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Abstract

Current Building Automation Systems (BASs) have crucial context-awareness limitations that

must be addressed before they can reach human-like levels and better adapt to the dynamic

needs ofmodern buildings. Among other limitations, our buildings still lack sensors, actuators,

and control agents that can learn reliable models of the environment and plan complex

action sequences. Moreover, modern Machine Learning (ML)-backed BASs, though trained

on massive datasets, are usually overly specialised (trained for one task) and brittle (prone

to errors). In contrast, human learning is very efficient, and with only a few examples, we

can find intuitive ways to complete a task while generalising our knowledge to other tasks.

To address the above limitations, this thesis proposes a foundational framework that aims to

advance the context-awareness capabilities of BASs using knowledge graphs and Knowledge

Representation Learning (KRL). At the framework’s core is the notion of using Semantic

Web Technologies (SWT) to model the semantic relationships between different building

components. These relationships are then packaged inside a network-like data structure

called a Building Information Modeling (BIM)-based Knowledge Graph (BIM-KG)1, and KRL

is applied to learn the hidden patterns within the BIM-KG. During the learning phase, KRL

utilises message-passing to propagate the learnt information throughout all nodes/entities in

the BIM-KG. This research hypothesises that building automation agents can leverage this

notion of message-passing to aggregate contextual information from all entities in the graph

and use it to continuously update their understanding of a building’s systems and components.

The perception is that imbuing building automation agents with holistic information about

the buildings they control can presumably support context-aware decision-making during

downstream automation tasks.

To test the research hypothesis, a three-phase investigation was carried out: literature
1Knowledge graphs derived from BIM with the help of SWTs are referred to as BIM-based Knowledge

Graphs (BIM-KGs) for the remainder of this thesis
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review, framework development, and framework applicability. Phase one focused on situating

the research within the scholarly discourse of BIM, BIM-KGs, building automation, and KRL.

The results show that since 2010, SWTs have been a driving force advancing BIM research

in the Architecture, Engineering, Construction and Facility Management (AEC/FM) fields by

providing the mechanics to represent complex relationships within the built environment.

Concurrently, KRL has seen significant development in domains such as bioinformatics, where

it has been used to understand complex biological relationships and processes. However,

despite the apparent suitability of applying KRL to the BIM field, such integration has not

materialised and remains largely unexplored. To get around these research shortcomings,

the next phase of this thesis was to develop a framework for applying KRL to BIM-KGs

using performance analysis experiments. Five baseline KRL models were chosen for this.

The chosen models are well-regarded techniques from existing studies, cover a wide range

of methodologies, and have been extensively investigated in the context of drug discovery,

whose data structures closely mirror those of BIM-KGs. Two publicly available BIM-KGs

datasets were used in these experiments. The overall goal was not to identify the best KRL

model configurations. Instead, the study examined more closely how model performance

can be affected by modifications to the training step, selection of hyperparameters and their

optimisation. The experimental results were used to define the prerequisites for integrating

KRL with BIM-KGs in a domain-independent framework. This means that although a building

automation use case is used to formulate the framework, it can assumingly be applied to other

AEC/FM domains such as heritage, quantity-takeoff and energy analysis. The experimental

findings show that RotatE and TransE consistently outperform other models across both

datasets, establishing themselves as robust baselines when integrating KRL with BIM-KGs. It

is also interesting to see that older models like TransE can still be competitive with optimised

training and Hyper-parameter Optimization (HPO) configurations. Adam and NSSA emerged

as favourable training setup choices, suggesting their potential as initial benchmarks for future

evaluations. Despite extensive hyperparameter searches, there was considerable variance

among top-performing model configurations, indicating the need for nuanced parameter

combinations. This complexity suggests that manual tuning may not yield optimal results,

advocating for the adoption of HPO strategies. Furthermore, the disparity in hyperparameters

between the two datasets underscores the influence of dataset-specific parameters. Finally,
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random search methods, when repeated sufficiently, yield configurations closely comparable

to more systematic approaches, albeit in less time.

To illustrate the applicability of the framework, phase three lays out a high-level system

architecture consisting of a BIM model, Internet of Things (IoT) devices, and a prototype

program of the framework wrapped inside an Application Programming Interface (API).

The API consists of a server-side module and a client-side module. The server-side module

demonstrates how a building automation system can communicate with KRL configurators,

external services such as BIM-KG databases, sensor data stores, and Message Queuing

Telemetry Transport (MQTT) brokers. The client-side module consists of a Graphical User

Interface (GUI) with a Construction Operations Building Information Exchange (COBie)

handler service that facilitates the curation of BIM-KGs from COBie files and an interrogation

service that facilitates declarative interrogation of the server-side module using SPARQL

Protocol and RDF Query Language (SPARQL) and Graph Query Language (GraphQL).

In conclusion, for KRL to impact the AEC/FM domain, this work emphasizes the

critical importance of comprehensively reporting model architectures, training setups, and

hyperparameters to enhance trust, reproducibility, and understanding of KRL-based methods

among AEC/FM stakeholders and researchers. This insight highlights a prevalent issue in the

AEC/FM field where results are often difficult to replicate due to incomplete documentation.
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informed predictions or decisions without being explicitly programmed.

MR Mean Rank

A performance metric that calculates the average rank position of relevant items in

a list, serving as a measure of how well a ranking model prioritises desired

outcomes.

MRL Margin Ranking Loss

A loss function designed for ranking-based ML tasks. It encourages a predefined

margin between the scores of paired inputs.

MRR Mean Reciprocal Rank

A metric that measures how well a system ranks search results. It is used to

evaluate the effectiveness of ranking systems in search engines, recommendation

systems, and question-answering systems.

MQTT Message Queuing Telemetry Transport

An OASIS standard messaging protocol for the IoT. It is designed as an extremely

lightweight publish/subscribe messaging transport that is ideal for connecting

remote devices with a small code footprint and minimal network bandwidth.
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MVD Model View Definition

A specification that defines a tailored subset of a BIM model, ensuring that only the

relevant data is exchanged for specific workflows or applications such as facility

management, coordination, or cost estimation.

NRML Non-Relational Machine Learning

A term coined in this thesis to represent a ML paradigm that leverages

literal-valued data from a single type of entity, such as all sensors in a building,

where each sensor has associated datatype properties (e.g., reading, calibration date

or location). Non-Relational Machine Learning (NRML) assumes that the literal

values of different entities are independent.

OPM Ontology for Property Management

An ontology for describing temporal properties that are subject to changes as the

building design evolves.

OWA Open World Assumption

A principle in knowledge representation that assumes the absence of a statement in

a dataset does not imply its falsehood, thereby allowing for the possibility that

additional information might exist.

OWL Ontology Web Language

A Semantic Web language for creating and sharing ontologies.

PCB Printed Circuit Board

The baseboard for assembling electronic components and their connections to

support many types of electronic devices.

PDF Portable Document Format

A file format for consistent document presentation and exchange.

PM Project Manager

Oversees planning, execution, and completion of a project.

QName Qualified Name

A compact, namespace-aware identifier that combines a prefix with a local name to

ensure unambiguous identification of elements on the Semantic Web.
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RAG Retrieval-Augmented Generation

A technique that enhances the accuracy and relevance of Large Language

Model (LLM) outputs by allowing them to access and reference external knowledge

bases before generating a response.

R-GCN Relational Graph Convolutional Network

An application of the Graph Convolutional Network (GCN) framework to modeling

and learning from relational data.

RDF Resource Description Framework

A standard model for data interchange that structures information as

triples—comprising a subject, predicate, and object—to enable seamless integration,

sharing, and semantic querying of diverse datasets.

RDFS Resource Description Framework Schema

A Semantic Web language that extends the Resource Description Framework (RDF)

by providing a vocabulary for defining classes, properties, and hierarchical

relationships.

RNN Recurrent Neural Network

A deep learning model that is trained to process and convert a sequential data

input into a specific sequential data output. Sequential data is data, such as words,

sentences, or time-series data, where sequential components interrelate based on

complex semantics and syntax rules.

ROC Receiver Operating Characteristic

A performance evaluation tool for binary classification models that plots the True

Positive Rate (sensitivity) against the False Positive Rate (1 - specificity) as the

decision threshold varies, offering a visual means to assess the trade-off between

correctly identifying positives and avoiding false positives.

SAREF Smart Appliances REFerence

An ontology that provides modular building blocks to represent devices in the smart

home environment, such as lists of functions, commands and states that can be

combined to create complex functionality in a single device.

SGD Stochastic Gradient Descent
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An iterative machine learning algorithm that optimises models by using small

batches of data to update parameters.

SEAS Smart Energy Aware Systems

An ecosystem of modules that together, provide semantic vocabulary to describe

energy systems and their interrelations.

SPL Softplus Loss

A smooth, differentiable loss function that leverages the softplus activation, defined

as softplus(x) = ln (1 + ex), to approximate the behaviour of a rectifier and

provide stable gradients during optimisation, making it particularly useful in

regression or anomaly detection models.

SSN Semantic Sensor Network

An ontology for describing sensors and their observations, the involved procedures,

the studied features of interest, the samples used to do so, and the observed

properties, as well as actuators.

SOSA Sensor, Observation, Sampling and Actuator

A lightweight but self-contained core ontology for the Semantic Sensor

Network (SSN) ontology.

SHACL Shape Constraints Language

A World Wide Web Consortium (W3C) standard that defines a language for

validating RDF graphs against a set of conditions or “shapes,” ensuring that data

conforms to expected structures and constraints.

SPARQL SPARQL Protocol and RDF Query Language

A standard query language for semantic data in RDF.

SRL Statistical Relational Learning

A subfield of machine learning that uses probabilistic models to capture the

uncertainty and dependency structure of entities in linked data. By doing this,

these models can predict complex interdependencies among entities in linked data.

SWT Semantic Web Technologies

A common framework that allows data to be shared and reused across different
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content and information applications and systems.

SWRL Semantic Web Rule Language

A proposed language for expressing rules and logic on the Semantic Web.

TPE Tree-structured Parzen Estimator

A Bayesian optimization method for tuning model hyper-parameters.

URI Uniform Resource Identifier

A standardised string used to uniquely identify and locate resources, enabling

seamless data integration and interoperability.

VAV Variable Air Volume

An HVAC component that dynamically adjusts airflow to different thermal zones

based on varying load demands, enhancing energy efficiency and occupant

comfort, and is often integrated with facility management systems for optimised

building performance.

WWW World Wide Web

The global system of interlinked hypertext documents and resources that allows

access and sharing over the Internet according to specific rules of the Hypertext

Transfer Protocol (HTTP).



Chapter 1

Introduction

The Facility Management (FM) life-cycle of buildings is characterised by a continuous flow

and exchange of information. The involved parties are predominantly operational building

systems, sensor networks, actuators, building occupants, and control agents1. At the

foundation of each party exists heterogeneous processes that inhibit the seamless flow of

contextually rich information needed for several downstream FM tasks, of which building

automation is the focal point of the investigation herein.

This introductory chapter starts by framing the research context within the boundaries of

ongoing efforts to address the issue encapsulated in the above statement. The core research

problem is then proposed, followed by its breakdown into more specific research questions.

The aim and objectives of the study are then made explicit, and the scope of work is laid

out. Finally, this chapter concludes with a summary of the research contributions and the

organisational structure for the rest of the thesis.

1.1 Research Context and Motivation

With most people spending 80–90% of their daily lives indoors, buildings have become the

largest consumers of global energy due to heavy reliance on heating and air conditioning

(Mannan and Al-Ghamdi, 2021). Undoubtedly, the building industry has continued to put

pressure on the sustainability equilibrium of the natural environment (Dong et al., 2021;Woods
1In this thesis, the term agent is used to mean anything that can perceive the built environment around

it, take control actions autonomously to achieve a specific set of goals, and may iteratively improve its
performance by learning from the information around it.

1
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et al., 2022). Notably, extremely high temperatures and prolonged heat waves have been

recorded in many continents and countries (Akompab et al., 2013; Junk et al., 2019; Hopke,

2020; Miller et al., 2021; Barriopedro et al., 2023; Mario et al., 2024). Moreover, the frequency,

intensity, and duration of these heat waves are increasing rapidly, making adaptation to heat

a priority (Peng et al., 2011; Mitchell et al., 2016; Baniassadi et al., 2018; Alam et al., 2019;

Kriebel-Gasparro, 2022).

Global energy efficiency policies and regulations are rapidly evolving to reverse this trend

(Zhou et al., 2020b; Viguié et al., 2020; International Energy Agency (IEA), 2023), and the

ripple effects are being felt by building owners. They are increasingly being forced to develop

buildings characterised by intricate automation systems and swarms of sensor networks

toward optimal performance. With this ever-growing complexity of the built environment,

so has the maintenance challenge increased. Moreover, the already existing stochastic factors

in play, such as occupancy behaviour, tightness of the building envelope, and variable weather

patterns, only compound this problem. As a result, developing agents with contextually

adaptive control policies has become a finicky process that requires exhaustive thought and

care. Curry et al. (2012)’s investigation attributed this puzzle to difficulties in identifying and

exploiting the inherent latent dependencies between the factors mentioned above.

1.1.1 The Facility Management Challenge

As soon as a building is commissioned, a chain of events is set in motion to ensure

the proper functionality of its systems and that operational efficiency goals are met in

compliance with established regulations. Over the years, this FM process has steered towards

occupant-centricity, which not only means that building occupants are getting more engaged

in the operation process of embedded building systems, but also optimization targets are not

achieved at the expense of their comfort (Park and Nagy, 2018; Park et al., 2019b,a; O’Brien

et al., 2020; Park et al., 2022; Jia et al., 2023; Deng et al., 2023). On that basis, FM qualifies

to be a multi-objective optimization problem that requires a careful trade-off analysis between

conflicting objectives (i.e., achieving both operational and energy efficiency while maintaining

acceptable indoor air quality and thermal comfort) (Toffolo and Lazzaretto, 2002; Delgarm

et al., 2016; Shaikh et al., 2018; Yong et al., 2020; Wang et al., 2023).
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Just like any other stage of a building’s life-cycle, FM is a heavily data-driven process

that involves multidisciplinary stakeholders constantly exchanging and sharing heterogeneous

information, which is mainly attributed to their departmentalised data handling cultures. Any

deficiencies that arise in managing this heterogeneity can arguably propagate to the building

systems in the loop, leading to unintended and unexpected under-performing behaviour. The

heterogeneity scope addressed in this thesis is discussed in Subsection 1.6.1.

1.1.2 Digitisation of the Facility Management Process

Traditionally, FM information is collated by the design and construction team and piped to

the operations team close to the handover stage of a building. At such a time when project

budgets and deadlines are soon approaching their elastic limit, perhaps an important question

to ask is “how often is this information checked for completeness, accuracy, or reliability?”. The

answer to this question is arguably never. To complicate matters further, some FM information

is stored using traditional Computer-Aided Design (CAD) drawings and paper files, making

its utilisation cumbersome and inefficient. As a result, building owners started to embrace

Computerized Maintenance Management Systems (CMMSs) and Computer-Aided Facility

Management (CAFM) systems to capture FM information in a more structured and digitised

way. However, even with these, typical day-to-day operational information is usually locked

in a sea of Portable Document Format (PDF) files. All these challenges necessitate an efficient

mechanism for capturing and propagating FM information from the outset of a building’s

design and construction to its operational agents.

To an extent, Building Information Modeling (BIM) has served in this role as the primary

driver of digitisation in the Architecture, Engineering, Construction and Facility Management

(AEC/FM) industries by providing an efficient way of handling large amounts of building

information (semantic and geometric) centrally within a three-dimensional model (Borrmann

et al., 2018). However, several obstacles remain on the critical path to sharing this model

information within and outside the AEC industry, which impedes the incorporation of other

disciplines into the BIM framework (Pauwels et al., 2017b; Werbrouck et al., 2018). Literature

has attributed this exchange bottleneck to the schema design of BIM’s data-exchange model,

Industry Foundation Classes (IFC) (Barbau et al., 2012; Beetz et al., 2009; El-Mekawy, 2010;
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Gómez-Romero et al., 2015;McGlinn et al., 2016). Until 2016, the IFC schemawas only available

in its native EXPRESS format, which is cumbersome to work with in domain applications such

as building automation, geo-spatial, heritage and facility management (Pauwels and Terkaj,

2016; Pauwels and Roxin, 2017).

Specific to FM is the Construction Operations Building Information Exchange (COBie)

standard, a subset of IFC which encapsulates the industry’s best practices for exchanging

FM information between a construction firm and a facility management team (East et al.,

2013; Teicholz, 2013). Although COBie’s adoption and interest are on the rise, its spreadsheet

architecture is cumbersome to navigate (Anderson et al., 2012; Kumar and Teo, 2021a,b), and

there are still many misconceptions surrounding its use and, as a result, it is underutilised.

Meanwhile, independent of IFC and outside the AEC/FM industry, other powerful

knowledge representation techniques are trending with various disciplines able to interlink

their heterogeneous datasets using Semantic Web Technologies (SWT) underpinned by

principles of the World Wide Web (WWW) (Berners-Lee, 1996; Berners-Lee et al., 2001;

Berners-Lee, 2006). Only recently has there been an increase in research interest in applying

this notion to the BIM ecosystem as a mechanism of integrating, managing and extracting

value from its heterogeneous data sources (Barbau et al., 2012; Beetz et al., 2009; Pauwels and

Roxin, 2017; Pauwels and Terkaj, 2016).

1.1.3 Building Automation in Facility Management

Building automation is ideally a centralised process that involves the automated control of

a building’s electrical equipment, such as Heating, Ventilation and Air Conditioning (HVAC),

lighting and access control, all driven by sensor networks, actuators and control agents, which

follow a set of predefined or self-learned control policies.

As mentioned earlier, FM is a multi-objective optimisation problem, andMachine Learning

(ML) is a promising solution that is being widely adopted to solve such problems (Toffolo

and Lazzaretto, 2002; Asadi et al., 2012; Shaikh et al., 2018; Chen et al., 2018a; Merlet et al.,

2022; Wijeratne et al., 2022). At the foundation of ML is the principle of first developing

a statistically driven mathematical model, a mechanism for ingesting data in its rawest

form while subsequently learning to extract the most relevant information (typically hidden
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features and patterns) necessary for performing a specific downstream task. But because

the building automation domain is highly fragmented, a naive application of ML would

lead to models that apply deductions with low precision, efficiency, and scalability. Several

proposals anchored by SWT have been put forward in the literature (Pauwels et al., 2018;

Pauwels and Terkaj, 2016; Pauwels et al., 2017a; Rasmussen et al., 2019; Pauwels et al., 2022)

to alleviate this fragmentation. The resulting semantic glue has made it easier for facility

managers to link and holistically analyse data collected across multiple operational building

systems. This work also envisages such an integrator as a data fusion strategy that can be

integrated into the learning pipeline of building automation ML models towards improved

collective reasoning. However, this is still in its infancy due to the limited understanding of

the peculiarities arising from linking FM data that is encapsulated in BIM-based Knowledge

Graphs (BIM-KGs) with ML models. Certain application fields, such as social network

analysis, drug discovery in bioinformatics, and fraud detection in e-commerce, often deal with

immensely interwoven and complex dataset structures. Knowledge Representation Learning

(KRL), and Statistical Relational Learning (SRL) are subsets of ML that have made significant

strides in understanding the idiosyncrasies of these datasets (Nickel et al., 2011, 2012, 2016;

Lin et al., 2018; Yi et al., 2022). However, the same cannot be said for their application in the

FM domain, yet it exhibits similarly intricate datasets. This thesis aims to explore this research

direction.

Before presenting the core problem statement of the thesis, it is necessary to delineate the

distinction betweenKRL and SRL. Both are related but are distinct subsets ofML. We shall start

with what they both have in common, that is, the mechanics for extracting knowledge from

data and representing it in a structured format for downstream tasks. KRL does this by learning

a low-dimensional representation of a dataset (typically a knowledge graph) while preserving

the underlying semantic meaning (Liu et al., 2016). By contrast, SRL uses probabilistic models

to capture the uncertainty and dependency structure of entities in linked data. This approach

allows a model to make probabilistic predictions about the relationships between the linked

datasets and to reason about the uncertainty of these predictions (Ginestet, 2010). In this

thesis, focus is placed on KRL models because they offer two advantages that align well with

the research objectives, that is, intrinsic compatibility with knowledge graphs (Lin et al., 2018)

and extensibility to deep learning approaches (Wang et al., 2024). The efforts to integrate KRL
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with BIM-KGs are still very slow, primarily due to the absence of standardised procedures for

training and evaluating KRL models within the BIM context.

1.2 Problem Statement

This thesis is primarily driven by the following research question.

How can FM datasets originating from sources inside and outside of a building be

efficiently integrated into the self-learning process of building automation agents?

FM datasets are inherently heterogeneous and fragmented. If expressive enough

mechanisms are orchestrated to represent and unify these datasets, the resulting analytics have

the potential to confirm known FM inefficiencies, shed light on new ones or prove previous

hypotheses wrong. Whilst SWTs have emerged as the promising orchestrator to achieve this,

so far, their primary focus has been on achieving semantic interoperability for logical inference

and complex querying. However, what is still in its infancy is investigating how to leverage

the inherent relational structure of semantically inter-linked FM datasets as a mechanism for

message passing and information propagation to facilitate collective contextual reasoning2 in

building automation agents. In an attempt to bridge this gap, this thesis builds on the work of

several previous researchers to propose a Knowledge Representation Learning-based Building

Control Framework (KRL-based BCF). To the best of the author’s knowledge, no attempts have

been made to report model architectures, training setups, and hyperparameters to enhance

trust, reproducibility and understanding of KRL-based methods among AEC/FM stakeholders

and researchers. It is important to note that this framework should be taken as exemplary

rather than exhaustive, and a high-level system architecture is presented to demonstrate how

the proposed framework can be deployed in practice.
2Inter-linked data exhibits patterns and dependencies that occur between attributes and relationships

of different entities of the dataset. ML methods that can exploit these patterns collectively in their learning
pipeline are referred to in this thesis as exhibitors of collective contextual reasoning.



1.3. Research Questions 7

1.3 Research Questions

Based on the above problem statement, a design of the following research questions is deemed

appropriate to guide the direction of this thesis.

• Research Question 1 (RQ1): How can knowledge graphs be used to represent

the semantic relationships between different building components and systems using

domain-agnostic technologies for efficient utilisation in downstream KRL tasks?

This research question addresses an important data management problem in the highly

fragmented and data-intensive building automation domain. The question is tackled

by first analysing the current literature for relevant theories, methods, and tools that

have been developed to capture semantic relationships between different building

components and systems concerning automation and control. Specific focus is placed

on the use of ontologies and SWTs to formulate BIM-KGs while investigating their fit

within the boundaries of KRL.

• ResearchQuestion 2 (RQ2): How can KRL be used to learn the relationships formulated

in Research Question 1 for building automation?

This research question investigates effective ways to integrate and use linked building

data (BIM-KGs) in the training and evaluation of KRL algorithms, and how the reliability

and robustness of these algorithms can be ensured. To answer this, a literature review

is first conducted to investigate the barriers that currently inhibit the use of KRL with

BIM-KGs. Experiments are then designed and conducted to assess the nuances of the

combination in question. 5 baseline KRL models and 2 publicly available BIM-KGs are

used for this.

• Research Question 3 (RQ3): How can the prerequisites for integrating KRL with

BIM-KGs be formalised in a practical framework to enhance trust, reproducibility and

understanding of KRL-based methods among AEC/FM stakeholders and researchers?
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To answer this question, the experimental results from Research Question 2 are used

to delineate the prerequisites in question, which are then used to define a step-by-step

framework. To illustrate its implementation, a high-level system architecture is devised

consisting of a BIM model, Internet of Things (IoT) devices, and a prototype program of

the framework wrapped inside an Application Programming Interface (API). Although

a building automation use case is used to formulate the framework, the above setup can

presumably be used as a reference point for extensibility to other AEC/FM domains.

1.4 Aim

To propose and evaluate a KRL-based BCFs that leverages the inherent relational structure of

semantically inter-linked FM datasets to facilitate collective contextual reasoning in building

automation agents.

1.5 Objectives

To achieve the above aim, the following research objectives must be met.

1. To explore the use of knowledge graphs to represent the semantic relationships between

different building components and systems using domain-agnostic technologies.

2. To investigate the use of KRL to learn the relationships between different building

components and systems within the context of building automation and control.

3. To formulate a practical framework that encapsulates the prerequisites for integrating

KRL with BIM-KGs.

1.6 Research Scope and Limitations

This section outlines the boundaries of this thesis and clarifies the specific areas in which

the proposed framework has been investigated. It sets the context by explaining the primary

focus of the research and delineates the key constraints within which this study operates. The
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limitations identified highlight areas where further exploration or alternative methods may be

necessary.

1.6.1 Data Heterogeneity

In this thesis, heterogeneity refers primarily to data originating from diverse sources rather

than fundamentally different modalities. This kind of heterogeneity arises because each

department, such as operations, maintenance, or asset management, often follows its own

data handling culture, standards, file formats, and software tools. This notion of heterogeneity

differs from multimodal scenarios in deep learning (Bayoudh et al., 2021; Jabeen et al., 2023),

where data might span entirely different modalities (such as point cloud data, video, textual

specifications, and sensor streams). Instead, here it refers to domain-specific information that,

despite originating from multiple sources, remains primarily in structured or semi-structured

formats and can be homogenised by a suitable interoperability standard. Thus, while truly

multimodal deep learning is undoubtedly valuable, this is not the focal point of the work

herein. Future research could explore approaches incorporating multimodal BIM data with

advanced deep learning architectures capable of consuming it. Consequently, although this

work’s findings on BIM data interoperability apply to many AEC/FM scenarios, they may

not directly extend to comprehensive, multimodal KRL applications that integrate computer

vision, natural language processing, or other advanced deep learning techniques.

