78), but low specificity (0.39) and NPV 

(0.50). Another study (Sadeghi et al., 2022) presented models predicting 

subclinical endometritis by interpreting polymorphonuclear leukocyte 

proportions. Finally, Merenda et al. (2020) attempted to predict metritis, acute 

metritis, along with success and failure of treatment. The models for metritis 

and acute metritis produced had fair AUROC (0.82 and 0.87 respectively) with 

reasonable specificity and sensitivity, however the model for acute metritis had 

low PPV (0.30) while that of metritis was fair (0.60). 

Various other diseases have also been the subject of more recent machine 

learning studies. Lasser et al. (2021) utilised a number of different algorithms 

and reported different metrics, including the F1, precision, recall, specificity, and 

accuracy in an attempt to predict anoestrus, ovarian cysts, lameness, ketosis, 
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periparturient hypocalcaemia, metritis, chronic mastitis, as well as acute 

mastitis. Wagner et al. (2020) developed models using behavioural data to 

identify cases of sub-acute ruminal acidosis from a sample of 14 diseased cows 

and 14 controls. Their best performing one, was a KNN model with 12 hours of 

prediction achieving a PPV of 0.83 and a NPV of 0.66. In another study using 

behavioural data (Cantor et al., 2022) this time for the prediction of respiratory 

disease in calves, the produced KNN model returned accuracies up to 95% 

when predicting clinical disease and 52%-90% when predicting pre-clinical 

disease. Sturm et al. (2020) proposed models for the prediction of ketosis, 

which while having fair accuracy and NPV (0.72 and 0.92 respectively) had low 

kappa, F1-score and PPV (0.28, 0.43 and 0.32 respectively). Wang et al. (2023) 

explored the possibility of utilising explicit and implicit features found in text 

records in the prediction of disease which was broadly classified in 7 classes 

(rumen indigestion, rumen bulging, atonia proventriculorum, ketosis, epidemic 

fever, oesophageal obstruction and ruminal acidosis). Their suggested model 

had a F1-score of 94.89%.  Reporting a collective disease outcome has also 

been attempted by Hernandez et al. (2021), accompanied by poor metrics 

(sensitivity = 61.74%, PPV = 59.99%) with high standard deviation (15.99% and 

26.20% respectively). Even more recently, Zhou et al. (2022) proposed models 

for a disease outcome including digestive disorders, lameness, mastitis, and 

metritis, utilising potential predictive variables, such as the season, days in 

milking, parity, age at the time of disorders, milk yield, activity, rumination time, 

and electrical conductivity of milk. Although three of their models produced high 

metrics (AUROC 81.58%-92.86%) their sensitivity ranged between 48% and 

85%, which was concluded to be low for the purpose of the study. Dineva and 
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Atanasova (2023) also proposed a general disease outcome, using a variable 

with three classes as assessed by a veterinarian (Healthy-cow is not in any 

discomfort, Unhealthy-any disease state, including those caused by cold or 

heat stress, Suspect-presence of sufficient conditions for the occurrence of a 

disease state in the animal, not yet manifested). Their worst performing model 

was a Naïve Bayes model with 0.62 accuracy, 0.52 recall and 0.53 precision, 

while the best one was a random forest classifier with 0.95 accuracy, 0.95 recall 

and 0.97 precision. Lardy et al. (2023) investigated various conditions in 

Holstein cows, several diseases being amongst them, however instead of 

binning them in a binary outcome they included them all in a multi-class 

variable. The conditions included oestrus event, calving, lameness, mastitis, 

acidosis, inflammatory reaction to lipopolysaccharide injection (LPS), accidents 

(such as Injuries, retained placenta and vaginal laceration), other disease, 

mixing and disturbance (such as Handling for vaccination, oestrus 

synchronisation, anthelmintic cure, claw trimming and relocation). For their 

predictive variables they utilised sensors measuring the distribution of the 

activity level in 24-hour time series. While highly specific, the random forest 

model returned low accuracy for all classes (44.4% to 5.2%). This however 

improved when considering the presence of at least one 24-hour time series 

classified correctly before the event, after multiple are recorded (acidosis 

85.6%, oestrus 72.4%, calving 74.0%, other diseases 78.2%, lameness 66.3%, 

mastitis 56.6%, mixing 54.6%, LPS 45.1%, disturbances 40.9%, and accident 

10%). Despite the sensitivity issues, the random forest model was able to 

differentiate between the events with good results. 
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Several genetic studies have also used machine learning. In 100-year a review, 

Weigel et al. (2017) described how researchers have recently started to use 

machine learning techniques alongside more traditional methods, in order to 

develop models for genetic selection. In fact, a number of studies have used 

machine learning for genomic predictions (Biffani et al., 2017, Ehret et al., 2015, 

Gonzalez-Recio et al., 2010, Yao et al., 2013). Yao et al. (2016) while looking 

into genomic prediction, suggest that a self-training algorithm incorporated into 

an SVM prediction model can enhance the accuracy of said prediction by 

gathering additional genomic data from animals lacking measured phenotypes. 

In another paper, genomic prediction methods have been compared in order to 

determine the most accurate, while in another study by the same author the 

value of imputation in genetic studies was explored (Jiménez-Montero et al., 

2013a, Jiménez-Montero et al., 2013b). Rodriguez et al. (2019) attempted a 

genome-wide classification in order to identify high-producing cows by training 

decision trees and ANN algorithms and getting a mean prediction of 92.4% and 

82.19% respectively. 

A few behavioural studies have also utilized these techniques. Williams et al. 

(2016) used machine learning methods to develop a behavioural model of the 

pasture-based dairy cow, yielding an accuracy of 85%, false positive rate of 

10% and AUROC of 0.87. Similarly, other studies (Benaissa et al., 2017, 

Martiskainen et al., 2009, Smith et al., 2016, Tamura et al., 2019, Vázquez 

Diosdado et al., 2015) have used decision trees, k-nearest neighbours, naïve 

Bayes and Support Vector Machine methods to classify behavioural data 

collected by sensor technology. Chelotti et al. (2018) in particular, presented 

methods for identifying and classifying jaw movements in grazing cows, with 
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the best model achieving accuracy, precision and recall of over 90%. In a more 

recent study (Shen et al., 2020) accelerometer data were input in KNN, SVM 

and ANN algorithms to predict ingestive-related behaviours with good success. 

In a similar study only a year prior Benaissa et al., (2019a) had also assessed 

feeding and ruminating behaviour, reporting models with high precision, 

sensitivity and specificity for both outcomes. The same researchers (Benaissa 

et al., 2019b) also compared neck and leg mounted sensors, determining that 

the optimal position depends on the behaviour than needs to be monitored. 

Dutta et al. (2015) utilised ensemble methods for behaviour prediction, with the 

best model achieving 96% accuracy, 97% sensitivity, 89% specificity, 89% F1 

score and 9% false discovery rate. Riaboff et al. (2020) presented 4 models, 

classifying 6 behaviours with accuracies ranging between 0.95 and 0.98 and 

Cohen’s Kappa ranging between 0.91 and 0.96. Using 8 surveillance cameras 

and ANN methods Salau and Krieter attempted to segment animal behaviour 

with overall high ‘averaged precision score’ but moderate ‘averaged recall 

score’. Williams et al. (2019) explored both base learner and ensemble 

methods to predict behaviour with logistic regression being the best overall 

model for the former (accuracy 0.90; sensitivity 0.88; specificity 0.92; precision 

0.92; F1-score 0.90). The ensemble methods produced overall similar 

measures. Balasso et al. (2021) produced ANN, SVM, KNN and extreme 

boosting algorithm models, in an attempt to identify posture and behaviour with 

positive results. Hunter et al. (2021) developed ANN and random forest 

algorithms using neck muscle activity and heart rate data aiming to differentiate 

between sleep stages, with the best model being the ANN achieving an AUROC 

of 92.5%. Carslake et al. (2021) used collar-based sensors collecting signal 



52 
 

data in calves to correctly identify lying and standing posture while also 

classifying locomotor play, self-grooming, active lying, inactive lying and 

different feeding behaviours. The model with the worst performance was that 

of active lying (90% accuracy, 64% sensitivity and 69% precision), while the 

one for locomotor play achieved 98.98% sensitivity, 99.73% specificity and 

99.23% precision. Ren et al. (2021) analysed social interactions with each of 

the 6 classes of the outcome reaching accuracies ranging between 72.73% and 

92.16%. Chen et al. (2020) aimed to recognize feeding behaviour using neural 

networks, achieving accuracies of up to 89.5%. 

A few studies have taken a different approach and rather than focusing on 

animal traits, they aimed to predict farms’ energy consumption. Shine et al. 

(2019) utilized an SVM algorithm and empirical data from 56 to investigate 

electricity consumption. They found, among other outcomes, that the model 

could predict yearly electricity consumption within 10.4%, with a correlation 

coefficient at 0.97. A year prior the same research group had investigated water 

and electricity consumption on pasture-based farms with a SVM model 

predicting electricity use within 12%, while a random forest model predicting 

water consumption within 38% (Shine et al. 2018a), while in another study that 

year with the same goal (Shine et al. 2018b) they presented a multiple linear 

regression predicting electricity and water use within 26% and 49% 

respectively. Sefeedpari et al. (2013) used an ANN method and data from 50 

farms to present a model focusing on energy input and output with an R2 of 

0.88 and RMSE of 0.015. In another study a year later they (Refeedpari et al., 

2014) modelled fossil fuel as well as electricity consumption with an R2 metric 

of 0.79. Todde et al. (2017) expanded not only on the prediction of energy use, 
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but on that of related emissions and costs as well, with the models’ MSE values 

ranging at below 15%.  

The estimation of body weight in dairy cows has also been the subject of 

multiple papers, especially in the most recent years. Two recent studies (Nagy 

et al., 2023, Siachos et al., 2024) have utilised various algorithms to measure 

BCS and both used Cohen's Kappa to access their results. Huang et al. (2019) 

also proposed a method of BCS estimation with 98.46% classification accuracy, 

while Cevik (2020) achieved 78% accuracy. In a similar study, Zhao et al. 

(2020) proposed several models for BCS approximation. Amongst those 

models were a classification decision tree which while predicting with around 

60% accuracy for each class 95% of the predictions were within a 0.25 score 

difference, and liner regression an ANN models with over 80% R2. In another 

similar study Rodriguez Alvarez et al. (2018) presented classification models 

for BCS and found that while when predicting the exact score the precision, 

recall and F1 were 0.40, 0.40 and 0.39 respectively, when predicting within a 

0.25 score difference the metrics increased to 0.79, 0.78, 0.77 respectively and 

even further at 0.94, 0.94 and 0.94 when predicting within a 0.5 rage. A year 

later the same research group (Rodriguez Alvarez et al., 2019) expanded on 

their research adding more classification methods and slightly improving their 

results, with the accuracy of BCS estimations within a 0.25-unit difference from 

actual reaching 82%, while overall accuracy within a 0.50-unit difference 

achieving 97%. Tedde et al. (2021b) also attempted to approximate body 

weight, but without the use of the BCS scale and they produced models with an 

RMSE ranging between 52 and 56kg. 
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Studies focusing on different research areas have also demonstrated the use 

of machine learning methods. Pastell and Kujala (2007) have developed a 

probabilistic neural network model with 96.2% correctly classified cases that 

focused on lameness detection, whereas Dórea et al. (2018) compared partial 

least square models to ANN models when trying to predict dairy cows’ feed 

intake using milk spectra, finding ANNs superiors possibly indicating a non-

linear relationship between predictors and outcome. Predicting metabolic stress 

in the transition period was also explored with a variety of methods by Wisnieski 

et al. (2019). Craninx et al. (2008) investigated the use of ANNs for the 

prediction of rumen proportions of volatile fatty acids showcasing a model with 

an RMSE of just 2.76% which did not however outperform the multi-linear 

regression model. Shafiullah et al. (2019) used sensor technology to identify 

the sufficiency of herbage allowance presenting models with 88% AUROC and 

overall high metrics. Nikoloski et al. (2019) built numerous tree models for 

nutrient uptake and herbage production with R2 values ranging between 0.64 

and 0.78. Tedde et al. (2021a) explored the prediction of dry matter intake using 

milk spectral data, among other parameters, and producing a regression and 

an ANN model with RMSE of 3.27kg and 3.25kg respectively. In another study, 

Fu et al. (2021) implemented a kernel extreme machine learning technique to 

approximate the cows’ digestible energy and energy digestibility, producing R2 

values of almost 90%. Becker et al. (2021) utilised a variety of pen-level as well 

as cow-level variables to focus on the prediction of heat-stress, with high 

accuracy. Ji et al. (2020) also investigated heat stress by using a decision tree 

model with 79-94% accuracy. Also on the subject of heat stress, Gorczyca, and 

Gebremedhin (2020) aimed to predict respiratory rate, skin temperature and 
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vaginal temperature, and the RMSE of their models was 9.695 respirations per 

minute, 0.334 °C and 0.434 °C respectively. Pacheco et al. (2020) proposed 

ANN models for the prediction of respiratory rate and rectal temperature with 

R2 values at 0.74 and 0.71 respectively, classifying thermal stress with 83% 

and 84% accuracy, again respectively. Chung et al. (2020) explored the use of 

implanted sensors to approximate vaginal temperature building models with an 

RMSE of 0.081 °C. Mota et al. (2021) investigated the predictive ability of 

models identifying phaenotypic characteristics that are difficult to measure, 

such as κ-CN in milk and blood BHB. Dettmann et al. (2020) proposed the use 

of milk fatty acid profiles for the estimation of bodyweight change in cows post 

calving, showcasing a model with an R2 value of 0.94 that after external 

validation dropped to 0.31. Cernek et al. (2020) while trying to identify digital 

dermatitis reported models with accuracy of up to 88% but only “fair” Kappa. 

Paratuberculosis diagnosis through ELISA has also been the subject of recent 

research (Imada et al., 2024) utilising decision trees as well as random forest 

models. Bovine tuberculosis has also been the subject of machine learning 

research (Denholm et al., 2020) by using milk spectral data as predictive 

variables and building models with sensitivity and specificity of up to 0.96 and 

0.94 respectively. Multiple studies explored the prediction of hyperketonemia 

(Bonfatti et al., 2019, Luke et al., 2019, Pralle et al., 2018, Walleser et al., 2023) 

using milk spectra and utilising mainly partial least squares regression, 

reporting good sensitivity and specificity. Sturm et al. (2020) reported models 

aiming to predict subclinical ketosis, with the best performing model producing 

high accuracy (0.725) and NPV (0.922), while also having low PPV (0.322) and 

F1 (0.435). Van der Heide et al., (2019) produced regression, naïve Bayes and 
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random forest models to evaluate the prediction of survival to second lactation 

in heifers, with only one model achieving an AUROC higher than 0.7. In an 

attempt to improve this result, they (van der Heide et al. 2020) produced four 

different ensemble methods that ultimately did not result in greater 

performance, the maximum precision value being at 0.250. Salau et al. (2021) 

used KNN and ANN algorithms to identify and classify body parts, reporting 

accuracies reaching 0.976, and precision and recall ranging from 0.84 to 1 and 

0.83 to 1 respectively. Nir et al. (2018) opted to use machine learning to 

estimate heifer height and body mass, with R2 values starting from 94.6% to 

98.5%. John Wallace et al. (2019) investigated rumen metabolism, diet and 

host characteristics, using ridge regression and random forests, with propionate 

predictions reaching R2 of 0.9 in some farms, while methane emissions 

reaching values of 0.4. Hempel et al. (2020) focused solely on methane 

emissions, building models for 27 scenarios with R2 values ranging between 

0.394 and 0.664. Genedi and Ogejo (2021) aimed to predict manure 

temperature during storage using weather data, time and manure depth above 

the sensor as inputs and creating models with R2 values of over 0.97. Ghaffari 

et al. (2019) worked towards metabolic profile prediction in dairy cow serum, by 

using sequential minimal optimization, random forest, alternating decision tree, 

and naïve Bayes–updatable methods. In another study about metabolic status 

Xu et al. (2019) identified a Random Forest (error rate from 12.4 to 22.6%) and 

a SVM (error rate from 12.4 to 20.9%) model as the best performing ones. In a 

study assessing a model processing digital images to categorise teat 

cleanliness (Douphrate et al., 2019), it was found that the accuracy reached 

within each class of the model was 90% or higher. Salzer et al. (2021) 
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conducted an experiment in an attempt to predict mild pain in cows, producing 

classification models with overall high accuracies. Oehm et al. (2022) 

implemented clustering analysis by inputting milk production and other cow-

level data and the resulted clusters identified infection by Fasciola hepatica and 

Ostertagia ostertagi with great accuracy. Finally, Probo et al. (2018) used 

decision tree models and random forests alongside more traditional survival 

analysis, to investigate the association between metabolic diseases and the 

culling rate in high-yielding cows, reporting milk fever as the most influential 

factor. 

Shine and Murphy (2021) conducted a systematic review of papers applying 

machine learning techniques to dairy industry related issues dating from 1999 

to 2021. Amongst the most frequently used methods were tree-based 

algorithms (25% in 1999-2017, 26% in 2018-2021) and regression-based 

algorithms (22% in 1999-2017, 17% in 2018-2021), with ANNs showing an 

increase in popularity (16% 1999-2018, 25% in 2018-2021). Almost half the 

studies (48%) leveraged sensor data when developing their models. 

Furthermore, cow characteristics (34%), milk properties (37%), calving data 

(23%), and lactation information (19%) were commonly used as features. This 

was followed by meteorological data (14%), dietary and feeding practices 

(10%), farm characteristics (16%), milking parameters (10%), soil properties 

(1%), and various other variables (7%). Concerning the outcomes, they 

reported that a great number of research prior to 2018 focused on animal 

husbandry (35%), with that recently being decreased to 14% and replaced with 

physiology and health outcomes (38%). In fact, they identified that the number 

of papers addressing these outcomes had been increased 7 times since 2018. 
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A small subset of research was also dedicated to feeding (6% both prior and 

after 2018). A smaller systematic review (Cockburn, 2020) included papers 

from January 2015 to June 2020. For the most common among physiological 

and health outcomes they mentioned BCS, lameness, heat stress, mastitis, 

metabolic status and infectious disease, while among other popular outcomes 

they included reproduction, behavioural and feeding outcomes. They conclude 

that despite the abundance of available research, most tested algorithms have 

not performed adequately for dependable implementation in practical settings, 

which they speculate may be attributed to subpar training data. 

An interesting aspect is the metrics the studies use to report their results 

regarding the classification models. A lot of models relied on sensitivity 

combined either with specificity (Nielen et al., 2015a, Nielen et al., 2015b, 

Hassan et al., 2009, Sun et al., 2010, Kamphuis et al., 2015, Mammadova et 

al., 2013, Panchal et al., 2016, Fenlon et al., 2017b, Post et al., 2020, Becker 

et al., 2021, Lasser et al., 2021, Lardy et al., 2023, Srikok et al., 2020, Volkman 

et al., 2021, Esener et al., 2021, Sadeghi et al., 2022, Imada et al., 2024, 

Vergara et al., 2014, Miller et al., 2020, Warner et al., 2020), precision (Imada 

et al., 2024, Barney et al., 2023, Esener et al., 2018, Hunter et al., 2021, Lasser 

et al., 2021, Higaki et al., 2019, Fenlon et al., 2017b, Benaissa et al., 2017, 

Martiskainer et al., 2009, Hernandez et al., 2021, Rodriguez Alvarez et al., 

2018, Rodriguez Alvarez et al., 2019, Wang et al., 2023) or both (Benaissa et 

al., 2019a, Carslake et al., 2021, Ghaffari et al., 2019, Merenda et al., 2020, de 

Oliveira et al., 2021, Keceli et al., 2020, Shen et al., 2020, Xu et al., 2021). 

Salau and Krieter (2020) on the other hand, reported only precision and recall 

as averaged metrics, while Pietersma et al. (2003) based model evaluation on 
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sensitivity and false positive rate, which is the inverse of specificity. Accuracy 

was among the most reported metrics, either as a sole metric (Pastell and 

Kujala, 2007, Aguias et al., 2012, Chen et al., 2020, Cevik, 2020, Jiménez-

Montero et al., 2013, Dolechek et al., 2015, Ebrahimie et al., 2018a, Ebrahimie 

et al., 2021, Farah et al., 2021, Zaborski et al., 2018, Tamura et al, 2019, 

Douphrate et al., 2019, Njubi et al. 2010, Sturm et al., 2020, Romadhonny et 

al., 2019, Rodriguez et al., 2019, Taneja et al., 2020, Zhao et al., 2020) 

alongside AUROC (Dhoble et al., 2019, van der Heide et al., 2019, Hunter et 

al., 2021, Neto et al., 2019, Srikok et al., 2020, Williams et al., 2016),  most 

recently Kappa (Cernek et al., 2020, Balasso et al., 2021, Esener et al., 2018, 

Esener et al., 2021, Riaboff et al., 2020, Sadeghi et al., 2022), both (Boghart et 

al., 2021, Shen et al., 2020), balanced accuracy (Ji et al., 2020), with sensitivity 

and specificity (Haladjian et al., 2018, Ji et al., 2020), with precision and recall 

(Benaissa et al., 2019b, Chelotti et al., 2018, Risvanli et al., 2024, Salau et al., 

2021), PPV and NPV (Salzer et al., 2021), in a few other studies with a 

combination of sensitivity, specificity, PPV and NPV (Cairo et al., 2020, 

Denholm et al., 2020, Schweinzer et al., 2019, Wang et al., 2020) and finally in 

some studies with a combination of metrics that also include the F1 score 

(Carslake et al., 2021, Cantor et al., 2022, Dineva and Atanasova, 2023, Dutta 

et al., 2015, Ghaffari et al., 2019, Hemalatha et al., 2021, Hyde et al., 2020, Luo 

et al., 2023, Shafiullah et al., 2019, Sturm et al., 2020, Vázquez-Diosdado et 

al., 2023, Williams et al., 2019, Wang et al., 2023). There were a few studies 

reporting only accuracy (Douphrate et al., 2019, Huang et al., 2019, Li et al., 

2022, Ren et al., 2021), however they displayed the accuracy of each individual 

class separately, thus addressing any possible class imbalances, while 
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Shrestha et al. (2018) and Pacheko et al. (2020) included the confusion matrix. 

Alsaaod et al. (2012) also displayed individual class accuracy, along with 

precision. Wagner et al. (2020) reported only the PPV and NPV of their models. 

Post et al. (2021) demonstrated the impact of PPV specifically on practical 

applications. AUROC has also been reported in various studies (Avizheh et al., 

2023, Shahinfar et al., 2014, Williams et al., 2016, Panchal et al., 2016, 

Wisnieski et al., 2019, Post et al., 2020, Shahinfar et al., 2021, Imada et al., 

2024, Vergara et al., 2014, Merenda et al., 2020, Post et al., 2020, Grzesiak et 

al., 2010, Keshavarzi et al., 2020, Miller et al., 2020, Warner et al., 2020) and, 

especially in more recent research, Cohen's Kappa has been used to evaluate 

the models' predictive values (Hassan et al., 2009, Balasso et al., 2021, Hyde 

et al., 2020, Maciel-Guerra et al., 2021, Esener et al., 2021, Volkmann et al., 

2021, Sadeghi et al., 2022, Nagy et al., 2023, Barney et al., 2023, Siachos et 

al., 2024, Sturm et al., 2020, Imada et al., 2024). Some mostly recent studies 

also rely on or at least include F1-score in the assessment of the predictive 

value of their models (Avizheh et al., 2023, Hunter et al., 2021, Keshavarzi et 

al., 2020, Sturm et al, 2021, de Oliveira et al, 2021, Rodriguez Alvarez et al., 

2018, Rodriguez Alvarez et al., 2019, Smith et al., 2016, Vidal et al., 2023, 

Wang et al., 2020). Bates and Saldias (2019) included all the aforementioned 

metrics in their reporting, discussing the impact of different prediction rates 

between classes for their specific outcome, while van der Heide et al. 2020 

reported a combination of recall, precision, balanced accuracy and AUROC. 

Shine and Murphy (2021) determined that in 85 studies centred on classification 

problems, the most frequently utilized evaluation metric was classification 

accuracy (77%), followed by recall (66%), specificity (49%), PPV (48%), F1 
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Score (27%), AUROC (26%), NPV (15%), Cohen’s Kappa (12%), false 

positives (FP) (9%), and false negatives (FN) (6%). 

Although there are a variety of studies to have explored some aspects of 

machine-learning applications, there is still room for further research to develop 

more algorithms with the use of potentially more practical predictors. No study 

has investigated all the possible different methods of model building to 

determine the one with the most fitting results. Furthermore, there are areas, 

including specific periparturient disease with significant economic impact on the 

dairy farms that have not been adequately explored by predictive models. As 

Wisnieski et al. (2019) suggested, predictive modelling could be used for 

practical on-farm applications by predicting a variety of outcomes ranging from 

health to productive and reproductive performance and culling rates. Especially 

with the relatively widespread use of sensor technology on farms, such as on-

animal sensors for activity monitoring or milking systems collecting data during 

the milking process, large quantities of data are now easy to collect, so these 

models can have practical on-farm application (Hudson et al., 2018). 
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1.6 Conclusions 

As established above, the transition period management can be critical for the 

dairy farms. Difficulties in the demanding adaptations of this phase can lead to 

imbalances, resulting in health issues, mainly during the early lactation. 

Targeted management can help prevent such issues and minimize losses. 

Predictive models and machine learning can play a key part, by identifying 

disease and other potential problems in high-risk individuals timely in order to 

effectively tackle the issues.  

Blood and urine metabolites, as accurate as they may be, are often an 

impractical way to routinely identify and prevent potential health and production 

issues on-farm. Alternative, non-invasive methods using frequently collected 

data that are already available can be proved to be practical and helpful for the 

farmers. A few recent studies have tried to address this topic, using machine 

learning methods and precision technology, however they have only briefly 

touched the surface of what predictive modelling can achieve. No other study 

has had access to a dataset of this size that contains information on a great 

variety of outcomes, as well as predictors that can easily be collected on farms 

on a routinely basis.  

Having access to a unique dataset with both individual cow and farm level data 

and a variety of outcomes represents a unique opportunity for this project to 

implement innovative learning algorithms to predict and prevent disease and 

production issues. The data allows examination of various aspects regarding 

the transition period and utilization of a variety of different methods and 

techniques to determine the best model with the best possible predictive value. 

The results from this research can benefit the dairy cow industry worldwide, as 
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predictive models could potentially be used on-farm and have a great impact 

on decision-making. 

Therefore, the aims of this study are: 

Develop predictive models of peri-parturient disease in dairy cows using various 

cow-level and herd-level variables. 

Develop predictive models of production outcomes in dairy cows using various 

cow-level and herd-level variables. 

Develop predictive models of reproduction outcomes in dairy cows using 

various cow-level and herd-level variables. 
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Chapter 2 – Data collection and methodology 

 

2.1 Methods 

2.1.1 Source of data 

All data was provided by a commercial dairy cow feed and consultancy 

organisation and was collected as part of a transition cow monitoring service. 

The aim of the service was to evaluate cow health during the transition period 

and offer advice to farmers in order to identify areas of transition period 

management that might need improvement. An assessor visited each farm 

enrolled in the service once a month to collect cow- and pen-level data from 

pre- and post-calving cows. A total of six different assessors collected the data 

from the farms. Assessors held calibration sessions (generally twice per year) 

where they evaluated and scored cows together to minimise variation between 

scorers. 

Cow level data were collected from 15th April 2016, while pen level data 

collection was added to the service from 1st October 2016. In the datasets 

provided both cow and pen level data were recorded until October 2018. The 

data collected included the date, the cow number, whether the cow was fresh 

or dry (i.e. pre- or post-calving), whether she was a heifer or not, whether she 

was found by the assessor for scoring, the BCS (scale 1 to 5 with 0.25 point 

intervals), rumen fill (scale 1 to 5 with 1 point intervals measured when the cow 

was standing), hock hygiene (scale 1 to 5 with 1 point intervals), lameness 

(score >3 was classified as lame). For fresh cows, milk fever (yes/no), LDA 

(yes/no), RFM (yes/no), calf mortality (yes/no), twinning (yes/no), metritis 
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(yes/no), daily milk yield (in litres), protein (%), butterfat (%), cell count and 

drying-off cell count, all as recorded in farm records were also in included.  

The BCS scale used is the most widely utilised for dairy cows in the UK is a 

five-point system. This scale evaluates the fat reserves of dairy cows, with 

scores ranging from 1 (very thin) to 5 (very fat), and includes 0.25-point 

increments for more precise assessment (Edmonson et al., 1989). Rumen fill 

scoring involves a visual assessment from behind and slightly to the left of the 

cow. The focus is on the left sublumbar fossa and flank of the dairy cow 

(Atkinson, 2009, Bramley et al., 2013, Burfeind et al., 2010, Zaaijer and 

Noordhuisen, 2003). The assessment should be performed when the cow is 

standing with all four digits on a flat plane and there is no visible rumen 

contraction (Burfeind et al., 2010). The score ranges from 1 to 5. For score 1 

the rumen appears empty, with a sunken area on the left side. For score 2: 

there is light fill and the hollow is less pronounced. For score 3 there is moderate 

fill and the hollow is barely visible. For score 4 there is good fill and the flank is 

almost flat. And finally, for score 5 the rumen is full, and the flank is bulging 

(Zaaijer and Noordhuisen, 2003). 

Lameness was evaluated using the AHDB (Agriculture and Horticulture 

Development Board) Dairy Mobility Scoring system, which employs a 4-point 

scale: 0 = good mobility (not lame), 1 = imperfect mobility, 2 = impaired mobility 

(lame), and 3 = severely impaired mobility (severely lame) (Gleerup et al., 

2015). Since only animals that were scored as severely lame were identified in 

the company’s recording system’s binary interpretation of lameness, it is 

acknowledged that these cases are mostly non-reversible. It would be of more 

interest to farmers to be able to identify earlier, more treatable cases. Therefore, 
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lameness was not considered as an outcome but only as a predictive variable 

for modelling purposes. For other diseases, farm records were used based on 

diagnosis from the farm personnel; in general using the principles described in 

the paragraph below. 

For uterine bacterial disease, timing relative to calving was also used to define 

diagnosis; with metritis defined as occurring within the first 3 weeks after calving 

(Eckel and Ametaj, 2016) and endometritis later than this (Sheldon et al., 2009). 

However, as will be described in section 2.1.2. we only included the post-

partum assessments that were taken up to 21 days post-partum for our 

analysis, meaning that a possible metritis diagnosis could not have happened 

after that, avoiding inclusion of any endometritis diagnoses. Identification of 

retained foetal membranes was completed by visual examination 24 hours 

postpartum. 

For the pen level, the data collected included the type of cows in the pen (dry 

of fresh), the name of the pen, the type of pen (straw yard or cubicles), the pen 

length (in metres), pen width (in metres) and pen area (in square metres), feed 

fence space (in metres), water trough space (in metres), neck rail height (in 

metres), the number of cows in the pen, the number of cows waiting, as well as 

the number of cows not waiting, the time period the pen was evaluated (month 

and year), the water and feed availability (both as binary variables), the 

temperature (in oC), humidity (%) and number of cubicles. Binary subjective 

ratings (satisfactory/unsatisfactory) for quality of the bedding, air, feed, water, 

and light were also recorded. 
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Data provided was fully anonymised, such that no individuals or businesses 

could be identified. The project was subject to the University of Nottingham 

School of Veterinary Medicine and Science ethical review process (approval 

number 2197 180130). 

2.1.2 Datasets 

All data cleaning and analysis was completed using R version 3.5.1 (R Core 

Team, 2018). The data included two main datasets, the first containing 

information on the individual cow level (cow scores), while the second on the 

pen level (cow comfort). Additional farm records were also provided from milk 

recording organizations, which included data routinely collected on the farms 

via this route, such as daily milk yields each test day (generally monthly) and 

insemination and calving records. 

The cow scores dataset consisted of separate observations for dry and fresh 

(post-calving) cows, with multiple recordings per cow per transition event, as 

the monitoring process was repeated every month. There were a total of 23 

variables available (Table 2.1). The cow comfort dataset included data on 

individual pens, with 26 variables available (Table 2.1). 
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Table 2.2 Variables available in all the original datasets 

Cow 

Variables 

Cow 

Comfort 

Variables 

Farm records  

Cow 

level 

Inseminatio

n level 

Test-day 

level 

Event 

level 

Farm ID Farm ID Farm ID Lactation 

Number 

Daily Milk 

Yield 

Event  

Period  Period Animal 

ID 

Lactation ID Protein Event 

ID 

Date  Type of cows Ear Tag Inseminatio

n Date 

Butterfat DIM at 

event 

 

Assessor Pen Name Date on 

Farm 

DIM at 

inseminatio

n 

Milk ID Event 

Date 

Cow 

Number 

Type of Pen Date of 

Birth 

Inseminatio

n ID 

Date of 

Milk 

recording 

 

Dry or 

Fresh 

Pen length Date of 

Exit 

 DIM at 

Milk 

recording 

 

Heifer Pen width  Calving 

Dates 
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Found for 

assessme

nt 

Pen area     

BCS Feed Fence 

Space 

    

Rumen 

Fill 

Water Trough 

Space 

    

Hock 

Hygiene 

Neck Rail 

Height 

    

Lameness Number of 

Cows in Pen 

    

Milk Fever Cows waiting     

LDA Cows not 

waiting 

    

RFM Feed 

available 

    

Calf 

mortality 

Water 

available 

    

Twinning Temperature     

Metritis Humidity     
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Daily Milk 

Yield 

Bedding 

quality 

    

Protein Air quality     

Butterfat Feed quality     

Cell count Water quality     

Drying-off 

cell count 

 

Light quality    

Cubicle count    

 Pen score     

 

The farm records contained additional information collected by milk recording 

organizations (Table 2.1). The events that could be recorded in this format 

included calving, insemination, drying-off, mastitis, lameness, general health 

issues categorized as “sick”, positive and negative pregnancy diagnosis, 

abortion, a decision to not breed the cow any longer (DNB), and whether the 

cow was sold or culled. Out of those, the calving, insemination, positive and 

negative pregnancy diagnoses, abortion, DNB, mastitis diagnosis and sold or 

culled cows were included in the final analysis (other events were recorded 

inconsistently across herds). 

The milk variables in the cow scores dataset (milk yield, protein, butterfat, cell 

count and drying-off cell count) were not used, as these were captured by the 

assessors from the farm’s milk recording data (which was directly available 

here, so these variables were gathered from the milk recording dataset rather 
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than the assessor data). As a next step, additional variables were created. A 

cow ID was created using the farm ID and cow number, in order to differentiate 

between the same cow numbers used by different farms. The datasets were 

amalgamated and restructured so that each unit (line) of data represented a 

transition or calving event for a given cow; with pre-calving variables (e.g. BCS, 

pen stocking density) included alongside post-calving variables (e.g. BCS, 

occurrence of periparturient disease). In order to select a “best” pre-calving 

score for each calving event, the closest scoring event to 20 days pre-calving 

was chosen. Similarly, the post-calving scoring occasion closest to 25 DIM was 

used as the representative post-calving scoring event for a given transition 

event. 

Additional variables on stocking density, feed and water space per cow, month 

and season of recording were calculated. A variable for the overall subjective 

quality of the pen environment was added, as a combination of the variables 

describing the quality of feed, water, light, bedding and air (ordinal, scale 0-5). 

The temperature-humidity index was also calculated, using the formula given 

by NRC (2001): 

THI = (1.8*T+32)-(0.55-0.0055*H) 

where T is the dry light bulb temperature (°C) and H is the relative humidity of 

the air (%).The threshold for heat stress in dairy cows is reported to be between 

scores 68 and 71, mild heat stress between 72 and 78, moderate between 79 

and 88 and severe between 89 and 98, while dairy cattle cannot survive in 

values above 99 (Table 2.2) 
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Table 2. 2 THI values and interpretation*   

Temp % Relative Humidity 

F C 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

72 22.2 65 66 66 67 67 67 68 68 69 69 69 70 70 70 71 71 72 72 

73 22.8 66 66 67 67 68 68 68 69 69 80 80 71 71 71 72 72 73 73 

74 23.3 67 67 67 68 68 69 69 70 70 70 71 71 72 72 73 73 74 74 

75 23.9 67 68 68 68 69 69 70 70 71 71 72 72 73 73 74 74 75 75 

76 24.4 68 68 69 69 70 70 71 71 72 72 73 73 74 74 75 75 76 76 

77 25.0 68 69 69 70 70 71 71 72 72 73 72 74 74 75 75 76 76 77 

78 25.6 69 69 70 70 71 71 72 73 73 74 74 75 75 76 76 77 77 77 

79 26.1 69 70 70 71 71 72 73 73 74 74 75 76 76 77 77 78 78 79 

80 26.7 70 70 71 72 72 73 73 74 74 75 76 76 77 78 78 79 79 80 

81 27.2 70 71 72 72 73 73 74 75 75 76 77 77 78 78 79 80 80 81 

82 27.8 71 71 72 73 73 74 75 75 76 77 77 78 79 79 80 81 81 82 

83 28.3 71 72 73 74 75 75 75 76 77 78 78 79 80 80 81 82 82 83 

84 28.9 72 73 73 74 75 75 76 77 78 78 79 80 80 81 82 83 83 84 

85 29.4 72 73 74 75 75 76 77 78 79 79 80 81 81 82 83 84 84 85 

86 30.0 73 74 74 75 76 77 78 78 79 80 81 81 82 83 84 84 85 86 

87 30.6 73 74 75 76 77 77 78 79 80 81 81 82 83 84 85 85 86 87 

88 31.1 74 75 75 76 77 78 79 80 81 81 82 83 84 85 86 86 87 88 

89 31.7 75 75 76 77 78 79 79 80 81 82 83 84 85 86 86 87 89 89 

90 32.2 75 76 77 78 79 79 80 81 82 83 84 85 86 86 87 88 89 90 

91 32.8 76 76 77 78 79 80 81 82 83 84 85 86 86 87 88 89 90 91 
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92 33.3 76 77 78 79 80 81 82 83 84 85 85 86 87 88 89 90 91 92 

93 33.9 77 78 79 80 80 81 82 83 84 85 86 87 88 88 90 91 92 93 

94 34.4 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 

95 35.0 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

96 35.6 78 79 80 81 82 83 85 86 87 88 89 90 91 92 93 94 95 96 

97 36.1 79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 

98 36.7 80 80 82 83 84 85 86 87 88 89 90 91 93 94 95 96 97 98 

99 37.2 80 81 82 83 85 86 87 88 89 90 91 92 93 94 96 97 98 99 

100 37.8 81 82 83 84 85 86 87 88 90 91 92 93 94 95 97 98 99 100 

101 38.3 81 82 83 86 86 87 88 89 90 92 93 94 95 96 97 99 100 101 

102 38.9 82 83 84 85 86 87 89 90 91 92 94 95 96 97 98 99 101 102 

103 39.4 82 83 86 86 87 88 89 91 92 94 95 96 97 98 100 101 102 103 

104 40.0 83 84 85 86 88 88 90 91 93 94 95 96 97 99 100 101 103 104 

105 40.6 83 84 86 87 88 89 91 92 93 96 96 97 98 99 100 101 104 105 

106 41.1 84 85 86 88 89 90 91 93 94 95 97 98 99 101 102 103 105 106 

*_  No Heat Stress (<68), _ Light Heat Stress (68-71),  _Moderate Heat Stress (72-

78),    Severe Heat Stress (79-89), _ Life-Threatening Heat Stress (90 – 98), _  Deadly 

Heat Stress (>99) 

2.1.3 Pre-processing and analysis 

Overall disease prevalence and disease prevalence per farm were calculated, 

as well as the proportion of cows waiting in pens per farm. These were plotted 

against the stocking density, feed fence space per cow and water trough space 

per cow.  
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Both predictive and inferential approaches were used to evaluate associations 

between the available predictor variables and the various outcomes of interest 

(disease, reproduction and production); outcome variables are described in 

more detail in the relevant chapters. These two approaches are briefly 

discussed below. 

When it came to missing data, while we considered many approaches that 

would substitute or approximate missing values in the end none proved 

valuable to our analysis. This was due to some variables with missing variables 

had a very high proportion of lactations missing. Therefore, it would not be 

useful to impute them, for example, to impute them. Hence we decided that 

variables where the majority of the datapoints were missing were unusable in 

the analysis while for the rest of the data we deleted rows with missing data 

when fitting the model. This left a dataset with a high proportion of “complete 

cases” (no missing variables in a lactation), while retaining the majority of its 

total size. 

Scaling of predictor variables was also considered (e.g. min-max scaling that 

put all values for a given variable on a scale of 0 to 1). It was explored in each 

set of predictive models. However, as it was found to not substantially improve 

model performance metrics, it was decided to report results without any scaling 

so that values such as the RMSE and MAE can be more easily interpretable 

and comparable to their inferential model equivalents. 

2.1.3.2 Inferential and Predictive analytics 

The main difference between the two methodologies lies in their purpose. In 

general terms, inferential analysis aims to uncover potential causal 
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associations between variables, whereas predictive analysis focuses on 

predicting future outcomes, without necessarily gaining any insights as to what 

variables may influence the predicted outcome (Meeker, 2017). This 

differentiation in end goals results in various differences in the process of 

making the models. For example, during predictive modelling the dataset is 

usually divided into smaller parts, with a holdout subset of the data being used 

after the model is built as validation of the model’s performance. The metrics 

used to evaluate each model also differ, with accuracy or kappa primarily 

applying to predictive models (and measuring overall model predictiveness), 

whereas odds ratios (OR) more commonly used in inferential models (as 

measures of relative influence of each predictor variable in the model). More 

details on how we approached each category and the specific methodologies 

we used are explained below. Some inferential modelling techniques (such as 

logistic and linear regression) are also used in predictive modelling, and 

likewise there are approaches that allow the contribution of each predictor 

variable to a given predictive model to be evaluated. 

 

2.1.3.4 Predictive Models 

A variety of predictive models were used for each outcome of interest, with the 

primary aim of determining which produced most accurate predictions. 

To ensure that all results could be reproducible, even after sampling for the test 

and training data split, a random seed was set at 23. A sample code for the 

predictive model fitting is presented in appendix 1. 
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In some cases we had to consider the possibility of data leakage. Overly 

optimistic results may stem from data leakage, which occurs when information 

not available at prediction time is used during model training (Yagis et al., 

2021). Data leakage can result from target leakage or incorrect data splitting. 

For instance, leakage may happen if feature selection is based on the entire 

dataset prior to cross-validation (Reunanen, 2003, Varma and Simon, 2006), 

allowing the target variable of test samples to inadvertently enhance the 

learning process. Incorrect data splitting can also cause leakage, such as when 

data augmentation is performed before separating the test set from training 

data. In this scenario, augmented data from the same original image might 

appear in both training and test sets, leading to artificially inflated performance 

(Wen et al., 2020). Another form of train-test contamination involves using the 

same test set to optimize training hyperparameters and evaluate model 

performance (Varma and Simon, 2006). Information leakage can also occur 

with longitudinal data if future information leaks into past data. An especially 

problematic form of data leakage happens when target information 

inadvertently becomes part of the input data (Yagis et al., 2021). 

In order to avoid data leakage, the dataset was separated into train and test 

data making sure that the grouping variables used did not overlap in between 

datasets. More specifically, the original dataset as a whole was grouped into 

either herd/month or herd/trimester groups, depending on the occasion. It was 

then split 80% to 20% on the condition that datapoints that belonged in the 

same group were all included into one of the two parts. That would mean that 

once a specific herd/time was “drafted” to be included in the 80% training set 

all the data points included in that particular group would automatically be 
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assigned to the training set. That way, variables that were used for training a 

model and may have been the same within herd/time group were not presented 

to the model again for predictions, which would lead to the model “cheating” the 

answer through data leakage. The 80% of the data was then used for training 

the models, while the remaining 20% was utilised to evaluate predictions. Once 

the models were finalised based on the 80% of the data, they were tested on 

the remaining 20%. The predictive outcomes were compared to the actual ones 

and a Pearson’s correlation coefficient looking at the relationship of the 

predicted vs the actual outcome per group was then determined to investigate 

the predictiveness of the models.  

Data leakage is an issue that may accidentally occur during data preparation. 

Usually it is a subtle, unnoticed availability of test data information to the model 

in the training dataset (Brownlee, 2020). Essentially, future datapoints are 

becoming available in the past which gives the model an “unfair” advantage as 

the predictions are not actual predictions but actual known information (Zheng, 

2018). 

 

  



78 
 

2.1.3.4.1 Binary Outcomes 

Machine learning techniques used for binary outcome variables included 

logistic regression, decision trees, random forest, artificial neural networks, 

naïve Bayes, support vector machines and k-nearest neighbours. Additional 

information on these algorithms is provided in the next section. 

Forward selection was used in all approaches to determine the final variables 

that would be included in the models. As a measure of evaluation, we used the 

kappa value which is the difference between the observed agreement and 

expected agreement by chance. After adding each variable to the model, the 

change in kappa value was used to assess whether the variable improved the 

predictiveness of the algorithm and should therefore be included in the final 

analysis. Any variables that contributed to any increase of kappa were 

considered eligible for inclusion.  

A 10 fold cross-validation was used in all predictive model analysis to measure 

predictiveness of the models using the “caret” package (Kuhn, 2008). Some 

algorithms include tuning parameters that can be selected and altered to 

potentially improve the predictive value of the model. One such example is the 

prune parameter for the random forest methods, which sets the number for 

maximum decision trees in the forest. For our analyses, tuning parameters for 

all algorithms and their various combinations were evaluated automatically by 

the “caret” package during model building and those that produced the best 

kappa value were chosen. The kappa values were interpreted using the 

thresholds stated in Viera and Garrett (2005) with values lower than 0 indicating 

less than chance agreement, values between 0.02 and 0.20 slight agreement, 
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values between  0.21 and 0.40 fair agreement, values between 0.41 and 0.60 

moderate agreement, values between 0.61 and 0.80 substantial agreement, 

and finally values between 0.81 and 0.99 almost perfect agreement.  

For situations where there was substantial imbalance in a binary outcome 

variable (such that one class was much more common than the other), various 

sampling methods were considered. Sampling methods are techniques 

commonly used when dealing with imbalanced datasets, with the aim of 

“rebalancing” the outcome variable, to minimise the risk of the predominant 

class having undue influence on the model, which can result in poor predictive 

performance in the minority class. The sampling method of choice for our 

studies was up-sampling, meaning randomly duplicating the minority class until 

both classes were of equal size (Aghdam, 2017).  

The rest of the metrics that were calculated and compared between the models 

were accuracy, sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), kappa, balanced accuracy (the average of the individual 

accuracies per class), detection rate, F1 (the harmonic mean of the sensitivity 

and specificity) and area under the receiver operating characteristic curve 

(AUROC). Each metric is calculated using the confusion matrix (Table 2.3); 

definitions for each metric are shown in Table 2.4.  

 

  



80 
 

Table 2.3 Confusion matrix 

 
1 

(Predicted) 

0 

(Predicted) 

1 

(Observed) 

 

True Positive (TP) 

 

False Negative (FN) 

0 

(Observed) 

 

False Positive (FP) 

 

True Negative (TN) 
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Table 2.4 Definition of commonly used model metrics 

Metric Formula 

Accuracy TP + TNTP + FP + FN + TN 

Sensitivity/True Positive 

Rate/Recall 

TP 

TP + FN 

Specificity/True Negative Rate TN 

TN + FP 

Positive Predictive 

Value/Precision 

TP 

TP + FP 

Negative Predictive value TN 

TN + FN 

Kappa (observed accuracy – expected 

accuracy) 

(1 – expected accuracy) 

Balanced accuracy (TP/TP + FP) + (TN/TN + FN) 

2 

F1 (2 * Precision * Recall) 

(Precision + Recall) 

Detection rate TP 
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TP + FP + FN + TN 
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2.1.3.4.2 Continuous Outcomes 

The models that were used to predict continuous outcomes were linear 

regression, artificial neural networks, multivariate adaptive regression spline 

(MARS), decision trees and random forest. Additional information on these 

algorithms is provided in the next section. 

The process of modelling was similar to that of the binary outcome models, the 

main difference being the metrics used to evaluate performance. The main 

metric in this case was the R2, with others such as the Root Mean Square Error 

(RMSE) and the Mean Absolute Error (MAE) complementing it. The R2 

determines the percentage of the variation in the outcome variable that can be 

explained by model predictions. RMSE is essentially the standard deviation of 

the model residuals, indicating how far from the regression line data points lie. 

Similarly, MAE tells us how far from the truth our predictions are on average. 

The exact interpretation of RMSE as well as MAE values are depended on the 

actual values of the outcome and its range. Both MAE and RMSE are 

considered better the closer they are to 0, while R2 is considered best the closer 

it is to 1. 

  

https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline
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2.2 Machine learning Approaches 

The following are some common machine-learning techniques and that were 

used during this project, along with a short description about the pros and cons 

of each method. 

2.2.1 Naive Bayes 

Naive Bayes is a classification method based on Bayes’ theorem, which 

describes the probability of a hypothesis given the evidence. In the context of 

classification, it calculates the probability of one class given the predictive 

variables. The formula for the theorem is:  

P(A|B) = P(B|A) * P(A) / P(B)  

Where: - P(A|B) is the probability of hypothesis A given the evidence B. - P(B|A) 

is the probability of evidence B given the hypothesis A. - P(A) and P(B) are the 

probabilities of A and B independently (Pawlak, 2003). It, therefore, combines 

prior probability as well as conditional probability in a formula used for the 

probability calculation of each class (Bramer, 2007). 

The method simplifies the Theorem by assuming independence amongst the 

predictors, regardless of any actual correlations (Williams et al., 2016, Yang 

and Webb, 2001). This means that the presence of a particular feature in a 

class is independent of the presence of other features. For some studies this 

assumption may be unrealistic, however it often outperforms more complex 

methods in efficiency (Benaissa et al., 2017). Another advantage is that it is not 

computationally challenging, even for large datasets (Kuhn and Johnson, 

2013). Naive Bayes calculates the posterior probability of each class given the 

features of a data point using Bayes' theorem in order to classify it. Whichever 
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class has the highest posterior probability is assigned to said data point 

(Pazhanikumar and Aswathi, 2020). This method has numerous advantages, 

including the ability to handle missing values, analyse both continuous and 

discrete data, speed, efficiency and robustness when it comes to irrelevant 

features (Jollyta et al. 2019). It has also been shown to be robust when handling 

imbalanced datasets (Somasundaram and Reddy, 2018). 

