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Abstract

This thesis explores the behaviour of thin film flow in both porous and non-porous media,

considering both single and two-fluid systems. It establishes a comprehensive mathematical

framework to describe the flow dynamics under different physical conditions, aiming to clarify

the transition between these two regimes. In the case of porous media, the flow is described

by the Brinkman equation, which incorporates the effects of permeability and viscous shear.

On the other hand, the Navier-Stokes equation is used to model flow in non-porous

media. The model for porous media seamlessly transitions to the non-porous scenario as

the permeability parameter, α approaches zero, ensuring a consistent approach across both

domains. Likewise, the two-fluid system simplifies to a single-fluid model when the parameter

n, which indicates the viscosity ratio of the fluid, is set to zero.

The thin-film equations are solved numerically with the Chebfun framework, known for its

efficient and accurate spectral methods suitable for complex equations. The numerical results

examine key parameters such as stability and flow rates and emphasize the relationship

between permeability, fluid interactions, and boundary conditions.



Dedication

This study is dedicated to my late father and mother, Alhaji Salihu Yakubu Idris and Hajiya

Habiba Salihu Yakubu, may Almighty Allah, the most Gracious, the most Merciful forgive

all their shortcomings.

1



Acknowledgement

I want to thank and express my deepest gratitude to the following, without whom this work

would not have been possible.

• I am deeply grateful to the Petroleum Technology Development Fund (PTDF) Nigeria

for their generous financial support, which allowed me to conduct my research and com-

plete this thesis, and to the Federal University of Kashere, Gombe state, for granting

the study fellowship to embark on this study.

• I sincerely thank my supervisors, Dr. Matteo Icardi and Dr. Anna Kalogirou, for their

guidance, patience, and encouragement throughout this process. Their expertise and

constructive feedback were instrumental in shaping this work. I also thank Dr. Mirco

Magnini for his initial valuable insights and support.

• I am grateful to my family, whose love and encouragement sustained me during chal-

lenging times. To my mother, wives, and children, thank you for believing in me and

for your endless patience and understanding. I am also grateful to my friends, who

provided moral support and cheered me on throughout this journey. To everyone who

contributed to this journey in large or small ways, thank you from the bottom of my

heart.

2



Contents

1 Introduction 17

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Thin liquid film and porous media . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Single-fluid system with an interface . . . . . . . . . . . . . . . . . . 20

1.2.3 Two-fluid system with an interface . . . . . . . . . . . . . . . . . . . 20

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Literature review 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Concept of porosity and permeability . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 PoroPerm Relationships . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.5 Boundary Conditions Contributions . . . . . . . . . . . . . . . . . . . 41

3 Single fluid with an interface 43

3.1 Thin film in a porous medium . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



3.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Interface Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Lubrication Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Asymptotic approximation in the limit α → 0 and α → ∞ . . . . . . . . . 52

3.3 Steady state solution of DB at α = 0 or ∞ . . . . . . . . . . . . . . . . . . 55

3.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Heterogeneous permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Two fluids with an interface 67

4.1 Thin film of two fluids in porous media . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Conditions on the boundaries . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Conditions at the interface between the fluids . . . . . . . . . . . . . 69

4.1.4 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.5 Lubrication approximation . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Thin film of two fluids in a non-porous mediun . . . . . . . . . . . . . . . . . 75

4.3 Asymptotic approximation in the limit n→ 0 and α → 0 . . . . . . . . . . 78

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusions and Recommendations 89

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Recommendation for future work . . . . . . . . . . . . . . . . . . . . . . . . 90

A The exact form of Γ(α, n) and S(α, n) 92

4



List of Tables

2.1 Reservoir permeability classification . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Permeability relationships, Source: [7] . . . . . . . . . . . . . . . . . . . . . . 34

5



List of Figures

1.1 A classic example of thin liquid films (Source: https://www.pngegg.com/en/png-

bzpbx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Examples of porous materials. Source: (https://www.imperial.ac.uk/news/187667/looking-

inside-porous-materials-understand-roughness/) . . . . . . . . . . . . . . . . 21

1.3 Model interaction between thin film in two environments, whereNS represents

the Navier-Stokes model, DB is Darcy-Brinkman, α is a non-dimensional

permeability parameter and n is the viscosity ratio which gives the relationship

between two fluids in the system. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Porosity of a rock. Source:(https://home.wgnhs.wisc.edu/water/wisconsin-

aquifers/understanding-porosity-density/) . . . . . . . . . . . . . . . . . . . 29

2.2 Relative Permeability Curves (Oil and Water). Source: https://www.ihsenergy/reference

material/general concepts/relative permeability.htm . . . . . . . . . . . . . . 32

2.3 Porosity Permeability relations for selected aquifers. Source: https://www.thermogis.nl/en/porosity-

and-permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Schematic of Darcy’s original experimental apparatus. Sourcehttps://serc.carleton.edu/integrate/teaching

materials/water science society/student materials/926 . . . . . . . . . . . . . 35

6



3.1 Sketch of water-gas flow with a sharp separating interface. The horizontal

and vertical velocities are given as u and v, and the characteristic length and

height are given as L0 and h0 and y = h(x, t) is the interface between the fluids 44

3.2 Transition through the boundary between free flow and porous media regions,

where ε is a porosity of the material, as in [137]. . . . . . . . . . . . . . . . 54

3.3 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (3.33) and (3.37) with Dirichlet boundary condition,

starting from an initial condition of the equation (3.52), with h0 = 0.1, hA =

0.5, m = 2, and L = 10. For each panel, present the solution corresponding

to each value of α as indicated in the sub-caption. . . . . . . . . . . . . . . . 58

3.4 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (3.33) and (3.37) with Dirichlet boundary condition,

starting from an initial condition of the equation (3.53), with h0 = 0.1, hA =

0.5, m = 2, and L = 10. For each panel, present the solution corresponding

to each value of α as indicated in the sub-caption. . . . . . . . . . . . . . . . 59

3.5 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (3.33) and (3.37) with Dirichlet boundary condition,

starting from an initial condition of the equation (3.54), with h0 = 0.1, hA =

0.5, m = 2, and L = 10. For each panel, present the solution corresponding

to each value of α as indicated in the sub-caption. . . . . . . . . . . . . . . . 60

3.6 Free surface profile h at different times, obtained from a time-dependent calcu-

lation of equations (3.33) with Dirichlet boundary condition, starting from an

initial condition of the equation (3.52), with hA = 0.5,m = 1.5, and L = 10.,

the other parameter is α = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7



3.7 Free surface profile h at different times, obtained from a time-dependent calcu-

lation of equations (3.33) with Dirichlet boundary condition, starting from an

initial condition of the equation (3.52), with hA = 0.5,m = 1.5, and L = 10.,

the other parameter is α = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Free surface profile h at different times, obtained from a time-dependent calcu-

lation of equations (3.33),(3.37) and (3.44) with Dirichlet boundary condition,

starting from an initial condition of the equation (3.52), with hA = 0.5,m =

1.5, and L = 10., the other parameter is α = 4 . . . . . . . . . . . . . . . . . 62

3.9 Plot of surface profile h, obtained from a steady state solution (3.51) and the

numerical solution of equation (3.47) with r = 1 and 3 . . . . . . . . . . . . 62

3.10 Free surface profile h at different times, obtained from a time-dependent cal-

culation of equations (3.55) and Dirichlet boundary condition, starting from

an initial condition of the equation (3.52), with hA = 0.5,m = 2, and L = 10.,

the other parameter is a = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Free surface profile h at different times, obtained from a time-dependent cal-

culation of equations (3.55) and Dirichlet boundary condition, starting from

an initial condition of the equation (3.53), with hA = 0.5,m = 2, and L = 10.,

the other parameter is a = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 Free surface profile h at different times, obtained from a time-dependent cal-

culation of equations (3.56) and Dirichlet boundary condition, starting from

an initial condition of the equation (3.52), with hA = 0.5,m = 2, and L = 10.,

the other parameter is a = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Free surface profile h at different times, obtained from a time-dependent cal-

culation of equations (3.56) and Dirichlet boundary condition, starting from

an initial condition of the equation (3.53), with hA = 0.5,m = 2, and L = 10.,

the other parameter is a = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8



4.1 Sketch of two immiscible stratified fluids with a sharp separating interface.

The horizontal and vertical velocities are given as ui and vi, for i = 1, 2

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.52), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is α = 2. For each panel, display

the solution for each value of n as specified in the sub-caption. . . . . . . . . 82

4.3 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.53), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is α = 2. For each panel, display

the solution for each value of n as specified in the sub-caption. . . . . . . . . 83

4.4 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.54), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is α = 2. For each panel, display

the solution for each value of n as specified in the sub-caption. . . . . . . . . 84

4.5 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.52), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is n = 0.15. For each panel, present

the solution corresponding to each value of α as indicated in the sub-caption. 85

9



4.6 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.53), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is n = 0.15. For each panel, present

the solution corresponding to each value of α as indicated in the sub-caption. 86

4.7 Plot of the surface profile h at different times, obtained from a time-dependent

calculation of equations (4.40) with Dirichlet boundary condition, starting

from an initial condition of the equation (3.54), with h0 = 0.1, hA = 0.5,

m = 2, and L = 10. The other parameter is n = 0.15. For each panel, present

the solution corresponding to each value of α as indicated in the sub-caption. 87

10



Nomenclature

English/Greek Symbols

α Parameter in terms of permeability

ϵ smallest number

γ Surface tension coefficient

κ Curvature of the interface

I Identity matrix

µ viscosity of fluid

µ∗ Apparent viscosity

µ1 viscosity of fluid 1

µ2 viscosity of fluid 2

ϕ Solid volume fraction

Ψ Microscopic quantity

ψ Average quantity

ρ Density

11



ρ1 Density of fluid 1

ρ2 Density of fluid 2

ρf Density of fluid

σ Stress tensor

σ1 Stress in fluid 1

σ2 Stress in fluid 2

τ Tortuosity of the medium

n Unit normal vector

t Unit tangential vector

u velocity vector

ε Porosity of the material

A Cross sectional area

a Grain packing constant

C Sorting index

d Channel diameter

Dd Modal grain size

g Gravitational acceleration

h free or porous surface

h0 Characteristic height

12



h1 Initial height of the flume

h2 Final height of the flume

hA Amplitude of the wave

hf fracture width

K Intrinsic permeability

k Darcy permeability

Ks Packing correction

L Length of the flume

l0 Characteristic length

M Arbitrary constant

m Frequency of the wave

ma Archie cementation exponent

N Arbitrary constant

n Viscosity ratio

P Microscopic pressure

p fluid pressure

p0 Characteristic pressure

pg Gas pressure

Q Flux of fluid

13



q Constant values 1 or 3

Sgt Trap gas saturation

Sor Residual oil saturation

Swi Irreducible water saturation

T Transpose

U0 Characteristic velocity

Ufs Superficial velocity

Us Tangential velocity

v Specific discharge

V0 Characteristic velocity

Vt Total volume

Vv Volume of void

w Fracture aperture

x Horizontal Cartesian coordinate

y Vertical Cartesian coordinate

Subscripts

ρ Density

f fluid

fs Superficial

14



gt Trapped gas

i Fluid phase

or residual oil

t total

v void

wi Irreducible water

Acronyms

D Darcy

DB Darcy Brinkman

LHS Left hand side

LTF Liquid thin film

NS Navier Stokes

PDE Partial differential equation

REV Representative elementary volume

RHS Right hand side

Dimensionless numbers

Bo Bond number

Ca Capillary number

Fr Froude number

15



Re Reynolds number

B Ratio of Reynolds to Froude number

16



Chapter 1

Introduction

1.1 Background and motivation

Understanding the physics of thin films or in other words, studying liquid/liquid interface

and gas-liquid (open space) /solid interfaces separately, will open a new avenue into this

research since both topics are rich enough to be challenging on their own merits. The

term "new avenue" highlights the idea of using the rich insights from interfacial science

to completely rethink thin-film challenges. By doing this, we might discover fundamental

principles that have been missed in the past, mainly because of the intricate nature of coupled

interfaces. This fresh perspective could pave the way for innovative theories, applications,

and technologies that push beyond the usual limits of thin-film research. Thin films hold

importance across various fields, including biophysics, physics, engineering, and even in

natural environments[112]. They are just a few nanometers and a few millimeters thick, and

even thicker liquid layers can be found used in various applications, such as environmental

cleanup and disease detection diagnostics. Understanding how thin films behave in porous

media and at fluid-phase interfaces is crucial for optimizing processes; significantly better

design technology can be systematically developed to tackle the complex phenomena that
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have been identified.[71, 90].

Porous media are made up of materials that have interconnected void spaces or pores, and

they are commonly found in both natural and engineered systems like filters, membranes,

rocks, and soils. The structure of these porous materials plays a crucial role in how fluids

move through them, impacting processes such as filtration, adsorption, catalysis, diffusion,

and capillary rise [82, 141]. When thin films are introduced to porous media, they create

additional challenges by changing the fluid distribution, surface interactions, and transport

properties of the porous structure.