1.6.2 Data Modelling

Within the context of BIM-KGs, this thesis targets a specific set of domain-agnostic data

modelling approaches that are anchored by SWTs. Rather than developing new datamodelling

vocabularies (ontologies), this work adopts already existing ones from the Linked Building

Data Community Group (LBDCG)3. However, due to the overly flexible and open-ended nature

of the Semantic Web, the vocabulary choices are guided by carefully crafted competency

questions delineating the objectives a BIM-KG needs to satisfy to stay relevant to the KRL

problem at hand. In standard ontology development methodologies, competency questions

usually denote very specific user-oriented queries that an ontology must be able to answer.
3https://www.w3.org/community/lbd/

https://www.w3.org/community/lbd/
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In this work, the term has been used more broadly to define overarching semantic objectives

rather than narrowly scoped user requirements.

Building a BIM-KG is not a desired output in this thesis, but rather a deep dive into the

technical aspects and key considerations for building an effective BIM-KG for training KRL

models.

1.6.3 Integration of KRL with BIM-KGs

To investigate the integration of KRL to BIM-KGs, an experimental approach is adopted

using 5 baseline KRL models and 2 publicly available BIM-KG datasets. One key motivation

for focusing on these baseline models lies in the relatively nascent intersection of KRL

and BIM-KGs. While deep learning approaches are undoubtedly state-of-the-art in many

other domains, the maturity of KRL applications in the AEC/FM field (particularly involving

BIM-KGs) is still very infant. Employing advanced neural architectures prematurely risks

overshadowing or missing the fundamental considerations vital to establishing a stable

methodological foundation. As a result, this research prioritises a controlled exploration of

well-established KRL models—namely ComplEx, DistMult, RotatE, TransE, and TransH—that

have proven effective on widely used benchmark datasets in knowledge graph literature (Dai

et al., 2020; Bonner et al., 2022; Ge et al., 2023). Another reason is that these baseline models

are easier to interpret and are less resource-intensive to implement and tune, making them

suitable for a domain that has not yet standardised key aspects of KRL best practices. By

demonstrating how these simpler, yet robust approaches perform on BIM-KGs, this work aims

to distil essential insights, such as the impact of data quality, hyperparameter selection, and

training procedures, that could otherwise be obscured by the greater complexity and heavier

computational requirements of deep neural network models. Once these basic principles are

clarified and validated, future research will be better equipped to evaluate whether advanced

neural architectures offer a practical advantage for this domain, or whether their additional

complexity complicates adoption without providing commensurate gains.

Finding the best KRL model configuration is not the goal of the experiments. Instead,

they exclusively focus on examining how modifications to the training step, selection of

hyperparameters, their optimisation, and initialisation approaches directly affect model
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performance. The experimental results are used to analyse and formalise the prerequisites

for integrating KRL with BIM-KGs in a domain-independent framework. This means that

although a building automation use case is used to formulate the framework, it can presumably

be extended and applied to other AEC/FM domains. Throughout the development of the

framework, various concepts are presented. However, certain concepts have been identified

as non-core and beyond the framework’s scope, and they have been appropriately classified as

such when they arise. Nevertheless, they are discussed because of their potential for offering

extensibility to the framework in future research.

1.6.4 Framework Applicability System Architecture

Because the integration of KRL with BIM-KGs is still in an emergent state, the framework

developed in this thesis warrants both theoretical and practical scaffolding to guide real-world

implementations. The applicability system architecture introduced in this work is only at

a high level. It illustrates the conceptual pathways and overarching design considerations

for integrating KRL into real-life building automation workflows, but leaves significant room

for deeper exploration. Designing a fully implemented low-level setup requires extensive

data harmonisation across several heterogeneous systems, real-time sensor integration, and

scalable KRL computational workflows—objectives. This goes beyond the scope of this work

but remains critical for the broader adoption of the framework. As such, proposing this

setup at a higher level is a deliberate first step emphasizing core modules such as KRL

configurators, BIM-KG databases, IoT data flows, and user-facing interfaces, while allowing

researchers and practitioners the flexibility to tailor specific modules to their local context.

This top-down approach also provides a foundational template that others can adapt and

refine, whether to different building sizes, regulatory constraints, or occupant interaction

models. Future research will need to address the finer details of KRL model deployment. For

example, communication protocols in building automation systems often differ substantially,

and occupant behaviour injects real-time variability that can complicate KRL-driven insights.

A dedicated, low-level prototype in a real-world building could systematically capture these

complexities. Moreover, to lower adoption barriers among industry professionals—many of

whommay not be “tech-savvy”—the setup presented emphasizes a design ethos that prioritizes
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accessible interaction methods such as Retrieval-Augmented Generation (RAG) and Large

Language Models (LLMs) (Gao et al., 2023; Chen et al., 2024) which offer intuitive interfaces

for querying, interpreting, and visualizing KRL-driven methods.

1.7 Research Contributions

This research generally provides a foundation for enhancing trust, reproducibility and

understanding of KRL-based methods among AEC/FM stakeholders and researchers. The

thesis reflects on the technical aspects of using SWTs to formulate BIM-KGs for KRL tasks.

This is an extension to what was previously known; using SWTs to achieve semantic

interoperability for mainly logical inference and complex querying tasks. The proposed

framework aims to provide facility managers with the foundational basis to develop more

context-aware building controllers that better adapt to the stochastic building environment.

While linking back to the research questions, the explicit contributions of this work are

summarised below:

Contributions from RQ1

RQ1: How can knowledge graphs be used to represent the semantic relationships between different

building components and systems using domain-agnostic technologies for efficient utilisation in

downstream KRL tasks?

1. This work demonstrated the construction of BIM-KGs for KRL by

• Providing a detailed walkthrough on formulating BIM-KGs using domain-agnostic

SWTs.

• Providing a detailed narrative on how to identify small, modular and extensible

ontologies for building reusable BIM-KGs and validating them using standardised

mechanisms such as Shape Constraints Language (SHACL) and SPARQL Protocol

and RDF Query Language (SPARQL).

• Highlighting common pitfalls that can have cascading effects on the performance

of KRL models, such as structural inconsistencies, data incompleteness, and

redundancy.
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2. This work provided some guidelines for ensuring BIM-KG Data Quality in KRL by

• Detailing the preliminary checks that ensure appropriate BIM-KG scoping for

downstream KRL.

• Establishing a foundation for AEC/FM researchers to identify further “data

fitness” criteria relevant to specific KRL use cases beyond this research’s building

automation use case.

Contributions from RQ2

RQ2: How can KRL be used to learn the relationships formulated in RQ1 for building automation?

1. This work provided a performance analysis narrative of KRL Models on BIM-KGs by

• Conducting extensive experiments with five baseline KRL models on two publicly

available BIM-KG datasets, focusing on understanding the nuances that can

affect model performance across various training setups and hyperparameter

configurations.

• Identifying RotatE and TransE, coupled with NSSA loss and the Adam optimizer,

as robust baselines for building automation scenarios, suggesting their potential

as initial benchmarks for future evaluations.

• Demonstrating that older models, such as TransE, remain competitive with proper

Hyper-parameter Optimization (HPO).

2. Provided insights into the nuances of hyperparameter tuning of KRL models by

• Systematically comparing different hyperparameter selection and optimisation

strategies, such as naive random search and a systematic HPO search, to show

their distinct impacts on model performance.

• Revealing the dataset-specific nature of optimal hyperparameter configurations,

pointing to the need for flexible, data-specific HPO approaches in BIM-KG

contexts.

3. Devised a foundation for enhancing trust and reproducibility of KRL-based methods in

AEC/FM by
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• Highlighting best practices, such as clear reporting of model architectures, training

setups, and hyperparameters, to foster trust and reproducibility among AEC/FM

stakeholders.

• Demonstrating that agreed-upon benchmark training datasets together with a

transparent and standardised approach to model selection and HPO can lower KRL

adoption barriers in the AEC/FM industry.

Contributions from RQ3

RQ3: How can the prerequisites for integrating KRL with BIM-KGs be formalised in a practical

framework to enhance trust, reproducibility, and understanding of KRL-based methods among

AEC/FM stakeholders and researchers?

1. Domain-agnostic KRL - BIM-KG integration framework

• Developed a step-by-step framework that encapsulates the technical prerequisites

(from BIM-KG construction to KRL model training) needed to integrate KRL into

real-world AEC/FM workflows.

• Structured these prerequisites based on empirical insights from the performance

analysis experiments in RQ2, ensuring that the framework addresses practical

challenges such as data validation and model tuning.

2. Framework applicability system architecture

• Devised a high-level practical scaffolding setup to guide real-world

implementation of KRL-based methods in AEC/FM. This setup includes a

BIM model, IoT devices, and a prototype of the framework accessible via an API.

• Demonstrated how the framework can be extended to other AEC/FM domains,

showing its flexibility beyond the initial building automation use case.

3. Resource sharing for further development

• Published the datasets, trained models, and visualisation materials to encourage

the research community to replicate, validate, or improve upon the research.
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1.8 Thesis Outline

1. Chapter 1: Introduces the research context, motivation, scope, research questions and

objectives of the study.

2. Chapter 2: Situates the research within the scholarly discourse of BIM, BIM-KGs, and

KRL, and outlines the research gaps this thesis addresses.

3. Chapter 3: Details the experimental setups, research methods used and their

significance in addressing the objectives.

4. Chapter 4: Presents a summary of the experimental results and discusses the findings

in alignment with the defined research questions.

5. Chapter 5: Dissects the findings of Chapter 4 and reflects on them to provide insight

into possible future research directions while delineating the limitations faced in this

thesis.



Chapter 2

Literature Review

This chapter introduces several fundamental concepts pertaining to the research and provides

a detailed background on the research topic, identifying current gaps and outlining potential

areas for future research.

2.1 Introduction

Optimising Building Automation Systems (BASs) has been widely studied, but the

incorporation of semantic information remains underexplored, despite its potential to enhance

collective contextual reasoning in building automation agents. This thesis defines collective

contextual reasoning as the ability of building automation agents1 to reason and make

decisions based on the aggregated context of a building. This context can encompass

heterogeneous parameters ranging from indoor to outdoor, such as the current state of the

building, historical data, indoor comfort goals, weather conditions, and occupant behaviour.

These parameters also have unknown latent dependencies that may be statistical rather than

deterministic. The previous chapter hypothesised that a holistic representation of building

information is a prerequisite for building automation agents to infer hidden patterns in

building information.
1For simplicity, this thesis will sometimes refer to building automation agents simply as ”agents”

16
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2.2 The Need for Linked Data in the AEC/FM industry

The AEC/FM industry is underpinned by a continuous flow and exchange of information

during the design, construction and maintenance of the built environment (Borrmann et al.,

2018). This information is usually fragmented and domain-specific due to the complex and

departmental nature of the industry, making reliable exchange and stakeholder collaboration

a challenge (Pauwels et al., 2018). Furthermore, this fragmentation hinders the integration

of expert knowledge among designers, contractors and facility managers, diminishing their

opportunity to optimally influence the design, construction and management of a built asset.

Nawi et al. (2014) investigated the fragmentation issues of the AEC/FM industry in detail

and highlighted the resulting implications on project cost, schedule, dispute handling and

unsustainable design-build routines. Autodesk’s 2021 FMI report highlighted some surprising

figures on how much data and time is wasted in the AEC/FM industry i.e., 95.5% of the

construction data goes unused, 13% of the construction professionals’ working hours are

spent looking for project information, and 30% of AEC/FM companies are using software

that does not integrate. (Thomas and Bowman, 2021). Within the building automation

context, most optimisation strategies rely on heterogeneous building information that has

been generated from various data islands and often exists in unrelated formats. When used in

its raw, unintegrated form, this information is ineffective and has a higher probability of being

underutilised in many downstream building automation tasks (Borrmann et al., 2018; Pauwels

et al., 2018).

2.3 BIM: A Prerequisite for Linked Building Data

The application of digital tools in building operations remains in its infancy, making it

one of the biggest missed opportunities in building maintenance today (Borrmann et al.,

2018). Traditionally, at handover, facility managers receive piecemeal operational building

information using PDF, compact disc and other storage media. As a consequence, this

information is often unstructured and semantically insufficient to support many downstream

building operation tasks (Zhang et al., 2015; Chen et al., 2018b; Lu et al., 2019a; Mason

and Grijalva, 2019). At the heart of the conversation on how this can be solved is BIM,
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a workflow that effectively handles vast amounts of building information centrally within

an intelligent three-dimensional model. The information management protocols offered by

BIM dramatically improve the coordination of FM tasks, semantic enrichment of simulation

models for training autonomous energy control algorithms (Mason and Grijalva, 2019) and

data-driven optimisation of asset designs (Lu et al., 2019b). Furthermore, during operation,

BIM reduces the need for facility managers to manually enter asset data into CMMSs. This

minimises costly errors, clashes, data loss (see Figure 2.1) and FM blind spots, making it easier

for facility managers to locate, interact with, and report on space and asset data.

For lossless data exchange and software interoperability, the BIM ecosystem relies on

IFC, an open, vendor-neutral data exchange format developed by buildingSMART. IFC is

underpinned by technologies from EXPRESS (ISO 10303-11, 2004), an object-oriented data

modelling language specifically designed for product modelling. A detailed description of

its structure is provided by ISO 10303-11 (2004) and Pauwels and Terkaj (2016). Due to

the comprehensive and generic nature of IFC, it is extremely powerful in catering for the

different needs of presenting building information. However, this not only makes it a complex

data model but also never entirely complete, i.e. the generic flexibility gives undesired

freedom for domain end users and application implementers by limiting the number of

problem-specific constraints at the schema level. As a consequence, it is not uncommon

for some software import-export routines (see Figure 2.2) to exercise data loss and errors

during implementation (Borrmann et al., 2018). In fact, Zhang et al. (2015) highlights how

IFC’s generality results in the lack of several problem-specific constraints and McGlinn et al.

(2016) delineates how IFC does not cover all data structures to meet the requirements of

Figure 2.1: Information loss at various stages of the project lifecycle (Borrmann et al., 2018)
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Figure 2.2: IFC exchange (which relies on end-users’ modelling expertise) between two BIM
software via import-export routines implemented by software developers (Zhang, 2019).

specific energy-management use cases. To satisfy specific data exchange scenarios such as

energy simulations, acoustic performance and structural analysis, schema-level constraints

are applied to IFC using Information Delivery Manuals (IDMs) and Model View Definitions

(MVDs). The constraints determine who provides which information when and to whom for

a specific use case. When the IFC schema was initially developed, its authors recognised

the necessity for extensibility to accommodate the diverse use cases of the AEC/FM industry

(McGlinn et al., 2016; Zhang et al., 2014) as discussed below.

1. The IFC data model is designed with a flexible structure, where many attributes are

defined as OPTIONAL in the latest IFC specification, IFC4x3_ADD22. This design allows

for broad applicability across different domains and lifecycle stages, but also necessitates

the use of MVDs to impose stricter requirements for specific data exchange scenarios.

Furthermore, MVDs serve to specify which attributes must be populated in a given

exchange context to ensure interoperability and compliance with intended workflows.

2. Secondly, IFC provides attribute extension mechanisms via property sets and proxies. As

already mentioned, a syntactically correct IFC instance might miss important attributes

for a specific use-case, for example, the IfcDoor (an entity for modelling doors in IFC)

only has two mandatory attributes: GlobalId and OwnerHistory, IfcWindow only

has GlobalId as a mandatory attribute. This information can only be used to identify

and manage revisions of those object models. All the other information, such as width,

height, fire safety class, thermal performance and price, is regarded as unnecessary for

the syntactic validity of the underlying data model. This is where property sets come

in as an extension mechanism by dynamically creating new properties to supplement

the already defined static attributes within the schema. The new individual properties
2https://ifc43-docs.standards.buildingsmart.org/

https://ifc43-docs.standards.buildingsmart.org/
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are defined using IfcPropertySingleValue, a subproperty of IfcProperty, and

thereafter grouped into an IfcPropertySet which can be assigned to an object via

IfcRelDefinesByProperties. In addition to property sets, IfcProxy serves as a

placeholder for dynamically defining semantic information not yet established by IFC

(Borrmann et al., 2018).

3. A further means of extending the IFC model is provided by externally referenced

properties in libraries such as bSDD (buildingSMART Data Dictionary). SWTs (see

Section 2.4) suggested in Zhang et al. (2015); Debruyne et al. (2017); Werbrouck et al.

(2018); Pauwels et al. (2018) are also steadily emerging as a means of providing more

flexible semantic extension opportunities for the IFC schema.

The above overview is by no means exhaustive but highlights the most significant

underlying concepts of IFC data modelling using the EXPRESS language in an

easy-to-understand fashion to put the research problem into context.

2.4 Extending BIM with Semantic Web Technologies

The existing BIM software ecosystem is predominantly closed and specifically designed

for the AEC/FM sector, which impedes the incorporation of other disciplines into the

BIM framework (Werbrouck et al., 2018). Considering that optimisation problems within

the industry are reliant on several domain experts who generate a lot of heterogeneous

information, having explicit interdisciplinary collaboration is of paramount importance.

Unlike domain-specific BIM (Pauwels et al., 2018), a methodology that allows various

disciplines to interlink their knowledge on a data level already exists with principles based

on the classic WWW (Berners-Lee et al., 2001). The common framework that allows such

heterogeneous knowledge integration, sharing and re-use is called the Semantic Web. It aims

to harmonise semantic ambiguity and discrepancies in heterogeneous data schemata by adding

standardised machine-readable semantics using the Resource Description Framework (RDF)

data model (Berners-Lee et al., 2001). For a building energy optimisation use case, this means

that non-geometrical heterogeneous data from other domains can be used to supplement an

energy analysis building model with valuable attributes. Homogeneity of this nature cannot
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be achieved using the BIM’s native IFC-EXPRESS schema, therefore necessitating schema

translations into open and extensible data structures using Semantic Web Technologies (SWT)

such as RDF (Pan et al., 2004; Pauwels et al., 2010; Yang and Zhang, 2006).

The RDF3 data model is in parallel with object-oriented modelling approaches in IFC,

where notions of entities/classes related by associations are respectively represented in RDF

using concepts related with properties (Pauwels and Terkaj, 2016). Anything described in the

semantic web context is called a resource and is identified via a Uniform Resource Identifier

(URI) (Studer et al., 2007). RDF provides a way of semantically describing these resources by

making simple statements about them. These statements are called triples and syntactically

take the subject-predicate-object format (Manola et al., 2014) as shown in Figure 2.3.

Multiple statements about the same resource increase its semantic meaning and richness as

shown in Figure 2.3 and Figure 2.4 to form a knowledge graph. URIs can be very long, making

triples less human-readable and may contain prohibited characters for resource labelling.

Therefore, Qualified Names (QNames) are often adopted as abbreviations for URIs. A QName

has two parts: a namespace and an identifier in the form namespace:identifier. To store

RDF triples in a compact web-publishable form, several serialisation formats can be used,

i.e., Turtle (Beckett and Berners-Lee, 2011), N3 JavaScript (Berners-Lee and Connolly, 2011),

RDF/XML (Gandon and Schreiber, 2014) and JSON-LD (Kellogg and Champin, 2019). When

several resources related to a specific domain are organised together using formal logics

(Baader, 2003; Hitzler et al., 2012; W3C OWL Working Group, 2012), they form an ontology

or vocabulary. RDF alone is not expressive enough to describe ontologies, but together with

Resource Description Framework Schema (RDFS) and Ontology Web Language (OWL), it is

possible. The complexity and vastness of semantic web models necessitate a methodology for

searching, filtering out and validating the information from them. SPARQL plays this role both

locally and when dealing with federated resources (Harris and Seaborne, 2013; W3C SPARQL

Working Group, 2013).

Several early efforts to embrace SWT within the industry emerged with reliance on

project-specific ontologies thatwere hard to reuse or extend formally to other domains because

of the different vocabularies and taxonomies employed. Some of these works include the

e-COGNOS project from which the e-COGNOS ontology emerged (Wetherill et al., 2002),
3https://www.w3.org/TR/rdf11-primer/

https://www.w3.org/TR/rdf11-primer/
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Figure 2.3: RDF triples in the form subject-predicate-object. The arrows imply directionality
of the relationship.

Figure 2.4: An example of an RDF graph (combination of triples) describing some
information about sensors in a building connected to different air conditioning units and
managed by a root server.

the inteliGrid project ontology for sharing semantics between applications (Dolenc et al.,

2007), Yang and Zhang (2006)’s proposal of an early prototype to support interoperability of

BIM models and project data, Elghamrawy and Boukamp (2008, 2010)’s ontologically driven

model that supports management of and learning from construction problems by holistically

integrating project data. Other notable research in this area can be found in Abdul-Ghafour

et al. (2007); Le and David Jeong (2016); Pauwels et al. (2010); Scherer et al. (2012); Shah et al.

(2011) and Venugopal et al. (2015).

In a push for standardisation, a recommendable and reusable OWL translation of IFC

(ifcOWL) was proposed by Pauwels and Terkaj (2016), which was later agreed upon by the

Linked Data Working Group (LDWG) (W3C, 2014). Before this, however, several efforts to

convert IFC to RDF were made by Agostinho et al. (2007); Beetz et al. (2005); Krima et al.

(2009); Pauwels et al. (2015); Schevers and Drogemuller (2005) and Zhao and Liu (2008), whose

proposals formed the basis for Pauwels and Terkaj (2016)’s work. The ifcOWL ontology has
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further been modified by Pauwels et al. (2017a) for a better representation of geometric data.

Terkaj and Šojić (2015) proposed an extension to ifcOWL in which EXPRESS WHERE rules were

translated to OWL and included in the ifcOWL ontology. In addition, Gómez-Romero et al.

(2015) proposed a fuzzy logic-based extension to the ifcOWL ontology that provides support

for imprecise knowledge representation and retrieval, which is characteristic of ontologies.

The ifcOWL ontology is very large as it encapsulates the entire IFC schema, and without

a doubt, can often prove to be redundant in several use cases or even hard to query. To

this effect, W3C’s LBDCG (W3C, 2014) has progressively developed simpler, modular and

extensible ontologies with intent to cover the IFC schema in smaller and more manageable

modules, with Building Topology Ontology (BOT) (Rasmussen et al., 2017b,a) proving to be

the most reliable baseline module. BOT serves as the key ontology for capturing the building

topology (see Figure 2.5), which is extensible to other domain ontologies like the building

device automation domain (Bonino and De Russis, 2018; Schneider, 2017), sensor domain

(Haller et al., 2017), geospatial domain (McGlinn et al., 2017), and FM domains.

Specific to building automation, several research efforts have emerged to embrace semantic

web approaches in solving energy optimisation problems. For instance, Curry et al.

(2012) combined Linked Data with scenario modelling to support interoperability during

optimisation of building performance. McGlinn et al. (2016) analysed 33 EU projects that

utilised BIM-based energy management plus their data requirements, to identify those that

can benefit from open linked data structures. They found that projects in building design,

intelligent and customer control, monitoring/visualisation, and building redesign would need

a deep exploration of their exact data requirements. Anzaldi et al. (2018) proposed a holistic

Figure 2.5: Zone connectivity as defined in the BOT ontology (Rasmussen et al., 2017a).
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knowledge-based approach for intelligent building energy management using a combination

of ontologies, algorithms and simulations. Radulovic et al. (2015) even went ahead to present

a set of best practices and guidelines for generating and publishing Linked Data with BIM

models in the context of energy consumption in buildings. Corry et al. (2015) and Scherer et al.

(2012) developed a performance assessment ontology that structures heterogeneous building

data into semantically enriched information, which can support the energy management of

buildings. A unified energy representation for smart cities via the DogOnt ontology was

proposed by Bonino and De Russis (2018) by integrating several sub-domains of energy

representation, namely, electrical, thermal and city-level energy profiles. Dibley et al. (2011)

and Dibley et al. (2012) coupled a multi-agent system with an ontology, ’OntoFM’, to support

real-time monitoring of building sensors in an automated and holistic way. Their work

inherited principles from a building ontology based on IFC, a sensors ontology (OntoSensor)

(Russomanno et al., 2005) and a general purpose ontology SUMO (Suggested Upper Merged

Ontology) (Niles and Pease, 2001), which captures domain-independent concepts. To support

interoperability and exchange of data between building energy simulation tools, ‘SimModel’,

an XML-based data model, was proposed by O’Donnell et al. (2011). Pauwels et al. (2014b,a)

then went ahead to avail this model as RDF graphs which can be combined with other

RDF data. Tah and Abanda (2011) developed an ontology to represent information about

photovoltaic systems. Reinisch et al. (2011) and Kofler et al. (2012) proposed a comprehensive

’ThinkHome system’ that relies on an extensive ontological knowledge base to store all

information needed to fulfil goals of energy efficiency and user comfort in future smart

homes. This multi-agent system interacts with the knowledge base via SPARQL queries

and Description Logic (DL) inference to autonomously control a smart home. Much of the

ThinkHome Ontology is inspired by DomoML-env (Sommaruga et al., 2005), an ontology for

human-home interaction aiming to connect household appliances and share information about

their usage. The aforementioned ontologies can also be combined with a set of Semantic

Web Rule Language (SWRL) rules that automatically apply energy management strategies

through inference with the knowledge base Rossello-Busquet et al. (2011). Specifically, these

rules enable the inference engine to infer if any anomalous activities are occurring (e.g. ‘air

conditioners’ that are ‘working’ AND ‘windows’ that are ‘open’). A SPARQL endpoint can

even be put on top of this rule engine so that the user only has to query for the results of the
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rules. Other systems utilising the same SWRL approach to managing smart home appliances

have been proposed by Ricquebourg et al. (2007) and Tomic et al. (2010).