2.2.2 Neural Networks 

Artificial neural networks (ANN) are powerful machine-learning methods 

inspired by the structure of the brain (Haykin, 1998). A neural network is a 

system of interconnected artificial neurons (Kearns and Vazirani, 1994). Each 

neuron is characterized by a weighted sum of input values represented as an 

inner product plus a bias value, which is then passed through an activation 

function, such as a linear function or a sigmoid function (Raiko et al., 2012). 

The outcome is determined by linear combinations of the predictors, called 

hidden variables or units. A neural network is a multi-layer network with three 

layers, the input layer, hidden layer and output layer (Li and Wang, 2018). The 

linear combinations are then transformed by a non-linear function which is 

achieved by increasing the size of the hidden layer and allows neural networks 

to model complex non-linear relationships (Murphy et al., 2014). Due to this 

ability, however, they tend to overfit models, there are however ways to address 

this issue, such as applying weights as a penalization method (Kuhn and 

Johnson, 2013). The feed-forward back-propagation network (FFBP) is the 

most commonly employed neural network architecture. The backpropagation 

algorithm includes two phases, the feedforward phase, where the external input 

data at the input nodes is propagated forward to calculate the output signal at 
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the output nodes, and a backward phase, where adjustments to the connection 

weights are made based on the discrepancies between the calculated and 

observed output signals (Alizadeh et al. 2011, Chen, 2018). In neural networks, 

a significant behaviour is the weighted sum of node states, which is highlighted 

as crucial for information expression and encoding in several biological studies 

(Jazayeri and Movshon, 2006, Majaj et al. ,2015, Schnitzer and Meister, 2003), 

while also considered a vital and fundamental step during the operation of 

artificial neural networks (Fei et al., 2018). Individual nodes, on the other hand, 

can only express limited and coarse information. Therefore, studying and 

controlling the weighted sum of node states is essential for the operation of 

neural networks. Another important aspect of ANN is the loss function. The loss 

function measures the distance between the model's output and the actual 

value in a neural network. A smaller loss function value indicates that the 

model's output is closer to the real data, thereby increasing the model's 

accuracy (Viju, 2021). Commonly used loss functions include the mean 

absolute error loss function and SVM (Iida and Kiya, 2019). 

Recently, it has been suggested that the training of deep neural networks 

demonstrates a spectral bias (Rahaman et al., 2019, Xu, 2018), meaning that 

low frequencies are learned more quickly during training via stochastic gradient 

descent. This bias is proposed as a mechanism that steers networks toward 

low-complexity solutions (Rahaman et al., 2019). 

Neural networks can accommodate the non-linearity, uncertainty, and 

complexity of control systems, demonstrating strong robustness and 

adaptability (Chen and Ji, 2016). However, these models tend to be referred to 

as black box. A black box system is characterized by having an unknown 
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topology and/or parameters, typically interpreted through its input and output 

signals (Valdivia et al., 2009). Generally, the outputs are the response to stimuli 

or excitation applied to the black box in the form of input values or vectors. 

Estimating the topology and parameters of such a system, given only the input 

and output values, is a challenging problem (Rojas-Duenas et al., 2020). 

Therefore, the interpretation of how such models work can be challenging. 

2.2.3 Support Vector Machines 

Support Vector Machines (SVMs) are a category of flexible and robust 

modelling methods (Kuhn and Johnson, 2013). They are used for classification, 

based on identifying the most appropriate hyperplane that divides the data into 

two by employing a kernel function (Resheff et al., 2014). The boundary 

between the classes does not have to be linear and the method can be 

expanded to include more than two classes (James et al., 2014). The SVM 

adeptly and efficiently manages these two types of data: 

For linearly separable data: where an optimal hyperplane can be delineated to 

distinguish between the two classes using training data. This hyperplane can 

be described by the equation:  

xi⋅w+b=0  

where w represents the weight vector, b is the bias (or −b is the threshold), and 

xi denotes an observation. We can establish two additional hyperplanes, H1 

and H2, which are parallel to the separating hyperplane. The space between 

these two planes is known as the SVM's margin. The objective is to determine 

the optimal hyperplane that maximizes the margin while maintaining 

equidistance from both H1 and H2 (Rejab et al., 2014). 
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SVM can also be employed to distinguish between classes that cannot be 

separated with a linear classifier. In such instances, the initial observations are 

transformed into a feature space, which may be of high dimensionality or even 

infinite, using non-linear functions known as feature functions φ. Within this new 

space, a linear classifier can effectively separate the classes (Rejab et al., 

2014).  

SVM, being a kernel-based method, supports the use of several kernels that 

satisfy the Mercer condition such as Gaussian, polynomial, wavelet, and others 

(Smola et al., 1998). Its performance heavily relies on the appropriate selection 

of the parameter values, including the kernel function, kernel parameter values, 

and the regularization parameter, among others (Cristianini and Shawe-Taylor, 

2000) 

SVM relies on maximizing the margin, which is the distance between the 

hyperplane and the nearest data points from each class, and minimizing 

structural risk (Vapnik, 2013). Given its effectiveness with small datasets, SVM 

stands as an innovative approach for analysing microarray data (Guckiran et 

al., 2019).  

SVM has been widely used in the machine learning field due as it adequately 

handles high-dimensional data, and it possesses robust generalization 

properties, as well as the ability to establish the classifier architecture once the 

kernel function and parameters are selected by the user (Vapnik, 2013). The 

disadvantage of the method is that it requires careful parameter tuning in order 

to classify the data points correctly, however once the parameters are set 

correctly it can perform very well for a variety of classification problems, 
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including non-linearly separated classes (James et al., 2014). Another limitation 

is that while SVM offers effective solutions for both linear and nonlinear data, it 

does not inherently incorporate new information provided over time. To address 

this constraint, modified versions of SVM have been proposed (Bordes et al., 

2005, Cauwenberghs and Poggio, 2000). 

2.2.4 Decision Trees 

Decision trees are amongst the most widely used machine learning methods, 

as they are easy to interpret (Shahinfar et al., 2014). Decision trees are 

straightforward classifiers composed of decision nodes organized in a tree 

structure. New observations pass by internal nodes, split into branches and 

reach the leaves, which are the final classes of the model (Shahinfar et al., 

2014). In more detail, each decision node corresponds to a predicate or test on 

the query. Evaluating a decision tree involves traversing the tree (Wu et al., 

2016). The decision tree is created by recursively partitioning the training data 

using a splitting attribute until all records in each partition belong to the same 

class. The splitting attribute is selected based on the value of a node splitting 

measure (Chandra and Paul Varghese, 2009).  

Issues of overfitting and complexity in resulting trees have highlighted the need 

for pruning procedures. It has been argued that simplifying trees by removing 

parts that do not contribute to classification accuracy can improve the 

performance of nearly all decision trees (Garcia-Almanza and Tsang, 2006).  

They have the advantage of being applicable to both regression and 

classification problems (James et al., 2014). They are thought to mimic human 

decision-making and they are easily presented graphically, which makes them 
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ideal for communicating results (James et al., 2014). Not only are they easily 

interpretable, but they can be directly converted into if-then-else rules (Wei and 

Hsu, 2008). Decision-tree algorithms are highly efficient, capable of processing 

a large number of records with numerous fields while maintaining predictable 

response times (Krishnan et al. 1999).  Furthermore, they are considered a 

robust method of dealing with missing data (Shahinfar et al., 2014). However, 

they generally do not have the same level of accuracy as other methods (James 

et al., 2014) while also more prone to overfitting. Moreover, decision-tree 

algorithms typically handle only one attribute at a time, disregarding 

dependencies among attributes, which are common in real-life datasets (Wei 

and Hsu, 2008). 

2.2.5 Random Forests 

Random forests are a powerful ensemble learning method that consists of 

multiple decision trees. They employ bootstrap aggregating, also known as 

bagging, to create multiple models, resulting to enhanced prediction accuracy 

(Breiman, 2001). Bagging involves randomly selecting examples from the 

training set to grow each tree, without replacement (Breiman, 1996). Another 

example of random vectors that influence the development of each tree is the 

random split selection, in which a split is chosen randomly from among the K 

best splits at each node (Dietterich, 2000). Feature randomness in building 

each individual tree is also employed to create an uncorrelated forest of trees, 

whose combined predictions are more accurate than those of any single tree 

(Rigatti, 2017).  A subset of features is selected at random in each iteration of 

building a tree, making them more robust than decision trees yet 

computationally efficient at the same time. By utilising these techniques, a 
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group of low-correlated decision trees is constructed. A class prediction is 

produced by each individual tree, and the final prediction of the random forest 

is determined by the class with the most votes (Li, 2023). Random forests entail 

several hyperparameters that control the structure of each tree, such as the 

minimal node size required for a split, as well as the structure and size of the 

forest, including the total number of trees. Additionally, it manages the 

randomness by determining the number of variables considered as candidate 

splitting variables at each split (mtry) and the sampling scheme used to 

generate the datasets on which the trees are built (Probst et al., 2019). 

Random forests can deal with high-dimensional data and missing data 

(Shahinfar et al., 2014). It has been demonstrated that the random forest 

algorithm exhibits high accuracy as well as robustness, has good tolerance for 

noise and outliers, can manage high-dimensional datasets, and is resistant to 

both overfitting and underfitting (Fang et al., 2011). It can determine each 

variable's weights and efficiently evaluate their importance and role in the 

model, all while maintaining good generalizability (Ouyang and Chen, 2020).  In 

terms of drawbacks, random forest classifiers may underperform on highly 

complex and nonlinear problems (Fawagrah et al., 2014). Additionally, random 

forest classifiers can be computationally intensive and slow in making 

predictions, particularly with large datasets and numerous trees in the forest 

(Schonlau and Yuyan Zu, 2020). Moreover, they may struggle with unbalanced 

data, where one class is underrepresented (Breiman, 2001, Schonlau and 

Yuyan Zu, 2020), potentially resulting in biased outcomes favouring the majority 

class. Lastly, while random forest classifiers can provide feature importance, 
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they are not as interpretable as models like linear regression, where the 

coefficients have a clear and direct meaning. 

2.2.6 K-nearest neighbours 

K-nearest neighbour (KNN) is the simplest non-parametric machine learning 

approach used for classification (James et al., 2014). It is an instanced-based 

learning method, utilized to generate candidate labels, with improvements 

made by weighting votes based on the similarities between an instance and its 

neighbours (Qu et al., 2011). It can use both linear and non-linear boundaries 

to separate the data (Kuhn and Johnson, 2013). In KNN, determining the K 

value and conducting nearest neighbour queries are two crucial issues. Nearest 

neighbour queries can be addressed using various distance measurement 

functions. In more detail, this method classifies the cases according to the 

status of the majority of their nearest data points, usually “nearest” being 

defined as the closest Euclidean distance, Mahalanobis distance, Manhattan 

distance, and cosine similarity (Benaissa et al., 2017, Kuhn and Johnson, 

2013). For calculating the K value, the prevalent methods include expert 

settings or cross-validation techniques (Zhang and Li, 2021). For classification, 

the predicted class for the test instance is determined through a majority vote 

among its k neighbours in the training set (Schlemmer et al., 2014), while for 

regression tasks, the algorithm calculates the average of the K nearest 

neighbours' target values. In regression on the other hand, the property value 

is determined by averaging the values of its k nearest neighbours (Jing et al., 

2016).  

The benefits of KNN encompass its simplicity in comprehension and result 

interpretation, and its suitability for nonlinear data. Furthermore, it is resilient to 
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noisy training data and can be used for multi-class classification (Kramer, 

2013). Additional advantages of KNN are its independence from any particular 

data distribution, the use of local information, and the ease of interpreting 

outcomes (Kiyak et al. 2021). KNN methods are also more flexible than linear 

regression, however they are not as easily interpretable and they do tend to 

underperform compared to the latter when there is a small number of 

observations per predictor (James et al., 2014). Regarding the downsides, KNN 

can be computationally expensive for large datasets, as it requires calculating 

distances for all data points (Kepa and Szymanksi, 2015). Furthermore, in 

settings of high dimensionality, it is impacted by nuisance (noninformative) 

features and suffers from the "curse of dimensionality" (Aggarwal et al., 2001, 

Lu et al., 2013, Radovanovic et al., 2010). 

 

2.3 Inferential Models 

2.3.1 Binary Outcomes 

A mixed effects logistic regression model was used, to take into account the 

fact that the animals were clustered into farms. As most farms had one dry pen 

and one fresh pen (if at all) only one random effect “level” (farm) was used. 

Univariable analysis was conducted using all the available potential predictor 

variables, to determine the ones that appeared to be associated with the 

outcome and could potentially be included in the multivariable model. Further 

multivariable analysis was conducted including all the variables that met the 

threshold for the univariable correlation with the outcome. Backwards 

elimination was applied, meaning variables that in the multivariable analysis 
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had a p-value higher than a threshold of 0.05 were eliminated one by one, 

starting from the highest value, and the model parameters estimated again until 

all remaining variables have a p-value below the threshold. The fit of the models 

were assessed using Hosmer-Lemeshow test for logistic regression and 

standard residual plots for linear regression.  

And finally, the odds ratios were calculated as described in Appendix 1, which 

concluded the analysis. 

2.3.2 Continuous Outcomes 

For the continuous outcomes a mixed effect linear regression model was fitted. 

Similarly to the mixed effects logistic regression models, the farm was added 

as the random effect and they were built using a backwards elimination method. 

For time-based outcomes, survival analysis was conducted and a Cox 

proportional hazards model was fitted (Harrell, 2001). The models were fitted 

using backwards selection.  
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Chapter 3 - Descriptive statistics 

3.1 Original Dataset 

The cow scores dataset consisted of 71,665 observations collected from 15 th 

April 2016 until 24th October 2018.The total number of cows included in the 

dataset was 32,867 from 133 farms. After removing duplicate data, the total 

observations dropped to 68,029. The number cows having at least one 

recording pre-partum was 20,733 with a total of 27,659 unique recordings. 

Similarly, the number of cows with at least one recording post-partum was 

27,901 with a total of 40,370 unique recordings. After filtering the date 

differences so that only pre- and post-partum recordings that matched the same 

calving date were included, the total number of lactations that had both pre- 

and post- partum scores was 13,244, with 11,007 cows from 79 different farms. 

The difference between the pre- and post- partum scoring dates ranged from a 

minimum of 5 days to a maximum of 77 with a median of 31 days (Q1 = 15 

days, Q3 = 47 days). Lactation number ranged from 1 to 14 with a median of 3; 

2,726 cows were in parity 1 (20.6%). As a proxy for herd size, the number of 

lactations per herd per year was measured and the resulting variable had a 

minimum value of 1, a median of 56 (Q1 = 21.5, Q3 = 92.5) and a maximum of 

868 (Figure 3.1). 
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Figure 3.1 The number of total lactations included in each one herd per year of 

recording 

 

3.1.1 Disease Distribution 

The incidence of diseases and conditions was 3.7% for lameness in dry cows, 

3.2% for lameness in fresh cows, 3.0% for milk fever, 1.0% for LDA, 4.0%, for 

RFM, 2.9%, for calf mortality, 2.4% for twinning and 5.2% for metritis (Figure 

3.2). The seasonal disease incidence when plotted suggests some potential 

patterns, such as peak of RFM and metritis in spring and milk fever in winter 

(Figure 3.3). There are some clear outliers in the distribution of disease 

prevalences across farms (Figure 3.4), these could generally be attributed to 

the small numbers of cows scored in specific farms. 
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Figure 3.2 Overall incidence of diseases/conditions across 13,244 lactations in 79 UK 

herds 
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Figure 3.3 Seasonal disease incidence (%) of diseases/conditions across 13,244 

lactations in 79 UK herds 
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Figure 3.4 Diseases and conditions incidence distribution across 13,244 lactations in 

79 UK farms 

 

 

3.1.2 Cow level score variables 

The BCS for dry cows ranged from 1.5 to 5 with a median of 3.75 (Q1 = 2.75, 

Q3 = 4) and 85 missing values (0.6%), whereas for the fresh cows it ranged 

from 1.0 to 4.5 with a median of 2.75 (Q1 = 2.5, Q3 = 3) and 1139 missing 

values (8.6%) (Figure 3.5). Overall dry cows have a higher BCS compared to 

fresh cows, which is also reflected on the BCS change. For this variable the 

missing values were 9% of the total dataset. In general, there was a drop in 

BCS, however not too severe, with the median being at -0.25 (minimum -2.25, 

Q1 = -0.50, Q3 = -0.25, maximum 1) (Figure 3.6). It is interesting to note that 
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the shape of the distribution from dry to fresh changes, with a lot of the 

dispersion in dry cows being pulled towards to median in fresh cows. Which is 

evidently translated as the drop in BCS witnessed in BCS change.   
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Figure 3.5 BCS distribution in dry and fresh cows throughout 13,244 lactations in 79 

UK farms 
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Figure 3.6 BCS change from dry to fresh cows in data of 13,244 lactations in 79 UK 

farms 

 

Rumen fill scores had a median of 4 (Q1 = 3, Q3 = 4) and 94 missing values 

(0.7%) for dry cows, and 3 (Q1 = 2, Q3 = 3) for fresh cows and 1,149 missing 

values (8.6%) (Figures A2.1 – A2.2), and hock hygiene with a median of 3 (Q1 

= 2, Q3 = 4) and 1,157 missing values (8.7%) (Figure A2.3).  

 

3.1.3 Pen level variables 

The number of farms included in the cow comfort dataset, prior to data cleaning, 

was 136, with a total of 2,761 distinct pen recordings. After including only the 

farms that matched the final version of the cow scores dataset the number of 

observations dropped to 1,923, from a total of 67 farms. The number of dry pen 
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observations was 1,741 (90.1%) compared to 182 observations on fresh cow 

pens. This disparity was explained by scoring practices – pen scores were only 

assessed for fresh cows in herds which had a dedicated fresh cow (early 

lactation) group. The distribution of the potential quantitative predictors included 

in the cow comfort dataset is shown in Table 3.1. Additionally, a more detailed 

distribution of stocking density is displayed in Figure 3.7. 
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Table 3.1 Variable distribution on cow comfort data on 2,787 pens across 136 dairy 

cow herds 

 Minimum Q1 Median Q3 Maximum Missing 

data 

Pen Area 

(m2) 

20.5 78.3 110.0 181.4 420.0 397 

(20.6%) 

Cows in Pen 1 6 10 18 81 514 

(26.6%) 

Feed Fence 

Space (m) 

1.9 9 12.0 20 66 39 

(2.0%) 

Water 

Trough 

Space (m) 

0.3 1 1.5 2 5.4 88 

(4.6%) 

Neck Rail 

Height (m) 

0.5 1.2 1.3 1.5 3.0 183 

(9.5%) 

Stocking 

density 

(m2/cow) 

1.7 8.47 13.7 18.6 110.0 728 

(37.9%) 

Feed fence 

space per 

cow (m) 

0.1 0.76 1.1 1.63 11.0 537 

(28.0%) 
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Water trough 

space per 

cow 

0.02 0.08 0.13 0.2 7.22 551 

(28.7%) 

Temperature 

(°C) 

0.7 11.9 16.7 20.9 31.1 470 

(24.3%) 

Humidity (%) 0.6 0.46 58.0 0.68 93.0 470 

(24.3%) 
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Figure 3.7 Stocking density distribution on 2,787 pens across 136 dairy cow herds 

 

The distribution of THI by month revealed that cows in some pens in the dataset 

start experiencing heat stress as soon as April, about half have a THI > 72 in 

July and for some pens these conditions persist until September (Figure 3.8). 
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Figure 3.8 Monthly THI distribution in 2,787 pens across 136 herds  

 

 

Dry cow pens were mostly straw yard pens (84.2%), while the fresh cow pens 

were more equally distributed between straw yard (52.2%) and cubicles 
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(47.8%) (Figure A2.4). Detailed distributions of neck rail height, feed fence 

space per cow and water trough space per cow, as well as their distribution for 

fresh and dry cows separately are also provided (Figure A2.5 – A2.9) and no 

obvious outliers were identified.  

 

3.2 Milk Records 

In the milking records, daily milk yield’s first quartile laid at 24 L the median at 

30.9L, and the third quartile at 38.3L, with 72,207 missing data (3.4%) (Figure 

3.9). The percentage of protein in the milk had a minimum value of 1.0%, a 

maximum of 7.0% and a median of 3.28% (Q1 = 3.06%, Q3 = 3.54%), with a 

total of 73,863 missing data (3.5%) and the percentage of butterfat ranged from 

1.27% to 10.0% with a median of 4.03% Q1 = 3.54%, Q3 = 4.57%) and similarly 

to protein percentage 73,863 missing values (3.5%) (Figures 3.10 - 3.11). 
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Figure 3.9 Daily milk yield distribution based on 564,962 milk recordings across 43,173 

cows 
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Figure 3.10 Percentage of protein in milk based on 564,962 milk recordings across 

43,173 cows 
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Figure 3.11 Percentage of Butterfat in milk based on 564,962 milk recordings across 

43,173 cows 

 

3.3 Insemination and Event Records 

The event records dataset had 1,415 abortion events, 20,740 “Do not Breed” 

events, 193,339 dry-off events, 21,971 mastitis events, 13,365 negative 

pregnancy diagnoses, 59,286 positive pregnancy diagnoses, 20,740 DNB 

decisions, 61,641 selling events and 9,707 cows culled. 

132,585 data points on insemination data were available on a separate dataset. 

The median interval of calving to first service was found to be 69 days, with the 

first quartile being 54 days and the 3rd quartile 82 days (Figure 3.12). In total 
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39,301 out of 54,655 lactations (71.9%) had at least one service before 80 DIM. 

The inter calving period, after removing outlier and extreme values ranged from 

301 days to 699 days with a median of 376 days (Q1 =347 days, Q3 = 390 

days) (Figure 3.13). The optimal calving interval is in fact at one year (365 days) 

(NADIS, 2022a) with herds aiming to get as close to that as possible. Thus, this 

measure indicated that our herds tend to be very well managed. Calving to first 

service interval, after removing extreme values that were below 20 days and 

300 days, had a minimum period of 20 days, a maximum of 300 days and a 

median of 66 days (Q1 = 39 days, Q3 = 120 days). The calving to conception 

interval, after also removing extreme values (less than 20 days and more than 

400 days) ranged from 20 to 400 days with a median of 95 (Q1 = 58 days, Q3 

= 172 days) (Figure 3.14). The recommendations for the calving to first service 

and calving to conception intervals are 65 and 95 for non-seasonal, higher-

yielding herds respectively (NADIS, 2022b), with about half the herds present 

in this study achieving these measures. 
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Figure 3.12 Calving to first service interval, based on 54,443 first inseminations 

 

  



114 
 

Figure 3.13 Calving interval based on 41,186 lactations 
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Figure 3.14 Calving to conception distribution based on 43,507 lactations 
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3.4 Discussion 

Various incidence rates have been reported for LDA, with Melendez and Risco 

(2005) reporting a rate of 1.7% but Le Blanc et al. (2005) reporting higher rates 

(5-7%). This study found LDA incidence of just below 1% when averaged 

across all herds, but with many herds not reporting any LDAs whilst several had 

incidence rates of up to 5%. There is a number of possible explanations, as 

firstly this difference could be accounted to a regional variance. The two studies 

included American farms with higher milk yield and hence higher risk. Another 

reason could be that our farms were particularly well-managed as they were 

paying a service to specifically help with transition period management. Finally, 

and perhaps most likely, it is possible that our farms are underreporting LDA 

incidence. Milk fever has reportedly ranged around similar levels, from 5% to 

7% (Goff, 2008, Roche, 2003), compared to the present thesis’ herds at 4%. 

Again, this could be a genuine difference due to the American herds’ higher 

yield and risk but could also be attributed to underreporting from our herds’ part.  

Retained Foetal Membranes appear to have a slightly higher incidence at 8.6% 

while metritis seems to be even higher at 10.1% (Melendez and Risco, 2005). 

Once again, our study reported a lower RFM and metritis incidence of 4-5%. 

Metritis in particular is often poorly defined, with a lot of endometritis cases 

(which occurs before 21 DIM) potentially classified as metritis, which may very 

well be the case in our dataset as TMS did not clearly define the criteria for 

metritis diagnosis. It is safe to assume that Melendez and Risco, (2005) used 

the correct definition however it is also possible that their screening was more 

proactive and hence identifying much more cases than those that would have 

been discovered spontaneously by our farmers. Prevalence of lameness 
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reported in the UK is typically higher than the post-calving diseases discussed 

above, with recent estimates between 21% and 36.8% (Clarkson et al., 1996, 

Leach et al., 2010, Barker et al., 2010, Griffiths et al., 2018, Randall et al., 

2019). Lameness in our dataset ranged a lot lower at just over 3%. Again, there 

could be a number of reasons for this. The present study is only looking cows 

very close to calving and although a lot of the changes that lead to lameness 

occur around calving than later in lactation, it still takes time for the actual 

lameness to develop; therefore it is possible that lameness is lower around 

calving compared to later stages of lactation. Furthermore, TMS scoring aimed 

at detecting the severely lame cows (with scores of 3), meaning that the system 

was not sensitive enough to capture the entire lame population. And of course, 

as stated previously, there is the possibility that due to convenience sampling 

the herds in our study are overall “better” with lower incidences, although in the 

case of lameness the incidence rate is perhaps too low for this to be a plausible 

explanation. What these differences in incidence could mean for this thesis is 

that, in the event of a successful predictive model for disease outcomes it would 

make it difficult to guarantee the same successful results without external 

validation. The models would still be useful for herds similar to ours and for 

future studies of course, but widely adopted use would have to be more 

carefully examined. 

Suggested target BCSs are 3.0–3.25 at dry off and calving, with BCS loss of 

over 0.5-0.75 during early lactation considered sub-optimal (AHDB, 2023). Pre 

partum BCS for our dataset appeared to be exactly at that cut-off (median 3.25) 

and while the median BCS post-partum fell by a half point (2.75) the median 

change was just at -0.25 points.  This contradiction of having a median of 0.25 



118 
 

BCS change, yet a 0.5-point difference in BCS pre and post medians could be 

explained by the shape of the distributions, as BCS is more evenly distributed 

between 2.75 and 3.75, with BCS post being more centralised around 2.75, 

hence the differences being more evenly distributed between -0.5 and 0.25. 

It is reported that on average 0.6 m of feed fence space is needed per cow in 

order to avoid negative impacts on feeding behaviour and intakes (Krawczel 

and Lee, 2019). In our dataset the median was at 1.1m so well above that, 

however the minimum was just at 0.1m, so it is highly likely that we had a 

number of outliers. THI of course depends highly on geographic location and 

season as well as the time of day the assessor conducted the scoring. In the 

event that assessors visited harms early in the morning high temperatures and 

THI would be less likely and since the time of visit is not reflected in the dataset, 

we have no way of knowing the effects of the possible underestimation. The 

negative effects of heat stress in the livestock industry have been well 

established, and they are especially important considering that animals are 

expected to perform on a variety of geographical locations and not just in places 

where the climate is optimal for their breeds (St-Pierre et al., 2003). In our data, 

it is notable that over half (75%) of the herd seem to be experiencing heat stress 

conditions (THI over 68-71) in July with a significant portion of them being under 

heat stress conditions at some point from May until August. This raises caution 

as global climate change is also becoming a more urgent issue, as with the rise 

in temperatures cows might experience even harsher heat stress conditions 

that would result in rapid economic losses. Gauly and Ammer (2020), focusing 

on the temperate climate of Central Europe, reported on the effects climate 

change and heat stress has already had on dairy livestock and even looked in 
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more depth on further effects that would happen in the future, mentioning heath 

and production losses. Adhikari et al. (2022) looked into THI of dairy animals in 

two different locations in Hawaii, using historical data from 1920 to 2019 as well 

as future estimates and came to the conclusion especially in one of the sites 

the cows were experiencing heat stress of over THI 72 for the entirety of 

summer and did not drop below 68 until winter. Estimated temperature 

increases were calculated at 1.3 to 1.8oC by mid-century and 1.6 by 3.1oC by 

end century, for both sites. They also suggested that in order to maintain 

sustainability due to future THI estimations, relocation of dairy farms to areas 

with lower temperatures, as well as selecting animals with suitable genetic 

characteristics. 

The total milk yield per cow per year in the UK has been averaged to 8,100 lts 

(AHBD, 2023), which amounts to 26.5 L per cow per day. The median for herds 

in this study was higher at 30.9 L. Milk protein percentage has ranged, over the 

past 5 years, between 3.2% and 3.5%, while for the same time period milk 

butterfat has varied between 3.9% and 4.4% (DEFRA, 2022). In our data we 

had a median of 3.28% and 4.03% for protein and butterfat respectively. 

Therefore, our averages have been well within that range. 

Calving interval is recommended to be as close to a year as possible (Herring, 

2014). The median for our data was 376 days, quite close to this 

recommendation. However, we did have a few extreme values on both ends of 

the spectrum, which could indicate a few errors in the recording of calving 

dates. However, as the majority of the data seems centralized around that 

median this did not appear to raise a serious issue regarding their quality.  
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Using the proxy of lactations per herd per year, we determined that the median 

herd size was 56 cows. This figure is significantly below the average UK herd 

size at the time of data collection, which was reported to be 125 cows (Minnaert 

et al., 2018). The most likely explanation for this discrepancy is that the proxy 

measure was inaccurate, indicating that only a fraction of the cows per herd 

were scored. This introduces potential bias into our data, as we lack information 

on whether the selection of the cows was random, which means that higher 

yielding cows were more likely to be selected, our herd averages would appear 

inflated. Any potential predictive models of this study would still be of value, but 

further external validation will be needed to determine whether these potential 

models can be used in a commercial setting. 

3.4.1 Conclusions 

The herds in this study showed disease incidences generally below reported 

ranges from other nations, lameness incidence very much below nationally 

reported averages, cows spending a perhaps surprising amount of time in heat 

stress throughout summer, generally higher levels of production and high 

quality in terms of reproduction standards. Overall, this suggests that more 

intensive and potentially larger in size, most likely housed year-round (at least 

pre- and post-calving). There is also quite possibly some selection bias towards 

better managed herds, which is not surprising considering they are investing in 

a service to monitor and trying to refine their transition cow management. 
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Chapter 4 – Prediction of Disease Status 

4.1 Introduction 

4.1.1 Periparturient diseases 

Most of the periparturient diseases of dairy cattle are results of the metabolic 

and immunological imbalances described in Chapter 1 (Melendez and Risco, 

2005). Amongst the most important diseases are milk fever (clinical 

hypocalcemia), retained foetal membranes (RFM), metritis, displaced 

abomasum, mastitis and lameness (Goff and Horst, 1997b, Melendez and 

Risco, 2005). Generally, these diseases are mostly affected by management; 

with the exception of lameness and ketosis, they present low heritability (Van 

Dorp et al., 1998). 

A number of studies have investigated the relationships between periparturient 

diseases and even though the case definitions for the diseases have not always 

been consistent, the results appear to be similar among the studies (Melendez 

and Risco, 2005). Milk fever was found to have a positive association with parity 

(Curtis et al., 1985, Erb et al., 1985), RFM with milk fever, parity, dystocia and 

twining (Correa et al., 1993, Curtis et al., 1985, Erb et al., 1985), metritis with 

milk fever, RFM, left displaced abomasum and dystocia (Correa et al., 1993, 

Curtis et al., 1985, Erb et al., 1985, Melendez et al., 2003), left displaced 

abomasum with ketosis and milk fever (Correa et al., 1993, Curtis et al., 1985), 

ketosis with left displaced abomasum, RFM and milk fever (Curtis et al., 1985), 

while metritis was found to be negatively associated with parity (Melendez et 

al., 2003).  
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Management of transition period cows should be equally focused on 

maintaining physiological functions, immunological functions, normal calcium 

levels, helping the rumen adapt to high energy diets, as well as optimizing cow 

comfort, maintaining appropriate BCS and providing calving assistance when 

needed. Whenever those standards are not met the risk of the transition period 

cow developing a periparturient disease during the postpartum period is 

increased (Goff and Horst, 1997b, Goff et al., 1996, Risco et al., 1994). 

4.1.2 Left displaced abomasum 

Displacement of the abomasum is a multifactorial condition that occurs in dairy 

cows possibly due to decreased rumen fill and abomasal atony (LeBlanc et al., 

2005, Shaver, 1997, Wittek et al., 2004).Left-displaced abomasum (LDA) 

occurs primarily in high yielding cows after calving (Geishauser, 1995),and may 

not cause apparent clinical signs(Van Winden et al., 2002).Reported incidence 

of LDA ranges from 0.3% to 6.3% with a median of 1.7%(Melendez and Risco, 

2005). LeBlanc et al. (2005) suggested that the incidence was rising over the 

previous decade from 1% – 2% to 5% - 7%. Caixeta et al. (2018) reported an 

incidence of 3.5% among dairy herds in the United States. Amongst the 

reported risk factors are poor rumen fill, high-concentrate diets, hypocalcemia, 

high BCS at calving, season, inadequate feed space and limited availability of 

fresh feed, early parity and the presence of other conditions, such as fatty liver, 

milk fever, twinning, dystocia, retained placenta, metritis and mastitis (Caixeta 

et al., 2018, Esposito et al., 2014, Shaver, 1997, LeBlanc et al., 2005, Cameron 

et al., 1998). 
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4.1.3 Milk Fever 

Hypocalcaemia at calving is a common phenomenon in cows, as at the 

beginning of the lactation period the demand for lactation places a substantial 

burden on calcium homeostasis (Goff and Horst, 1997b, Horst et al., 1994). At 

times when the drop in calcium concentrations is severe, the function of 

muscles and nerves cannot be supported, which results in parturient paresis, 

also known as milk fever (Goff and Horst, 1997b, Goff and Horst, 1997a). 

Where the level of hypocalcaemia is less severe, impacts on smooth muscle 

function can result in increased disease risks even where clinical milk fever is 

not evident. This is known as subclinical hypocalcaemia. 

It has been reported that 5 to 10% of cows are affected after calving, with up to 

15% of these not responding to treatment (Eckel and Ametaj, 2016). Milk fever 

is associated with increased incidence of retained placenta and mastitis, which 

could be attributed to loss of muscle tone, immunosuppression due to 

intracellular calcium drop (Kimura et al., 2006) or a combination of the 

two(Bradford et al., 2015, Goff and Horst, 1997a). Furthermore, reduced DMI 

plays an important part in the causal pathways of both milk fever and retained 

placenta (Bradford et al., 2015). The postpartum feed intake decline in cows 

with milk fever is more severe compared to those without, and negative energy 

balance (NEB) is thought to follow a similar trend (Goff and Horst, 1997a, 

Marquardt et al., 1977). It also reduces rumen fill, the depth of rumen fibre mat 

and abomasal contractility, all of which can contribute to displacement of the 

abomasum (Goff and Horst, 1997b). 

In a recent study, it was found that milk fever was the disease most strongly 

associated with culling risk within the first 120 days in milk (DIM) (Probo et al., 
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2018). Dohoo and Wayne Martin (1984), Grohn et al. (1998), as well as Milian-

Suazo et al. (1988) all had similar findings, with increased culling risk in cows 

with milk fever. Kelton et al. (1998) gathered 33 citations dating from 1979 to 

1995 that reported a lactational incidence risk of milk fever ranging from 

0.03%to 22.3% with a median of 6.5%. Goff (2008) reported an incidence of 5-

7% in cows in confinement whereas Roche (2003) reported a 5% incidence rate 

in grazing cows. Potential risk factors for milk fever are age, prepartum diet with 

a high dietary cation anion difference (DACD), breed (with Jersey and 

Guernsey cattle at increased risk), milk yield, presence of other diseases and 

previous history of milk fever (Saborío-Montero et al., 2017).  

4.1.4 Mastitis 

Mastitis is an inflammation of the udder, which can be caused by either Gram-

positive or Gram negative bacteria and vary in severity (Eckel and Ametaj, 

2016).The case definition for clinical mastitis in cows is an animal with one or 

more quarters producing visually abnormal milk, with or without any other 

systemic symptoms (Kelton et al., 1998). Clinical mastitis is one of the most 

prevalent diseases in dairy cattle that can occur at any time with peak incidence 

around 30 to 50 days in milk (DIM) and has a great economic impact on many 

farms (Rollin et al., 2015, Zahrazadeh et al., 2018). A survey conducted in 

England and Wales indicated the mean annual incidence of clinical mastitis at 

47 cases per 100 cows per year when collected from historic farm records, 

whereas it was reported as high as 71 cases per 100 cows per year when using 

dates of milk samples submitted for bacteriological analysis as part of the study 

(Bradley et al., 2007). Irreversible damage of the mammary tissue during the 

inflammation is what causes the majority of economic losses associated with 



125 
 

mastitis (Eckel and Ametaj, 2016).Studies have found that mastitis is amongst 

the most influential factors when producers make culling decisions (Grohn et 

al., 1998, Probo et al., 2018).  

4.1.5 Lameness 

Lameness is defined as decreased mobility; a number of mobility scoring 

systems exist to allow more objective assessment at individual and group level.  

The reports of mean prevalence of lameness in the UK vary between 21% 

(Clarkson et al., 1996), 36% (Leach et al., 2010) and 36.8% (Barker et al., 

2010), with more recent reports being at 31.6% (Griffiths et al., 2018) and 

30.1% (Randall et al., 2019). Lameness along with infertility and mastitis have 

been identified as the 3 diseases most associated with increased culling rates 

(Eckel and Ametaj, 2016). It is considered as one of the most costly disease in 

dairy farms with the total cost, depending on lameness definition and 

expenditures-losses included, having been estimated up to over US$300 per 

case (Dolecheck and Bewley, 2018). Lower milk yield as well as worse 

reproductive performance has also been associated with lameness (Machado 

et al., 2010).  

As explained by Sepulveda-Varas et al. (2018) there are studies supporting the 

association between the metabolic and behavioural changes that occur during 

the transition period and the development of claw horn lesions. Low BCS after 

calving in particular, has been targeted as a potential risk factor of lameness 

(Green et al., 2014, Hoedemaker et al., 2009, Newsome et al., 2017). In a 

recent study however, it was highlighted that it is the loss rate of BCS rather 

than the BCS itself that affected lesion development (Sepulveda-Varas et al., 

2018). Moreover, NEB was found to be associated with poor hoof health in 
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primiparous cows during the transition period (Sepulveda-Varas et al., 2018). 

Lame cows during the dry period have been found to have increased risk of 

postpartum disease and increased culling rates (Calderon and Cook, 2011, 

Hoedemaker et al., 2009, Machado et al., 2011, Vergara et al., 2014) and 

lameness has a well-established link with ruminal acidosis (Eckel and Ametaj, 

2016). Vergara et al. (2014) indicated in their study that monitoring locomotion 

score could potentially be useful in explanatory models investigating 

postpartum health issues. 

4.1.6 Retained Foetal Membranes 

After calving, the immune response plays a key role in severing the cotyledon-

caruncle attachment and detachment of membranes from maternal tissue. 

Failure of the immune system to complete this process within 24 hours leads to 

a condition defined as retained foetal membranes (RFM) (LeBlanc, 2008). 

Decreased motility of the uterus is generally not seen to be an underlying cause 

of RFM, as affected cows appear to have normal, if not increased uterine 

motility in the days following calving (Frazer, 2005, LeBlanc, 2008). 

The case definition according to Kelton et al. (1998) is observing foetal 

membranes at  the vulva, vagina or uterus by vaginal examination at more than 

24 hours after calving, and reported incidence rates range from 1.3% to 39.2% 

with a median of 8.6% (Melendez and Risco, 2005). The average duration the 

membranes are retained in cows with RFM was reported to be 7 days (LeBlanc, 

2008). NEB seemingly has a role in the pathogenesis of RFM, likely through 

impairment of immune function (Goff and Horst, 1997b, LeBlanc, 2008). More 

specifically, cows with higher NEFA concentrations (a marker of NEB) were 

found have 80% greater risk of developing RFM (LeBlanc et al., 2004). 
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Pregnancy rate in cows with RFM was found to be reduced by 15% compared 

to healthy animals (Fourichon et al., 2000). Loss of milk production appears to 

be an issue only for those cases that lead to clinical metritis (Fourichon et al., 

1999), while culling was not found to have a significant association with RFM 

(Grohn et al., 1998). 

4.1.7 Metritis 

Uterine involution starts immediately after calving and is a complex process 

(Sheldon, 2004), which seems to naturally involve bacterial invasion 

(Chapwanya et al., 2012). Considering the immune suppression that occurs 

postpartum, there are favourable factors for the development of uterine disease 

during this time (Azawi, 2008, Mallard et al., 1998).  

Inflammation of the uterus is defined as metritis and it can cause systemic 

symptoms, such as fever, dullness, decreased appetite, elevated heart rate, 

presence of watery or purulent discharge from the uterus and a decrease in 

milk production (Sheldon et al., 2006a). It occurs within the first 3 weeks after 

calving, usually within the first 10 days (Eckel and Ametaj, 2016).  

Conditions such as RFM, maceration of the foetus and difficulties during calving 

may increase the risk of metritis (Foldi et al., 2006, Sheldon et al., 2006a, 

Sheldon et al., 2006b), with RFM being the most important risk factor with an 

odds ratio of approximately 6 (Correa et al., 1993, Curtis et al., 1985, Erb et al., 

1985). It has been reported that 25 – 50% of cows with RFM progress to clinical 

metritis (LeBlanc, 2008). Decreased DMI has also been associated with the 

disease (Huzzey et al., 2009, Huzzey et al., 2007). The reported median 

incidence of metritis was at 10.1%, ranging from 2.2% to 37.3% (Melendez and 
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Risco, 2005). It has an impact on reproductive performance and was reported 

to increase the calving to first oestrus interval by 6.9 days, the calving to first 

insemination interval by 7.3 days, the first to last insemination interval to 15.4 

days, the calving to conception interval by 18 days and the number of 

inseminations until conception by 0.2 (Bruun et al., 2002, C. Bartlett et al., 

1986). The risk of culling was 1.3 time higher in cows with metritis compared to 

those without and were more likely due to the decreased reproductive 

performance rather than the disease itself (C. Bartlett et al., 1986, Lewis, 1997). 

Appropriate transition period management, including proper nutrition during the 

dry period in order to maintain optimum BCS and a sanitary environment, may 

help prevent metritis (Lewis, 1997). Furthermore, as mentioned above 

competent function of the immune system is vital, therefore events such as 

uterine trauma, dystocia and manual removal of RFM that can lead to a 

declined phagocytic activity of neutrophils may also predispose the cows to 

metritis (Cai et al., 1994). 

4.1.8 Twinning 

Twinning, though once sought in order to increase the milk production per cow 

it is now not a desired attribute in dairy herds (Cai et al., 1994, Correa et al., 

1993, Curtis et al., 1985, Lewis, 1997). Although twinning is not a transition 

“disease”, it has been described as a risk factor linked with other periparturient 

diseases (Probo et al., 2018). It can cause a decline a reproductive 

performance, as cows with twins were shown to have a much higher risk of 

early pregnancy loss (3 to 9 times), increased calving to conception intervals 

and culling rates (Bicalho et al., 2007). Culling rates before 120 DIM, in 

particular, were reported to be almost double in cows with twins, compared with 
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singletons, at 16.1% (Andreu-Vazquez et al., 2012). Probo et al. (2018) 

reported a high culling rate before 120 DIM for cows with twins at 30.3%. 

Twinning has also been associated with metritis (Lewis, 1997) and its incidence 

was reportedly ranging from 9 to 12%, having a substantial economic impact 

on dairy herds(Silva del Rio et al., 2007).  

 

 

Establishing and quantifying disease risk factors remains important as there is 

very little recent evidence in this field, particularly from modern UK dairy 

systems. Furthermore, additional application of predictive modelling has 

potential to contribute in early notification and implementation of management 

measures that can reduce financial losses; this has not been widely explored 

for post-calving disease outcomes. 
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4.2 Methods 

The outcomes considered for analysis included both the individual diseases 

(Milk Fever, LDA, RFM and Metritis) and a collective Disease Status outcome. 

The latter was defined as either negative if the cow had not been recorded 

positive for any disease for that lactation, or positive if she had been marked as 

disease positive for at least one out of the four diseases during that lactation. 

The types of predictive models that were investigated for each outcome were 

logistic regression, decision trees, random forests, support vector machines, 

artificial neural networks and naïve Bayes. 

Two sets of models were considered when analyzing disease as a collective 

outcome. The first set was focused on predicting disease at lactation level, 

while the second set aimed to predict disease risk aggregated across groups 

of lactations. The source, initial data preparation steps, and descriptive 

statistics on the dataset are described in chapter 2.1.3.4 and chapter 3. 

4.2.1. Lactation Level 

For the first set of models, the units of data were individual lactations, with 

presence or absence of disease in that lactation as the outcome, and the 

lactation-level predictor variables listed in Table 4.1 used as potential 

predictors. The total number of lactations was 12,863. 
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Table 4.1 Potential predictor variables considered in models with the outcome of 

disease occurrence at lactation level 

Variable Missing data 

Rumen Fill in the pre-calving cow 86 (0.007%) 

Hock Hygiene 1151 (0.089%) 

Neck Rail Height in the pre-calving pen 5421 (43.41%) 

THI in the pre-calving pen 5450 (42.42%) 

Feed Fence space per cow in the pre-calving 

pen 

5507 (42.87%) 

Water Trough space per cow in the pre-

calving pen 

5527 (43.02 %) 

Good Bedding quality in the pre-calving pen 4763 (37.07%) 

Good Light Quality in the pre-calving pen 4763 (37.07%) 

Good Feed Quality in the pre-calving pen 4763 (37.07%) 

Good Water Quality in the pre-calving pen 4763 (37.07%) 

Good Air Quality in the pre-calving pen 4763 (37.07%) 

Feed available in the pre-calving pen 4763 (37.07%) 

Water available in the pre-calving pen 4763 (37.07%) 

BCS pre-calving 77 (0.006%) 

BCS change pre- to post-calving 1201 (0.09%) 
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Month of pre-calving recording 0 (0.00%) 

Lactation number 0 (0.00%) 

Calf Mortality 0 (0.00%) 

Twining 0 (0.00%) 

Mean Milk Yield of previous lactation 644 (0.05%) 

Mean Protein % in milk in the previous 

lactation 

644 (0.05%) 

Mean Butterfat% in milk in the previous 

lactation 

644 (0.05%) 

Stocking density in pre-calving pen 5494 (0.43&) 

Lameness in the pre-calving cow 0 (0.00%) 

 

General outline of model building is described in more detail in chapter 2.3.4.1, 

As the dataset was imbalanced, the absence of disease diagnosis being 

substantially more common compared to its presence, kappa was the metric 

used to assess model predictiveness and furthermore, up-sampling was 

implemented (further explanation on up-sampling was provided in Chapter 2). 

Since kappa was the metric of choice it was also used during parameter tuning 

with the parameters being automatically chosen by the caret package (Kuhn, 

2008). The package automatically tested various parameter values and 

whichever one provided the largest kappa was declared as the most optimal 
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In addition to using the models built on the individual lactation level to make 

predictions on each individual lactation, it was decided to investigate whether 

accuracy of predictions is improved when data were aggregated at 

herd/quarter-year level (i.e. predicting the incidence risk of disease across all 

the lactations in a given herd beginning in a given quarter-year). Quarter-year 

periods were January to March, April to June, July to September and October 

to December. The process of model building described above was repeated 

with a holdout dataset. 80% of the original dataset was used for model building, 

while 20% was kept for external cross-validation. In addition, the test and train 

datasets were split based on farm/quarter-year group to ensure that pen-level 

information that would remain constant within each group did not contribute to 

data leakage when building the original models. In order to avoid dealing with 

groups with a low number of observations, the dataset was filtered to include 

only groups with a group count of 10 or higher. After training these models they 

were used to produce predictions on the holdout dataset aggregated by 

herd/quarter-year/year group and these predictions were then compared with 

the actual values. To evaluate the comparisons the predicted and actual 

outcomes for each data point were graphed using a scatterplot and the variation 

of the outcome explained by the predictions was assessed using an R2. The 

values were determined by fitting a linear regression model. High values 

indicated highly explained variation, meaning that the predictions aggregated 

did approximate the aggregated values and can potentially lead to meaningful 

predictions on a herd/quarter-year level.  
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4.2.2 Lactations per herd/quarter-year level models 

A further set of models was built using data aggregated at herd-quarter-year 

level. The units of data for this dataset therefore represented all lactations in a 

given herd beginning in a given quarter-year period. The outcome variable for 

each unit was the proportion of disease status positive lactations in that herd-

quarter-year, with potential predictor variables aggregated in the same way 

(calculated as either a mean across cows/measurement-occasions for 

continuous, or proportions for binary predictors). 

Herd/quarter-year groups with less than 10 lactation recordings were removed 

from the analysis. In total 79 groups were removed (18.7%). The final dataset 

size for this part of the analysis was 343 data points. The number and 

percentage of missing data for all potential predictor variables is shown in Table 

4.2. 
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Table 4.2 Predictive variables considered in final analysis for second set of models 

Variable Missing Data (%) 

Metritis percentage per herd/month 0 (0.0) 

Milk Fever percentage per 

herd/month/ 

0 (0.0) 

Twinning percentage per herd/month 0 (0.0) 

Feed Fence Space per cow 193 (45.7) 

Mean Neck Rail height 210 (49.8) 

Mean BCS pre calving 37 (8.8) 

Mean BCS change 230 (54.5) 

Mean Lactation Number 0 (0.00) 

Mean Milk Yield 22 (5.2) 

THI pre calving 240 (56.8) 

Water Trough Space per cow 192 (45.5) 

Rumen Fill pre calving 37 (8.8) 

Rumen Fill post calving 220 (52.1) 
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4.3 Results 

 

4.3.1 Individual Disease Outcomes 

The variables used for fitting the models are presented in table 4.3. 