In single-fluid systems, examining thin films in porous media focuses on how a thin liquid

layer interacts with the porous structure. This interaction affects various factors, including

mass transport, flow patterns, and wetting behavior. The presence of thin films in porous

media can result in phenomena such as film pinning [96], imbibition [131], and pore-scale

instabilities [109], which are significant for fields like soil science, chemical engineering, and

environmental remediation.

In two-fluid systems, the dynamics of thin films in porous media become more intri-

cate due to the interaction between two immiscible fluids within the porous structure [121].

The behavior of thin films at the interface between the two fluids is crucial for controlling

phase distribution, displacement mechanisms, and multiphase flow patterns in porous me-

dia. Grasping the interfacial dynamics between the two fluids and their interaction with

the porous structure is vital for optimizing processes in fields such as enhanced oil recovery,

contaminant transport, and bioremediation [28, 84].

The interface that separates single-fluid and two-fluid systems in porous media offers

intriguing research opportunities to explore the complex interactions between various fluid

phases and their effects on thin film behavior. By examining how thin films spread at these

interfaces, researchers can gain insights into the mechanisms that drive multiphase flow

phenomena, interfacial dynamics, and transport processes in porous media environments.
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This research thesis dives into the behaviour of thin films in porous media, specifically

looking at both single-fluid and two-fluid systems while paying close attention to interfacial

dynamics. By blending theoretical modeling with numerical simulations, the study aims

to reveal the core principles that govern thin films within porous structures. The results

will enhance our understanding of multiphase flow, interfacial phenomena, and transport

processes, providing valuable insights for both scientific and engineering applications.

By shedding light on these dynamics, this work can help steer the development of more

efficient, sustainable, and safer technologies across various industries.

In short, exploring thin films in porous media, particularly at fluid interfaces presents a

complex yet highly significant research area with wide-ranging implications for both funda-

mental science and practical engineering solutions.

1.2 Thin liquid film and porous media

A thin liquid film is a layer of liquid with a thickness varying from a range of a few nanometers

to several micrometers. The thin liquid film can form on solid surfaces, at the interface

between two immiscible liquids, or even as free-standing films in the air. Thin liquid films

are common in our day-to-day activities in various scientific and industrial processes [10, 85].

A ubiquitous example of thin film is soap bubbles and foams, where a thin layer of liquid

encloses a volume of gas bubbles as shown in Figure(1.1). The characteristics and properties

of thin liquid film include thickness, capillary force, surface tension, disjoining pressure, etc.

1.2.1 Porous media

A porous medium consists of a solid matrix that remains intact, along with void spaces or

pores that can be occupied by one or more fluids, such as water, oil, or gas[2]. Common

examples of porous media include soil, rocks, biological tissues, filters, and catalysts, as
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Figure 1.1: A classic example of thin liquid films (Source: https://www.pngegg.com/en/png-bzpbx)

illustrated in Figure 1.2.

1.2.2 Single-fluid system with an interface

A single fluid with an interface refers to a system in which a single type of fluid exists in mul-

tiple phases (such as liquid and gas) or different states, with a different boundary or interface

separating these phases or states [17, 19, 99]. This interface is where the fluid undergoes

abrupt changes in properties, such as density, temperature, or pressure, and where important

physical processes, like phase transitions, mass, and energy transfer, occur. Despite different

phases, the fluid maintains the same chemical composition throughout the system.

1.2.3 Two-fluid system with an interface

A two-fluid system with an interface refers to a physical system in which two distinct fluids

coexist but do not mix, forming a boundary known as an interface. This interface separates

the two fluids and is where significant physical interactions occur, such as surface tension,

interfacial forces, and mass or energy transfer. The fluids involved can be in different phases

(e.g., liquid-liquid, liquid-gas) or simply immiscible, and the properties and dynamics at the

interface are crucial for understanding the behavior of the system [13, 67, 139].
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(a) Cotton (b) Sponges

(c) Petroleum reservoir (d) Stone

Figure 1.2: Examples of porous materials. Source: (https://www.imperial.ac.uk/news/187667/looking-
inside-porous-materials-understand-roughness/)
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1.3 Aims and objectives

This thesis aims to create and simulate thin film flow models in a porous medium with high

porosity, incorporate viscous shear effects, and relate them to the existing ones (models) on

a free surface.

These aims will be achieved with the following objectives:

1. Derive lubrication-type model for two-layer thin films separated by an interface.

2. Validate the model in appropriate asymptotic limits, e.g. single-fluid or small alpha.

3. Perform numerical simulations using the Chebfun method and MATLAB as a tool.

In summary, the present research seeks to model and simulate the interaction between thin

film flows in free surface and porous media in single and two fluids systems, as given in figure

(1.3), and investigate how these interactions between environments affect the dynamics of

the fluids, and enhance the efficiency of the recovery of oil and remediation of soil.

In Figure 1.3, we show how the logical transition diagram of various thin film flow mod-

els connect with each other under certain asymptotic limits. It features four corner models:

two-fluid and single-fluid systems, both in porous (Brinkman-based) and non-porous (Navier-

Stokes-based) media. The horizontal transitions illustrate what happens as the medium turns

non-porous essentially when the porosity parameter α → 0, the Brinkman equation simplifies

to the Navier-Stokes equation. This applies to both single- and two-fluid systems, demon-

strating how porous-medium models seamlessly transition to their non-porous equivalents.

On the vertical axis, the transitions depict the scenario where the second fluid becomes

insignificant, meaning the viscosity ratio n = µ2/µ1 → 0. This simplification leads a two-

fluid system to act like a single-fluid system in both porous and non-porous environments.

The main point here is that these limiting processes are interchangeable: whether we first

eliminate the porous effects or simplify the fluid system, we will end up with the same single-

22



Figure 1.3: Model interaction between thin film in two environments, where NS represents the
Navier-Stokes model, DB is Darcy-Brinkman, α is a non-dimensional permeability parameter and
n is the viscosity ratio which gives the relationship between two fluids in the system.

fluid, non-porous thin film model governed by the Navier-Stokes equations. This logical

framework not only confirms the internal consistency of the models but also offers a clear

path for understanding how more complex systems can be simplified into simpler forms. All

these above notations and parameters will be discussed in detail in Chapter 3 and 4.

1.4 Thesis Outline

The present thesis comprises 5 chapters, which include the current chapter. In Chapter 2 a

comprehensive review of modeling and simulation of the thin film is presented. This consists

of the theoretical background and previous derivation of thin film models of single fluid and

two fluids in a porous medium, as well as numerical methods and simulations. Darcy’s law

is discussed in detail along with Brinkman and boundary conditions. Finally, some concepts

such as porosity and permeability are discussed.

Chapter 3 presents a derivation of the thin film of a single fluid in porous media using
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a Brinkman equation as a momentum equation. Also, it offers a numerical method i.e.

Chebfun and numerical solutions. Asymptotic approximation in the limit of α values (zero,

infinity) is also discussed.

In Chapter 4 a derivation technique similar to the one in Chapter 3 but using two fluids

in porous media, and also consider two fluids in the free surface to see how the two relate

with each other.

To the best of our understanding, the derivation of thin film equations for a single fluid in

porous media using the Brinkman equation, along with numerical implementation through

Chebfun and asymptotic analysis in the limits of α → 0 and α → ∞, as discussed in

Chapter 3, has not been tackled in the existing literature. Likewise, Chapter 4 builds on

this approach, delving into the more intricate scenario of two-fluid systems in porous media

with a consistent derivation framework. The combination of analytical modeling, numerical

techniques, and asymptotic analysis for both single- and two-fluid porous media systems

seems to offer a fresh perspective that has not been explored in previous studies.

Finally, the conclusions and recommendations of this thesis and potential directions for

future work are discussed in Chapter 5.
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Chapter 2

Literature review

2.1 Introduction

The research of thin liquid films has fascinated scientists over many decades and focused on its

evolution, arising in everyday life ranging from elementary to complicated processes. [20, 100,

140]. Thin films can be composed of common liquids (water), complex materials (polymers),

or mixtures of phases and produce a range of interesting behaviours including complex

dynamics resulting in regular or chaotic structures, periodic waves, fronts, fingering, and

shock phenomena; that pattern formation has captivated many mathematicians, physicists,

and engineers to the field of thin films[38].

A thin film flow is a liquid partially confined spatially by a solid (substrate) and partly

by a free surface or porous medium where the liquid is in contact with the second (usu-

ally gaseous) fluid. The region is given by the thickness h0, which is much smaller than

the characteristic length (usually the wavelength) of the liquid l0. The flow mainly occurs

on a higher scale dimension beneath the action of an external force. A common illustra-

tion is the way a thin raindrop flows down a windowpane due to gravity. The velocity u

in the direction of the main flow exceeds the velocity v that is perpendicular to the win-
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dowpane. According to [112], there exists a unified mathematical theory that leverages the

differences in length scales. This theory simplifies the full set of governing equations and

boundary conditions into a more manageable, highly nonlinear evolution equation or a series

of equations. The long-wave theory, which examines wave behavior in scenarios where the

wavelength l0 is significantly larger than the fluid depth h0, results in a mathematical frame-

work that, while less complex than the original free-boundary problem, retains many of its

key physical characteristics. Furthermore, if the Reynolds number of the flow remains rela-

tively low, one can draw parallels with Reynolds’s lubrication theory [123]. Thin film flows

have a diverse range of applications in free surface and porous media. Many researchers from

fields such as mathematics, biology, biophysics, geophysics, engineering, and medical sciences

have highlighted the most significant ones. Studies by [25, 41, 94, 100] have concentrated

on analyzing thin film equations, lubrication, wettability, and fluid spreading across sub-

strates. Additionally, research on lining and lung airways, flexible tubes, tear-film flow, and

bioadhesion has been conducted by [52, 58, 59, 60, 132]. Optical coatings on lenses and pro-

tective coatings are also important areas of study [72, 88, 113]. Other applications include

microfluidics, heat exchangers, solar cells, liquid film sensors, and microelectromechanical

devices [46, 116, 135, 136, 46]. Furthermore, thin film flows are relevant in understanding

mud granular and debris snow avalanches, lava flows, gravity currents, and ice sheet mod-

els [5, 11, 56, 65]. In the realm of porous media, applications encompass filtration, energy

storage, and conversion [6, 53, 133, 142], as well as catalysis and environmental remediation

[43, 55, 73, 149]. Recently, the applications of thin film flow have been reviewed concerning

measurement and disturbance wave characteristics [30], the homotopy perturbation method

[95], the discrete droplet method [22], and the development and characteristics of coatings

[47].

Over the years, many thin film flow models have been developed. One of the most

recognized models is the lubrication approximation [8, 12, 21, 39, 115, 130], which simplifies
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the set of equations by balancing viscous forces and pressure gradients to govern the flow. The

Benney equation, derived from this approximation, differs from simpler thin film models by

incorporating higher-order terms [18, 37, 112]. This equation is based on the Navier-Stokes

equations using the long-wave approximation. Additionally, the shallow water equations

[34, 48, 106] can be derived by integrating the Navier–Stokes equations while assuming that

the horizontal length scales are significantly larger than the vertical depth.

A thin-film model that has recently been influenced by numerous theoretical studies is

the derivation of the Navier–Stokes [29, 122], Darcy [42, 66, 118], and Brinkman [14, 146]

equations in complex geometries or manifolds, which assume a film of constant height. A

key similarity among these models is that they lack theoretical solutions, highlighting the

necessity for numerical methods to solve the involved PDEs. Various numerical methods have

been employed to solve thin-film flow models, including finite difference methods [98, 129],

finite volume methods [32, 103], the volume of fluid approach [104, 150], finite element

methods [50, 70], meshless methods [23, 117], and spectral methods [57, 89], among others.

In this study, we aim to model a thin film consisting of a single fluid and a two-fluid

system with an interface separating them, both in free surface and porous media scenarios.

The thin film models for a single fluid and two fluids in a free surface were previously derived

by [112] and [75], respectively, using the Navier-Stokes equations as the momentum equation.

The innovative aspect of this work lies in deriving the models for a single fluid and two

fluids in porous media, utilizing the Darcy-Brinkman equations as the foundation for momen-

tum. This framework is backed by sophisticated analytical methods, including both linear

and nonlinear stability analyses that help identify the thresholds for convective instabilities.

It also employs energy methods to evaluate the bounds of nonlinear stability. Specifically,

this study resonates with the approaches taken by [97] who explored stability in porous

media flows through perturbation techniques and spectral methods. Moreover, it references

exact solutions to the Darcy-Lapwood-Brinkman equation for flows driven by vorticity and
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numerical techniques like Chebyshev spectral collocation for tackling eigenvalue problems.

Together, these strategies ensure a thorough validation of the models developed, even under

varying conditions of gravity, through flow, and interfacial dynamics.

The thin film models were numerically solved using the Chebfun method within a specified

domain.