2.5 Augmenting BIM-Knowledge Graphs with Machine

Learning (ML)

Just like the AEC/FM domain has evolved to embrace SWTs, ML is recognising the growing

need to learn from disparate data sources. Wilcke et al. (2017) discusses the current shift in

data science from manual feature engineering to utilising raw data, emphasising the need for

models that can directly consume and learn from diverse types of information scattered across

different domains. To achieve this, a datamodel capable of naturally expressing heterogeneous

knowledge in diverse domains is required, and Wilcke et al. (2017) argues that a knowledge

graph is a suitable candidate. For a specific ML task, it is possible to have good data sources

with the right information, but without exposing the inherent relationships in the data and

adding useful semantics to enhance context, ML models will struggle to deduce informed

decisions. Furthermore, by being able to model incomplete knowledge using the Open World

Assumption (OWA) (Berners-Lee et al., 2001), knowledge graphs are well suited for modelling

real-world data without being concerned how the incompleteness should be dealt with, as is

the case with many traditional MLmethods that need to employ complex and computationally

expensive data imputation techniques when faced with missing or incomplete data (Sterne

et al., 2009; Zhou et al., 2024). A knowledge graph can use its intrinsic relationships to

gracefully accommodate missing information by providing ML models the ability to reason

over the graph structure and infer new connections based on known relationships. This means

that a knowledge graph has the flexibility of representing implied facts from explicitly declared

knowledge without the need to include the implied triples in the graph. This allows knowledge

graphs to achieve high levels of semantic expressivity without being redundant, overly large

and complex at the expense of representing many facts.

The emergence of deep learning models has paved the way for workflows that deal with

extremely large raw data to automatically learn relevant features without the need for too

much pre-processing. Most current models are designed for specific domains, such as image
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processing (LeCun et al., 1990; Krizhevsky et al., 2012; Le, 2013; Lowe, 1999), sound, or

language (Graves et al., 2013; Nguyen and Grishman, 2015). However, they often struggle with

heterogeneous knowledge, requiring manual pre-processing—a step where crucial learning

information, including hidden relationships, can be lost (Wilcke et al., 2017). Recently, the ML

community has taken a keen interest in making the knowledge graph part of the learning

process (see Figure 2.6 for a high-level schematic of such learning). Some methods still

require a great deal of pre-processing, while others try to work with knowledge graphs more

naturally. The former first translates knowledge graphs into feature vectors, which are a

more manageable form for many existing learning methods. An example is substructure

counting graph kernels (Lösch et al., 2012), a type of algorithm designed to create feature

vectors for individual nodes in a knowledge graph. They do this by tallying different types

of substructures found near each node in a fashion similar to K-Nearest Neighbour methods

in Cunningham and Delany (2007). A drawback of these substructure counting methods is

that the size of the feature vector grows with the size of the data, which led to a proposal of

RDF2Vec by Ristoski and Paulheim (2016) to handle large graphsmore efficiently. More natural

workflows of dealing with knowledge graphs include representing triples as a third-order

tensor and adopting tensor decomposition methods for collective learning (Kolda and Bader,

2009; Nickel, 2013). Graph Convolutional Network (GCN) (Kipf and Welling, 2016) can also

Figure 2.6: Schematic representation of a system that integrates SWTs into deep learning
(Futia and Vetrò, 2020).
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be used to model and learn from relational data more naturally as described by Schlichtkrull

et al. (2017). Nickel et al. (2016) provides a very comprehensive review on the use of SRL on

knowledge graphs. SRL uses probabilistic models to capture the uncertainty and dependency

structure of entities in a knowledge graph. Traditional SRL methods, such as Inductive Logic

Programming (Muggleton and de Raedt, 1994), Rule mining (Völker and Niepert, 2011), and

graphical models Wainwright and Jordan (2008), have been widely used for learning from

graphs. However, these methods suffer from scalability issues as the number of statistical

dependencies increases. They also require extensive prior knowledge about the learning task

at hand, which can be very computationally expensive to infer if it is not available (Nickel,

2013). One of the biggest challenges of working with knowledge graphs is their lack of spatial

locality, meaning their structure cannot be efficiently mapped onto a fixed grid. This is evident

in Figure 2.7 and Figure 2.8, which illustrate how images and speech/text sequences naturally

conform to fixed grid representations. In contrast, Figure 2.9 highlights the fundamental

differences between the topological structure of knowledge graphs and the structured grids

used for images, speech, and text sequences.

Figure 2.7: Convolutional Neural Network (CNN) models for fixed-size images/grids

Figure 2.8: Recurrent Neural Network (RNN) models for text/sequences

Furthermore, the graph isomorphism problem, which refers to the difficulty of determining

whether two graphs are structurally identical, adds to the difficulty of learning from

knowledge graphs. This is a known problem that is neither NP-complete nor solvable in

polynomial time, rendering it computationally difficult for traditional SRL methods that rely

on manual feature engineering (Corneil and Gotlieb, 1970; Garey and Johnson, 1979; Babai,
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Figure 2.9: Knowledge graphs are of arbitrary size and have a complex topological structure
with no spatial locality like grids

2015; An et al., 2024). Also, because knowledge graphs can represent multimodal data

such as text, numbers, and timestamps, traditional SRL approaches with limited expressivity

struggle to model and learn from such complex representations (Nickel et al., 2011; Nickel,

2013). To overcome these challenges, Knowledge Representation Learning (KRL) methods

have gained a lot of traction (Liu et al., 2016; Hamilton et al., 2017; Zhang et al., 2018;

Madjiheurem and Toni, 2019; Lin et al., 2018). These approaches aim to learn embeddings for

nodes and edges within a knowledge graph without the need for manual feature engineering.

Embeddings capture the essential characteristics and relationships of the graph’s entities

using dense vector representations. These vectors are learned in such a way that similar

nodes or edges in the graph have similar embeddings. The key idea behind embeddings

is to transform the knowledge graph, which is often complex and high-dimensional, into a

lower-dimensional space where latent patterns can be discovered, more easily analysed and

utilised in downstream tasks such as link prediction, node classification, and community

detection. An important aspect of embedding techniques is the notion of score functions.

These are mathematical formulations that assess how likely a triple is to be true based on the

learnt embeddings, with a larger score typically implying a more plausible triple. For a triple

(h, r, t), the score function f(h, r, t)maps it to a scalar value s ∈ R that reflects the plausibility

of the triple being true. Each entity h and t and the relation r are represented as vectors in a

d-dimensional continuous vector space, with embeddings h, t, r ∈ Rd.

Certain application fields, such as social network analysis (Xu, 2021), drug discovery

in bio-informatics (MacLean, 2021), and fraud detection in e-commerce (Shen et al., 2021)

often deal with immensely interwoven and complex dataset structures. KRL is one aspect

of ML that has made significant strides in understanding the idiosyncrasies of these datasets,

however, the same cannot be said for its application in the AEC/FM domain, yet it exhibits

similarly intricate datasets. To the best of the author’s knowledge, no work has been done
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to comparatively assess the performance of KRL models when applied to BIM-Knowledge

Graphs. To enhance reproducibility, trust and fair comparison of newly developed models

against well-established baseline approaches, it is important to report model architectures,

training steps, hyperparameters and dataset split mechanisms alongside any performance

metrics.

2.6 An Intuitive Mathematical Perspective to Learning

from BIM-Knowledge Graphs

For this thesis, a mathematical explanation from both set theory and first-order logic is

not only deemed appropriate to define relational data but also highlights the relevance of

exploiting the intrinsic relational structure of BIM-Knowledge Graphs in downstream building

automation tasks. Relations, in general, define connections between entities, such as whether

two rooms have a wall that connects them, whether a person has a specific indoor comfort

preference, or whether a sensor is found in a particular space of a building. More precisely,

in the domain of set theory and first-order logic, an n-ary relation R over sets A1, · · ·, An is

defined as a set of ordered n-tuples4 〈a1, · · ·, an〉 where ai is an element of Ai ∀ i, 16 i 6 n.

More intuitively, an n-ary relation R is a subset of the Cartesian product of n sets (Halmos,

1974) (Chapter 7) A1, · · ·, An, formally expressed as:

R ⊆ A1 × · · · × An (2.1)

The relationR is interpreted as the set of all existing relationships, while the Cartesian product

is interpreted as the set of all possible relationships over the entities in the domainsA1, · · ·,An.

A single n-tuple 〈a1, · · ·,an〉 therefore represents a possible relationship between the entities

a1, · · ·,an, which we simply denote by R〈a1, · · ·,an〉. With this background, it is evident that

the RDF data modelling structure adopts binary or dyadic relations of the form:

R ⊆ A1 ×A2 (2.2)
4A tuple is useful for aggregating data that is needed to be considered as a single unit.
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There are situations in RDF which require the modelling of n-ary relations involving more

than two sets of entities. These can be handled efficiently using blank nodes that intrinsically

force back a dyadic relational structure. Assume that entities of a particular type, for instance,

sensors, are encapsulated within a set, Em. Similarly, let a set Ln hold possible literals

values associated with the datatype property of an entity, for instance, a sensor reading, last

calibration date of a sensor, U-value of a window glass. Then, any relation R ⊆ E i × E j is an

object property while R ⊆ E i × Lj is a datatype property. Typical Non-Relational Machine

Learning (NRML) settings utilize data that is literal valued and spanning over a single type

of entity i.e. consisting relations that take the form E × Lj, with E denoting the set of all

entities of the same type and the sets Lj corresponding to the different datatype properties

of these entities. Intuitively, E could contain all sensors in a building and the sets Lj could

reflect the datatype properties of those sensors like reading, calibration date, location in the

building, maintenance date, accuracy etc. NRMLmakes an independence assumption between

the literal values of different entities. For instance the accuracy of a sensor s1 ∈ E might

depend on other datatype properties of this particular sensor like its calibration date, but it

is assumed to be independent from the datatype properties of another sensor s2 ∈ E if s1

6= s2. However, in a relational learning setting, different entity types can not only exist but

also have relationships between them, taking the form, E i × E j. To put this in context, the

previous set of sensors E i together with their datatype properties could be complemented by

a set of actuators E j and a relation isConnectedTo ⊆ E i × E j which indicates which sensor is

connected to which actuator. Take, for instance, a sensor observing a certain feature of interest

in a building. If this sensor fails and the connected actuator starts deriving wrong control

actions, one could implicitly assign credibility of the actuation error to the failed sensor using

the existential relation between the two.

2.7 BIM-Knowledge Graph Patterns That are Exploitable

for Building Automation

The entity-entity relationships delineated in Section 2.6 introduce rich patterns that

can be exploited for collective reasoning in self-learning building automation systems.
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Understanding how to extract these patterns is crucial for effective building automation, as

they can provide valuable insights that inform decision-making throughout the building’s FM

lifecycle. In this section, we analyse three key patterns and discuss how they can be used to

streamline building automation tasks.

• Stochastic Equivalence: Stochastic equivalence suggests that entities exhibiting

similar relational patterns can be grouped in clusters (Hoff, 2007). This can be

exploited for the analysis of BIM-Knowledge Graphs. For example, when predicting

the relationships for a new, yet-to-be-defined component in a BIM model, one can look

at the relationships of its cluster members to make an informed prediction. Another

example is a Project Manager (PM) finding out that certain stakeholders on their project

consistently behave in similar ways based on their cluster memberships, the PM can

tailor communication and project management strategies for them accordingly.

• Homophily: Social networks are known to be characterised by homophily, the

tendency for people from similar backgrounds to connect (Hoff, 2007). Homophilic

tendencies can be leveraged to infer unknown relationships in BIM-Knowledge Graphs.

For instance, a good covariate to predict the battery life of a sensor in a building might

be the battery life of similar sensors in the building.

• Global Dependencies: The concept of global dependencies in BIM-Knowledge Graphs

plays a crucial role in understanding and managing the complex interrelationships

between various entities in a building. Global dependencies can be viewed through the

lens of how various components, such as materials, construction methods, schedules,

and costs, interact and influence each other. For instance, the success of a building

construction project may depend on several factors, including the quality of the

materials used, contractor expertise, and compliance with safety regulations.

The presence of these patterns in BIM-Knowledge Graphs illustrates the need for learning

approaches that can fully exploit them. Section 2.5 has already highlighted how KRL models

can play this role effectively. Some of themost famous KRLmodels are discussed in Section 2.8.
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2.8 Comparative Study of KRL Models

There are several families of KRL models in literature, however, this section will only discuss

the most prominent ones and analyse how they compare and contrast with each other. In

addition, a synthesis of their strengths and weaknesses will be made concerning building

automation.

2.8.1 Graph Neural Networks

A Graph Neural Network (GNN) is a neural model that is designed to learn from

graph-structured data such as BIM-Knowledge Graphs. At its core is the concept of

message-passing, which allows nodes (entities) to communicate with each other by sending

and receiving messages along the edges of the graph. Each node receives messages from its

neighbouring nodes, aggregates them, and combines them with its features to generate a new

representation (Scarselli et al., 2009; Bronstein et al., 2016). GNNs are often used to solve three

types of problems;

1. Node-level problems: Here, the focus is on node problems such as node classification,

regression, and clustering (Zhou et al., 2020a). Node classification attempts to classify

nodes into different groups, for instance, classifying sensors based on their type,

location, or function. Node regression involves predicting node property values, for

example, predicting the energy consumption of an HVAC system in a building. Node

clustering attempts to divide nodes into distinct groups, with similar nodes placed in

the same group, for example, grouping sensors that are located in the same area of the

building.

2. Edge-level problems: GNNs can perform edge-level inferences such as edge

classification and link prediction (Zhou et al., 2020a). An example is edge classification

can be used to classify the type of relationship between building elements, such as the

relationship between a specific sensor and a space. Similarly, link prediction can be used

to predict the existence of links between building elements, such as a light switch and a

lighting system.
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3. Graph-level problems: In graph-level tasks, the goal is to classify entire graphs into

different categories based on their structural properties (Zhou et al., 2020a). An example

would be to determine whether a sensor network has motion sensors, temperature

sensors, or air quality sensors. Graph-level tasks include graph matching, graph

classification, and graph regression. These can have several applications in the building

automation domain. For graph classification, take, for example, fault detection in

HVAC systems: the system can be represented as a graph, where each node represents

a component (e.g., compressor, evaporator, condenser) and the edges represent their

interconnections. Analysing the structural properties of the graph can reveal system

anomalies and categorise the graph according to the type of defect.

Graph Convolutional Network (GCN)

A common GNN variant is the GCN, which uses convolutional operations on graphs to

capture structural information. GCNs apply a filter that gathers information from each node’s

immediate neighbours, and this process is repeated for other nodes throughout the graph

(Defferrard et al., 2016). This method is computationally efficient for learning representations

of local structural information, such as understanding the interactions between a thermostat

and the heating units in a specific room for indoor comfort optimisation. For capturing

long-range dependencies or broader structural patterns thatmay be present in complex graphs,

GCNs often struggle. Yet, these globalised patterns are prevalent in BIM-Knowledge Graphs.

Learning a long-range dependency can involve understanding how a system in one area of

the building affects energy use across the entire facility. For example, if a conference room on

the ground floor is in use, it could trigger adjustments in lighting and HVAC controls on other

floors to optimise the energy efficiency of the entire building. Due to the vanishing gradient

problem, the number of convolutional layers that can be used in GCNs is limited. As a result,

most state-of-the-art GCN models are no deeper than 3 or 4 layers (Pascanu et al., 2012). Li

et al. (2019) presented a proposal for training very deep GCNs by adapting CNN concepts

such as residual/dense connections and dilated convolution to GCN architectures. Due to

computational constraints, the authors did not explore their proposals in detail. Perhaps

another limitation of the vanilla GCN architecture is its inability to handle different edge

types in a graph. It assumes a single type of edge and treats all edges equally during the



34 Chapter 2. Literature Review

message passing and aggregation process. In a graph with multiple edge types, a vanilla GCN

would not be able to distinguish between different types of relationships which are intrinsic to

BIM-Knowledge Graphs. Relational Graph Convolutional Network s (R-GCNs) extend GCNs

to heterogenous graphs with multiple edge types (Schlichtkrull et al., 2017).

Graph Attention Network (GAT)

Another GNN variant is the GAT. It uses attention mechanisms to learn node representations

from a graph. Introduced by Veličković et al. (2017), a GAT weights each node’s neighbours

based on their significance to the node and aggregates their representations to generate

the node’s new representation. This notion of attention allows the model to focus on the

most important relationships and components, making the predictions more accurate and

interpretable. In GCNs, a node updates its features by averaging all the features of its

neighbours, treating all neighbour contributions equally. GATs can be computationally

expensive due to the need for extra computations to determine the significance of each node

or edge. Sparse attention mechanisms have been proposed to reduce the redundancy among

edges, allowing GATs to focus only on task-relevant edges for attention calculations (Ye and

Ji, 2019). Unlike GCNs, GATs are effective at learning representations that capture both local

and global structural information.

Graph Sampling and Aggregation (GraphSAGE)

GCNs and GATs are designed to work with a specific, fixed graph, meaning they create

embeddings (representations) for the nodes in that graph only. These frameworks are

transductive, meaning that the embeddings they generate are specific to the nodes present

in the training graph and cannot be easily extended to new or unseen nodes. As a result, any

changes to the graph, such as the addition of new nodes, require retraining or re-computation

of the embeddings, which limits their adaptability in dynamic or evolving environments. They

also fail to generalise their knowledge across different graphs. Conversely, GraphSAGE is an

inductive approach that can generate embeddings for new, unseen nodes or graphs (Hamilton

et al., 2017). It utilises available node attribute information to create representations for

new data points. In the context of BIM-Knowledge Graphs, inductive capabilities allow the

incorporation of new data into the graph as a building’s lifecycle changes. For instance, as
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new materials are introduced, these need to be updated within the BIM-Knowledge Graph,

and inductive reasoning can help assess how the new materials might integrate with existing

materials, predict their performance, or suggest optimal usages. Similarly, in a construction

project management scenario, new nodes for additional stakeholders such as contractors or

suppliers can be continuously added to the BIM-Knowledge Graph as the project evolves, and

inductive reasoning can use prior knowledge about similar existing stakeholders to predict the

influence of the new stakeholders on the project timeline or cost.

2.8.2 Translation Embedding Models

Translational distance models use distance-based scoring functions to assess the plausibility

of a fact by measuring the distance between two entities, typically after a translation by the

relation (Wang et al., 2017).

TransE and Some of Its Extensions

TransE, proposed by Bordes et al. (2013), is a simple yet effective model for KRL. It represents

entities and relationships as vectors in a low-dimensional embedding (vector) space. The

key idea of TransE is to interpret relationships as translations between entities. The scoring

function of TransE measures the plausibility of a triple (h, r, t) by computing the distance

between the head entity h, the relationship r, and the tail entity t in the embedding space.

Mathematically, the scoring function for TransE is defined as:

f(h, r, t) = ||h+ r − t||2 (2.3)

TransE is efficient and fairly easy to implement, making it a popular choice for many KRL

tasks. However, it has limitations in dealing with 1-to-N, N-to-1, and N-to-N relations (Wang

et al., 2014; Lin et al., 2015). This makes it less suitable for capturing the complexity and

heterogeneity of relationships in BIM-based knowledge graphs. Take, for example, a 1-to-N

relation, SensorOf, meant to represent the existence of a sensor in a specific space. TransE

might learn very similar embeddings for ConferenceRoom, Lobby and PrayerRoom, which

are all spaces connected to the same type of TemperatureSensor, even though they are all

different spaces. The same happens for N-to-1 and N-to-N relations. TransH (Wang et al.,
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2014) addresses these limitations by allowing an entity to have distinct representations when

involved in different relations. This means that even if the embeddings of ConferenceRoom,

Lobby, and PrayerRoom might be very similar given the relation SensorOf, they could

still be far away from each other given other relations. TransH does this by introducing

relationship-specific hyperplanes to capture the different transformations associated with

different relationships. It models the interaction between entities and relationships on these

hyperplanes. The scoring function for TransH is defined as:

f(h, r, t) = ||h⊥r + r − t⊥r||2 (2.4)

Where, h⊥r and t⊥r denote the projected representations of the head and tail entities

onto the hyperplane associated with the relationship r. Another translational embedding

model is TransR (Zhang et al., 2021), which employs relation-specific spaces instead of the

hyperplanes used by TransH. While this allows TransR to model complex relations effectively,

computational efficiency is sacrificed because a projectionmatrix is produced for each relation,

whereas TransE and TransH rely on vector representations for relations. The scoring function

for TransR is defined as:

f(h, r, t) = ||Mrh+Rrt−Mrt||2 (2.5)

In this equation, Mr and Rr are the relationship-specific mapping matrices, and Mrt

represents the projected representation of the tail entity under relationship r.

2.9 Summary of Research Gaps Identified

The literature review has shown that in recent years, SWTs have been a driving force in

advancing the field of BIM, leading to a significant development of BIM-Knowledge Graphs

and domain-specific ontologies (datamodelling vocabularies). Concurrently, KRL, a promising

approach for learning from knowledge graphs, has seen significant development in other

domains such as bioinformatics, where it has been used to understand complex biological

relationships and processes to deduce new drug discoveries. Despite KRL’s success in

other domains, its application to BIM-Knowledge Graphs has remained largely unexplored,
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presenting the research gaps delineated below.

1. Review of KRL methods within the AEC/FM domain: The discussion of KRL

models in Section 2.8 is not exhaustive; it highlights only a few notable models while

offering intuitive context from the BIM and AEC/FM domains. The aim is to inspire

AEC/FM researchers to further explore foundational KRL models and their applications

in the AEC/FMdomain. Therefore, there is a need to thoroughly review the architectures

of KRL models while identifying possible entry points and roadblocks into the AEC/FM

field.

2. Developing a Methodology for Applying KRL to BIM-Knowledge Graphs: There

is a need to establish some foundational baselines for the training of KRL models on

BIM-Knowledge Graphs to enhance reproducibility, fair comparison of newly developed

domain-specific KRL models and their evaluation by future researchers.

3. Exploring the deployment options of KRL models in the AEC/FM industry:

There is a need to explore and test how best to deploy KRL models for different

downstream tasks in the AEC/FM domain. Any scalability or performance issues should

also be reported.

4. Investigating the privacy and security issues arising from the application of

KRL to AEC/FM data: KRL’s message-passing formalism could propagate sensitive

node information if any to several other parts of a knowledge graph. Further research

is needed to investigate mitigation strategies that won’t affect model performance in

any way, such as data anonymisation to obfuscate sensitive information, differential

privacy to add carefully calibrated noise to data or the model’s outputs, encryption and

role-based access control.

5. Investigate if KRL’s usual performancemetrics are applicable to AEC/FM’s data

in their vanilla form:

KRL and AEC/FM being a nascent integration, it requires careful evaluation and

validation strategies. Typical KRL evaluation metrics such as Mean Rank (MR), Mean

Reciprocal Rank (MRR), Hits@N, Receiver Operating Characteristic (ROC), and Area
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under the ROC Curve (AUC) may not work ”out of the box” when it comes to AEC/FM

evaluations.

Much as this review has identified several gaps, this thesis focuses on gaps 2 and 3 while

providing necessary recommendations for closing other gaps.



Chapter 3

Methodology

Taking into account the research questions posed in Section 1.3 and the research gaps

identified in Section 2.9, this chapter presents a detailed narrative of the steps taken to develop

and implement the Knowledge Representation Learning-based Building Control Framework

(KRL-based BCF). For better understanding, this methodology is broken down into 2 core

steps (see Figure 3.1).

1. Linked Building Data (LBD) modelling: This section walks through a prototypical

data modelling example to delineate the technical aspects and key considerations for

building an effective BIM-KG for training KRL models. Although a building automation

use case is used, the same steps can presumably be used for other domains such as

heritage, quantity-takeoff and energy analysis.

2. Performance analysis of KRL on LBD: This section explores the integration of KRL

with LBD (BIM-KGs), focusing on the use of performance analysis experiments whose

goal is not to identify the best KRL model configurations, but rather examine more

closely how model performance can be affected by modifications to the training step,

selection of hyperparameters, their optimization and initialization approaches.

The experimental results from step 2 are used to define the prerequisites for integrating

KRL with BIM-KGs in a domain-independent framework. Again, although a building

automation use case is used to formulate the framework, it is extensible to other AEC/FM

domains, and a prototype will be presented to illustrate such extensions while assessing the

feasibility and applicability of the framework.

39
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Methodology
Steps

Used Methods
and Tools

Defining Competency Questions
for Curating the LBD Models (BIM-

KGs)

LBD Modeling Walkthrough

Identifying Important LBD Issues
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Literature Review

LBD Model Validation for
Downsteam KRL using SPARQL

and SHACL 

Linked Building Data (LBD)
modeling

Identifying Well-curated & Publicly
Available BIM-KG Datasets for

Training the Identified KRL Models

Defining the Data-preprocessing
Steps, Evaluation Protocol and

Performance Metrics for the KRL
pipeline 
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for the Experiments & Choosing

Relevant Software Libraries 

Identifying the KRL Models to use
for Experimentation

Performance analysis of KRL on
LBD (BIM-KGs)
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Outcomes
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Building An Effective LBD Model 
for Training KRL Models
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KRL Models Can BE Affected By
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Defined Above.