Table 4.3 Predictive variables used for machine learning models predicting individual 

disease outcomes at lactation level 

Milk Fever LDA RFM Metritis 

Rumen Fill post-

partum 

Rumen Fill pre-

partum 

Rumen Fill pre-

partum 

Rumen Fill pre-

partum 

Lactation 

Number 

Rumen Fill post-

partum 

Rumen Fill post-

partum 

Rumen Fill post-

partum 

Hock Hygiene 

Score 

Lactation 

Number 

Lactation 

Number 

Lactation 

Number 

BCS change Hock Hygiene 

Score 

Hock Hygiene 

Score 

Hock Hygiene 

Score 

BCS pre partum BCS change BCS change BCS change 

Twinning BCS pre-partum BCS pre-partum BCS pre-partum 

Calf Mortality Twinning Twinning Twinning 

Mean 305 Milk 

Yield of Previous 

lactation 

Calf Mortality Calf Mortality Calf Mortality 
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   Mean 305 Milk 

Yield of Previous 

lactation 

   Neck Rail Height 

in dry pen 

 

 

 

4.3.1.1 Individual Lactation level 

Before up-sampling, a lot of algorithms returned sensitivity values of 0 and PPV 

either was 0 as well due to the lack of True Positives or could not be computed 

due to the lack of False Positives, while specificity values were at 100%. Even 

for the rest of the models, sensitivity remained very close to 0, indicating the 

inability of those models to properly predict the diseased class. Kappa values 

were all consistently low for all diseases. All results are shown in tables 4,4-4.7. 

This was the result of an imbalanced dataset, due to the low frequency of 

disease and thus a sampling method was implemented to improve predictions. 
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Table 4.4 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Milk Fever outcomes, before up-sampling 

Milk Fever 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.972 0.972 0.969 0.824 0.971 0.943 0.971 

Kappa 0 0 0.025 0.028 0 0.050 0.023 

Sensitivity 0 0 0.016 0.022 0 0.074 0.012 

Specificity 1 1  0.998 0.999 0.999 0.968 0.999 

PPV - - 0.300 0.523  0 0.061  0.350  

NPV 0.972 0.972  0.972  0.972 0.972 0.973 0.972 

AUROC 0.842 0.5 0.783 0.824 0.645 0.834 0.595 

Detection 

Rate 

0 0 0 0 0 0.002 0 

Balanced 

Accuracy 

0.5 0.5 0.507 0.511 0.499 0.521 0.502 

F1 - - 0.074 0.083 - 0.066 0.062 

Test Set 
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 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.982 0.982 0.892 0.881 0.981 0.981 0.979 

Kappa 0 0 0.029 0 0 0.001 0.003 

Sensitivity 0 0 0.036 0 0 0 0 

Specificity 1 1  0.982 0.999 0.999 0.999 0.997 

PPV - - 0.181 0  0 0  0  

NPV 0.981 0.981  0.906  0.981 0.981 0.981 0.981 

AUROC 0.842 0.5 0.509 0.5 0.5 0.5 0.5 

Detection 

Rate 

0 0 0.003 0 0 0 0 

Balanced 

Accuracy 

0.5 0.5 0.509 0.499 0.499 0.499 0.498 

F1 - - 0.060 - - - - 
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Table 4.5 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting LDA outcomes, before up-sampling 

LDA 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.991 0.991 0.991 0.991 0.991 0.991 0.991 

Kappa 0 0 0 0.013 0 0 0 

Sensitivity 0 0 0 0.01 0 0 0 

Specificity 1 1  1 0.999 1 1 1 

PPV - - - 0.125 - - - 

NPV 0.991 0.991 0.991 0.991 0.991 0.991 0.991 

AUROC 0.749 0.5 0.574 0.611 0.505 0.705 0.536 

Detection 

Rate 

0 0 0 0 0 0 0 

Balanced 

Accuracy 

0.5 0.5 0.5 0.504 0.5 0.5 0.5 

F1 - - - 0.142 - - - 

Test Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 
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Accuracy 0.992 0.992 0.992 0.992 0.992 0.992 0.992 

Kappa 0 0 0 0 0 0 0 

Sensitivity 0 0 0 0 0 0 0 

Specificity 1 1  1 1 1 1 1 

PPV - - - - - - - 

NPV 0.992 0.992 0.992 0.992 0.992 0.992 0.992 

AUROC 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Detection 

Rate 

0 0 0 0 0 0 0 

Balanced 

Accuracy 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 

F1 - - - - - - - 
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Table 4.6 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting RFM outcomes, before up-sampling 

RFM 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.960 0.961 0.958 0.961 0.961 0.935 0.961 

Kappa 0.030 0 0.078 0.033 0 0.176 0.048 

Sensitivity 0.013 0 0.040 0.026  0 0.224 0.028 

Specificity 0.999 1 0.995 0.999 1 0.963 0.998  

PPV 0.404 - 0.290 0.619 0 0.199 0.410  

NPV 0.961 1 0.962  0.962 1 0.968  0.962 

AUROC 0.689 0.5 0.630 0.635 0.503 0.679 0.621 

Detection 

Rate 

0 0 0.001 0.001 0 0.008 0.001 

Balanced 

Accuracy 

0.506 0.5 0.517 0.513 0.499 0.594 0.513 

F1 0.050 - 0.076 0.098 - 0.196 0.066 

Test Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 
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Accuracy 0.961 0.962 0.957 0.961 0.962 0.936 0.962 

Kappa 0.001 0 0.028 0.037 0 0.190 0.067 

Sensitivity 0 0 0.022 0.022  0 0.240 0.037 

Specificity 0.999 1 0.994 0.998 1 0.963 0.998

9 

PPV 0 - 0.142 0.333 0 0.207 0.714  

NPV 0.961 0.962 0.962  0.962 0.962 0.969 0.963 

AUROC 0.501 0.5 0.526 0.521 0.503 0.681 0.544 

Detection 

Rate 

0 0 0.001 0.001 0 0.009 0.001 

Balanced 

Accuracy 

0.499 0.5 0.503 0.505 0.499 0.602 0.518 

F1 - - 0.038 0.042 - 0.222 0.071 
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Table 4.7 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Metritis outcomes, before up-sampling 

Metritis 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.947 0.947 0.943 0.947 0.947 0.919 0.947 

Kappa 0 0 0.015 0.003 0 0.112 0 

Sensitivity 0 0 0.015 0.003 0 0.141  0 

Specificity 0.999 1 0.994 0.999  1  0.962 0.999 

PPV 0 - 0.095  0.055  -  0.167  0  

NPV 0.947 0.947 0.948 0.948 0.948 0.953 0.947 

AUROC 0.646 0.5 0.615 0.621 0.557 0.633 0.561 

Detection 

Rate 

0 0 0.001 0 0 0.007 0 

Balanced 

Accuracy 

0.499 0.5 0.504 0.5 0.5 0.551 0.499 

F1 - - 0.065 0.055 - 0.151 - 

Test Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 
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Accuracy 0.959 0.961 0.960 0.961 0.961 0.926 0.961 

Kappa 0 0 0.021 0 0 0.028 0 

Sensitivity 0 0 0.013 0 0 0.067 0 

Specificity 0.998 1 0.998 1  1  0.961 1 

PPV 0 - 0.250  -  -  0.065 0  

NPV 0.961 0.961 0.961 0.961 0.961 0.962 0.961 

AUROC 0.613 0.5 0.608 0.5 0.551 0.601 0.510 

Detection 

Rate 

0 0 0 0 0 0.002 0 

Balanced 

Accuracy 

0.499 0.5 0.505 0.5 0.5 0.514 0.5 

F1 - - 0.025 - - 0.066 - 

 

After up-sampling the overall picture slightly changed for all four diseases. For 

Milk Fever accuracy on the test set was high at 0.733 at the lowest (logistic 

regression) and 0.929 at the highest (decision tree). Sensitivity had a quite wide 

range starting from very low values (0.200 for the decision tree) to quite 

adequate ones (0.850 for the logistic regression). Specificity on the other hand 

ranged from medium to quite high values (0.731 logistic regression - 0.943 

decision tree). Two of the most telling metrics were the PPV and NPV with the 

former scoring extremely low (Highest being 0.070 for the SVM) and latter 

scoring extremely high (Lowest 0.984, again, for the decision tree). Detection 
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rate and F1 both producing very low results across all models, while Balanced 

Accuracy ranged from very close to the baseline of 0.5 (0.571 for the decision 

tree) to medium values (highest 0.802 for the SVM). AUROC ranged from low 

values at 0.602 for the decision tree to moderately high at 0.834 for the SVM. 

All metrics for the milk fever models after up-sampling are presented on table 

4.8. 

The rest of the diseases followed a similar pattern. LDA accuracy for the test 

set ranged from reasonable as to extremely high (0.693 for logistic regression 

to 0.983 for Naive Bayes). Sensitivity was low, at below 0.555 for all models, 

while specificity was generally relatively high for all algorithms. PPV stayed 

consistently low (highest being naïve bayes at 0.029) and NPV consistently 

high (lowest being KNN and Naïve Bayes at 0.992).  Once again F1 and 

detection rate ranged very low for the entirety of the methods, with ANN yielding 

the best results for the former (0.046) and logistic regression and random forest 

for the latter (0.004 for both. Balanced accuracy ranged overall low (0.513 for 

Naïve Bayes to 0.657 for random forest), while AUROC values ranged along 

the same values (0.506 for KNN to 0.753 for ANN). All metrics for LDA models 

after up-sampling are shown in table 4.9. Metrics for RFM on the test set 

followed the same trends after up-sampling, with accuracy ranging from 

moderate to high (0.651 for the KNN to 0.953 for the Naïve Bayes), sensitivity 

having a wide range but remaining at low values (0.127 for the Naïve Bayes to 

0.601 for logistic regression), specificity being relatively high (0.657 to 0.985 for 

KNN and Naïve Bayes respectively), PPV being extremely low (highest being 

0.261 for the Naïve Bayes), NPV being extremely high (lowest at 0.978 for the 

ANN), detection rate and F1 being consistently low the best results being 0.171 
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and 0.022 for Maive Bayes and ANN respectively), balanced accuracy ranging 

low from 0.556 for the Naïve Bayes to 0.657 for the ANN, and finally AUROC 

ranging only slightly higher at 0.591 to 0.698 for KNN and random forest 

respectively. Metrics for all RFM models after up-sampling are available on 

table 4.10. Lastly, metrics for metritis, once again, displayed a similar 

behaviour. Accuracy for the test set scored from mediocre (0.628 for the logistic 

ANN) to very high (0.942 for Naïve Bayes). Sensitivity, while having a wide 

range, remained low (0.094 for Naïve Bayes to 0.513 for ANN), with specificity 

being mediocre to high (0.633 for ΑΝΝ to 0.976 for Naïve Bayes). PPV being 

overall low (highest 0.137 for Naïve Bayes), in contrast to NPV (lowest at 0.961 

for decision tree/KNN). Detection rate and F1 remained low across all methods 

(highest at 0.019 for ΑΝΝ for the former and 0.112 for Naïve Bayes for the 

latter). Balanced accuracy ranged between 0.505 for the decision tree and 

0.582 for the logistic regression, while AUROC scores ranged along similar 

values, from 0.505 for the KNN and 0.622 for Naive Bayes. All metrics for 

metritis models after up-sampling are presented on table 4.11. 
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Table 4.8 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Milk Fever outcomes, after up-sampling 

Milk Fever 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.746 0.944 0.796 0.782 0.813 0.627 0.846 

Kappa 0.106 0.116 0.181 0.110 0.115 0.050 0.074 

Sensitivity 0.796 0.145 0.456 0.674 0.668 0.709 0.383 

Specificity 0.750 0.967  0.798 0.785 0.816 0.625 0.860 

PPV 0.084 0.111 0.093 0.084  0.096 0.053  0.072  

NPV 0.992 0.975  0.990  0.988 0.988 0.987 0.979 

AUROC 0.839 0.668 0.826 0.793 0.751 0.623 0.622 

Detection 

Rate 

0.271 0.060 0.224 0.257 0.019 0.393 0.184 

Balanced 

Accuracy 

0.773 0.556 0.762 0.729 0.742 0.667 0.622 

F1 0.153 0.143 0.133 0.139 0.160 0.240 0.084 

Test Set 
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 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.733 0.929 0.786 0.743 0.805 0.920 0.774 

Kappa 0.071 0.067 0.086 0.065 0.099 0.068 0.030 

Sensitivity 0.850 0.200 0.783 0.766 0.800 0.233 0.416 

Specificity 0.731 0.943  0.786 0.743 0.805 0.932 0.781 

PPV 0.054 0.060 0.063 0.051  0.070 0.059  0.033  

NPV 0.996 0.984  0.994  0.994 0.995 0.985 0.986 

AUROC 0.801 0.602 0.814 0.790 0.834 0.619 0.632 

Detection 

Rate 

0.278 0.003 0.014 0.265 0.014 0.004 0.007 

Balanced 

Accuracy 

0.790 0.571 0.784 0.755 0.802 0.583 0.598 

F1 0.103 0.093 0.116 0.097 0.129 0.095 0.062 
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Table 4.9 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting LDA outcomes, after up-sampling 

LDA 

Training Set 

 Logistic 

Regression 

Decisio

n Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.719 0.948 0.814 0.625 0.833 0.912 0.895 

Kappa 0.016 0.012 0.010 0.026 0.014 0.021 0.014 

Sensitivity 0.697 0.123 0.330 0.624 0.324 0.063 0.114 

Specificity 0.717 0.934  0.818 0.781  0.837 0.917 0.901  

PPV 0.017 0.014 0.014 0.017 0.016  0.031  0.009  

NPV 0.996 0.992 0.993 0.997 0.993 0.993 0.991 

AUROC 0.725 0.675 0.677 0.754 0.674 0.723 0.508 

Detection 

Rate 

0.005 0.052 0.188 0.381 0.169 0.090 0.106 

Balanced 

Accuracy 

0.695 0.519 0.574 0.613 0.581 0.520 0.508 

F1 0.034 0.033 0.027 0.254 0.028 0.078 0.027 

Training Set 
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 Logistic 

Regression 

Decisio

n Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.693 0.936 0.794 0.861 0.859 0.983 0.906 

Kappa 0.012 0.029 0.023 0.013 0.032 0.024 0.009 

Sensitivity 0.555 0.185 0.518 0.259 0.444 0.037 0.148 

Specificity 0.694 0.942  0.797 0.866  0.862 0.990 0.912  

PPV 0.013 0.024 0.019 0.014 0.024  0.029  0.012  

NPV 0.995 0.993 0.995 0.993 0.995 0.992 0.992 

AUROC 0.727 0.670 0.671 0.753 0.677 0.719 0.506 

Detection 

Rate 

0.004 0.001 0.004 0.002 0.003 0 0.001 

Balanced 

Accuracy 

0.625 0.563 0.657 0.562 0.653 0.513 0.530 

F1 0.027 0.043 0.037 0.028 0.046 0.032 0.023 
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Table 4.10 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting RFM outcomes, after up-sampling 

RFM 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.735 0.793 0.770 0.754 0.728 0.935 0.658 

Kappa 0.065 0.068 0.079 0.071 0.065 0.183 0.038 

Sensitivity 0.520 0.397 0.455 0.510  0.517 0.224 0.508 

Specificity 0.744 0.809  0.783 0.780 0.737 0.963 0.664  

PPV 0.075 0.080  0.078 0.087 0.073  0.202 0.057  

NPV 0.974 0.970 0.972  0.975 0.974 0.968  0.971 

AUROC 0.689 0.652 0.674 0.706 0.657 0.682 0.626 

Detection 

Rate 

0.295 0.222 0.247 0.020 0.292 0.074 0.362 

Balanced 

Accuracy 

0.632 0.603 0.619 0.657 0.627 0.594 0.586 

F1 0.128 0.124 0.139 0.147 0.161 0.210 0.212 

Test Set 
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 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.707 0.763 0.773 0.709 0.750 0.953 0.651 

Kappa 0.067 0.059 0.077 0.073 0.075 0.150 0.028 

Sensitivity 0.578 0.428 0.473 0.601  0.518 0.127 0.481 

Specificity 0.712 0.777  0.785 0.713 0.759 0.985 0.657  

PPV 0.073 0.070  0.080 0.076 0.078 0.261 0.052  

NPV 0.977 0.971 0.974  0.978 0.975 0.966 0.969 

AUROC 0.656 0.630 0.649 0.698 0.655 0.591 0.600 

Detection 

Rate 

0.021 0.016 0.017 0.022 0.019 0.004 0.018 

Balanced 

Accuracy 

0.645 0.602 0.629 0.657 0.639 0.556 0.569 

F1 0.130 0.121 0.137 0.135 0.136 0.171 0.094 
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Table 4.11 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Metritis outcomes, after up-sampling 

Metritis 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.634 0.890 0.825 0.652 0.684 0.911 0.645 

Kappa 0.053 0.072 0.079 0.057 0.044 0.148 0.026 

Sensitivity 0.558 0.216 0.287 0.562 0.478 0.170  0.423  

Specificity 0.638 0.899  0.855 0.657  0.695  0.951 0.657 

PPV 0.078 0.105 0.098  0.083  0.079  0.170  0.063  

NPV 0.963 0.954 0.956 0.964 0.960 0.954 0.954 

AUROC 0.645 0.587 0.627 0.640 0.624 0.658 0.535 

Detection 

Rate 

0.395 0.106 0.189 0.377 0.341 0.098 0.377 

Balanced 

Accuracy 

0.586 0.550 0.530 0.609 0.577 0.554 0.534 

F1 0.233 0.133 0.111 0.134 0.130 0.179 0.107 

Test Set 
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 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.695 0.872 0.797 0.628 0.708 0.942 0.687 

Kappa 0.038 0.006 0.008 0.028 0.015 0.083 0 

Sensitivity 0.459 0.108 0.202 0.513 0.337 0.094  0.297 

Specificity 0.704 0.903  0.821 0.633  0.723  0.976 0.707 

PPV 0.058 0.043 0.043  0.053  0.046  0.137  0.038  

NPV 0.970 0.961 0.962 0.970 0.964 0.964 0.961 

AUROC 0.601 0.555 0.590 0.619 0.599 0.622 0.505 

Detection 

Rate 

0.017 0.004 0.007 0.019 0.013 0.003 0.011 

Balanced 

Accuracy 

0.582 0.505 0.511 0.573 0.530 0.535 0.5 

F1 0.104 0.061 0.071 0.096 0.082 0.112 0.068 

 

After up-sampling, kappa values overall improved compared to fitting the 

models without the use of sampling methods.  

Regardless of improvements, the values were still consistently poor for all 

models across all disease outcomes, though there was some improvement 

compared to the models trained without a sampling method. All ranged between 

0.01 and 0.20, showing only slight agreement of predictions and actual values 

(Viera and Garrett, 2005) for all methods across all 4 diseases.  
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4.3.1.2 Individual lactation models predicting on aggregated lactations 

per herd/quarter-year 

The best performing models for each disease were selected using the best 

Kappa value to be used for further analysis. The best models for each disease 

along with their metrics are available on table 4.12. 
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Table 4.12 Metrics of best performing models for each individual disease 

Metric Milk Fever 

(SVM) 

LDA  

(SVM) 

RFM  

(Naïve 

Bayes) 

Metritis 

(Naive 

Bayes) 

Accuracy 0.805 0.859 0.953 0.942 

Kappa 0.099 0.032 0.150 0.083 

Sensitivity 0.800 0.444 0.127 0.094  

Specificity 0.805 0.862 0.985 0.976 

PPV 0.070 0.024  0.261 0.137  

NPV 0.995 0.995 0.966 0.964 

AUROC 0.834 0.677 0.591 0.622 

Detection Rate 0.014 0.003 0.004 0.003 

Balanced 

Accuracy 

0.802 0.653 0.556 0.535 

F1 0.129 0.046 0.171 0.112 

 

The aggregated predictions (at herd-quarter-year level) produced from these 

models were graphed against the observed outcome values, and the R2 values 

were 18.2% for Milk Fever and 5.7% for LDA both using SVM, 14.5% for RFM 

using Naïve Bayes and 66.9% for metritis also using Naïve Bayes (Figure 4.1).  
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4 .1 Scatterplot of aggregated predictions vs actual percentage of metritis diagnosis 

per herd/quarter-year using the Naïve Bayes model 
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4.3.1.3 Models built using data aggregated at herd-quarter-year level 

Predictor variables improving model performance for each of the disease 

outcomes using the aggregated dataset (whereby each unit of data represented 

aggregated disease outcomes for all quarter-year lactations in a given herd in 

a given quarter-year) are shown in Table 4.13. 
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Table 4.13 Predictor variables included in final predictive models for various individual 

disease outcomes aggregated at herd-quarter-year level 

Milk Fever % LDA % RFM % Metritis % 

Mean Rumen Fill 

pre-partum 

Mean Rumen Fill 

pre-partum 

Mean Rumen Fill 

pre-partum 

Mean Rumen Fill 

pre-partum 

Mean Lactation 

Number 

Mean Rumen Fill 

post-partum 

Mean Rumen Fill 

post-partum 

Mean Rumen Fill 

post-partum 

Mean Hock 

Hygiene Score 

Mean Lactation 

Number 

Mean Lactation 

Number 

Mean Lactation 

Number 

Mean BCS 

change 

Mean Hock 

Hygiene Score 

Mean BCS 

change 

Mean BCS 

change 

Mean BCS pre 

partum 

Mean BCS 

change 

Mean BCS pre-

partum 

Mean BCS pre-

partum 

 % Twinning Mean BCS pre-

partum 

 % Twinning  % Twinning 

% Calf Mortality  % Twinning % Calf Mortality % Calf Mortality 

Mean 305 Milk 

Yield of Previous 

lactation for the 

group 

% Calf Mortality Mean THI pre-

partum 

Mean THI pre-

partum 
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Mean THI pre-

partum 

Mean 305 Milk 

Yield of Previous 

lactation for the 

group 

Mean Feed 

Fence Space per 

cow in dry pen 

Mean Feed 

Fence Space per 

cow in dry pen 

Mean Feed 

Fence Space per 

cow in dry pen 

Mean THI pre 

partum 

Mean Water 

Trough Space 

per cow in dry 

pen 

Mean Water 

Trough Space 

per cow in dry 

pen 

Mean Water 

Trough Space 

per cow in dry 

pen 

Mean Feed 

Fence Space per 

cow in dry pen 

Mean Neck Rail 

Height in dry pen 

Mean Neck Rail 

Height in dry pen 

 Mean Water 

Trough Space 

per cow in dry 

pen 

Month of pre 

partum recording 

Month of pre 

partum recording 

 

The mean percentage of cows diagnosed with milk fever per herd per quarter-

year was 3.4% with a median of 0.3% (maximum 61.1% and minimum 0%). For 

LDA the mean percentages per herd/month/quarter-year were lower, at 1.0% 

with a median of 0% (maximum 18.8% and minimum 0%). For RFM the mean 

was 4.3% (median 3.0%, minimum 0% and maximum 40.0%), while for metritis 

it was at 4.5% with a median of 2.4% (minimum 0% and maximum 42.9%). 
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R2 values for models predicting incidence rates of individual diseases and built 

on aggregated data are shown in Table 4.14.  
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Table 4.14 R2 values of all methods of individual disease percentage outcomes 

Training Set 

 %Milk 

Fever 

%LDA %RFM %Metritis 

Linear 

Regression 

0.261 0.202 0.288 0.209 

Decision Tree 0.390 0.216 0.208 0.139 

Random Forest 0.321 0.210 0.211 0.262 

ANN 0.263 0.213 0.172 0.340 

MARS 0.478 0.118 0.337 0.220 

Test Set 

 %Milk 

Fever 

%LDA %RFM %Metritis 

Linear 

Regression 

0.241 0.186 0.274 0.196 

Decision Tree 0.375 0.200 0.192 0.133 

Random Forest 0.304 0.201 0.198 0.247 

ANN 0.249 0.201 0.159 0.324 

MARS 0.443 0.104 0.323 0.202 
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The best performing models for each disease outcome based on the R2 on the 

test set were ANN for both LDA and metritis, and MARS for both milk fever and 

RFM. 

4.3.2 Collective Disease Status Outcome 

4.3.2.1 Individual lactation disease models 

For the models using the individual cow lactations as units of data, the 

combination of variables that produced the most predictive models were the 

rumen fill pre and post-partum, neck rail height in pre-calving pens, lactation 

number, hock hygiene, BCS change, BCS pre-calving, THI in the pre-calving 

pen, stocking density in the pre-calving pen, mean milk yield in the previous 

lactation, calf mortality and twinning.  

The results of our analysis for the collective disease outcome before up-

sampling resembled that of the individual disease analysis (Table 4.15). 

Accuracy values were high (0.866-0.880), similar to NPV (0.880-0.891), with 

specificity showing near perfect values (0.966-1), while sensitivity and PPV 

ranged to very low values (0-0.135 and 0.190-0.468). Similarly to the individual 

disease outcomes this was a result of dataset imbalance, as evidenced by the 

low kappa (0-0.136) and balanced accuracy (0.500-0.550). The F1 score was 

also low (0.041-0.192) and AUROC ranged from the baseline of 0.5 to a low 

0.679. The effect of the imbalanced dataset was so great that the decision tree 

model predicted every datapoint as “Healthy”, hence achieving a sensitivity of 

0, specificity of 1, kappa of 0 and not being able to compute the PPV and F1-

score, thus earning the spot of the worst performing model. The rest of the 

methods, while not being so absolute did not show significant improvements, 

with the best overall algorithm being the Naïve Bayes, both in terms of kappa 
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with a value of 0.136, and in terms of sensitivity and specificity trade off (0.135 

and 0.966 respectively) and F1 (0.192). It also achieved the highest balanced 

accuracy at 0.550. Nevertheless, the Naïve Bayes still had very low 

performance. 
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Table 4.15 All metrics for collective disease outcome models as calculated on both the 

training and the test set, before up-sampling 

 Training Set  

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.880 0.880 0.875 0.877 0.879 0.866 0.878 

Kappa 0.054 0 0.100 0.067 0.033 0.136 0.003 

Sensitivity 0.038 0 0.083 0.051 0.023 0.135 0.004 

Specificity 0.995 1 0.983 0.990 0.996 0.966 0.997 

PPV 0.462 - 0.407 0.464 0.468 0.348 0.190 

NPV 0.883 0.880 0.887 0.884 0.882 0.891 0.880 

AUROC 0.657 0.5 0.679 0.634 0.572 0.640 0.527 

Balanced 

Accuracy 

0.516 0.5 0.533 0.520 0.509 0.550 0.501 

F1 0.087 - 0.136 0.091 0.054 0.192 0.041 

Detection 

Rate 

0.004 0 0.010 0.006 0.002 0.016 0.0005 

Test Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 
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Accuracy 0.901 0.904 0.882 0.898 0.904 0.883 0.886 

Kappa 0.023 0 0.029 0.002 0.028 0.058 -0.006 

Sensitivity 0.018 0 0.036 0.009 0.018 0.072 0.018 

Specificity 0.995 1 0.982 0.992 0.998 0.969 0.977 

PPV 0.285 - 0.181 0.111 0.500 0.200 0.080 

NPV 0.905 0.904 0.906 0.904 0.905 0.908 0.904 

AUROC 0.636 0.5 0.631 0.650 0.603 0.633 0.557 

Balanced 

Accuracy 

0.506 0.5 0.509 0.501 0.508 0.520 0.498 

F1 0.034 - 0.060 0.016 0.035 0.106 0.029 

Detection 

Rate 

0.001 0 0.003 0.001 0.003 0.006 0.001 

 

After up-sampling the overall accuracy appeared to be from fair to good across 

all methods (ranging from 66.3% to 85.8%) with the exception of KNN where 

accuracy was low (0.511), while the kappa values were consistently low, with 

the random forest, while having the highest value at 0.172, still being below the 

0.2 benchmark for achieving anything more than slight agreement between 

predictions and actual values (Viera and Garrett, 2005).  

Sensitivity, while having a wide range, remained low with the highest score 

being 0.548 for the KNN. Specificity also had a wide range, starting from 0.506 

for the KNN and peaking high at 0.950 for the Naïve Bayes. PPV remained 
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consistently low across all methods, the highest value being at 0.335 for the 

Naïve Bayes, while NPV ranged high, with KNN having the lowest value at 

0.890. Both F1 and Detection Rate values were low across all algorithms 

(highest at 0.274 for the random forest and 0.066 for KNN respectively). 

Balanced accuracy ranged close to the 0.5 baseline (0.527 for KNN to 0.605 

for logistic regression), with AUROC displaying similar values (0.531 to 0.646 

for KNN and logistic regression respectively). The metrics of all methods on 

both the training and the test set are presented in Table 4.16 and the values of 

all the models applied on the test set are also graphically shown in Figure 4.2. 
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Table 4.16 All metrics for collective disease outcome models as calculated on the 

training and the test set, after up-sampling 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.663 0.844 0.820 0.643 0.685 0.858 0.511 

Kappa 0.116 0.137 0.172 0.106 0.109 0.166 0.023 

Sensitivity 0.528 0.187 0.281 0.537 0.466 0.185 0.548 

Specificity 0.682 0.934 0.894 0.658 0.715 0.950 0.506 

PPV 0.184 0.280 0.270 0.178 0.183 0.335 0.132 

NPV 0.914 0.893 0.901 0.912 0.907 0.895 0.890 

AUROC 0.646 0.615 0.674 0.637 0.630 0.637 0.531 

Balanced 

Accuracy 

0.605 0.558 0.587 0.598 0.591 0.566 0.527 

F1 0.273 0.218 0.274 0.267 0.263 0.236 0.211 

Detection 

Rate 

0.063 0.022 0.033 0.065 0.055 0.021 0.066 

Test Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 
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Accuracy 0.718 0.867 0.814 0.690 0.673 0.876 0.473 

Kappa 0.144 0.039 0.082 0.108 0.078 0.024 0.011 

Sensitivity 0.536 0.081 0.218 0.509 0.463 0.054 0.572 

Specificity 0.737 0.950 0.877 0.709 0.696 0.963 0.462 

PPV 0.177 0.147 0.158 0.156 0.138 0.136 0.101 

NPV 0.937 0.907 0.913 0.931 0.924 0.905 0.910 

AUROC 0.664 0.636 0.635 0.658 0.639 0.644 0.595 

Balanced 

Accuracy 

0.636 0.515 0.548 0.609 0.579 0.509 0.517 

F1 0.266 0.105 0.183 0.239 0.213 0.077 0.172 

Detection 

Rate 

0.051 0.007 0.020 0.048 0.044 0.005 0.054 
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Figure 4.2 Metric comparison of all lactation-level collective disease models after using up-sampling with 95% confidence intervals 
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4.3.2.2 Individual lactation disease model making predictions on an 

aggregated level 

 

The same set of models were used to generate predictions from the holdout 

dataset. The total number of herd/quarter-year groups used were 461 with 368 

of them being used for training (9298 lactations total) and the rest being used 

for testing (93 groups of 1056 lactations). The minimum group was 10 as set, 

the median 29 (mean = 46.06) and the maximum 181.  

The linear association of predicted and actual values for data aggregated at 

herd-quarter-year level was analysed. The R2 value describing the proportions 

of explained variation between actual and predicted values for logistic 

regression was 44.5%, indicating that about half of the aggregated outcome’s 

variation can be explained by aggregating the predictions (Figure 4.3). As for 

the rest of the models it ranged to 23.61% for decision tree, 27.60% for random 

forest, 25.63% for ANN, 30.09% for SVM and 10.57% for Naïve Bayes. 
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Figure 4.3 Scatterplot of predictive vs actual collective disease diagnosis probability 

per herd/quarter-year 

 

 

There was no substantial improvement in model performance using an overall 

disease status outcome compared to the models predicting occurrence of an 

individual disease (Figure 4.4). 
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Figure 4.4 Pearson’s correlation coefficients between aggregated predicted and 

observed outcomes (per herd-quarter-year) across model types for all individual 

disease outcomes and for collective disease status (“Disease_Status”) using models 

built on individual lactation data, 

 

4.3.2.3 Aggregated Herd/quarter-year level models 

For the models built using the herd/quarter-year as a unit of data, the final 

predictive variables that were included in the models were the mean rumen fill 

per group both pre and post-partum, the neck rail height, water trough space, 

feed fence space and THI per group in dry pens, the month pre calving, the 

mean BCS pre partum as well as the mean BCS change pre and post calving, 

the mean 305 milk yield per group for the previous lactation, and finally the 

percentages of calf mortality and twinning, again, per group. 

The mean percentage of cows diagnosed with at least one disease per herd-

quarter-yearrwas10.1% with a median of 8.8% (minimum 0% and maximum 

75%). (Figure 4.5) 
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Figure 4.5 Histogram of collective disease diagnosis distribution per herd each quarter-

year 

 

The metrics of the resulted aggregated level models are displayed in table 4.17 

and Figure 4.6. R2 on the test set was consistently low with the highest yielded 

value being 32% for the MARS model, meaning that the models were at best 

able to explain up to nearly a third of the variation of the outcome. 
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Table 4.17 Metrics of all methods of disease diagnosis percentage per herd per 

quarter-year on both the training and the test sets 

Training Set 

 RMSE R2 MAE 

Linear 

Regression 

0.160 0.230 0.126 

Decision Tree 0.149 0.228 0.110 

Random Forest 0.150 0.109 0.110 

Artificial Neural 

Networks 

0.167 0.251 0.121 

MARS 0.131 0.343 0.122 

Test Set 

 RMSE R2 MAE 

Linear 

Regression 

0.175 0.211 0.133 

Decision Tree 0.157 0.222 0.119 

Random Forest 0.158 0.199 0.122 

Artificial Neural 

Networks 

0.176 0.239 0.132 

MARS 0.142 0.320 0.129 
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Figure 4.6 Metric comparison of different models of the collective disease percentage 

outcome on the test set 
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4.4 Discussion 

For this chapter, individual and collective disease outcomes were investigated 

on both an individual lactation and an aggregated herd/quarter-year level. 

Various predictive models were built further looking into the possible effect of 

the machine learning method used on the overall performance. With the kappa 

value as guide, it became clear that all models produced were of little predictive 

value and could not provide a model with reliable predictions. Up-sampling, 

while improving the overall metrics was not enough to increase the kappa 

values to an acceptable threshold. When it came to individual disease 

outcomes on a lactation level, the kappa values of all methods in all diseases 

did not exceed the maximum of 0.122 which was the SVM method for milk fever. 

Using the individual lactation models for aggregated predictions did not produce 

meaningful R2 values (5.7% for LDA to 18.2% for milk fever both for the SVM 

model), for all diseases except for metritis (66.9% for the Naïve Bayes model). 

The same value for the collective disease outcome was at 44.5%. Finally, for 

the aggregated models the R2 ranged low from 20.1% to 36.5% for LDA and 

milk fever respectively. When it came to the collective disease outcome, again 

the individual lactation models produced low kappa values with the highest one 

being 0.172 for the random forest model. Further using the model for 

aggregated predictions had similar negative results with the correlation 

coefficient being non-statistically significant. Moving to models built on an 

aggregated level also did not improve the results, with the R2 ranging low from 

0.199 to 0.302 for the random forest and the MARS models respectively. 

There was a wide variety of predictor variables available for predictive 

modelling and a wide variety of methods and techniques was utilised. Yet no 
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meaningful predictive models for post-calving disease, neither individual nor 

collective, were created. This does not clash with any existing research, as 

according to the current research as well as the systematic review conducted 

by Slob et al. (2020) the papers that looked into using machine learning for 

dairy cow disease outcomes mainly focused on mastitis, which was not a part 

of the outcomes used for this thesis.  

These results also highlight that, in cases of unbalanced outcomes, even 

models with relatively low predictive power can exhibit high accuracy metrics. 

For instance, the random forest, which achieved one of the highest accuracies 

along with balanced PPV/NPV and kappa values, still lacked strong predictive 

capabilities. A closer examination of metrics, particularly kappa and balanced 

accuracy—which account for outcome imbalances—revealed that none of the 

models demonstrated adequate predictive power. Although up-sampling 

appeared to enhance model performance, the resulting algorithms were still 

unlikely to be sufficiently predictive for practical use. Very unbalanced 

outcomes are likely to become quite common in terms of predictive modelling. 

One such example is oestrus detection, since most of the times most cows are 

not even in heat when it occurs. Post et al. (2021) while focusing on the 

prediction of mastitis and lameness, which were beyond the scope of our study, 

did emphasise the effects of an imbalanced dataset on the metrics and 

therefore practical application of a model. Their models in particular, while 

producing fair values of sensitivity and specificity, also had very low PPV, 

similar to a lot of our individual disease models. They argued that these results, 

even though sometimes warranted by a developer standpoint, do not accurately 

represent the real-world application on a practical farm. Post et al. (2020) even 



180 
 

showcased that different up- and down-sampling techniques for balancing 

training data had no impact when applied to unknown, realistic datasets, again 

reinforcing our findings. Sturm et al. 2020 also dealt with a health outcome that 

was not part of our study (subclinical ketosis), however their results are worth 

reporting as they were dealing with an imbalanced dataset as well. The best 

performing model had some reasonable metrics with accuracy at 0.725, 

sensitivity at 0.669, specificity at 0.736 and NPV at 0.922, accompanied with 

some quite low, with F1 at 0.435 and PPV at 0.322, once again showcasing the 

effects of a minority class. Avizheh et al. (2023) also implemented sampling 

methods (down-sampling and cost-effective method) in order to improve 

metrics and found that the AUROC of their models did not show improvement, 

while the F-score showed an average difference of 0.031 while the Roc curve 

did not reveal any improvement in predictive power. On the other hand, 

Keshavarzi et al. (2020) when dealing with an imbalanced dataset for the 

prediction of abortion incidence, reported that both up-sampling and down-

sampling methods were found to improve predictiveness. On average the F1-

score had an average difference of 0.106 and 0.088, while AUROC showed 

differences of 0.897 and 0.893 for down-sampling and up-sampling 

respectively. It was also noted that while rules, trees and functions showed 

significant increase in metrics, Naïve Bayes models did not. These results seem 

to be in agreement with our findings, as the average difference of F1 in milk 

fever was 0.077, for RFM 0.071 and for metritis 0.053, only including the 

methods that were able to compute a F1 value pre-sampling. The only model 

that could compute an F1-score for LDA before up-sampling was actually the 

ANN that showed a numerical increase in F1-value, of 0.112. The differences 
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in AUROC were -0.014 for milk fever, 0.079 for LDA, 0.057 for RFM and 0.026 

for metritis, so for all disease except milk fever there was an overall numerical 

increase. The average numerical increase in kappa pre and post sampling was 

0.090 for milk fever, 0.013 for LDA, 0.032 for RFM and 0.051 for metritis. 

Accuracy was moderate across all models, even after applying resampling 

techniques, underscoring its potential to be misleading. Sensitivity and 

specificity, when considered alone, also failed to consistently reflect the models' 

true performance. In the case of the random forest, decision tree, and naïve 

Bayes algorithms, while specificity was high, sensitivity was notably low, 

highlighting the issue of class imbalance. However, in other algorithms, there 

was a better balance between the two, with sensitivity around 0.6, masking the 

models' inability to make accurate predictions. This demonstrates that these 

metrics can vary significantly between methods and are insufficient to fully 

evaluate model performance. Since accuracy, sensitivity, and specificity are 

frequently cited in the literature, this presents concerns. These issues were 

evident in our study, where the kappa values across all models were below the 

0.4 threshold required for moderate agreement (Viera & Garrett, 2005), 

reinforcing the idea that accuracy, even when combined with sensitivity and 

specificity, is inadequate for evaluating predictive models—particularly in 

imbalanced datasets, as seen in our case with a disease prevalence of only 

10.98%. 

Brodersen et al. (2010) proposed that balanced accuracy should replace overall 

accuracy, particularly for addressing imbalanced datasets. The findings of this 

study support that perspective, as balanced accuracy across all models 
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hovered just above 50%. This can be attributed to the algorithms' tendency to 

predict the majority class for all instances. Balanced accuracy accounts for both 

classes equally by calculating their individual accuracies and averaging them. 

In imbalanced datasets, it is common for overall accuracy to be maximized by 

misclassifying all instances of the minority class, with all predictions assigned 

to the majority class. In such cases, the accuracy of the majority and minority 

classes would be 1 and 0, respectively, resulting in a balanced accuracy of 0.5. 

In our study, the fact that balanced accuracy is close to 0.5, while overall 

accuracy remains high for most models, highlights an issue with class 

imbalance. 

Viera and Garrett (2005) describe how kappa is influenced by the prevalence 

of the disease examined, hence the frequency of its class in the dataset. At the 

same time, from the literature it is evident that in the past and even in some 

recent studies there is a preference in reporting the overall accuracy, which can 

be misleading in the case of imbalanced datasets, and not complement it with 

additional metrics that take the proportion of the classes into account (Table 1). 

A lot of contemporary studies include the AUROC, it has been argued that it is 

not an appropriate metric in every situation and it can in fact provide an overly 

optimistic assessment of a model's performance in imbalanced datasets, as it 

may be inflated by the model's success in classifying the majority class while 

ignoring the minority class (Lobo et al., 2008, King et al., 2021, Hancock et al., 

2023, Bednarski et al., 2022). From our results it is evident that kappa is one of 

the metrics most affected by this situation. In fact, the maximum value of kappa 

was just 0.16 for the random forest model even after up-sampling, pointing to 
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the issue of the model’s actual predictive performance perhaps more effectively 

than other metrics.  

Another issue highlighted in our study is the challenge of algorithm selection. 

In imbalanced datasets, if models are chosen primarily based on overall 

accuracy, those with low predictive power may be favoured, as high overall 

accuracy can be easily achieved by misclassifying the minority class. A notable 

example is the naive Bayes model in both collective disease outcomes and 

individual lactation models, which exhibits one of the highest overall accuracies 

but also the lowest balanced accuracy and a very low kappa. In reality, its 

predictive power does not surpass that of the logistic regression model, which 

has a much lower overall accuracy. This illustrates that relying on inappropriate 

metrics can lead to misleading model comparisons. 

It is clear from the literature that machine learning algorithm reporting in the 

veterinary epidemiology field has evolved from mainly using accuracy as the 

headline metric to utilising and interpreting more complex metrics. This work 

further supports the more widespread adoption of alternative metrics such as 

balanced accuracy or kappa, especially where the outcome being predicted is 

either very common or very rare. 

The results for the aggregated outcomes milk fever, LDA, RFM, metritis and 

collective disease percentage per quarter-year were similar to that of the binary 

models, as the R2 of all aggregated prediction models was lower than 0.5 and 

for most cases much lower than that. Nonetheless, when it came to using the 

individual level models for making predictions on an aggregated level the 

results varied. For most disease the individual level models failed to make 
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meaningful aggregated predictions. However, the results for metritis indicated 

that the aggregated predictions explained almost 67.0% of the total variation of 

the aggregated outcome, resulting in a fair R2 value. The same method for the 

collective disease status resulted in a lower value of 44.5%, which though 

higher than most other diseases, does not even explain half of the variation of 

the outcome and it would be safe to assume that the increase in value 

compared to LDA, milk fever and RFM was probably an effect of the influence 

of metritis. From these results it is evident that the use of the individual level 

model predictions on an aggregated level is possible when it comes to metritis, 

since it presented a moderate value of R2 and it outperformed both the 

individual level model making predictions on the individual level and the fully 

aggregated model.  

As stated above the majority of existing research that aimed in utilizing machine 

learning to predict disease outcomes mainly focused on mastitis (Ebrahimie et 

al., 2018b, Ebrahimie et al., 2018a, Hassan et al., 2009, Kamphuis et al., 2010, 

Kamphuis et al., 2008, Mammadova et al., 2013, Panchal et al., 2016, Sharifi 

et al., 2018, Slob et al., 2020, Sun et al., 2010). Common predictors for mastitis 

appear to be milk parameters (Hassan et al., 2009, Sun et al., 2010) or in some 

cases genetic data (Sharifi et al., 2018). In one systematic review (Slob et al., 

2020) that did include papers with both health and production outcomes, 

although mostly health outcomes (21/38), most papers included milk 

parameters (66%) or milk properties (58%) as independent variables, with only 

a few (29%) having calving information and/or cow characteristics and just a 

fifth of them (21%) using lactation information. Other have also reported the use 

of machine learning for the detection of lameness (Pastell and Kujala, 2007) as 
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well as ketosis (Slob et al., 2020). A number of studies have focused on milk 

spectra for disease prediction. Hernandez et al. (2021) presented a collective 

disease outcome that included lameness, mastitis, reproductive disorders, 

calving disorders and finally other ailments. They presented various metrics, 

however they focused on the sensitivity and the PPV as, similar to our data, 

they had only a fraction of positive diagnoses. Their best model produced low 

values of these two metrics (61.74% and 59.99% respectively), which were also 

accompanied by very high values of standard deviation (15.99% and 26.20% 

respectively). Therefore, while there might be an indication that milk MIR 

spectra might be better predictors and that a collective disease outcome might 

be predictable as a collective measure, these results need to be interpreted 

cautiously. Multiple studies explored the prediction of hyperketonemia (Bonfatti 

et al., 2019, Luke et al., 2019, Pralle et al., 2018, Walleser et al., 2023) using 

milk spectra reporting good specificity and sensitivity. Franceschini et al. (2022) 

utilised unsupervised methods to create clusters of animals with possible 

metabolic disease and general health status, using milk spectra as well, and 

their results were promising. All these studies indicate that milk spectra might 

be a viable predictor for health status, however it was not considered in our 

study as it was not routinely analysed on most herds in the dataset, with our 

focus targeting more easily routinely gathered data. Another recent study 

(Lasser et al., 2021) focused on predicting disease such as metritis and 

periparturient hypocalcaemia, reporting various metrics such as F1, specificity, 

sensitivity, precision and accuracy. The F1 for metritis ranged within moderate 

values from 0.521 to 0.606, with periparturient hypocalcaemia following with 

similar, if not slightly lower, values from 0.482 to 0.548. Vidal et al. (2023) 
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focused on the prediction of metritis as well, providing some models with high 

F1 scores, but they utilised sensor data from accelerometers. An even more 

recent study (Risvanli et al., 2024) also aimed to predict metritis, using a sensor 

measuring intrauterine gases, providing models with high accuracy (71.22%), 

precision (64.4%) as well as recall (71.2%). However, this study examined uteri 

collected from abattoirs and not live cows so potential practical application 

could yield different results. De Oliveira et al. (2021) also investigated metritis, 

but rather than its diagnosis they attempted to predict its treatment success, 

presenting models with high F1 (0.81), sensitivity (0.85) and PPV (0.78), but 

low specificity (0.39) and NPV (0.50). Finally, Merenda et al. (2020) attempted 

to predict metritis, acute metritis, along with success and failure of treatment. 

The predictive variables used were routinely available data, BCS and 

behavioural data. The models for metritis and acute metritis produced had fair 

AUROC (0.82 and 0.87 respectively) with reasonable specificity and sensitivity, 

however the model for acute metritis had low PPV (0.30) while metritis’ was fair 

(0.60). The metritis model scored considerably better than even the best of our 

metritis’ models. One possible explanation is that their predictive variables were 

overall more appropriate for prediction. Their routinely gathered data included 

information such as indigestion and California Mastitis Test results which we 

did not have access to. However, it is also possible that the fact they only data 

from 2 farms, as opposed to our 79, could lead to some degree of overfitting. 

The study also lacked external validation. In addition to Hernandez et al. (2023), 

Zhou et al. (2022) also explored a collective disease outcome. They utilized 

variables such as milk yield, physical activity, rumination time changes, and the 

electrical conductivity of milk, while the out of the multiple diseases they 
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included in their outcome the one in common with our study was metritis. The 

model presented as best, a decision tree, achieved the highest F1, precision 

and AUROC (0.787 92.86%, and 0.908, respectively), however it lacked in 

sensitivity (68.42%). In comparison, our models never achieved such values, 

with the highest F1 score for the collective disease outcome being 0.274, 

highest precision 33.5% and highest AUROC 0.674, while the highest 

sensitivity was at 54.8%. This could be an indication that the combination of 

milk variables and behavioural data collected through the automated monitoring 

system Zhou et al. (2022) used were in fact better predictors for the combination 

of diseases selected. Nevertheless, they emphasized that the low sensitivity is 

an indication that their algorithms still required improvement to be properly 

utilized. It should also be noted that they used a control group, eliminating the 

class imbalance naturally occurring on farms. However, having a limited 

number of cows in their dataset (131 sick and 149 control cows) in addition to 

the fact that they were sampled from only 2 farms, as opposed to our 12,863 

from 79 farms. might have led to overfitting of the algorithm which occurs when 

the data is not variable enough. Dineva and Atanasova (2023) also opted for a 

general disease outcome, however their definition was even broader as the 

data was collected from health diaries and disease was defined as any kind of 

condition, including those caused by heat or cold stress. A ‘suspect’ group was 

added as an outcome, to include the presence of condition in cows that have 

not yet manifested as disease. The predictors included age, lactation number, 

DIM, daily milk yield, weather data, month and week and were all collected 

through IoT (Internet of Things) devices. Their best model was a random forest 

classifier with 95.4% sensitivity, 97% PPV and 95.4% accuracy. They also used 
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sampling methods as they were dealing with an imbalanced dataset. Once 

again, it is possible that variables such as the weather-related data that were 

not available in our analysis, did in fact improve predictiveness, however similar 

to Zhou et al. (2022), Dineva and Atanasova (2023) collected data from only 

one farm and 120 cows, eliminating any farm variability that could affect 

predictions. In fact, not only were the data collected from one farm but the 

month and week variables were added as predictors as well as opposed to the 

approach taken in our study where the herd-month groups were distinctly 

separated in training and test groups in order to avoid data leakage. 

Nevertheless, it should be acknowledged that both Zhou et al. (2022) and 

Dineva and Atanasova (2023) had small sample sizes, due to the fact that they 

utilised new sensor technology to collect their data, therefore a wide 

implementation was logistically difficult, and that part of the difference in our 

models’ predictiveness could be attributed to the better quality of predictor 

variables an automated system could potentially collect compared to a human-

driven system with potential subjectivities, however small.  

There are a number of limitations in our study, such as the number of missing 

data in the predictors and potential under-reporting of certain diseases. When 

it comes to the impact on predictive modelling, predictors with missing data can 

result into great loss of information if used in a model, as only complete cases 

can be included. For this reason, we excluded variables such as the rumen fill 

post-partum with great numbers of missing data. For the predictive models, the 

possible under-reporting in farms, during the data collection, could mean that 

the model does not provide accurate predictions as an entire subset of the 

outcome is ignored. However, the incidence of the disease was so low that the 
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percentage which would be overseen would be most likely negligible. The 

overall quality of the predictive variables might also lack in certain areas, 

considering that they were recorded by human assessors, who however well 

trained might insert a level of subjectivity or variability in their assessments. 