2.2 Concept of porosity and permeability

Key concepts in various scientific and engineering disciplines that describe the properties of

porous media include porosity and permeability.

2.2.1 Porosity

Porosity is a measure of the void spaces in a material, expressed as a fraction or percentage

of the total volume [14, 78].

Mathematically, it is defined as:

ε =
Vv
Vt

(2.1)

where ε represents the porosity, Vv is the volume of voids (or pores) within the material, and

Vt is the total volume of the material, which includes both the solid and void portions. This

ratio can vary from nearly 0% in very dense, non-porous materials to almost 100% in highly

porous materials like foams. It plays a crucial role in determining a material’s ability to hold

and transmit fluids. In geological contexts, porosity typically refers to the pore spaces found

within rocks and sediments, which can be occupied by fluids such as water, oil, or gas.

Porosity is a key parameter in understanding the microstructures of porous materials [68].

It represents the volume of voids that can hold fluid, in relation to the total volume of the

material. The pore system, which can consist of either interconnected or isolated pores and

28



Figure 2.1: Porosity of a rock. Source:(https://home.wgnhs.wisc.edu/water/wisconsin-
aquifers/understanding-porosity-density/)

small channels, can be categorized into various classes of porosity. These classifications can

be based on accessibility (open, closed, blind, and through pores) [124], shape (cylindrical,

funnel, bottle-shaped) [77], and size (micro, meso, and macro pores) [148].

Open porosity refers to the volume of pores that are accessible or interconnected. In

contrast, closed porosity pertains to the portion of the pore system made up of isolated

pores that do not connect with other pore spaces or the external environment. While this

type of porosity does not participate in mass transfer, it does influence the strength of the

material. Additionally, the characterization of the pore system can be enhanced by examining

the pore size distribution, which indicates the range and relative frequency of different pore

sizes within a material.

2.2.2 Permeability

This refers to how well a porous material can allow fluids to flow through its interconnected

pore spaces.

Permeability is mathematically defined by Darcy’s law, which connects the flow rate of
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a fluid through a porous medium to the pressure gradient applied, the fluid’s viscosity, and

the characteristics of the medium itself and is given as

Q = −kA
µ

dP

dx
, (2.2)

where, Q is the volumetric flow rate (m3/s), k is the permeability of the medium (m2), A

is the cross-sectional area to flow (m2) , µ is the dynamic viscosity of the fluid (Pa · s) and

(kg ·m−1 · s−1),
dP

dx
is the pressure gradient (Pa/m). An alternative form using the specific

discharge (or Darcy velocity) is given as

u = −k
µ

dP

dx
, (2.3)

where, u = Q
A

is the Darcy velocity (m/s).

In simpler terms, permeability is influenced by porosity; generally, the greater the poros-

ity, the higher the permeability. However, it also depends on how well the pore spaces are

connected, which allows fluid to flow through. The connectivity of these pores is affected

by various factors, including the size and shape of the grains, the distribution of grain sizes,

and the influence of capillary forces that are linked to the rock’s wetting properties. The

permeability of rocks can vary widely, ranging from nano-Darcy, 1 nD = 9.869233×10−19 m2

to micro-Darcy, 1 µD = 9.869233 × 10−19 m2 for granites, shales, and clays that create a

compartmentalized reservoir, to several Darcies for high-quality reservoir rocks. Typically,

a threshold of 1µD is used to categorize reservoir rocks, with those below this mark not

considered reservoirs unless in special cases, such as a fractured reservoir [102]. For reservoir

rocks, permeability can be classified as shown in the Table 2.1

Permeability is assessed in the lab by allowing a fluid with a known viscosity to flow

through a core sample of specific dimensions at a controlled rate. This involves measuring

the pressure drop across the core or setting the fluid to flow under a fixed pressure difference
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Permeability Value (µD) Classification
< 10 Fair

10− 100 High
100− 1000 Very high
> 1000 Exceptional

Table 2.1: Reservoir permeability classification

and recording the resulting flow rate.

Permeability is influenced by various factors, one of which is the extent to which the

available pore space is saturated with the flowing fluid. The pore space may not be fully

saturated with a single fluid; it can contain two or more fluids. When both oil and water

flow at different rates within the pores, the individual permeabilities of each fluid will differ

and will not match the permeability of the rock when only one fluid is present. These per-

meabilities are affected by the properties of the rock as well as the saturations, distributions,

and characteristics of each fluid. When the rock contains only one fluid, its permeability

reaches a maximum value known as absolute permeability. In cases where two fluids are

present, the permeabilities of both fluids depend on their respective saturations and can be

graphed against fluid saturation, as illustrated in Figure 2.2 from [61]. These are referred

to as effective permeabilities. Both effective permeabilities are consistently lower than the

absolute permeability of the rock, and their combined value is also always less than the

absolute permeability. The individual effective permeabilities are frequently expressed as a

fraction of the rock’s absolute permeability when either of the two fluids is at 100 percent

saturation, and these are termed relative permeabilities.

In Figure 2.2, the effective and relative permeability of a fluid decreases as its saturation

drops, and there is a minimum saturation level that must be reached for the fluid to flow.

For oil, it remains immobile until its saturation reaches about 20 per cent, which is referred

to as the residual oil saturation, Sor [1]. Similarly, water has an immobile fraction known as

the irreducible water saturation, Swi, while gas has a trapped gas saturation, Sgt.
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Figure 2.2: Relative Permeability Curves (Oil and Water). Source: https://www.ihsenergy/reference
material/general concepts/relative permeability.htm

On the graph, there is a point where the curve intersects, indicating that the permeability

for each fluid is equal, ensuring both can be produced with equal simplicity. As oil saturation

rises, the permeability to oil increases while that to water decreases, and the opposite is also

true. Therefore, in oil reservoirs, it is crucial to minimize water production, as it not only fails

to generate revenue but also reduces the reservoir’s permeability to oil, making extraction

more challenging.

2.2.3 PoroPerm Relationships

Permeability and porosity are two key properties that influence how fluids move and are

stored in porous materials [134]. While there is a direct relationship between the two, it is

not strictly proportional. Increased porosity can enhance permeability since more pore space

may facilitate greater fluid flow. However, this isn’t always true; permeability also relies on

the connectivity of the pores, not just their volume. A material can exhibit high porosity

but low permeability if the pores are poorly interconnected, as seen in some aquifers. Within
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Figure 2.3: Porosity Permeability relations for selected aquifers. Source:
https://www.thermogis.nl/en/porosity-and-permeability

a lithostratigraphic group, the relationships may vary slightly for each aquifer, as illustrated

in Figure 2.3.

A lithostratigraphic unit is a volume of rock that is defined and distinguished from other

units based on its lithologic (rock) characteristics, such as composition, grain size, colour,

texture, or sedimentary structures.

The intricate relationship between permeability and pore geometry has led to extensive

research. Several fundamental laws and models have been established to connect the two.

The most widely recognized is the Kozeny-Carman equation. We also have a wide range

of empirical approximations for calculating permeability, with some examples provided in

Table 2.2.

In this context, k represents permeability, d denotes the channel diameter, h indicates

the fracture width, w refers to the fracture aperture, ϕ stands for porosity, Dd is the modal
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Name Equation
Solution Channel k = 0.2× 108 × d2

Fractures k =
0.544× 108 × w3

h
Berg equation k = 8.4× 10−2 × d2ϕ5.1

Van Baaren equation k = 10×D2
dϕ

(3.64+m)C−3.64

Wyllie and Rose equations k =

[
100ϕ2.25

Swi

]2
Timur equation k =

0.136ϕ4.4

S2
wi

Morris and Biggs equation k =
Cϕ3

S2
wi

Slichter equation k =
10.2d2

Ks

Kozeny-Carman equation k =
cd2ϕ3

(1− ϕ)2

RGPZ equation k =
1000d2ϕ3m

4am2

Table 2.2: Permeability relationships, Source: [7]

grain size, C is the sorting index, Swi signifies irreducible water saturation, Ks is the packing

correction, c is a constant, m is the Archie cementation exponent, and a is a grain pack-

ing constant. This study examines hetero permeability in relation to the Kazeny-Carman

equation.

k(y) =
cd2ϕ3(y)

(1− ϕ(y))2
(2.4)

where, k(y) and ϕ(y) are permeability and porosity that depend on y, and y is a spatial

variable representing vertical position or depth in a porous material. In this section, we will

explore the relevant studies on fluid flow in porous media, with a focus on Darcy’s law, its

limitations, Brinkman’s contributions (Extended Darcy’s law), and the impact of boundary

conditions.
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Figure 2.4: Schematic of Darcy’s original experimental apparatus. Source-
https://serc.carleton.edu/integrate/teaching materials/water science society/student materials/926

2.2.4 Darcy’s law

In the mid-nineteenth century, a French hydraulic engineer named Henry Darcy worked on

enhancing and modernizing the fountain of Dijon [91]. He created a vertical experimental

tank filled with sand, where water was injected from the top and allowed to flow out from the

bottom. Through this setup, he conducted experiments on unidirectional flow in vertical,

homogeneous, randomly, and loosely packed sand filter beds, as illustrated in Figure 2.4.

From the experiments, data was collected on the length of the flume (∆L), the cross-sectional

area of the flume (A), the height difference (h2 − h1), and the water flux (Q) both with and

without granular (filtering) material in the flume. The flux measurements were then plotted,

normalized by the area, against the ratio of the height difference to the length of the flume.

Darcy also noted that in a steady-state flow through a specific porous medium, there

exists a linear relationship between the water flux and the applied pressure drop. This
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relationship is influenced by the hydraulic conductivity coefficient k. This principle is known

as Darcy’s law.

Q = −kA(h2 − h1)

∆L
(2.5)

The equation describes a volumetric flow rate, denoted as Q. The negative sign signifies that

the fluid moves down the hydraulic gradient, transitioning from areas of higher values to those

of lower values. The hydraulic conduction coefficient k, often referred to as permeability in

equation (2.5), can also be viewed as a measure of flow resistance through porous media.

This coefficient is considered constant and is determined by the characteristics of the porous

medium. In the case of packed beds or fibers, another way to express the resistance of the

medium is through a dimensionless parameter known as the friction factor [7]. Dimensional

analysis leads to the following relationship:

k =
ρgK

µ
(2.6)

where g represents gravitational acceleration, µ is the dynamic viscosity, and k denotes the

intrinsic permeability of a specific sand pack and K represent hydraulic conductivity in terms

of k.

The specific discharge v =
Q

A
, also known as Darcy flux, indicates the volume of fluid that

flows through a given area of the porous medium, and it is typically referred to as a velocity.

According to [91], since only a portion of the cross-sectional area is available for flow (with

most of the area obstructed by sand grains), v does not represent velocity in the microscopic

sense. Rather, v reflects the apparent macroscopic velocity, which is derived from averaging

the microscopic fluxes within representative elementary volumes (REVs). Consequently, the

macroscopic fluid velocity, defined as the volume of fluid flowing per area occupied by fluid,

is expressed as
v

ε
, where ε denotes the porosity associated with the REV.

Darcy’s law in terms of specific discharge or Darcy velocity is first proposed mathemati-
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cally by [107] and [147] and is given by,

u = −K
µ
(∇p− gρ∇y), (2.7)

where p is the fluid pressure and y is the vertical coordinate. The equation (2.7) expressed

conservation of momentum and was derived from the Navier–Stokes equations by averaging

and neglecting inertial and viscous effects by [64] and later for Stokes flow by [144]. We

noticed that Darcy’s law (2.7) is related to Fourier’s law for heat conduction [35], Fick’s law

for fluid concentrations in diffusion theory [151], and, Ohm’s law in the field of electrical

networks [36]. It also assumes that a reversible fluid process is a special case of the more

general physical laws of irreversible processes first described by [110].

The Continuum Approach

The continuum approach of Darcy’s Law offers valuable insights for modeling and simulat-

ing fluid flow through porous media by averaging the effects of the intricate pore structure.

Due to the complexity of typical porous media, numerical simulations often rely on sim-

plified boundary conditions or conceptual continuum models, allowing for the analysis of

flow behavior on a larger (average) scale using spatially averaged Navier-Stokes equations

[26, 146]. Given these considerations, the continuum approach is generally the more ap-

propriate choice. This method is typically implemented through either statistical averaging

or spatial averaging techniques. However, both methods produce equivalent flow quantities

when the spatially averaged relationships are of primary interest [105].

The spatial averaging method provides averaged flow quantities over a representative

elementary volume (REV) that is significantly larger than the scales of the pore space and

the solid matrix of the porous medium. The average obtained remains independent of the

size of the volume element. For example, in a single-phase flow through porous media, the
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total volume of a REV is the sum of the volume occupied by the fluid and that occupied

by the solid matrix. Microscopic scales (pore sizes) are typically represented by lowercase

letters, while averaged flow quantities are denoted in uppercase. For instance, microscopic

and averaged pressures are represented as p and P , respectively.