Running a Series of Experiments
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Models, Optimizers, Loss
Functions, Inverse Triple Injections

& HPO Strategies. 

Define a Domain-Independent
Framework Summarizing the

Process for Curating & Validating
A  BIM-KG for Training KRL

Models, Validating It & the Key
Training Setup Considerations. 

Develop a Prototypical Setup
Demonstrating the Applicability of

the Developed Framework in
Practice

Figure 3.1: The research methodology overview

3.1 Linked Building Data (LBD) Modelling

This work adopts domain-agnostic SWTs to demonstrate the process of developing a BIM-KG

within the building automation domain while using carefully crafted competency questions

to scope the specific objectives that the BIM-KG needs to satisfy.
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3.1.1 Competency Questions as an LBD Modeling Guide

Rather than develop new data modelling vocabularies (ontologies), this work adopts existing

vocabularies from the LBDCG (W3C-Linked Data Community Group, 2018). A specific

ontology of interest is the ifcOWL ontology (Pauwels and Terkaj, 2016). As per the IFC4 Add2

release1, ifcOWL has about 770 classes, approximately 1190 object properties, and around 60

datatype properties. This granularity is one of ifcOWL’s main strengths, offering a level of

detail that surpasses many other BIM ontologies. It caters to a wide array of applications from

architectural design to facility management. However, this granularity can pose challenges,

as the numerous classes and properties, along with their complex relationships, can become

unwieldy for certain smaller use cases. Additionally, there is a risk of higher computational

demands for querying and inference, potentially hindering performance in real-time building

automation tasks applications. Given this, smaller and more focused ontologies, some

branching off ifcOWL need to be adopted. Throughout this section, precise competency

questions are crafted to guide the choice of modular ontologies and to help maintain focus

on the objectives that the curated LBD model (BIM-KG) has to fulfil. In standard ontology

development methodologies, competency questions usually denote very specific user-oriented

queries that an ontology must be capable of answering. In this work, however, the term has

been usedmore broadly to define overarching semantic objectives rather than narrowly scoped

user requirements.

1. CompetencyQuestion 1 (CQ1): How to semantically describe the high-level concepts of

a building in a way that formulates a semantic extension baseline for describing low-level

building information relevant for indoor environment monitoring and control?

To answer this question, the Building Topology Ontology (BOT)2 (Rasmussen et al.,

2017a) is employed as it is deemed appropriate for encoding relationships between the

main components of a building (site, building, storey and space) using a highly modular

and simplistic set of semantic blocks. In BOT, a building consists of zones in a hierarchy.

The subclass of a zone is a site which contains a building(s), storey(s), and a space(s). A

zone can be adjacent to another zone or even contain other zones. It can also be bounded
1https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL/index.html
2https://w3c-lbd-cg.github.io/bot/

https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL/index.html
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by physical building elements or even contain them. Building elements can also host

other elements (a wall hosting a sensor). Table 3.1 summarizes the classes adopted from

BOT while Figure 3.2 provides an intuitive description of how BOT is used to describe

a site, <UNM>, having a building, <Block_B>, containing a storey, <Floor_3> with a

certain space, <Office_204>. The respective entity connections are made via the

object properties; bot:hasBuilding, bot:hasStorey and bot:hasSpace. Explicitly

asserted relationships/properties are shown by the solid line arrows, while those that

are automatically inferred are shown by the dotted line arrows. The back-end inference

rules at play here are defined in BOT via the ranges and domains summarised in

Table 3.1. A corresponding machine-readable serialisation (Turtle format) of the data

model (BIM-KG) is shown in Listing 3.1. With a BOT foundation, semantic extensions

can be made to describe low-level details about specific features of interest contained

in the space, <Office_204>, such as sensors and walls, via another object property,

bot:containsElement as the extension point.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax -ns#> .

2 @prefix bot: <https://w3id.org/bot#> .

Table 3.1: BOT classes and properties to be adopted for this work’s data modelling example

Classes (domain) Properties Classes(range)
bot:Zone bot:containsZone bot:Zone

bot:adjacentZone bot:Zone

bot:Site bot:hasBuilding bot:Building

bot:Building bot:hasStorey bot:Storey

bot:Storey bot:hasSpace bot:Space

bot:Space bot:containsElement bot:Element

bot:Element bot:hostsElement bot:Element

< UNM >

rdf:type

< Block_B >

bot:hasBuilding

< Floor_3 >

bot:hasStorey

< Office_204 >

bot:hasSpace

rdf:type

bot:Building

rdf:type

bot:Storey

rdf:type

bot:Space

rdf:type

bot:Zone

bot:Zone bot:Zone bot:Zone

bot:Site

Extensions will be done via this link

bot:containsElement

Figure 3.2: Using BOT classes and properties to describe the high-level semantic topological
details of a building
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3

4 # Site location (UNM) for some building of interest (Block_B)

5 <UNM> a bot:Site ;

6 bot:hasBuilding <Block_B > .

7

8 # Block_B has some storey of interest Floor_3

9 <Block_B > bot:hasStorey <Floor_3 > .

10

11 # Floor_3 has some space(zone) of interest Office_204

12 <Floor_3 > bot:hasSpace <Office_204 > .

Listing 3.1: Turtle serialization of the information modelled in Figure 3.2 above

2. Competency Question 2 (CQ2): How to semantically describe a feature of interest

within an indoor space while encoding its measurable properties, corresponding property

values and property states in a way that allows tracking changes, deletions and revisions?

For this question, the Semantic Sensor Network (SSN)3 (Haller et al., 2017) ontology

is adopted. At its core exists a lightweight but self-contained ontology, Sensor,

Observation, Sampling and Actuator (SOSA), encapsulating elementary classes

necessary for the semantic description of features of interest and their properties,

sensor observations, and feature sampling procedures to describe tractable sensor

observations and actuation behaviour. Furthermore, the Smart Energy Aware

Systems (SEAS) (Lefrançois et al., 2016) ontology is used to avail semantic extensions

to SSN. SEAS is an ecosystem of modules that, together, provide, semantic

vocabulary to describe physical systems and their interrelations. Among these is

the seas:FeatureOfInterestOntology4 for describing features of interest and their

properties, and the seas:EvaluationOntology5 for describing evaluations of these

properties. However, these natively have no semantics to encode property states

in a way that can be tracked over time. For this, the Ontology for Property

Management (OPM)6 (Rasmussen et al., 2018) is deemed relevant. The specific

classes and properties it provides for this work are summarised in Table 3.3.
3https://www.w3.org/TR/vocab-ssn/
4https://w3id.org/seas/FeatureOfInterestOntology
5https://w3id.org/seas/EvaluationOntology
6https://w3c-lbd-cg.github.io/opm/
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To illustrate the usage of these ontologies to answer competency question 2,

a direct semantic extension is made to the bot:Space, <Office_204>. First,

it is defined as a sosa:FeatureOfInterest having two measurable properties;

<Office_204#temperature> and <Office_204#humidity>, both defined via the

relation ssn:hasProperty. To stay compliant with OPM and satisfy competency

question 2, both properties are required to have at least one opm:hasPropertyState

relation for assigning states to the properties. A property state in OPM is an evaluation

that contains the value and metadata of a property deemed true at a specific point in

time. OPM also specifies that, as a minimum, a property state should have a value

and preferably, a generation time, an assignment that can respectively be done via

the properties; schema:value, from schema.org7 and prov:generatedAtTime, from

the Provenance Ontology8. <Office_204> is further defined to have two elements,

which are both walls. One wall, <Office_204/east>, is located on the eastern side of

the room, and the other wall, <Office_204/south>, is on the southern side. Each

of them is described as both a sosa:FeatureOfInterest and a sosa:Platform.

The latter simply means that each of the walls hosts another entity, in this case, a

<NodeMCU> Printed Circuit Board (PCB) that is also a sosa:Platform hosting a DHT22

temperature and humidity sensor. Because the temperature and humidity properties are

defined on the <Office_204> entity, but are implicitly beingmeasured from the interior

walls <Office_204/east> and <Office_204/south> via the embedded sensors, it

is necessary to describe each wall as a sosa:Sample9. A more intuitive graphical

description of this data modelling process is provided in Figure 3.3 together with a

Turtle serialisation in Listing 3.2. Another ontology that can be adopted for the explicit

definition of complex functionality of smart appliances and their controllability is Smart

Appliances REFerence (SAREF)10 (Daniele et al., 2015). The starting point of the SAREF

vocabulary is a device. Currently, much of the semantic vocabulary for describing device

controllability has been availed by the SEAS, SSN SOSA and BOT however, should

the need arise for more explicit descriptions of systems and their energy consumption
7https://schema.org/value
8https://www.w3.org/TR/prov-o/
9https://www.w3.org/TR/vocab-ssn/#SOSASample

10https://saref.etsi.org/

schema.org
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behaviour, SAREF extensions can be adopted.

Table 3.2: SEAS classes and properties adopted for this work’s data modelling example

Classes Properties
seas:ElectricPowerSystem seas:isPoweredBy

seas:TemperatureEvaluation seas:optimizes

seas:AgentComfortEvaluation seas:thermalTransmittance

seas:MaximumComfortableEvaluation seas:relativeToAgent

seas:MinimumComfortableEvaluation seas:evaluatedSimpleValue

seas:Battery seas:hasTemporalContext

Table 3.3: OPM classes and properties adopted for this work’s data modelling example

Classes Properties
opm:Assumed opm:hasPropertyState

opm:CurrentPropertyState

opm:PropertyState

opm:Confirmed

opm:OutdatedPropertyState

opm:Deleted

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax -ns#> .

2 @prefix bot: <https://w3id.org/bot#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

4 @prefix cdt: <http://w3id.org/lindt/custom_datatypes#> .

5 @prefix schema: <http://schema.org/>.

6 @prefix sosa: <http://www.w3.org/ns/sosa/> .

7 @prefix ssn: <http://www.w3.org/ns/ssn/> .

8 @prefix seas: <https://w3id.org/seas/> .

9 @prefix opm: <https://w3id.org/opm#> .

10 @prefix prov: <http://www.w3.org/ns/prov#> .

11

12 # Office_204 (FOI) hosts some 2 walls at the east and south that will host

13 # some sensors. The space also has two properties temperature and humidity

14 <Office_204 > a sosa:FeatureOfInterest ;

15 bot:containsElement <Office_204/east>, <Office_204/south > ;

16 ssn:hasProperty <Office_204#temperature > , <Office_204#humidity > .

17
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18 # Office_204 east side wall to host a NodeMCU board with

19 # a DHT22 temp and hum sensor.

20 <Office_204/east> a sosa:FeatureOfInterest , sosa:Sample , sosa:Platform ;

21 sosa:hosts <NodeMCU_1 > .

22

23 # Office_204 south side wall to host a NodeMCU board with a DHT22 temp and

24 # hum sensor.

25 <Office_204/south > a sosa:FeatureOfInterest , sosa:Sample , sosa:Platform ;

26 sosa:hosts <NodeMCU_2 > ;

27

28 # DESCRIPTION OF PCB BOARDS HOSTING THE SENSORS

29 ##############################################################

30

31 # NodeMCU 1 board hosted by the office_204 east side wall.

32 <NodeMCU_1 > a ssn:System , sosa:Platform ;

33 sosa:hosts <DHT22/01> ;

34 ssn:hasSubSystem <DHT22/01> .

35

36 # NodeMCU 2 board hosted by the office_204 south side wall.

37 <NodeMCU_2 > a ssn:System , sosa:Platform ;

38 sosa:hosts <DHT22/02> ;

39 ssn:hasSubSystem <DHT22/02> .

40

41 # Assigning a state to the temperature property of Office #204

42 <Office_204#temperature >

43 opm:hasPropertyState <Office_204#temperature_state_48906948_er8t78 > .

44

45 # Assigning semantics to Office_204#temperature_state_48906948_er8t78 state

46 <Office_204#temperature_state_48906948_er8t78 >

47 a opm:Confirmed ,

48 opm:CurrentPropertyState ;

49 schema:value "30.5 Cel"^^cdt:temperature ;

50 prov:generatedAtTime "2020-07-28T16:41:17.711+02:00"^^xsd:dateTime.

51

52 # Assigning a state to the humidity property of Office #204

53 <Office_204#humidity >

54 opm:hasPropertyState <Office_204#humidity_state_40039548_gktiy8 > .
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55

56 # Assigning semantics to Office_204#humidity_state_40039548_gktiy8 state

57 <Office_204#humidity_state_40039548_gktiy8 >

58 a opm:Confirmed ,

59 opm:CurrentPropertyState ;

60 schema:value "85.0 %"^^cdt:ucum ;

61 prov:generatedAtTime "2020-07-28T16:41:17.711+02:00"^^xsd:dateTime.

Listing 3.2: Turtle serialization of the information modelled in Figure 3.3.

< Office_204 >

rdf:type

ssn:FeatureOfInterest

< Office_204/east >

bot:containsElement

< Office_204/south >

< Office_204/temperature > < Office_204/humidity >

ssn:hasProperty

rdf:type

ssn:FeatureOfInterest

rdf:type

sosa:Sample

sosa:Platform

< NodeMCU_1 >

sosa:hosts

< NodeMCU_2 >

sosa:hosts

rdf:type

ssn:FeatureOfInterest

rdf:type

sosa:Sample

sosa:Platform

rdf:type

rdf:type

ssn:System

sosa:Platform

ssn:System

sosa:Platform

rdf:type

rdf:type

sosa:hosts

< DHT22/1 > < DHT22/2 >

sosa:hosts

opm:hasPropertyState< Office_204/temp_state_00123 > < Office_204/hum_state_045123 >

opm:CurrentPropertyState opm:CurrentPropertyState

rdf:type

schema:value

"85%"^^cdt:ucum"30.5 Cel"^^cdt:ucum

schema:value

can also become a deleted state

prov:generatedAtTimeprov:generatedAtTime

"2020-07-28T16:41:17.711+02:00"^^xsd:dateTime. "2020-07-28T16:41:17.711+02:00"^^xsd:dateTime.

Figure 3.3: Using SSN/SOSA, OPM and SEAS ontologies to extend the semantic details of a
building to encapsulate indoor zone information about sensors, elements contained within,
their properties and state management ( simplistic view).

Below is a summary of the modular ontologies that have been adopted to solve the

competency questions above;

1. Building Topology Ontology (BOT)11: BOT (Rasmussen et al., 2017a) provides the

foundation vocabulary necessary to model the core topological aspects of a building
11https://w3c-lbd-cg.github.io/bot/
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such as a site, a building, a storey, a space, and an element in a space. BOT is chosen for

simplicity, modularity and extensibility reasons.

2. Semantic Sensor Network (SSN)12 and Sensor, Observation, Sampling and

Actuator (SOSA): SSN and SOSA (Haller et al., 2017) offer the vocabulary necessary

to describe sensors and their observations.

3. SEAS: SEAS (Lefrançois et al., 2016) offers an ontology to describe smart appliances and

their communication with the grid.

4. OPM: OPM (Rasmussen et al., 2018) provides a schema for describing temporal

properties that are subject to changes as the building design evolves.

5. SAREF (Smart Appliances REFerence): The SAREF (Daniele et al., 2015) suite of

ontologies is a set of standardised frameworks designed to ensure that different IoT

solutions from various providers can work together seamlessly.

3.1.2 LBD Model Validation for Downstream KRL

The continued standardisation of Semantic Web approaches in the AEC/FM industry has

resulted in an unprecedented volume of building data being included on the web as Linked

Data. Although gathering and publishing such massive amounts of data is certainly a step in

the right direction for the industry, the effectiveness of this data hinges on its quality. In other

words, simply having access to an extensive web of building data does not guarantee valuable

insights or improved decision-making. Within the context of KRL, the potency of a model is

tightly bound to the quality of the input data (knowledge graph). Factors such as data integrity,

consistency, density, noise level, completeness, redundancy, and structural regularities in a

knowledge graph can significantly influence the quality of what themodel learns (the resultant

embeddings) (Zaveri et al., 2016). In the case of FM, this can arguably affect a building’s

operational behaviour. From a data engineering perspective, data quality is often defined

as fitness for use within a certain domain, use case, or application (Juran et al., 1979; Wang

and Strong, 1996; Knight and Burn, 2005). It is important to note that even datasets with

quality issues can hold value if they meet the standards required for particular applications.
12https://www.w3.org/TR/vocab-ssn/
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For instance, the web contains content of varying quality from DBPedia13 (Zaveri et al., 2013)

but is still widely regarded as highly useful. In the AEC/FM industry, most data-intensive BIM

applications rely on some form of data-fitness guidelines (ISO 29481-1, 2016; ISO 16739:2024,

2024) that specify the fundamental requirements data must satisfy to be deemed useful for a

specific use case. However, there is little consensus on what constitutes effective data-fitness

guidelines in the industry, which hampers the development of comprehensive tool-based

compliance checkers. These tools are crucial for reviewing large volumes of data points

(triples) in large enterprise BIM-KGs. To be effective, this thesis argues that the set of rules in

each data-fitness guideline has to be small in the beginning. Such a small set, of course, cannot

be all-encompassing, but it can give industry stakeholders a foothold to achieve measurable

effects on data reliability and verifiability. In this research, focusing on structural consistency,

data completeness, and redundancy serves as a pragmatic starting point to tackle the most

immediate threats to data reliability and minimise cascading errors further along the KRL

pipeline. Structural consistency guarantees that the BIM-KG adheres to a predefined schema

and semantic constraints, ensuring that the underlying representation is reliable for parsing,

processing and analysis. Data completeness verifies that all essential information for a specific

use case is present. Redundancy checking helps prevent duplication and conflicting data, which

can otherwise obscure important insights or lead to erroneous conclusions. Although these

three issues do not cover every possible aspect of data quality, they lay a foundation for the

development of more nuanced or domain-specific data-fitness guidelines in the industry.

This research uses SHACL14 to illustrate the procedures for validating a BIM-KG against

specific quality criteria. Simultaneously, SPARQL15 is employed for its data extraction

and manipulation capabilities, facilitating cleanup and transformation tasks on the BIM-KG

whenever issues are identified. It is important to note that SPARQL can also be used for

validation as a result of its high expressivity. Before detailing the validation process, a brief

narrative of the chosen BIM-KG issues to check for is provided below.

1. Structural Consistency: Because KRL relies on message-passing, any structural

irregularities in the BIM-KG can disrupt the learning process and impact the quality

of the resulting embeddings. Irregularities like the one shown in Figure 3.4 can
13https://www.dbpedia.org/resources/ontology/
14https://www.w3.org/TR/shacl/
15https://www.w3.org/TR/sparql11-query/

https://www.dbpedia.org/resources/ontology/
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Figure 3.4: Example of inconsistent knowledge in a BIM-KG

arise from inconsistent or incomplete data entry in the underlying BIM model. For

example, if a BIM-KG contains the following triples: <Office_204> bot:containsElement−−−−−−−−−−→

<NodeMCU_1>, <Building_UNM>
bot:hasSpace−−−−−−→ <Office_204>, <Building_UNM>

bot:hasSpace−−−−−−→ <NodeMCU_1>, the inferred knowledge ‘<Building_UNM> bot:containsElement−−−−−−−−−−→

<NodeMCU_1>’ contradicts the logical expression of the third triple. Using SHACL,

specific constraints can be defined to dictate the acceptable configurations for nodes

and relationships in the BIM-KG (Werbrouck et al., 2019; Stolk and McGlinn, 2020; Guo

et al., 2021; Pauwels et al., 2024). In addition, SPARQL can be leveraged to query the

BIM-KG and identify any deviations from the enforced SHACL shapes and corrective

actions are taken using SPARQL’s Create, Read, Update and Delete (CRUD) operations

(Yurchyshyna et al., 2007; Yurchyshyna and Zarli, 2009; Zhang et al., 2017).

2. Data Completeness: In the context of this thesis, data completeness refers to howwell

a BIM-KG covers the relevant domain knowledge, i.e., the proportion of existing data

to the total data required for a specific problem. Data completeness is a multi-faceted

problem encompassing several dimensions such as accuracy, timeliness, relevancy,

objectivity, and believability. What constitutes ‘complete’ data can vary depending

on the application or use case, meaning that different situations may have different

requirements for what makes data complete. For an indoor environment control

task, the instance <Office_204> might suffer from a data completeness problem if its

measurable properties, <Office_204#temperature> and <Office_204#humidity>,

are absent in the BIM-KG, whereas this would not be of concern for a cost estimation

use case. When a KRL model is trained on such incomplete data, the resultant

embeddings miss out on potentially important contextual information, leading to
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inaccurate downstream inferences and analyses. Zaveri et al. (2016) reviewed

several quality assessment approaches for Linked Data and categorised knowledge

graph completeness into four classes: schema completeness, property completeness,

population completeness and inter-linking completeness. This thesis does not go into

the details of these classes; however, Zaveri et al. (2016)’s work is a starting point for

other researchers in the AEC/FM domain to investigate data completeness issues that

are specific to BIM-KGs.

3. Redundancy: Redundancy occurs when multiple nodes in a BIM-KG hold the

same type of information but are labelled with different names or identifiers. A

hypothetical example with intentional redundancy would be a particular space, say

<Office_204>, being represented by two different properties in the same dataset, such

as http://example.org/spaceID and http://example.org/name. This redundancy

(spaceID and name ) can ideally be solved by merging the two properties and keeping

only one unique identifier. Property or entity duplication in a BIM-KG can misguide a

KRL model’s message-passing process, resulting in malformed embeddings.

To illustrate the validation process for the BIM-KG discussed in Section 3.1, the requirements

below are utilized. It is important to note that these requirements are typically defined by a

domain expert for a specific use case.

1. Every sosa:FeatureOfInterest has to host at least one ssn:System.

2. Every ssn:System has to host at least one sosa:Sensor.

3. Every ssn:Property has to have an associated opm:PropertyState.

4. Every opm:CurrentPropertyState has a defined value (schema:value) and a

timestamp (prov:generatedAtTime).

To check these conditions, validations that are rooted in SPARQL and SHACL are adopted.

First, SPARQL ASK queries are provided for each condition, which return either true if the

condition is violated, or false if the data meets the condition (see Listing 3.3 - Listing 3.6):

1. sosa:FeatureOfInterest hosts at least one ssn:System:
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1 PREFIX ssn: <http://www.w3.org/ns/ssn/>.

2 PREFIX sosa: <http://www.w3.org/ns/sosa/>.

3

4 ASK WHERE {

5 ?foi a sosa:FeatureOfInterest .

6 FILTER NOT EXISTS {

7 ?foi sosa:hosts ?system .

8 ?system a ssn:System .

9 }

10 }

Listing 3.3: This query returns true if there exists at least one sosa:FeatureOfInterest

that does not host any ssn:System.

2. Every ssn:System hosts at least one sensor:

1 PREFIX ssn: <http://www.w3.org/ns/ssn/>.

2 PREFIX sosa: <http://www.w3.org/ns/sosa/>.

3

4 ASK WHERE {

5 ?system a ssn:System .

6 FILTER NOT EXISTS {

7 ?system sosa:hosts ?sensor

8 ?sensor a sosa:Sensor

9 }

10 }

Listing 3.4: This query returns true if there exists at least one ssn:System that does not

host any sosa:sensor

3. Every ssn:Property has an associated state:

1 PREFIX ssn: <http://www.w3.org/ns/ssn/>.

2 PREFIX sosa: <http://www.w3.org/ns/sosa/>.

3 PREFIX opm: <https://w3id.org/opm#>.

4

5 ASK WHERE {

6 ?property a ssn:Property .

7 FILTER NOT EXISTS {
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8 ?property opm:hasPropertyState ?state

9 }

10 }

Listing 3.5: This query returns true if there exists at least one ssn:Property that has no

property state

4. Every opm:CurrentPropertyState has a defined value and a timestamp:

1 PREFIX opm: <https://w3id.org/opm#>.

2 PREFIX schema: <http://schema.org/>.

3 PREFIX prov: <http://www.w3.org/ns/prov#>.

4

5 ASK WHERE {

6 ?state a opm:CurrentPropertyState .

7 FILTER NOT EXISTS { ?state schema:value ?value }

8 FILTER NOT EXISTS { ?state prov:generatedAtTime ?time }

9 }

Listing 3.6: This query returns true if there exists at least one opm:CurrentPropertyState

that does not have either a schema:value or prov:generatedAtTime property.

SHACL is more expressive and capable of defining more complex constraints than SPARQL

alone, as shown in Listing 3.7 below.

1 @prefix sh: <http://www.w3.org/ns/shacl#> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3 @prefix schema: <http://schema.org/>.

4 @prefix sosa: <http://www.w3.org/ns/sosa/> .

5 @prefix ssn: <http://www.w3.org/ns/ssn/> .

6 @prefix opm: <https://w3id.org/opm#> .

7

8 # Shape for FeatureOfInterest

9 :FeatureOfInterestShape

10 a sh:NodeShape ;

11 sh:targetClass sosa:FeatureOfInterest ;

12 sh:property [

13 sh:path sosa:hosts ;

14 sh:class ssn:System ;
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15 sh:minCount 1 ;

16 sh:message "A FeatureOfInterest must host at least one System."

17 ] .