Furthermore, the choice of variables collected were not in any way specifically 

collected for their presumable correlation with a certain outcome but were rather 

monitored in an already established program as general measures of farm 

management. However, since the purpose of the study was to showcase 

whether it is possible to make predictions using easily available information that 

farmers may already have the results are still valuable. It is evident that most 

relevant studies have shown the best results when using special equipment 

such as sensors and automated monitoring systems (Hernandez et al., 2021, 

Bonfatti et al., 2019, Luke et al., 2019, Pralle et al., 2018, Walleser et al., 2023. 

Franceschini et al., 2022, Vidal et al., 2023, Risvanli et al., 2024, Zhou et al., 

2022). Therefore, there is an indication that perhaps the most advanced use of 

technology for variable collection might be the more valuable approach.  

A further limitation could be the convenience sampling from farms with similar 

characteristics, which would result into poor generalisability of the models. 

Nonetheless, if we acknowledge that the results only apply in UK farms with 

high productivity the models and their results can still be of use for other similar 

farms. Furthermore, the use of data from 79 farms in the final models would still 

introduce some variability and probably better generizability compared to 

Merenda et al. (2020) and Zhou et al. (2022) with data from 1 and 2 farms 

respectively. Nonetheless, our study lacks external validation which would 
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ultimately verify any possible highly predictive model, adding another limitation 

to our research. 
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Chapter 5 – Prediction of reproductive outcomes 

 

5.1 Introduction 

Fertility is a key driver of profitability in dairy farming systems (Cabrera, 2014), 

and there is extensive evidence that events around “transition” (i.e. occurring 

pre- and post-calving) have associations with subsequent reproductive 

performance (Roche et al. 2017). Microbial infections that are established 

postpartum can lead to decreased reproductive function in females (Dobson et 

al., 2008, Gautam et al., 2009, Kasimanickam et al., 2004). Furthermore, the 

NEB that occurs during this period is also linked with a decline in reproductive 

performance by increasing the calving to first ovulation interval and decreasing 

pregnancy rates at first service (Butler and Smith, 1989). Factors associated 

with transition cow management, such as nutrition, appropriate BCS 

maintenance, udder health, calving difficulties, reproductive diseases and cow 

comfort seem to influence reproductive performance (Caraviello et al., 2006, 

Lucy, 2001, Schefers et al., 2010). Other factors that are reported to be linked 

with reproduction include genetics, milk yield, heat stress, NEB, timing of 

insemination and the presence of reproductive or other diseases (Shahinfar et 

al., 2014). Clinical mastitis and high somatic cell count recording have also 

been associated with decreased reproductive performance (Hudson et al., 

2012). Poor reproductive performance has been reported to be the first reason 

for culling, much higher than low milk production (42% and 25% of cows culled, 

respectively) (Coleman et al., 1985). Gröhn and Rajala-Schultz (2000) also 

reported that the primary deciding factor when it comes to culling was 
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pregnancy status, with milk yield being the second one. NEB especially seems 

to have a key role in determining reproductive performance (Hudson, 2011). 

Cows with elevated BHBA concentrations during the first or second week 

postpartum were 20% less likely to get pregnant after first service, and up to 

50% less likely if BHBA levels were high on both weeks (Ospina et al., 2013). 

The relationships between various proxy measures for degree of NEB (such as 

those based on BCS) and reproductive performance have been established, 

with a common finding being that with increased NEB there is a delay to the 

resumption of ovarian cyclicity (Butler and Smith, 1989, Gümen et al., 2005).  

Interpreting the extensive body of literature on factors affecting reproductive 

performance in dairy cows is hindered by the wide variety of fertility outcome 

measures. These can broadly be categorized as rate- or interval-based 

measures. Recently, 21-day pregnancy rate has emerged as the key 

reproductive metric (at least for year-round calving herds). This is defined as 

the proportion of “eligible” cows (those past the herd’s voluntary wait period, not 

marked as selected to cull and not already pregnant) which become pregnant 

every 21 days. This is determined largely by the 21-day insemination rate 

(proportion of eligible cows inseminated every 21 days) and the conception risk 

(proportion of inseminations which lead to a pregnancy). Interval-based 

measures (such as time from calving to first insemination, establishment of 

pregnancy or subsequent calving) are also used. 

The majority of papers utilizing machine learning methods on dairy cow derived 

data have in fact dealt with reproduction outcomes; including models to predict 

first service conception rate, the probability of conception in heifers, time of 

calving, calving difficulty and/or dystocia in both heifers and cows, oestrus 
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detection and prediction, insemination success and semen quality (Caraviello 

et al. 2006, Fenlon et al. 2017a, b , Borchers et al. 2007, Grzesiak et al., 2010, 

Higaki et al. 2019, Hempstalk et al., 2015, Shahinfar et al., 2014, Dolecheck et 

al. 2015, Aguiar et al. 2012, Bates and Saldias, 2019, Romadhonny et al., 2019, 

Cairo et al., 2020, Keceli et al., 2020, Keshavarzi et al., 2020, Miller et al., 2020, 

Avizheh et al., 2023, Vázquez-Diosdado et al., 2023, Hemalatha et al., 2021, 

Schweinzer et al., 2019, Wang et al., 2020). 

Caraviello et al. (2006) used the accuracy and AUROC to report the predictive 

ability of their models. Namely, they focused on building models on first service 

conception rate and pregnant status at 150 DIM, with an accuracy of 75.6% 

and 71.4% and AUROC of 0.68 and 0.73 respectively. Machine learning 

techniques have been applied to estimate the time-to-calving (Miller et al., 

2020), with models for dairy cows demonstrating improved predictive accuracy 

up to 4 hours before calving. During this period, Matthew's correlation 

coefficient increased from 0.06 to 0.14. The optimal combination of AUROC, 

sensitivity, and specificity occurred 2 hours before calving, reaching 95.4%, 

91.3%, and 93.5%, respectively. After evaluating various techniques, Borchers 

et al. (2017) produced ANN models focused on predicting the time of calving 

both on daily and bihourly intervals, with the first one having a sensitivity of 

100% and specificity of 86.8% and the latter a sensitivity of 82.8% and 

specificity of 80.4%. In a study with comparable findings, Keceli et al. (2020) 

used activity and behavioural data to develop models that achieved 100% 

sensitivity, specificity, PPV, and NPV for predicting calving on the day before. 

Similarly, Vázquez-Diosdado et al. (2023) explored calving prediction using 

sensor data, with the best performance obtained using data from 2 days before 
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calving, achieving 87.81% accuracy, 92.99% specificity, 75.84% sensitivity, 

82.99% PPV, 78.85% F-score, and 90.02% NPV. Another study which 

investigated the prediction of calving difficulties reported AUROC values 

between 0.64 and 0.89 (Fenlon at al., 2017b), while a second one attempting 

to predict dystocia (Zaborski et al,2018) reported accuracy up to 0.589 for a 

MARS model focused on heifers and 0.649 for an ANN model focused on cows. 

Avizheh et al. (2023) used historical data to predict calving difficulty, but the 

resulting models showed low AUROC and F1-scores due to an imbalanced 

dataset. Although sampling methods improved these metrics, they remained 

relatively low, with F1-scores ranging from 0.38 to 0.42. In contrast, Brand et 

al. (2021) employed milk spectral data for pregnancy prediction, achieving a 

model with a sensitivity of 0.89, specificity of 0.86, and overall accuracy of 0.88. 

Two studies researched into predicting oestrus detection, with one producing 

models with very high accuracy, lying between 91% and 100% for all models 

(Dolecheck et al., 2015), while the other one produced less conclusive results, 

demonstrating only a numerical difference in sensitivity and precision, both at 

94% (Higaki et al., 2019). Cairo et al. (2020) also focused on predicting oestrus 

using behavioural data, reporting high accuracy. Similarly, Hemalatha et al. 

(2021) used milk parameter data, achieving high accuracy along with strong 

precision, recall, specificity, and F1 scores. Schweinzer et al. (2019) developed 

a model using accelerometer data, which demonstrated over 90% sensitivity, 

specificity, PPV, and NPV. Wang et al. (2020) incorporated both accelerometer 

and location data, with their best-performing neural network model predicting 

within a 30-minute time window, achieving 99.36% sensitivity, 53.33% 

specificity, 95.76% PPV, 93.72% NPV, 95.36% accuracy, and an F1 score of 
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97.51%. Romadhonny et al. (2019) created an oestrus classification model with 

over 80% accuracy, but it only correctly identified late oestrus 6.4% of the time. 

Two studies (Hempstalk et al., 2015, Shahinfar et al., 2014) looked into 

predicting the likelihood of conception success per insemination and reported 

AUROC values ranging between 0.487 and 0.675 for the one, and accuracy 

between 72.3% and 73.6% with AUROC between 0.73 and 0.75.  Another study 

trying to predict the probability of conception, specifically on heifers, however 

even though their models had an overall accuracy between 77.1% and 78.9%, 

however the consistently low specificity deemed them as of low predictive value 

(Fenlon et al., 2017a). Grzesiak et al. (2010) developed models for detecting 

artificial insemination difficulties, achieving an AUROC of nearly 0.9. Bates and 

Saldias (2019) compared regression and machine learning methods by 

creating models to predict the 21-day submission rate in dairy cows. Their study 

found no significant differences in predictive performance between the 

methods, and while the AUROC values were reasonably strong (0.68-0.73), 

positive outcomes were more accurately predicted than negative ones. Finally, 

Keshavarzi et al. (2020) created models to predict abortion incidence, with a 

mean AUROC of 0.863 and an F1 score of 0.520. After applying sampling 

methods, performance improved, with AUROC values reaching 0.893 and 

0.897, and F1 scores improving to 0.610 (up-sampling) and 0.626 (down-

sampling). 

Only 3 studies have focused on the prediction of an individual insemination 

outcome. Fenlon et al. (2017a) only focused on the prediction of their outcome 

only in heifers, hence leaving room for further research on a similar outcome 

for the rest of the herd. Hempstalk et al. (2015) did focus on the entirety of the 
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herd with a total of 7 herds included, using herd and cow level variables and 

producing AUROC as the evalulating metric. Similarly, Shahinfar et al. (2014) 

utilised cow level data from 26 dairy farms and reported the AUROC and 

accuracy with moderate results. Our study further builds upon these two 

papers, as it draws data from 133 herds making it the largest within its scope. 

Furthermore, it encorporates the reporting of a wide variety of metrics, with a 

special focus on Kappa for the evaluation of its models, which is a more 

appropriate metric compared to accuracy and AUROC in the case of an 

imbalanced dataset. Finally, our study focuses on multiple outcomes both 

binary and continuous, such as the insemination success, the mean percentage 

of insemination success per herd per month, the mean DIM at conception, 

which has not been studied prior, and it also includes inferential models, 

providing a more well-rounded approach in regards to reproduction.  

Therefore, the aim of this chapter is to provide predictive modelling for the 

insemination success, the mean percentage of insemination success per herd 

per month and the mean DIM at conception, as well as inferential models for 

the insemination success and time to pregnancy. 
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5.2 Methods 

 

5.2.1 Data preparation 

 

Lactations beginning with calving events between October 2016 and October 

2018 were considered eligible for inclusion in this study; calving events earlier 

than this window would not have had any related scoring data and the end date 

was set to ensure that outcomes were known for almost all inseminations. For 

each insemination recorded in these lactations, the outcome was determined 

using the following set of rules. An insemination was considered successful if: 

1) if there was a positive pregnancy diagnosis before the next insemination, or 

2) there was no positive pregnancy diagnosis recorded in the lactation, and this 

insemination was the one closest to day 282 before the next calving 

An insemination was categorized as unsuccessful if: 

1) there was a next serve before a positive pregnancy diagnosis, or 

2) there was a negative pregnancy diagnosis before the next serve, or 

3) the cow was culled more than 90 days after the insemination, with no fertility 

events recorded prior to culling, or 

4) no positive pregnancy diagnosis was recorded in the lactation, and the 

subsequent calving date is outside of a range of 282 +/- 25 days from the 

insemination date (i.e. subsequent calving is unlikely to relate to this 

insemination) 
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In every other scenario the outcome was defined as unknown. 

Inseminations between 25 and 100 DIM were included, on the basis that these 

were most likely to be influenced by events around transition. Pen level data 

were not included at this part of the analysis as the relevant information was 

missing for over 50% of the cows.  

Two separate datasets were then created. The first one was using a binary 

outcome of insemination success with the unit of data being each insemination 

(Dataset X), while the second one was using the continuous outcome of days 

from calving to successful insemination with the unit of data being each 

lactation. (Datasets W and Y). All variables present in each dataset are shown 

in table 5.1. 
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Table 5.1 Potential Predictive Variables for Datasets W, X and Y 

Categorical Continuous 

Milk Fever 305 Milk Yield 

RFM Corrected Protein % in milk 

LDA Corrected Butterfat % in milk 

Metritis  

Calf Mortality  

Twinning  

Rumen Fill pre-partum  

Rumen Fill post-partum  

BCS pre partum  

BCS change  

Lactation number  

 

A third dataset was created by grouping the insemination level dataset by herd-

month (Dataset Z). That allowed the aggregation of several variables, displayed 

in table 5.2 All the aforementioned variables were averaged to either what 

percentage of animals inseminated per herd per month per year had the 

relevant characteristic (for binary variables) or what was the mean value for all 

cows per herd per month per year (for continuous variables).  
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Table 5.2 Dataset Z Potential Predictive Variables 

% of value for inseminated cows 

per herd/month 

Mean of value for inseminated 

cows per herd/month 

Milk Fever Rumen Fill pre-partum 

RFM Rumen Fill post-partum 

LDA BCS pre-partum 

Metritis BCS change 

Calf Mortality Lactation number 

Twinning 305 Milk Yield 

 Corrected Protein % in milk 

 Corrected Butterfat % in milk 

 

Similarly for the outcome a percentage of successful inseminations of all cows 

per herd-month was calculated, making the units of data of the dataset the herd-

month with the outcome being the proportion of inseminations in each herd-

month that were successful. Data points with less than 10 insemination events 

were excluded from the dataset. 
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5.2.2 Analysis 

 

Analysis for a total of 5 studies was conducted for the insemination outcomes. 

The studies used one of the 3 aforementioned datasets each, as demonstrated 

on table 5.3. 

Table 5.3 Reproductive outcome Studies and Datasets used in each one 

Study Dataset (Outcome) Type 

A X (Insemination Success) Predictive 

B Z (% of insemination success per 

herd/month) 

Predictive 

C W (DIM at conception) Predictive 

D X (Insemination Success) Inferential 

E Y (Time to insemination 

success)

  

Inferential 

 

The predictive algorithms used for study A included the ones mentioned in 

previous chapters for binary outcomes: logistic regression, decision trees, 

random forest, ANNs and SVM. A 10-fold cross-validation was used, and 

assessment of model performance primarily based on the kappa metric. 

Furthermore, sampling methods and most specifically up-sampling was 

implemented to assess any improvement in model performance in the case of 
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an imbalanced dataset. Further details on how and whether up-sampling 

affected our results is presented in chapter 5.3.1.1, while more information on 

model building, having binary outcomes, is presented in chapter 2.1.3.4.1. 

For study B, having a continuous outcome, the modelling methods used were 

linear regression, decision trees, random forest, ANNs and MARS. A 10-fold 

cross-validation was used again, with R2 being the primary metric used for 

assessment. 

Study C also used continuous outcome (DIM at the time of conception). The 

modelling methods were the same as in study B: linear regression, decision 

trees, random forest, ANNs and MARS with a 10-fold cross validation and R2 

as the main metric. The dataset W used was the same as dataset X used in 

study A with the main difference being that only one data point per lactation 

was kept. The data point kept in each lactation the successful insemination, if 

one occurred for that lactation. If no successful inseminations took place the 

data point was removed from the analysis. Successful inseminations occurring 

after more than 300 DIM were also removed. More information on building 

models, having continuous outcomes, is presented in chapter 2.1.3.4.2. 

All predictive models, both binary and continuous were fit using the caret 

package in R (Kuhn, 2005) with a 10-fold cross validation. After acquiring the 

metrics of all methods for each outcome, they were compared to each other 

(per outcome) and the best performing model with the best kappa (binary) or 

R2 (continuous) was determined.  

The last part of the analysis was inferential, rather than predictive analysis and 

was included in order to assess the differences between predictive and 
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inferential models and to evaluate potential indicators of effect size and 

direction.  

Study D was similar to study A in terms of the dataset and the outcome used 

(insemination success, dataset X), however instead of predictive modelling, 

inferential modelling was applied. A generalized mixed effects model was built 

using backwards elimination. The random effect added in the model was the 

farm ID. 

Study E was a survival analysis to determine the “risk of insemination success” 

and conducted using the “survival” package in R (Therneau, 2022). A Kaplan-

Meier estimator and a Cox Proportional Hazards model were built. The outcome 

used was similar to that of study C. The proportional hazards assumption was 

tested using a Schoenfeld test. This approach to this outcome is looking at a 

bigger picture in terms of biology and management, as time to conception would 

also depend on the cow being detected to be in heat and inseminated, whereas 

on the other studies we just focused on the success of a certain insemination 

after it was already performed.  

The dataset (Y) was very similar to that of study C (dataset W) and was derived 

from dataset A. Only one insemination was kept per lactation and that was 

either the successful insemination (if one occurred during said lactation) or the 

last insemination (if no successful inseminations took place in that lactation). 

Again, inseminations (either successful or unsuccessful) that occurred later 

than 300 DIM were removed.  

Backwards elimination was implemented to remove unnecessary variables 

from the model. Any variable that produced a p-value larger than 0.05 was 
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excluded. The aareg() function from the “survival” package (Therneau, 

2022) was then used to visualize the change of the different covariates over 

time. 
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5.3 Results 

 

5.3.1 Predictive models 

 

5.3.1.1 Study A 

The final dataset consisted of 9239 data points, each point being an 

insemination. The total number of unsuccessful inseminations was 5996 

(64.9%), while the successful ones were 3088 (33.4%). A total of 155 data 

points (1.7%) had no assigned outcome and were excluded from the analysis. 

The potentially predictive variables that were considered in the model after 

forward selection were metritis, milk fever, predicted milk yield, corrected 

protein percentage in milk, residual milk yield, service number, hock hygiene 

both pre and post calving, lameness both pre and post calving, rumen fill both 

pre and post-partum, twinning, lactation number, left displaced abomasum, calf 

mortality, retained foetal membranes and calving month. 

After producing models both with and without the use of sampling methods, it 

was determined that up-sampling improved their performance as the numerical 

value of kappa throughout all methods increased. In fact, before up-sampling 

the kappa value for logistic regression, decision tree, ANN, SVM and Naïve 

Bayes was 0. A comparison of kappa values on the test set before and after 

up-sampling is presented on table 5.4.  More detailed information on the metrics 

of all models before up-sampling, both on the train and the test set, is presented 

on table 5.5. In addition to kappa, sensitivity and detection rate was 0 for logistic 

regression, decision tree, ANN, SVM and Naïve Bayes, while specificity was 1 
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and PPV as well as F1 could not be computed, indicating that the imbalance of 

the dataset affected the computations in a similar way as in the models 

presented in chapter 4.3.1.1.  

Table 5.4 Comparison of Kappa values on the test set before and after the 

implementation of up-sampling. 

Method Kappa before up-

sampling 

Kappa after up-

sampling 

Logistic regression 0 0.059 

Decision Tree 0 0.054 

Random Forest 0.176 0.174 

ANN 0 0.054 

SVM 0 0.068 

Naïve Bayes 0 0.038 

KNN 0.061 0.052 
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Table 5.5 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Insemination Success outcomes, before up-sampling 

Insemination Success 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.650 0.650 0.621 0.650 0.650 0.650 0.645 

Kappa 0 0 0.179 0 0 0 0.078 

Sensitivity 0 0 0.404 0 0 0 0.289 

Specificity 1 1 0.729 1 1 1 0.783 

PPV - - 0.392 - - - 0.408 

NPV 0.650 0.650 0.783 0.650 0.650 0.650 0.680 

AUROC 0.549 0.5 0.591 0.5 0.5 0.5 0.550 

Detection 

Rate 

0 0 0.161 0 0 0 0.098 

Balanced 

Accuracy 

0.5 0.5 0.550 0.5 0.5 0.5 0.536 

F1 - - 0.458 - - - 0.338 

Test Set 
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 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.652 0.652 0.713 0.652 0.652 0.652 0.638 

Kappa 0 0 0.176 0 0 0 0.061 

Sensitivity 0 0 0.389 0 0 0 0.218 

Specificity 1 1 0.701 1 1 1 0.799 

PPV - - 0.327 - - - 0.392 

NPV 0.652 0.652 0.800 0.652 0.652 0.652 0.701 

AUROC 0.541 0.5 0.572 0.5 0.5 0.5 0.543 

Detection 

Rate 

0 0 0.158 0 0 0 0.087 

Balanced 

Accuracy 

0.5 0.5 0.543 0.5 0.5 0.5 0.530 

F1 - - 0.437 - - - 0.303 

 

After up-sampling, the metrics and the kappa value in particular, showed at 

least numerical improvements. On the training set the accuracy of all models 

ranged from 43% (Naive Bayes) to 62% (random forest), Kappa from 0.04 

(Naïve Bayes) to 0.18 (random forest), balanced accuracy from 0.52 (Naïve 

Bayes) to 0.59 (random forest) and AUROC from 0.542 (decision tree) to 0.647 

(random forest). Both sensitivity and specificity had a wide range with the 

former being from 0.415 (random forest) to 0.804 (Naïve Bayes) and the latter 
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being from 0.243 (Naïve Bayes) to 0.703 (random forest). PPV and NPV were 

overall similar for all models with the best ones being 0.419 (random forest) and 

0.752 (random forest) respectively and the worst being 0.699 (logistic 

regression) and 0.752 (random forest) respectively. Detection rate and F1 were 

low for all models, the highest ones being 0.273 and 0.495 respectively, both 

for the Naïve Bayes.  

Results on the test set were very similar with kappa being low ranging from 

0.038 (Naïve Bayes) to 0.174 (random forest), accuracy ranging from 0.436 

(Naïve Bayes) to 0.621 (random forest) and AUROC ranging from 0.542 

(decision tree) to 0.647 (random forest). Sensitivity as well as specificity had a 

wide range, from 0.493 (random forest) to 0.805 (Naïve Bayes) for the former 

and 0.244 (Naïve Bayes) to 0.687 (random forest) for the latter. PPV was 

consistently low with the highest at 0.419 for the random forest, while NPV had 

moderate to high values with the lowest one at 0.686 for the KNN. Detection 

rate, balanced accuracy and F1 were all consistently low, with the highest 

values being 0.200 (decision tree), 0.590 (random forest) and 0.493 (Naïve 

Bayes) respectively. Detailed information on the metrics of all models both on 

the training and the test set are presented on table 5.6. The metrics of all 

models on the test set are also graphically shown in Figure 5.1.  
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Table 5.6 All metrics of all machine learning models, as calculated on both the training 

and the test sets, predicting Insemination Success outcomes, after up-sampling 

Insemination Success 

Training Set 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.547 0.514 0.621 0.515 0.531 0.436 0.523 

Kappa 0.063 0.059 0.183 0.060 0.071 0.043 0.058 

Sensitivity 0.512 0.570 0.415 0.561 0.551 0.804 0.539 

Specificity 0.543 0.489 0.703 0.501 0.530 0.243 0.526 

PPV 0.329 0.349 0.419 0.351 0.368 0.349 0.356 

NPV 0.699 0.714 0.752 0.708 0.725 0.720 0.710 

AUROC 0.550 0.542 0.647 0.559 0.555 0.543 0.544 

Detection 

Rate 

0.192 0.206 0.172 0.203 0.194 0.273 0.200 

Balanced 

Accuracy 

0.540 0.543 0.594 0.537 0.551 0.529 0.535 

F1 0.441 0.454 0.477 0.453 0.459 0.495 0.447 

Test Set 



211 
 

 Logistic 

Regression 

Decision 

Tree 

Random 

Forest 

ANN SVM Naïve 

Bayes 

KNN 

Accuracy 0.533 0.514 0.621 0.515 0.531 0.436 0.523 

Kappa 0.059 0.056 0.174 0.054 0.068 0.038 0,052 

Sensitivity 0.532 0.587 0.493 0.578 0.558 0.805 0.547 

Specificity 0.533 0.477 0.687 0.482 0.517 0.244 0.511 

PPV 0.371 0.367 0.449 0.367 0.374 0.355 0.367 

NPV 0.688 0.694 0.724 0.689 0.694 0.712 0.686 

AUROC 0.545 0.539 0.630 0.542 0.547 0.544 0.539 

Detection 

Rate 

0.181 0.200 0.168 0.197 0.190 0.274 0.186 

Balanced 

Accuracy 

0.533 0.532 0.590 0.530 0.538 0.525 0.529 

F1 0.437 0.448 0.470 0.447 0.448 0.493 0.439 



212 
 

Figure 5.1 Comparison of all metrics for all different methods predicting insemination success after upsampling, on the test set. 
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Since from the results above the random forest was the best performing model, 

it was further investigated on whether it could make predictions on a herd-

month level, instead of an individual lactation level. 

 

A total of 685 herd-month groups were identified, with 20% of those (137 

groups) being separated as a test dataset. After applying the exclusion filter in 

order to only include groups with insemination success within 15% and 45% the 

test set was reduced to 64 groups. When testing the predictions, the difference 

in the probability difference in each group ranged from -8.0% (less likely to 

predict a positive outcome compared to the actual percentage of positive 

outcomes) to 24.2% (more likely to predict a positive outcome compared to the 

actual percentage of positive outcomes). Variable importance indicated 

predicted 305 milk yield as the most valuable predictor, with residual daily milk 

yield and corrected protein percentage following it closely. 

Figure 5.2 Scatterplot of actual insemination success per group vs the predicted 

insemination success per group 
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The R2 describing the relationship shown in the scatterplot (Figure 5.2) was 

found to be 36.5%, meaning that the averaged predictions explain over a third 

of the variation of the averaged insemination success per group. 

5.3.1.2 Study B 

 

The initial size of the dataset after the aggregation of the variables as well as 

the outcome was 268 herd/quarter-years. 42 farms were included in the 

analysis in total. The missing data of all potentially predictive variables are listed 

at table 5.7. 
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Table 5.7 Aggregated variables available for analysis, along with missing data. 

Variable Missing Data (%) 

Metritis percentage per 

herd/month/year 

8 (1.2) 

Milk Fever percentage per 

herd/month/year 

8 (1.2) 

Twinning percentage per 

herd/month/year 

8 (1.2) 

Calf Mortality percentage per 

herd/month/year 

8 (1.2) 

Service number average 0 (0.00) 

Mean rumen fill pre calving 0 (0.00) 

Mean BCS 0 (0.00) 

Mean BCS change 0 (0.00) 

Mean Lactation Number 0 (0.00) 

Mean predicted Milk Yield 36 (5.4) 

Mean residual Milk Yield 36 (5.4) 

Mean corrected Protein 

percentage 

32 (4.8) 
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Mean corrected Butterfat 

percentage 

32 (4.8) 

Mean Butterfat Protein ratio 32 (4.8) 

 

The mean percentage of insemination success per herd per month was at 

34.3%, with the least successful months having as low as 6.7% insemination 

success rate and the most successful ones having as high as a 72.7% rate 

(Figure 5.3). 

Figure 5.3 Insemination success percentage per herd/month group distribution
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The results of all models are shown in table 5.6. On the training set the R2 

values ranged low with the highest being the MARS model at 0.252. On the test 

set the RMSE remained at below 12.4% except for the MARS model which had 

a much higher RMSE at 34.5%. Similarly, MAE was below 10.1% for all models 

except the MARS model with an MAE of 33.0%. After applying the models on 

the test sets the results were comparable. all R2 values were found to be under 

25%, with the highest performing model (MARS) being at 0.235. RMSE and 

MAE were below 13.6% and 10.8% respectively, with the exception of the 

MARS model which produced and RMSE and MAE of 38.1% and 35.8% 

respectively. All metrics are shown in table 5.8. 
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Table 5.8 Metrics of all models predicting insemination success percentage per 

herd/month group on both the training and the test sets. 

Training Set 

 RMSE R2 MAE 

Linear 

Regression 

0.124 0.082 0.101 

Decision Tree 0.119 0.149 0.089 

Random Forest 0.122 0.240 0.090 

Artificial Neural 

Networks 

0.345 0.219 0.330 

MARS 0.103 0.252 0.092 

Test Set 

 RMSE R2 MAE 

Linear 

Regression 

0.136 0.074 0.108 

Decision Tree 0.124 0.133 0.097 

Random Forest 0.129 0.223 0.097 

Artificial Neural 

Networks 

0.381 0.204 0.358 

MARS 0.126 0.235 0.100 
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5.3.1.3 Study C 

 

The final dataset after keeping only successful inseminations was comprised of 

4,500 lactations. The potentially predictive variables that were considered in the 

model after forward selection were the same as mentioned in study A, with the 

final variables included in the model being metritis, LDA, RFM, milk fever, 

corrected percentage of protein in milk, the lactation number, BCS post-partum, 

rumen fill again both pre- and post-partum and finally the calving month. 

The mean DIM at conception was 107.4, with a median of 93, a minimum of 23 

and a maximum of 300 (DIM of 301 or larger had been removed during 

preparation of the dataset) (Figure 5.4) 

Figure 5.4 Histogram of DIM at the time of conception 
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On the training set, the R2 values were consistently very low, with the highest 

being 3.0% for the linear regression. RMSE and MAE values were high with the 

former ranging from 51.0 DIM (random forest) to 116.7 DIM (ANN) and the latter 

ranging from 39.8 DIM (random forest) to 104.2 (ANN). The R2 values of all 

models on the test set were also very low, ranging from 0.1% for the ANN model 

to 2.4% for the linear regression model. RMSE values were correspondingly 

high and ranged from 51.8 to 118.7 DIM for the random forest and ANN models 

respectively. Similarly, MAE values ranged from a minimum of 40.8 DIM for the 

random forest to a maximum of 106.5 DIM for the ANN. It should be noted that 

the ANN model was an outlier especially when it came to RMSE and MAE 

values – other models had RMSE values of around 51.8-52.3 DIM while MAE 

ranged between 40.8 and 41.3 DIM. All metrics on both training and test sets 

are shown on table 5.9.  
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Table 5.9 Metric of all models predicting DIM at conception for both the training and 

the test set. 

Training Set 

 RMSE R2 MAE 

Linear 

Regression 

51.5 0.030 40.2 

Decision Tree 51.1 0.014 40.3 

Random Forest 51.0 0.024 39.8 

Artificial Neural 

Networks 

116.7 0.005 104.2 

MARS 51.6 0.026 40.1 

Test Set 

 RMSE R2 MAE 

Linear 

Regression 

52.3 0.024 41.1 

Decision Tree 52.0 0.010 41.0 

Random Forest 51.8 0.014 40.8 

Artificial Neural 

Networks 

118.7 0.001 106.5 

MARS 52.2 0.021 41.3 
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5.3.2 Inferential Models 

 

5.2.3.1 Study D 

 

The explanatory variables included in the final generalized mixed effects model 

after backwards elimination were lactation number, calving month and calf 

mortality. 

More specifically, when compared to heifers, cows had decreased odds of 

insemination success (with odds ratio decreasing with each subsequent 

lactation), cows that had experienced calf mortality in that same lactation also 

had decreased odds. The only statistically significant difference when it came 

to calving month, using January as a baseline, was September having 

increased odds of insemination success. The results are shown in detail on 

table 5.10. The Hosmer-Lemeshow goodness of fit test had a p-value of 0.16, 

indicating no statistical evidence for rejecting the H0, meaning that our data 

appear to be matching the model.  
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Table 5.10 Odds Ratios with 95% CI for mixed effects logistic regression model of 

insemination success 

Variable  OR  95% CI  p-value 

Lactation 1 Baseline   

Lactation 2 0.810 (0.714, 0.920) 0.001 

Lactation 3 0.736 (0.643, 0.842) >0.001 

Lactation 4 0.601 (0.516, 0.701) >0.001 

Lactation >5 0.491 (0.418, 0.577) >0.001 

(Calving month) 

January 

Baseline   

February 1.008 (0.804, 1.263) 0.946 

March 1.151 (0.924, 1.433) 0.209 

April 1.095 (0.871, 1.377) 0.435 

May 1.071 (0.850, 1.349) 0.562 

June 1.111 (0.889, 1.389) 0.353 

July 1.079 (0.872, 1.335) 0.486 

August 1.030 (0.829, 1.280) 0.789 

September 1.455 (1.165, 1.817) <0.001 

October 1.056 (0.844, 1.322) 0.631 

November 0.991 (0.791, 1.242) 0.941 
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December 1.175 (0.949, 1.455) 0.139 

CalfMortality 0.730 (0.546, 0.977) 0.034 

 

5.2.3.2 Study E 

 

The graph below (Figure 5.5) shows the survival probability of a cow becoming 

pregnant. 

Figure 5.5 Kaplan-Meier survival curve of time to pregnancy in cows 

 

The number of observations was 5,516 with a total of 4,500 events. The 

variables that were included in the final Cox Proportional Hazards model were 

the lactation number, the calving month, whether the cow was diagnosed with 
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metritis at that lactation, and the corrected average protein percentage in milk. 

(Table 5.11). 
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Table 5.11 Hazards Ratios from Cox Proportional Hazards model with outcome time 

to pregnancy in cows conceiving at <100 DIM. 

Variable Hazard 

Ratio 

95% Confidence 

Interval 

p-value 

Metritis  0.84 (0.70, 0.97) 0.01 

Corrected Protein 

% 

0.88 (0.84, 0.91) <0.001 

Lactation No 1 (Baseline)   

Lactation No 2 0.90 (0.82, 0.97) 0.01 

Lactation No 3 0.87 (0.79, 0.94) 0.002 

Lactation No 4 0.86 (0.76, 0.95) <.003 

Lactation >4 0.77 (0.67, 0.86) <0.001 

(Calving Month) 

January 

(Baseline)   

February 0.86 (0.68, 0.95) 0.05 

March 1.08 (0.90, 1.26) 0.56 

April 1.09 (0.91, 1.27) 0.90 

May 0.97 (0.77, 1.17) 0.68 

June 0.94 (0.76, 1.12) 0.55 

July 1.02 (0.84, 1.20) 0.18 
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August 0.92 (0.74, 1.10) 0.62 

September 1.28 (1.14, 1.41) <0.001 

October 1.04 (0.86, 1.22) 0.12 

November 0.97 (0.79, 1.15) 0.41 

December 1.09 (0.91, 1.27) 0.90 

 

The proportional hazards assumption was tested using a Schoenfeld test, 

producing a global Schoenfeld test p-value of 0.072945, and individual p-values 

of 0.0927, 0.5054 and 0.0582 for lactation number, corrected protein 

percentage and calving month respectively. All values being above the 0.05 

cutoff as well as examination of the Schoenfeld residuals graph that highlights 

that the residuals do not change over time (Figure 5.6) supports the belief that 

the proportional hazards assumptions is not violated.  

  



228 
 

Figure 5.6 Global Schoenfeld test and individual Schoenfeld tests for each 

independent variable included in the Cox Proportional Hazards Model with outcome 

time to pregnancy in cows conceiving at <100 DIM. 

 

Further analysis was conducted to look into the slopes of the variables included 

in the model, to challenge the assumption that they stay constant and see if 

and how they change throughout time. The slopes and their behaviour over 

time are graphically depicted in Figure 5.7. 

All slopes seem relatively stable, apparently only diverging towards the end of 

the time period, which is to be expected to a degree since as more cows get 

pregnant we have a smaller sample size and therefore wider confidence 

intervals. The most noteworthy changes are in lactation 5 where it seems that 

if a cow has not become pregnant by day 50 then the chances are starting to 

decrease greatly. 
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Figure 5.7 Slopes of Hazards Ratios over time 
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5.4 Discussion 

 

For study A (predictive models with the outcome of conception for a given 

insemination) it is evident that the models do not produce adequate predictive 

value, with the Kappa was consistently low, again with the highest value 

appearing in the random forest with 0.18. The sensitivity and specificity balance 

each other, as in models when one increased the other appeared to decrease 

dramatically. One such example is the random forest model with the highest 

sensitivity of 82% and the lowest specificity of 27%. The Naïve Bayes model on 

the other hand behaves differently achieving the highest specificity of 74% and 

the lowest sensitivity of 35%. The rest of the models follow a similar pattern with 

the logistic regression and SVM models trying to fit both sensitivity and 

specificity closer to 50%. The PPV of all models approximated 70% with the 

NPV at around 40%.  

The possibility of a predictive tool that can be used on farm to assess the result 

of a given insemination has been tackled by research in the previous years. 

Two papers had already investigated the possibility of predicting insemination 

success, similarly to Study A (Hempstalk et al., 2015, Shahinfar et al., 2014). 

However, both these studies lack reporting of some informative metrics, such 

as the Kappa, balanced accuracy or even specificity and sensitivity, and only 

present AUROC as a measure of evalulation for their models. AUROC may give 

an overly optimistic evaluation of a model's performance on imbalanced 

datasets, as it can be skewed by the model's ability to classify the majority class 

while overlooking the minority class (Lobo et al., 2008, King et al., 2021, 

Hancock et al., 2023, Bednarski et al., 2022). 
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After using a variety of phenotypic and genotypic variables, Shahinfar et al. 

(2014) produced a random forest model indicating the most predictive variables 

to be mean conception rate per herd in the past 3 months, the herd-year-month 

group the insemination took place in, DIM at insemination, times the cow had 

been inseminated for the current lactation and the stage of lactation at the time 

of insemination. They also reported a decision tree model, using the C4.5 

methods as opposed to the C5.0 used for our project, which identified incidence 

of ketosis, mastitis, RFM, lameness for primiparous cows, and LDA, mastitis 

and RFM for multiparous cows.These results seem to align for the greater part 

with ours, having found that the variables that added the most predictive value 

in the model were DIM during lactation, incidence of metritis and milk fever, 

lactation number, service number, and various milk variables. The AUROC 

reported for the random forest model, which was the highest performing 

algoritms, ranged from 72.3% and 75.6%, while for the rest of the methods, 

which included decision trees, Naïve Bayes, Bootstrap Aggregation and 

Bayesion Network, ranged between 60.0% to 68.0%. This pattern was similar 

to our results where the random forest model had an overall better performance 

compared with the rest of the algorithms, which was reflected in both accuracy 

and AUROC. However, as Sharinfar et al. (2014) reported this trend could be 

attributed to the random forest method overfitting the data, rather than it 

producing the most predictive algoritms. Their overall performance in regards 

of AUROC was higher, but the difference was not overwhelming and it should 

be noted that they used variables that we did not utilise, mainly the herd-month-

year which effectively adds a random effect for herd-month that cannot be 

utilised in a farm setting to make predictions. 
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The second study with a similar approach (Hempstalk et al. 2015) and 

conception rate of 47.3%, also reported AUROC values, the highest one being 

generated by a logistic regression model at 66.5% and the lowest by a C4.5 

decision tree at 49.2%. They also used an independent dataset for further 

external validation in order to more accurately access the generazibily of their 

models and, again, the best performing one was found to be the logistic 

regression with an AUROC value of 66.5% and standard deviation of 2.5%. The 

rest of the algoritms included C4.5 decision trees, Naïve Bayes, Bayes 

Network, SVM, Partial Least Squares, random forest and rotation forest with 

their AUROC after external validation being between 52.1% and 65.7%. The 

predictive variables used included information on the lactation number, the 

number of insemination and DIM when it occurred in the current and the 

previous lactation, breed, milk production, energy balance, BCS and its 

changes as well as the day of the week and month of the year. Once again, the 

results looked fairly similar to our metrics even prior to the external validation. 

In this case the logistic regression model seemed to outperform the other 

algorithms, however the AUROC reported was no more than fair for all of them. 

As mentioned above AUROC was the only metric reported making it difficult to 

determine if there is actual any predictive value in the models, however in either 

case the values were rather low to have a clinically significant impact.  

When the models of Study A were used to make predictions on aggregated 

data (study B) all models produced a low R2 with the MARS model having the 

highest value of 23.5% and the linear regression the lowest of 7.4%. The 

reasoning behind aggregating the data here was based on the fact that in many 

biological situations group-level predictions appear to be easier to make 
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compared to predictions on the individual level. In this case, across a given 

group of serves it’d be expected to be able to make reasonable predictions of 

what percentage would be successful, even using a model that was relatively 

poor at predicting which of the inseminations would be successful. Eventually, 

in this study the R2 improved somewhat, with the value for the best performing 

increasing from 18.0% to 23.5%. However, as a whole this increase did not 

appear to meaningfully increase the predictiveness of the models as the 

variation of the outcome explained continued to be at under a fourth of the total 

variation. 

Study C (where the predictive model was built and tested on data aggregated 

at herd-month level) had similarly low R2 values throughout all models. The 

linear regression was the model that achieved the highest R2 at just 2.4%. Since 

in study B it was determined that predictions are not possible using an 

aggregated, continuous outcome and aggregated variables, the reasoning 

behind study C was to investigate whether predictions can be made on an 

individual, continuous outcome without aggregating any variables. However, it 

is evident that the predictions actually lay far from the actual values rendering 

the models unsuccessful in making adequate predictions.  

Study D was effectively an inferential model with the same outcome and 

predictors offered as the predictive model in Study A (inseminations as units of 

data, with conception as the binary outcome). Here, the variables included in 

the final model were the lactation number, BCS pre- and post-partum, month of 

previous calving and calf mortality.  It is interesting to note that the most 

important predictive variables included in the model of study A (predicted 305 

milk yield, residual daily milk yield and corrected protein percentage in milk) 
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were not even present in the inferential model. A possible explanation is that 

since all three of these variables were calculated from the lactation curves that 

are specific to each herd, their contribution to the predictive model was in fact 

the herd effect. And since the inferential model had already controlled for herd 

effect by adding the random effect (herd) in the mixed effects model the milk 

variables did not have any further contribution.  

The survival analysis model (study E) suggested that cows diagnosed with 

metritis as well as lactation numbers being larger than 1, have a decreased 

chance of getting pregnant. The calving month also seem to affect the chances 

with February having decreased chances compared to January, while 

September having increased chances, again compared to January. Gröhn and 

Rajala-Schultz (2000) described a similar survival analysis looking into the time 

to conception using milk variables, parity, disease and calving season as likely 

variables. Both studies identified lower chances of conception in older cows. 

They also found lower chances of conception in cows with metritis, retained 

placenta or ovarian cysts, and while the present study did not find a change in 

hazard ratio for RFM, there was an evident reduction for cows with metritis. 

Lastly, they reported a drop in hazard ratio when calving during the spring 

months (March to May). In this study the drop is apparent in February instead, 

however if we are taking into consideration how the seasonal temperature may 

have shifted in the decade that separates the two studies it is possible that they 

are describing a similar effect. Our study also reported an increase in 

conception chances when calving in September, which is not reported in Gröhn 

and Rajala-Schultz (2000), possibly due to the fact that they did not focus on 

individual months but in seasons. 
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The failed inseminations in our data compose the 66% of the final dataset as 

opposed to 34% successful ones, making it somewhat imbalanced though not 

as much as the dataset used for Chapter 4. Nevertheless, as shown by the 

Kappa values in contrast with the Accuracy produced the same issue that 

occurred during the analysis of that dataset reoccured. In fact before using 

sampling methods, the accuracy of all models lay between 48-63% and Kappa 

between 0.06 and 0.10, the random forest being the best performing model with 

its accuracy very closely approaching the incidence of failed inseminations. 

This is a strong indication that the models are taking advantage of the numerical 

difference of the two classes to achieve a numerical overall superior accuracy 

by assigning the label of the majority class in most predictions. 

Even after upsampling the majority of the models did not seem to improve in 

terms of predictiveness. The random forest model, which was already the best 

performing before upsampling, had the most drastic change in metrics with 

Kappa rising from 0.10 to 0.18, specificity from 27% to 36%, while the 

sensitivity, AUROC, balanced accuracy and accuracy remained relatively 

unchanged. In all models, according to the scale set by Viera and Garrett 

(2005),Kappa values indicated only slight aggreement of predicted and actual 

values. Furthermore, the balanced accuracy never managed to achieve values 

much higher than 50%, again reinforcing the suggestion by Brodersen et al. 

(2010) that balanced accuracy is a metric that more appropriately measures 

model performance where classes are imbalancedcompared to regular 

accuracy. 

As Hempstalk et al. (2015) explained, relatively poor predictive performance in 

this context is perhaps not surspising considering the very wide variety of 
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factors that could influence the outcome of an insemination (e.g. individual cow 

energy balance, semen characteristics and handling, heat stress etc). 

Interestingly, performance barely improved when the models were used to 

make predictions on aggregated groups of inseminations. So not only did the 

models fail to identify which specific inseminations would be specific, but could 

not even measure the overall impact on success on a herd-quarter-year group. 

This could point to the fact that there are variables affecting the process which 

cannot be measured beforehand and therefore cannot be accounted for. These 

could include herd-season-year group, the capability of the technician, as well 

as the bull’s fertility (Hempstalk et al., 2015). This seems to align with our 

findings in relation with the inferential models, where the herd/quarter-year 

group random effect played an important role in explaining the variation of the 

outcome. 

When it comes to the inferential models, the main variables that were found to 

have a statistically significant association with the outcomes in both the logistic 

regression and the Cox proportional hazards model were the lactation number, 

the calving month (and in particular September), BCS pre as well as post 

partum, predicted milk yield, metritis diagnosis and calf mortality. The 

reproductive health has been associated with poor insemination success 

(Shahinfar et al., 2014), which is in accordance with our results for metritis and 

calf mortality reducing the insemination success odds as well as increasing the 

time to pregnancy. Similar associations have been found for milk yield  and 

energy balance (Shahinfar et al., 2014) which would explain the association we 

have found with BCS and predicted milk yield. Lactation number could be 

associated with numerous other factors, such as cow health which also has a 
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positive correlation with insemination success (Shahinfar et al.2014). This 

would explain why primiparous cows, having less health issues, might have a 

greater chance at getting pregnant. Finally the month could be possibly 

interpreted as a heat stress proxy, however since only September seemed to 

differ it seems a bit unlikely.  

Our studies had a number of limitations that affected them. Namely, the dataset 

used was gathered through convenience sampling. While that does not greatly 

impact the predictive models, since we are not looking for potentially causal 

associations, however it would mean that in the event of a usable predictive 

model we would have to assess its generalisability and potentially consider 

external validation to confirm potential predictiveness. For the inferential 

models, it similarly means that the results are not necessarily generalisable, at 

least not to the entirety of dairy cows in the UK. It still has great value to look 

into the measured and the effects for that specific population of cows as it 

represents a great deal of the dairy farms a clinician would visit. 

All the potential risk factors identified during the inferential analyses were used 

in the predictive models, so all the statistically significant associations did 

appear to help with the predictive process somewhat. It is interesting to note 

that the predictive models did pick up some extra variables, perhaps identifying 

more subtle or intriquate associations, that improved their kappa value. Even 

still, however, the overall predictiveness of our models remained poor. 

It is also interesting to note that the infential models found a few very strong 

associations, but while the predictive models included them as well as 

additional variables they still failed to produce highly accurate predictions. This 
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is especially important, as before predictive modelling became common 

practice researchers could potentially draw conclusions about the variation of 

an outcome based on inferential models instead. 
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Chapter 6 – Prediction of production Outcomes 

 

6.1 Introduction 

Milk production can affect greatly economic losses in dairy cattle, not only by 

its reduction, but by a decline in protein and lipid composition or a rise in the 

number of somatic cells (De Amicis et al., 2018). Production normally rises 

steeply during early lactation, with good health and appropriate feed intake 

helping ensure a consistent increase (LeBlanc, 2010). It then steadily 

decreases until the end of the cow’s production cycle when the cow is dried off, 

either at a pre-determined time prior to her next calving, or in some cases where 

production drops below a threshold set by the herd manager (Martinez Lopez 

et al., 2019). Evaluating the shape of this “lactation curve” can be a powerful 

tool in predicting a cow’s total milk yield (Martinez Lopez et al., 2019) and 

assessing the cows’ health status (Dudouet, 1982). Functions commonly used 

to describe the lactation curve are discussed in detail by Martinez Lopez et al. 

(2019). As summarised, they can be either linear or non-linear and can be all 

summed up as: 

 Y=η(t,β) 

where Y is the milk yield at time t of the lactation and β the unknown parameters 

of the model that are to be estimated from the data and η is the function that 

describes their relationship. Among the particular mathematical functions used 

to calculate the lactation curve include the incomplete gamma (Wood, 1967), 

the polynomial (Ali and Schaeffer, 1987), the exponential (Wilmink, 1987) and 

the Legendre polynomial (Kirkpatrick et al., 1994). But the need for more 
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complex models as the number of available features increased (Murphy et al., 

2018) has led researchers to use other methods such as a multivariate 

regression model using test-day record, month of calving and gene data 

(Grzesiak et al., 2003), and autoregressive models (Vasconcelos et al., 2004), 

Macciotta et al., 2002). In addition, models with reduced number of features 

have been presented for situations where there is a sparsity of data (Græsbøll 

et al., 2016).  

Management factors, including diet, moving cows to a different group and 

weather conditions, are also shown to influence milk yield variability (LeBlanc, 

2010). Frequently, a reduction in milk production precedes the clinical 

symptoms of a disease (Edwards and Tozer, 2004). Trends in production during 

early lactation can be used as a source of information for assessing the success 

of the transition period on the herd-level (Nordlund and Cook, 2004). Milk 

composition at this stage has been linked with periparturient diseases, through 

its association with the cow’s energy status (Toni et al., 2011). Milk constituents 

as well as the month of calving have been associated with fertility outcomes, 

such as the probabilities of the occurrence of pregnancy (Cook and Green, 

2016), but other authors have found that milk composition information was 

unlikely to be usefully predictive for herd conception risk (Hudson and Green, 

2018). Lukas et al. (2015) suggested that transition period monitoring using 

daily milk yield can be valuable for herd managers, allowing them to take action 

timely and prevent cows from experiencing transition related problems.  