Using spatial averaging in porous medium flow, the microscopic flow quantities within a

finite microscopic elemental volume can be connected to their corresponding averaged quan-

tities in a defined Representative Elementary Volume (REV) through a superficial averaging

method [7]. This process yields a quantity Ψfs, which is derived by averaging the respective

microscopic quantity ψ across the entire elemental volume composed of both fluid and solid

components. The velocity obtained through this method is referred to as the ‘superficial

velocity u’. Intrinsic averaging represents a second type of spatial averaging, which involves

averaging all microscopic quantities solely over the fluid volume of the elemental volume.

The velocity derived from this approach is known as intrinsic velocity.

Using the continuum approach for steady-state fluid flow with fluid density ρf , we can

derive the differential equations related to the continuity equation and the averaged mo-

mentum equations [145]. These equations can be solved numerically with suitable boundary

conditions, independent of the chosen REV model. The results can then be validated using

the empirical Darcy Law, which serves as the constitutive equation applicable at sufficiently

low flow rates, assuming that body forces in the flow are negligible [9]. The Darcy Law

similar to (2.3) can be expressed as [7]

u = − 1

µ
KT (∇p) (2.8)

where µ represents the fluid dynamic viscosity, KT is a second-order permeability tensor,

and ∇p is the pressure gradient applied across the porous medium. In an isotropic medium,

the permeability is scalar, allowing us to replace the tensor KT with k, known as the Darcy
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permeability. While Darcy’s law is a key principle in fluid dynamics for describing fluid

flow in porous media, it doesn’t encompass all the practical aspects of such flow. There are

notable limitations to its application. The primary limitation is that it overlooks inertial

forces in comparison to viscous forces and assumes that the flow through porous media is

laminar. To overcome these limitations, various extensions and modifications have been

proposed, one of which is Brinkman’s law. The Brinkman equation, introduced by H.C.

Brinkman in 1947, represents an important advancement of Darcy’s Law. It tackles some

of the shortcomings of Darcy’s Law, particularly in situations where it fails to adequately

describe fluid flow in porous media. Additionally, it enhances Darcy’s Law by incorporating a

term that accounts for the viscous shear stress within the fluid. This contribution is vital for

connecting Darcy’s Law, which is applicable to low-velocity, laminar flow in porous media,

with the Navier-Stokes equations, which govern viscous flow in free space.

The Brinkman equation is typically applied in scenarios where fluid flow is characterized

by higher Reynolds numbers or when the medium’s porosity is relatively low. It is expressed

as
µ

k
u = µ∗∇2u −∇p, (2.9)

where µ∗ represents an apparent (Brinkman) viscosity, a parameter influenced by both the

fluid and the geometry and structure of the porous medium [7]. Consequently, Brinkman

utilized (2.9) along with various boundary conditions to address the entire flow domain and

to compare the outcomes with an empirical relationship proposed by [27]. It was observed

that for solid particles with a volume fraction ϕ < 0.6, there was a good correlation with

Carman’s experimental findings when the apparent viscosity µ∗ in the Brinkman equation

matched the fluid’s dynamic viscosity µ. In this context, the selected value of µ∗ is referred

to as an effective viscosity [4].

Many researchers have confirmed the validity of the Brinkman equation for high porosity,
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including [33, 49, 62, 63, 125, 138]. However, most studies involving low porosity have shown

that the Brinkman equation consistently fails to accurately predict the flow field, as noted

in [40, 69, 86, 87]. Additionally, [79] found that the Brinkman model tends to underesti-

mate the flow resistance at the interface. Consequently, boundary effects warrant further

investigation into the porous medium. The Brinkman equation has been further validated

through experimental studies, although some of the findings have sparked controversy. Cer-

tain theoretical predictions regarding the flow in highly porous media, based on the Brinkman

equation, have aligned with experimental data [93, 80]. However, [45] contended that the

permeabilities used are single scalar values that do not accurately represent general flow,

suggesting that the empirical correlations observed in those experiments do not necessarily

confirm the validity of the Brinkman equation for high porosity media. To support their

claim, they presented fundamental solutions for creeping flow through porous media and,

upon comparing their results with those derived from the Brinkman equation, concluded

that for 1− ε > 0.05, the Brinkman solution loses its predictive capability, although it still

serves as a useful qualitative tool. Additionally, [54] compared velocity measurements with

analytical data for ε = 0.028 and determined an apparent viscosity of µ∗ = 7.5µ. Overall,

all studies indicate that there is a specific valid form of the Brinkman equation applicable

to low porosity [105, 125].

In an effort to study the modeling of the apparent viscosity in the Brinkman equation, re-

searchers have produced a variety of results. [81] examined the flow at the interface between

free surfaces and porous media. They calculated the energy dissipated in the flow around iso-

lated spheres and discovered that the apparent viscosity from the equation is lower than the

fluid viscosity, meaning µ∗ < µ. This finding contrasts with the results from [93], indicating

that outcomes can vary. Later, [80] utilized dilution theory to address the Stokes equation

for flow through a random arrangement of fixed spheres, with ε values ranging from 0.3 to

0.5. In this context, it was assumed that the viscosity is lower than Brinkman’s viscosity,
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meaning µ < µ∗, which contrasts with the findings of [81]. A numerical investigation into

the flow at the surface of porous media was also conducted by [86, 87], who developed their

porous media model using rectangular and hexagonal arrays of cylindrical shapes. They

concluded that when the fluid flow is perpendicular to the cylinders, Brinkman’s viscosity is

less than the fluid’s viscosity (µ∗ < µ). Conversely, if the flow aligns with the cylinders, the

fluid’s viscosity is lower than Brinkman’s viscosity (µ < µ∗). Additionally, [15] employed a

volume-averaging method to demonstrate that

µ∗

µ
=

τ

1− ε
,

where τ represents the tortuosity of the medium. Similarly, [108] presented different findings

that
µ∗

µ
=

1

1− ε
.

However, Ochoa also addressed some concerns regarding this apparent viscosity. Given the

ambiguity surrounding the Brinkman viscosity concept and the mixed results found in the

literature, [79] suggested adopting a variable apparent viscosity model.

2.2.5 Boundary Conditions Contributions

One way to address the issue of flow through porous media involves establishing boundary

conditions at the interface between the fluids. Numerous researchers have made contributions

to these boundary conditions, utilizing both empirical and analytical approaches.

The initial experimental investigations into the interfacial boundary conditions for Poiseuille

flow through and over a porous medium were carried out by [16], who identified a tangential

slip velocity us at the interfaces of the porous media. [127] later formulated an equation

describing flow through an inhomogeneous porous medium, where porosity and permeability

exhibit a sharp discontinuity, transitioning from reservoir-scale values to fracture-dominated
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flow (effectively infinite permeability and near-unit porosity).

In another research study, [101] tackled the issue of interfacial boundary conditions.

They proposed maintaining continuity in both the velocity and the velocity gradient (a

spatial derivative of the velocity field across the interface between a free-flow region), by

incorporating the Brinkman term into the momentum equation for the porous side. [86, 87]

conducted a numerical analysis of the microscopic flow near the surface of a two-dimensional

porous medium composed of simple arrays of cylindrical inclusions. They employed the

boundary-integral method to address the Stokes flow in scenarios where the idealized porous

medium was aligned with and across the flow.

Additionally,[108] introduced a jump momentum transfer condition at the interface be-

tween the fluids in a porous medium. This approach relies on the volume-averaged momen-

tum equation derived from Darcy’s law combined with the Brinkman equation to address

both free flow and porous media scenarios.

More recently, [31] examined the flow dynamics of free and porous media to establish the

boundary condition applicable at the interface. By aligning asymptotic expansions with a

heterogeneous transition layer at the boundary, they developed a model where the condition

is determined by fluid stress.
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Chapter 3

Single fluid with an interface

Single fluid with an interface between liquid and gas refers to a system where a homogeneous

fluid (such as water) exists as shown in Figure 3.1.

3.1 Thin film in a porous medium

In this subsection, we shall derive the thin film models used to describe the behavior of

fluids in a porous medium and later show that it exhibits an interesting connection with free

surface media, especially when a given parameter say α is small, which is defined in terms

of a permeability of a porous material. When the parameter, α of the porous medium is

very small, a simple convergence occurs between the thin film models for porous media and

free surface media. In the case of a very small value of alpha, the flow through the porous

medium becomes dominated by the large, interconnected pathways, resembling the behaviors

of free surface flows where fluid movement is more open and unconstrained. The effect of

the small α of the porous medium allows fluids to flow more freely and quickly through the

system, reducing the influence of the pore-scale interaction and enhancing the dominance

of macroscopic flow behavior. The convergence of thin film models for porous media and
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Figure 3.1: Sketch of water-gas flow with a sharp separating interface. The horizontal and vertical
velocities are given as u and v, and the characteristic length and height are given as L0 and h0 and
y = h(x, t) is the interface between the fluids

free surface media under conditions of a value of α = 0, provides valuable insight into the

behavior of fluids in diverse environments. Researchers can leverage this relationship to gain

a deeper understanding of fluid dynamics, optimize modeling approaches, and explore the

interplay between porous structures and surface flows in natural and engineering systems.

Finally, we show the relationship between thin film for porous media and free surface media,

and this showcases how different fluid dynamic scenarios can exhibit similarities and overlap

under specific conditions.

3.1.1 Governing Equations

Let’s consider the two-dimensional plane, the following parameters in the equations governing

the flow of the fluids in any region are to be considered; u = (u, v), where, u, v are velocities

of the fluid in horizontal and vertical components. Also ρ, µ, and p are the density, viscosity,

and pressure of the fluid respectively. The creeping flow in the free flow region is characterized
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by the continuity equation, which comes from mass balance, along with the incompressible

Stokes equations. These equations simplify the Navier-Stokes equations (NS) for low fluid

velocities, where inertial forces are minimal compared to viscous forces, allowing us to neglect

the convective non-linear term (u · ∇)u [51], and is given by

∇ · u = 0, µ∇2u = ∇p+ ρg, (3.1)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
, g = (0,−g) is a force of gravity, and x, y are Cartesian coordinates.

For an incompressible and viscous flow in porous media, as described by the Darcy equation

(D), where inertial effects are negligible. [92, 51], and is given by

∇ · u = 0, u = −k
µ
∇p+ ρg, (3.2)

where k is the permeability of a porous material.

Brinkman’s extension of Darcy’s law is both mathematically and physically more suitable

than Darcy’s law when considering boundary layer effects or the high porosity of the porous

medium. Unlike Darcy’s law, the Darcy Brinkman equation (DB) is fully compatible with

the presence of boundary layer regions, allowing it to effectively capture and model these

effects within the porous medium and is given by

∇ · u = 0, µ∗∇2u − µ

k
u = ∇p+ ρg, (3.3)

where µ∗ represents the effective viscosity of the fluid, which is influenced by the charac-

teristics of the porous material. According to [7], there was a good match with Carman’s

experimental relation when the effective viscosity µ∗ was set equal to the dynamic viscosity

of the fluid, µ. This selection of µ∗ is commonly referred to as the Brinkman model.[4]

However, it is generally assumed that in creeping flow conditions µ = µ∗. The Continuity
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equation and equation (3.3) can be expressed as follows.

∂u

∂x
+
∂v

∂y
= 0 (3.4)

and

µ

(
∂2

∂x2
+

∂2

∂y2
− 1

k

)
u =

∂p

∂x
(3.5a)

µ

(
∂2

∂x2
+

∂2

∂y2
− 1

k

)
v =

∂p

∂y
+ ρg (3.5b)

3.1.2 Boundary Conditions

The boundary conditions for viscous, incompressible liquids require sticking to the floor [139],

so that water velocities u and v are equal to the wall velocities, respectively are given as,

u = 0 (no slip) and v = 0 (no penetration) conditions. (3.6)

3.1.3 Interface Condition

The condition at the interface can be simply achieved when it is a single-valued function at

y = h(x, t) and this can result in the following equations:

v =
∂h

∂t
+ u

∂h

∂x
. (3.7)

and

n · (σ · n) = γκ, t · (σ · n) = 0. (3.8)

Equation (3.7) represents the kinematic boundary condition, which ensures that the speed of

the interface is balanced with the normal component of the water velocity at that interface[112].

Additionally, equations (3.8) describe the normal and tangential stress conditions, where σ
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denotes the stress tensor of the water, n is a unit vector normal to the interface, t is a unit

vector tangential to the interface, γ represents the surface tension coefficient, and κ indicates

the curvature of the interface. The stress tensor σ is defined as follows.