18

19 # Shape for System

20 :SystemShape

21 a sh:NodeShape ;

22 sh:targetClass ssn:System ;

23 sh:property [

24 sh:path sosa:hosts ;

25 sh:minCount 1 ;

26 sh:message "A System must host at least one sensor."

27 ] .

28

29 # Shape for Property

30 :PropertyShape

31 a sh:NodeShape ;

32 sh:targetClass ssn:Property ;

33 sh:property [

34 sh:path opm:hasPropertyState ;

35 sh:minCount 1 ;

36 sh:message "A Property must have an associated state."

37 ] .

38

39 # Shape for CurrentPropertyState

40 :CurrentPropertyStateShape

41 a sh:NodeShape ;

42 sh:targetClass opm:CurrentPropertyState ;

43 sh:property [

44 sh:path schema:value ;

45 sh:minCount 1 ;

46 sh:message "A CurrentPropertyState must have a defined value."

47 ] ;

48 sh:property [

49 sh:path prov:generatedAtTime ;

50 sh:datatype xsd:dateTime ;

51 sh:minCount 1 ;
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52 sh:message "A CurrentPropertyState must have a timestamp."

53 ] .

Listing 3.7: SHACL shapes to express the same constraints defined in Listings 3.3 - 3.6

In the above SHACL shapes graph, each sh:NodeShape defines the shape for a specific

class of nodes, e.g., sosa:FeatureOfInterest, ssn:System, ssn:Property, and

opm:CurrentPropertyState. For each shape, sh:property is used to specify

constraints for the properties of the nodes that conform to the shape. For instance,

in :FeatureOfInterestShape, the sh:property construct requires that each

sosa:FeatureOfInterest must host (sosa:hosts) at least one (sh:minCount 1)

ssn:System. Similarly, :SystemShape specifies that each ssn:System must host at

least one sensor. The sh:message constructs are used to provide human-readable error

messages that are displayed when a constraint is violated. In practice, SHACL validation

is performed using pySHACL16, a Python library developed by RDFlib17. The high-level

implementation details for this are shown in Listing 3.8.

1 import rdflib

2 from pyshacl import validate

3

4 # Load RDF Data

5 data_graph = rdflib.Graph()

6 data_graph.parse("path_to_the_kg_data", format='turtle')

7

8 # Load SHACL Shapes

9 shapes_graph = rdflib.Graph()

10 shapes_graph.parse("path_to_your_shacl_shapes", format='turtle')

11

12 # Run the validation

13 val = validate(data_graph , shacl_graph=shapes_graph)

14 conforms , results_graph , results_text = val

15

16 # Check if the data passed the SHACL validation

17 if conforms:

18 print("The data graph passed SHACL validation!")

16https://github.com/RDFLib/pySHACL
17https://github.com/RDFLib/rdflib
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19 else:

20 print("The data graph failed SHACL validation.")

21 print(results_text)

Listing 3.8: Python script for loading RDF data and SHACL shapes for validating a

knowledge graph

3.1.3 Conclusion

This section provided a prototypical example for building a BIM-KG for training KRL models.

Several existing AEC/FM vocabularies (ontologies) were used instead of introducing new

ones—a workflow that is strongly encouraged because it promotes interoperability, leverages

established domain expertise, and prevents unnecessary fragmentation in data standards. Two

approaches were presented to maintain the focus of the BIM-KG’s scope to the task at hand:

crafting competency questions as a proactive approach and using SHACL and SPARQL for

BIM-KG validation as a reactive approach. To ensure that the modelled BIM-KG is sufficient in

the KRL phase, a pragmatic starting point is taken by considering three issues as important to

check for: structural consistency, data completeness and redundancy. Arguably, these tackle

the most immediate threats to data reliability and minimise cascading errors further along the

KRL pipeline while laying a strong foundation for other researchers to develop more nuanced

or domain-specific data-fitness guidelines in the industry.

3.2 Performance Analysis of Knowledge Representation

Learning (KRL) on Linked Building Data (LBD)

The section develops and formalises a methodology for applying KRL to BIM-KGs using

performance analysis experiments. An overview of the models, datasets, and evaluation

protocol used for the experiments is discussed herein.

3.2.1 Models

Several KRLmodels have been introduced in Section 2.8, differentiated primarily by their score

functions. For this research’s experiments, five KRL models were chosen: ComplEx, DistMult,
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h

r t

Figure 3.5: A simple illustration of TransE

RotatE, TransE and TransH. In this work, all models consume triples sampled from the 2

publicly available BIM-KGs datasets18 described in Subsection 3.2.2. The internal structure

and outputs of each model are discussed below.

1. TransE (Bordes et al., 2013) is one of the earliest and most influential KRL models for

link prediction. It embeds both entities and relations from a knowledge graph into a

low-dimensional vector space, typically Rd, and represents relationships as translation

vectors. As illustrated in Figure 3.5, the core intuition is that for a triple (h, r, t), where

h is the head entity, r is the relation, and t is the tail entity, the embedding of h plus the

embedding of r should be close to the embedding of t (Equation 3.1):

h+ r ≈ t (3.1)

where h, t ∈ Rd are the entity embeddings, and r ∈ Rd is the relation embedding.

During training, each triple is presented along with a negatively corrupted counterpart

(h′, r, t′) (where the head or the tail entity is replaced with a random entity as described

in Subsection 3.2.3) to teach the model how to distinguish correct (positive) facts from

incorrect (negative) ones. TransE initialises a real-valued vector h ∈ Rd for each
18https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/hpo-study/

datasets

https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/hpo-study/datasets
https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/hpo-study/datasets
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unique entity h in the BIM-KG. For instance, entities RoomA, Temperature, and Door1

each have their own d-dimensional embedding, whose vectors are updated during

training to capture the semantic relationships inherent in the BIM-KG. Each relation

r (e.g., hasProperty, isConnectedTo) is also represented by a vector r ∈ Rd. In

the translational framework, relations shift the head embedding vector towards the

tail embedding vector, in other words, if you take the embedding of the head entity

(h) and add the relation’s vector (r) to it, you should end up close to the tail entity’s

embedding (t). To measure how well a triple (h, r, t) fits the translation criterion, the

scoring function below is used: This work adopts the Euclidean distance between h+ r

and t.

f(h, r, t) = ||h+ r− t||2 (3.2)

A lower score indicates a better fit (a more plausible triple). For positive training triples,

the objective is to make f(h, r, t) small, whereas for negative/corrupted triples, the

objective is to push f(h′, r, t′) higher. During training, TransE typically uses a Margin

Ranking Loss (MRL) to teach themodel which triples are correct andwhich are incorrect.

For each true triple (h, r, t) and its corrupted counterpart (h′, r, t′), the MRL is expressed

as:

L =
∑

(h,r,t)∈P
(h′,r,t′)∈C

max
(
0, γ + f

(
h′, r, t′

)
− f

(
h, r, t

))
(3.3)

where:

• P is the set of positive (true) triples (sampled from the BIM-KG).

• C is the set of negative (corrupted) triples.

• f(·) is the scoring function defined in Equation 3.2.

• γ is a margin hyperparameter enforcing separation between positive and negative

triples.

After training, each entity and relation in the BIM-KG has a learned embedding

in Rd. This is typically a lookup table of d-dimensional vectors for all entities

and relations. Together with the scoring function f(h, r, t) in Equation 3.2, link
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prediction tasks can be carried out. For instance, if you have a partial triple

RoomA
hasProperty−−−−−−→ ?, TransE can rank all possible tail entities by computing ||RoomA +

hasProperty - candidate ∈{Temperature, LightLevel}|| and choosing the closest

match, Temperature. Another concrete example in practice is building automation

stakeholders using TransE to evaluate the plausibility scores of various hypotheses,

potentially aiding in context-aware decision making. TransE is computationally efficient

and relatively easy to implement, making it a popular choice for many KRL tasks.

Although it has limitations in dealing with 1-to-N, N-to-1, and N-to-N relations, limiting

the ability to capture the complexity and heterogeneity of relationships in BIM-KGs, its

behaviour is investigated nonetheless. Again, the goal of these experiments is not to find

the best KRLmodel configuration but to expose and better understand the idiosyncrasies

arising from integrating different KRL models with BIM-KGs.

2. TransH (Wang et al., 2014) extends TransE by allowing each relation to define its

own hyperplane in the embedding space as shown in Figure 3.6. While TransE

represents every relation as a single vector r in a shared space, TransH introduces

two main components for each relation r: a normal vector wr that determines the

orientation of its hyperplane, and a translation vector dr that represents how relation

r translates head entities to tail entities once they are projected onto the hyperplane.

This modification addresses the issue of entities participating in multiple, semantically

distinct relations (for example, a room that might be adjacent to another room (via

the relation isAdjacentTo) and has a property such as Temperature) (via another

relation hasProperty). By projecting entities onto a relation-specific hyperplane,

TransH provides a more flexible, context-sensitive representation. Each entity h or t

is assigned an embedding vector in Rd while for each relation r, the model maintains

a normal vector wr and a translation vector dr. Before applying a translation, TransH

projects an entity embedding h onto the hyperplane defined by wr:

h⊥ = h − (w>
r h)wr, (3.4)

and similarly for the tail embedding t.
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h
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Figure 3.6: A simple illustration of TransH

t⊥ = t −
(
w>

r t
)
wr (3.5)

The translation itself then takes place in this hyperplane:

h⊥ + dr ≈ t⊥. (3.6)

This design allows different relations to transform entities in relation-specific ways, thus

capturing more nuanced contextual behaviour than TransE. During training, TransH

typically also applies a MRL approach similar to TransE. However, in this case the

scoring function f(h, r, t) is the distance between h⊥ + dr and t⊥ (this work adopts

the Euclidean distance or L2 norm),

f(h, r, t) =
∥∥(h⊥ + dr

)
− t⊥

∥∥
2
, (3.7)

A lower value of f(h, r, t) indicates a more plausible triple, since it implies that

h⊥ + dr is geometrically close to t⊥ in the embedding space. By the end of training,

TransH provides each entity in the BIM-KG with a learned embedding, along with

a normal vector and translation vector for each relation. These learned parameters

enable a variety of link prediction tasks. For example, given RoomA
isAdjacentTo−−−−−−→ ?, the
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model can project RoomA onto the hyperplane for isAdjacentTo, apply the translation

disAdjacentTo, and measure distances to all other entity embeddings to identify plausible

neighbours. The main advantage of TransH over TransE in a BIM-KG setting is its

capacity to handle varied semantics for the same entity depending on which relation

it is involved in. Such flexibility is especially valuable if a single entity (such as a

specific room or sensor) participates in multiple relationships that do not necessarily

share the same geometric properties. However, it should be noted that TransH

introduces additional parameters in the form of relation-specific normal vectors, which

increases both the model’s expressiveness and its computational overhead. As a result,

practitioners must weigh these factors against the potential gains in predictive accuracy

and the need to handle more complex relation-specific behaviour within BIM-KGs.

3. RotatE (Sun et al., 2019) represents entities and relations using complex-valued

embeddings, where each dimension is treated as a point in the complex plane.

Concretely, for a triple
(
h, r, t

)
, the head and tail entities h and t have embeddings

h, t ∈ Cd, while the relation r is associated with a vector r ∈ Cd. As illustrated

in Figure 3.7a, the key idea is to interpret each relation as a rotation in the complex

plane, so that t is obtained by rotating h according to r. In practice, this is realised via

element-wise (Hadamard) multiplication:

t ≈ h� r, (3.8)

where every element of r is constrained to have absolute value 1. This constraint makes

r a pure phase vector that rotates h within each dimension of Cd. By formulating

relations as rotations, RotatE can naturally capture a variety of relational patterns,

including symmetry, antisymmetry, and inversion. For instance, a symmetric relation

like isAdjacentTo would imply that rotating h by r to arrive at t also means rotating

t by the same r recovers h. This is illustrated in Figure 3.7b. An antisymmetric relation

would instead prohibit such a bidirectional mapping, as the same rotation cannot be

applied in reverse without changing the embedding position. In the context of a

BIM-KG, RotatE’s capacity to capture both symmetrical and asymmetrical relationships

is particularly useful for encoding connections such as isConnectedTo, isPartOf, or
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even hierarchical dependencies among building components (e.g., floors, rooms, and

sensors). Since BIM-KGs often mix functional, spatial, and compositional relationships,

the flexibility offered by complex embeddings can lead tomore accurate link predictions.

Nonetheless, these potential benefits come at the expense of managing complex-valued

vectors and additional hyperparameter tuning.

4. DistMult (Yang et al., 2014) is a bilinear embedding model that a simplification of

RESCAL (Nickel, 2013). In this model, both entities and relations are mapped to vectors

ei, rj ∈ Rd. Given a triple
(
h, r, t

)
, DistMult employs a scoring function based on

element-wise (Hadamard) multiplication:

f(h, r, t) = h>(diag r
)
t =

d∑
k=1

hk rk tk, (3.9)

where h, t, r are the embeddings for the head entity h, tail entity t, and relation r,

respectively, and diag r denotes a diagonal matrix with r on its diagonal. Intuitively,

DistMult captures relational influence by scaling each dimension of h by the

corresponding dimension in r, which is then combined with t. A notable property

of DistMult is that it is inherently symmetric with respect to relations. That is,

h r

hr

t

|hr - t|

(a) A simple illustration of RotatE modeling r
as a rotation in complex space

r

r

h

t

(b) An illustration of RotatE modeling
symmetric relations r

Figure 3.7: Simple illustration of RotatE’s mechanics
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reversing the roles of head and tail does not change the score, since the scoring function

is commutative. This can be beneficial for knowledge graphs containing primarily

undirected or bidirectional relationships (such as isAdjacentTo), but it becomes a

limitation in scenarios where antisymmetric or more complex relation patterns, such

as hierarchical relationships (such as hasProperty) are prevalent. Still, for large-scale

building data requiring rapid inference, DistMult offers a favourable trade-off between

speed and performance, especially when combined with optimisations such as negative

sampling and regularisation.

5. ComplEx builds upon bilinear approaches such as DistMult by allowing entity and

relation embeddings to be complex-valued instead of being restricted to real numbers.

Specifically, each entity and relation e, r is mapped to a vector e, r ∈ Cd. To score a

triple
(
h, r, t

)
, ComplEx applies a bilinear form in the complex domain:

f(h, r, t) = Re
(〈

h, r, t
〉)

=
d∑

k=1

(
hk · rk · tk

)
,

where tk denotes the complex conjugate of tk, and Re(·) takes the real part of the

resulting sum. By extending the entity and relation representations into the complex

plane, ComplEx can model both symmetric and asymmetric relations, thus overcoming

the inherent symmetry limitation of DistMult. For instance, when a relation is

symmetric (such as isAdjacentTo), the imaginary parts of the embeddings cancel

out in the scoring function, similarly to DistMult. Conversely, when a relation is

asymmetric, phase components in the complex embeddings can effectively capture

directionality. The flexibility of handling both symmetric and asymmetric relations

may lead to improved link prediction performance across a mix of relational patterns.

However, as with other complex-valued models like RotatE, ComplEx demands careful

hyperparameter tuning (embedding dimension, learning rate, regularisation) to ensure

numerical stability and avoid overfitting. Its additional computational cost compared

to real-valued approaches must be weighed against the potential accuracy gains when

working with large-scale BIM-KG datasets.
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Figure 3.8: A simple example highlighting the components of a building modelled using the
Brick schema. Source (Balaji et al., 2016)

3.2.2 Datasets

In these experiments, two publicly available BIM-KGs were used. These datasets are

representative examples of how the Brick ontology19 can be used to model real buildings -

Rice Hall at the University of Virginia (Balaji et al., 2016) and Soda Hall at the University

of California, Berkeley (Balaji et al., 2016), as detailed in Table 3.4 - Table 3.7 and shown in

Figure 3.9. Brick is an open-source initiative aimed at standardising the semantic descriptions

of physical, logical, and virtual assets in buildings and their inter-relationships. An illustrative

example of a building modelled using Brick is shown in Figure 3.8. In this example, an Air

Handling Unit (AHU) supplies conditioned air to a Variable Air Volume (VAV) Box, which

adjusts the airflow to an HVAC zone that has two rooms. The HVAC zone has a thermostat

equipped with a temperature and carbon dioxide sensor. Additionally, these two rooms are

part of a lighting zone, and the lights in this zone are controlled by the building’s lighting

controller. The two datasets used in this thesis’ experiments closely mirror this example

building’s setup, but on a larger scale. For an in-depth discussion on the creation and

evaluation of these datasets, please refer to Balaji et al. (2016) and Balaji et al. (2018).

Table 3.4: BIM-KG datasets used in the performance analysis experiments

BIM-KG Dataset |E| |K| E Types R Types
Rice Hall at University of Virginia 810 1665 65 6
Soda Hall at University of California, Berkeley 1738 3774 36 9

19https://brickschema.org/



3.2. Performance Analysis of Knowledge Representation Learning (KRL) on Linked Building
Data (LBD) 65

(a) Rice Hall at the University of Virginia

(b) Soda Hall at the University of California, Berkeley

Figure 3.9: The two buildings modelled by BRICK and adopted for this thesis’ KRL
performance analysis experiments
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Table 3.5: Training dataset properties and structural patterns

Dataset Density Entity Heterogeneity Average Degree
Rice Hall 0.002 65 3.664
Soda Hall 0.001 36 4.342

3.2.3 Evaluation Protocol

The overarching goal of KRL models is to learn entity and relation embeddings that capture

the underlying structure and semantics of a knowledge graph. To learn reliable embeddings,

a KRL model needs to have the ability to distinguish between true facts and false facts in a

knowledge graph. In reality, knowledge graphs are curated only with true facts, yet both true

and false facts are required for successful KRL model training. When trained exclusively on

true facts, a KRL model never encounters invalid examples and thus risks learning a trivial

strategy—namely, predicting every possible fact as true. By introducing corruption sets (i.e.,

negative samples generated by substituting entities in valid triples), themodel is encouraged to

discriminate between correct and incorrect facts. This process prevents the embeddings from

collapsing into a single “always-true” mode and enables more robust inference, particularly

when dealing with missing or newly introduced facts in a BIM-KG. As mentioned earlier, in

the OWA, a fact cannot be considered false just because it does not exist in a knowledge graph.

However, when considering the Local Closed World Assumption (LCWA), a constrained

variation of the ClosedWorld Assumption (CWA), a knowledge graph is only locally complete,

i.e., if a fact Room_A
ssn:hasProperty−−−−−−−−→ Temperature is missing from a BIM-KG, LCWA interprets

Room A as not having a Temperature property, but only within the context of this specific

BIM-KG. This is also known as (Scoped) Negation as Failure. With this assumption, a set of

negative triples C can be generated by altering either the head or tail entity of each triple

(h, r, t) in a knowledge graph as shown in Equation 3.10 below;

C =
{
(ĥ, r, t) | ĥ ∈ E

}
∪
{
(h, r, t̂) | t̂ ∈ E

}
(3.10)

where E is the set of all entities in the knowledge graph, while ĥ and t̂ are the corrupted

head and tail entities, respectively. For any given triple (h, r, t) in the test set Ktest ⊆

K, the left hand side of Equation 3.10,
{
(ĥ, r, t) | ĥ ∈ E

}
corrupts the head entity h by

replacing it with any other entity ĥ from the set E , creating triples of the form (ĥ, r, t)
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Table 3.6: Key Facts About Rice Hall, University of Virginia

Category Details
Building Rice Hall, University of Virginia
Function Hosts the Computer Science Department
Size 100,000+ square feet
Floors 6
Construction Year 2011
Rooms 120+ (faculty offices, teaching/research labs, study areas,

conference rooms)

Building Management
System (BMS)

Contracted with Trane20

HVAC System - 4 AHUs
- 30+ Fan Coil Unit s (FCUs)
- 120 VAVs
- Low-temperature chilled beams
- Ice tank-based chilling towers
- Enthalpy wheel heat recovery system
- Thermal storage system

Lighting System - Motorized shades
- Abundant daylight sensors
- Motion sensors

Table 3.7: Key Facts About Soda Hall, UC Berkeley

Category Details
Building Soda Hall, UC Berkeley
Function Houses the Computer Science Department
Size 110,565+ square feet
Floors 5
Construction Year 1994
Rooms 200+ (small to medium-sized closed offices for faculty and

graduate student groups)
Building Management
System (BMS)

Provided by the now-defunct Barrington Systems;
exposes only HVAC sensors

HVAC System - Pneumatic controls with 232 thermal zones.
- Periphery zones have VAVs with reheat
- Other zones without reheat.
- VAVs with reheat: Single control setpoint for both
reheat and airflow using proprietary value mapping
mechanism.
- Contains redundant chillers, condensers, and cooling
towers
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where ĥ is not the original head entity. Similarly
{
(h, r, t̂) | t̂ ∈ E

}
, corrupts the tail

entity by replacing t with any other entity t̂ ∈ E , resulting in triples of the form (h, r, t̂)

where t̂ is not the original tail entity. To visualise this process better, consider a set of 5

entities E = {Space, Sensor, Site, Storey, Temperature} and a set of 2 relations R =

{bot:hasElement, bot:adjacentElement}. Given a triple, Space bot:hasElement−−−−−−−→ Sensor, the

corruption set C below can be generated by replacing either the head or tail with entities

from E . The first two rows hold corruptions where the tail has been replaced with Site and

Temperature, respectively, while the last two rows hold corruptions where the head has been

replaced with Site and Storey, respectively.

C =



Subject Relation Object

Space bot:hasElement Site

Space bot:hasElement Temperature

Site bot:hasElement Sensor

Storey bot:hasElement Sensor


It is possible for some of the generated synthetic negatives to actually be true positives (already

existing in K). Whenever these are encountered in this work, they are removed from K using

the filtered evaluation setting (Bordes et al., 2013; Ali et al., 2020a), as their presence can skew

the training results.

KRL treats link prediction as a learning-to-rank problem. In this paradigm and for the rest

of this thesis, a query Q takes the form of a partially known triple such as (h, r, ?), where the

head entity (h) and the relation (r) are given, but the tail (?) is unknown. The model must

then assign scores to a set of candidate tails, ranking the correct entity higher than incorrect

(or corrupted) alternatives. For instance, given a true triple RoomA
ssn:hasProperty−−−−−−−−→ Temperature

in a BIM-KG, the query RoomA
ssn:hasProperty−−−−−−−−→ ? is answered by scoring every possible tail in the

knowledge graph and ranking them. A well-trained model places Temperature near the top,

while all corrupted versions—such as RoomA
ssn:hasProperty−−−−−−−−→ RoomB—receive lower scores. The

loss function typically enforces this ranking objective. A common approach is a margin-based

ranking loss, where the model is penalised if a true triple’s score is not sufficiently higher

than its corresponding corrupted triple. Formally, for a true triple
(
h, r, t

)
and its corrupted
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counterpart
(
h′, r, t′

)
, the margin-based loss might look like:

L =
∑

(h,r,t)∈P
(h′,r,t′)∈C

max
(
0, γ + f

(
h′, r, t′

)
− f

(
h, r, t

))
,

where f(·) is the model’s scoring function, γ is a margin, P denotes the set of positive (true)

triples, and C the corrupted (negative) triples. This loss drives the model to rank the true

triple higher than any false candidate by a margin of γ. Consequently, when evaluating

on a holdout set Ktest, a well-performing model will score (and thereby rank) the correct

triple higher than any corrupted variation—leading to meaningful Mean Rank (MR) or Mean

Reciprocal Rank (MRR) metrics that reflect the model’s ability to discern true facts from false

ones. When multiple triples in the test set, Ktest, receive the same score, this work resolves

such ties by computing themean of the optimistic and pessimistic rankings. Concretely, in the

optimistic scenario, the true triple is assumed to occupy the top position among all those with

equal scores, whereas in the pessimistic scenario, it is ranked last among them. The final rank

is the arithmetic mean of these two extremes, thereby providing a fair tie-break mechanism

that avoids inflating or deflating the model’s performance metrics. Regarding performance

metrics, as a starting point, this work adopts three commonly used ones, namely: Mean

Reciprocal Rank (MRR), Hits@K and Adjusted Mean Rank (AMR). These are briefly defined

below; however, for a more detailed narrative and discussion, reference is made to Ali et al.

(2020a)

1. MRR: MRR evaluates the effectiveness of information retrieval systems by calculating

the average of the reciprocal ranks of the first relevant result for each query in a set of

queriesQ. In simpler terms, for each query, the rank position of the first correct answer

is identified, the reciprocal of that rank is taken, and then those values are averaged

across all queries. This provides a measure of how quickly the system finds the correct

answer for queries. Mathematically, MRR is defined as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(3.11)

where ranki is the rank of the true triple for the i-th query. For better intuition, imagine

a BMS that tries to answer some arbitrary building automation queries Q1, Q2 and Q3.



70 Chapter 3. Methodology

Table 3.8: Ficticious responses of an illustrative BMS to 3 arbitrary queries and their
reciprocal rank values. The correct response is marked with a X

.

Query Proposed Results Rank Reciprocal Rank

Q1
Room101 hasSensor−−−−−→ TempSensorA,
Room101 isPartOf−−−−→ BuildingB,
Room101 isPartOf−−−−→ BuildingA X

3 1
3

Q2
HVAC1 connectedTo−−−−−−→ HVAC2,
HVAC1 serves−−−→ ZoneA X,
HVAC1 hasPart−−−→ FanA

2 1
2

Q3
Light1 installedIn−−−−−→ Room101,
Light1

controlledBy−−−−−−−→ ControlSystemA X,
Light1 hasSwitch−−−−−→ SwitchB

2 1
2

(a) Q1 = Which zone is Room101 part of i.e., Room101 isPartOf−−−−→ ? ?