Reduced milk production has been linked with disease. In particular, reduced 

production has been shown in cows with clinical or puerperal metritis (Giuliodori 

et al.,2012), and 610 kg of lost milk per cow was calculated as a mean measure 

https://pubmed.ncbi.nlm.nih.gov/?term=Giuliodori+MJ&cauthor_id=23548288
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for every case of LDA (Grymer et al., 1982). Retained placenta was found to be 

associated with a 0.8 kg/day loss across the lactation, or2.5 kg/day loss across 

the first 100 days in milk (Fourichon et al., 1999). In a systematic review, 

Fourichon et al. (1999) reported that only 5 out of 13 studies had found 

production losses after dystocia, while none out of 6 studies reported a loss 

after a milk fever diagnosis. 

The shape of the lactation curve in early lactation has been used a predictor in 

various reproductive outcomes, such as the calving to conception interval in 

dairy herds (Cook and Green, 2016) and insemination outcomes (Hudson and 

Green, 2018). But the prediction of lactation curves themselves have also been 

the subject of several studies. ANNs have been used in several studies in order 

to predict milk yield (Lacroix et al.,1995, Lacroix et al., 1997, Salehi et al., 1998), 

either in terms of total 305-day yield (Grzesiak et al., 2003, Gorgulu, 2012), 

daily milk yield (Grzesiak et al., 2006, Torres et al., 2005), 305-dayyield in first 

lactation (Sharma et al., 2006, Sharma et al., 2007, Njubi et al., 2010), or total 

herd production (Murphy et al., 2014, Sanzogni and Kerr, 2001). Deep learning 

methods have also been utilised in making milk yield predictions by Liseune et 

al. (2021), appearing to outperform baseline models. 

The lactation curve has been proved critical to the herds’ monitoring systems 

as it is a tool to detect disease such as ketosis and mastitis as an early stage 

(Grzesiak et al., 2003, Adriaens et al., 2018). This early detection possibility is 

what makes them so useful for farmers as disease can have a great economic 

impact in terms of production loss, treatment expenses or animal capital loss 

(Wilson et al., 2004, Gröhn et al., 2004). One downside is that in order to 

calculate the lactation curve it is generally necessary to have an initial number 
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or early milk yields. Therefore, the existence of a model that would be able to 

predict said lactation curves without the access to such information could be a 

very important asset.  

Several machine learning studies aimed at production outcomes have been 

published throughout the past two decades. Murphy et al. (2014) for instance, 

compared 3 different models that focused on predicting total daily milk yield of 

the herd. Njubi et al. (2010) attempted predictions on next month and first 

lactation 305-day milk yield of Holstein-Friesian cows in Kenya. In a more 

recent study Grzesiak et al. (2021) also dealt with primiparous cows, predicting 

average milk yields with low RMSE and MAE and correlation coefficients of 

predicted vs actual values ranging between 0.75 and 0.99. Gianola et al. (2011) 

managed to predict fat, milk and protein yield with some success using genomic 

data. Grzesiak et al. (2006) focused on daily milk yield producing models with 

R2 values ranging from 31% to 79%, while Shahinfar et al. (2012) studied the 

prediction of breeding values in dairy cattle, including milk yield with a maximum 

correlation of 0.93. Sefeedpari et al. (2015) focused on forecasting milk yield of 

50 target farms in Iran, using energy consumption data, and presenting models 

with R2 values ranging between 0.65 and 0.93. Zegler et al. (2020) analysed 

the prediction of milk production in pastures for each of two months, using 

variables such as improved legume cover, residual sward height, and non-

improved grass cover. Nguyen et al. (2020) launched a small-scale study of 36 

cows, aiming to predict daily milk yield by using 35 cows as a training set with 

the remaining one as a test set, for each one of them, producing 36 models for 

each method used. The R2 of their four initial methods averaged at around 70%, 

showing an increase in their autoregressive models at an average of around 
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80%. Dallago et al. (2019) explored the prediction of first day milk yield in heifers 

and provided three different models with less than 4kg MSE, out of which the 

ANN was considered the best. Fuentes et al. (2020) used feed, weight and 

weather data as inputs to develop models predicting milk yield, protein and fat 

content, using daily data from 36 cows gathered over a period of four years, 

while Ji et al. (2022) explored various production measures, including the 

prediction of daily milk yield of the next month using data collected by robotic 

milking systems over a period of five years in a herd of a total of 80 cows, with 

a mean R2 of 91.9%. Piwczyński et al. (2020) took advantage of robotic milking 

systems for data collection as well, on a larger scale study of 37 herds, building 

a decision tree model predicting monthly milk yield. Gocheva-Ilieva et al. (2022) 

ulitilsed data from 158 cows throughout 4 farms and identified, farm, udder 

width, chest width and stature of the cow as important predictors for average 

305-day milk yield. Other recent studies have used machine learning methods 

to predict milk yield. Salamone et al. (2022) have reported a selection of random 

forest models aiming to predict first day milk yield, with R2 values of up to 52%. 

Bovo et al. (2021) also reported models predicting milk yield, based on their 

median accuracy, using mainly environmental predictors about temperature 

and heat stress. The built their models using 91 animals from one herd, 

presenting a relative error of 18% for daily milk yield, which can drop to 2% 

when they use the total milk yield (of an average 68 test days). To our 

knowledge, there are no other studies of this size utilizing machine learning to 

predict predicted 305-milk yield or daily milk residuals through various cow 

predictors.  
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Multicollinearity of independent variables is also a significant issue dealt with in 

this chapter. Multicollinearity is a major issue in predictive modelling, especially 

in multiple regression analysis, arising when two or more predictor variables 

are highly correlated. This can hinder accurate estimation of model coefficients, 

as it inflates their standard errors, making them unreliable and complicating 

result interpretation (Alin, 2010; Shrestha, 2020; Ayinde & Nwosu, 2021). Such 

inflation can lead to wider confidence intervals, reduced statistical power, and 

ultimately diminish the model's predictive accuracy (Shrestha, 2020; Arici, 

2023). 

Multicollinearity is a concern not only in regression models but also in a range 

of machine learning algorithms, such as decision trees, random forests, artificial 

neural networks, support vector machines (SVM), K-nearest neighbours (KNN), 

and naive Bayes classifiers. Its impact can differ considerably across these 

techniques, affecting both model performance and interpretability. Tree-based 

models, such as decision trees and random forests, are generally less sensitive 

to multicollinearity allowing them to handle correlated predictors effectively, 

while maintaining robust predictive performance despite high correlations 

among input features (Abbas et al., 2024). Support vector machines are more 

sensitive to multicollinearity through the use of kernels, with more complex 

kernels exacerbating the effects of multicollinearity, leading to overfitting and 

reduced generalization (Abbas et al., 2024). KNN may also be affected by 

multicollinearity as it relies on distance metrics that can be distorted by 

correlated predictors (Singh et al., 2023). The effect of the phenomenon on 

ANN is less pronounced, however still consequential as the network may 

struggle to learn the underlying patterns when predictors are highly correlated, 
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leading to difficulties in training the model and subsequent overfitting (Farrell et 

al., 2019). For Naive Bayes classifiers, multicollinearity violates the assumption 

of feature independence that they operate under, leading to biased predictions. 

The presence of redundant features can cause the classifier to assign equal 

importance to both relevant and irrelevant features, which may further reduce 

classification performance (Chen et al., 2021). 

One popular method to assess multicollinearity is to calculate the Variance 

Inflation Factor (VIF). The VIF quantifies how much the variance of a regression 

coefficient is inflated due to multicollinearity (Kyriazos and Poga, 2023, 

Kılıçoğlu and Yerlikaya-Özkurt, 2024). There is no universal consensus as to 

which VIF cutoff is considered optimal (Vatcheva et al., 2016), however often a 

VIF value greater than 5 is considered indicative of problematic multicollinearity 

(Kim, 2019), with others accepting a more lenient cutoff at 10 (Holder and Field, 

2019, Mutchler and Anderson, 2010). 

Detecting multicollinearity in models that include categorical independent 

variables as it is in our case can be challenging, but several methods can be 

employed to assess and address this issue effectively. Categorical variables, 

when included in regression models, are typically transformed into dummy 

variables. This transformation can introduce multicollinearity, particularly when 

the number of categories is high or when categories are correlated with one 

another. When dealing with categorical variables, it is essential to calculate the 

VIF for each dummy variable created from the categorical variable. If any 

dummy variable exhibits a high VIF, it may suggest that the categorical variable 

is contributing to multicollinearity. It is crucial to omit one category of the dummy 

variable to avoid a phenomenon which occurs when perfect multicollinearity 
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arises due to the inclusion of all categories (Dressler et al., 2016). This practice 

is supported by various studies that emphasize the importance of careful 

dummy variable management in regression analysis (May et al., 2011, Je & 

Lee, 2023, Wei et al., 2024). Their findings highlight that when dummy variables 

are appropriately managed, they can enhance model fit without introducing 

significant multicollinearity. Moreover, the use of VIF is not limited to traditional 

regression models. It has been applied in various contexts, including machine 

learning and econometric models. For instance, in support vector regression, 

VIF is utilized to establish a multicollinearity threshold for variable selection, 

ensuring that the model remains robust against multicollinearity (Folli et al., 

2020). In conclusion, the incorporation of dummy variables in regression 

models necessitates careful consideration of multicollinearity, with VIF serving 

as a critical diagnostic tool. By ensuring that one category of the dummy 

variable is omitted and monitoring VIF values, researchers can mitigate the 

risks associated with multicollinearity, thereby enhancing the reliability of their 

regression analyses.  

Another consideration was confounding. Controlling for confounders has been 

a challenge, especially in biomedical studies (He et al, 2019, Smith and Nichols, 

2018, Topol, 2019), as they can interfere with the perceived relationship 

between input and output variables (Duncan and Northoff, 2013, Jager et al, 

2008, Pourhoseingholi et al., 2012). As predictive modelling does not focus on 

interpreting causation but rather on predictive power, it becomes a concern 

under certain conditions such as a scanner effect or head motion in 

neuroimaging or it might affect the generalizability of the model across different 

contexts as one population might have the confounding effect while another 



247 
 

may not when dealing with predictors such as biomarkers (Spisak, 2022). 

Therefore, the most pressing issues with confounding in predictive modelling 

are multicollinearity and overfitting. 
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6.2 Methods 

Four separate lactation curves were fitted for each herd in the dataset, 

representing expected lactation curve shape for animals in lactation 1, 2, 3 and 

4 and above in that herd, using all milk recording test day yields in each herd 

dataset between 2014 and 2020 and occurring at between1 and 400 days in 

milk (DIM). Curves were fitted via the MilkBot equation, a modification of the 

original Woods curve (Ehrlich, 2010), using the nslLM function in the R package 

“minpack.lm” (Timur et al., 2016).For each milk recording test day, the predicted 

yield was calculated, based on the lactation curve parameters for that herd and 

parity and the DIM of the animal at that test day. The residual yield (observed 

minus predicted daily yield for that test day) was calculated for each cow at 

each test day, representing the absolute difference in daily yield between the 

individual and her prediction. 

The predicted yield divided by observed yield was used to update the “scale” 

parameter of the herd/parity lactation curve for that particular test day, and the 

MilkBot formula rearranged to estimate a 305-day yield based on each 

individual test day yield. For lactations with at least five test day yield records, 

the mean of the five or more predictions was taken to represent the 305-day 

yield of that lactation, 

Both predictive and inferential models were built using both lactation-level 

predicted 305-day yield, and test-day-level residual yield as outcomes. 

Potential predictor variables considered were binary disease occurrence in the 

relevant lactation (milk fever, LDA, RFM and metritis), existence of lameness 

both pre- and post-partum, rumen fill, BCS, THI and hock hygiene both pre- 
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and post-partum, having either twin calves or a dead calf at the beginning of 

the lactation, and finally the calving month and lactation number. 

In addition to the predictive models described above (built using lactation- and 

test-day-level data) models were also built aggregating data at herd-quarter-

year level (i.e. averaging over all lactations/test days in a given herd in a given 

quarter-year). Predictions were attempted using 3 different methods: 

Method A) Predictions at the individual cow level, using cow level models 

Method B) Predictions at herd/month level, using cow level models 

Method C) Predictions at herd-quarter-year level using herd-quarter-year 

models 

For group C all variables were aggregated on the herd-quarter-year level. 

Quarter-year was favourited over month groups, in order to avoid groups with 

very few cows. Furthermore, groups that had less than 10 observations were 

omitted. Continuous variables were averaged as a mean of the group, while 

binary ones were converted to a percentage of positive instances in the herd-

quarter-year group. Factors with multiple levels, that could not be treated as 

numerical in order to be averaged (e.g. hock hygiene score), were removed 

from the analysis. The variables used were mean BCS pre- and post-partum, 

mean lameness score both pre- and post-partum, mean THI both pre- and post-

partum, mean rumen fill score again both pre- and post-partum, mean lactation 

number, the percentage of LDA, RFM, metritis and milk fever diagnosis and the 

percentage of twinning and calf mortality of all cows in each herd/trimester 

group. 
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A variety of machine learning algorithms appropriate to continuous numeric 

outcomes were selected: these were linear regression, decision tree, random 

forest, ANN and MARS. As in previous chapters, 10-fold cross validation was 

used to fit all initial models. The R2, RMSE and MAE were used to evaluate all 

models’ predictive value with an initial emphasis on the R2values.  

For method B a holdout dataset was used, splitting the train and test data 80% 

to 20% of the herd-quarter-year groups. The best performing model was chosen 

to make predictions on the test data and then those predictions were averaged 

as a mean of each herd/trimester group and compared to the actual means of 

the groups. The predicted and actual values were plotted against each other 

and a Pearson’s correlated coefficient was calculated, as well as predictive 

models that used the actual means as an outcome and predicted ones as a 

predictive variable. The effects of possible multicollinearity were also 

considered for all models. The Variance Inflation Factor (VIF) described in 6.1 

was used to assess the multicollinearity effect of each independent variable. 

Continuous and binary variables were assessed unmodified, while multi-level 

categorical variables were split into dummy variables and a VIF value was 

calculated for each level. The first level of each variable was omitted to avoid 

instances of perfect multicollinearity (Dressler et al., 2016). In order to calculate 

the VIF the car package in R was used (Fox and Weisberg, 2019). 

Multicollinearity was considered an issue when the VIF was over 5 (Kim, 2019). 

As generally recommended, when VIF values exceed the threshold, the 

variables were excluded from the model, as high VIF values can lead to 

unstable estimates and make it difficult to determine the individual effect of each 

predictor on the dependent variable (Prunier et al., 2015, Ghareeb, 2023, Kroll 



251 
 

and Song, 2013, Xi, 2024). As mentioned in 6.1 confounding is another issue 

that in predictive modelling can result in multicollinearity and overfitting. 

Therefore, considering possible confounding, multicollinearity was taken into 

account through VIF value calculation, as described above, and overfitting was 

tackled through cross-validation. 
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6.3 Results 

6.3.1 Method A-Individual cow level and models 

6.3.1.1 Outcome: Predicted 305-day lactation milk yield 

The total number of data points (lactations) used for the models was 7,296. The 

mean predicted 305 milk yield was at 10,971 kg, with a median of 10,886 kg, a 

maximum of 19,687 kg and minimum of 3,769 kg.  

The variables that were considered for the final model and also included 

missing data were hock hygiene post-partum with 1,635 missing data points 

(22.4%), LDA with 6 missing data points (0.08%), THI pre-partum with 5053 

(55.4%) and THI post-partum with 8360 (91.7%) missing data points. Due to 

the volume of missing data, variables THI pre- and post-partum were removed 

from the analysis to avoid discarding or imputing values for a very high 

proportion of the data.  

The VIF value was calculated for all possible independent variables (Table 6.1). 

The dummy variables for rumen fill score 5 both pre and post-partum were 

found to cause perfect multicollinearity so they were excluded from the initial 

model in order to be able to calculate the VIF values. The rest of the variable 

levels were included in order to minimise information loss. The variable levels 

that generated a VIF value higher than the set cutoff of 5 were all 5 levels of 

the hock hygiene score post-partum variable, rumen fill score post-partum 2, 3 

or 4 (so all the variable levels except a score of 1), BCS pre-partum score of 

2.5, 2.75, 3, 3.25, 3.5 or higher than 3.5 (so all levels except for a score of 2) 

and a BCS score post-partum of 2.75 (only level of that variable). Hence those 

variable levels were excluded from the analysis. Therefore, the final predictive 
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variables included in the models were lactation number 2, lactation number 3, 

lactation number 4, lactation number >4, Hock Hygiene Score 1 pre-partum, 

Hock Hygiene Score 2 pre-partum, Hock Hygiene Score 3 pre-partum, Hock 

Hygiene Score 4 pre-partum, Hock Hygiene Score 5 pre-partum, Rumen fill 

score 1 pre-partum, Rumen fill score 2 pre-partum, Rumen fill score 3 pre-

partum, Rumen fill score 4 pre-partum, Rumen fill score 1 post-partum, BCS 2 

pre-partum, BCS 2 post-partum,  BCS 2.5 post-partum, BCS 3 post-partum, 

BCS 3.25 post-partum, BCS 3.5 post-partum, BCS >3.5 post-partum, twinning, 

calf mortality, lameness pre-partum, lameness post-partum, calving month 

February, calving month March,  calving month April, calving month May, 

calving month June, calving month July, calving month August, calving month 

September, calving month October, calving month November, calving month 

December, Milk Fever, LDA, RFM and metritis. 
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Table 6.1 VIF values for all possible predictive variables as calculated when fitting a 

linear regression model on the predicted 305 milk yield with all variables included 

Variable VIF 

Lactation No 2 1.725 

Lactation No 3 1.629 

Lactation No 4 1.449 

Lactation No >4 1.581 

Hock Hygiene Score pre-partum 1 1.023 

Hock Hygiene Score pre-partum 2 1.026 

Hock Hygiene Score pre-partum 3 1.031 

Hock Hygiene Score pre-partum 4 1.009 

Hock Hygiene Score pre-partum 5 1.006 

Hock Hygiene Score post-partum 

1 

14.020 

Hock Hygiene Score post-partum 

2 

56.840 

Hock Hygiene Score post-partum 

3 

70.375 

Hock Hygiene Score post-partum 

4 

49.849 
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Hock Hygiene Score post-partum 

5 

16.286 

Rumen Fill pre-partum 1 1.210 

Rumen Fill pre-partum 2 1.934 

Rumen Fill pre-partum 3 2.999 

Rumen Fill pre-partum 4 2.920 

Rumen Fill post-partum 1 4.260 

 Rumen Fill post-partum 2 14.762 

 Rumen Fill post-partum 3 18.335 

Rumen Fill post-partum 4 12.182 

BCS pre-partum 2 1.072 

BCS pre-partum 2.5 8.555 

BCS pre-partum 2.75 24.364 

BCS pre-partum 3 25.238 

BCS pre-partum 3.25 27.924 

BCS pre-partum 3.5 22.676 

BCS pre-partum >3.5 12.875 

BCS post-partum 2 1.187 

BCS post-partum 2.5 3.741 
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BCS post-partum 2.75 5.543 

BCS post-partum 3 4.599 

BCS post-partum 3.25 3.203 

BCS post-partum 3.5 1.956 

BCS post-partum >3.5 1.374 

Twinning 1.080 

Calf Mortality 1.046 

Lameness pre-partum 1.070 

Lameness post-partum 1.063 

Calving month-February 1.943 

Calving month-March 2.086 

Calving month-April 1.853 

Calving month-May 2.229 

Calving month-June 2.401 

Calving month-July 2.633 

Calving month-August 2.627 

Calving month-September 2.328 

Calving month-October 2.126 

Calving month-November 1.873 
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Calving month-December 1.987 

Milk Fever 1.090 

LDA 1.027 

RFM 1.120 

Metritis 1.091 

  

The R2 of all models when applied on the test set ranged from 10.5% (decision 

tree) to 33.9% (random forest); performance metrics could not be calculated for 

the ANN model, most likely due to a single value being predicted for all cases 

(i.e. a lack of variance). RMSE and MAE ranged in similar values for all models 

with the exception of ANN, which was an outlier for the reasons stated above, 

and had very high values (11600.62 L and 11313.89 L respectively). For the 

rest of the models RMSE ranged between 2084.48 L (random forest) and 

2423.94 L (decision tree), while MAE ranged between 1614.89 L (random 

forest) and 1949.63 L (decision tree). Therefore, the overall best model was the 

random forest explaining around a third of the outcome’s variation. All RMSE, 

R2 and MAE values for both the training and the test set are shown in Table 

6.2. Furthermore, all the values of R2, RMSE and MAE values produced when 

models were applied on the test set are also graphically shown in Figure 6.1. 
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Table 6.2 R2, RMSE and MAE values of all models (excluding ANN) predicting 305-

day milk yield, when applied on both the training and the test set. 

Training Set 

 RMSE R2 MAE 

Linear regression 2349.15 0.148 1874.91 

Decision Tree 2376.59 0.114 1903.37 

Random Forest 1925.70 0.351 1588.77 

ANN 11505.12 - 11294.01 

MARS 2396.11 0.182 1912.41 

Test Set 

 RMSE R2 MAE 

Linear regression 2398.65 0.124 1925.35 

Decision Tree 2423.94 0.105 1949.63 

Random Forest 2084.48 0.339 1614.89 

ANN 11600.62 - 11313.89 

MARS 2412.13 0.115 1936.01 
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Figure 6.1 R2, RMSE and MAE values of all models (excluding ANN) predicting 305-

day milk yield, when applied on the test set. 

 

 

6.3.1.2 Outcome: Residual Daily Milk Yield 

The total number of data points used for this part of the analysis after removing 

the residual milk yield missing data was 15,742. The milk residuals 

(representing deviation in daily milk yield from what would be predicted by the 

lactation curve shape for that parity in that herd) had a mean value of 1.56 

(median 1.59), with a minimum of -31.28 and a maximum of 29.91 (Figure 6.2) 

  



260 
 

Figure 6.2 Distribution of milk yield residuals on the final dataset of a total 15,742 data 

points. 

 

 

 The VIF values were very similar to the ones described in 6.3.1.1 and are 

shown in Table 6.3. The final predictive values included were the same and 

included lactation number 2, lactation number 3, lactation number 4, lactation 

number >4, Hock Hygiene Score 1 pre-partum, Hock Hygiene Score 2 pre-

partum, Hock Hygiene Score 3 pre-partum, Hock Hygiene Score 4 pre-partum, 

Hock Hygiene Score 5 pre-partum, Rumen fill score 1 pre-partum, Rumen fill 
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score 2 pre-partum, Rumen fill score 3 pre-partum, Rumen fill score 4 pre-

partum, Rumen fill score 1 post-partum, BCS 2 pre-partum, BCS 2 post-partum,  

BCS 2.5 post-partum, BCS 3 post-partum, BCS 3.25 post-partum, BCS 3.5 

post-partum, BCS >3.5 post-partum, twinning, calf mortality, lameness pre-

partum, lameness post-partum, calving month February, calving month March,  

calving month April, calving month May, calving month June, calving month 

July, calving month August, calving month September, calving month October, 

calving month November, calving month December, Milk Fever, LDA, RFM and 

metritis. Variables with missing data points were the hock hygiene pre-partum 

dummy variables with 3,376 (21.4%) and milk fever, LDA, calf mortality and 

metritis all with 7 missing data points (0.04%). 
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Table 6.3 VIF values for all possible predictive variables as calculated when fitting a 

linear regression model on the residual milk yield with all variables included 

Variable VIF 

Lactation No 2 1.462 

Lactation No 3 1.855 

Lactation No 4 1.277 

Lactation No >4 1.843 

Hock Hygiene Score pre-partum 1 1.010 

Hock Hygiene Score pre-partum 2 1.017 

Hock Hygiene Score pre-partum 3 1.027 

Hock Hygiene Score pre-partum 4 1.012 

Hock Hygiene Score pre-partum 5 1.027 

Hock Hygiene Score post-partum 

1 

16.226 

Hock Hygiene Score post-partum 

2 

53.527 

Hock Hygiene Score post-partum 

3 

76.267 

Hock Hygiene Score post-partum 

4 

52.025 
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Hock Hygiene Score post-partum 

5 

14.824 

Rumen Fill pre-partum 1 1.173 

Rumen Fill pre-partum 2 2.137 

Rumen Fill pre-partum 3 3.291 

Rumen Fill pre-partum 4 3.182 

Rumen Fill post-partum 1 4.637 

 Rumen Fill post-partum 2 15.845 

 Rumen Fill post-partum 3 20.573 

Rumen Fill post-partum 4 11.457 

BCS pre-partum 2 1.038 

BCS pre-partum 2.5 9.457 

BCS pre-partum 2.75 26.382 

BCS pre-partum 3 26.835 

BCS pre-partum 3.25 28.358 

BCS pre-partum 3.5 23.952 

BCS pre-partum >3.5 13.121 

BCS post-partum 2 1.255 

BCS post-partum 2.5 3.638 
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BCS post-partum 2.75 5.735 

BCS post-partum 3 4.372 

BCS post-partum 3.25 3.001 

BCS post-partum 3.5 1.724 

BCS post-partum >3.5 1.427 

Twinning 1.037 

Calf Mortality 1.072 

Lameness pre-partum 1.037 

Lameness post-partum 1.053 

Calving month-February 1.725 

Calving month-March 2.214 

Calving month-April 1.738 

Calving month-May 2.173 

Calving month-June 2.332 

Calving month-July 2.748 

Calving month-August 2.979 

Calving month-September 2.173 

Calving month-October 1.907 

Calving month-November 1.453 
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Calving month-December 1.356 

Milk Fever 1.084 

LDA 1.021 

RFM 1.099 

Metritis 1.079 

 

R2 values ranged from 1.7% for the MARS model, to 21.4% for the random 

forest model on the test set, with all models except for the random forest having 

a value of less than 3%. R2 could not be computed for the decision tree model, 

similar to the ANN model in 6.3.1.1, most likely due to lack of variance. The 

RMSE ranged from 5.93 (random forest) to 6.66 (decision tree), while the MAE 

from 4.53 (random forest) to 5.20 (ANN). So overall the best performing model 

was the random forest, explaining over a fifth of the outcome’s variation. The 

exact metrics of all models as fitted on both the training and the test set are 

shown in Table 6.4, while the values with their 95% confidence internal are 

graphically shown in Figure 6.3. 
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Table 6.4 R2, RMSE and MAE values of all models predicting milk yield residuals, when 

applied on both the training and the test set. 

Training Set 

 RMSE R2 MAE 

Linear regression 6.502 0.039 5.099 

Decision Tree 6.616 - 5.110 

Random Forest 5.814 0.232 4.468 

ANN 6.580 0.034 5.112 

MARS 6.554 0.025 5.089 

Test Set 

 RMSE R2 MAE 

Linear regression 6.581 0.025 5.146 

Decision Tree 6.664 - 5.197 

Random Forest 5.937 0.214 4.531 

ANN 6.659 0.021 5.200 

MARS 6.605 0.017 5.155 
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Figure 6.3 R2, RMSE and MAE values of all models predicting daily residual milk yield 

on the test set 

 

 

6.3.2 Method B– Individual cow models used for predictions at herd-

quarter-year level 

 

6.3.2.1 Outcome: Predicted 305-day milk yield 

The total data points included in these models, after removing the herd-quarter-

year groups contributing less than 10 lactation was 6,968. The minimum 

number of recordings per group was 11, the maximum 129, the mean 34.5 and 

the median 27. The total number of groups was 202, with 161 of them 

comprising the train dataset while the remaining 41 the test dataset. 

Models were re-trained on the training dataset as described in section 6.3.1.1.1, 

with the random forest model performing the best and having similar 

performance characteristics to those described in the previous section (where 
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the full dataset was used for training). The random forest model was used to 

generate predictions aggregated at herd-quarter-year level, which were 

compared with observed values. 
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Figure 6.4 Scatter plot of predicted mean 305-day milk yield vs observed mean 305-

day milk yield per herd-quarter-year group for the random forest model 

 

 

The R2 describing how much of the actual 305 milk yield’s variation is explained 

by the predictions was found to be just at 2.4%, indicating that only a very small 

fraction of the variation could be explained by the predictions made by the 

model.  

6.3.2.2 Outcome: Residual milk yield 

In total 229 herd/trimester groups were used to fit these versions of the models, 

after removing the groups with less than 10 observations. Out of those the 183 

were used for training the model, while the remaining 46 were used for testing.  
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Since it was the best performing model, the random forest was chosen for 

further predictions on the group level. After making the predictions for the 

individual cows and averaging those predictions to come up with a mean value 

for the group, predicted values were plotted against the observed mean 

predicted 305-day milk yield of all the cows in the group (Figure 6.5). The 

groups used for this testing were a total of 30. 

Figure 6.5 Scatter plot of predicted residual milk yield vs observed residual milk yield 

per herd-quarter-year group for the random forest model 
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The R2 describing how much of the actual values’ variation is explained by the 

predictions was found to be at 33.7% meaning a third of the variation of the 

outcome appears to be explained by the predictions made by initial model. 
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6.3.3 Method C – Herd-quarter-year level models 

 

6.3.3.1 Outcome: Mean predicted 305-day milk yield 

The total number of herd/quarter-year group available for this part of the 

analysis were 205. In regards to multicollinearity all variables were found to 

produce low VIF values, all below the 5 cutoff threshold (Table 6.5). The final 

variables in the analysis were mean BCS both pre and post-partum per group, 

mean rumen fill both pre and post-partum per group, mean Hock hygiene score 

both pre and post-partum, mean lactation number of the cows in the group, 

percentage of cows with milk fever, metritis and/or RFM per group and 

percentage of cows that had twins at the start of that lactation period, again, 

per group. Variables with missing data included metritis percentage, RFM 

percentage, milk fever percentage and twinning percentage all with 3 missing 

data points (2.4%) and the Hock hygiene pre- and post-partum with 41 missing 

data points (20%).  
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Table 6.5 VIF values for all possible predictive variables as calculated when fitting a 

linear regression model on mean predicted 305-day milk yield per herd-quarter-year 

group with all independent variables included. 

Variable VIF 

Mean BCS pre-partum 2.897 

Mean BCS post-partum 2.865 

Mean Hock Hygiene score pre-

partum 

1.096 

Mean Hock Hygiene score post-

partum 

1.191 

Mean Rumen Fill score pre-

partum 

1.728 

Mean Rumen Fill Score post-

partum 

2.004 

Mean Lactation No   1.107 

Percentage of Milk Fever 

diagnoses 

1.168 

Percentage of LDA diagnoses 1.108 

Percentage of RFM diagnoses 1.098 

Percentage of Metritis diagnoses 1.115 

Percentage of Calf Mortality 1.035 



274 
 

Percentage of Twinning 1.089 

 

The R2 in the final models ranged from 12.0% to 39.4%% for the linear 

regression and the random forest models respectively. Similarly to 6.3.1.1 ANN 

could not compute an R2 value possibly due to lack of variation. Excluding the 

ANN model, the RMSE ranged from 1280.77 L to 1558.75 L, while MAE ranged 

from 1035.90 L to 1268.93 L, both for random forest and linear regression 

respectively. All R2, RMSE and MAE values for all models are shown in Table 

6.6 and Figure 6.6. 
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Table 6.6 R2, RMSE and MAE values of all models predicting mean 305-day milk yield 

per herd-quarter-year group, when applied on both the training and the test set. 

Training Set 

 RMSE R2 MAE 

Linear regression 1532.62 0.143 1232.79 

Decision Tree 1344.95 0.312 1102.64 

Random Forest 1218.60 0.410 1006.26 

ANN 11198.49 - 11069.51 

MARS 1436.07 0.241 1196.59 

Test Set 

 RMSE R2 MAE 

Linear regression 1558.75 0.120 1268.93 

Decision Tree 1392.14 0.303 1131.14 

Random Forest 1280.77 0.394 1035.90 

ANN 11235.79 - 11119.15 

MARS 1461.45 0.234 1205.38 

 

  



276 
 

Figure 6.6 R2, RMSE and MAE values of all models predicting mean predicted 305-

day milk yield per herd-quarter-year group with their 95% confidence intervals, as 

applied on the test set. 

 

 

None of the models appeared to be of any considerable predictive value, with 

the best performing model, (random forest) explaining over a third of the 

outcome’s variation.  

6.3.3.2 Outcome: Residual milk yield 

The total number of groups and hence data points that were used for this part 

of the analysis were 229. The means of the residuals ranged from -5.18 to 6.67 

with a mean of 0.94 and a median of 0.86. Assessing the presence of 

multicollinearity, VIF values for all possible predictive variables were below the 

threshold of 5 (Table 6.7) meaning the possibility of multicollinearity is in fact 

low. The final predictive variables were mean BCS both pre and post-partum 

per group, mean rumen fill both pre and post-partum per group, mean Hock 
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hygiene score both pre and post-partum, mean lactation number of the cows in 

the group, percentage of cows with milk fever, metritis and/or RFM per group 

and percentage of cows that had twins at the start of that lactation period, again, 

per group. Variables with missing data included milk fever percentage, RFM 

percentage, LDA percentage, metritis percentage, twinning percentage and calf 

mortality percentage all with 4 missing data points (1.7%) and mean Hock 

hygiene score both pre- and post-partum with 49 missing data points (21.4%). 
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Table 6.7 VIF values for all possible predictive variables as calculated when fitting a 

linear regression model on the mean milk yield residuals per herd-quarter-year group, 

with all independent variables included. 

Variable VIF 

Mean BCS pre-partum 2.629 

Mean BCS post-partum 2.515 

Mean Hock Hygiene score pre-

partum 

1.102 

Mean Hock Hygiene score post-

partum 

1.136 

Mean Rumen Fill score pre-

partum 

1.783 

Mean Rumen Fill Score post-

partum 

1.951 

Mean Lactation No   1.131 

Percentage of Milk Fever 

diagnoses 

1.170 

Percentage of LDA diagnoses 1.099 

Percentage of RFM diagnoses 1.036 

Percentage of Metritis diagnoses 1.198 

Percentage of Calf Mortality 1.014 
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Percentage of Twinning 1.055 

 

Again, R2 values on the test set were generally low, from 2.3% (linear 

regression) to 13.4% (random forest). RMSE and MAE values ranged relatively 

high, from 2.384 L (random forest) to 2.647 (MARS) for the former, and 1.914 

L (random forest) to 2.086 L (MARS) for the latter. All metrics for all models, as 

produced both on the training and the test set, are shown in Table 6.8 and 

Figure 6.7. 
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Table 6.8 R2, RMSE and MAE values of all models predicting mean daily residual milk 

yield per herd-quarter-year group on both the training and the test set 

Training Set 

 RMSE R2 MAE 

Linear regression 2.386 0.035 1.926 

Decision Tree 2.529 0.085 2.139 

Random Forest 2.302 0.141 1.870 

ANN 2.499 0.087 2.007 

MARS 2.600 0.060 2.012 

Test Set 

 RMSE R2 MAE 

Linear regression 2.594 0.023 2.066 

Decision Tree 2.465 0.095 2.000 

Random Forest 2.384 0.134 1.914 

ANN 2.630 0.062 2.103 

MARS 2.647 0.056 2.086 
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Figure 6.7 R2, RMSE and MAE values of all models predicting mean daily residual milk 

yield per herd-quarter-year group on the test set 
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6.4 Discussion 

 

Predictive models for production outcomes showed very varied model 

performance across the wide range of different machine learning algorithms 

tested, both of the outcomes under consideration (305-day lactation yield, and 

deviation from predicted daily yield based on herd- and parity-specific lactation 

curves), and the different approaches taken to aggregating data for model 

building and predictions. The best performing model in terms of R2 value was 

the random forest model for prediction of residual daily milk yield, explaining 

just over a third of the observed yield variation; for many of the outcomes, 

algorithms and aggregation approaches R2 values were substantially lower. 

Inferential models found a large number of statistically significant associations 

between potential predictor variables and production outcomes, but again 

explained a relatively small proportion of observed variation in milk yields. 

For the purposes of this chapter both the predicted 305 milk yield as well as the 

residual daily milk yield were used as outcomes. One of the major differences 

is that for the 305-day milk yield, lactation number and herd effects are likely to 

be major predictors, while with the residual daily milk yield theses are effectively 

accounted for as the expected yield from which the residual is calculated is 

based on a lactation curve for that herd and lactation number. The models for 

305 milk yield did indeed find lactation number to be an important predictor and 

the inferential model in particular both indicated an association with the 

outcome and lactation number and showed that herd effect explained a great 

deal of the outcome’s variation. The models for the residual daily milk yield also 

included lactation number. Similarly to other chapters, none of the models were 
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likely to be predictive to a practically useful extent. This result is somewhat on 

a par with Salamone et al. (2022) who used similar random forest models to 

predict day one milk yields with slightly different cow and herd level variables. 

The best performing model we reported was the random forest model predicting 

residual daily milk yield with a R2 value of 33.5% while Salamone et al. (2022) 

found an R2of 52.0%, which while considerably better is still a moderate value.  

In method B the predictive values were similar with the model describing the 

relationship between averaged predictions and averaged predicted 305 milk 

yield per herd-quarter-year group having a R2 value of 2.7%, while the model 

describing the relationship between averaged predictions and averaged 

residual daily milk yield having a R2 value of 33.7%. This means that using our 

model, inputting individual cow level information, there is little possibility of 

making reliable conclusions on if the herd will underperform or over perform. 

The better of the two models in that regard was the residual daily milk yield 

model, with the aggregated predictions explaining a bit over a third of the 

aggregated residual daily milk yield values. Variables used for these predictions 

were health information, such as milk fever, metritis or LDA diagnosis, calf 

mortality, hock hygiene score pre -partum, rumen fill score both pre- and post-

partum, BCS both pre- and post-partum, lameness also both pre- and post-

partum, the lactation number and finally the calving month. This differs from 

existing research, in either the predictive variables used or in the outcome 

studied. In particular, we studied predictions on the entirety of the 305-milk 

yield, while Salamone et al. (2022) focused on the day one yields using 

individual cow information on production and reproduction, as well as herd level 
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production data. Also, in contrast with Bovo et al. (2021) we used individual cow 

health data rather than just environmental data.  

A described in 6.1 there are a number of studies investigating the possibility of 

milk yield prediction in dairy cattle, and while their specific outcomes are 

different, with daily milk yield being amongst the most common, it is still 

interesting to examine what might cause a decrease in predictive value in our 

models. One interpretation might be the difference in data size and specifically 

the lack of variation when it came to herds. In fact, multiple studies only 

collected data from one herd, as they wanted to focus on robotic system data 

collection that had not been widely implemented yet (Nguyen et al., 2020, 

Fuentes et al., 2020, Ji et al., 2022). Murphy et al. (2014) collected data from 

one herd of 140 cows as well, while Bovo et al. (2021) collected data from 91 

cows, once again by one herd. Grzesiak et al. (2006) also had data originating 

from a single herd and while the total number of daily milk yields was high 

(>100,000), it only included three lactations of a total 320 cows. In a more recent 

paper by the same author (Grzesiak et al. 2021) over 900 primiparous cows 

were included in a dataset used to build ANN models, however once again they 

were all from the same farm. The lack of farm variation could potentially result 

in more overfitted models that follow closely the trends and animals of that one 

specific farm that were perhaps too complex to capture in models where 50 

different farms were included, such as ours. Further lack of external validation 

makes it difficult to assess the generalizability of the one-herd models. 

Gocheva-Ilieva et al. (2022) gathered data from 4 farms, however the total 

number of cows did not exceed 158, which could also affect generalizability. In 

addition, they did in fact identify the farm being an important predictor in their 
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models, further supporting the theory that a one-herd model would inherently 

produce better metrics than one with multiple herds. Sefeedpari et al. (2015) 

did not have this issue since they sampled their data from 50 farms, however 

their outcome was milk yield of the targeted farm, meaning that 50 was their 

total sample size. Furthermore, their target population was in Iran, a location 

with potentially many differences in the dairy industry compared to the UK, while 

using energy consumption as predictors, again a very different compared to 

ours. It is perhaps possible that a farm-wide outcome is easier to predict 

compared to an individual animal one, however even in Method C of our study 

in which a herd-quarter-year outcome was included the predictiveness was 

lacking. This could indicate that the energy consumption variables that 

Sefeedpari et al. (2015) used were of better quality since they were gathered 

for that purpose and not averaged from existing individual animal-specific 

variables. Zegler et al. (2020) gathered data from 20 farms including 2 pastures 

from each farm for 2 separate months, but again the outcome variable was 

pasture milk yield keeping the total sample size low. Another aspect is that the 

predictive variables they used included weather and pasture variables, as well 

as soil characteristics that could be more identifiable in organic farms, which is 

the kind of farms this particular study investigated. Other studies closer to ours 

in terms of sample size were Salamone et al. (2022) with 102 herds collected 

through historical data covering a period of 20 years, Piwczyński et al. (2020) 

whose data originated from 27 farms, 3,778 cows and 36,005 milk yields, 

Salamone et al. (2022) presented models predicting first day milk yield of next 

lactation, with the first day test being anytime from 1 to 60 DIM. In fact, the most 

important predictor included is the DIM the first day test occurred, with 

https://onlinelibrary.wiley.com/authored-by/Piwczy%C5%84ski/Dariusz
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cumulative 305-day milk yield of previous lactation following as slightly less 

significant. Since the first couple of months of the lactation however, the 

lactation curve is so steep, the presence of DIM in the lactation of interest raises 

a question as to whether the model is ultimately trained to identify its overall 

general shape that is expected in all cows rather than actually make meaningful 

predictions for the individual animal. Furthermore, the R2 of their models ranged 

from 9% to 52%, not too different from our predicted 305-day milk yield models 

in Method A (ranging from 10.5% to 33.9%), especially when taking into 

account that the inclusion of DIM of first day test might artificially decrease 

variance as well as RMSE and MAE. Piwczyński et al. (2020) demonstrated 

that the inclusion of several variables in their decision tree model provided a 

statistically significant variance reduction, as supported by F-test. The most 

influential variable by a long margin was the milking frequency, where its 

increase brought a corresponding increase in milk yield. This increase appears 

plausible as it has been established in some papers (Vijayakumar et al., 2017, 

Alex et al., 2015), however it has been stressed that it can highly depend on 

the stage of lactation as well as udder health (Lyons et al., 2014b). It is overall 

possible that milking frequency is in fact a better-quality predictor than the ones 

we had available in our study.  

Various disease variables such as metritis, LDA and RFM have been 

associated with a noteworthy drop in milk production  (Daetz et al., 2016, 

Dezfouli et al., 2013, Figueiredo et al., 2021, Fourichon et al., 1999, Giuliodori 

et al.,2012,  Grymer et al., 1982, Lyons et al., 2014a, Ribeiro et al., 2013). LDA 

was included as a predictor in both our models (methods A and B). This seems 

to be on par with existing research that have shown that milk yield can decrease 

https://onlinelibrary.wiley.com/authored-by/Piwczy%C5%84ski/Dariusz
https://pubmed.ncbi.nlm.nih.gov/?term=Giuliodori+MJ&cauthor_id=23548288
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in cows with LDA compared to healthy counterparts (Dezfouli et al., 2013, 

Lyons et al., 2014a). Metritis, as research has shown its association with milk 

loss (Daetz et al., 2016, Figueiredo et al., 2021, Giuliodori et al., 2012, Lina et 

al., 2019, Ribeiro et al., 2013), was also included in both predicted 305-day milk 

yield models as well as residual milk, along with RFM which is found not only 

to be associated with milk production losses (Dervishi et al., 2016) but also with 

the development of metritis (Filho et al., 2012) as well as clinical mastitis 

(Pinedo and Fleming, 2012), which can exacerbate the existing production 

issues. Milk fever has also been associated with clinical mastitis (Pinedo and 

Fleming, 2012), however the overall association between milk fever and milk 

production appears to be more complex and potentially in some cases positive 

(Jawor et al., 2012). BCS post-partum was also included in the predictive 

models, as BCS has a well-established link with production (Kul et al., 2020, 

Loker et al., 2012, Roche et al., 2009, Rodriguez et al., 2021). Parity has been 

linked to milk production as well with multiple studies reporting an increase of 

milk production in subsequent lactations (Hoka et al., 2019, Koc, 2011, Utrera 

et al., 2013). It is therefore evident that there might have been some actual 

associations between our predictors and milk yield, however potentially due to 

the complex nature of the phenomenon they could not be translated to a 

meaningful predictive model, and the low overall R2 values suggest that they 

are not likely to be key drivers of productivity.  

There were a number of limitations in our study. Firstly, there were some issues 

with the quality of our data resulting into not having enough reliable information 

for some variables, such as the THI values pre and post calving, and ending up 

dropping them from the analysis. Temperature data have been used before to 

https://pubmed.ncbi.nlm.nih.gov/?term=Giuliodori+MJ&cauthor_id=23548288
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predict milk yield by Bovo et al. (2022), however they had used THI information 

of several days in a row, to assess the effect of potential heat stress; it is 

doubtful that the single temperature recordings pre- and post-calving per 

lactation in our data would provide as much information to our models. As with 

other studies in this project, the nature of the data collection should also be 

considered. The fact that scoring occasions generally occurred fortnightly for 

each herd introduces potentially relevant variation depending on when cows 

are scored relative to calving. For example, a cow scored on the day after 

calving would be expected to have a lower rumen fill score than if she had been 

scored 10 days later simply because of the changes in feed intake expected 

around parturition. Another limitation is the sample size, especially in Method 

C. While in method A the total data point included in the model were around 

7,000 for the predicted 305-day milk yield and around 15,000 for the milk 

residuals. However, when grouped by herd-quarter-year the number fell to 

around 200 for both outcomes. Larger sample sizes generally improve the 

robustness and accuracy of machine learning models. With more data, models 

can learn more complex patterns and relationships, leading to better 

generalization to unseen data (Ingalhalikar et al., 2021). There is a well-

documented issues referred as the curse of dimensionality which points to the 

phenomenon where the feature space becomes increasingly sparse as the 

number of dimensions (features) increases. This sparsity makes it difficult for 

machine learning algorithms to find meaningful patterns unless there is a 

sufficiently large sample size (Dhiman et al., 2022; Ramezan et al., 2021). As 

noted by Dhiman et al., (2022) larger sample sizes are necessary when using 

machine learning methods to mitigate the impact of this curse and improve 
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model accuracy. Furthermore, smaller sample sizes can lead to overfitting, 

where the model learns noise in the training data rather than the underlying 

signal, which can lead to generalization failure when attempting predictions on 

new data (Infante et al., 2022) and thus poor predictive performance. Takahashi 

et al. (2020) emphasized that machine learning models typically require larger 

datasets than traditional statistical methods to achieve robust performance due 

to the plethora of degrees of freedom that need to be covered. For instance, 

Collins et al. (2015) reported the recommendation that at least 100 events and 

100 non-events need to be included just for the external validation of a 

predictive logistic regression model. Thus, sample size could have been a 

potential issue in Method C since it would be difficult to assess the actual 

predictiveness or our model, especially in the scenario of a highly predictive 

model, since it could easily be the result of overfitting.  

Generalisability is also a potential issue, as our data collection was performed 

onto farms with similar characteristics (notably from relatively high yielding 

herds) from within Great Britain. That would mean that predictions might not 

apply to any farms that do not fit with this set of characteristics. Although there 

will be some biological characteristics that are consistent across cows within 

different systems, there are other measures which may have different relevance 

in different systems. Overall, this study has reinforced the difficulty in accurately 

predicting milk production outcomes from scoring and other routinely recorded 

data, while providing insight into some of the factors that are associated with 

changes in milk yield. 
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Chapter 7 – General Discussion 

 

7.1 Summary of Results 

The aim of our study was to utilise transition period data in order to attempt 

predictions on the health, reproduction and production of the cow with the use 

of machine learning. In Chapter 3 the characteristics of the herds participating 

in our studies was explored in more detail and it became evident that overall 

we were dealing with farms on the higher end of productivity. In Chapter 4 the 

models built to attempt predictions on health outcomes proved to be of little 

value, with the kappa metric not surpassing the expected threshold. When 

using lactation level models to make predictions on a herd/quarter-year level 

the averaged predictions on metritis were able to explain over a third (66.9%) 

of the variation of the averaged outcome. In Chapter 5 the focus was moved to 

the reproductive performance. Outcomes on both the insemination success and 

the day of conception were investigated, however predictive value was found 

to be relatively poor in these models. Inferential modelling did find significant 

associations for both outcomes, which were seemingly not enough to explain 

much of these outcomes’ variation and make accurate predictions. In Chapter 

6 the outcomes of interest were the predicted 305 milk yield and the residual 

daily milk yield. Not unlike the results of the previous Chapters these models 

did not produce very high R2 values, with the best performing ones being the 

individual lactation models both predicting on an individual and on an 

aggregated level, which seemed to explain about a third of the outcome’s 

variation.  
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7.2 Discussion 

7.2.1 Predictiveness of Models 

The vast majority of the models presented in this work did not reach high levels 

of predictive value. 

Regarding the collective disease outcomes, even when taking steps to increase 

the sample size of positive instances with up-sampling, the variety of disease 

that were included in said outcome, may have been each associated with 

different variables in many complex ways and hence not going towards one 

clear direction when binned together. It is also important to consider whether 

the choice of variables was poor or whether important factors were omitted. The 

individual level models, especially the binary ones, were underwhelming in 

terms of predictiveness regardless of outcome. The best performing one on an 

individual lactation level was the residual daily milk yield model, with an 

R2explaining over 30% of the variation of the outcome, which is not likely to be 

sufficient for practical application. 

Out of all the models the best performing overall was the individual lactation 

model for metritis when predicting on an aggregated level, with the averaged 

predictions explaining over two thirds of the variation of the aggregated 

outcome. The improvement on predictions when it comes to metritis may also 

be apparent on the collective disease status model, where the aggregated 

predictions of the individual disease model explained almost 45% of the 

averaged disease outcome, in contrast with the LDA, RFM and milk fever 

models which all produced R2 values lower than 20%. So, while predictions on 

an individual level did not seem possible, that same model managed to produce 
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predictions on a herd/quarter-year level that could potentially be of some value 

to farm managers as a possible marker for transition success, on a group level. 

It is not uncommon with biological outcomes that when failing to make individual 

level predictions these same models can produce improved results on an 

aggregated level. This approach, of predicting a probability value for a binary 

outcome is essentially model calibration, where the evaluation data is 

separated into groups (usually deciles) and then the model’s bias is calculated 

for each one of the groups (Chen et al., 2022). The improvement is evident in 

the metritis model and even the collective disease one and could probably be 

seen in the insemination outcome model, which described over a third of the 

averaged outcome’s variation. This effect is not as evident on the milk 

outcomes, plausibly since these variables were already on a continuous scale.  