σ = −pI+ µ
[
∇u+∇uT

]
. (3.9)

where I is a unit matrix. The unit normal n, unit tangent t, and the curvature κ of the

interface are given respectively by the equations [112, 114]

n =

(
−∂h
∂x
, 1

)
√

1 +

(
∂h

∂x

)2
, t =

(
1,
∂h

∂x

)
√
1 +

(
∂h

∂x

)2
, and κ =

∂2h

∂x2√√√√(1 + (∂h
∂x

)2
)3

. (3.10)

Also the normal and the tangential shear stress on y = h(x, t) are given by the equations.[112,

126]

γ
∂2h

∂x2√√√√(1 + (∂h
∂x

)2
)3

− 2µ

1 +

(
∂h

∂x

)2

[
∂h

∂x

(
∂u

∂y
+
∂v

∂x

)
−
(
∂h

∂x

)2
∂u

∂x
+
∂v

∂y

]
+p−pg = 0 (3.11)

and

2
∂h

∂x

(
∂v

∂y
− ∂u

∂x

)
+

[
1−

(
∂h

∂x

)2
] [

∂u

∂y
− ∂v

∂x

]
= 0, (3.12)

where pg is the pressure exerted on the gas phase, which can be set to be zero without loss

of generality.
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3.1.4 Non-dimensionalisation

We introduce the dimensionless asterisked coordinates, velocities, and pressure as

x∗ =
x

L0

, y∗ =
y

h0
, h∗ =

h

h0
, u∗ =

u

U0

, v∗ =
v

V0
, and p∗ =

p

P0

, (3.13)

where L0, h0, P0, and U0, V0 are characteristic length, height, pressure and velocities in x,

y−direction. In this dimensionless variable, the continuity equation is rewritten as

∂u∗

∂x∗
+
V0
U0

L0

h0

∂v∗

∂y∗
= 0. (3.14)

For the coefficient of the dimensionless continuity equation to be unity, we choose the char-

acteristic lengths and velocities as
V0
U0

L0

h0
= 1, (3.15)

and defined characteristic pressure as

P0 =
µL0U0

h20
. (3.16)

With these definitions of the characteristic velocities and pressure, the horizontal and vertical

components of (DB) in (3.3) in Cartesian coordinates can be written

∂p∗

∂x∗
=

(
ϵ2

∂2

∂x∗2
+

∂2

∂y∗2
− α2

)
u∗, (3.17)

∂p∗

∂y∗
= ϵ2

(
ϵ2

∂2

∂x∗2
+

∂2

∂y∗2
− α2

)
v∗ − B̃, (3.18)

where, ϵ =
h0
L0

is a height-to-length ratio, α =
h0√
k

is a dimensionless parameter defined in

terms of k, the permeability parameter, B̃ = ϵB, and B is a number defined by
ρh20
µU0

g, where
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it represents the effect of gravity at the leading order.

The normal and tangential equations (3.11) and (3.12) when writing in non-dimensional

variables according to scale (3.13) are ,

1

C̃

∂2h∗

∂x∗2
= 2ϵ2

[
∂u∗

∂x∗
− ∂h∗

∂x∗

(
∂u∗

∂y∗

)]
− p∗, at y = h(x, t), (3.19)

where C̃ =
C

ϵ3
and C is a capillary number defined by C =

µU0

γ
, as in [112], where it retains

surface tension effect at the leading order, and

2ϵ2
∂h∗

∂x∗

[
∂v∗

∂y∗
− ∂u∗

∂x∗

]
+

[
∂u∗

∂y∗
− ϵ2

∂v∗

∂x∗

]
= 0, at y = h(x, t). (3.20)

3.1.5 Lubrication Theory

We introduce the assumption of a parameter ϵ = h0

L0
≪ 1, known as "lubrication parameter"

and is taking asymptotically small as to the derived reduced set of equations in the lubrication

[38], where h0 and L0 are characteristic lengths of the confined fluid to the thin gap 0 <

y ≪ h(x, t) [3]. Recently lubrication theory was successfully applied to the modeling of

the evolution of a thin liquid film, this is the work of [38, 112]. For two-layer thin films

with no-slip conditions at the interfaces, the derivation of lubrication equations is done by

[37, 83, 120]. In this case a film of fluid between nearly parallel surfaces of which the radii

of curvature are larger when compared with the thickness of the film [123]. We let x be a

distance measured on the surface in the direction of relative motion, and y to be a distance

measured everywhere perpendicular to the surface. Since the surfaces are nearly parallel and

they remain in the initial direction, the velocity v in the y-direction will be much smaller

than the velocity u in the x-direction. For simplicity, the asterisk (*) in the above will be

omitted.
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For the continuity equation, we have,

∂u

∂x
+
∂v

∂y
= 0. (3.21)

The horizontal and vertical momentum equations in the lubrication approximations are given

by,

∂p

∂x
=
∂2u

∂y2
− α2u, (3.22)

∂p

∂y
= −B̃. (3.23)

Also from equations (3.19) and (3.20) we have, at leading order in ϵ

p = − 1

C̃

∂2h

∂x2
, at y = h(x, t), (3.24)

and
∂u

∂y
= 0, at y = h(x, t). (3.25)

Now integrating equation (3.23) with respect to y and use (3.24) to determine the integration

constant. Since we don’t want to keep the surface tension term, because we do not want to

add complexity without significantly improving accuracy unless interfaces or sharp gradients

are critical. then (3.24) will be equal to zero, thus we obtain,

p = −B̃(y − h). (3.26)

Differentiating (3.26) with respect to x we have,

∂p

∂x
= B̃

∂h

∂x
(3.27)
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The equation (3.27) is independent of y and hence (3.22) can be integrated directly to give

a general equation as

u =Meαy +Ne−αy − 1

α2

∂p

∂x
, (3.28)

where M = M(x, t) and N = N(x, t). The no-slip boundary condition u = 0 at y = 0, and

the tangential stress equation (3.25) are used to determine M and N , and the horizontal

velocity is given by

uDB =
1

α2

∂p

∂x

[
coshα(h− y)

cosh(αh)
− 1

]
. (3.29)

Using equation (3.29) in (3.21), solving for v using no-penetration boundary condition and

then applying to obtained v in equation (3.7) is equivalent to,

∂h

∂t
+
∂R

∂x
= 0, at y = h(x, t), (3.30)

where,

R =

∫ h

0

udy, (3.31)

using (3.31) we have that,

R = − 1

α2

∂p

∂x

[
1

α
tanh(αh)− h

]
, at y = h(x, t). (3.32)

Substituting (3.32) and (3.27) into (3.30) we obtain a thin film equation

∂hDB

∂t
= B̃

∂

∂x

[
1

α2

(
1

α
tanh(αh)− h

)
∂h

∂x

]
. (3.33)
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3.2 Asymptotic approximation in the limit α → 0 and

α → ∞

Consider in (3.22), if α = 0, then we find the solution,

uNS =
∂p

∂x

[
y2

2
− hy

]
, 0 < t ≤ T, x ∈ (0, L), (3.34)

where the pressure gradient
∂p

∂x
remains the same in the case of NS.

Using (3.31), R can be given as

R = −1

3
h3
∂p

∂x
, at y = h(x, t), (3.35)

and hence the thin film equation for h as given in (3.30) is

∂h

∂t
=

∂

∂x

(
1

3
h3
∂p

∂x

)
. (3.36)

where,
∂p

∂x
is found in (3.27) and this implies that

∂hNS

∂t
= B̃

∂

∂x

(
1

3
h3
∂h

∂x

)
. (3.37)

Note that we can’t set α = 0 directly from (3.29), but we can instead introduce an expansion

in powers of the small parameter α as follows;

uDB = u0 + αu1 + α2u2 + ... (3.38)
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Expanding (3.29) in the limit of small α gives

u0 = uNS =
∂p

∂x

[
1

2
y2 − hy

]
, u1 = 0, and u2 =

∂p

∂x

[
1

24
y4 − 1

6
hy3 +

1

3
h3y

]
. (3.39)

The integral of the horizontal velocity expansion in (3.38), according to (3.31), becomes

R = −
[
1

3
h3 − 2

15
h5α2 +

17

315
h7α4 − ...

]
∂p

∂x
(3.40)

substituting (3.40) into (3.30) we obtain,

∂hDB

∂t
=

∂

∂x

(
h3

3

∂p

∂x

)
− ∂

∂x

(
2h5

15
α2 ∂p

∂x

)
+

∂

∂x

(
17h7

315
α4 ∂p

∂x

)
+ ... (3.41)

Setting α → 0 in (3.41) reduces to the corresponding evolution equation obtained from (NS),

given in (3.36).

Also, in (3.22), if α → ∞, then the first term of its right-hand side which accounts for

the viscous shear becomes negligible and we find the solution,

uD = − 1

α2

∂p

∂x
, (3.42)

using (3.31), R can be given as

R = − 1

α2
h
∂p

∂x
, at y = h(x, t), (3.43)

now the thin film equation for h as given in (3.30) is

∂hD
∂t

= B̃
∂

∂x

(
1

α2
h
∂h

∂x

)
, (3.44)
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Figure 3.2: Transition through the boundary between free flow and porous media regions, where ε is
a porosity of the material, as in [137].

Alternatively, taking the limit of (3.33) as α tends to zero is equal to (3.37). i.e.

lim
α→0

B̃
∂

∂x

[
1

α2

(
1

α
tanh(αh)− h

)
∂h

∂x

]
= B̃

∂

∂x

(
1

3
h3
∂h

∂x

)

Also from (3.32), if the value of α is very large (α → ∞), then we have

R = − 1

α2
h
∂p

∂x
,

1

α3
is negligible. (3.45)

The thin film equation (3.33) is now equal to (3.44).

Alternatively, we can take the limit of (3.33) as α tends to ∞ for
1

α3
to be negligible and

this is equal to (3.44). i.e.

lim
α→∞

B̃
∂

∂x

[
1

α2

(
1

α
tanh(αh)− h

)
∂h

∂x

]
= B̃

∂

∂x

(
1

α2
h
∂h

∂x

)

Therefore the flow through a porous medium with infinitely large permeability (k → ∞

is equivalent to α → 0) is the same as a simple flow of water, as expected. In the same

manner the flow through a porous medium with very small permeability (k → 0 is equivalent
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to α → ∞) is the same as a simple flow of water in Darcy’s experiment and can be simply

shown in the equation and Figure (3.2),

∂hDB

∂t
=


∂hNS

∂t
if α → 0

∂hD
∂t

if α → ∞
(3.46)

3.3 Steady state solution of DB at α = 0 or ∞

Consider the equation (3.33) in the limit of α → 0 or ∞

∂h

∂t
= B̃

∂

∂x

[
rhs

∂h

∂x

]
, (3.47)

where r is an arbitrary constant and s = 1 or 3. At a steady state we have,

∂h

∂t
= 0,

this implies that,
∂

∂x

[
hs
∂h

∂x

]
= 0. (3.48)

Integrating (3.48) twice with respect to x, we obtain a general solution

h(x, t) = [(s+ 1)(Kx+D)]
1

s+1 , (3.49)

where K and D are arbitrary constants.

Using the boundary conditions, h(0) =M and h(L) = N , we have,

D =
M s+1

s+ 1
, and K =

N s+1 −M s+1

(s+ 1)L
, (3.50)

55



For example, if L = 10, M = 0, and N = 1, we obtain a steady state solution to be

h(x, t) = (0.1x)
1

s+1 . (3.51)

3.4 Numerical methods

In our study, we employed Chebfun as a powerful computational tool to investigate the com-

plex flow dynamics arising from the coupling of Navier-Stokes equations for free surface flow

and Brinkman equations for flow through porous media. Chebfun’s ability to handle high-

order polynomial approximations and efficiently compute solutions to differential equations

made it an ideal choice for our numerical simulations [24], [119], [143]. By utilizing Chebfun

to solve the thin film equations in the porous media, we were able to accurately capture the

intricate flow behavior within the porous structure, accounting for both viscous and inertial

effects. The numerical results provided detailed insight into fluid flow patterns occurring in

the porous medium under the influence of the Brinkman model. Furthermore, by integrating

the solutions obtained from Chebfun with the thin film equations modeling the free surface

flow, we observed the dynamic interaction between the free surface and porous media flows.

The numerical simulations allowed us to analyze how the presence of the porous medium

affects the behavior of the free surface, leading to a comprehensive understanding of the

coupled flow system. Using Chebfun, we were able to efficiently analyze and visualize the

numerical results, facilitating the interpretation of the complex flow phenomena emerging

from the Navier-Stokes and Brinkman equations. The integration of Chebfun into our com-

putational framework enhanced the accuracy and reliability of our simulations, highlighting

the utility of Chebfun in studying multiphase flow problems.
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3.4.1 Numerical results

The lubrication equation (3.33) is solved numerically using a Chebfun method on a domain

of [0, L] and a variable time step size is found to be sufficient to produce accurate results

with sinusoidal, Gaussian, and wave packet initial conditions of the form,

h(x, 0) = h0

[
1 + hA sin

(mπx
L

)]
(3.52)

h(x, 0) = h0

[
1 + hA exp

(
x− x0
b

)2
]

(3.53)

h(x, 0) = h0

[
1 + hA exp

(
x− x0
b

)2

sin
(mπx

L

)]
(3.54)

where, b = 0.14, h0 = 0.1, hA = 0.5, L = 10 and m is a frequency. Dirichlet boundary

conditions are imposed on both ends of the computational domain, x = 0 and x = L. The

solutions of (3.33), (3.37), and (3.44) are given in the figures below.