(b) Q2 = Which zone does HVAC1 serve i.e., HVAC1 serves−−−→ ? ?

(c) Q3 = Which system controls Light1 i.e., Light1
controlledBy−−−−−−→ ? ?

For each query, the BMS makes three guesses with the first one being the one it thinks

is most likely correct, as shown in Table 3.8 (the actual correct triple is marked with a

X). MRR ranges from 0 to 1, with 1 indicating that all true triples are ranked first, while

0 shows that none of the proposed results are correct. The MRR for the BMS is therefore

calculated as
1
3
+ 1

2
+ 1

2

3
≈ 0.44 using Equation 3.11

2. Hits@K: This metric measures the accuracy of a retrieval system by checking whether

the correct answer is within the top K ranked results. Mathematically, this is defined

using the formula below

Hits@K =
1

|Q|

|Q|∑
i=1

1(ranki ≤ K) (3.12)

where 1(ranki ≤ K) is an indicator function that equals 1 if the true triple’s rank is

within the top K, and 0 otherwise. Hits@1, Hits@3, and Hits@10 are commonly used

variations of this metric. Using the example in Table 3.8, hits@1 = 0
3
= 0, hits@3 =

3
3
= 1, hits@10 = 3

3
= 1 (the denominator for all being the 3 true existing facts, while

the numerator is the number of correct facts appearing within the top K.



3.2. Performance Analysis of Knowledge Representation Learning (KRL) on Linked Building
Data (LBD) 71

3. AMR: This metric complements MRR and Hits@K metrics and has been shown to

provide more fair comparisons between datasets of different sizes (Berrendorf et al.,

2020). Mathematically, AMR is defined in Equation 3.13 as the ratio of the mean rank to

the expected value;

AMR =
Mean Rank (MR)

Expected Mean Rank (EMR)
(3.13)

3.2.4 Implementation Details

All experiments were performed on a single MacBook Pro with an Apple M1 Pro chip and

16GB RAM using PyKEEN (Ali et al., 2020b), a Python-based library for KRL built on top of

PyTorch, while hyperparameter optimisations were handled using Optuna (Akiba et al., 2019).

The exact software versions are kept consistent and delineated in the source code attached to

this thesis.



Chapter 4

Results and Discussion

This chapter presents the experimental results obtained from the performance analysis that is

delineated in Chapter 3. For an impartial assessment of all models tested during training,

a random 10% holdout set of test triples was used. The holdout set is not seen by the

models during training or validation. This strategy ensures fair evaluation of each model’s

generalisation capabilities to new, unseen data. To lay a solid framework for repeatability in

future research experiments, throughout the analysis, a consistent set of training setup choices

and hyperparameters was maintained, as detailed in Table 4.1.

4.1 A Study On Training Setup Choices

The initial series of experiments aims to evaluate the influence of different categorical decisions

related to the training configuration of KRL models. In particular, this method varies the

optimizer (selecting from a choice of Adam (Kingma and Ba, 2014), AdaGrad (Duchi et al.,

Table 4.1: Default Training Setup Choices and Hyperparameters

Parameter Value By Approach
ComplEx DistMult RotatE TransE TransH

Embedding Dim 50 50 200 50 50
Num Epochs 500
Learning Rate 0.02
Num Negatives 1

Optimizer Adagrad
Inverse Relations False
Loss Function Margin Ranking Loss (Margin 1.0)

72
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Figure 4.1: Training dataset degree distributions, relation cardinality types and relation
patterns

2011) and Stochastic Gradient Descent (SGD) (Eon Bottou, 1998)), training objective function

(selecting from a choice of Binary Cross-Entropy Loss (BCEL) (Dettmers et al., 2017), Softplus

Loss (SPL) (Glorot et al., 2011), MRL (Bordes et al., 2013), and the self-adversarial loss (NSSA)

(Sun et al., 2019)), and finally considering the exclusion or inclusion of inverse relationships

in the BIM-KGs, a process that involves adding a copy of each triple during training but with

an inverse relation. A summary of the above categorical choices is presented in Table 4.2.

Figure 4.2 depicts the Hits@10 scores distribution on the test set for different training

setup options for all models and datasets. It offers detailed insight into how the models

react to variations in the training setup. In the case of the Rice Hall dataset, all models
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Table 4.2: Training Setup Choice Matrix. Each setup represents one of 120 unique
combinations (5 models × 3 optimisers × 4 loss functions × 2 inverse relationship settings),
with each trial trained for 500 epochs as specified in Table 4.1.

Model Optimizer Loss Function Inverse Relationship

All models

Adagrad

Binary Cross Entropy Loss (BCEL) False
True

Softplus Loss (SPL) False
True

Margin Ranking Loss (MRL) False
True

NSSA Loss False
True

Adam

Binary Cross Entropy Loss (BCEL) False
True

Softplus Loss (SPL) False
True

Margin Ranking Loss (MRL) False
True

NSSA Loss False
True

SGD

Binary Cross Entropy Loss (BCEL) False
True

Softplus Loss (SPL) False
True

Margin Ranking Loss (MRL) False
True

NSSA Loss False
True
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training setup choices.
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Figure 4.3: The effect of different training setup choices across all models and both datasets.
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show a comparable performance range, with TransE and RotatE standing out as the highest

performers, whereas DistMult and ComplEx consistently show subpar performance no matter

the training setup, a trend that can also be seen on the Soda Hall dataset, albeit happening

more aggressively. DistMult inherently assumes symmetric relations due to its bilinear scoring

function. However, many relationships in both datasets, such as feeds or isPartOf, are

inherently directional (asymmetric). ComplEx attempts to address this by extending DistMult

to complex numbers, allowing it to capture both symmetric and asymmetric relations. Despite

this, the real challenge lies in the nuanced, hierarchical, and interdependent relationships

typical of BIM-KGs, which ComplEx may not fully capture due to its inability to infer

composition patterns. Composition patterns allow a building’s multi-faceted relationships

to be represented in knowledge graph embeddings. For example, the temperature in a room

might be influenced by the operation of HVAC systems, the number of occupants, time of

day, and even external weather conditions. Expressive capture of such patterns can enable an

automation agent to predict the impact of adjusting the configurations of one system (like the

HVAC settings) on various related metrics (such as energy consumption or occupant comfort).

Also, buildings often have a hierarchical structure: composed of floors, floors are composed

of rooms, and rooms can contain various elements, sensors or actuators. Composition

patterns in embeddings can reflect this hierarchy, allowing automation agents to aggregate

or disaggregate information at different levels. For instance, understanding the aggregated

energy use at the overall building level while also being able to drill down into specific floors

or rooms. It is also important to note that BIM-KGs are often characterised by sparse data, with

many potential but unobserved relationships between entities, which sparsity challenges the

generalisation capacity of these models. TransE and RotatE are less susceptible to overfitting

in sparse environments because they embody lower complexity through their respective

translational and geometric operations, i.e., TransE needs a single vector to represent each

relation as a translation in the embedding space, while RotatE requires a single complex

number to represent each relation as a rotation. The lower number of parameters reduces

the models’ capacity to fit noise, a common pitfall in sparse datasets where the signal-to-noise

ratio 1 can be low. Perhaps the most striking observation is that RotatE generally demonstrates

superior performance across both datasets; however, as seen in the Rice Hall dataset, older
1Signal-to-noise ratio is defined as the ratio of meaningful input to meaningless or unwanted input
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methods, such as TransE, can outperform it if given an optimised training setup.

To further explore the effects of various training configurations, other distributions

of model performance (Hits@10) for both datasets are presented in Figure 4.3a through

Figure 4.3c, revealing some intriguing patterns based on the different choicesmade. Figure 4.3a

indicates that the setups that utilise the Adam optimiser consistently outperform those that use

Adagrad and SGD. Adam’s adaptive learning rate mechanism and momentum updates likely

contribute to its ability to converge faster and escape local minima more effectively. Adagrad

also adopts adaptive learning rates, performing smaller updates for parameters associatedwith

frequently occurring features and larger updates for parameters associated with infrequent

features. Adam and Adagrad’s adaptive learning rate mechanisms make them particularly

well suited for tasks with sparse data, where some features frequently occur while others

remain rare. However, the monotonic decreasing learning rate of Adagrad can pose challenges

in certain scenarios. As the Adagrad algorithm accumulates squared gradients over time,

the learning rates for all parameters continuously decrease. While this ensures stable and

well-scaled updates, it may also cause the algorithm to prematurely and excessively reduce the

learning rate. The poor performance of SGD indicates that its simplistic updating mechanism

faces challenges in effectively exploring the complex parameter space of KRL models. Also,

SGD does not incorporate adaptive learning rates, which means that it treats all parameters

equally, applying the same update magnitude across the board. This uniform approach does

not account for the importance of different features within the data. It is important to note

that, due to the no-free-lunch2 theorem, there is no one-size-fits-all optimizer; in reality, an

optimizer’s efficiency is highly reliant on the training setup and unique characteristics of the

underlying dataset. This is evident in Figure 4.3a (Soda Hall dataset), where for ComplEx,

Adagrad performs worse than SGD.

Looking at Figure 4.3b reveals similar performance for the BCEL and the SPL across both

datasets. This is because SPL is equivalent to BCEL though numerically more stable. Even

though (Ali et al., 2020a) claims that BCEL is not well-suited for translational distance models,

it exhibits competitive performance for TransE on the Soda Hall dataset and even surpasses

the numerically more stable SPL. These peculiarities highlight that identifying appropriate

training configurations can produce results that deviate from what was previously known.
2There is no single optimizer to that will always do better than any other optimizer
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Experimental evidence from the biological domain has shown that adding inverse relationships

to the training knowledge graph performs worse than not including them; however, the

results herein are contrasting, as shown in Figure 4.3c, where adding inverse relationships

to the dataset configurations for ComplEx and RotatE yields better performance. In contrast,

the same configuration leads to poor performance for TransH and DistMult when trained

on the Soda Hall Dataset. However, when trained on the Rice Hall dataset, Distmult and

TransE perform similarly on average. Overall, Figure 4.3 has revealed how combinatorial

the problem of configuring the training setup is. Another interesting observation is that

improving training setups has proven to enhance performance more significantly than

improving model architectures. For instance, the older TransE model has been observed to

outperform the newer RotatE model if it is configured suboptimally, as is the case in Figure 4.2.

In Figure 4.5c, showing the distribution of Hits@10 scores across all 100 trials using the

Tree-structured Parzen Estimator (TPE)method, it is notable that all models are sensitive to the

hyperparameters, which means that the best-performing model could easily be outperformed

if not carefully tuned.

4.2 A Study On HPO Choices

Even with a robust training configuration, the choice of hyperparameters can significantly

affect the model performance. In this study’s experiments, two HPO search strategies are

employed, i.e., Bayesian TPE (Bergstra et al., 2011) and random search (Bergstra and Bengio,

2012). In the Bayesian TPE, a posterior distribution of the objective function is modelled

and used to predict the performance of different hyperparameter configurations based on

historical evaluations, while random search selects hyperparameter configurations uniformly

at random from a predefined range. For each strategy, 100 experiments are conducted without

Parameter Value range
Embedding Dim [16 . . . 512, 16]

Num Epochs [10 . . . 50, 10]

Learning Rate [0.001 . . . 0.1, log]
Num Negatives [1 . . . 100, 10]

Table 4.3: Range of search for HPO values in the form of minimum, maximum and step.
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Figure 4.4: The effect of 2 different HPO strategies across all models and both datasets (Part
1).

time constraints, using a fixed model seed, training setup (see Table 4.1), and hyperparameter

optimisation search ranges (see Table 4.3). The hyperparameters were evaluated using the

AMR metric for both HPO search strategies on a 10% holdout set of triples that is randomly

selected but fixed across all trials. Observing Figure 4.4a, TPE trials took a shorter time

than random search on average. Even though TPE’s parameter tuning strategies can increase

runtime, it managed to achieve shorter trial runs than random search. Figure 4.4b shows that

on average, TPE achieves its best performance closer to the maximum number of trials (100).

Again, this is likely due to the fact that TPE can tune parameters that can increase run time

significantly. In Figure 4.5a and Figure 4.5b, it is interesting to see how close the performance
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of TPE is to random search, with TPE yielding only slightly better-performing models.

While often considered more naive, random search can occasionally outperform sophisticated

methods by randomly finding optimal parameters, potentially uncovering high-performing

configurations that systematic searches may miss. Close observation of Figure 4.5a and

Figure 4.5b shows a negative correlation between AMR and Hits@10, which is nice to see

as the HPO was solely focused on optimising for AMR.

4.3 KRL-BIM-KG Applicability System Architecture

As delineated in Subsection 1.6.4 of the research scope, the system architecture presented

here is at a high-level and is positioned in this thesis as a scaffolding layer that demonstrates

how the combination of KRL and BIM-KGs can be applied in real-life building automation

workflows/systems without claiming a fully industrialized deployment. The three guiding

assumptions are;

1. No authoritative recipe exists for integrating KRL with BIM-KGs, making a top‑down,

reference architecture more valuable than a narrowly tailored low‑level build.

2. Real buildings mix communication protocols such as BACnet 3, Modbus4, Message

Queuing Telemetry Transport (MQTT)5, and proprietary APIs; the architecture

presented here therefore separates concerns into loosely coupled modules (KRL

configurators, RDF triple stores, IoT, LLM-RAG interface) so practitioners can swap

implementations to match specific problem constraints.

3. Domain experts—from facility managers to energy consultants—tend to prefer

conversational exploration over writing SPARQL. RAG pipelines backed by LLMs are

recommended in the stack to translate natural‑language questions into SPARQL queries.

Within these boundaries, the system architecture in this section, as summarised in

Figure 4.7, delivers the following:

1. A conceptual pathway: A clear mapping from BIM/COBie import → BIM-KG graph

+ IoT → KRL embeddings → vector search → LLM reasoning.
3https://bacnet.org/
4https://www.modbus.org/
5https://mqtt.org/

https://bacnet.org/
https://www.modbus.org/
https://mqtt.org/
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Table 4.4: Scalability‑oriented design principles in the COBie handler.

Principle Design choice in code Why it matters for large
projects

Ontology‑first
mapping

Lines 32–53 bind BRICK,
SOSA/SSN, & SAREF4BLDG
ontology namespaces

Aligns every triple with public
schemas, enabling standard
reasoners and avoiding vendor
lock‑in.

Sheet‑level
streaming

Each workbook sheet (Facility,
Floor, Space, …) processed in an
isolated loop

Allows chunked ingestion; this
means that a 30 000‑row Space
sheet stays responsive and
memory‑safe.

Incremental
enrichment

For every BRICK entity created,
companion SOSA/SSN property
triples (e.g. temperature,
humidity) are added immediately.

Data loggers can later stream
observations directly to those
properties without touching
the core topology of the curated
BIM-KG.

2. Interoperable endpoints: Graph Query Language (GraphQL) and Representational

State Transfer (REST) API entry points to abstract low‑level framework implementations

and also allow external services such as Microsoft Dynamics 3656 to to contribute

business context without being deeply grounded by RDF or KRL principles.

The remainder of this section details each module’s workflow, illustrates two

representative user interactions, and presents pilot metrics that can be used in future work

to validate the architectural soundness.

4.3.1 COBie Handler — Curating BIM-KGs at Scale

The COBie handler is the front‑door data service that converts raw COBie workbooks into a

semantically rich BIM-KG ready for downstream KRL and other modules. COBie is an ideal

entry format because it already aggregates most of the asset, spatial, and operational metadata

required for lifecycle analytics (facility, floor, space, component, …) in a semi‑structured .xlsx

container. Domain experts are also comfortable with spreadsheet tooling, and the widespread

availability of Python, Java, and .NET libraries for spreadsheet parsing means that even large

estate owners can ingest decades of legacy FM data without first migrating to a proprietary

interface; the handler simply builds on this ecosystem to generate RDF triples. The handler’s

logic embodies 3 design principles summarised in Table 4.4.
6https://www.microsoft.com/en-us/dynamics-365

https://www.microsoft.com/en-us/dynamics-365
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The COBie handler module 7 presented in this implementation architecture follows the

workflow below.

1. Initialize an RDF graph by creating a new rdflib.Graph and binding standard

prefixes (rdf, owl, xsd, brick, sosa, ssn, saref4bldg) for the different BIM-KG

domain ontologies.

2. Process Facility sheet: extract site and building identifiers and labels; add

brick:Site, brick:Building, and a brick:hasPart link from site to building.

3. Process Floor sheet: for each row, instantiate a brick:Floor entity, assign an

rdfs:label, and link it to its building via brick:hasPart.

4. Process Space sheet: for each valid space, create a brick:Space that is also

a sosa:FeatureOfInterest; add temperature/humidity ssn:Property nodes; link

spaces to floors with brick:isPartOf.

5. Process Zone & Component sheets: map zones to brick:Zone and establish

brick:hasPart links to spaces; detect component types (e.g., AHU, VAV), create

corresponding BRICK entities with rdfs:label, and link them to their containing

spaces.

In large‑scale applications and deployments of the COBie handler, several operational and

performance challenges can emerge. A non-exhaustive list is provided below as a starting

point for consideration, together with some proposals.

1. Write‑throughput saturation

When a large COBie workbook is parsed, the handler may overwhelm a single Central

Processing Unit (CPU) core and the triplestore’s insert queue. Proposed solution:

partition the workload by sheet or by configurable row‑chunks and dispatch them to

multiple worker processes.

2. In-memory footprint

The default rdflib.Graph keeps all triples in-memory, which can exhaust Random
7https://github.com/BIM-and-Automation-Laboratory/coolopt/blob/development/lbd/

research_modules/lbd.py

https://github.com/BIM-and-Automation-Laboratory/coolopt/blob/development/lbd/research_modules/lbd.py
https://github.com/BIM-and-Automation-Laboratory/coolopt/blob/development/lbd/research_modules/lbd.py
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Access Memory (RAM) on large-scale COBie imports. Proposed solution: swap to an

rdflib.ConjunctiveGraph8 backed by a SQLAlchemy store9, or stream triples directly

into an external triplestore via batched SPARQL INSERT/UPDATE operations, thereby

shifting the memory burden on the database layer.

3. Better rule checking

Hard‑coded string checks for component types (e.g., “VAV”, “Chiller”) risk failure

when organisations use different naming schemes. Proposed solution: externalise the

string‑to‑ontology mapping as a JavaScript Object Notation (JSON) ruleset or SHACL

shapes file that the handler loads at runtime; this avoids code changes when new

component classes appear.

The COBie handler anchors semantic consistency for the entire framework: defects here

can propagate into malformed KRL embeddings and misleading LLM answers. Its modular

approach allows injection of various BIM-KG validation strategies such as those highlighted

in Subsection 3.1.2.

4.3.2 IoT Handler for Real-Time Sensor Integration

The IoT handler is responsible for ingesting live building‑automation data and streaming

it into a document store such as MongoDB10. Each observation can then be linked to its

spatial context of the building using the BIM-KG produced by the COBie handler. This work

adopts the IoT schematic in Figure 4.6, which comprises a DHT22 sensor connected to an

ESP32 microcontroller programmed11 to connect to a remote MQTT broker and perform the

downstream tasks summarised below.

1. MQTT Subscription: Connect to the broker, subscribe to topic patterns (such as

building/+/floor/+/space/+/sensor/+/data).

2. Message Parsing: Deserialise each JSON payload to extract timestamp, sensor ID,

measurement type, and value.
8https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html
9https://www.sqlalchemy.org/

10https://www.mongodb.com/
11https://github.com/BIM-and-Automation-Laboratory/esp32-dht22-infrared-setup/blob/

main/program.ino

https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html
https://www.sqlalchemy.org/
https://www.mongodb.com/
https://github.com/BIM-and-Automation-Laboratory/esp32-dht22-infrared-setup/blob/main/program.ino
https://github.com/BIM-and-Automation-Laboratory/esp32-dht22-infrared-setup/blob/main/program.ino
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Figure 4.6: DHT22 Setup with ESP32 Micro controller

3. RDF Triple Generation: Map sensor IDs to the property nodes created by the COBie

handler (e.g. fdg:GUID-temp), then emit triples using SOSA/SSN: sosa:Observation,

sosa:hasFeatureOfInterest, sosa:observedProperty, sosa:resultTime,

sosa:hasSimpleResult.

4. Graph Insertion: Batch append observations to both the MongoDB and triplestore in

real time.

In large buildings, the IoT handler must sustain continuous, high‑frequency ingestion of

measurements while ensuring each observation is semantically linked to the BIM-KG. As

device counts and message rates increase, several bottlenecks can degrade performance. The

following list summarises some key challenges and proposes strategies to mitigate them.

• High‑Frequency Streams: Hundreds of sensors publishing every 10–30 seconds can

overwhelm a single consumer. Proposed solution: shard subscriptions across multiple
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asynchronous workers or use a Kafka12 layer to buffer and partition topics before RDF

mapping.

• Batch vs. Single‑Message Inserts: Per‑message SPARQL updates can incur network

and transaction overhead. It is better to accumulate observations into micro‑batches

(for example, 100 messages) and issue grouped INSERT DATA calls.

• Back‑pressure Management: Store throttling under load can cause client-side

memory growth. Proposal: implement a bounded queue with retry/back‑off logic or

integrateMQTTQuality of Service (QoS) levels to preventmessage loss while respecting

store capacity.

• Fault Tolerance and Replayability: Lost messages during network outages can break

the observation history. Proposal: enable persistent MQTT queues and log raw payloads

to durable storage (e.g. Amazon S313) so that a replay service can re‑inject missing data

into the BIM-KG.

4.3.3 KRL Configurator Module for Generating Embeddings

TheKRLConfigurator transforms the static BIM-KG into numeric embeddings for downstream

link prediction tasks, similarity search and RAG services. It cleanly separates BIM-KG data

ingestion, data preparation, model training, evaluation and exporting of learned embeddings

to support profiling, scalability, and modular swaps. The KRL configurator module can be

adopted from the experimentation pipelines presented in Section 4.114 and Section 4.215 using

the workflow summarised below.

1. Import RDF graph

Load triples from a SPARQL endpoint or parse a Turtle/TTL file into an in‑memory

rdflib.Graph, ensuring all namespaces (BRICK, SOSA/SSN) are bound.
12https://kafka.apache.org/20/documentation/streams/architecture
13https://aws.amazon.com/pm/serv-s3/
14https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/

training-setup-study/experiment.ipynb
15https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/hpo-study/

experiment.ipynb

https://kafka.apache.org/20/documentation/streams/architecture
https://aws.amazon.com/pm/serv-s3/
https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/training-setup-study/experiment.ipynb
https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/training-setup-study/experiment.ipynb
https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/hpo-study/experiment.ipynb
https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/hpo-study/experiment.ipynb
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2. Map URIs to IDs

Enumerate every unique subject, predicate, and object URI; assign each a contiguous

integer ID; and extract a list of (head_id, relation_id, tail_id) facts.

3. Prepare training dataset

Split the positive facts into training, validation, and test sets; generate negative samples

on the fly (corrupting head or tail); and batch the data into tensors.

4. Dispatch training job

Instantiate the selected embedding model (e.g. TransE, ComplEx, TransH) with

hyperparameters from a JSON/YAML configuration16; and execute training on or

Graphics Processing Unit (GPU), streaming mini‑batches and logging metrics17 (loss,

MRR, Hits@k).

5. Export embeddings

Upon convergence, serialize entity and relation vectors (e.g. as .npy files or directly

into a vector database such as Faiss18 or PGVector19); and emit training metadata (model

type, parameters, performance) for cataloguing and downstream retrieval.

Beyond the limitations discussed in Subsection 1.6.4, this work does not evaluate the

correctness of the generated embeddings. This is because the primary research objective

was to expose the mechanics of applying KRL to BIM-KGs—an area where baseline

workflows, agreed-upon benchmark datasets, and metrics are still absent. However,

both embedding correctness and explainability highlight a necessary next phase, especially

considering that some high-performing models can still violate logical constraints. Classic

KRL evaluation—hits@k, MRR—optimises for rank agreement on withheld triples, yet ignores

domain axioms—rdfs:domain, rdfs:range or owl:disjointWith. A TransE model can

score highly while mapping brick:Space→ brick:hasPart→ brick:Chiller, which

contradicts both ontology and building logic. In FM, such contradictions are fatal because
16https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/

training-setup-study/config.yaml
17https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/

training-setup-study/results
18https://github.com/facebookresearch/faiss
19https://github.com/pgvector/pgvector

https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/training-setup-study/config.yaml
https://github.com/BIM-and-Automation-Laboratory/phd-source/blob/main/training-setup-study/config.yaml
https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/training-setup-study/results
https://github.com/BIM-and-Automation-Laboratory/phd-source/tree/main/training-setup-study/results
https://github.com/facebookresearch/faiss
https://github.com/pgvector/pgvector
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the LLM-RAG layer may surface them as actionable advice. A typical LLM-RAG workflow

would look like this;

1. Query intake – Using an LLM such as ChatGPT20, a facility manager asks: “Which

AHU on Level 2 is closest to failure?”

2. Sparse retrieval – A SPARQL template performs a candidate restriction to

brick:Air_Handling_Unit instances located in Level 2 spaces.

3. Dense retrieval – Candidate URIs are converted to their TransE vectors; a k‑NN search

pulls the most similar embeddings to historically failed AHUs.

4. Prompt assembly – The top‑k triples, embedding scores, and maintenance logs form

the context block of an LLM prompt.