In addition to using models built to predict lactation level outcomes to aggregate 

predictions across groups, we also explored building models using this 

aggregated dataset. This produces a much smaller dataset (where units of data 

may, for example, be herd/quarter-years) and a continuous outcome 

(representing the proportion of lactations affected within that group). Regarding 

these aggregated models, none seemed to make a significant improvement 

over the already existing ones. The models for LDA, RFM, as well as milk fever 

all showed improvement compared to the individual level models making 

predictions on an aggregated level. However, none of the R2 values exceeded 

40%, indicating low predictiveness. The models for metritis were an exception 

as the aggregated level model did not surpass the lactation level one. The same 

applied for the collective disease status with the best aggregated model 

producing an R2 value of 32.0% (MARS). The situation reversed for the 
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insemination success model, while for the two milk outcomes the results were 

mixed. It is interesting that, overall, each outcome showed a mixed behaviour, 

since aggregating the predictive variables did not necessarily cause neither an 

improvement nor a decline in predictive value. So, while it could be argued that 

aggregating the variables might in fact lead to a loss of information and a drop 

in predictiveness, in some cases it might be a viable method to improve the 

model metrics. 

Therefore overall, the manipulation of the variables or the change in predictive 

goal from the individual lactation level to the aggregated one appeared to be 

working more consistently in binary outcomes with varied results in the 

continues ones. This was to be expected, since the binary models’ results do 

not have as much margin for error as the continues ones that are just asked to 

approximate a possible value.  

7.2.2 Predictive vs Inferential 

 

For chapter 5, inferential models were attempted to be built for the insemination 

outcomes, alongside the predictive ones. Despite inferential models showing 

several statistically significant associations with each outcome, predictive 

models still underperformed. This is another indication that essential terms, 

which affect those outcomes, and either were not measured, or perhaps are 

unmeasurable, were omitted. Hempstalk et al. (2015), when attempting to build 

machine learning models predicting the conception success to a given cow 

lactation, suggested this exact thing for the herd-season-year group in 
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insemination outcomes, along with other factors such as the capability of the 

technitian or the bull’s fertility. 

This realisation is especially essential since before predictive modelling 

became mainstream in research, scientists used to rely on inferential models 

and oftentimes suggest that real life actions on herd heath management ought 

to be taken based on them. While the existing knowledge might still be useful 

in herd management, it is good to keep that in mind during future research. 

7.2.3 Metrics 

Throughout the research the subject of metric selection and importance was 

raised, especially for binary outcomes with imbalanced datasets. Accuracy 

appeared to be misleading in such cases, even after resampling methods, 

showcasing that complete reliance on this metric can lead to inappropriate 

conclusions. Specificity and sensitivity appear to be more robust, however both 

of them and/or their combination in AUROC should be reported to paint an 

accurate picture of both classes. Meanwhile, accuracy, specificity and 

sensitivity appear to be amongst the most popular metrics used to judge a 

model’s predictive performance. Several studies in farm medicine that have 

used machine learning methods to develop predictive algorithms for 

classification have reported metrics such as the overall accuracy, (Borchers et 

al., 2017, Caraviello et al., 2006, Dolecheck et al., 2015, Fenlon et al., 2017, 

Zaborski et al., 2018, Pastell and Kujala, 2007, Aguias et al., 2012, Chen et al., 

2020, Cevik, 2020, Jiménez-Montero et al., 2013, Dolechek et al., 2015, 

Ebrahimie et al., 2018a, Ebrahimie et al., 2021, Farah et al., 2021, Zaborski et 

al., 2018, Tamura et al, 2019, Douphrate et al., 2019, Njubi et al. 2010, Sturm 

et al., 2020, Romadhonny et al., 2019, Rodriguez et al., 2019, Taneja et al., 
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2020, Zhao et al., 2020) sensitivity, specificity (Borchers et al., 2017, Caraviello 

et al., 2006, Dolecheck et al., 2015, Zaborski et al., 2018, Nielen et al., 2015a, 

Nielen et al., 2015b, Hassan et al., 2009, Sun et al., 2010, Kamphuis et al., 

2015, Mammadova et al., 2013, Panchal et al., 2016, Fenlon et al., 2017b, Post 

et al., 2020, Becker et al., 2021, Lasser et al., 2021, Lardy et al., 2023, Srikok 

et al., 2020, Volkman et al., 2021, Esener et al., 2021, Sadeghi et al., 2022, 

Imada et al., 2024, Vergara et al., 2014, Miller et al., 2020, Warner et al., 2020), 

AUROC (Hempstalk et al., 2015, Shahinfar et al., 2014, Zaborski et al., 2018, 

Avizheh et al., 2023, Williams et al., 2016, Panchal et al., 2016, Wisnieski et 

al., 2019, Post et al., 2020, Shahinfar et al., 2021, Imada et al., 2024, Vergara 

et al., 2014, Merenda et al., 2020, Post et al., 2020, Grzesiak et al., 2010, 

Keshavarzi et al., 2020, Miller et al., 2020, Warner et al., 2020) or correctly 

classified instances (CCI) (Shahinfar et al., 2014). When predicting health 

outcomes in particular, the metrics reported were again accuracy (Ebrahimie et 

al., 2018, Sharifi et al., 2018), sensitivity and specificity (Kamphuis et al., 2010, 

Mammadova et al., 2013, Panchal et al., 2016), AUROC (Panchal et al., 2016), 

success rate (Mammadova et al., 2013) and the diagnostic odds ratio (Panchal 

et al., 2016). Out of the studies looking at transition period health management 

Wisnieski et al. (2019) used logistic regression models to predict metabolic 

stress and reported sensitivity, specificity, AUROC and well as the positive and 

negative predictive values. Similarly, Vergara et al. (2014) in a study exploring 

postpartum issues in dairy cows reported the predictive models’ AUROC, 

sensitivity and specificity. In a meta-analysis Shine and Murphy (2021) 

determined that in 85 studies centred on classification problems, the most 

frequently utilized evaluation metric was classification accuracy (77%), followed 
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by recall (66%), specificity (49%), PPV (48%), F1 Score (27%), AUROC (26%), 

NPV (15%), Cohen’s Kappa (12%), false positives (FP) (9%), and false 

negatives (FN) (6%). It is evident that, especially recently F1-score is more 

likely to be included in the assessment of the predictive value of their models 

(Avizheh et al., 2023, Hunter et al., 2021, Keshavarzi et al., 2020, Sturm et al, 

2021, de Oliveira et al, 2021, Rodriguez Alvarez et al., 2018, Rodriguez Alvarez 

et al., 2019, Smith et al., 2016, Vidal et al., 2023, Wang et al., 2020, Carslake 

et al., 2021, Cantor et al., 2022, Dineva and Atanasova, 2023, Dutta et al., 2015, 

Ghaffari et al., 2019, Hemalatha et al., 2021, Hyde et al., 2020, Luo et al., 2023, 

Shafiullah et al., 2019, Sturm et al., 2020, Vázquez-Diosdado et al., 2023, 

Williams et al., 2019, Wang et al., 2023), however Cohen’s Kappa while slowly 

picking up is still lower on the preference of researchers as a metric of choice 

(Hassan et al., 2009, Balasso et al., 2021, Hyde et al., 2020, Maciel-Guerra et 

al., 2021, Esener et al., 2021, Volkmann et al., 2021, Sadeghi et al., 2022, Nagy 

et al., 2023, Barney et al., 2023, Siachos et al., 2024, Sturm et al., 2020, Imada 

et al., 2024). 

So, it becomes evident that sensitivity, specificity and accuracyup until recent 

years accuracy were used primarily when reporting predictive models in 

veterinary medicine. And while the combination of specificity and sensitivity 

usually helps gain a relatively good understanding of how a model performs in 

both classes, kappa appears to be more likely to give a definitive picture.  

Balanced accuracy could also be more effectively used in imbalanced datasets 

as suggested by Brodersen et al. (2010). In contrast with regular accuracy that 

only takes into account the minority class based on how much of the total 

dataset it consists of, balanced accuracy treats both classes equally and thus 
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emphasizes lack of predictiveness even in a class that is underrepresented. In 

most of the predictive models in this study, balanced accuracy was just over 

50%, so was little better than would be expected from completely random 

predictions.  

Another metric that could be considered and is used in some of the 

afforementioned studies is the AUROC. However, as reviewed by Lobo er al. 

(2008), it is not always an appropriate metric for various reasons, such as the 

bias of the mean probabilities towards the most frequent class (Hosmer et al. 

1980). While it provides a single scalar value that summarizes model 

performance, it does not account for the distribution of classes in the dataset, 

which can lead to misleading interpretations in imbalanced scenarios (King et 

al., 2021, Hancock et al., 2023). In imbalanced datasets, where one class 

significantly outnumbers the other, the AUROC can give an overly optimistic 

view of a model's performance. This is because the metric can be inflated by 

the model's ability to correctly classify the majority class while neglecting the 

minority class (Bednarski et al., 2022). Hence, it is likely that the kappa value 

is perhaps the best overall measure of model predictiveness, especially when 

working with imbalanced data. We should, however, also mention a drawback, 

that has potentially prevented the wider adoption of kappa as a sole evaluation 

metric so far, and that is the arbitrary nature of its scale which while enabling 

the comparison of models with each other, might make their individual 

interpretation a bit difficult for the end user.  

Currently, other metrics dominate the field of veterinary epidemiology as the 

final selector and judge of predictive model and thus this work supports the 
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adoption of the alternatives mentioned above especially when the classes are 

of unequal size. In any case, the use of a good combination of metrics (at least 

one for each class) is advised. 

7.2.4 Limitations of the study 

As stated before, one of the major limitations of the study is the convenience 

sampling that took place in order to gather the dataset. The descriptive statistics 

presented in Chapter 3 indicate that our herds were almost all following a 

relatively high input system, with cows calving year-round and likely mostly 

housed. This could lead towards biased results that reflect the situation in 

particular types of herds only and not translate in models that could be widely 

used for all types of dairy cow herds. Dairy farming in the UK is polarising so 

that farms either pursue an all year round calving system (maximising milk yield, 

while accepting a higher cost of production per litre) or pursue a block calving 

system (spring or autumn calving, long grazing, season outdoors, mostly grass 

based diet, lower yields) where the focus is on minimising costs and accepting 

level of production will be lower (AHDB, 2017).  This could be bypassed in the 

case of external validation, which unfortunately was not possible during our 

research. When however, taking into account that the majority of models did 

not hold significant predictive power this seems like less of a problem. Even so, 

with the individual lactation metritis model predicting on an aggregated level 

which showed some predictive potential, it is still valuable to identify this model 

even it applies for herds similar to those included in our sample. It should also 

be noted that while it is very likely that the models presented in this thesis would 

not generalise well to the system of low cost-low productivity cows, the 
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prevalence of e.g. diseases and subfertility is probably much lower in these 

systems anyway so predictions would be less important. 

Furthermore, the nature of the data collection could potentially have caused 

some unreliable variables in our study. As stated in previous Chapters, scoring 

occasions generally occurred fortnightly for each herd which could cause 

variation in terms of length from day of scoring to the day of calving. This in turn 

means that scores of rumen-fill for example that were on the calving date would 

be systematically lower than those from a few days earlier or later, and yet they 

would be weighted equally in the analysis. Additionally, due to the nature of the 

data and them being gathered from many different sources and initial datasets, 

when coming together during the cleaning, there were occasionally variables 

without any information for the majority of the finalised data points. This 

certainly led to loss of information that could have potentially improved the 

predictive power of the models. However, as stated before there are so many 

complex and immeasurable terms affecting the outcomes that these few 

variable contributions were likely not that great. It should also be noted that 

there is likely measurement inaccuracy between observers and occasions, for 

at least some of the variables, though probably negligible since all the 

assessors had been trained.  

7.2.5 Possible Future Research 

This study could be the basis for future research. Most importantly, for the 

individual level metritis model making predictions on an aggregated level 

outcome which appeared to be able to explain over two thirds of the outcome’s 

variation, external validation is going to be necessary to determine the 

predictiveness of the model on a wider context, when including herd with 



300 
 

various characteristics that may not have been present in our thesis. This would 

ensure the possibility for a widely used assessed tool available for all herd 

managers to use.  

Another angle that studies could take is the use of individual level models for 

aggregated predictions, at least when it comes to binary outcomes. As seen in 

our study, binary models such as the one for metritis mentioned above or even 

the collective disease status showed a significant improvement when 

converting the results to a percentage and comparing them to the aggregated 

results of the actual outcome. This is not unheard of in binary outcomes, 

probably since the approximation of a value allows more flexibility rather than 

choosing only one of two variables, which also explains why this improvement 

is not guaranteed in already continuous outcomes. This approach could 

potentially create value out of algorithms that appeared to be underwhelming 

at first, like the individual model presented for metritis. A lot of already studied 

models could be revisited with renewed potential. 

Finally, an important consideration for future research aiming to improve the 

predictive capability of their models is the use of sensor data. Sensor data could 

have significantly enhanced the quality of our dataset by providing detailed and 

accurate measurements that are otherwise unattainable. The potential 

importance of on-animal sensors, due to them making the collection of large 

amounts of data accessible and therefore enabling the on-farm practical 

application of predicted models, has been highlighted for the dairy industry 

(Hudson et al., 2018). Their use is becoming more mainstream especially with 

the existence of projects such as CowManager, which is a is a precision 
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livestock monitoring system, which relies on sensors attached on ear tags that 

collect data in real-time.  

Multiple studies, especially more recent ones, have utilized sensors for their 

data collection with good results (Benaissa et al., 2019b, Carslake et al., 2021, 

Chung et al., 2020, Lardy et al., 2023, Post et al., 2020, Post et al., 2021, Sturm 

et al., 2020, Vázquez-Diosdado et al., 2023). The majority of these studies only 

include a small sample of cows, especially compared to ours, with only Sturm 

et al. (2020) achieving a final dataset of 671 cows, Post et al. (2021) including 

348 cows and one of 4 datasets utilised by Lardy et al. (2020) reaching 300 

cows. Post et al. (2020) collected data from 167 cows, with Vázquez-Diosdado 

et al. (2023) and Benaissa et al. (2019b) having lower sample sizes (82 and 31 

respectively). Finally, Sturm et al. (2020) only included 3 cows in their study. 

With the increasing adoption of systems like CowManager, future research 

should prioritize large-scale studies that leverage high-quality sensor data. 

Such efforts could produce robust predictive models addressing critical 

outcomes, including disease management, production efficiency, and 

reproduction in dairy cows. 
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7.3 Conclusions 

This thesis has added to existing knowledge in a number of ways. Firstly, it 

determined that, at least for our combination of cow level and environmental 

level variables, out of all disease, reproduction and production outcomes, 

metritis was the one that had the most potential in terms of accurate predictions. 

Furthermore, it was showcased that for binary variables in particular, the 

individual level model results, even if not predictive have the potential to be 

aggregated to a group level and approximate the group’s averaged outcome, 

providing useful results on that aggregated level. This could indicate that group 

predicted prevalence of metritis (which in our case was the most predictive 

model) might be a useful measure for farmers to monitor over time as an overall 

transition “success” index. In regards with classification models and especially 

when dealing with imbalanced datasets (which is common in biological 

outcomes), the importance of reporting the correct metrics was demonstrated. 

As shown the kappa was among the most useful metrics, being able to capture 

the difference in predictive performance between the two classes and was 

proposed to be more widely used for similar situations.  

Finally, the overall importance of predictive compared to inferential modelling 

in terms of making herd-level decisions was emphasised. Inferential modelling 

is useful in order to look at and understand relationships between predictors 

and outcomes, while predictive modelling specifically aims at making accurate 

predictions, without explaining these relationships. Therefore, relying on the 

former for predictions would not be sensible since the latter are better at that 

specific task. Again, our models showcased this exact thing with th inferential 
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models describing strong relationships and yet the predictive ones not 

producing accurate predictions.  

Transition management is really key to successful dairy farming, hence 

monitoring it, using machine learning methods, could benefit farmers greatly. It 

is evident from our work that such a thing might be possible in the future, 

potentially with measures like the group predicted prevalence of metritis over 

time. However, more work is needed in order to determine and assess such 

measures. 

  



304 
 

References 

 

 

ABBAS, F., CAI, Z., SHOAIB, M., IQBAL, J., ISMAIL, M., ARIFULLAH, & 

ALBESHR, M. F. 2024. Machine learning models for water quality 

prediction: a comprehensive analysis and uncertainty assessment in 

mirpurkhas, sindh, Pakistan. Water, 16(7), 941. 

ABREU, S., 2019. Automated architecture design for deep neural networks, 

arXiv.1908.10714. 

ADHIKARI, M., LONGMAN, R.J., GIAMBELLUCA, T.W., LEE, C.N., HE, 

Y.,2022. Climate change impacts shifting landscape of the dairy industry 

in Hawai'i. Transl Anim Sci. txac064.  

ADRIAENS, I., HUYBRECHTS, T., AEMOUTS, B., GEERINCKX, K., 

PIEPERS, S., DE KETELAERE, B., SAEYS, W. 2018. Method for short-

term prediction of milk yield at the quarter level to improve udder health 

monitoring, J Dairy Sci, Volume 101, Issue 11, 10327-10336. 

AGGARWAL, C. C., HINNEBURG, A., & KEIM, D. A. 2001. On the surprising 

behavior of distance metrics in high dimensional space, in Database 

Theory — ICDT 2001, vol. 1973 of Lecture Notes in Computer Science, 

Springer, 420-434. 

AGUIAR, G. F., BATISTA, B. L., RODRIGUES, J. L., SILVA, L. R., CAMPIGLIA, 

A. D., BARBOSA, R. M. & BARBOSA, F., JR. 2012. Determination of 

trace elements in bovine semen samples by inductively coupled plasma 

mass spectrometry and data mining techniques for identification of 

bovine class. J Dairy Sci, 95, 7066-73. 

AHDB, 2017, Delivering a more competitive industry through optimal dairy 

systems, 

https://projectblue.blob.core.windows.net/media/Default/Imported%20P

ublication%20Docs/Delivering%20a%20more%20competitive%20indus



305 
 

try%20through%20optimal%20dairy%20systems.pdf, Accessed 17 

January 2023 

AHDB, 2023a, Body Condition Scoring flow chart, 

https://ahdb.org.uk/knowledge-library/body-condition-scoring-flow-chart  

Accessed 10 February 2023 

AHDB, 2023b, UK milk productivity: The global context, 

https://ahdb.org.uk/news/uk-milk-productivity-the-global-context. 

Accessed 14 January 2023 

ALEX, A., COLLIER, J., HADSELL, D., & COLLIER, R. 2015. Milk yield 

differences between 1× and 4× milking are associated with changes in 

mammary mitochondrial number and milk protein gene expression, but 

not mammary cell apoptosis or socs gene expression. J Dairy Sci, 98(7), 

4439-4448. 

ALIN, A. 2010. Multicollinearity. WIREs Computational Statistics, 2(3), 370-374. 

ALIZADEHl, G., VAFAKHAH, M., AZARMSA, A., and TOBARI, M., 2011, Using 

an artificial neural network to model monthly shoreline variations, 2011 

2nd International Conference on Artificial Intelligence, Management 

Science and Electronic Commerce (AIMSEC), Deng Feng, China, 2011, 

pp. 4893-4896 

ALLEN, M. S. & BRADFORD, B. J. 2009. Control of eating by hepatic oxidation 

of fatty acids. A note of caution. Appetite, 53, 272-3; author reply 274-6. 

ALSAAOD, M., ROMER, C., KLEIMANNS, J., HENDRIKSEN, K., ROSE-

MEIERHOFER, S., PLUMER, L., BUSCHER, W. 2012. Electronic 

detection of lameness in dairy cows through measuring pedometric 

activity and lying behavior. Appl. Anim. Behav. Sci. 2012, 142, 134–141 

ALZAHAL, O., MCGILL, H., KLEINBERG, A., HOLLIDAY, J. I., HINDRICHSEN, 

I. K., DUFFIELD, T. F. & MCBRIDE, B. W. 2014. Use of a direct-fed 

microbial product as a supplement during the transition period in dairy 

cattle. J Dairy Sci, 97, 7102-14. 

ANDREU-VAZQUEZ, C., GARCIA-ISPIERTO, I., GANAU, S., FRICKE, P. M. 

& LOPEZ-GATIUS, F. 2012. Effects of twinning on the subsequent 

https://ahdb.org.uk/news/uk-milk-productivity-the-global-context


306 
 

reproductive performance and productive lifespan of high-producing 

dairy cows. Theriogenology, 78, 2061-70. 

ANGLART, D., HALLEN-SANDGREN, C., EMANUELSON, U., & 

RONNEGARD, L., 2020. Comparison of methods for predicting cow 

composite somatic cell counts. J. Dairy Sci., 103, 8433–8442. 

ANSARI-MAHYARI, S., OJALI, M. R., FORUTAN, M., RIASI, A. & BRITO, L. F. 

2019. Investigating the genetic architecture of conception and non-return 

rates in Holstein cattle under heat stress conditions. Tropical Animal 

Health and Production. 

ARICI, Y., OZKAN, M., & KOCABAS, Z. 2023. Effects of multicollinearity on 

type i error rate and test power of binary logistic regression model: a 

simulation study. Medicine Science | International Medical Journal, 

12(4), 1180. 

ATKINSON, O. 2009. Guide to the rumen health visit. Practice, 31, 314–325.  

AVIZHEH, M., DADPASAND, M., DEHNAVI, E., & KESHAVARZI, H. 2023. 

Application of machine-learning algorithms to predict calving difficulty in 

Holstein dairy cattle. Animal Production Science, 63(11), 1095-1104. 

AYINDE, O. O. A. K. and NWOSU, U. I. 2021. Solving multicollinearity problem 

in linear regression model: the review suggests new idea of partitioning 

and extraction of the explanatory variables. Journal of Mathematics and 

Statistics Studies, 2(1), 12-20. 

AYRANCI, A., ATAY, S., & YILDIRIM, T. 2021. Speaker accent recognition 

using mfcc feature extraction and machine learning algorithms. 

International Journal of Advances in Engineering and Pure Sciences, 33, 

17-27. 

AZAWI, O. I. 2008. Postpartum uterine infection in cattle. Anim Reprod Sci, 

105, 187-208. 

BARKER, Z. E., LEACH, K. A., WHAY, H. R., BELL, N. J. & MAIN, D. C. 2010. 

Assessment of lameness prevalence and associated risk factors in dairy 

herds in England and Wales. J Dairy Sci, 93, 932-41. 

BATES, A. J. Saldias, B.  2019. A comparison of machine learning and logistic 

regression in modelling the association of body condition score and 

submission rate, Preventive Veterinary Medicine, 171, 104765, 0167-

5877. 



307 
 

BAYKAN, N. & YILMAZ, N. 2011. A mineral classification system with multiple 

artificial neural network using k-fold cross validation. Mathematical and 

Computational Applications, 16(1), 22-30.  

BEDNARSKI, B., SINGH, A., ZHANG, W., JONES, W., NAEIM, A., & 

RAMEZANI, R., 2022. Temporal convolutional networks and data 

rebalancing for clinical length of stay and mortality prediction. Scientific 

Reports, 12(1). 

BEKUMA, A. 2019. Combating negative effect of negative energy balance in 

dairy cows: comprehensive review. Approaches in Poultry Dairy & 

Veterinary Sciences, 6(2). 

BELL, A. W. 1995. Regulation of organic nutrient metabolism during transition 

from late pregnancy to early lactation. J Anim Sci, 73, 2804-19. 

BENAISSA, S., TUYTTENS, F. A. M., PLETS, D., CATTRYSSE, H., 

MARTENS, L., VANDAELE, L., JOSEPH & W., SONCK, B. 2019a. 

Classification of ingestive-related cow behaviours using RumiWatch 

halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci., 211, 

9–16. 

BENAISSA, S., TUYTTENS, F. A. M., PLETS, D., DE PESSEMIER, T., 

TROGH, J., TANGHE, E., MARTENS, L., VANDAELE, L., VAN 

NUFFEL, A., JOSEPH, W. & SONCK, B. 2017. On the use of on-cow 

accelerometers for the classification of behaviours in dairy barns. 

Research in Veterinary Science. 125, 425–433. 

BENAISSA, S., TUYTTENS, F. A. M., PLETS, D., DE PESSEMIER, T., 

TROGH, J., TANGHE, E., MARTENS, L., VANDAELE, L., VAN 

NUFFEL, A., JOSEPH, W., & SONCK, B. 2019b. On the use of on-cow 

accelerometers for the classification of behaviours in dairy barns. Res. 

Vet. Sci., 125, 425–433. 

BERRY, D. P., BUCKLEY, F. & DILLON, P. 2007. Body condition score and 

live-weight effects on milk production in Irish Holstein-Friesian dairy 

cows. Animal, 1, 1351-9. 

BERRY, D. P., BUCKLEY, F., DILLON, P., EVANS, R. D., RATH, M. & 

VEERKAMP, R. F. 2003. Genetic relationships among body condition 

score, body weight, milk yield, and fertility in dairy cows. J Dairy Sci, 86, 

2193-204. 



308 
 

BERRY, D. P., VEERKAMP, R. F. & DILLON, P. 2006. Phenotypic profiles for 

body weight, body condition score, energy intake, and energy balance 

across different parities and concentrate feeding levels. Livestock 

Science, 104, 1-12. 

BERTONI, G., TREVISI, E. & LOMBARDELLI, R. 2009. Some new aspects of 

nutrition, health conditions and fertility of intensively reared dairy cows. 

Italian Journal of Animal Science, 8, 491-518. 

BICALHO, R. C., CHEONG, S. H., GALVAO, K. N., WARNICK, L. D. & GUARD, 

C. L. 2007. Effect of twin birth calvings on milk production, reproductive 

performance, and survival of lactating cows. J Am Vet Med Assoc, 231, 

1390-7. 

BIFFANI, S., PAUSCH, H., SCHWARZENBACHER, H. & BISCARINI, F. 2017. 

The effect of mislabeled phenotypic status on the identification of 

mutation-carriers from SNP genotypes in dairy cattle. BMC research 

notes, 10, 230-230. 

BONFATTI, V. TURNER, S.-A. KUHN-SHERLOCK, B. LUKE, T.D.W. HO, P.N. 

PHYN, C.V.C. & PRYCE, J.E. 2019. Prediction of blood β-

hydroxybutyrate content and occurrence of hyperketonemia in early-

lactation, pasture-grazed dairy cows using milk infrared spectra, Journal 

of Dairy Science, 102, 7, 6466-6476. 

BORCHERS, M. R., CHANG, Y. M., PROUDFOOT, K. L., WADSWORTH, B. 

A., STONE, A. E. & BEWLEY, J. M. 2017. Machine-learning-based 

calving prediction from activity, lying, and ruminating behaviors in dairy 

cattle. J Dairy Sci, 100, 5664-5674. 

BORDES, A., ERTEKIN, S., WESTON, J., & BOTTOU, L., 2005, Fast kernel 

classifiers with online and active learning, Journal of machine learning 

research, 6, 1579–1619. 

BORGHART, G. M., O’GRADY, L. E. & SOMERS, J. R. 2021. Prediction of 

lameness using automatically recorded activity, behavior and production 

data in post-parturient Irish dairy cows. Ir. Vet. J., 74, 4. 

BOVO, M., AGRUSTI, M., BENNI, S., TORREGGIANI, D., TASSINARI, P. 

2021. Random Forest Modelling of Milk Yield of Dairy Cows under Heat 

Stress Conditions. Animals (Basel). 11(5):1305. 



309 
 

BRADFORD, B. J., YUAN, K., FARNEY, J. K., MAMEDOVA, L. K. & 

CARPENTER, A. J. 2015. Invited review: Inflammation during the 

transition to lactation: New adventures with an old flame. J Dairy Sci, 98, 

6631-50. 

BRADLEY, A. J., LEACH, K. A., BREEN, J. E., GREEN, L. E. & GREEN, M. J. 

2007. Survey of the incidence and aetiology of mastitis on dairy farms in 

England and Wales. Veterinary Record, 160, 253. 

BRAMER, M.,  2007, Principles of data mining Springer, vol. 131. 

BRAMLEY, E. COSTA, N.D. FULKERSON, W.J. LEAN, I.J. 2013. Associations 

between body condition, rumen fill, diarrhoea and lameness and ruminal 

acidosis in Australian dairy herds. N. Z. Vet. J., 61, 323–329.  

BRAND, W., WELLS, A. T., SMITH, S. L., DENHOLM, S. J., WALL, E., 

COFFEY, M. P., 2021. Predicting pregnancy status from mid-infrared 

spectroscopy in dairy cow milk using deep learning. J. Dairy Sci. 104, 

4980–4990. 

BREIMAN, L., 1996. Bagging predictors. Machine Learning 26(2), 123–140  

BREIMAN, L., 2001. Random forests. Machine Learning, 45, 5–32. 

BROUCEK, J., UHRINCAT, M., MIHINA, S., SOCH, M., MREKAJOVA, A. & 

HANUS, A. 2017. Dairy Cows Produce Less Milk and Modify Their 

Behaviour during the Transition between Tie-Stall to Free-Stall. Animals 

: an open access journal from MDPI, 7, 16. 

BRUUN, J., ERSBOLL, A. K. & ALBAN, L. 2002. Risk factors for metritis in 

Danish dairy cows. Prev Vet Med, 54, 179-90. 

BURFEIND, O., SEPULVEDA, P., VON KEYSERLINGK, M. A., WEARY, D. M., 

VEIRA, D. M. & HEUWIESER, W. 2010. Technical note: Evaluation of a 

scoring system for rumen fill in dairy cows. J Dairy Sci, 93, 3635-40. 

BUTLER, S. 2014. Nutritional management to optimize fertility of dairy cows in 

pasture-based systems. Animal, 8, 15-26. 

BUTLER, W. R. & SMITH, R. D. 1989. Interrelationships between energy 

balance and postpartum reproductive function in dairy cattle. J Dairy Sci, 

72, 767-83. 

C. BARTLETT, P., KIRK, J. H., WILKE, M. A., KANEENE, J. B. & MATHER, E. 

C. 1986. Metritis complex in Michigan Holstein-Friesian cattle: incidence, 



310 
 

descriptive epidemiology and estimated economic impact. Preventive 

Veterinary Medicine, 4, 235-248. 

CABRERA, V.E.,2014. Economics of fertility in high-yielding dairy cows on 

confined TMR systems. Animal. Suppl 1:211-21.  

CABRERA, V. E. and FRICKE, P. 2021. Economics of twin pregnancies in dairy 

cattle. Animals, 11(2), 552. 

CAI, T. Q., WESTON, P. G., LUND, L. A., BRODIE, B., MCKENNA, D. J. & 

WAGNER, W. C. 1994. Association between neutrophil functions and 

periparturient disorders in cows. Am J Vet Res, 55, 934-43. 

CAIXETA, L. S., HERMAN, J. A., JOHNSON, G. W. & MCART, J. A. A. 2018. 

Herd-Level Monitoring and Prevention of Displaced Abomasum in Dairy 

Cattle. Vet Clin North Am Food Anim Pract, 34, 83-99. 

CAIXETA, L. S., & OMONTESE, B. O. 2021. Monitoring and Improving the 

Metabolic Health of Dairy Cows during the Transition Period. Animals : 

an open access journal from MDPI, 11(2), 352. 

CALDERON, D. F. & COOK, N. B. 2011. The effect of lameness on the resting 

behavior and metabolic status of dairy cattle during the transition period 

in a freestall-housed dairy herd. J Dairy Sci, 94, 2883-2894. 

CAMERON, R. E., DYK, P. B., HERDT, T. H., KANEENE, J. B., MILLER, R., 

BUCHOLTZ, H. F., LIESMAN, J. S., VANDEHAAR, M. J. & EMERY, R. 

S. 1998. Dry cow diet, management, and energy balance as risk factors 

for displaced abomasum in high producing dairy herds. J Dairy Sci, 81, 

132-9. 

CANTOR, M. C., CASELLA, E., SILVESTRI, S., RENAUD, D. L., & COSTA, J. 

H. 2022. Using machine learning and behavioral patterns observed by 

automated feeders and accelerometers for the early indication of clinical 

bovine respiratory disease status in preweaned dairy calves. Frontiers 

in Animal Science, 3, 852359. 

CARAVIELLO, D. Z., WEIGEL, K. A., CRAVEN, M., GIANOLA, D., COOK, N. 

B., NORDLUND, K. V., FRICKE, P. M. & WILTBANK, M. C. 2006. 

Analysis of reproductive performance of lactating cows on large dairy 

farms using machine learning algorithms. J Dairy Sci, 89, 4703-22. 



311 
 

CARSLAKE, C., VAZQUEZ-DIOSDADO, J. A. & KALER, J., 2021 Machine 

learning algorithms to classify and quantify multiple behaviours in dairy 

calves using a sensor–moving beyond classification in precision 

livestock. Sensors, 21, 88. 

CAUWENBERGHS, G. & POGGIO, T., 2000, Incremental and decremental 

support vector machine learning, in Adv. Neural Information Processing 

Systems (NIPS*2000), 13,  409–415.  

CERNEK, P., BOLLIG, N., ANKLAM, K. & DOPFER, D.. Hot topic: Detecting 

digital dermatitis with computer vision. J. Dairy Sci. 2020, 103, 9110–

9115. 

CEVIK, K. K. 2020. Deep Learning Based Real-Time Body Condition Score 

Classification System. IEEE Access, 8, 213950–213957. 

CHANDRA, B. & PAUL VERGHESE, P. 2009. Moving towards efficient 

decision tree construction. Information Sciences, 179(8), 1059-1069. 

CHAPWANYA, A., MEADE, K. G., FOLEY, C., NARCIANDI, F., EVANS, A. C., 

DOHERTY, M. L., CALLANAN, J. J. & O'FARRELLY, C. 2012. The 

postpartum endometrial inflammatory response: a normal physiological 

event with potential implications for bovine fertility. Reprod Fertil Dev, 

24, 1028-39. 

CHELOTTI, J. O., VANRELL, S. R., GALLI, J. R., GIOVANINI, L. L., & 

RUFINER, H. L., 2018. A pattern recognition approach for detecting and 

classifying jaw movements in grazing cattle. Comput. Electron. Agric., 

145, 83–91. 

CHEN, G., 2018, A Method for the Measurement of Temperature Based on 

Neural Network PID, Proceedings of the 2018 3rd International 

Workshop on Materials Engineering and Computer Sciences (IWMECS 

2018)}, 387-390. 

CHEN G. & JI C.,2016, A Method for the Measurement of Temperature Based 

on Multisensor Data Fusion},Proceedings of the 2016 4th International 

Conference on Advanced Materials and Information Technology 

Processing (AMITP 2016},457-460. 

CHEN, H., HU, S., HUA, R., & ZHAO, X. 2021. Improved naive bayes 

classification algorithm for traffic risk management. EURASIP Journal on 

Advances in Signal Processing, 2021(1). 



312 
 

CHEN, C., MURPHY, N.R., PARISA, K., SCULLEY, D., UNDERWOOD, T., 

2022. Reliable Machine Learning, O'Reilly Media, Inc. 

CHUNG, H., LI, J., KIM, Y., VAN OS, J. M. C., BROUNTS, S. H. & CHOI, C. Y. 

2020. Using implantable biosensors and wearable scanners to monitor 

dairy cattle’s core body temperature in real-time. Comput. Electron. 

Agric., 174, 105453. 

CLARKSON, M. J., DOWNHAM, D. Y., FAULL, W. B., HUGHES, J. W., 

MANSON, F. J., MERRITT, J. B., MURRAY, R. D., RUSSELL, W. B., 

SUTHERST, J. E. & WARD, W. R. 1996. Incidence and prevalence of 

lameness in dairy cattle. Vet Rec, 138, 563-7. 

COCKBURN M. 2020. Review: Application and Prospective Discussion of 

Machine Learning for the Management of Dairy Farms. Animals. 

10(9):1690. 

COFFEY, M. P., SIMM, G., OLDHAM, J. D., HILL, W. G. & BROTHERSTONE, 

S. 2004. Genotype and diet effects on energy balance in the first three 

lactations of dairy cows. J Dairy Sci, 87, 4318-26. 

COLEMAN, D. A., THAYNE, W. V. & DAILEY, R. A. 1985. Factors affecting 

reproductive performance of dairy cows. J Dairy Sci, 68, 1793-803. 

COLLINS, G. S., OGUNDIMU, E. O., & ALTMAN, D. G. 2015. Sample size 

considerations for the external validation of a multivariable prognostic 

model: a resampling study. Statistics in Medicine, 35(2), 214-226. 

CONDE, V. A., SILVA VALENTE, G. D. F., & MINIGHIN, E. C. 2020. Milk fraud 

by the addition of whey using an artificial neural network. Cienc. Rural, 

50, 1–8. 

CONTRERAS, L. L., RYAN, C. M. & OVERTON, T. R. 2004. Effects of dry cow 

grouping strategy and prepartum body condition score on performance 

and health of transition dairy cows. J Dairy Sci, 87, 517-23. 

CONTRERAS, G. A., STRIEDER-BARBOZA, C., SOUZA, J. d., GANDY, J., 

MAVANGIRA, V., LOCK, A., & SORDILLO, L. M. 2017. Periparturient 

lipolysis and oxylipid biosynthesis in bovine adipose tissues. Plos One, 

12(12), e0188621. 

COOK, J. G. & GREEN, M. J. 2016. Use of early lactation milk recording data 

to predict the calving to conception interval in dairy herds. J Dairy Sci, 

99, 4699-4706. 



313 
 

COOK, N. B. 2003. Prevalence of lameness among dairy cattle in Wisconsin 

as a function of housing type and stall surface. J Am Vet Med Assoc, 

223, 1324-8. 

COOK, N. B., MENTINK, R. L., BENNETT, T. B. & BURGI, K. 2007. The effect 

of heat stress and lameness on time budgets of lactating dairy cows. J 

Dairy Sci, 90, 1674-82. 

COOK, N. B., NORDLUND, K. V. & OETZEL, G. R. 2004. Environmental 

Influences on Claw Horn Lesions Associated with Laminitis and 

Subacute Ruminal Acidosis in Dairy Cows. J Dairy Sci, 87, E36-E46. 

CORREA, M. T., ERB, H. & SCARLETT, J. 1993. Path analysis for seven 

postpartum disorders of Holstein cows. J Dairy Sci, 76, 1305-12. 

CRANINX, M., FIEVEZ, V., VLAEMINCK, B., DE BAETS, B. 2008. Artificial 

neural network models of the rumen fermentation pattern in dairy cattle. 

Comput. Electron. Agric., 60, 226–238. 

CRISTIANINI, N., & SHAWE-TAYLOR, J. 2000. An introduction to support 

vector machines and other kernel-based learning methods. Cambridge 

university press. 

CURTIS, C. R., ERB, H. N., SNIFFEN, C. J., SMITH, R. D. & KRONFELD, D. 

S. 1985. Path analysis of dry period nutrition, postpartum metabolic and 

reproductive disorders, and mastitis in Holstein cows. J Dairy Sci, 68, 

2347-60. 

DAETZ, R., CUNHA, F., BITTAR, J. H. J., MAGALHAES, F. d. C., MAEDA, Y., 

SANTOS, J., & GALVAO, K. N. 2016. Clinical response after chitosan 

microparticle administration and preliminary assessment of efficacy in 

preventing metritis in lactating dairy cows. J Dairy Sci, 99(11), 8946-

8955. 

DALLAGO, G. M., DE FIGUEIREDO, D. M., ANDRADE, P. C. D. R., DOS 

SANTOS, R. A., LACROIX, R., SANTSCHI, D. E., LEFEBVRE, D. M. 

2019. Predicting first test day milk yield of dairy heifers. Comput. 

Electron. Agric., 166, 105032. 

DANICKE, S., MEYER, U., KERSTEN, S. & FRAHM, J. 2018. Animal models 

to study the impact of nutrition on the immune system of the transition 

cow. Res Vet Sci, 116, 15-27. 



314 
 

DANN, H.M., MORIN, D.E., BOLLERO, G.A., MURPHY, M.R., DRACKLEY, 

J.K. 2005. Prepartum intake, postpartum induction of ketosis, and 

periparturient disorders affect the metabolic status of dairy cows. J Dairy 

Sci. 3249-64.  

DAROS, R. R., HOTZEL, M. J., BRAN, J. A., LEBLANC, S. J. & VON 

KEYSERLINGK, M. A. G. 2017. Prevalence and risk factors for transition 

period diseases in grazing dairy cows in Brazil. Prev Vet Med, 145, 16-

22. 

DE AMICIS, I., VERONESI, M. C., ROBBE, D., GLORIA, A. & CARLUCCIO, A. 

2018. Prevalence, causes, resolution and consequences of bovine 

dystocia in Italy. Theriogenology, 107, 104-108. 

DEFRA, 2022, United Kingdom milk prices and composition of milk: October 

2022, https://www.gov.uk/government/statistics/uk-milk-prices-and-

composition-of-milk/united-kingdom-milk-prices-and-composition-of-

milk-september-2022 . Accessed 14 January 2023 

DENHOLM, S. J., BRAND, W., MITCHELL, A. P., WELLS, A. T., 

KRZYZELEWSKI, T., SMITH, S. L., WALL, E. & COFFEY, M. P. 2020. 

Predicting bovine tuberculosis status of dairy cows from mid-infrared 

spectral data of milk using deep learning. J. Dairy Sci., 103, 9355–9367. 

DERVISHI, E., ZHANG, G., HAILEMARIAM, D., DUNN, S. M., & AMETAI, B. 

N. 2016. Occurrence of retained placenta is preceded by an 

inflammatory state and alterations of energy metabolism in transition 

dairy cows. Journal of Animal Science and Biotechnology, 7(1). 

DETTMANN, F., WARNER, D., BUITENHUIS, B., KARGO, M., KJELDSEN, A. 

M. H., NIELSEN, N. H., LEFEBVRE, D. M., & SANTSCHI, D. E. 2020. 

Fatty acid profiles from routine milk recording as a decision tool for body 

weight change of dairy cows after calving. Animals, 10, 1958. 

DEZFOULI M.M., EFTEKHARI Z., SADEGHIAN S., BAHOUNAR A., 

JELOUDARI M. 2013. Evaluation of hematological and biochemical 

profiles in dairy cows with left displacement of the abomasum. Comp 

Clin Pathol., 22:175-179. 

https://www.gov.uk/government/statistics/uk-milk-prices-and-composition-of-milk/united-kingdom-milk-prices-and-composition-of-milk-september-2022
https://www.gov.uk/government/statistics/uk-milk-prices-and-composition-of-milk/united-kingdom-milk-prices-and-composition-of-milk-september-2022
https://www.gov.uk/government/statistics/uk-milk-prices-and-composition-of-milk/united-kingdom-milk-prices-and-composition-of-milk-september-2022


315 
 

DHIMAN, P., MA, J., NAVARRO, C. L. A., SPEICH, B., BULLOCK, G. S., 

DAMEN, J. A., & COLLINS, G. S. 2022. Risk of bias of prognostic 

models developed using machine learning: a systematic review in 

oncology. Diagnostic and Prognostic Research, 6(1). 

DHOBLE, A. S., RYAN, K. T., LAHIRI, P., CHEN, M., PANG, X., CARDOSO, 

F. C., BHALERAO, K. D. 2019. Cytometric fingerprinting and machine 

learning (CFML): A novel label-free, objective method for routine mastitis 

screening. Comput. Electron. Agric., 162, 505–513. 

DÍAZ, C., CARABAÑO, M. J., RAMÓN, M., PÉREZ-GUZMÁN, M. D., MOLINA, 

A. & SERRADILLA, J. M. 2017. BREEDING AND GENETICS 

SYMPOSIUM: Breeding for resilience to heat stress effects in dairy 

ruminants. A comprehensive review1. Journal of Animal Science, 95, 

1813-1826. 

DIETTERICH, T.. 2000. An experimental comparison of three methods for 

constructing ensembles of decision trees: Bagging, boosting and 

randomization, Machine Learning, 1–22. 

DINEVA, K., & ATANASOVA, T. 2023. Health Status Classification for Cows 

Using Machine Learning and Data Management on AWS Cloud. 

Animals, 13(20), 3254. 

DOBSON, H., WALKER, S. L., MORRIS, M. J., ROUTLY, J. E. & SMITH, R. F. 

2008. Why is it getting more difficult to successfully artificially inseminate 

dairy cows? Animal, 2, 1104-1111. 

DOHOO, I. R. & WAYNE MARTIN, S. 1984. Disease, production and culling in 

Holstein-Friesian cows V. Survivorship. Preventive Veterinary Medicine, 

2, 771-784. 

DOLECHECK, K. & BEWLEY, J. 2018. Animal board invited review: Dairy cow 

lameness expenditures, losses and total cost. Animal, 12, 1462-1474. 

DOLECHECK, K. A., SILVIA, W. J., HEERSCHE, G., JR., CHANG, Y. M., RAY, 

D. L., STONE, A. E., WADSWORTH, B. A. & BEWLEY, J. M. 2015. 

Behavioral and physiological changes around estrus events identified 

using multiple automated monitoring technologies. J Dairy Sci, 98, 8723-

31. 



316 
 

DÓREA, J. R. R., ROSA, G. J. M., WELD, K. A. & ARMENTANO, L. E. 2018. 

Mining data from milk infrared spectroscopy to improve feed intake 

predictions in lactating dairy cows. J Dairy Sci, 101, 5878-5889. 

DOUPHRATE, D. I., FETHKE, N. B., NONNENMANN, M. W., RODRIGUEZ, A. 

& DE PORRAS, D. G. R. 2019. Reliability of observational- and machine-

based teat hygiene scoring methodologies. J. Dairy Sci., 102, 7494–

7502. 

DRACKLEY, J. K. 1999. ADSA Foundation Scholar Award. Biology of dairy 

cows during the transition period: the final frontier? J Dairy Sci, 82, 2259-

73. 

DRACKLEY, J. K., OVERTON, T. R. & DOUGLAS, G. N. 2001. Adaptations of 

Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows 

during the Periparturient Period. J Dairy Sci, 84, E100-E112. 

DRESSLER, W. W., BALIEIRO, M. C., ARAUJO, L. F. d., SILVA, W. A., & 

SANTOS, J. E. d. 2016. The interaction of cultural consonance and a 

polymorphism in the 2a serotonin receptor in relation to depression in 

brazil: failure to replicate previous findings. American Journal of Human 

Biology, 28(6), 936-940. 

DUDOUETE. 1982. Courbe de lactation théorique de la chèvre et applications 

(Theoretical lactation curve of the goat and its applications). Point Vet. 

14:53–61. 

DUNCAN, N. W. & NORTHOFF, G. 2013. Overview of potential procedural and 

participant-related confounds for neuroimaging of the resting state. J. 

Psychiatry Neurosci. 38, 84–96. 

DUTTA, R., SMITH, D., RAWNSLEY, R., BISHOP-HURLEY, G., HILLS, J., 

TIMMS, G. & HENRY, D. 2015. Dynamic cattle behavioural classification 

using supervised ensemble classifiers. Comput. Electron. Agric., 111, 

18–28. 

EBRAHIMIE, E., EBRAHIMI, F., EBRAHIMI, M., TOMLINSON, S. & 

PETROVSKI, K. R. 2018a. Hierarchical pattern recognition in milking 

parameters predicts mastitis prevalence. Computers and Electronics in 

Agriculture, 147, 6-11. 



317 
 

EBRAHIMIE, E., EBRAHIMI, F., EBRAHIMI, M., TOMLINSON, S. & 

PETROVSKI, K. R. 2018b. A large-scale study of indicators of sub-

clinical mastitis in dairy cattle by attribute weighting analysis of milk 

composition features: highlighting the predictive power of lactose and 

electrical conductivity. J Dairy Res, 85, 193-200. 

EBRAHIMIE, E., MOHAMMADI-DEHCHESHMEH, M., LAVEN, R. & 

PETROVSKI, K. R. 2021. Rule Discovery in Milk Content towards 

Mastitis Diagnosis: Dealing with Farm Heterogeneity over Multiple Years 

through Classification Based on Associations. Animals, 11, 1638. 

ECKEL, E. F. & AMETAJ, B. N. 2016. Invited review: Role of bacterial 

endotoxins in the etiopathogenesis of periparturient diseases of 

transition dairy cows. J Dairy Sci, 99, 5967-5990. 

EDMONSON, A. J., LEAN, I., WEAVER, L. D., FARVER, T. B., & WEBSTER, 

G. L. 1989. A body condition scoring chart for holstein dairy cows. J Dairy 

Sci, 72(1), 68-78. 

EDWARDS, J. L. & TOZER, P. R. 2004. Using activity and milk yield as 

predictors of fresh cow disorders. J Dairy Sci, 87, 524-31. 

EHRLICH, J. L. 2010. Quantifying shape of lactation curves, and benchmark 

curves for common dairy breeds and parities, The Bovine Practitioner, 

45(1), 88–95 

EHRET, A., HOCHSTUHL, D., GIANOLA, D. & THALLER, G. 2015. Application 

of neural networks with back-propagation to genome-enabled prediction 

of complex traits in Holstein-Friesian and German Fleckvieh cattle. 

Genet Sel Evol, 47, 22. 

ELZHOV, T.V., MULLEN, K.M., SPIESS A.N., BOLKER B. 2016. minpack.lm: 

R Interface to the Levenberg-Marquardt Nonlinear Least-Squares 

Algorithm Found in MINPACK, Plus Support for Bounds. R package 

version 1.2-1. https://CRAN.R-project.org/package=minpack.lm  

ERB, H. N., SMITH, R. D., OLTENACU, P. A., GUARD, C. L., HILLMAN, R. B., 

POWERS, P. A., SMITH, M. C. & WHITE, M. E. 1985. Path model of 

reproductive disorders and performance, milk fever, mastitis, milk yield, 

and culling in Holstein cows. J Dairy Sci, 68, 3337-49. 



318 
 

BRADLEY & A. J., DOTTORINI, T. 2018. Discrimination of contagious and 

environmental strains of Streptococcus uberis in dairy herds by means 

of mass spectrometry and machine-learning. Sci. Rep., 8, 17517. 