From the numerical calculation, it can be observed that the permeability of the porous

medium decreases when we increase α. In Figure 3.3a, 3.4a and 3.5a, we present the plot

of the surfaces h, of thin film flow for the solutions of (3.36) and (3.41) using the same or

different initial conditions (3.52), (3.53), and (3.54) for the value of α = 0. It is observed

that the figures of the two solutions of the same initial condition show similar surface h. In

Figures 3.3b, 3.4b, and 3.5b, we plot the surfaces h, of thin film flow, for the solution of

(3.33) using different initial conditions (3.52), (3.53), and (3.53) for the value of α = 1. It

was observed that the deformation of the surface shows the effect of the non-linearity of the

equation. In Figures 3.3c, 3.4c, and 3.5c, we plot the surfaces h, of thin film flow, for the

solution of (3.33) using two different initial conditions (3.52), (3.53), and (3.53) for the value

of α = 2. Each curve presents a surface different from the above figure due to the increase in

time and value of α. Similarly, it continues up to Figures 3.3f, 3.4f, and 3.5f where we plot
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(a) Plot of surface h for α =0 (b) Plot of surface h for α =1

(c) Plot of surface h for α =2 (d) Plot of surface h for α =3

(e) Plot of surface h for α =4 (f) Plot of surface h for α =5

Figure 3.3: Plot of the surface profile h at different times, obtained from a time-dependent calculation
of equations (3.33) and (3.37) with Dirichlet boundary condition, starting from an initial condition
of the equation (3.52), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. For each panel, present the
solution corresponding to each value of α as indicated in the sub-caption.
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(a) Plot of surface h for α =0 (b) Plot of surface h for α =1

(c) Plot of surface h for α =2 (d) Plot of surface h for α =3

(e) Plot of surface h for α =4 (f) Plot of surface h for α =5

Figure 3.4: Plot of the surface profile h at different times, obtained from a time-dependent calculation
of equations (3.33) and (3.37) with Dirichlet boundary condition, starting from an initial condition
of the equation (3.53), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. For each panel, present the
solution corresponding to each value of α as indicated in the sub-caption.
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(a) Plot of surface h for α =0 (b) Plot of surface h for α =1

(c) Plot of surface h for α =2 (d) Plot of surface h for α =3

(e) Plot of surface h for α =4 (f) Plot of surface h for α =5

Figure 3.5: Plot of the surface profile h at different times, obtained from a time-dependent calculation
of equations (3.33) and (3.37) with Dirichlet boundary condition, starting from an initial condition
of the equation (3.54), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. For each panel, present the
solution corresponding to each value of α as indicated in the sub-caption.
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Figure 3.6: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.33) with Dirichlet boundary condition, starting from an initial condition of the equation
(3.52), with hA = 0.5,m = 1.5, and L = 10., the other parameter is α = 2

Figure 3.7: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.33) with Dirichlet boundary condition, starting from an initial condition of the equation
(3.52), with hA = 0.5,m = 1.5, and L = 10., the other parameter is α = 4
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Figure 3.8: Free surface profile h at different times, obtained from a time-dependent calculation
of equations (3.33),(3.37) and (3.44) with Dirichlet boundary condition, starting from an initial
condition of the equation (3.52), with hA = 0.5,m = 1.5, and L = 10., the other parameter is α = 4

Figure 3.9: Plot of surface profile h, obtained from a steady state solution (3.51) and the numerical
solution of equation (3.47) with r = 1 and 3
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the surfaces h, of thin film flow, for the solution of (3.33) using different initial conditions

(3.52), (3.53), and (3.54) for the value of α = 5. Each curve presents a surface at a different

time and turns flat at the time-end. It is generally observed from the comparison that a

higher value of α produces waves with reducing amplitude and move faster and attain a

steady state at α = 5. Figure 3.6 and 3.7, show interesting results of the two surface profile

h, for the solution of equations (3.33) using initial condition (3.52) at different times. Here

we used Dirichlet boundary conditions different from the ones used in Figures 3.3a, 3.3b,

etc. It was observed that the surface curves do not turn flat at the time-end. In Figure 3.8,

we plot the surfaces h for the solution of (3.33), (3.37), and (3.44) at different times using

initial condition (3.52) and Dirichlet boundary condition used in Figures 3.6 and 3.7. It is

observed that the surface with D turned flat faster than the one with NS and DB always

lies between them.

Note that α is constant if the permeability k is constant or homogeneous and the above

cases are considered when α is constant. In Figures 3.9 , we plot the surface h for the steady

solutions of the equation (3.47).

3.5 Heterogeneous permeability

Naturally occurring porous media display some level of spatial permeability variation, called

heterogeneous permeability. Few porous media have homogeneous permeability, although

some have more variables than others. That is the permeability of smaller volumes of rocks

will be different from the permeability of a large volume within it. Here we consider non-

constant or heterogeneous permeability with spatial variation, i.e. k = k(y) or k(x).

Now, if we let α = α(y), the thin film equation (3.44) becomes,

∂hD
∂t

= B̃
∂

∂x

[∫ h

0

k(y)dy
∂h

∂x

]
, k(y) =

1

α2(y)
. (3.55)
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(a) Plot of surface h, with k(y) = a cos(y) (b) Plot of surface h, with k(y) = aey

Figure 3.10: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.55) and Dirichlet boundary condition, starting from an initial condition of the equation
(3.52), with hA = 0.5,m = 2, and L = 10., the other parameter is a = 1

Similarly, for α = α(x), we can have,

∂hD
∂t

= B̃

[
∂

∂x

(
k(x)

∂h

∂x

)
h+ k(x)

(
∂h

∂x

)2
]
, k(x) =

1

α2(x)
. (3.56)

From the thin film equation (3.55), if we let k(y) = a cos(y) or k(y) = aey, and k(x) = aex

or k(x) = ae−x from (3.56), then solutions are given in the Figures 3.10, 3.11, 3.12 and 3.13.

In Figures 3.10a, 3.10b, 3.11a, and 3.11b, we plot the surfaces h, of thin film flow, for the

solution of (3.55) using initial conditions (3.52) and (3.53) for heterogeneous permeabilities,

k(y) = a cos(y) and k(y) = aey respectively. It was observed that the deformation of the

surfaces shows the same effect as the one with homogeneous permeability, this is due to the

thin nature of fluids. Similarly, in Figure 3.12a and 3.13a, the surface h is plotted for the

solution of (3.56) using initial (3.52) for k(x) = aex, and this shows that the deformation

is in positive x-direction. Finally, in Figure 3.10b and 3.11a, we plot the surface h of thin

flow, for the solution of (3.56) using initial (3.52) and (3.53) for heterogeneous permeability

k(x) = ae−x.
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(a) Plot of surface h, with k(y) = a cos(y) (b) Plot of surface h, with k(y) = aey

Figure 3.11: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.55) and Dirichlet boundary condition, starting from an initial condition of the equation
(3.53), with hA = 0.5,m = 2, and L = 10., the other parameter is a = 1

(a) Plot of surface h, with k(x) = aex (b) Plot of surface h, with k(x) = ae−x

Figure 3.12: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.56) and Dirichlet boundary condition, starting from an initial condition of the equation
(3.52), with hA = 0.5,m = 2, and L = 10., the other parameter is a = 1
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(a) Plot of surface h, with k(x) = aex (b) Plot of surface h, with k(x) = ae−x

Figure 3.13: Free surface profile h at different times, obtained from a time-dependent calculation of
equations (3.56) and Dirichlet boundary condition, starting from an initial condition of the equation
(3.53), with hA = 0.5,m = 2, and L = 10., the other parameter is a = 1
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Chapter 4

Two fluids with an interface

Consider two stratified immiscible fluids (fluid 1 and fluid 2) in a porous medium bounded

below and above by horizontal walls and separated by a sharp interface between them as

given in Figure 4.1 below. We define ρ1, ρ2, and µ1, µ2 as the densities and viscosities of

the fluids and denote subscripts 1 and 2 for the bottom and top fluids, respectively. We also

defined x and y as horizontal and vertical Cartesian coordinates and t as time in seconds.

The lower fluids extend from y = 0 to the interface at y = h(x, t), while the upper fluids

extend from the interface at y = h(x, t) to y = H for H = 1.

4.1 Thin film of two fluids in porous media

In porous media, such as a material with small empty spaces or pores, the presence of two

fluids forming a thin film can have interesting implications. The formation of a thin film

of two fluids in a porous medium can be influenced by factors such as the permeability of

the porous material, the interfacial forces between the fluids, and the pore structure of the

medium [44, 128]. These factors determine the stability, thickness, and dynamics of the thin

film. In this, the thin film of two fluids in a porous medium will be compared with one of a
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Figure 4.1: Sketch of two immiscible stratified fluids with a sharp separating interface. The hori-
zontal and vertical velocities are given as ui and vi, for i = 1, 2 respectively.

surface when the value of α tends to zero or infinity as in the case above.

When α approaches zero, this physically represents a situation where the porous medium

has very low permeability, making the effects of the porous structure almost insignificant.

In this case, the thin film acts as if it’s resting on a solid, impermeable surface, with the

flow dynamics mainly influenced by surface tension, viscosity, and interfacial forces, without

much fluid interaction with the substrate.

Conversely, when α approaches infinity, it signifies a highly permeable porous medium

where the interaction between the fluid and the pore structure becomes dominant. Here,

the thin film can be significantly influenced by capillary action and fluid drainage into the

medium, resulting in different stability and thickness characteristics compared to a film on

a non-porous surface.
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4.1.1 Governing Equation

Like in a single fluid, the continuity and momentum equations in two fluids are given as;

∇ · ui = 0, µi∇2ui = ∇pi + ρig, (Stokes equation) (4.1)

∇ · ui = 0, ui = −k
µ
∇pi + ρig, (Darcy equation) (4.2)

∇ · ui = 0, µi∇2ui −
µi

k
ui = ∇pi + ρig, (Brinkman equation) (4.3)

where ui, µi, pi, and ρi are the velocities, viscosities, pressures, and densities in each fluid

layer, denoted by a subscript i = 1, 2. Note that the Stokes equation (4.1) is a simplified

version of the N-S, derived under the assumption that inertial forces are negligible compared

to viscous forces and this occurs when the low Reynolds numbers of the flow are very small

i.e Re≪ 1.

4.1.2 Conditions on the boundaries

The imposed boundary conditions at the bottom and upper walls are;

no-slip:

u1 = 0 at y = 0, u2 = 0 at y = 1, (4.4)

and no-penetration:

v1 = 0 at y = 0, v2 = 0 at y = 1. (4.5)

4.1.3 Conditions at the interface between the fluids

At the interface, both horizontal and vertical velocities are continuous, i.e.

u1 = u2 and v1 = v2 (4.6)
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and the kinematic equation becomes,

v1 =
∂h

∂t
+ u1

∂h

∂x
(4.7)

According to [74] the stress jump at the interface is given by

n · (σ1 − σ2) = κγ, (4.8)

where γ is surface tension coefficient, σ1 and σ2 are stress tensors in fluids 1 and 2 respec-

tively, and are generally defined as

σi = −piI+ µi(∇ui + (∇ui)
T ), i = 1, 2 (4.9)

where I is an identity matrix. The unit normal n, the unit tangent t, and the curvature κ

of the interface are given respectively as in the equation (3.10). The normal stress condition

is obtained by taking the dot product of equation (4.8) with a unit normal n, while the

tangential stress condition is also obtained by taking the dot product of (4.8) with the unit

tangent t to give,

[n · (n · σ)]12 = κγ, [t · (n · σ)]12 = 0, (4.10)

where [ei]
1
2 = e1 − e2.

The normal and tangential stress in a subscript notation are given by

[
2µi

1 + h2x

[
uixh

2
x + viy − (viy + uix)hx

]
− p+ ph2x

]1
2

=
γhxx

(1 + h2x)
3/2

(4.11)

and [
4µiuixhx + µi(1− h2x)(uiy − vix)

]1
2
= 0 (4.12)
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4.1.4 Non-dimensionalisation

We introduce non-dimensional variables by performing some transformations of the following,

x = l0x
∗, y = h0y

∗, ui = U0u
∗
i , vi = V0v

∗
i t =

l0
U0

t∗ pi =
µ1U0l0
h20

p∗i , (4.13)

Note that the parameters m1 = 1, m2 = m, n1 = 1, n2 = n, where mi =
ρi
ρ1

and ni =
µi

µ1

to be density and viscosity ratio respectively. The non-dimensional continuity and (DB)

equation for the flow in each fluid region are given as,

U0

l0

∂ui
∂x

+
V0
h0

∂vi
∂y

= 0, (4.14)

here we impose the condition (3.15) and

ui = α−2

[
ϵ2
∂2ui
∂x2

+
∂2ui
∂y2

− 1

ni

∂pi
∂x

]
(4.15)

ϵ2vi = α−2

[
ϵ2
(
ϵ2
∂2vi
∂x2

+
∂2vi
∂y2

)
− 1

ni

∂pi
∂y

− mi

ni

B̃

]
, (4.16)

where, ϵ =
h0
l0

is a height-to-length ratio, α =
h0√
k

is a dimensionless parameter defined in

terms of k, the permeability parameter, B̃ = ϵB, and B is a number defined by
1

ϵ

ρ1
µ1

h20
U0

g.