5. LLM generation – ChatGPT (via LangChain21) produces a ranked list with free‑text

rationales and confidence scalars.

This RAG pattern exploits the learned embeddings as a semantic prior : they bias

the LLM towards more factual responses. For this to work, there is a need for

ontology‑aware regularisation or post‑training SHACL and SPARQL audits before embeddings

are adopted in operational building‑automation workflows. Below are some recommended

correctness-oriented extensions.

1. Constraint‑aware negative sampling: Standard KRL training randomly corrupts

a positive triple (h, r, t) by replacing either the head or tail with a random

entity, yielding (h′, r, t) or (h, r, t′); the model then learns to score such negatives

lower than the positives. This procedure, however, does not distinguish between

ontology‑consistent and ontology‑violating negatives. By first encoding domain

rules as SHACL shapes, it is possible to bias the sampling process toward

only those negatives that break the rules, thereby teaching the model to respect

ontological boundaries. For BRICK, a simple shape might assert that the object of

brick:isPartOf must be a brick:EquipmentRoot and must‑not be a brick:Space.
20https://chatgpt.com/
21LangChain is a software framework that helps facilitate the integration of LLMs into applicationshttps:

//www.langchain.com/

https://chatgpt.com/
https://www.langchain.com/
https://www.langchain.com/
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During mini-batch construction, negatives are generated, such as textttbrick:Chiller→

brick:isPartOf→ brick:Space_2 rather than a semantically neutral corruption like

replacing the Chiller with an unrelated Pump. Because the corrupted triple violates the

SHACL shape, the optimiser is forced to push the Chiller and Space embeddings apart,

preventing the phenomenon in which disjoint classes occupy the same region of the

embedding space. As training iterates over thousands of such rule‑breaking negatives,

the model internalises the logical constraints, improving the correctness of high‑ranked

predictions without requiring a separate post‑processing filter.

2. Logical‑consistency score — After model convergence, a scoring function f(h, r, t) ∈

R assigns plausibility to any triple (h, r, t). The following procedure evaluates whether

the model’s highest‑confidence predictions respect ontology rules.

(a) Candidate generation — For each rule, enumerate all triples that could satisfy it.

Example: the rule “every brick:Zone hasPart at least one brick:Space” yields

the set {(z, hasPart, s) | z:brick:Zone, s:brick:Space}.

(b) Scoring and ranking—Apply f to every candidate and sort in descending order;

retain the top‑N triples (e.g. N=100).

(c) Compliance check — Evaluate each of the N triples against the rule’s SHACL

shape. A triple linking a Zone to a Space passes; a link to a Chiller or an undefined

entity fails.

(d) Metric computation — The logical‑consistency score is

LCS =
number of rule‑compliant triples in top‑N

N
.

(e) Interpretation — An LCS below 0.9 signals systematic ontology violations,

indicating that the embedding space places a significant fraction of disallowed

triples among its most confident predictions.

3. Qualitative RAG audit – Inject deliberately inconsistent triples into the graph and

verify that the embedding‐guided RAG output either ignores or explicitly rejects them,

providing a user‑facing safeguard.
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4.3.4 Interoperability Layer — GraphQL and REST Endpoints

This module exposes the framework’s core functions through two complementary interfaces:

• GraphQLAPI—a single /graphql endpoint that supports typed queries andmutations

against the BIM-KG and the vector store. Clients can request precisely the fields they

need (e.g. zone name, latest CO2 reading, top‑3 similar zones) without over‑fetching.

• REST API — conventional HTTP GET/POST routes for common operations such as

/spaces/{id}, /zones, /embeddings/search. These routes suit tools or enterprise

systems that are not GraphQL‑aware.

Exposing these interfaces abstracts away the underlying RDF triples and embedding

details so external services can retrieve BIM data without specialist knowledge. There is

also added flexibility from pairing GraphQL’s fine‑grained, exploratory queries with REST’s

stable, cache‑friendly routes for integrating platforms like Microsoft Dynamics 365. These

interfaces also align well with widely adopted authentication and DevOps practices—OAuth2,

API gateways, monitoring systems—making the framework slot smoothly into enterprise

environments without too much custom tooling.

Example use‑case : A facilities‑management add‑in for Microsoft Dynamics 365

calls the REST route /embeddings/search?iri={ahu_id}&k=5. The gateway runs a

k‑nearest‑neighbour query on the vector store, retrieves the five most similar AHUs (based

on past fault patterns), enriches each result with human‑readable labels from the BIM-KG via

SPARQL, and returns a JSON array ready for display inside the Dynamics user interface.

4.4 Knowledge Representation Learning-based Building

Control Framework (KRL-based BCF)

Insights gained from the experimental results presented in Section 4.1 and Section 4.2, together

with the applicability configuration above, were combined to define the key prerequisites for

integrating KRL with BIM-KGs in a framework that is arguably domain-agnostic.
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Using domain expertise, define the
competency questions that that the
BIM-KG has to answer. Examples

are provided in Section 3.1.1

Linked Building Data (LBD) / BIM Knowledge Graph (BIM-KG) modelling, evaluation and validation for Knowledge Representation
Learning (KRL) Pipelines

Identify the domain ontologies with
vocabulary necessary to model a

BIM-KG that answers the
competency questions defined.

If no vocabulary exists, develop new
ontologies while ensuring their

alignment with existing ontologies   

Using SHACL and the defined
competency questions, define the
shape of the data that the BIM-KG

has to conform to and validate
against. It is important to make use

of the sh:message property to
provide meaningful warning

messages during the validation
phase. (Section 3.1.2)

Develop the BIM-KG 
(Section 3.1)

Validate the BIM-KG's
structural consistency,  data
completeness etc using the
SHACL constraints defined.
SPARQL can be integrated

with SHACL
(Section 3.1.2)

Does Validation 
Pass

No

Go to KRL

Yes

KRL on BIM-KGs

Preprocess the BIM-KG datasets
and transform them into a desirable
analytical format. i.e TSV, CSV. The

python library RDFLib provides a
good starting point.

Analyse the structural properties of
the datasets such as relation

cardinality types (1-N, 1-1 etc.),
relational patterns (asymmetric,

inverse, symmetric etc.) and degree
distributions    

Identify appropriate KRL models that
can learn from the data with the

identified structural properties.  It is
advisable to also choose some

baseline models that fall out of scope
of the identified structural properties as

these have shown competitive
performance with newer models

Identify the appropriate performance metrics based on the models chosen.
MR, MRR and Hits@k are the most commonly used metrics. It is advised to
adopt and mix the above with other metrics or even develop new domain-

specific metrics for KRL on BIM-KGs

Initialize hyperparameter set,
prepare training setup with

appropriate optimizers and loss
functions. It is essential to train &

test different training setup
configurations as detailed in Table

4.1 and 4.2  

Combine the different metrics and carry out some KRL downstream link
prediction tasks to measure the model performance until it is satisfactory

based on the defined use-case

Choose the best model configuration
and deploy it for use

Figure 4.8: Knowledge Representation Learning-based Building Control Framework
(KRL-based BCF)
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Conclusions and Recommendations For

Future Research

This thesis has examined several aspects of KRL with respect to BIM-KGs, which will be

summarized in this chapter while referencing the research questions. This section will

conclude with a discussion of interesting directions for future research.

5.1 Summary

BIM-KGs are increasingly being adopted in the AEC/FM field for semantic interoperability

and logical inference. Learning from these knowledge graphs using KRL is still in its infancy.

This thesis has identified that the efforts to integrate KRL with BIM-KGs are still very slow,

primarily due to the absence of standardised procedures for training and evaluating KRL

models in a reproducible and fair manner. For KRL to impact the AEC/FM domain, this work

has emphasized the critical importance of comprehensively reporting model architectures,

training setups and hyperparameters to enhance trust and understanding of KRL-based

methods among AEC/FM stakeholders and researchers. This research has addressed the

following research questions.

1. Research Question 1: How can knowledge graphs be used to represent the semantic

relationships between different building components and systems using domain-agnostic

technologies for efficient utilisation in downstream KRL tasks?

This thesis has discussed how SWTs can be used to develop BIM-KGs in a data-agnostic

93
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fashion. An exploratory walkthrough was made to highlight the technical aspects and

key considerations for building an effective BIM-KG for training KRL models. Notably,

the need to identify small and modular ontologies using domain-expert competency

questions that can be validated against using mechanisms such as SHACL and SPARQL.

Furthermore, because the potency of a KRL model is tightly bound to the quality of

the input knowledge graph, it is important to check for BIM-KG issues that affect

KRL message-passing. By answering this question, a foundation was laid for AEC/FM

researchers to explore other important BIM-KG issues to check for before performing

downstream KRL tasks.

2. Research Question 2: How can KRL be used to learn the relationships formulated in

Research Question 1 for building automation?

From the outset, this thesis hypothesised that KRL can be used to learn the

hidden patterns within a BIM-KG by leveraging message-passing to propagate learnt

information throughout all nodes in the graph. The perception is that imbuing building

automation agents with holistic information about the buildings they control can

support context-aware decision-making during downstream automation tasks. To

answer research question 2, this work used performance analysis experiments to

examine how model performance can be affected by modifications to the training

step, selection of hyperparameters and their optimisation. This research identified

models RotatE and TransE, NSSA loss and Adam optimiser as robust baselines when

integrating KRL with BIM-KGs. Throughout the experiments, it was observed that

older models like TransE can still be competitive with optimised training and HPO

configurations. Furthermore, despite extensive hyperparameter searches, there was

considerable variance among top-performing model configurations, indicating the

need for nuanced parameter combinations. This complexity suggests that manual

tuning may not yield optimal results, advocating for the adoption of HPO strategies.

Furthermore, the disparity in hyperparameters between the two datasets underscores

the influence of dataset-specific parameters. Finally, random search methods, when

repeated sufficiently, yielded configurations comparable to more systematic approaches,

albeit in less time.
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3. Research Question 3: How can the prerequisites for integrating KRL with BIM-KGs be

formalised in a practical framework to enhance trust, reproducibility and understanding of

KRL-based methods among AEC/FM stakeholders and researchers?

To answer this question, the experimental results from research question 2 were used

to deduce the prerequisites for integrating KRL with BIM-KGs, which prerequisites

are then used to define a step-by-step framework. To illustrate its implementation, a

practical setup is devised consisting of an IoT device and a prototype program of the

framework wrapped inside an API. Although a building automation use case is used to

formulate the framework, the setup serves as a reference point for extensibility to other

AEC/FM domains.

5.2 Recommendations for Future Work

This section briefly outlines interesting directions for future research that can improve the

framework’s capabilities, explainability, and computational efficiency within the building

automation domain.

5.2.1 Enforcing Onset SHACL Validations and Schema Conformity

Instead of attempting to address duplicates and inconsistencies later on in the KRL pipeline,

using SHACL restrictions at the outset of BIM-KG curation might be a proactive method to

ensure consistency from the beginning. In addition to onset SHACL validations, starting with

a clear and consistent schema that specifies the kinds of entities and relationships that will

be included in the knowledge graph can improve the quality of the training data used to

learn representations, resulting in more accurate and effective models. In its present form, the

research’s framework does not explicitly account for the erroneous nature of already existing

BIM-KGs, which can potentially diminish the accuracy of the learnt KRL embeddings.

5.2.2 Learning From Multi-modal BIM-KGs

Multi-modal BIM-KGs have the capacity to represent different types of building information

which are usually of different formats and frequently maintained in separate data silos.
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Integrating these modalities into a single knowledge graph can provide a more comprehensive

understanding of a building, allowing for more sophisticated reasoning by building control

agents. Learning frommulti-modal knowledge graphs poses several challenges for KRL. First,

the embeddings must be capable of capturing the interactions between multiple modalities,

which may necessitate the development of new embedding models. Second, different

modalities may have varying degrees of sparsity or noise, necessitating the use of specialised

or fine-tuned optimisers, loss functions and performance metrics.

5.2.3 Explainability Improvements

It may not always be obvious how the learnt KRL embeddings were derived or which

exact factors influenced them. This research has already shown how combinatorial the

problem of choosing a training setup is. This complexity inherently translates to poor model

explainability. To alleviate this, future research can focus on including rule-based systems

that make the decision-making process more transparent and interpretable, as the reasoning

behind the decisions can be traced back to the specific rules being used. This would help

building automation specialists better understand and trust the decisions being made in

instances where the KRL model’s choices directly affect the physical environment and the

occupants in it.

5.2.4 A Need for Agreed-upon Fair Evaluation Protocols and Novel

Datasets

A major obstacle to the development and assessment of KRL-BIM-KG pipelines is the absence

of agreed-upon evaluation protocols and benchmark data sets. To address this issue, it is

essential to develop fair and reproducible evaluation protocols for comparing the performance

of various KRL-BIM-KG pipelines. Similarly, creating new benchmark datasets that are open

to the research community, just like in the biological field, can aid in fairer evaluation of

KRL-BIM-KG pipelines.
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5.2.5 Security Issues

KRL embeddings capture the holistic context of a knowledge graph, which makes them

susceptible to a variety of security vulnerabilities such as adversarial alterations. In a

building’s context, these can have serious implications for building safety and efficiency.

To address these security concerns, several defence mechanisms can be developed, such as

encryption and training the KRL model using a mix of clean and adversarial data. Also, an

IoT device may encrypt data before delivering it to the KRL model, preventing attackers from

intercepting and altering the data to improve its resistance to attacks.



Bibliography

Abdul-Ghafour, S., Ghodous, P., Shariat, B., and Perna, E. (2007). A Common Design-Features Ontology

for Product Data Semantics Interoperability. In IEEE/WIC/ACM International Conference on Web

Intelligence, pages 443–446. IEEE.

Agostinho, C., Dutra, M., Jardim-Gonçalves, R., Ghodous, P., and Steiger-Garção, A. (2007). EXPRESS to

OWLmorphism: making possible to enrich ISO10303 Modules. In 14th ISPE International Conference

on Concurrent Engineering, pages 391–402, London. Springer.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A Next-generation

Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 2623–2631.

Akompab, D. A., Bi, P., Williams, S., Grant, J., Walker, I. A., and Augoustinos, M. (2013). Awareness of

and attitudes towards heat waves within the context of climate change among a cohort of residents

in adelaide, australia. International Journal of Environmental Research and Public Health, 10(1).

Alam, M., Sanjayan, J., and Zou, P. X. (2019). Balancing energy efficiency and heat wave resilience

in building design. In Climate Adaptation Engineering: Risks and Economics for Infrastructure

Decision-Making.

Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Galkin, M., Sharifzadeh, S., Fischer, A., Tresp, V., and

Lehmann, J. (2020a). Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph

Embedding Models Under a Unified Framework. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 44(12):8825–8845.

Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Sharifzadeh, S., Tresp, V., and Lehmann, J. (2020b).

PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings. Journal

of Machine Learning Research, 22.

98



BIBLIOGRAPHY 99

An, X., Li, L. F., Yang, X., and Luo, M. X. (2024). Portable network resolving huge-graph isomorphism

problem. Machine Learning: Science and Technology, 5(3).

Anderson, A., Marsters, A., Dossick, C. S., and Neff, G. (2012). Construction to operations exchange:

Challenges of implementing COBie and BIM in a large owner organization. In Construction Research

Congress 2012: Construction Challenges in a Flat World, Proceedings of the 2012 Construction Research

Congress.

Anzaldi, G., Corchero, A., Wicaksono, H., McGlinn, K., Gerdelan, A., and Dibley, M. J. (2018). Knoholem:

Knowledge-Based Energy Management for Public BuildingsThrough Holistic Information Modeling

and 3D Visualization. International Technology Robotics Applications, 70:47–56.

Asadi, E., Da Silva, M. G., Antunes, C. H., and Dias, L. (2012). Multi-objective optimization for building

retrofit strategies: A model and an application. Energy and Buildings, 44(1).

Baader, F. (2003). TheDescription Logic Handbook –Theory, Implementation and Applications. Cambridge

University Press, Cambridge, MA, USA.

Babai, L. (2015). Graph Isomorphism inQuasipolynomial Time. In Proceedings of the forty-eighth annual

ACM symposium on Theory of Computing, volume 7443327, pages 684–97. Arxiv.

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh, J., Ploennigs,

J., Agarwal, Y., Berges, M., Culler, D., Gupta, R., Kjærgaard, M. B., Srivastava, M., and Whitehouse,

K. (2016). Brick: Towards a unified metadata schema for buildings. Proceedings of the 3rd ACM

Conference on Systems for Energy-Efficient Built Environments, BuildSys 2016, pages 41–50.

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh, J., Ploennigs, J.,

Agarwal, Y., Bergés, M., Culler, D., Gupta, R. K., Kjærgaard, M. B., Srivastava, M., and Whitehouse,

K. (2018). Brick : Metadata schema for portable smart building applications. Applied Energy,

226:1273–1292.

Baniassadi, A., Heusinger, J., and Sailor, D. J. (2018). Energy efficiency vs resiliency to extreme heat and

power outages: The role of evolving building energy codes. Building and Environment, 139:86–94.

Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S., and Sriram, R. D.

(2012). OntoSTEP: Enriching product model data using ontologies. CAD Computer Aided Design,

44(6):575–590.



100 BIBLIOGRAPHY

Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G., and Salcedo-Sanz, S. (2023). Heat

Waves: Physical Understanding and Scientific Challenges. Reviews of Geophysics, 61(2).

Bayoudh, K., Knani, R., Hamdaoui, F., and Mtibaa, A. (2021). A survey on deep multimodal learning for

computer vision: advances, trends, applications, and datasets. The Visual Computer, 38(8):2939–2970.

Beckett, D. and Berners-Lee, T. (2011). Turtle - Terse RDF Triple Language-W3C Team Submission 28

March 2011.

Beetz, J., van Leeuwen, J., and de Vries, B. (2005). An Ontology Web Language Notation of the Industry

Foundation Classes. In 22nd CIB W78 Conference on Information Technology in Construction, pages

193–198. Technische Universität Dresden.

Beetz, J., van Leeuwen, J., and de Vries, B. (2009). IfcOWL: A case of transforming EXPRESS schemas

into ontologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM,

23(1):89–101.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for Hyper-Parameter Optimization.

Advances in Neural Information Processing Systems, 24.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of

machine learning research, 13(1):281–305.

Berners-Lee, T. (1996). WWW Past & Future. Computer, 29(10):69–77.

Berners-Lee, T. (2006). Linked Data - Design Issues.

Berners-Lee, T. and Connolly, D. (2011). Notation3 (N3): a readable RDF syntax.W3C Team Submission.

World Wide Web Consortium (W3C).

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web: A new form of Web content

that is meaningful to computers will unleash a revolution of new possibilities. Linking the World’s

Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web, pages 91–103.

Berrendorf, M., Faerman, E., Vermue, L., and Tresp, V. (2020). On the Ambiguity of Rank-Based

Evaluation of Entity Alignment or Link Prediction Methods. arXiv preprint arXiv:2002.06914.

Bonino, D. andDe Russis, L. (2018). DogOnt as a viable seed for semanticmodeling of AEC/FM. Semantic

Web, 9(6):763–780.



BIBLIOGRAPHY 101

Bonner, S., Barrett, I. P., Ye, C., Swiers, R., Engkvist, O., Hoyt, C. T., and Hamilton, W. L. (2022).

Understanding the performance of knowledge graph embeddings in drug discovery. Artificial

Intelligence in the Life Sciences, 2:100036.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translating

Embeddings for Modeling Multi-relational Data. Advances in neural information processing systems,

26:2787–2795.

Borrmann, A., König, M., Koch, C., and Beetz, J. (2018). Building Information Modeling Technology

Foundations and Industry Practice. Springer International Publishing.

Bronstein, M. M., Bruna, J., Lecun, Y., Szlam, A., and Vandergheynst, P. (2016). Geometric deep learning:

going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42.

Chen, J., Lin, H., Han, X., and Sun, L. (2024). Benchmarking Large Language Models in

Retrieval-Augmented Generation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 38, pages 17754–17762. Association for the Advancement of Artificial Intelligence.

Chen, K. W., Janssen, P., and Schlueter, A. (2018a). Multi-objective optimisation of building form,

envelope and cooling system for improved building energy performance. Automation in Construction,

94:449–457.

Chen, Y., Norford, L. K., Samuelson, H. W., and Malkawi, A. (2018b). Optimal control of HVAC and

window systems for natural ventilation through reinforcement learning. Energy and Buildings,

169:195–205.

Corneil, D. G. and Gotlieb, C. C. (1970). An Efficient Algorithm for Graph Isomorphism. Journal of the

ACM (JACM), 17(1):51–64.

Corry, E., Pauwels, P., Hu, S., Keane, M., and O’Donnell, J. (2015). A performance assessment ontology

for the environmental and energymanagement of buildings. Automation in Construction, 57:249–259.

Cunningham, P. and Delany, S. J. (2007). K -Nearest Neighbour Classifiers. Multiple Classifier Systems,

pages 1–17.

Curry, E., O’Donnell, J., and Corry, E. (2012). Building Optimisation using Scenario Modeling and

Linked Data. In First International Workshop on Linked Data in Architecture and Construction.

Dai, Y., Wang, S., Xiong, N. N., and Guo, W. (2020). A Survey on Knowledge Graph Embedding:

Approaches, Applications and Benchmarks. Electronics 2020, Vol. 9, Page 750, 9(5):750.



102 BIBLIOGRAPHY

Daniele, L., den Hartog, F., and Roes, J. (2015). Created in Close Interactionwith the Industry: The Smart

Appliances REFerence (SAREF) Ontology. 7th International Workshop, FOMI 2015 Berlin, Germany,

August 5, 2015 Proceedings, (August):102–112.

Debruyne, C., McGlinn, K., McNerney, L., and O’Sullivan, D. (2017). A lightweight approach to explore,

enrich and use data with a geospatial dimension with semantic web technologies. ACM, (May):1–6.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional Neural Networks on Graphs

with Fast Localized Spectral Filtering. In Proceedings of the 30th International Conference on Neural

Information Processing Systems, pages 3844–3852.

Delgarm, N., Sajadi, B., Kowsary, F., and Delgarm, S. (2016). Multi-objective optimization of the building

energy performance: A simulation-based approach by means of particle swarm optimization (PSO).

Applied Energy, 170:293–303.

Deng, M., Fu, B., Menassa, C. C., and Kamat, V. R. (2023). Learning-Based personal models for

joint optimization of thermal comfort and energy consumption in flexible workplaces. Energy and

Buildings, 298.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. (2017). Convolutional 2D Knowledge Graph

Embeddings. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages 1811–1818.

Dibley, M., Li, H., Miles, J., and Rezgui, Y. (2011). Towards intelligent agent based software for building

related decision support. Advanced Engineering Informatics, 25(2):311–329.

Dibley, M., Li, H., Rezgui, Y., and Miles, J. (2012). An ontology framework for intelligent sensor-based

building monitoring. Automation in Construction, 28:1–14.

Dolenc, M., Katranuschkov, P., Gehre, A., Kurowski, K., and Turk, Z. (2007). The inteligrid platform for

virtual organisations Interoperability. Electronic Journal of Information Technology in Construction,

12:459–477.

Dong, Y., Coleman, M., and Miller, S. A. (2021). Greenhouse Gas Emissions from Air Conditioning

and Refrigeration Service Expansion in Developing Countries. Annual Review of Environment and

Resources, 46(1):59–83.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization. The Journal of Machine Learning Research, 12(7).



BIBLIOGRAPHY 103

East, E. W., Nisbet, N., and Liebich, T. (2013). Facility Management Handover Model View. Journal of

Computing in Civil Engineering, 27(1):61–67.

El-Mekawy, M. (2010). Integrating BIM and GIS for 3D City Modelling: The Case of IFC and CityGML.

PhD thesis, Royal Institute of Technology (KTH).

Elghamrawy, T. and Boukamp, F. (2008). A vision for a framework to support management and

learning from construction problems. In Proceedings of the 25th International Conference on Formation

Technology in Construction: Improving the management of Construction Projects through IT adoption,

number 1517, pages 1–10.

Elghamrawy, T. and Boukamp, F. (2010). Managing construction information using RFID-based

semantic contexts. Automation in Construction, 19(8):1056–1066.

Eon Bottou, L. (1998). Online Learning and Stochastic Approximations. Online learning in neural

networks, 17(9):142.

Futia, G. and Vetrò, A. (2020). On the Integration of Knowledge Graphs into Deep Learning Models

for a More Comprehensible AI—Three Challenges for Future Research. Information (Switzerland),

11(2):122.

Gandon, F. and Schreiber, G. (2014). RDF 1.1 XML Syntax W3C Recommendation 25 February 2014

(2014).

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., and Wang, H.

(2023). Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv preprint

arXiv:2312.10997, 2.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of

NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman.

Ge, X., Wang, Y.-C., Wang, B., and Kuo, C. C. J. (2023). Knowledge Graph Embedding: An Overview.

APSIPA Transactions on Signal and Information Processing, 13(1).

Ginestet, C. (2010). Introduction to Statistical Relational Learning. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 173(4).

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In International

Conference on Artificial Intelligence and Statistics, pages 315–323. JMLR Workshop and Conference

Proceedings.



104 BIBLIOGRAPHY

Gómez-Romero, J., Bobillo, F., Ros, M., Molina-Solana, M., Ruiz, M., and Martín-Bautista, M. (2015). A

fuzzy extension of the semantic Building InformationModel. Automation in Construction, 57:202–212.

Graves, A., Mohamed, A. R., and Hinton, G. (2013). Speech recognition with deep recurrent neural

networks. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, pages 6645–6649. IEEE.