ESENER, N., MACIEL-GUERRA, A., GIEBEL, K., LEA, D., GREEN, M. J., 

BRADLEY, A. J., & DOTTORINI, T. 2021. Mass spectrometry and 

machine learning for the accurate diagnosis of benzylpenicillin and 

multidrug resistance of Staphylococcus aureus in bovine mastitis. PLoS 

computational biology, 17(6), e1009108. 

ESPEJO, L. A. & ENDRES, M. I. 2007. Herd-level risk factors for lameness in 

high-producing holstein cows housed in freestall barns. J Dairy Sci, 90, 

306-14. 

ESPOSITO, G., IRONS, P. C., WEBB, E. C. & CHAPWANYA, A. 2014. 

Interactions between negative energy balance, metabolic diseases, 

uterine health and immune response in transition dairy cows. Anim 

Reprod Sci, 144, 60-71. 

FANG K., WU S., ZHU J., XIE B., 2011, A review of random forest methods[J]. 

Statistics and Information Forum,26(03):32-38. 

FARAH, J. S., CAVALCANTI, R. N., GUIMARAES, J. T., BALTHAZAR, C. F., 

COIMBRA, P. T., PIMENTEL, T. C., ESMERINO, E. A., DUARTE, M. C. 

K. H., FREITAS, M. Q., GRANATO, D., et al. 2021. Differential scanning 

calorimetry coupled with machine learning technique: An effective 

approach to determine the milk authenticity. Food Control., 121, 107585. 

FARRELL, A. V., WANG, G., RUSH, S. A., MARTIN, J. A., BELANT, J. L., 

BUTLER, A., & GODWIN, D. 2019. Machine learning of large‐scale 

spatial distributions of wild turkeys with high‐dimensional environmental 

data. Ecology and Evolution, 9(10), 5938-5949. 

FEI, Z., GUAN, C., & GAO, H. 2018. Exponential synchronization of networked 

chaotic delayed neural network by a hybrid event trigger scheme. IEEE 

Transactions on Neural Networks and Learning Systems, 29(6), 2558-

2567. 



319 
 

FAWAGREH, K., GABER, M., & ELYAN, E., 2014. Random forests: from early 

developments to recent advancements. Systems Science & Control 

Engineering: An Open Access Journal, 2(1):602–609. 

FENLON, C., O'GRADY, L., BUTLER, S., DOHERTY, M. L. & DUNNION, J. 

2017a. The creation and evaluation of a model to simulate the probability 

of conception in seasonal-calving pasture-based dairy heifers. Ir Vet J, 

70, 32. 

FENLON, C., O'GRADY, L., MEE, J. F., BUTLER, S. T., DOHERTY, M. L. & 

DUNNION, J. 2017b. A comparison of 4 predictive models of calving 

assistance and difficulty in dairy heifers and cows. J Dairy Sci, 100, 

9746-9758. 

FIGUEIREDO, C., MERENDA, V. R., OLIVEIRA, E. B. d., LIMA, F., CHEBEL, 

R. C., GALVAO, K. N. & BISINOTTO, R. 2021. Failure of clinical cure in 

dairy cows treated for metritis is associated with reduced productive and 

reproductive performance. J Dairy Sci, 104(6), 7056-7070. 

FILHO, V. B. S., SCHIAVON, R. S., GASTAL, G. D. A., TIMM, C. D., & LUCIA, 

T. 2012. Association of the occurrence of some diseases with 

reproductive performance and milk production of dairy herds in southern 

brazil. Revista Brasileira De Zootecnia, 41(2), 467-471. 

FLEISCHER, P., METZNER, M., BEYERBACH, M., HOEDEMAKER, M. & 

KLEE, W. 2001. The relationship between milk yield and the incidence 

of some diseases in dairy cows. J Dairy Sci, 84, 2025-35. 

FOLDI, J., KULCSAR, M., PECSI, A., HUYGHE, B., DE SA, C., LOHUIS, J. A., 

COX, P. & HUSZENICZA, G. 2006. Bacterial complications of 

postpartum uterine involution in cattle. Anim Reprod Sci, 96, 265-81. 

FOLLI, G. S., NASCIMENTO, M. H., PAULO, E. H. d., CUNHA, P. H. P. d., 

ROMAO, W., & FILGUEIRAS, P. R. 2020. Variable selection in support 

vector regression using angular search algorithm and variance inflation 

factor. Journal of Chemometrics, 34(12). 

FOURICHON, C., SEEGERS, H., BAREILLE, N. & BEAUDEAU, F. 1999. 

Effects of disease on milk production in the dairy cow: a review. Prev Vet 

Med, 41, 1-35. 



320 
 

FOURICHON, C., SEEGERS, H. & MALHER, X. 2000. Effect of disease on 

reproduction in the dairy cow: a meta-analysis. Theriogenology, 53, 

1729-59. 

FOX J., & WEISBERG S., 2019. An R Companion to Applied Regression, Third 

edition. Sage, Thousand Oaks CA. https://www.john-

fox.ca/Companion/. 

FRANCESCHINI S, GRELET, C., LEBLOIS, J., GENGLER, N., & SOYEURT 

H. 2022. Can unsupervised learning methods applied to milk recording 

big data provide new insights into dairy cow health? J Dairy Sci. 6760-

6772. FRAZER, G. S. 2005. A rational basis for therapy in the sick 

postpartum cow. Vet Clin North Am Food Anim Pract, 21, 523-68. 

FRIZZARIN, M., GORMLEY, I. C., BERRY, D. P., MURPHY, T. B., CASA, A., 

LYNCH, A., & MCPARLAND, S. (2021). Predicting cow milk quality traits 

from routinely available milk spectra using statistical machine learning 

methods. J Dairy Sci, 104(7), 7438–7447.  

FROUD, K., BEREFORD, R., & COGGER, N. (2017). Impact of kiwifruit 

bacterial canker on productivity of cv. hayward kiwifruit using 

observational data and multivariable analysis. Plant Pathology, 67(3), 

671-681.  

FU, Q., SHEN, W., WEI, X., ZHANG, Y., XIN, H., SU, Z., ZHAO, C. 2020. 

Prediction of the diet energy digestion using kernel extreme learning 

machine: A case study with Holstein dry cows. Comput. Electron. Agric., 

169, 105231. 

FUENTES, S., VIEJO, C. G., CULLEN, B., TONGSON, E., CHAUHAN, S. S., 

DUNSHEA, F. R., 2020. Artificial intelligence applied to a robotic dairy 

farm to model milk productivity and quality based on cow data and daily 

environmental parameters. Sensors, 20, 2975. 

GARCIA-ALMANZA, A. L. and TSANG, E. P. K.,2006. Simplifying Decision 

Trees Learned by Genetic Programming, 2006 IEEE International 

Conference on Evolutionary Computation, 2142-2148. 

GAULY, M., AMMER, S., 2020. Review: Challenges for dairy cow production 

systems arising from climate changes, Animal, Volume 14, Supplement 

1, 196-203 

https://www.john-fox.ca/Companion/
https://www.john-fox.ca/Companion/


321 
 

GAUTAM, G., NAKAO, T., YUSUF, M. & KOIKE, K. 2009. Prevalence of 

endometritis during the postpartum period and its impact on subsequent 

reproductive performance in two Japanese dairy herds. Anim Reprod 

Sci, 116, 175-87. 

GEISHAUSER, T. 1995. Abomasal displacement in the bovine--a review on 

character, occurrence, aetiology and pathogenesis. Zentralbl 

Veterinarmed A, 42, 229-51. 

GENEDY, R. A., OGEJO, J. A. 2021. Using machine learning techniques to 

predict liquid dairy manure temperature during storage. Comput. 

Electron. Agric., 187, 106234. 

GHAFFARI, M. H., JAHANBEKAM, A., SADRI, H., SCHUH, K., DUSEL, G., 

PREHN, C., ADAMSKI, J., KOCH, C. & SAUERWEIN, H. 2019. 

Metabolomics meets machine learning: Longitudinal metabolite profiling 

in serum of normal versus overconditioned cows and pathway analysis. 

J. Dairy Sci., 102, 11561–11585. 

GHAREEB, Z. 2023. A new shrinkage method for higher dimensions regression 

model to remedy of multicollinearity problem. Periodicals of Engineering 

and Natural Sciences (Pen), 11(3), 18. 

GIANOLA, D., OKUT, H., WEIGEL, K. A. & ROSA, G. J. 2011. Predicting 

complex quantitative traits with Bayesian neural networks: a case study 

with Jersey cows and wheat. BMC genetics, 12, 87-87. 

GLEERUP, K. B., ANDERSEN, P. H., MUNKSGAARD, L. & FORKMAN, B. 

2015. Pain evaluation in dairy cattle. Appl. Anim. Behav. Sci. 171, 25–

32. 

GOCHEVA-ILIEVA S., YORDANOVA A., KULINA H.. 2022. Predicting the 305-

Day Milk Yield of Holstein-Friesian Cows Depending on the 

Conformation Traits and Farm Using Simplified Selective Ensembles. 

Mathematics. 10(8):1254. 

GODDEN, S. M., STEWART, S. C., FETROW, J. F., RAPNICKI, P., CADY, R., 

WEILAND, W., SPENCER, H. & EICKER, S. 2003. The relationship 

between herd rbST supplementation and other factors and risk for 

removal for cows in Minnesota Holstein dairy herds. Proc. Four-State 

Nutr. Conf., 55-64. 



322 
 

GOFF, J. P. 2008. The monitoring, prevention, and treatment of milk fever and 

subclinical hypocalcemia in dairy cows. Vet J, 176, 50-7. 

GOFF, J. P. & HORST, R. L. 1997a. Effects of the addition of potassium or 

sodium, but not calcium, to prepartum ratios on milk fever in dairy cows. 

J Dairy Sci, 80, 176-86. 

GOFF, J. P. & HORST, R. L. 1997b. Physiological changes at parturition and 

their relationship to metabolic disorders. J Dairy Sci, 80, 1260-8. 

GOFF, J. P., HORST, R. L., JARDON, P. W., BORELLI, C. & WEDAM, J. 1996. 

Field trials of an oral calcium propionate paste as an aid to prevent milk 

fever in periparturient dairy cows. J Dairy Sci, 79, 378-83. 

GOHARY, K. & LEBLANC, S. J. 2018. Cost of retained fetal membranes for 

dairy herds in the United States. J Am Vet Med Assoc, 252, 1485-1489. 

GONZALEZ-RECIO, O., WEIGEL, K. A., GIANOLA, D., NAYA, H. & ROSA, G. 

J. 2010. L2-Boosting algorithm applied to high-dimensional problems in 

genomic selection. Genet Res (Camb), 92, 227-37. 

GORCZYCA, M. T. & GEBREMEDHIN, K. G. 2020. Ranking of environmental 

heat stressors for dairy cows using machine learning algorithms. 

Comput. Electron. Agric., 168, 105124. 

GORGULU, O., 2012. Prediction of 305-day milk yield in Brown Swiss cattle 

using artificial neural networks, South African Journal of Animal Science, 

42 (3), 280 – 287 

GRAULET, B., MATTE, J. J., DESROCHERS, A., DOEPEL, L., PALIN, M., & 

GIRARD, C. (2007). Effects of dietary supplements of folic acid and 

vitamin b12 on metabolism of dairy cows in early lactation. J Dairy Sci, 

90(7), 3442-3455. 

GREEN, L. E., HUXLEY, J. N., BANKS, C. & GREEN, M. J. 2014. Temporal 

associations between low body condition, lameness and milk yield in a 

UK dairy herd. Prev Vet Med, 113, 63-71. 

GRIFFITHS, B. E., GROVE WHITE, D. & OIKONOMOU, G. 2018. A Cross-

Sectional Study Into the Prevalence of Dairy Cattle Lameness and 

Associated Herd-Level Risk Factors in England and Wales. Frontiers in 

veterinary science, 5, 65-65. 



323 
 

GROHN, Y. T., EICKER, S. W., DUCROCQ, V. & HERTL, J. A. 1998. Effect of 

diseases on the culling of Holstein dairy cows in New York State. J Dairy 

Sci, 81, 966-78. 

GROHN, Y.T., RAJALA-SCHULZT,P.J., 2000. Epidemiology of reproductive 

performance in dairy cows, Animal Reproduction Science, Volumes 60–

61, 605-614. 

GROHN, Y. T., RAJALA-SCHULTZ, P. J., ALLORE, H. G., DELORENZO, M. 

A., HERTL, J. A. & GALLIGAN, D. T. 2003. Optimizing replacement of 

dairy cows: modeling the effects of diseases. Prev Vet Med, 61, 27-43. 

GROHN, Y.T. WILSON, D.J. GONZALEZ, R.N. HERTL, J.A. SCHULTE, H. 

BENNETT, G. SCHUKKENY.H. 2004. Effect of Pathogen-Specific 

Clinical Mastitis on Milk Yield in Dairy Cows, J Dairy Sci, Volume 87, 

Issue 10, 2004, 3358-3374. 

GROSS, J. J., SCHWARZ, F. J., EDER, K., DORLAND, H. V., & 

BRUCKMAIER, R. M. (2013). Liver fat content and lipid metabolism in 

dairy cows during early lactation and during a mid-lactation feed 

restriction. J Dairy Sci, 96(8), 5008-5017. 

GRUMMER, R. R. 1993. Etiology of lipid-related metabolic disorders in 

periparturient dairy cows. J Dairy Sci, 76, 3882-96. 

GRUMMER, R. R. 1995. Impact of changes in organic nutrient metabolism on 

feeding the transition dairy cow. J Anim Sci, 73, 2820-33. 

GRYMER J., WILLEBERG P., HESSELHOLT M. 1982. Milk production and left 

displaced abomasum: cause and effect relationships. Nord Vet Med. 

34(11):412-5 

GRZESIAK, W., LACROIX, R., WOJCIK, J., BLASZCZYK, P. 2003. A 

comparison of neural network and multiple regression predictions for 

305-day lactation yield using partial lactation records, Canadian Journal 

of Animal Science, 83 (2), 307 – 310  

GRZESIAK, W., BŁASZCZYK, P. & LACROIX, R. 2006. Methods of predicting 

milk yield in dairy cows—Predictive capabilities of Wood's lactation curve 

and artificial neural networks (ANNs). Computers and Electronics in 

Agriculture, 54, 69-83. 



324 
 

GRZEKIAK, W., ZABORSKI, D., SZATKOWSKA, I., & KROLACZYK, K. 2021. 

Lactation milk yield prediction in primiparous cows on a farm using the 

seasonal auto-regressive integrated moving average model, nonlinear 

autoregressive exogenous artificial neural networks and wood’s model. 

Animal Bioscience, 34(4), 770-782. 

GIULIODORI M.J., MAGNASCO R.P., BECU-VILLALOBOS D., LACAU-

MENGIDO I.M., RISCO C.A., DE LA SOTA R.L.,2013. Metritis in dairy 

cows: risk factors and reproductive performance. J Dairy Sci. 

96(6):3621-31. 

GUCKIRAN, K., CANTURK, İ., & OZYILMAZ, L., 2019. Dna microarray gene 

expression data classification using svm, mlp, and rf with feature 

selection methods relief and lasso. Süleyman Demirel Üniversitesi Fen 

Bilimleri Enstitüsü Dergisi, 23(1), 126-132.  

GUMEN, A., KESKIN, A., YILMAZBAS-MECITOGLU, G., Karakaya, E., & 

WILTBANK, M. C. (2011). Dry period management and optimization of 

post‐partum reproductive management in dairy cattle. Reproduction in 

Domestic Animals, 46(s3), 11-17. 

GUMEN, A., RASTANI, R.R., GRUMMER, R.R., WILTBANK, M.C. 2005. 

Reduced dry periods and varying prepartum diets alter postpartum 

ovulation and reproductive measures. J Dairy Sci.2401-11. 

 HACHENBERG, S., WEINKAUF, C., HISS, S. & SAUERWEIN, H. 2007. 

Evaluation of classification modes potentially suitable to identify 

metabolic stress in healthy dairy cows during the peripartal period. J 

Anim Sci, 85, 1923-32. 

HAHN, G. L. 1999. Dynamic responses of cattle to thermal heat loads. J Anim 

Sci, 77 Suppl 2, 10-20. 

HAILEMARIAM, D., MANDAL, R., SALEEM, F., DUNN, S. M., WISHART, D. 

S., & AMETAJ, B. N. (2014). Identification of predictive biomarkers of 

disease state in transition dairy cows. J Dairy Sci, 97(5), 2680-2693. 

HALADJIAN, J., HAUG, J., NUSKE, S., BRUEGGE, B. 2018. A wearable 

sensor system for lameness detection in dairy cattle. Multimodal 

Technol. Interact., 2, 27. 



325 
 

HANCOCK, J., KHOSHGOFTAAR, T., & JOHNSON, J., 2023. Evaluating 

classifier performance with highly imbalanced big data. Journal of Big 

Data, 10(1). 

HARRELL, F.E. 2001. Cox Proportional Hazards Regression Model. In: 

Regression Modeling Strategies. Springer Series in Statistics. Springer, 

New York, NY.  

HARTONO, H. & ONGKO, E. 2022. Avoiding overfitting dan overlapping in 

handling class imbalanced using hybrid approach with smoothed 

bootstrap resampling and feature selection. Joiv International Journal on 

Informatics Visualization, 6(2), 343. 

HASSAN, K. J., SAMARASINGHE, S. & LOPEZ-BENAVIDES, M. G. 2009. Use 

of neural networks to detect minor and major pathogens that cause 

bovine mastitis. J Dairy Sci, 92, 1493-9. 

HAYIRLI, A., GRUMMER, R. R., NORDHEIM, E. V. & CRUMP, P. M. 2002. 

Animal and dietary factors affecting feed intake during the prefresh 

transition period in Holsteins. J Dairy Sci, 85, 3430-43. 

HAYKIN, S. 1998. Neural Networks: A Comprehensive Foundation, Prentice 

Hall PTR. 

HE, J., BAXTER, S. L., XU, J., ZHOU, X. & ZHANG, K. 2019. The practical 

implementation of artificial intelligence technologies in medicine. Nat. 

Med. 25, 30–36. 

HEALD, C. W., KIM, T., SISCHO, W. M., COOPER, J. B. & WOLFGANG, D. 

R. 2000. A computerized mastitis decision aid using farm-based records: 

an artificial neural network approach. J Dairy Sci, 83, 711-20. 

VAN DER HEIDE, E. M. M., VEERKAMP, R. F., VAN PELT, M. L., KAMPHUIS, 

C., ATHANASIADIS, I., & DUCRO, B. J. 2019. Comparing regression, 

naive Bayes, and random forest methods in the prediction of individual 

survival to second lactation in Holstein cattle. J Dairy Sci, 102(10), 9409-

9421. 

HEMPEL, S., ADOLPHS, J., LANDWEHR, N., WILLINK, D., JANKE, D., 

AMON, T., 2020. Supervised machine learning to assess methane 

emissions of a dairy building with natural ventilation. Appl. Sci., 10, 6938. 



326 
 

HEMPSTALK, K., MCPARLAND, S. & BERRY, D. P. 2015. Machine learning 

algorithms for the prediction of conception success to a given 

insemination in lactating dairy cows. J Dairy Sci, 98, 5262-5273. 

HERNANDEZ, B., LOPEZ-VILLALOBOS, N., & VIGNES, M. 2021. Identifying 

health status in grazing dairy cows from milk mid-infrared spectroscopy 

by using machine learning methods. Animals, 11(8), 2154. 

HERRING, A.D., Beef Cattle, Editor(s): VAN ALFEN, N.K. 2014. Encyclopedia 

of Agriculture and Food Systems, Academic Press, 1-20. 

HEUER, C., SCHUKKEN, Y. H. & DOBBELAAR, P. 1999. Postpartum body 

condition score and results from the first test day milk as predictors of 

disease, fertility, yield, and culling in commercial dairy herds. J Dairy Sci, 

82, 295-304. 

HIGAKI, S., MIURA, R., SUDA, T., ANDERSSON, L. M., OKADA, H., ZHANG, 

Y., ITOH, T., MIWAKEICHI, F. & YOSHIOKA, K. 2019. Estrous detection 

by continuous measurements of vaginal temperature and conductivity 

with supervised machine learning in cattle. Theriogenology, 123, 90-99. 

HO, K. 2017. Effect of non-linearity of a predictor on the shape and magnitude 

of its receiver-operating-characteristic curve in predicting a binary 

outcome. Scientific Reports, 7(1). 

HOEDEMAKER, M., PRANGE, D. & GUNDELACH, Y. 2009. Body condition 

change ante- and postpartum, health and reproductive performance in 

German Holstein cows. Reprod Domest Anim, 44, 167-73. 

HOKA, A. I., GICHERU, M. & OTIENO, S. 2019. Effect of cow parity and calf 

characteristics on milk production and reproduction of friesian dairy 

cows. JNSR. 

HOLDER, A. M. & FIELD, J. C. 2019. An exploration of factors that relate to the 

occurrence of multiple brooding in rockfishes (sebastes spp.). Fishery 

Bulletin, 117(3), 56-64. 

HORST, R. L., GOFF, J. P. & REINHARDT, T. A. 1994. Calcium and vitamin D 

metabolism in the dairy cow. J Dairy Sci, 77, 1936-51. 

HOSMER, D.W., HOSMER, T., LEMESHOW, S. 1980. A Goodness-of-Fit 

Tests for the Multiple Logistic Regression Model. Communications in 

Statistics, 10, 1043-1069. 



327 
 

HUANG, X., HU, Z., WANG, X., YANG, X., ZHANG, J., SHI, D. 2019. An 

improved single shot multibox detector method applied in body condition 

score for dairy cows. Animals, 9, 470. 

HUDSON, C. 2011. Understanding the factors affecting dairy cow fertility. 

Veterinary Record, 168, 299. 

HUDSON, C., KALER, J. & DOWN, P. 2018. Using big data in cattle practice. 

In Practice, 40, 396. 

HUDSON, C. D., BRADLEY, A. J., BREEN, J. E. & GREEN, M. J. 2012. 

Associations between udder health and reproductive performance in 

United Kingdom dairy cows. J Dairy Sci, 95, 3683-97. 

HUDSON, C. D. & GREEN, M. J. 2018. Associations between routinely 

collected Dairy Herd Improvement data and insemination outcome in UK 

dairy herds. J Dairy Sci. 101(12), 11262–11274. 

HUNTER, L. B., BATEN, A., HASKELL, M. J., LANGFORD, F. M., O’CONNOR, 

C., WEBSTER, J. R., STAFFORD, K. 2021. Machine learning prediction 

of sleep stages in dairy cows from heart rate and muscle activity 

measures. Sci. Rep., 11, 10938. 

HUZZEY, J. M., DUFFIELD, T. F., LEBLANC, S. J., VEIRA, D. M., WEARY, D. 

M. & VON KEYSERLINGK, M. A. 2009. Short communication: 

Haptoglobin as an early indicator of metritis. J Dairy Sci, 92, 621-5. 

HUZZEY, J. M., VEIRA, D. M., WEARY, D. M. & VON KEYSERLINGK, M. A. 

2007. Prepartum behavior and dry matter intake identify dairy cows at 

risk for metritis. J Dairy Sci, 90, 3220-33. 

HYDE, R. M., DOWN, P. M., BRADLEY, A. J., BREEN, J. E., HUDSON, C., 

LEACH, K. A., GREEN, M. J. 2020. Automated prediction of mastitis 

infection patterns in dairy herds using machine learning. Sci. Rep., 10, 

4289. 

IIDA, K., & KIYA, H., 2019, IEICE Trans. Inf. Syst., 103-D, 25-32  

IMADA, J., ARANGO-SABODAL, J. C., BAUMAN, C., ROCHE, S., & KELTON, 

D. (2024). Comparison of Machine Learning Tree-Based Algorithms to 

Predict Future Paratuberculosis ELISA Results Using Repeat Milk 

Tests. Animals : an open access journal from MDPI, 14(7), 1113  



328 
 

IMHASLY, S., BIELI, C., NAEGELI, H., NYSTROM, L., RUETTEN, M., & 

GERSPACH, C. (2015). Blood plasma lipidome profile of dairy cows 

during the transition period. BMC Veterinary Research, 11(1). 

INFANTE, P., JACINTO, G., AFONSO, A., REGO, L., NOGUEIRA, V., 

QUARESMA, P., & MANUEL, P. 2022. Comparison of statistical and 

machine-learning models on road traffic accident severity classification. 

Computers, 11(5), 80. 

INGALHALIKAR, M., SHINDE, S., KARMARKAR, A., RAJAN, A., 

RANGAPRAKASH, D., & DESHPANDE, G. 2021. Functional 

connectivity-based prediction of autism on site harmonized abide 

dataset. IEEE Transactions on Biomedical Engineering, 68(12), 3628-

3637. 

INGVARTSEN, K. L. 2006. Feeding- and management-related diseases in the 

transition cow: Physiological adaptations around calving and strategies 

to reduce feeding-related diseases. Animal Feed Science and 

Technology, 126, 175-213. 

JAGER, K. J., ZOCCALI, C., MACLEOD, A. & DEKKER, F. W. 2008. 

Confounding: what it is and how to deal with it. Kidney Int. 73, 256–260. 

JAMALI EMAM GHEISE, N., RIASI, A., ZARE SHAHNEH, A., CELI, P. & 

GHOREISHI, S. M. 2017. Effect of pre-calving body condition score and 

previous lactation on BCS change, blood metabolites, oxidative stress 

and milk production in Holstein dairy cows. Italian Journal of Animal 

Science, 16, 474-483. 

JAMES, G., WITTEN, D., HASTIE, T. & TIBSHIRANI, R. 2014. An Introduction 

to Statistical Learning: with Applications in R, Springer New York. 

JAZAYERI, M. & MOVSHON, J. A. 2006. Optimal representation of sensory 

information by neural populations. Nature Neuroscience, 9(5), 690-696. 

JAWOR, P., HUZZEY, J., LEBLANC, S., & KEYSERLINGK, M. v. 2012. 

Associations of subclinical hypocalcemia at calving with milk yield, and 

feeding, drinking, and standing behaviors around parturition in holstein 

cows. J Dairy Sci, 95(3), 1240-1248. 

JE, M. & LEE, J. 2023. Factors associated with smartphone dependence of late 

school-aged children: a focus on grit and family strengths. Korean 

Journal of Health Promotion, 23(1), 37-42. 



329 
 

JI, B., BANHAZI, T., GHAHRAMANI, A., BOWTELL, L., WANG, C. & LI, B. 

2020. Modelling of heat stress in a robotic dairy farm. Part 2: Identifying 

the specific thresholds with production factors. Biosyst. Eng., 199, 43–

57. 

JI, B., BANHAZI, T., PHILLIPS, C. J., WANG, C., & LI, B. 2022. A machine 

learning framework to predict the next month's daily milk yield, milk 

composition and milking frequency for cows in a robotic dairy farm. 

Biosystems Engineering, 216, 186-197. 

JIMÉNEZ-MONTERO, J. A., GIANOLA, D., WEIGEL, K., ALENDA, R. & 

GONZÁLEZ-RECIO, O. 2013a. Assets of imputation to ultra-high density 

for productive and functional traits. J Dairy Sci, 96, 6047-6058. 

JIMÉNEZ-MONTERO, J. A., GONZALEZ-RECIO, O. & ALENDA, R. 2013b. 

Comparison of methods for the implementation of genome-assisted 

evaluation of Spanish dairy cattle. J Dairy Sci, 96, 625-34. 

JING, W., YANG, Y., YUE, X., & ZHAO, X., 2016. A comparison of different 

regression algorithms for downscaling monthly satellite-based 

precipitation over north china. Remote Sensing, 8(10), 835.  

JOHAM, M., CASTRO, P., UTSCHICK, W., & CASTEDO, L. 2012. Robust 

precoding with limited feedback design based on precoding mse for mu-

miso systems. IEEE Transactions on Signal Processing, 60(6), 3101-

3111.  

JOHN WALLACE, R., SASSON, G., GARNSWORTHY, P. C., TAPIO, I., 

GREGSON, E., BANI, P., HUHTANEN, P., BAYAT, A. R., STROZZI, F., 

BISCARINI, F., et al. 2019. A heritable subset of the core rumen 

microbiome dictates dairy cow productivity and emissions. Sci. Adv., 5, 

eaav8391. 

JOLLYTA, D., GUSRIANTY, G., & SUKRIANTO, D. (2019). Analysis of slow 

moving goods classification technique: random forest and naïve bayes. 

Khazanah Informatika Jurnal Ilmu Komputer Dan Informatika, 5(2), 134-

139. 

KAMPHUIS, C., MOLLENHORST, H., HEESTERBEEK, J. A. & HOGEVEEN, 

H. 2010. Detection of clinical mastitis with sensor data from automatic 

milking systems is improved by using decision-tree induction. J Dairy 

Sci, 93, 3616-27. 



330 
 

KAMPHUIS, C., PIETERSMA, D., VAN DER TOL, R., WIEDEMANN, M. & 

HOGEVEEN, H. 2008. Using sensor data patterns from an automatic 

milking system to develop predictive variables for classifying clinical 

mastitis and abnormal milk. Computers and Electronics in Agriculture, 

62, 169-181. 

KASIMANICKAM, R., DUFFIELD, T. F., FOSTER, R. A., GARTLEY, C. J., 

LESLIE, K. E., WALTON, J. S. & JOHNSON, W. H. 2004. Endometrial 

cytology and ultrasonography for the detection of subclinical 

endometritis in postpartum dairy cows. Theriogenology, 62, 9-23. 

KAWASHIMA, C., KARAKI, C., MUNAKATA, M., MATSUI, M., SHIMIZU, T., 

MIYAMOTO, A. & KIDA, K. 2016. Association of rumen fill score and 

energy status during the close-up dry period with conception at first 

artificial insemination in dairy cows. Anim Sci J, 87, 1218-1224. 

KEARNS, M. & VAZIRANI. U. V., 1994, An introduction to computational 

learning theory. MIT Press,  2. 

KECELI, A. S., CATAL, C., KAYA, A., & TEKINERDOGAN, B. 2020. 

Development of a recurrent neural networks-based calving prediction 

model using activity and behavioral data, Computers and Electronics in 

Agriculture, 170, 105285, 0168-1699, 

KELTON, D. F., LISSEMORE, K. D. & MARTIN, R. E. 1998. Recommendations 

for Recording and Calculating the Incidence of Selected Clinical 

Diseases of Dairy Cattle. Journal of Dairy Science, 81, 2502-2509. 

KEPA, M. and SZYMANSKI, J. 2015. Two stage svm and knn text documents 

classifier., 279-289.  

KERNBACH, J. and STAARTJES, V. 2021. Foundations of machine learning-

based clinical prediction modeling: part ii—generalization and 

overfitting., Machine Learning in Clinical Neuroscience. 15-21. 

KESHAVARZI, H., SADEGHI-SEFIDMAZGI, A., MIRZAEI, A., RAVANIFARD, 

R, 2020. Machine learning algorithms, bull genetic information, and 

imbalanced datasets used in abortion incidence prediction models for 

Iranian Holstein dairy cattle. Prev. Vet. Med., 175, 104869. 

KILICOGLU, Ș. & YERLIKAYA-ÖZKURT, F. 2024. A novel comparison of 

shrinkage methods based on multi criteria decision making in case of 



331 
 

multicollinearity. Journal of Industrial and Management Optimization, 

20(12), 3816-3842. 

KIM, J. H. (2019). Multicollinearity and misleading statistical results. Korean 

Journal of Anesthesiology, 72(6), 558-569 

KIM, T., HEALD, C. W. 1999. Inducing inference rules for the classification of 

bovine mastitis. Comput. Electron. Agric., 23, 27–42. 

KIMURA, K., GOFF, J. P., KEHRLI, M. E., JR. & REINHARDT, T. A. 2002. 

Decreased neutrophil function as a cause of retained placenta in dairy 

cattle. J Dairy Sci, 85, 544-50. 

KIMURA, K., REINHARDT, T. A. & GOFF, J. P. 2006. Parturition and 

hypocalcemia blunts calcium signals in immune cells of dairy cattle. J 

Dairy Sci, 89, 2588-95. 

KING, C., ABRAHAM, J., FRITZ, B., CUI, Z., GALANTER, W., CHEN, Y., & 

KANNAMPALLIL, T., 2021. Predicting self-intercepted medication 

ordering errors using machine learning. Plos One, 16(7), e0254358. 

KIYAK, E., BIRANT, D., & BIRANT, K., 2021. An improved version of multi-view 

k-nearest neighbors (mvknn) for multiple view learning. Turkish Journal 

of Electrical Engineering & Computer Sciences, 29(3), 1401-1428. 

KOC, A. 2011. A study of the reproductive performance, milk yield, milk 

constituents, and somatic cell count of Holstein-Friesian and 

Montbeliarde cows. Turk J Vet Anim Sci 35(5):295-302. 

KOENEN, E. P., VEERKAMP, R. F., DOBBELAAR, P. & DE JONG, G. 2001. 

Genetic analysis of body condition score of lactating Dutch Holstein and 

Red-and-White heifers. J Dairy Sci, 84, 1265-70. 

KRAMER O., 2013. K-nearest neighbors. In: Dimensionality reduction with 

unsupervised nearest neighbors. Springer, 13-23. 

KRAWCZEL, P.D., LEE, A.R., 2019. Lying Time and Its Importance to the Dairy 

Cow: Impact of Stocking Density and Time Budget Stresses,Veterinary 

Clinics of North America: Food Animal Practice, Volume 35, Issue 1, 47-

60. 

KRISHNAN, R., G. SIVAKUMAR, & P. BHATTACHARYA 1999, Extracting 

decision trees from trained neural networks, Pattern Recognit., 

32, 1999–2009. 



332 
 

KROLL, C. & SONG, P. 2013. Impact of multicollinearity on small sample 

hydrologic regression models. Water Resources Research, 49(6), 3756-

3769. 

KUHN, M. 2008. Caret package. Journal of Statistical Software, 28(5) 

KUHN, M. & JOHNSON, K. 2013. Applied Predictive Modeling, Springer. 

KUL, E., ŞAHIN, A., UGURLUTEPE, E., & SOYDANER, M. 2020. Association 

of change in body condition score with milk yield and reproduction traits 

of holstein cows. The Journal of Animal and Plant Sciences, 30(2). 

KYRIAZOS, T. & POGA, M. 2023. Dealing with multicollinearity in factor 

analysis: the problem, detections, and solutions. Open Journal of 

Statistics, 13(03), 404-424. 

LACROIX R., WADE K.M., KOK R., HAYES J.F. 1995. Prediction of cow 

performance with a connectionist model, Transactions of the American 

Society of Agricultural Engineers, 38 (5), pp. 1573 - 1579 

LACROIX R., SALEHI F., YANG X.Z., WADE K.M. 1997. Effects of data 

preprocessing on the performance of artificial neural networks for dairy 

yield prediction and cow culling classification, Transactions of the 

American Society of Agricultural Engineers, 40 (3), pp. 839 – 846 

LAMP, O., DERNO, M., OTTEN, W., MIELENZ, M., NÜRNBERG, G. & KUHLA, 

B. 2015. Metabolic Heat Stress Adaption in Transition Cows: Differences 

in Macronutrient Oxidation between Late-Gestating and Early-Lactating 

German Holstein Dairy Cows. PloS one, 10, e0125264-e0125264. 

LANDIS, J. R. & KOCH, G. G. 1977. The measurement of observer agreement 

for categorical data. Biometrics, 33, 159-74. 

LANIER, P., RODRIGUEZ, M., VERBIEST, S., BRYANT, K., GUAN, T., 

ZOLOTOR, A., 2020. Preventing i nfant maltreatment with predictive 

analytics: applying ethical principles to evidence-based child welfare 

policy. J. Fam. Violence 35(1), 1–13. 

LARDY, R., RUIN, Q., & VEISSIER, I. 2023. Discriminating pathological, 

reproductive or stress conditions in cows using machine learning on 

sensor-based activity data. Computers and Electronics in Agriculture, 

204, 107556. 



333 
 

LASSER, J., MATZHOLD, C., EGGER-DANNER, C., FUERST-WALTL, B., 

STEININGER, F., WITTEK, T., KLIMEK, P.,2021. Integrating diverse 

data sources to predict disease risk in dairy cattle-a machine learning 

approach. J Anim Sci. 294.  

LEACH, K. A., WHAY, H. R., MAGGS, C. M., BARKER, Z. E., PAUL, E. S., 

BELL, A. K. & MAIN, D. C. 2010. Working towards a reduction in cattle 

lameness: 1. Understanding barriers to lameness control on dairy farms. 

Res Vet Sci, 89, 311-7. 

LEAN, I. J., DEGARIS, P. J., MCNEIL, D. M. & BLOCK, E. 2006. Hypocalcemia 

in dairy cows: meta-analysis and dietary cation anion difference theory 

revisited. J Dairy Sci, 89, 669-84. 

LEAN, I., SHEEDY, D., LEBLANC, S., DUFFIELD, T., SANTOS, J., & 

GOLDER, H. 2022. Holstein dairy cows lose body condition score and 

gain body weight with increasing parity in both pasture-based and total 

mixed ration herds. JDS Communications, 3(6), 431-435. 

LEBLANC, S. 2010. Monitoring metabolic health of dairy cattle in the transition 

period. J Reprod Dev, 56 Suppl, S29-35. 

LEBLANC, S. J. 2008. Postpartum uterine disease and dairy herd reproductive 

performance: a review. Vet J, 176, 102-14. 

LEBLANC, S. J., HERDT, T. H., SEYMOUR, W. M., DUFFIELD, T. F. & 

LESLIE, K. E. 2004. Peripartum serum vitamin E, retinol, and beta-

carotene in dairy cattle and their associations with disease. J Dairy Sci, 

87, 609-19. 

LEBLANC, S. J., LESLIE, K. E. & DUFFIELD, T. F. 2005. Metabolic predictors 

of displaced abomasum in dairy cattle. J Dairy Sci, 88, 159-70. 

LEBLANC, S. J., LISSEMORE, K. D., KELTON, D. F., DUFFIELD, T. F. & 

LESLIE, K. E. 2006. Major advances in disease prevention in dairy 

cattle. J Dairy Sci, 89, 1267-79. 

LETT, B. M. & KIRKPATRICK, B. (2018). Short communication: heritability of 

twinning rate in holstein cattle. J Dairy Sci, 101(5), 4307-4311. 

LEWIS, G. S. 1997. Uterine health and disorders. J Dairy Sci, 80, 984-94. 



334 
 

LI, S., 2023. Performance comparison of representative methods for few-shot 

speech gender analysis. Journal of Physics Conference Series, 2580(1), 

012038.  

LI, Q., LIANG, R., LI, Y., GAO, Y., LI, Q., SUN, D. & LI, J. 2020. Identification 

of candidate genes for milk production traits by rna sequencing on 

bovine liver at different lactation stages. BMC Genetics, 21(1).  

LI, X. and WANG, J., 2018. Traffic detection of transmission of botnet threat 

using bp neural network. Neural Network World, 28(6), 511-521.  

LIMA, F., VIEIRA-NETO, A., SNODGRASS, J., VRIES, A. D., & SANTOS, J. 

2019. Economic comparison of systemic antimicrobial therapies for 

metritis in dairy cows. J Dairy Sci, 102(8), 7345-7358. 

LIN, D., RAJBAHADUR, G.,  & MING, J. 2021. Towards a consistent 

interpretation of aiops models. Acm Transactions on Software 

Engineering and Methodology, 31(1), 1-38. 

LISEUNE, A., SALAMONE, M., VAN DEN POEL, D., VAN RANST, B., 

HOSTENS, M., 2001. Predicting the milk yield curve of dairy cows in the 

subsequent lactation period using deep learning, Computers and 

Electronics in Agriculture, Volume 180, 105904. 

LOKER, S., BASTIN, C., MIGLIOR, F., SEWALEM, A., SCHAEFFER, L. R., 

JAMROZIK, J., ALI, A., & OSBORNE, V. 2012. Genetic and 

environmental relationships between body condition score and milk 

production traits in Canadian Holsteins. J Dairy Sci, 95(1), 410–419. 

LU, C. Y., MIN, H., GUI, J., ZHU, L. & LEI, Y. K. 2013. Face recognition via 

weighted sparse representation, Journal of Visual Communication and 

Image Representation, 24, 2, 111–116. 

LUCY, M. C. 2001. Reproductive loss in high-producing dairy cattle: where will 

it end? J Dairy Sci, 84, 1277-93. 

LUKAS, J. M., RENEAU, J. K., WALLACE, R. L. & DE VRIES, A. 2015. A study 

of methods for evaluating the success of the transition period in early-

lactation dairy cows. J Dairy Sci, 98, 250-262. 



335 
 

LUKE, T.D.W. ROCHFORT, S. WALES, W.J. BONFATTI, V. MARETT, L. & 

PRYCE, J.E. 2019. Metabolic profiling of early-lactation dairy cows using 

milk mid-infrared spectra, J Dairy Sci, 102, 2, 1747-1760. 

LUO, W., DONG, Q., & FENG, Y. 2023. Risk prediction model of clinical mastitis 

in lactating dairy cows based on machine learning algorithms. 

Preventive Veterinary Medicine, 221, 106059. 

LYONS, N. A., COOKE, J. S., WILSON, S. B., WINDEN, S. C. L. V., GORDON, 

P., & WATHES, D. C. 2014a. Relationships between metabolite and igf1 

concentrations with fertility and production outcomes following left 

abomasal displacement. Veterinary Record, 174(26), 657-657. 

LYONS, N. A., KERRISK, K. L., & GARCIA, S. C. 2014b. Milking frequency 

management in pasture-based automatic milking systems: A review. 

Livestock Science, 159, 102–116. 

MACDONALD, K. A., VERKERK, G. A., THORROLD, B. S., PRYCE, J. E., 

PENNO, J. W., MCNAUGHTON, L. R., BURTON, L. J., LANCASTER, 

J. A., WILLIAMSON, J. H. & HOLMES, C. W. 2008. A comparison of 

three strains of holstein-friesian grazed on pasture and managed under 

different feed allowances. J Dairy Sci, 91, 1693-707. 

MACHADO, V. S., CAIXETA, L. S. & BICALHO, R. C. 2011. Use of data 

collected at cessation of lactation to predict incidence of sole ulcers and 

white line disease during the subsequent lactation in dairy cows. Am J 

Vet Res, 72, 1338-43. 

MACHADO, V. S., CAIXETA, L. S., MCART, J. A. & BICALHO, R. C. 2010. The 

effect of claw horn disruption lesions and body condition score at dry-off 

on survivability, reproductive performance, and milk production in the 

subsequent lactation. J Dairy Sci, 93, 4071-8. 

MACIEL-GUERRA, A., ESENER, N., GIEBEL, K., LEA, D., GREEN, M. J., 

BRADLEY, A. J., & DOTTORINI, T. (2021). Prediction of Streptococcus 

uberis clinical mastitis treatment success in dairy herds by means of 

mass spectrometry and machine-learning. Scientific reports, 11(1), 

7736.  

MAJAJ, N. J., HONG, H., SOLOMON, E. A., & DICARLO, J. J. 2015. Simple 

learned weighted sums of inferior temporal neuronal firing rates 



336 
 

accurately predict human core object recognition performance. The 

Journal of Neuroscience, 35(39), 13402-13418. 

MALLARD, B. A., DEKKERS, J. C., IRELAND, M. J., LESLIE, K. E., SHARIF, 

S., VANKAMPEN, C. L., WAGTER, L. & WILKIE, B. N. 1998. Alteration 

in immune responsiveness during the peripartum period and its 

ramification on dairy cow and calf health. J Dairy Sci, 81, 585-95. 

MAMMADOVA, N., KESKIN, X. & SMAIL 2013. Application of the Support 

Vector Machine to Predict Subclinical Mastitis in Dairy Cattle. The 

Scientific World Journal, 2013, 9. 

MARQUARDT, J. P., HORST, R. L. & JORGENSEN, N. A. 1977. Effect of Parity 

on Dry Matter Intake at Parturition in Dairy Cattle1. J Dairy Sci, 60, 929-

934. 

MARTINEZ LOPEZ, I., ORTIZ RODRIGUEZ I. M., RODRIGUEZ 

TORREBLANCA, C. 2019. A study of lactation curves in dairy cattle 

using the optimal design of experiments methodology, Italian Journal of 

Animal Science, 18:1, 594-600 

MARTISKAINEN, P., JÄRVINEN, M., SKÖN, J.-P., TIIRIKAINEN, J., 

KOLEHMAINEN, M. & MONONEN, J. 2009. Cow behaviour pattern 

recognition using a three-dimensional accelerometer and support vector 

machines. Applied Animal Behaviour Science, 119, 32-38. 

MAY, D. E., CORBIN, A., & HOLLINS, P. D. 2011. Identifying determinants of 

residential property values in south london. Review of Economic 

Perspectives, 11(1), 3-11. 

MCCARTHY, S., BERRY, D. P., DILLON, P., RATH, M. & HORAN, B. 2007. 

Influence of Holstein-Friesian Strain and Feed System on Body Weight 

and Body Condition Score Lactation Profiles. J Dairy Sci, 90, 1859-1869. 

MELENDEZ, P., DONOVAN, G. A., RISCO, C. A., LITTELL, R. & GOFF, J. P. 

2003. Effect of calcium-energy supplements on calving-related 

disorders, fertility and milk yield during the transition period in cows fed 

anionic diets. Theriogenology, 60, 843-54. 

MELENDEZ, P. & RISCO, C. A. 2005. Management of transition cows to 

optimize reproductive efficiency in dairy herds. Vet Clin North Am Food 

Anim Pract, 21, 485-501. 



337 
 

MELZER, N., WITTENBURG, D., HARTWIG, S., JAKUBOWSKI, S., KESTING, 

U., WILLMITZER, L., LISEC, J., REINSCH, N. & REPSILBER, D. 2013. 

Investigating associations between milk metabolite profiles and milk 

traits of Holstein cows. J Dairy Sci, 96, 1521-34. 

MENTA, P., MACHADO, V. S., PINEIRO, J. M., THATCHER, W., SANTOS, J. 

E. P., & VIEIRA-NETO, A. 2022. Heat stress during the transition period 

is associated with impaired production, reproduction, and survival in 

dairy cows. J Dairy Sci. 105, 5, 4474-89. 

MERENDA, V. R., RUIZ-MUNOZ, J., ZARE, A., & CHEBEL, R. C. 2021. 

Predictive models to identify Holstein cows at risk of metritis and clinical 

cure and reproductive/productive failure following antimicrobial 

treatment. Preventive veterinary medicine, 194, 105431. 

MILIAN-SUAZO, F., ERB, H. N. & SMITH, R. D. 1988. Descriptive epidemiology 

of culling in dairy cows from 34 herds in New York State. Preventive 

Veterinary Medicine, 6, 243-251. 

MILLER, G. A., MITCHELL, M., BARKER, Z. E., GIEBEL, K., CODLING, E. A., 

AMORY, J. R., MICHIE, C., DAVISON, C., TACHTATZIS, C., 

ANDOVONIC, I., 2020. Using animal-mounted sensor technology and 

machine learning to predict time-to-calving in beef and dairy cows. 

Animal, 14, 1304–1312 

MILTENBURG, C. L., DUFFIELD, T. F., BIENZLE, D., SCHOLTZ, E. L. & 

LEBLANC, S. J. 2018. The effect of prepartum feeding and lying space 

on metabolic health and immune function. J Dairy Sci, 101, 5294-5306. 

MINNAERT, B., THOEN, B., DAVID, P. A., JOSEPH, W., & STEVENS, N. 

2018. Wireless energy transfer by means of inductive coupling for dairy 

cow health monitoring. Computers and Electronics in Agriculture, 152, 

101-108.  

MOREIRA, T., FILHO, E., BELLI, A., MENESES, R., LEME, F., URIBE, J., 

RODRIGUES L.,  & CARVALHO, A. 2018. Metabolic status of 

crossbreed f1 holstein × gyr dairy cows during the transition period in 

two different seasons in brazil. Semina Ciências Agrárias, 39(6), 2487. 

MOTA, L. F. M., PEGOLO, S., BABA, T., PENAGARICANO, F., MOROTA, G., 

BITTANTE, G., & CECCHINATO, A. 2021. Evaluating the performance 

of machine learning methods and variable selection methods for 



338 
 

predicting difficult-to-measure traits in Holstein dairy cattle using milk 

infrared spectral data. J Dairy Sci, 104(7), 8107–8121.  

MOUJAHID, A., TANTAOUI, M.E., HINA, M.D., SOUKANE, A., ORTALDA, A., 

ELKADIMI, A., RAMDANE-CHERIF., 2018. A.: Machine learning 

techniques in ADAS: a review. 2018 International Conference on 

Advances in Computing and Communication Engineering (ICACCE), pp. 

235–242. 

MURPHY, M. D., O'MAHONY, M. J., SHALLOO, L., FRENCH, P. & UPTON, J. 

2014. Comparison of modelling techniques for milk-production 

forecasting. J Dairy Sci, 97, 3352-63. 

MUTCHLER, M. S. & ANDERSON, S. A. 2010. Therapist personal agency: a 

model for examining the training context. Journal of Marital and Family 

Therapy, 36(4), 511-525. 

NADIS, 2022a, Part 1 - What does poor fertility cost, 

https://www.nadis.org.uk/disease-a-z/cattle/fertility-in-dairy-herds-

advanced/part-1-what-does-poor-fertility-cost/ . Accessed 23 November 

2022 

NADIS, 2022b, Part 8 - Measuring fertility - Benchmarking your farm, 

https://www.nadis.org.uk/disease-a-z/cattle/fertility-in-dairy-herds/part-

8-measuring-fertility-benchmarking-your-farm/ . Accessed 23 November 

2022 

NAGY, S. Á., KILIM, O., CSABAI, I., GABOR, G., & SOLYMOSI, N. 2023. 

Impact Evaluation of Score Classes and Annotation Regions in Deep 

Learning-Based Dairy Cow Body Condition Prediction. Animals: an open 

access journal from MDPI, 13(2), 194. 

NETO, H. A., TAVARES, W. L. F., RIBEIRO, D. C. S. Z., ALVES, R. C. O., 

FONSECA, L. M., CAMPOS, S. V. A. 2019. On the utilization of deep 

and ensemble learning to detect milk adulteration. BioData Min., 12, 13. 

NEWSOME, R. F., GREEN, M. J., BELL, N. J., BOLLARD, N. J., MASON, C. 