Also, the non-dimensional normal and tangential stress jumps at the interface in sub-

scripts notation are given by

[
2ϵ2
[
ϵ2h2xuix + viy − (hxuiy + ϵhxvix)

]
− (pi + ϵ2h2xpi)

]1
2
=

1

C̃

hxx
(1 + ϵ2h2x)

1/2
at y = h(x, t),

(4.17)[
4ϵ2hx(uix) + (1− ϵ2h2x)(uiy − ϵ2vix)

]1
2
= 0 at y = h(x, t), (4.18)

where C̃ =
C

ϵ3
and C is a capillary number defined by

µ1U0

γ
.
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Role of Buoyancy in Terms of Density Ratio m

The relative density difference can be expressed as

1−m =
ρi − ρ1
ρi

(4.19)

This quantity 1 − m appears naturally in non-dimensionalized equations when accounting

for buoyancy effects. The buoyancy force per unit volume is given by:

∆ρ · g = (ρi − ρ1)g = ρig(1−m) (4.20)

Thus, the magnitude of buoyancy is directly proportional to 1−m. The physical implications

are as follows:

• If m = 1, then 1−m = 0: there is no buoyancy since the fluid densities are equal.

• If m < 1, then 1−m > 0: the upper fluid is lighter, leading to a buoyancy force that

can drive instabilities (e.g., Rayleigh–Taylor instability).

• If m > 1, then 1 − m < 0: the upper fluid is heavier, and buoyancy may act in a

stabilizing manner.

In many thin film or porous media flow models, the gravity-induced term may appear in a

non-dimensional form such as:

(1−m) ·G

where, G represents a gravitational group (e.g., a Bond number).

72



4.1.5 Lubrication approximation

As in the subsection (3.1.5), the leading order continuity and momentum equations in each

fluid i = 1, 2, are the lubrication equations, given by,

∂ui
∂x

+
∂vi
∂y

= 0 (4.21)

∂2ui
∂y2

− α2ui =
1

ni

∂pi
∂x

(4.22)

∂pi
∂y

= −miB̃, (4.23)

and the leading order normal and tangential stress balances at the interface are

−p1 + p2 =
1

C̃

∂2h

∂x2
, at y = h(x, t), (4.24)

∂u1
∂y

− n
∂u2
∂y

= 0, at y = h(x, t), (4.25)

integrating (4.23) in y gives

pi = −miB̃y + p̃i, (4.26)

where pi are related to each other through equation (4.24), as in [75]

p2 = p1 + f, f =

[
B̃h+

1

C̃

∂2h

∂x2

]
. (4.27)

The momentum equation (4.22) can be integrated in y to give a solution

ui =Mie
αy +Nie

−αy − n−1
i

α2

∂pi
∂x

(4.28)
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where Mi =Mi(x, t) and Ni = Ni(x, t). The no-slip boundary conditions on u1 = 0 at y = 0,

and u2 = 0 at y = 1, are used to determine Ni. The horizontal velocities are given by,

u1 =M1[e
αy − e−αy] +

1

α2

∂p1
∂x

[
e−αy − 1

]
(4.29)

u2 =M2[e
αy − e−α(y−2)] +

n−1

α2

∂p2
∂x

[
e−α(y−1) − 1

]
(4.30)

and using no-penetration conditions on v1 = 0 at y = 0, and v2 = 0 at y = 1, with the

continuity equation (4.21) to determine the vertical velocities which are given as

v1 = − 1

α

∂M1

∂x

[
eαy + e−αy − 2

]
+

1

α3

∂2p1
∂x2

[
e−αy + αy − 1

]
(4.31)

v2 = − 1

α

∂M2

∂x

[
eαy + e−α(y−2) − 2eα

]
+
n−1
2

α3

∂2p2
∂x2

[
e−α(y−1) + αy − α− 1

]
(4.32)

substituting (4.29) and (4.31) into (4.7) we can obtain,

∂h

∂t
+
∂R

∂x
= 0, at y = h(x, t). (4.33)

We now define,

R =

∫ h

0

u1dy, (4.34)

Mi can be determined by using first equation of (4.6) and (4.25) then using first term of

(4.27). Their expressions are simplified to

M2 =
1

n

[
M1 +

1

α2e2αy+1

∂f

∂x

]
(4.35)

M1 =
[(n− 1)e2αy + n− 1]

∂p

∂x
+ (eαy − 1)

∂f

∂x
[(n− 1)(e3αy + e2αy + eαy)− 4eαy + n]α2

(4.36)
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According to [24], [75], and [111],satisfying (4.6) is equivalent to solving the flow rate Q(t),

defined as

Q(t) =

∫ h

0

u1dy +

∫ 1

h

u2dy, (4.37)

and this leads to determining the leading order pressure gradient given by

∂p1
∂x

= Γ(α, n). (4.38)

Also, substituting,(4.36) and (4.38) into (4.29) and then (4.34) we obtain,

R = S(α, n) at y = h(x, t). (4.39)

The functions Γ(α, n) and S(α, n) depend on α and n. Their exact expressions, which are

too lengthy to present here, have been obtained using the numerical software Maple and will

be provided in Appendix A. Putting (4.39) into (4.33), we obtain the thin film equation to

be

∂h

∂t
= −∂S(α, n)

∂x
(4.40)

4.2 Thin film of two fluids in a non-porous mediun

This section is closely the same as [76], with a minor difference in the boundary conditions

and is also presented here for completeness. Considering the continuity and momentum

equations (4.1), boundary conditions (4.4),(4.5) and conditions at the interface (4.6),(4.7).

The non-dimensional continuity and Navier Stokes equation for the flow in each fluid region
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for fluids i = 1, 2 are given by (4.14), and

ϵ2
∂2ui
∂x2

+
∂2ui
∂y2

=
1

ni

∂pi
∂x

, (4.41)

ϵ2
[
ϵ2
∂2vi
∂x2

+
∂2vi
∂y2

]
=

1

ni

∂pi
∂y

+
mi

ni

ϵB̃. (4.42)

The non-dimensional normal and tangential stress jumps at the interface are given by (4.17)

and (4.18). The leading order continuity and momentum equations in each fluid i = 1, 2, are

the lubrication equations, given by (4.21), (4.23) and

∂pi
∂x

= ni
∂2ui
∂y2

, (4.43)

Also, the leading order normal and tangential stress balances at the interface are given by

(4.24) and (4.25). The momentum equation (4.43) can be integrated twice in y to give a

general equation

ui =
1

2ni

∂pi
∂x

y2 +Miy +Ni, i = 1, 2. (4.44)

where Mi =Mi(x, t) and Ni = Ni(x, t). The no-slip boundary conditions on u1 = 0, at y = 0

and u2 = 0, at y = 1 are used to determine Ni, the horizontal velocities are given by,

u1 =
1

2

∂p1
∂x

y2 +M1y, (4.45)

u2 =
1

2n

∂p2
∂x

(y2 − 1) +M2(y − 1), (4.46)

and using no-penetration conditions on v1 = 0 at y = 0 and v2 = 0 at y = 1, and (4.21) to

determine the vertical velocities which are given as

v1 = −1

6

∂2p1
∂x2

y3 − 1

2

∂M1

∂x
y2, (4.47)
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v2 = − 1

6n

∂2p2
∂x2

(y3 − 3y + 2)− 1

2

∂M2

∂x
(y2 − 2y + 1). (4.48)

putting (4.45) and (4.47) into (4.7) we can obtain,

∂h

∂t
+
∂R

∂x
= 0, at y = h(x, t), (4.49)

here,

R =
1

6

∂p1
∂x

h3 +
1

2
M1h

2, at y = h(x, t), (4.50)

where Mi can be determined by using (4.6) and (4.25) then using first term of (4.27).

Their expressions are simplified to

M2 =
1

n

[
M1 − h

∂f

∂x

]
, M1 =

− [1 + (n− 1)h2]
∂p1
∂x

− (h− 1)2
∂f

∂x
2 [1 + (n− 1)h]

. (4.51)

Satisfying, (4.6) is equivalent to solving the flow rate Q(t), defined by (4.37), and this leads

to determining the leading order pressure gradient, finding

∂p1
∂x

= D−1

[
(h− 1)2[(n− 1)h2 + 2(1− 2n)h− 1]

∂f

∂x
− 12n[(n− 1)h+ 1]Q

]
(4.52)

where,

D = n2h4 + 2nh(1− h)[2− h(1− h)] + (1− h)4 (4.53)

putting (4.51) and (4.52) in (4.50), we obtain

R = D−1

[
nh2H1 +

1

3
h3H2

∂f

∂x

]
(4.54)

where,

H1 = [(n− 1)h2 − 2h+ 3]Q and H2 = [(1− h) + nh](1− h)3 (4.55)
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putting (4.54) into (4.49) we obtain the thin film equation

∂hNS

∂t
+

∂

∂x

(
D−1

[
nh2H1 +

1

3
h3H2

∂f

∂x

])
= 0 (4.56)

The equation (4.56) is similar to the model long-wave evolution equation in [75].

4.3 Asymptotic approximation in the limit n→ 0 and

α → 0

Taking the limit of (4.39) as n→ 0, we obtain

R = lim
n→0

S(α, n), at y = h(x, t) (4.57)

The RHS of (4.57) can be expanded in a series form to give

lim
n→0

S(α, n) = −1

3
h3
∂f

∂x
+
2α2

15
h5
∂f

∂x
+α−4

(
36007α8

5040
+

−1021α8

144

)
h7
∂f

∂x
+ ...+O(h8) (4.58)

Substituting (4.58) into (4.57), we have

R = −1

3
h3
∂f

∂x
+

2α2

15
h5
∂f

∂x
− 17α4

315
h7
∂f

∂x
+ ..., at y = h(x, t) (4.59)

In the absence of surface tension, we can have

∂f

∂x
= B̃

∂h

∂x
(4.60)
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considering (3.27) and (4.60) implies that,

∂p

∂x
=
∂f

∂x
(4.61)

Thus the equation (4.57) becomes,

R = −
[
1

3
h3 − 2

15
h5α2 +

17

315
h7α4 − ...

]
∂p

∂x
(4.62)

Now, (4.62) is equivalent to (3.40), also (3.40) is the expansion of (3.32).

Therefore the equation (4.57) becomes

R = − 1

α2

∂p

∂x

[
1

α
tanh(αh)− h

]
, at y = h(x, t). (4.63)

Substituting (4.63) into (4.33), we obtain a thin film equation

∂hDB

∂t
= B̃

∂

∂x

[
1

α2

(
1

α
tanh(αh)− h

)
∂h

∂x

]
. (4.64)

Similarly, if we take the limit of (4.39) as α → 0, we have

R = lim
α→0

S(α, n), at y = h(x, t) (4.65)

This implies that,

lim
α→0

S(α, n) = −
6Qn(n− 1) + [−2(n− 1)h3 + 3(n− 2)h− n+ 4]

∂f

∂x
6[(n− 1)h3 + 3h− 2](n− 1)

h3 (4.66)
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Now, equation (4.65) is simplified to

R = D̂−1

[
nh2Ĥ1 +

1

3
h3Ĥ2

∂f

∂x

]
at y = h(x, t) (4.67)

where,

D̂ = [(n−1)h3+3h−2](n−1), Ĥ1 = −Q(n−1)h and Ĥ2 = (n−1)h3− 3

2
(n−2)h+

n

2
−2

(4.68)

Here we observed that (4.54) and (4.67) have a similar form. Substituting (4.67) into (4.33),

we have the thin film equation

∂hNS

∂t
+

∂

∂x

(
D̂−1

[
nh2Ĥ1 +

1

3
h3Ĥ2

∂f

∂x

])
= 0 (4.69)

Now it remains to show that

lim
α→0

[
lim
n→0

S(α, n)
]
= lim

n→0

[
lim
α→0

S(α, n)
]

(4.70)

The LHS of the (4.70) is

lim
α→0

[
lim
n→0

S(α, n)
]
= lim

α→0

(
− 1

α2

∂p

∂x

[
1

α
tanh(αh)− h

])
(4.71)

The equation (4.71) has been shown in Section 3.2 which resulted to

lim
α→0

[
lim
n→0

S(α, n)
]
= −1

3
h3
∂p

∂x
, at y = h(x, t) (4.72)

The RHS of the (4.70) is

lim
n→0

[
lim
α→0

S(α, n)
]
= lim

n→0

(
D̂−1

[
nh2Ĥ1 +

1

3
h3Ĥ2

∂f

∂x

])
(4.73)
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The equation (4.73) is to simplified to

lim
n→0

(
D̂−1

[
nh2Ĥ1 +

1

3
h3Ĥ2

∂f

∂x

])
= −h

3(h3 − 3h+ 2)

3(h3 − 3h+ 2)

∂f

∂x
(4.74)

Hence

lim
n→0

[
lim
α→0

S(α, n)
]
= −1

3
h3
∂p

∂x
, at y = h(x, t) (4.75)

4.4 Numerical results

The lubrication equations (4.40) and (4.56) are solved numerically using a Chebfun method

on a domain of [0, L], and a variable time step size is found to be sufficient to produce

accurate results with sinusoidal, Gaussian and wave packet initial conditions of the form

(3.52), (3.53) and (3.54) respectively, where, b = 0.14, h0 = 0.1, hA = 0.5, L = 10 and m is

a frequency. Dirichlet boundary conditions are imposed on both ends of the computational

domain, x = 0 and x = L. The solutions of (4.40) are given in the Figures 4.2, 4.3, 4.4, 4.5,

4.6, and 4.7 .