S., WHAY, H. R. & HUXLEY, J. N. 2017. A prospective cohort study of 

digital cushion and corium thickness. Part 2: Does thinning of the digital 

cushion and corium lead to lameness and claw horn disruption lesions? 

J Dairy Sci, 100, 4759-4771. 



339 
 

NGUYEN, Q. T., FOUCHEREAU, R., FRENOD, E., GERARD, C., 

SINCHOLLE, V., 2020. Comparison of forecast models of production of 

dairy cows combining animal and diet parameters. Comput. Electron. 

Agric., 170, 105258. 

NIELEN, M., SCHUKKEN, Y. H., BRAND, A., DELUYKER, H. A. & MAATJE, 

K. 1995a. Detection of subclinical mastitis from on-line milking parlor 

data. J Dairy Sci, 78, 1039-49. 

NIELEN, M., SCHUKKEN, Y. H., BRAND, A., HARING, S. & FERWERDA-VAN 

ZONNEVELD, R. T. 1995b. Comparison of analysis techniques for on-

line detection of clinical mastitis. J Dairy Sci, 78, 1050-61. 

NIKOLOSKI, S., MURPHY, P., KOCEV, D., DZEROSKI, S., WALL, D. P. 2019. 

Using machine learning to estimate herbage production and nutrient 

uptake on Irish dairy farms. J. Dairy Sci., 102, 10639–10656. 

NIR, O., PARMET, Y., WERNER, D., ADIN, G., HALACHMI, I. 2018. 3D 

Computer-vision system for automatically estimating heifer height and 

body mass. Biosyst. Eng., 173, 4–10. 

NJUBI, D. M., WAKHUNGU, J. W. & BADAMANA, M. S. 2010. Use of test-day 

records to predict first lactation 305-day milk yield using artificial neural 

network in Kenyan Holstein-Friesian dairy cows. Trop Anim Health Prod, 

42, 639-44. 

NORDLUND, K., COOK, N. & OETZEL, G. 2006. Commingling dairy cows: Pen 

moves, stocking density, and health. 

NORDLUND, K. V. & COOK, N. B. 2004. Using herd records to monitor 

transition cow survival, productivity, and health. Vet Clin North Am Food 

Anim Pract, 20, 627-49. 

NRC 2001. Nutritional requirements of dairy cattle. Washington, National 

Academy Press. 

OEHM, A. W., SPRINGER, A., JORDAN, D., STRUBE, C., KNUBBEN-

SCHWEIZER, G., JENSEN, K. C., & ZABLOTSKI, Y. 2022. A machine 

learning approach using partitioning around medoids clustering and 

random forest classification to model groups of farms in regard to 

production parameters and bulk tank milk antibody status of two major 

internal parasites in dairy cows. PLoS One, 17(7), e0271413. 



340 
 

DE OLIVEIRA, E. B., FERREIRA, F. C., GALVAO, K. N., YOUN, J., 

TAGKOPOULOS, I., SILVA-DEL-RIO, N., PEREIRA, R. V. V., 

MACHADO, V. S., & LIMA, F. S. 2021. Integration of statistical 

inferences and machine learning algorithms for prediction of metritis 

cure in dairy cows. J Dairy Sci, 104(12), 12887–12899. 

OSPINA, P. A., MCART, J. A., OVERTON, T. R., STOKOL, T. & NYDAM, D. 

V. 2013. Using Nonesterified Fatty Acids and β-Hydroxybutyrate 

Concentrations During the Transition Period for Herd-Level Monitoring 

of Increased Risk of Disease and Decreased Reproductive and Milking 

Performance. Veterinary Clinics of North America: Food Animal 

Practice, 29, 387-412. 

OVERTON, T. R. & WALDRON, M. R. 2004. Nutritional Management of 

Transition Dairy Cows: Strategies to Optimize Metabolic Health. J Dairy 

Sci, 87, E105-E119. 

PACHERO, V. M., DE SOUSA, R. V., DA SILVA RODRIGUEZ, A. V., DE 

SOUZA SARDINHA, E. J. & MARTELLO, L. S. 2020. Thermal imaging 

combined with predictive machine learning based model for the 

development of thermal stress level classifiers. Livest. Sci., 241, 104244. 

PANCHAL, I., SAWHNEY, I. K., SHARMA, A. K. & DANG, A. K. 2016. 

Classification of healthy and mastitis Murrah buffaloes by application of 

neural network models using yield and milk quality parameters. 

Computers and Electronics in Agriculture, 127, 242-248. 

PASTELL, M. E. & KUJALA, M. 2007. A probabilistic neural network model for 

lameness detection. J Dairy Sci, 90, 2283-92. 

PATEL, N.J., JHAVERI, R.H. 2015.  Detecting packet dropping nodes using 

machine learning techniques in mobile ad-hoc network: a survey.2015 

International Conference on Signal Processing and Communication 

Engineering Systems, 468–472.  

PAWLAK, Z. 2003. Bayes’ Theorem — the Rough Set Perspective. In: 

Inuiguchi, M., Hirano, S., Tsumoto, S. (eds) Rough Set Theory and 

Granular Computing. Studies in Fuzziness and Soft Computing, vol 125. 

Springer, Berlin, Heidelberg. 1-12. 

PAZHANIKUMAR, K. and ASWATHI, R. (2020). Performance of naïve bayes, 

c4.5 and knn using breast cancer, iris and hypothyroid datasets. 



341 
 

International Journal of Innovative Technology and Exploring 

Engineering, 9(3), 2193-2197. 

PERKINS, K. H., VANDEHAAR, M. J., TEMPELMAN, R. J. & BURTON, J. L. 

2001. Negative energy balance does not decrease expression of 

leukocyte adhesion or antigen-presenting molecules in cattle. J Dairy 

Sci, 84, 421-8. 

PIETERSMA, D., LACROIX, R., LEFEBVRE, D., WADE, K. M., 2003. Induction 

and evaluation of decision trees for lactation curve analysis. Comput. 

Electron. Agric., 38, 19–32. 

PINEDO, P. J. & FLEMING, C. 2012. Events occurring during the previous 

lactation, the dry period, and peripartum as risk factors for early lactation 

mastitis in cows receiving 2 different intramammary dry cow therapies. J 

Dairy Sci, 95(12), 7015-7026. 

PIWCZYNSKI, D., SITKOWSKA, B., KOLENDA, M., BRZOZOWSKI, M., 

AERTS, J., & SCHORK, P. M. 2020. Forecasting the milk yield of cows 

on farms equipped with automatic milking system with the use of 

decision trees. Animal Science Journal, 91(1). 

POLSKY, L. & VON KEYSERLINGK, M. A. G. 2017. Invited review: Effects of 

heat stress on dairy cattle welfare. J Dairy Sci, 100, 8645-8657. 

POST, C., RIETZ, C., BUSCHER, W., & MULLER, U. 2020. Using sensor data 

to detect lameness and mastitis treatment events in dairy cows: a 

comparison of classification models. Sensors, 20(14), 3863. 

POST, C., RIETZ, C., BUSCHER, W., & MULLER, U. 2021. The Importance of 

Low Daily Risk for the Prediction of Treatment Events of Individual Dairy 

Cows with Sensor Systems. Sensors (Basel, Switzerland), 21(4), 1389. 

POURHOSEINGHOLI, M. A., BAGHESTANI, A. R. & VAHEDI, M. 2012. How 

to control confounding effects by statistical analysis. Gastroenterol. 

Hepatol. Bed Bench 5, 79–83. 

PRALLE, R.S. WEIGEL, K.W. & WHITE, H.M. 2018. Predicting blood β-

hydroxybutyrate using milk Fourier transform infrared spectrum, milk 

composition, and producer-reported variables with multiple linear 

regression, partial least squares regression, and artificial neural network, 

J Dairy Sci, 101,  5, 4378-4387, 



342 
 

PROBO, M., PASCOTTINI, O. B., LEBLANC, S., OPSOMER, G. & HOSTENS, 

M. 2018. Association between metabolic diseases and the culling risk of 

high-yielding dairy cows in a transition management facility using 

survival and decision tree analysis. J Dairy Sci, 101, 9419-9429. 

PRUNIER, J., COLYN, M., LEGENDRE, X., NIMON, K., & FLAMAND, M. 2015. 

multicollinearity in spatial genetics: separating the wheat from the chaff 

using commonality analyses. Molecular Ecology, 24(2), 263-283. 

PRYCE, J. E., COFFEY, M. P. & SIMM, G. 2001. The relationship between 

body condition score and reproductive performance. J Dairy Sci, 84, 

1508-15. 

PRYCE, J. E. & HARRIS, B. L. 2006. Genetics of body condition score in New 

Zealand dairy cows. J Dairy Sci, 89, 4424-32. 

QU, G., ZHANG, H., & HARTRICK, C. T., 2011. Multi-label classification with 

Bayes' theorem, 2011 4th International Conference on Biomedical 

Engineering and Informatics (BMEI), 2281-2285. 

OUYANG C.G., CHEN P., 2020, Factor endowment, local industrial sector 

development and industry choice[J]. Economic Research, 55(01):82-98. 

R CORE TEAM 2018. R: A language and Environment for Statistical 

Computing. Vienna, Austria: R Foundation for Statistical Computing. 

RADOVANOVIC, M. NANOPOULOS, A. & IVANONIC, M. 2010. Hubs in ´ 

space: popular nearest neighbors in high-dimensional data, Journal of 

Machine Learning Research (JMLR), 11, 2487– 2531.  

RAMEZAN, C. A., WARNER, T. A., MAXWELL, A. E., & PRICE, B. S. 2021. 

Effects of training set size on supervised machine-learning land-cover 

classification of large-area high-resolution remotely sensed data. 

Remote Sensing, 13(3), 368. 

RAHAMAN, N., BARATIN, A. , ARPIT, D., DRAXLER, F., LIN, M., 2019. Fred 

Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias 

of neural networks. In International Conference on Machine Learning, 

5301–5310.  

RAIKO, T.  VALPOLA, H., and LECUN. Y., 2012. Deep learning made easier 

by linear transformations in perceptrons. In Conference on AI and 

Statistics (JMLR W&CP), 22, 924–932, 



343 
 

RANDALL, L. V., THOMAS, H. J., REMNANT, J. G., BOLLARD, N. J. & 

HUXLEY, J. N. 2019. Lameness prevalence in a random sample of UK 

dairy herds. Veterinary Record, 184, 350. 

REJAB, F., NOUIRA K., & TRABELSI, A., 2014, RTSVM: Real time support 

vector machines, 2014 Science and Information Conference, 1038-1042 

REN, K., BERNES, G., HETTA, M., KARLSSON, J., 2021. Tracking and 

analysing social interactions in dairy cattle with real-time locating system 

and machine learning. J. Syst. Archit., 116, 102139. 

RESHEFF, Y. S., ROTICS, S., HAREL, R., SPIEGEL, O. & NATHAN, R. 2014. 

AcceleRater: a web application for supervised learning of behavioral 

modes from acceleration measurements. Mov Ecol, 2, 27. 

REUNANEN, J. 2003. Overfitting in making comparisons between variable 

selection methods. J. Mach. Learn. Res 3, 1371–1382 . 

REYNOLDS, C. K., AIKMAN, P. C., LUPOLI, B., HUMPHRIES, D. J. & 

BEEVER, D. E. 2003. Splanchnic metabolism of dairy cows during the 

transition from late gestation through early lactation. J Dairy Sci, 86, 

1201-17. 

REYNOLDS, C. K., DURST, B., LUPOLI, B., HUMPHRIES, D. J. & BEEVER, 

D. E. 2004. Visceral tissue mass and rumen volume in dairy cows during 

the transition from late gestation to early lactation. J Dairy Sci, 87, 961-

71. 

RIABOFF, L., POGGI, S., MADOUASSE, A., COUVREUR, S., AUBIN, S., 

BEDERE, N., GOUMAND, E., CHAUVIN, A., PLANTIER, G., 2020. 

Development of a methodological framework for a robust prediction of 

the main behaviours of dairy cows using a combination of machine 

learning algorithms on accelerometer data. Comput. Electron. Agric., 

169, 105179. 

RIBEIRO, E., LIMA, F., GRECO, L., BISINOTTO, R., MONTEIRO, A., 

FAVORETO, M. G., & SANTOS, J. 2013. Prevalence of periparturient 

diseases and effects on fertility of seasonally calving grazing dairy cows 

supplemented with concentrates. J Dairy Sci, 96(9), 5682-5697. 

RIGATTI, S. J., 2017. Random forest. Journal of Insurance Medicine, 47(1), 31-

39.  



344 
 

RINGSEIS, R., GESSNER, D. K., & EDER, K. 2014. Molecular insights into the 

mechanisms of liver‐associated diseases in early‐lactating dairy cows: 

hypothetical role of endoplasmic reticulum stress. Journal of Animal 

Physiology and Animal Nutrition, 99(4), 626-645. 

RISCO, C. A., DROST, M., THATCHER, W. W., SAVIO, J. & THATCHER, M. 

J. 1994. Effects of calving-related disorders on prostaglandin, calcium, 

ovarian activity and uterine involution in postrartum dairy cows. 

Theriogenology, 42, 183-203. 

ROCHE, J. R. 2003. The incidence and control of hypocalcaemia in pasture-

based systems. Acta Vet Scand Suppl, 97, 141-4. 

ROCHE, J. R., BERRY, D. P. & KOLVER, E. S. 2006. Holstein-Friesian strain 

and feed effects on milk production, body weight, and body condition 

score profiles in grazing dairy cows. J Dairy Sci, 89, 3532-43. 

ROCHE, J. R., BERRY, D. P., LEE, J. M., MACDONALD, K. A. & BOSTON, R. 

C. 2007. Describing the body condition score change between 

successive calvings: a novel strategy generalizable to diverse cohorts. J 

Dairy Sci, 90, 4378-96. 

ROCHE, J. R., FRIGGENS, N. C., KAY, J. K., FISHER, M. W., STAFFORD, K. 

J. & BERRY, D. P. 2009. Invited review: Body condition score and its 

association with dairy cow productivity, health, and welfare. J Dairy Sci, 

92, 5769-801. 

ROCHE, J. R., BURKE, C. R., CROOKENDEN, M. A., HEISER, A., LOOR, J. 

L., MEIER, S., MITCHELL, M. D., PHYN, C. V. C., TURNER, S. A. 2017. 

Fertility and the transition dairy cow. Reproduction, Fertility and 

Development 30, 85-100. 

RODRIGUEZ, Z., SHEPLEY, E., FERRO, P. P. C., MORAES, N. L., ANTUNES, 

A., CRAMER, G. & CAIXETA, L. 2021. Association of body condition 

score and score change during the late dry period on temporal patterns 

of beta-hydroxybutyrate concentration and milk yield and composition in 

early lactation of dairy cows. Animals, 11(4), 1054. 

RODRIGUEZ, E., WAISSMAN, J., MAHADEVAN, P., VILLA, C., FLORES, B. 

L., VILLA, R., 2019, Genome-wide classification of dairy cows using 



345 
 

decision trees and artificial neural network algorithms. Genet. Mol. Res., 

18, gmr18407. 

RODRIGUEZ ALVAREZ, J., ARROGUI, M., MANGUDO, P., TOLOZA, J., 

JATIP, D., RODRIGUEZ, J. M., TEYSEYRE, A., SANZ, C., ZUNINO, A., 

MACHADO, C., MATEOS, C.,  2018. Body condition estimation on cows 

from depth images using Convolutional Neural Networks. Comput. 

Electron. Agric., 155, 12–22. 

RODRIGUEZ ALVAREZ, J. R., ARROQUI, M., MANGUDO, P., TOLOZA, J,; 

JATIP, D., RODRIGUEZ, J. M., TEYSEYRE, A., SANZ, C., ZUNINO, A., 

MACHADO, C., & MATEOS, C. 2019. Estimating body condition score 

in dairy cows from depth images using convolutional neural networks, 

transfer learning and model ensembling techniques. Agronomy, 9, 90. 

ROJAS-DUENAS, G., RIBA, J., KAHALERRAS, K., MORENO-EGUILAZ, M., 

KADECHKAR, A., & GOMEZ-PAU, A. 2020. Black-box modelling of a 

DC-DC buck converter based on a recurrent neural network. Institute of 

Electrical and Electronics Engineers (IEEE), 456-461. 

ROLLIN, E., DHUYVETTER, K. C. & OVERTON, M. W. 2015. The cost of 

clinical mastitis in the first 30 days of lactation: An economic modeling 

tool. Prev Vet Med, 122, 257-64. 

ROMADHONNY, R. A., GUMELAR, A. B., FAHRUDIN, T. M., ADI SETIAWAN, 

W. P., CAHAYA PUTRA, F. D., NUGROHO, R. D., BUDIANI, J. R. 2019. 

Estrous Cycle Prediction of Dairy Cows for Planned Artificial 

Insemination (AI) Using Multiple Logistic Regression. In Proceedings of 

the 2019 International Seminar on Application for Technology of 

Information and Communication: Industry 4.0: Retrospect, Prospect, and 

Challenges, 21–22 157–162. 

SABORÍO-MONTERO, A., VARGAS-LEITÓN, B., ROMERO-ZÚÑIGA, J. J. & 

SÁNCHEZ, J. M. 2017. Risk factors associated with milk fever 

occurrence in grazing dairy cattle. J Dairy Sci, 100, 9715-9722. 

SADEGHI, H., BRAUN, H. S., PANTI, B., OPSOMER, G., & BOGADO 

PASCOTINNI, O. 2022. Validation of a deep learning-based image 



346 
 

analysis system to diagnose subclinical endometritis in dairy cows. PloS 

one, 17(1), e0263409.  

SAED H., IBRAHIM, H., EL-KHODERY, S., YOUSSEF M. A. 2020. Prevalence 

and potential risk factors of hypocalcaemia in dairy cows during 

transition period at northern egypt. Mansoura Veterinary Medical 

Journal, 21(1), 21-30. 

SAINANI, K. L. 2014. Explanatory versus predictive modeling. Pm r, 6, 841-4. 

SALAMONE, M., ADRIAENS, I., VERVAET A., OPSOMER G., ATASHI H., 

FIEVEZ V., AERNOUTS B., HOSTENS M. 2022. Prediction of first test 

day milk yield using historical records in dairy cows. Animal. 

16(11):100658.  

SALAU, J., HAAS, J. H., JUNGE, W., THALLER, G. 2021. Determination of 

body parts in holstein friesian cows comparing neural networks and k 

nearest neighbour classification. Animals, 11, 50. 

SALAU, J., KRIETER, J. 2020. Instance segmentation with mask R-CNN 

applied to loose-housed dairy cows in a multi-camera setting. Animals, 

10, 2402. 

SALEHI, F. LACROIX, R. WADE, K.M. 1998. Improving dairy yield predictions 

through combined record classifiers and specialized artificial neural 

networks, Computers and Electronics in Agriculture, Volume 20, Issue 

3, 199-213 

SALZER, Y., HONIG, H. H., SHAKED, R., ABELES, E., KLEINJAN-ELAZARY, 

A., BERGER, K., JACOBY, S., FISHBAIN, B. & KENDLER, S. 2021. 

Towards on-site automatic detection of noxious events in dairy cows. 

Appl. Anim. Behav. Sci., 236, 105260 

SANZOGNI, L., KERR, D., 2001. Milk production estimates using feed forward 

artificial neural networks, Computers and Electronics in Agriculture, 

Volume 32, Issue 1, 21-30 

SCHEFERS, J. M., WEIGEL, K. A., RAWSON, C. L., ZWALD, N. R. & COOK, 

N. B. 2010. Management practices associated with conception rate and 



347 
 

service rate of lactating Holstein cows in large, commercial dairy herds. 

J Dairy Sci, 93, 1459-67. 

SCHIRMANN, K., CHAPINAL, N., WEARY, D. M., HEUWIESER, W. & VON 

KEYSERLINGK, M. A. 2011. Short-term effects of regrouping on 

behavior of prepartum dairy cows. J Dairy Sci, 94, 2312-9. 

SCHLEMMER, A., ZWIRNMANN, H., ZABEL, M., PARLITZ, U. & LUTHER, S., 

2014. Evaluation of machine learning methods for the long-term 

prediction of cardiac diseases, 2014 8th Conference of the European 

Study Group on Cardiovascular Oscillations (ESGCO), 157-158  

SCHNITZER, M. J. & MEISTER, M. 2003 Multineuronal firing patterns in the 

signal from eye to brain. Neuron, 37(3), 499-511.  

SCHONLAU, M., & YUYAN ZOU, R., 2020. The random forest algorithm for 

statistical learning. The Stata Journal, 20(1):3–29. 

SCHWEINZER, V., GUSTERER, E., KANZ, P., KRIEGER, S., SUSS, D., 

LIDAUER, L., BERGER, A., KICKINGER, F., ÖHLSCHUSTER, M., & 

AUER W., 2019 Evaluation of an ear-attached accelerometer for 

detecting estrus events in indoor housed dairy cows. Theriogenology, 

130, 19–25. 

SEFFEDPARI, P., RAFIEE, S., & AKRAM, A. 2013. Application of artificial 

neural network to model the energy output of dairy farms in Iran. Int. J. 

Energy Technol. Policy, 9, 82. 

SEFFEDPARI, P., RAFIEE, S., AKRAM, A., CHAU, K. W., & KOMLEH, S. H. 

P., 2015. Modeling Energy Use in Dairy Cattle Farms by Applying Multi-

Layered Adaptive Neuro-Fuzzy Inference System (MLANFIS). Int. J. 

Dairy Sci., 10, 173–185. 

SEFFEDPARI, P., RAFIEE, S., AKRAM, A., & KOMLEH, S. H. P., 2014. 

Modeling output energy based on fossil fuels and electricity energy 

consumption on dairy farms of Iran: Application of adaptive neural-fuzzy 

inference system technique. Comput. Electron. Agric., 109, 80–85. 

SEPULVEDA-VARAS, P., LOMB, J., VON KEYSERLINGK, M. A. G., HELD, 

R., BUSTAMANTE, H. & TADICH, N. 2018. Claw horn lesions in mid-

lactation primiparous dairy cows under pasture-based systems: 

Association with behavioral and metabolic changes around calving. J 

Dairy Sci, 101, 9439-9450. 



348 
 

SHAFIULLAH, A. Z., WERNER, J., KENNEDY, E., LESO, L., O’BRIEN, B., &  

UMSTATTER, C., 2019. Machine learning based prediction of 

insufficient herbage allowance with automated feeding behaviour and 

activity data. Sensors, 19, 4479. 

SHAHINFAR, S., MEHRABANI-YEGANEH, H., LUCAS, C., KALHOR, A., 

KAZEMIAN, M. & WEIGEL, K. A. 2012. Prediction of breeding values for 

dairy cattle using artificial neural networks and neuro-fuzzy systems. 

Comput Math Methods Med, 2012, 127130. 

SHAHINFAR, S., PAGE, D., GUENTHER, J., CABRERA, V., FRICKE, P. & 

WEIGEL, K. 2014. Prediction of insemination outcomes in Holstein dairy 

cattle using alternative machine learning algorithms. J Dairy Sci, 97, 731-

742. 

SHAHINFAR, S., KHANSEFID, M., HAILE-MARIAM, M., & PRYCE, JE. 2021. 

Machine learning approaches for the prediction of lameness in dairy 

cows. Animal. 100391. 

SHARIFI, S., PAKDEL, A., EBRAHIMI, M., REECY, J. M., FAZELI FARSANI, 

S. & EBRAHIMIE, E. 2018. Integration of machine learning and meta-

analysis identifies the transcriptomic bio-signature of mastitis disease in 

cattle. PLoS One, 13, e0191227. 

SHARMA, A.K., SHARMA, R.K., & KASANA, H.S.,2006. Empirical 

comparisons of feed-forward connectionist and conventional regression 

models for prediction of first lactation 305-day milk yield in Karan Fries 

dairy cows. Neural Comput & Applic 15, 359–365.  

SHARMA, A.K., SHARMA, R.K., & KASANA, H.S.,2007. Prediction of first 

lactation 305-day milk yield in Karan Fries dairy cattle using ANN 

modeling, Applied Soft Computing, Volume 7, Issue 3, 1112-1120. 

SHAVER, R. D. 1997. Nutritional risk factors in the etiology of left displaced 

abomasum in dairy cows: a review. J Dairy Sci, 80, 2449-53. 

SHELDON, I. M. 2004. The postpartum uterus. Vet Clin North Am Food Anim 

Pract, 20, 569-91. 



349 
 

SHELDON, I. M., LEWIS, G. S., LEBLANC, S., & GILBERT, R. O. (2006). 

Defining postpartum uterine disease in cattle. Theriogenology, 65(8), 

1516–1530. 

SHELDON, I. M., CRONIN, J. G., GOETZE, L., DONOFRIO, G., & 

SCHUBERTH, H. 2009. Defining postpartum uterine disease and the 

mechanisms of infection and immunity in the female reproductive tract 

in cattle1. Biology of Reproduction, 81(6), 1025-1032. 

SHELDON, I. M., LEWIS, G. S., LEBLANC, S. & GILBERT, R. O. 2006a. 

Defining postpartum uterine disease in cattle. Theriogenology, 65, 1516-

30. 

SHELDON, I. M., WATHES, D. C. & DOBSON, H. 2006b. The management of 

bovine reproduction in elite herds. The Veterinary Journal, 171, 70-78. 

SHEN, W., CHENG, F., ZHANG, Y., WEI, X., FU, Q., & ZHANG, Y. 2020. 

Automatic recognition of ingestive-related behaviors of dairy cows based 

on triaxial acceleration. Inf. Process. Agric., 7, 427–443 

SHINE, P., & MURPHY, M. D. 2022. Over 20 Years of Machine Learning 

Applications on Dairy Farms: A Comprehensive Mapping Study. 

Sensors, 22, 52. 

SHINE, P., MURPHY, M. D., UPTON, J., & SCULLY, T. 2018a. Machine-

learning algorithms for predicting on-farm direct water and electricity 

consumption on pasture based dairy farms. Comput. Electron. Agric., 

150, 74–87. 

SHINE, P., SCULLY, T., UPTON, J., & MURPHY, M. D., 2018b. Multiple linear 

regression modelling of on-farm direct water and electricity consumption 

on pasture based dairy farms. Comput. Electron. Agric., 148, 337–346. 

SHINE, P., SCULLY, T., UPTON, J., & MURPHY, M. D. M. 2019. Annual 

electricity consumption prediction and future expansion analysis on dairy 

farms using a support vector machine. Appl. Energy, 250, 1110–1119. 

SHMUELI, G. 2010. To Explain or to Predict? Statist. Sci., 25, 289-310. 

SHRESTHA, N. 2020. Detecting multicollinearity in regression analysis. 

American Journal of Applied Mathematics and Statistics, 8(2), 39-42. 

SHRESTHA, A., LOUKAS, C., LE KERNEC, J., FIORANELLI, F., BUSIN, V., 

JONSSON, N., KING, G., TOMLINSON, M., VIORA, L., & VOUTE, L. 



350 
 

2018. Animal lameness detection with radar sensing. IEEE Geosci. 

Remote Sens. Lett., 15, 1189–1193. 

SIACHOS, N., LENNOX, M., ANAGNOSTOPOULOS, A., GRIFFITHS, B. E., 

NEARY, J. M., SMITH, R. F., & OIKONOMOU, G. 2024. Development 

and validation of a fully automated 2-dimensional imaging system 

generating body condition scores for dairy cows using machine learning. 

J Dairy Sci, 107(4), 2499–2511. 

SILVA DEL RIO, N., STEWART, S., RAPNICKI, P., CHANG, Y. M. & FRICKE, 

P. M. 2007. An observational analysis of twin births, calf sex ratio, and 

calf mortality in Holstein dairy cattle. J Dairy Sci, 90, 1255-64. 

SILVA, P. R., DRESCH, A. R., MACHADO, K. S., MORAES, J. G., LOBECK-

LUCHTERHAND, K., NISHIMURA, T. K., FERREIRA, M. A., ENDRES, 

M. I. & CHEBEL, R. C. 2014. Prepartum stocking density: effects on 

metabolic, health, reproductive, and productive responses. J Dairy Sci, 

97, 5521-32. 

SILVA, P. R., MORAES, J. G., MENDONCA, L. G., SCANAVEZ, A. A., 

NAKAGAWA, G., BALLOU, M. A., WALCHECK, B., HAINES, D., 

ENDRES, M. I. & CHEBEL, R. C. 2013. Effects of weekly regrouping of 

prepartum dairy cows on innate immune response and antibody 

concentration. J Dairy Sci, 96, 7649-57. 

SINGH, B., KUMAR, S., ELANGOVAN, A., VASHT, D., ARYA, S., DUC, N., & 

CHINNUSAMY, V. 2023. Phenomics based prediction of plant biomass 

and leaf area in wheat using machine learning approaches. Frontiers in 

Plant Science, 14. 

SLOB, N., CATAL, C., & KASSAHU, A., 2021. Application of machine learning 

to improve dairy farm management: A systematic literature review, 

Preventive Veterinary Medicine, Volume 187, 105237. 

SMITH, S. M. & NICHOLS, T. E. 2018. Statistical challenges in “big data” 

human neuroimaging. Neuron 97, 263–268. 

SMITH, D., RAHMAN, A., BISHOP-HURLEY, G. J., HILLS, J., SHAHRIAR, S., 

HENRY, D., & RAWNSLEY, R. 2016. Behavior classification of cows 

fitted with motion collars: Decomposing multi-class classification into a 

set of binary problems. Comput. Electron. Agric., 131, 40–50. 



351 
 

SMOLA, A., SCHOLKOPF, A., & MULLER, R., 1998. The connection between 

regularization operators and support vector kernels, Neural Network, 

11,637-649 

SOMASUNDARAM, A. & REDDY, U. S. 2018. Parallel and incremental credit 

card fraud detection model to handle concept drift and data imbalance. 

Neural Computing and Applications, 31(S1), 3-14.  

SORDILLO, L. M. 2016. Nutritional strategies to optimize dairy cattle immunity. 

J Dairy Sci, 99(6), 4967-4982. 

SRIKOK, S., PATCHANEE, P., BOONVAVATRA, S., CHUAMMITRI, P. 2020. 

Potential role of MicroRNA as a diagnostic tool in the detection of bovine 

mastitis. Prev. Vet. Med., 182, 105101. 

SPISAK, T. 2022. Statistical quantification of confounding bias in machine 

learning models. Gigascience, 11. 

ST-PIERRE, N. R., COBANOV, B. & SCHNITKEY, G. 2003. Economic Losses 

from Heat Stress by US Livestock Industries1. J Dairy Sci, 86, E52-E77. 

STURM, V., EFROSININ, D., ÖHLSCHUSTER, M., GUSTERER, E., 

DRILLICH, M., & IWERSEN, M. 2020. Combination of Sensor Data and 

Health Monitoring for Early Detection of Subclinical Ketosis in Dairy 

Cows. Sensors (Basel, Switzerland), 20(5), 1484. 

SUN, Z., SAMARASINGHE, S. & JAGO, J. 2010. Detection of mastitis and its 

stage of progression by automatic milking systems using artificial neural 

networks. J Dairy Res, 77, 168-75. 

SURIYASATHAPORN, W., HEUER, C., NOORDHUIZEN-STASSEN, E. N. & 

SCHUKKEN, Y. H. 2000. Hyperketonemia and the impairment of udder 

defense: a review. Vet Res, 31, 397-412. 

TAMURA, T., OKUBO, Y., DEGUCHI, Y., KOSHIKAWA, S., TAKAHASHI, M., 

CHIDA, Y. & OKADA, K. 2019. Dairy cattle behavior classifications 

based on decision tree learning using 3-axis neck-mounted 

accelerometers. Anim Sci J, 90, 589-596. 

TANEJA, M., BYABAZAIRE, J., JALODIA, N., DAVY, A., OLARIU C., & 

MALONE, P. 2020. Machine learning based fog computing assisted 



352 
 

data-driven approach for early lameness detection in dairy cattle. 

Comput. Electron. Agric., 171, 105286. 

TAKAHASHI, Y., UEKI, M., YAMADA, M., TAMIYA, G., MOTOIKE, I. N., 

SAIGUSA, D., & TOMITA, H. 2020. Improved metabolomic data-based 

prediction of depressive symptoms using nonlinear machine learning 

with feature selection. Translational Psychiatry, 10(1). 

TEDDE, A., GRELET, C., HO, P. N., PRYCE, J. E., HAILEMARIAM, D., WANG, 

Z., PLASTOW, G., GENGLER, N., FROIDMONT, E., DEHARENG, F., 

BERTOZZI, C., CROWE, M. A. & SOYEURT, H., 2021a. Multiple country 

approach to improve the test-day prediction of dairy cows’ dry matter 

intake. Animals, 11, 1316.  

TEDDE, A., GRELET, C., HO, P. N., PRYCE, J. E., HAILEMARIAM, D., WANG, 

Z., PLASTOW, G., GENGLER, N., FROIDMONT, E., DEHARENG, F., 

BERTOZZI, C., CROWE, M. A. & SOYEURT, H., 2021b Validation of 

Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy 

Herd Improvement Organizations and Its Potential Improvement Using 

Feature Selection Algorithms. Animals 2021, 11, 1288. 

THERNEAU, T. 2023. A Package for Survival Analysis in R. R package version 

3.5-0, https://CRAN.R-project.org/package=survival. 

TODDE, G., MURGIA, L., CARIA, M. & PAZZONA, A. 2017. Dairy Energy 

Prediction (DEP) model: A tool for predicting energy use and related 

emissions and costs in dairy farms. Comput. Electron. Agric., 135, 216–

221. 

TONI, F., VINCENTI, L., GRIGOLETTO, L., RICCI, A. & SCHUKKEN, Y. H. 

2011. Early lactation ratio of fat and protein percentage in milk is 

associated with health, milk production, and survival. J Dairy Sci, 94, 

1772-83. 

TOPOL, E. J. 2019. High-performance medicine: the convergence of human 

and artificial intelligence. Nat. Med. 25, 44–56. 

TORRES, M., HERVAS, C., & AMADOR, F., 2005. Approximating the sheep 

milk production curve through the use of artificial neural networks and 

genetic algorithms, Computers & Operations Research, Volume 32, 

Issue 10, 2653-2670. 



353 
 

UTRERA, Á. R., CADLERON-ROBLES, R. C., GALAVIZ-RODRIGUEZ, J. R., 

MURILLO, V. E. V., & LAGUNES-LAGUNES, J. 2013. Effects of breed, 

calving season and parity on milk yield, body weight and efficiency of 

dairy cows under subtropical conditions. International Journal of Animal 

and Veterinary Advances, 5(6), 226-232. 

VALVIDIA, V., BARRADO, A.. LAAZARO, A., ZUMEL, P., RAGA, C., & 

FERNANDEZ, C., 2009, Simple Modeling and Identification Procedures 

for ‘Black-Box’ Behavioral Modeling of Power Converters Based on 

Transient Response Analysis, IEEE Trans. Power Electron., 24. 12, 

2776–2790. 

VAN DORP, T. E., DEKKERS, J. C., MARTIN, S. W. & NOORDHUIZEN, J. P. 

1998. Genetic parameters of health disorders, and relationships with 

305-day milk yield and conformation traits of registered Holstein cows. J 

Dairy Sci, 81, 2264-70. 

VAN WINDEN, S. C., BRATTINGA, C. R., MULLER, K. E., NOORDHUIZEN, J. 

P. & BEYNEN, A. C. 2002. Position of the abomasum in dairy cows 

during the first six weeks after calving. Vet Rec, 151, 446-9. 

VAPNIK, V., 2013. The nature of statistical learning theory. Springer science & 

business media.  

VARMA, S. & SIMON, 2006. R. Bias in error estimation when using cross-

validation for model selection. BMC Bioinform. 7, 91. 

VATCHEVA K., LEE, M., MCCORMICK, J. B., & RAHBAR, M. H. 2016. 

Multicollinearity in regression analyses conducted in epidemiologic 

studies. Epidemiology: Open Access, 06(02). 

VÁZQUEZ DIOSDADO, J. A., BARKER, Z. E., HODGES, H. R., AMORY, J. R., 

CROFT, D. P., BELL, N. J. & CODLING, E. A. 2015. Classification of 

behaviour in housed dairy cows using an accelerometer-based activity 

monitoring system. Animal Biotelemetry, 3, 15. 

VÁZQUEZ DIOSDADO, J. A., GRUHIER, J., MIGUEL-PACHECO, G. G., 

GREEN, M., DOTTORINI, T., & KALER, J. 2023. Accurate prediction of 

calving in dairy cows by applying feature engineering and machine 

learning. Preventive Veterinary Medicine, 219, 106007. 



354 
 

VERGARA, C. F., DOPFER, D., COOK, N. B., NORDLUND, K. V., MCART, J. 

A., NYDAM, D. V. & OETZEL, G. R. 2014. Risk factors for postpartum 

problems in dairy cows: explanatory and predictive modeling. J Dairy 

Sci, 97, 4127-40. 

VIERA, A. J. & GARRETT, J. M. 2005. Understanding interobserver agreement: 

the kappa statistic. Fam Med, 37, 360-3. 

VIJAYAKUMAR, M., PARK, J. H., KI, K., LIM, D. H., KIM, S. B., PARK, S. M., 

KIM, T. I. 2017. The effect of lactation number, stage, length, and milking 

frequency on milk yield in korean holstein dairy cows using automatic 

milking system. Asian-Australasian Journal of Animal Sciences, 30(8), 

1093-1098. 

VIJU, K., 2021. Stability of neural networks dependent on time series in anime 

image recognition. International Journal of neural network, 2(3). 

VITALI, A., SEGNALINI, M., BERTOCCHI, L., BERNABUCCI, U., NARDONE, 

A. & LACETERA, N. 2009. Seasonal pattern of mortality and 

relationships between mortality and temperature-humidity index in dairy 

cows. J Dairy Sci, 92, 3781-3790. 

VON KEYSERLINGK, M. A., OLENICK, D. & WEARY, D. M. 2008. Acute 

behavioral effects of regrouping dairy cows. J Dairy Sci, 91, 1011-6. 

VOLKMANN N, KULIG B, HOPPE S, STRACKE J, HENSEL O, KEMPER N. 

2021. On-farm detection of claw lesions in dairy cows based on acoustic 

analyses and machine learning. J Dairy Sci.104(5):5921-5931.  

WAGNER, N., ANTOINE, V., MIALON, M. M., LARDY, R., SILBERBERG, M., 

KOKO, J., & VEISSIER, I. 2020. Machine learning to detect behavioural 

anomalies in dairy cows under subacute ruminal acidosis. Comput. 

Electron. Agric., 170, 105233. 

WAITMAN, L. R., FISHER, D., & KING, P. 2003. Bootstrapping rule induction. 

In Proceedings of the IEEE International Conference on Data Mining,   

Los Alamitos, CA: IEEE Computer Society. 677–680. 

WALDRON, M. R., NISHIDA, T., NONNECKE, B. J. & OVERTON, T. R. 2003. 

Effect of lipopolysaccharide on indices of peripheral and hepatic 

metabolism in lactating cows. J Dairy Sci, 86, 3447-59. 

WALLESER, E., REYES, J. F. M., ANKLAM, K., PRALLE, R. S., WHITE, H. M., 

UNGER, S., PANNE, N., KAMMER, M., PLATTNER, S., & DOPFER, D. 



355 
 

2023. Novel prediction models for hyperketonemia using bovine milk 

Fourier-transform infrared spectroscopy. Preventive veterinary 

medicine, 213, 105860. 

WANG, J., BELL, M., LIU, X., & LIU, G. 2020. Machine-Learning Techniques 

Can Enhance Dairy Cow Estrus Detection Using Location and 

Acceleration Data. Animals : an open access journal from MDPI, 10(7), 

1160. 

WANG, H., SHEN, W., ZHANG, Y., GAO, M., ZHANG, Q., A, X., DU, H. & QIU, 

B. 2023. Diagnosis of dairy cow diseases by knowledge-driven deep 

learning based on the text reports of illness state, Computers and 

Electronics in Agriculture, Volume 205, 107564, 0168-1699 

WANKHADE, P. R., MANIMARAN, A., KUMARESAN, A., JEYAKUMAR, S., 

RAMESHA, K. P., SEJIAN, V., RAJENDRAN, D. & VARGHESE, M. R. 

2017. Metabolic and immunological changes in transition dairy cows: A 

review. Veterinary world, 10, 1367-1377. 

WARNER, D., VASSEUR, E., LEFEBVRE, D. M., & LACROIX, R. 2020. A 

machine learning based decision aid for lameness in dairy herds using 

farm-based records. Comput. Electron. Agric., 169, 105193. 

WARRENS, M. 2010. chance‐corrected measures for 2 × 2 tables that coincide 

with weighted kappa. British Journal of Mathematical and Statistical 

Psychology, 64(2), 355-365.  

WEI, W., DONG, L., YE, J., & XIAO, Z. 2024. Current status and influencing 

factors of family resilience in families of children with epilepsy: a cross-

sectional study. Frontiers in Psychiatry, 15. 

WEI, C. & HSU, N., 2008. Derived operating rules for a reservoir operation 

system: comparison of decision trees, neural decision trees and fuzzy 

decision trees. Water Resources Research, 44(2).WEIGEL, K. A., 

VANRADEN, P. M., NORMAN, H. D. & GROSU, H. 2017. A 100-Year 

Review: Methods and impact of genetic selection in dairy cattle—From 

daughter–dam comparisons to deep learning algorithms. J Dairy Sci, 

100, 10234-10250. 

WEN, J., THIBEAU-SUTRE, E., DIAZ-MELO, M., SAMPER-GONZALEZ, J., 

ROUTIER, A., BOTTANI, S., DORMONT, D., DURRLEMAN, S., 

BURGOS, N., & COLLIOT, O., 2020. Alzheimer's Disease Neuroimaging 



356 
 

Initiative, & Australian Imaging Biomarkers and Lifestyle flagship study 

of ageing. Convolutional neural networks for classification of Alzheimer's 

disease: Overview and reproducible evaluation. Medical image analysis, 

63, 101694. 

WILKES, C. O., PENCE, K. J., HURT, A. M., BECVAR, O., KNOWLTON, K. F., 

MCGILLIARD, M. L. & GWAZDAUSKAS, F. C. 2008. Effect of relocation 

on locomotion and cleanliness in dairy cows. J Dairy Res, 75, 19-23. 

WILLIAMS, M. L., JAMES, W. P., ROSE, M. T., 2019. Variable segmentation 

and ensemble classifiers for predicting dairy cow behaviour. Biosyst. 

Eng., 178, 156–167. 

WILLIAMS, M. L., MAC PARTHALÁIN, N., BREWER, P., JAMES, W. P. J. & 

ROSE, M. T. 2016. A novel behavioral model of the pasture-based dairy 

cow from GPS data using data mining and machine learning techniques. 

J Dairy Sci, 99, 2063-2075. 

WILSON, D.J., GONZALEZ, R.N, HERTLJ., SCHULTEH.F., BENNETTG.J., 

SCHUKKENY.H., & GROHN, Y.T., 2004.Effect of Clinical Mastitis on the 

Lactation Curve: A Mixed Model Estimation Using Daily Milk Weights, J 

Dairy Sci, Volume 87, Issue 7,2073-2084. 

WISNIESKI, L., NORBY, B., PIERCE, S. J., BECKER, T., GANDY, J. C. & 

SORDILLO, L. M. 2019. Predictive models for early lactation diseases in 

transition dairy cattle at dry-off. Prev Vet Med, 163, 68-78. 

WITTEK, T., FURLL, M. & CONSTABLE, P. D. 2004. Prevalence of 

endotoxemia in healthy postparturient dairy cows and cows with 

abomasal volvulus or left displaced abomasum. J Vet Intern Med, 18, 

574-80. 

WU, D., FENG, T., NAEHRIG, M., & LAUTER, K., 2016. Privately evaluating 

decision trees and random forests. Proceedings on Privacy Enhancing 

Technologies, 4, 335-355. XI, W. 2024. Using stepwise regression to 

address multicollinearity is not appropriate. International Journal of 

Surgery, 110(5), 3122-3123. 

XU. Z. J., 2018. Understanding training and generalization in deep learning by 

fourier analysis. arXiv preprint arXiv:1808.04295.  



357 
 

XU, W., VAN KNEGSEL, A. T. M., VERVOORT, J. J. M., BRUCKMAIER, R. 

M., VAN HOEIJ, R. J., KEMP, B. & SACCENTI, E. 2019. Prediction of 

metabolic status of dairy cows in early lactation with on-farm cow data 

and machine learning algorithms. J. Dairy Sci., 102, 10186–10201. 

YAGIS, E., ATNAFU, S.W., GARCIA SECO DE HERRERA, A., MARZI, C., 

SCHEDA, R., GIANNELLI, M., TESSA, C., CITI, L., & DICIOTTI, S., 

2021. Effect of data leakage in brain MRI classification using 2D 

convolutional neural networks. Sci Rep 11, 22544. 

YANG, L. & SHAMI, A. 2020. On hyperparameter optimization of machine 

learning algorithms: theory and practice. Neurocomputing, 415, 295-

316.  

YANG, H., XIE, X., KADOCH, M. 2022, Machine learning techniques and a 

case study for intelligent wireless networks. IEEE Netw. 34(3), 208–215. 

YANG, Y. & WEBB, G. 2001. Proportional k-interval discretization for naive-

bayes classifiers., Machine Learning: ECML 2001. ECML 2001. Lecture 

Notes in Computer Science(), vol 2167, 564-575. 

YAO, C., SPURLOCK, D. M., ARMENTANO, L. E., PAGE, C. D., JR., 

VANDEHAAR, M. J., BICKHART, D. M. & WEIGEL, K. A. 2013. Random 

Forests approach for identifying additive and epistatic single nucleotide 

polymorphisms associated with residual feed intake in dairy cattle. J 

Dairy Sci, 96, 6716-29. 

YAO, C., ZHU, X., & WEIGEL, K. A. 2016. Semi-supervised learning for 

genomic prediction of novel traits with small reference populations: An 

application to residual feed intake in dairy cattle. Genet. Sel. Evol., 48, 

84. 

YEOM, S., GIACOMELLI, I., FREDRIKSON, M., & JHA, S. 2018. Privacy risk 

in machine learning: analyzing the connection to overfitting, 2018 IEEE 

31st Computer Security Foundations Symposium, 268-282. 

ZAAIJER, D.; & NOORDHUISEN, J.P.T.M. 2003. A novel scoring system for 

monitoring the relationship between nutritional efficiency and fertility in 

dairy cows. Ir. Vet. J. 56, 145–151. 

ZABORSKI, D., PROSKURA, W. S. & GRZESIAK, W. 2018. The use of data 

mining methods for dystocia detection in Polish Holstein-Friesian Black-

and-White cattle. Asian-Australas J Anim Sci, 31, 1700-1713. 



358 
 

ZAHRAZADEH, M., RIASI, A., FARHANGFAR, H. & MAHYARI, S. A. 2018. 

Effects of close-up body condition score and selenium-vitamin E 

injection on lactation performance, blood metabolites, and oxidative 

status in high-producing dairy cows. J Dairy Sci. 101(11), 10495–10504. 

ZEGLER, C. H., RENZ, M. J., BRINK, G. E., & RUARK, M. D. 2020. Assessing 

the importance of plant, soil, and management factors affecting potential 

milk production on organic pastures using regression tree analysis. 

Agric. Syst., 180, 102776. 

ZHANG, S., & LI, J., 2021. Knn classification with one-step computation. IEEE 

Transactions on Knowledge and Data Engineering, 1-1. 

ZHANG, Y., LI, X., ZHANG, H., ZHAO, Z., PENG, Z., WANG, Z., LIU, G. & LI, 

X. 2018. Non-Esterified Fatty Acids Over-Activate the TLR2/4-NF-

Kappab Signaling Pathway to Increase Inflammatory Cytokine Synthesis 

in Neutrophils from Ketotic Cows. Cell Physiol Biochem, 48, 827-837. 

 ZHAO, K., SHELLEY, A. N., LAU, D. L., DOLECHECK, K. A., & BEWLEY, J. 

M. 2020. Automatic body condition scoring system for dairy cows based 

on depth-image analysis. Int. J. Agric. Biol. Eng., 13, 45–54. 

ZHOU, X., XU C., WANG, H., XU, W., ZHAO, Z., CHEN, M., JIA, B. & HUANG, 

B. 2022. The Early Prediction of Common Disorders in Dairy Cows 

Monitored by Automatic Systems with Machine Learning Algorithms. 

Animals. 12(10):1251. 

 

  



359 
 

Appendices 

Appendix I 

 

Supplementary to Chapter 2: Sample code for predictive model fitting 

ctrl <- trainControl(method = "cv", number = 10) 

or   

ctrl <- trainControl(method = "cv", number = 10, sampling = “up”) 

when using upsamling 

train(Outcome~Variable, 

data = data,  

      method = method,  

      na.action = na.omit, trControl = ctrl, metric = metric) 

where:  

data is the respective dataset used for each analysis,  

method the methodology used to fit the model, 

and metric was set to “Kappa” for binary models, while left as the default 

option for continuous outcomes. 
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Supplementary to Chapter 2: Sample code for Odds Ratios from mixed 

effects logistic regression model 

mod <- glmer(Outcome ~ Variable1 +  

        … + VariableN + 

        (1|FarmID), data, family = "binomial") 

cc <- confint(mod,parm="beta_", method = "Wald")   

ctab <- cbind(est=fixef(mod),cc) 

rtab <- exp(ctab) 

print(rtab,digits=3) 

where data was the dataset used for each analysis, 

Outcome was the outcome variable, 

Variable1,…, VariableN the number N explanatory variables used in the analysis 

and FarmID each herd identification number 
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Appendix II 

Figure A2. 1Rumen fill distribution based on 28,480 dry cows 
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Figure A2.2Rumen fill distribution based on 43,185 fresh cows 

 

Figure A2.3 Hock Hygiene distribution based on 12,847 lactations 
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Figure A2.4 Types of pens for both dry and fresh cows, based on 2,787 pens 

 

Figure A2.5 Feed Fence space available per cow, based on 2,787 pens 
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Figure A2.6 Feed Fence space available separately per dry and fresh cows, based on 

2,787 pens 

 

Figure A2.7 Water Trough space available per cow, based on 2,787 pens 
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Figure A2.8 Water Trough space available separately per dry and fresh cows, based 

on 2,787 pens 

 

Figure A2.9 Neck Rail Height available based on data on 2,787 pens 
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