In Figure 4.2, we present the plot of the surface h of the thin film flow for the solution of

(4.40), applying the initial condition (3.52) across various values of n and constant value of α.

It is evident from each panel that the wave solution with the highest amplitude corresponds

to the initial condition as time progresses. As n increases, the steady-state approaches and

aligns with the amplitude of the initial condition as shown in the sub-figures of 4.2a to 4.2f.

Figures 4.3 and 4.4 illustrate a scenario similar to that of Figure 4.2, regarding the surface

h of the thin film flow for the solutions of (4.40). This is based on the initial conditions

(3.53) and (3.54) respectively, across various values of n and constant value of α.

In Figure 4.5, we show the plot of the surface h of the thin film flow for the solution of

(4.40), using the initial condition (3.52) for different values of α and constant value of n.
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(a) Plot of surface h, with n = 0 (b) Plot of surface h, with n = 0.1

(c) Plot of surface h, with n = 0.2 (d) Plot of surface h, with n = 0.3

(e) Plot of surface h, with n = 0.4 (f) Plot of surface h, with n = 0.5

Figure 4.2: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.52), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is α = 2. For
each panel, display the solution for each value of n as specified in the sub-caption.
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(a) Plot of surface h, with n = 0 (b) Plot of surface h, with n = 0.1

(c) Plot of surface h, with n = 0.2 (d) Plot of surface h, with n = 0.3

(e) Plot of surface h, with n = 0.4 (f) Plot of surface h, with n = 0.5

Figure 4.3: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.53), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is α = 2. For
each panel, display the solution for each value of n as specified in the sub-caption.
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(a) Plot of surface h, with n = 0 (b) Plot of surface h, with n = 0.1

(c) Plot of surface h, with n = 0.2 (d) Plot of surface h, with n = 0.3

(e) Plot of surface h, with n = 0.4 (f) Plot of surface h, with n = 0.5

Figure 4.4: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.54), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is α = 2. For
each panel, display the solution for each value of n as specified in the sub-caption.
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(a) Plot of surface h, with α = 0 (b) Plot of surface h, with α = 1

(c) Plot of surface h, with α = 2 (d) Plot of surface h, with α = 3

(e) Plot of surface h, with α = 4 (f) Plot of surface h, with α = 5

Figure 4.5: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.52), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is n = 0.15.
For each panel, present the solution corresponding to each value of α as indicated in the sub-caption.
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(a) Plot of surface h, with α = 0 (b) Plot of surface h, with α = 1

(c) Plot of surface h, with α = 2 (d) Plot of surface h, with α = 3

(e) Plot of surface h, with α = 4 (f) Plot of surface h, with α = 5

Figure 4.6: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.53), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is n = 0.15.
For each panel, present the solution corresponding to each value of α as indicated in the sub-caption.
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(a) Plot of surface h, with α = 0 (b) Plot of surface h, with α = 1

(c) Plot of surface h, with α = 2 (d) Plot of surface h, with α = 3

(e) Plot of surface h, with α = 4 (f) Plot of surface h, with α = 5

Figure 4.7: Plot of the surface profile h at different times, obtained from a time-dependent calcula-
tion of equations (4.40) with Dirichlet boundary condition, starting from an initial condition of the
equation (3.54), with h0 = 0.1, hA = 0.5, m = 2, and L = 10. The other parameter is n = 0.15.
For each panel, present the solution corresponding to each value of α as indicated in the sub-caption.

87



Each panel clearly indicates that the wave solution with the greatest amplitude corresponds

to the initial condition as time advances. As α increases, the steady-state converges slowly

and matches the amplitude of the initial condition, as also illustrated in the sub-figures 4.5a

to 4.5f.

Figures 4.6 and 4.7 depict a situation akin to that shown in Figure 4.5, focusing on the

surface h of the thin film flow for the solutions of (4.40). This analysis is grounded in the

initial conditions (3.53) and (3.54) respectively, across different values of α and constant

value of n.

Generally, Figure 4.2 shows that as the value of n increases, the solutions (4.40) evolve

more rapidly over time, reaching a quasi-steady state sooner. This causes the profiles at dif-

ferent times to appear closely aligned with the initial condition (3.52), giving the impression

that little change has occurred.

Figure 4.5, illustrates that as the value of α goes up, the solution (4.40) of evolution

slows down over time. This means that the solution profiles at various moments stay quite

close to the initial condition (3.52), making the changes seem minimal.

Likewise, Figures 4.3 and 4.6, which use the initial condition (3.53), along with Figures

4.4 and 4.7 with the initial condition (3.54), exhibit the same pattern.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

We have developed some models and a series of simulations to describe a flow in a porous

medium. In Chapter 3, we presented thin film models of a single fluid’s flow in a porous

medium bounded by a horizontal ground floor below and a gas phase above. The chapter

examines the asymptotic behaviour of the derived thin-film model when α approaches 0 and

infinity. In the limit α → 0, the flow in the porous medium behaves similarly to a free surface

flow governed by the Navier-Stokes equations. In addition, the limit α → ∞ corresponds to

very low permeability k. The flow behaviour aligns with Darcy’s Law, describing the classic

flow scenario through a porous medium. The numerical simulations confirm that as the value

of α increases (meaning the permeability decreases), the flow experiences greater resistance,

causing the waves to dampen more quickly and the system to reach a steady state faster.

These observations further support that porous media’s flow behaviour gradually shifts from

a free surface to a Darcy flow regime as the permeability decreases. In Chapter 4, we also

presented a thin film model for two immiscible fluids separated by a sharp interface in both

porous and non-porous media. The asymptotic analysis in the Chapter shows a connection
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between thin film models in porous and non-porous media when the permeability parameter

α approaches 0, the thin film equation derived for a porous medium converges to the thin

film equation for a non-porous medium. The viscosity ratio n plays an important role in

determining the flow dynamics in a two-fluid system. When n is set to 0, the two-fluid thin

film model simplifies to a single-fluid model. The numerical simulations show the influence of

parameters like permeability and viscosity ratio on the dynamics of the two fluids especially

when the two values n and α were increased, their wave formation moving very slowly so they

do not move away from the initial condition on the time scale of the numerical simulation.

5.2 Recommendation for future work

After considering the results obtained in the thesis regarding the modelling and simulation

of single and two fluids thin film in a porous medium, a few recommendations for further

studies are as follows:

• Future research could explore the relationship between the behaviour of a thin film in

a porous medium and that of a free surface medium in more detail. These behaviours

can converge when a specific parameter α is small, specifically as α approaches zero.

Future work could expand upon this by examining a wider range of fluids with different

properties and investigating the effects of different porous media structures beyond the

current focus on high porosity and permeability.

• Future research could address the limitations of the Brinkman equation. The sources

note that the Brinkman equation, which the study uses to model fluid flow through

porous media, may not accurately predict flow fields in scenarios involving low poros-

ity. Future work could incorporate more sophisticated models that account for flow

complexities in low-porosity environments.
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• Future research could examine multi-fluid systems. The sources focus on single-fluid

and two-fluid systems with an interface between them. Future work could explore

the behaviour of thin films in multi-fluid systems with more complex interfaces and

interactions.

• Future research could investigate the suitability of different numerical methods. The

sources use Chebfun to simulate the behaviour of thin films in porous media. Future

work could explore other numerical methods and compare different approaches to assess

accuracy, efficiency, and suitability for specific scenarios.
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Appendix A

The exact form of Γ(α, n) and S(α, n)

From equation (4.38), we have
∂P1

∂x
= Γ(α, n). (A.1)

The LHS of A.1 is simplified to be given as

Γ(α, n) =
ΓN(α, n)

ΓD(α, n)
(A.2)
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where,

ΓN(α, n) = − eαhe−αhQα3n2 − eαhe2αhQα3n− e2αhe−αhαfhn− eαhe−αhαfhn

− e3αhαfhn− e2αhαfhn+ e2αhe2αhαfh+ e2αhe−αhαfn+ e(α(h−1))eαhe−αhfn

+ eαhe2αhαfh+ eαhe−αhαfn+ e2αhe−αhQα3n2 − e2αhe2αhQα3n

− e4αhf − e2αhf + 2eαhf − eαhαf + eαhαfh− e2αhαf −Qα3neαh

+ e2αhe−αhfn+ eαhe2αhfn+ e2αhαfh− 3eαhe−αhfn− e2αhe2αhαf

− e(α(h−1))eαhe2αhf + e(α(h−1))e−αhfn− eαhe2αhαf + e3αhQα3n2

+ e2αhQα3n2 − e2αhQα3n+ e3αhαfn+ e2αhαfn+ e(α(h−1))e2αhfn

− 2e2αhfn+ 2eαhe2αhf − e(α(h−1))eαhf + eαhfn− e(α(h−1))fn

ΓD(α, n) = eαhαh− 2e2αhn− e2αhe2αhαhn+ e3αhαhn2 − e3αhαhn+ eαhe−αhαn

+ eαhe2αhαh− 3eαhe−αhn+ e(α(h−1))e−αhn+ eαhe(α(h−1))n

+ e2αhe−αhn+ e3αhαn+ e2αhe(α(h−1))n− e2αhe−αhn2 + e2αhαn

− e−αhe2αhn2 + 2eαhe−αhn2 − e(α(h−1))e2αhn+ e2αhe2αhn

+ e2αhe2αhαh+ e2αhαhn2 + e2αhe−αhαn− 2e2αhαhn

+ eαhe(α(h−1))e−αhn− αhneαh − e2αhe−αhαhn− eαhe−αhαhn

+ e2αhe−αhαhn2 + eαhe−αhαhn2 − eαhe2αhαhn− e4αh + 2eαhe2αh

− e(α(h−1))eαh + 2eαh − e2αh + e2αhαh− e2αhα− eαhα

− e2αhe2αhα− eαhe2αhα− e(α(h−1))eαhe2αh + e4αhn

+ 2e2αh2n2 − neαh + e2αhn− e(α(h−1))n− e3αhn2 − eαhe2αhn2

Also, from the equation (4.39) we have,

R = S(α, n) at y = h(x, t). (A.3)
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The LHS of (A.3) is also simplified to be define as

S(α, n) =
SN(α, n)

SD(α, n)
(A.4)

where,

SN(α, n) = 2e6αhαf − 2e2αhαf + e2αhf + feα(6h−1) + feα(7h−1) − feα(2h−1) + fe7αh

− e6αhf − e3αhf − feα(3h−1) + 2eαhf − 2e5αhf − eαhαf − e3αhαf

+ e5αhαf + αfe7αh − hfα2e7αh − αfheα(3h−1) + eαhα2fh2

− eα(2h−1)αfh+ h2fα2e7αh − e5αhαfh− αfhe6αh

− αfheα(6h−1) − αfheα(7h−1) − eαhα2fh− 3hfα2e5αh

− 2αfheα(5h−1) + 2e4αhαfh− 4e4αhα2fh− 2hfα2e6αh

− 2αfhe7αh + 3e3αhα2fh2 − 2eα(4h−1)αfh+ 3h2fα2e5αh

+ 2e2αhα2fh2 + 2e6αhα2fh2 + 4e4αhα2fh2

− 3e3αhα2fh+ 3eαhαfh− 2e2αhα2fh+ 3e2αhαfh+ 4e3αhαfh

SD(α, n) = 3e3αhα4h+ 4e4αhα4h+ 3e5αhα4h+ 2e2αhα4h+ 2e6αhα4h

− e7αhα4 − eαhα4 + e2αhα3 + e6αhα3 − eα(3h−1)α3

− eα(6h−1)α3 − eα(7h−1)α3 − e7αhα3 − eα(2h−1)α3

− 3e3αhα4 − 2e2αhα4 − 4e4αhα4 − 2e6αhα4 − 3e5αhα4

+ 3e3αhα3 + 2eαhα3 + 2e4αhα3 − 2eα(5h−1)α3 − 2eα(4h−1)α3

+ e7αhα4h+ eαhα4h
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