Guo, D., Onstein, E., and La Rosa, A. D. (2021). A Semantic Approach for Automated Rule Compliance

Checking in Construction Industry. IEEE Access, 9:129648–129660.

Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., and Lefrançois, M. (2017). Semantic Sensor

Network (SSN) Ontology-W3C Recommendation 19 October 2017.

Halmos, P. R. (1974). Naive Set Theory. Undergraduate Texts in Mathematics. Springer New York, New

York, NY.

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Inductive Representation Learning on Large Graphs.

In 31st Conference on Neural Information Processing Systems (NIPS),.

Harris, S. and Seaborne, A. (2013). SPARQL 1.1Query Language-W3C Recommendation 21 March 2013.

Hitzler, P., Krötzsch, M., Parsia, B., F.Patel-Schneider, P., and Rudolph, S. (2012). OWL 2 Web Ontology

Language Primer (Second Edition)-W3C Recommendation 11 December 2012.

Hoff, P. D. (2007). Modeling homophily and stochastic equivalence in symmetric relational data.

Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference.

Hopke, J. E. (2020). Connecting Extreme Heat Events to Climate Change: Media Coverage of Heat

Waves and Wildfires. Environmental Communication, 14(4):492–508.

International EnergyAgency (IEA) (2023). Energy Efficiency-TheDecade for ActionMinisterial Briefing

IEA 8th Annual Global Conference on Energy Efficiency Versailles. Technical report, International

Energy Agency: IEA, Paris.

ISO 10303-11 (2004). Industrial automation systems and integration – Product data representation

and exchange – Part 11: Description methods: The EXPRESS language reference manual. Geneva:

International Organization for Standardization.

ISO 16739:2024 (2024). Industry Foundation Classes (IFC) for data sharing in the construction and

facility management industries. Geneva: International Organization for Standardization.



BIBLIOGRAPHY 105

ISO 29481-1 (2016). Building informationmodelling- Information deliverymanual- Part 1: Methodology

and format. Geneva: International Organization for Standardization.

Jabeen, S., Li, X., Amin, M. S., Bourahla, O., Li, S., and Jabbar, A. (2023). A Review on Methods

and Applications in Multimodal Deep Learning. ACM Transactions on Multimedia Computing,

Communications, and Applications, 19(2s):1–41.

Jia, X., Pan, Y., Zhu, M., Zhu, H., Li, Z., Zhang, J., Zhou, X., Pan, S., Wang, C., Yan, D., Wu, Z., Deng, H.,

Pan, Y., Xie, J., and Xu, L. (2023). Occupant behavior modules development for coupled simulation

in DeST 3.0. Energy and Buildings, 297.

Junk, J., Goergen, K., and Krein, A. (2019). Future heat waves in different european capitals based on

climate change indicators. International Journal of Environmental Research and Public Health, 16(20).

Juran, J. M., Gryna, F. M., and Bingham, R. S. (1979). Quality control handbook., volume 3. McGraw-hill

New York.

Kellogg, G. and Champin, P.-A. (2019). JSON-LD 1.1-A JSON-based Serialization for Linked Data.

Kingma, D. P. and Ba, J. L. (2014). Adam: A Method for Stochastic Optimization. In 3rd International

Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International

Conference on Learning Representations, ICLR.

Kipf, T. N. andWelling, M. (2016). Semi-Supervised Classification with Graph Convolutional Networks.

arXiv preprint, pages 1–14.

Knight, S.-a. and Burn, J. (2005). Developing a Framework for Assessing Information Quality on the

World Wide Web. Informing Science, 8.

Kofler, M. J., Reinisch, C., and Kastner, W. (2012). A semantic representation of energy-related

information in future smart homes. Energy and Buildings, 47:169–179.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review,

51(3):455–500.

Kriebel-Gasparro, A. (2022). Climate Change: Effects on the Older Adult. Journal for Nurse Practitioners,

18(4):372–376.

Krima, S., Barbau, R., Fiorentini, X., Sudarsan, R., and Sriram, R. D. (2009). OntoSTEP : OWL-DL

Ontology for STEP. National Institute of Standards and Technology, NISTIR, 7561.



106 BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional

Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS), pages 1097–1105.

Kumar, V. and Teo, A. L. E. (2021a). Development of a rule-based system to enhance the data consistency

and usability of COBie datasheets. Journal of Computational Design and Engineering, 8(1):343–361.

Kumar, V. and Teo, E. A. L. E. (2021b). Exploring the application of property graph model in visualizing

COBie data. Journal of Facilities Management, 19(4):500–526.

Le, Q. V. (2013). Building high-level features using large scale unsupervised learning. In ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing - Proceedings, pages 8595–8598.

Le, T. and David Jeong, H. (2016). Interlinking life-cycle data spaces to support decision making in

highway asset management. Automation in Construction, 64:54–64.

LeCun, Y., Boser, B. E., Denker, J. S., Hernderson, D., Howard, R. E., Hubbard, W. E., and Jackel, L. D.

(1990). Handwritten Digit Recognition with a Back-Propagation Network. In Advances in neural

information processing systems, pages 396–404.

Lefrançois, M., Kalaoja, J., Ghariani, T., and Zimmermann, A. (2016). SEAS KnowledgeModel. Technical

report.

Li, G., Muller, M., Thabet, A., and Ghanem, B. (2019). DeepGCNs: Can GCNs Go as Deep as CNNs?

Proceedings of the IEEE International Conference on Computer Vision, 2019-October:9266–9275.

Lin, Y., Han, X., Xie, R., Liu, Z., and Sun, M. (2018). Knowledge Representation Learning: AQuantitative

Review. arXiv preprint arXiv:1812.10901.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015). Learning Entity and Relation Embeddings

for Knowledge Graph Completion. Proceedings of the AAAI Conference on Artificial Intelligence,

29(1):2181–2187.

Liu, Z., Sun, M., Lin, Y., and Xie, R. (2016). Knowledge representation learning: A review. Jisuanji

Yanjiu yu Fazhan/Computer Research and Development, 53(2):247–261.

Lösch, U., Bloehdorn, S., and Rettinger, A. (2012). Graph kernels for RDF data. In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 7295 LNCS, pages 134–148.



BIBLIOGRAPHY 107

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh

IEEE International Conference on Computer Vision, volume 2, pages 1150–1157.

Lu, S., Wang, S., Hameen, E., Shi, J., and Zou, Y. (2019a). Comfort-based Integrative HVAC System

With Non-intrusive Sensing In Office Buildings. In Annual Conference of the Association for

Computer-Aided Architectural Design Research in Asia-CAADRIA, volume 1, pages 785–794.

Lu, S., Wang, W., Lin, C., and Hameen, E. C. (2019b). Data-driven simulation of a thermal comfort-based

temperature set-point control with ASHRAE RP884. Building and Environment, 156:137–146.

MacLean, F. (2021). Knowledge graphs and their applications in drug discovery. Expert Opinion on Drug

Discovery, 16(9):1057–1069.

Madjiheurem, S. and Toni, L. (2019). Representation Learning on Graphs: A Reinforcement Learning

Application. In The 22nd International Conference on Artificial Intelligence and Statistics, pages

3391–3399. PMLR.

Mannan, M. and Al-Ghamdi, S. G. (2021). Indoor AirQuality in Buildings: A Comprehensive Review on

the Factors Influencing Air Pollution in Residential and Commercial Structure. International Journal

of Environmental Research and Public Health, 18(6):1–24.

Manola, F., Miller, E., and McBride, B. (2014). RDF 1.1 Primer-W3C Working Group Note 24 June 2014.

Mario, E., Raffaele, L., Onofrio, C., Maria, C.-S. J., Valentina, B., Vincenzo, G., Shao, C., and Giovanni,

S. (2024). Coupling heat wave and wildfire occurrence across multiple ecoregions within a Eurasia

longitudinal gradient. Science of The Total Environment, 912:169269.

Mason, K. and Grijalva, S. (2019). A Review of Reinforcement Learning for Autonomous Building

Energy Management. Computers & Electrical Engineering, 78:300–312.

McGlinn, K., Debruyne, C., McNerney, L., and O’Sullivan, D. (2017). Integrating building information

models with authoritative Irish geospatial information. In ISWC (Posters, Demos & Industry Tracks),

volume 1963, pages 1–4.

McGlinn, K., Wicaksono, H., Lawton, W., Weise, M., Kaklanis, N., Petri, I., and Tzovaras, D. (2016).

Identifying Use Cases and Data Requirements for BIM Based Energy Management Processes. In

CIBSE Technical Symposium.

Merlet, Y., Rouchier, S., Jay, A., Cellier, N., and Woloszyn, M. (2022). Integration of phasing on

multi-objective optimization of building stock energy retrofit. Energy and Buildings, 257.



108 BIBLIOGRAPHY

Miller, S., Chua, K., Coggins, J., and Mohtadi, H. (2021). Heat waves, climate change, and economic

output. Journal of the European Economic Association, 19(5):2658–2694.

Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G., P Guillod, B., Frumhoff, P.,

Bowery, A., Wallom, D., and Allen, M. (2016). Attributing human mortality during extreme heat

waves to anthropogenic climate change. Environmental Research Letters, 11(7).

Muggleton, S. and de Raedt, L. (1994). Inductive Logic Programming: Theory and methods. The Journal

of Logic Programming, 19(1):629–679.

Nawi, M., Baluch, N., and Bahauddin, A. Y. (2014). Impact of Fragmentation Issue in Construction

Industry: An Overview. In MATEC Web of Conferences, volume 15, page 1009.

Nguyen, T. H. and Grishman, R. (2015). Relation Extraction: Perspective from Convolutional Neural

Networks. In NAACL-HLT, pages 39–48. Association for Computational Linguistics (ACL).

Nickel, M. (2013). Tensor Factorization for Relational Learning. PhD thesis, Ludwig Maximilians

Universität München.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016). A review of relational machine learning

for knowledge graphs. In Proceedings of the IEEE, volume 104, pages 11–33. Institute of Electrical

and Electronics Engineers Inc.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A Three-Way Model for Collective Learning on

Multi-Relational Data. In ICML, pages 3104482–3104584.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factorizing YAGO: Scalable machine learning for Linked

Data. In Proceedings of the 21st international conference on World Wide Web, pages 271–280.

Niles, I. and Pease, A. (2001). Towards a standard upper ontology. Proceedings of the international

conference on Formal Ontology in Information Systems - FOIS ’01, pages 2–9.

O’Brien, W., Tahmasebi, F., Andersen, R. K., Azar, E., Barthelmes, V., Belafi, Z. D., Berger, C., Chen, D.,

De Simone, M., Simona d’Oca, Hong, T., Jin, Q., Khovalyg, D., Lamberts, R., Novakovic, V., Park, J. Y.,

Plagmann, M., Rajus, V. S., Vellei, M., Verbruggen, S., Wagner, A., Willems, E., Yan, D., and Zhou, J.

(2020). An international review of occupant-related aspects of building energy codes and standards.

Building and Environment, 179.



BIBLIOGRAPHY 109

O’Donnell, J., See, R., Rose, C., Maile, T., Bazjanac, V., and Haves, P. (2011). SIMMODEL : A domain

data model for whole building energy simulation. In Proceedings of Building Simulation2011: 12th

Conference of International Building Performance Simulation Association, pages 382–389.

Pan, J., Anumba, C., and Ren, Z. (2004). Potential Application of the Semantic Web. In 20th Annual

Conference of the Association of Researchers in Construction Management (ARCOM), Heriot Watt

University EdinBurgh, volume 2, pages 923–929.

Park, J. Y., Dougherty, T., Fritz, H., and Nagy, Z. (2019a). LightLearn: An adaptive and occupant centered

controller for lighting based on reinforcement learning. Building and Environment, 147.

Park, J. Y., Mistur, E., Kim, D., Mo, Y., and Hoefer, R. (2022). Toward human-centric urban

infrastructure: Text mining for social media data to identify the public perception of COVID-19

policy in transportation hubs. Sustainable Cities and Society, 76.

Park, J. Y. and Nagy, Z. (2018). Comprehensive analysis of the relationship between thermal comfort

and building control research - A data-driven literature review. Renewable and Sustainable Energy

Reviews, 82:2664–2679.

Park, J. Y., Ouf, M. M., Gunay, B., Peng, Y., O’Brien, W., Kjærgaard, M. B., and Nagy, Z. (2019b). A critical

review of field implementations of occupant-centric building controls. Building and Environment,

165.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). On the difficulty of training Recurrent Neural Networks.

30th International Conference on Machine Learning, ICML 2013, (PART 3):1310–1318.

Pauwels, P., Corry, E., and O’Donnell, J. (2014a). Representing SimModel in the Web Ontology

Language. In Computing in Civil and Building Engineering (2014), pages 2271–2278, Reston, VA.

American Society of Civil Engineers.

Pauwels, P., Corry, E., and O’Donnell, J. (2014b). Making SimModel information available as RDF

graphs. eWork and eBusiness in Architecture, Engineering and Construction, pages 439–445.

Pauwels, P., Costin, A., and Rasmussen, M. H. (2022). Knowledge Graphs and Linked Data for the Built

Environment. In Industry 4.0 for the Built Environment: Methodologies, Technologies and Skills, pages

157–183. Springer.



110 BIBLIOGRAPHY

Pauwels, P., De Meyer, R., and Van Campenhout, J. (2010). Interoperability for the Design and

Construction Industry through Semantic Web Technology. In International Conference on Semantic

and Digital Media Technologies, pages 143–158.

Pauwels, P., Krijnen, T., Terkaj, W., and Beetz, J. (2017a). Enhancing the ifcOWL ontology with an

alternative representation for geometric data. Automation in Construction, 80:77–94.

Pauwels, P., McGlinn, K., Törmä, S., and Beetz, J. (2018). Linked Data. In Building Information Modeling

Technology Foundations and Industry Practice, pages 181–197. Springer.

Pauwels, P. and Roxin, A. (2017). SimpleBIM: From full ifcOWL graphs to simplified building graphs

Building Topology Ontology (BOT) View project SemanticGIS View project. In eWork and eBusiness

in Architecture, Engineering and Construction: ECPPM 2016 (11 European Conference on Product and

Process Modelling), pages 11–18. CRC Press.

Pauwels, P. and Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a

recommendable and usable ifcOWL ontology. Automation in Construction, 63:100–133.

Pauwels, P., Terkaj, W., Krijnen, T., and Beetz, J. (2015). Coping with lists in the ifcOWL ontology. 22nd

EG-ICE International Workshop, pages 113–122.

Pauwels, P., van den Bersselaar, E., and Verhelst, L. (2024). Validation of technical requirements for a

BIM model using semantic web technologies. Advanced Engineering Informatics, 60:102426.

Pauwels, P., Zhang, S., and Lee, Y. C. (2017b). Semantic web technologies in AEC industry: A literature

overview. Automation in Construction, 73:145–165.

Peng, R. D., Bobb, J. F., Tebaldi, C., McDaniel, L., Bell, M. L., and Dominici, F. (2011). Toward a

quantitative estimate of future heat wave mortality under global climate change. Environmental

Health Perspectives, 119(5):710–706.

Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., and

Gómez-Pérez, A. (2015). Guidelines for Linked Data generation and publication: An example in

building energy consumption. Automation in Construction, 57:178–187.

Rasmussen, M. H., Lefrançois, M., Bonduel, M., Hviid, C. A., and Karlshø, J. (2018). OPM: An ontology

for describing properties that evolve over time. In CEUR Workshop Proceedings, volume 2159, pages

23–33.



BIBLIOGRAPHY 111

Rasmussen, M. H., Lefrançois, M., Schneider, G. F., and Pauwels, P. (2019). BOT: the Building Topology

Ontology of the W3C Linked Building Data Group. Semantic Web Journal, 12(1):143–161.

Rasmussen, M. H., Pauwels, P., Hviid, C. A., and Karlshøj, J. (2017a). Proposing a Central AEC Ontology

That Allows for Domain Specific Extensions. In Joint Conference on Computing in Construction,

volume 1, pages 237–244.

Rasmussen, M. H., Pauwels, P., Lefrançois, M., Schneider, G. F., Hviid, C., and Karlshøj, J. (2017b). Recent

changes in the Building Topology Ontology. In 5th Linked Data in Architecture and Construction

Workshop.

Reinisch, C., Kofler, M. J., Iglesias, F., and Kastner, W. (2011). Thinkhome energy efficiency in future

smart homes. EURASIP Journal on Embedded Systems, 2011:1–18.

Ricquebourg, V., Durand, D., Menga, D., Marhic, B., Delahoche, L., Logé, C., and Jolly-Desodt, A. M.

(2007). Context inferring in the smart home: An SWRL approach. In Proceedings - 21st International

Conference on Advanced Information Networking and Applications Workshops/Symposia, AINAW’07,

volume 2, pages 290–295. IEEE.

Ristoski, P. and Paulheim, H. (2016). RDF2Vec: RDF graph embeddings for data mining. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 9981 LNCS:498–514.

Rossello-Busquet, A., Brewka, L. J., Soler, J., and Dittmann, L. (2011). OWL Ontologies and SWRL Rules

Applied to Energy Management. In 2011 UkSim 13th International Conference on Computer Modelling

and Simulation, pages 446–450. IEEE.

Russomanno, D. J., Kothari, C. R., and Thomas, O. A. (2005). Building a Sensor Ontology: A Practical

Approach Leveraging ISO and open geospatial consortium (OGC) models. In The 2005 International

Conference on Artificial Intelligence, Las Vegas, NV, pages 637–643.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural

network model. IEEE Transactions on Neural Networks, 20(1):61–80.

Scherer, R., Katranuschkov, P., Kadolsky, M., and Laine, T. (2012). Ontology-based building information

model for integrated lifecycle energy management. In eWork and eBusiness in Architecture,

Engineering and Construction, pages 951–956. CRC Press.



112 BIBLIOGRAPHY

Schevers, H. and Drogemuller, R. (2005). Converting the Industry Foundation Classes to the Web

Ontology Language. In 2005 First International Conference on Semantics, Knowledge and Grid, pages

73–73. IEEE.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling, M. (2017).

Modeling Relational Data with Graph Convolutional Networks. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10843

LNCS:593–607.

Schneider, G. F. (2017). Towards Aligning Domain Ontologies with the Building Topology Ontology. In

5th LDAC workshop, 13-15 November.

Shah, N., Chao, K. M., Zlamaniec, T., and Matei, A. (2011). Ontology for home energy management

domain. In Digital Information and Communication Technology and Its Applications: International

Conference, DICTAP 2011, Dijon, France, June 21-23, 2011, Proceedings, Part II, volume 167 CCIS, pages

337–347. Springer Berlin Heidelberg.

Shaikh, P. H., Nor, N. B. M., Nallagownden, P., and Elamvazuthi, I. (2018). Intelligent multi-objective

optimization for building energy and comfort management. Journal of King Saud University -

Engineering Sciences, 30(2):195–204.

Shen, Y., Guo, C., Li, H., Chen, J., Guo, Y., and Qiu, X. (2021). Financial Feature Embedding with

Knowledge Representation Learning for Financial Statement Fraud Detection. Procedia Computer

Science, 187:420–425.

Sommaruga, L., Perri, A., and Furfari, F. (2005). DomoML-env: An ontology for human home

interaction. In CEUR Workshop Proceedings, volume 166, pages 1–8.

Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M., and

Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research:

Potential and pitfalls. BMJ (Online), 339(7713):157–160.

Stolk, S. and McGlinn, K. (2020). Validation of IfcOWL datasets using SHACL. In 8th Workshop on

Linked Data in Architecture and Construction (LDAC 2020) in: CEUR Workshop Proceedings, pages

91–104. CEUR Workshop Proceedings.

Studer, R., Grimm, S., and Abecker, A. (2007). Semantic web services: Concepts, technologies, and

applications. Springer.



BIBLIOGRAPHY 113

Sun, Z., Deng, Z. H., Nie, J. Y., and Tang, J. (2019). RotatE: Knowledge Graph Embedding by Relational

Rotation in Complex Space. 7th International Conference on Learning Representations, ICLR 2019.

Tah, J. H. and Abanda, H. F. (2011). Sustainable building technology knowledge representation: Using

Semantic Web techniques. Advanced Engineering Informatics, 25(3):547–558.

Teicholz, P. (2013). BIM for facility managers. John Wiley and Sons Inc.

Terkaj, W. and Šojić, A. (2015). Ontology-based representation of IFC EXPRESS rules: An enhancement

of the ifcOWL ontology. Automation in Construction, 57:188–201.

Thomas, E. and Bowman, J. (2021). Harnessing the Data Advantage in Construction. San Rafael, CA:

AUTODESK and FMI.

Toffolo, A. and Lazzaretto, A. (2002). Evolutionary algorithms for multi-objective energetic and

economic optimization in thermal system design. Energy, 27(6):549–567.

Tomic, S., Fensel, A., and Pellegrini, T. (2010). SESAMEDemonstrator: Ontologies, Services and Policies

for Energy Efficiency. In 6th International Conference on Semantic Systems, I-SEMANTICS ’10, pages

1–4.

Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A., and Bengio, Y. (2017). Graph Attention

Networks. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track

Proceedings.

Venugopal, M., Eastman, C. M., and Teizer, J. (2015). An ontology-based analysis of the industry

foundation class schema for building information model exchanges. Advanced Engineering

Informatics, 29(4):940–957.

Viguié, V., Lemonsu, A., Hallegatte, S., Beaulant, A. L., Marchadier, C., Masson, V., Pigeon, G., and

Salagnac, J. L. (2020). Early adaptation to heat waves and future reduction of air-conditioning energy

use in Paris. Environmental Research Letters, 15(7).

Völker, J. and Niepert, M. (2011). Statistical Schema Induction. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6643

LNCS(PART 1):124–138.

W3C (2014). Linked Building Data Community Group.

W3C-Linked Data Community Group (2018). Product Ontology (PRODUCT).



114 BIBLIOGRAPHY

W3C OWL Working Group (2012). OWL 2 Web Ontology Language Document Overview (Second

Edition)-W3C Recommendation 11 December 2012.

W3C SPARQL Working Group (2013). SPARQL 1.1 Overview-W3C Recommendation 21 March 2013.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical Models, Exponential Families, and Variational

Inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305.

Wang, H., Wang, J., Feng, Z., Haghighat, F., and Cao, S. J. (2023). An intelligent anti-infection ventilation

strategy: From occupant-centric control and computer vision perspectives. Energy and Buildings,

296.

Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding: A survey of approaches

and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743.

Wang, R. Y. and Strong, D. M. (1996). Beyond Accuracy: What DataQuality Means to Data Consumers.

Journal of Management Information Systems, 12(4):5–34.

Wang, X., Chen, Z., Wang, H., U, L. H., Li, Z., and Guo, W. (2024). Large Language Model Enhanced

Knowledge Representation Learning: A Survey. arXiv preprint arXiv:2407.00936.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge Graph Embedding by Translating on

Hyperplanes. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1):1112–1119.

Werbrouck, J., Pauwels, P., and Bekers, W. (2018). Linking Data : Semantic enrichment of the existing

building geometry. PhD thesis, Ghent University.

Werbrouck, J., Senthilvel, M., Beetz, J., and Pauwels, P. (2019). A Checking Approach for Distributed

Building Data. In 31. Forum Bauinformatik, pages 173–181. Universitätsverlag der TU Berlin.

Wetherill, M., Rezgui, Y., Lima, C., and Zarli, A. (2002). Knowledge management for the construction

industry: The e-COGNOS project. Electronic Journal of Information Technology in Construction,

7:183–196.

Wijeratne, W. M. U., Samarasinghalage, T. I., Yang, R. J., and Wakefield, R. (2022). Multi-objective

optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase. Applied

Energy, 309.

Wilcke, X., Bloem, P., and de Boer, V. (2017). The knowledge graph as the default data model for learning

on heterogeneous knowledge. Data Science, 1(1-2):39–57.



BIBLIOGRAPHY 115

Woods, J., James, N., Kozubal, E., Bonnema, E., Brief, K., Voeller, L., and Rivest, J. (2022). Humidity’s

impact on greenhouse gas emissions from air conditioning. Joule, 6(4):726–741.

Xu, M. (2021). Understanding Graph Embedding Methods and Their Applications. SIAM Review,

63(4):825–853.

Yang, B., Yih, W. t., He, X., Gao, J., and Deng, L. (2014). Embedding Entities and Relations for Learning

and Inference in Knowledge Bases. In 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings. ICLR.

Yang, Q. and Zhang, Y. (2006). Semantic interoperability in building design: Methods and tools.

Computer-Aided Design, 38(10):1099–1112.

Ye, Y. and Ji, S. (2019). Sparse Graph Attention Networks. IEEE Transactions on Knowledge and Data

Engineering, 35(1):905–916.

Yi, H. C., You, Z. H., Huang, D. S., and Kwoh, C. K. (2022). Graph representation learning in

bioinformatics: Trends, methods and applications. Briefings in Bioinformatics, 23(1).

Yong, Z., Li-juan, Y., Qian, Z., and Xiao-yan, S. (2020). Multi-objective optimization of building energy

performance using a particle swarm optimizer with less control parameters. Journal of Building

Engineering, 32.

Yurchyshyna, A. and Zarli, A. (2009). An ontology-based approach for formalisation and

semantic organisation of conformance requirements in construction. Automation in Construction,

18(8):1084–1098.

Yurchyshyna, A., Zucker, C. F., LeThanh, N., Lima, C., and Zarli, A. (2007). Towards an Ontology-based

Approach for Conformance Checking Modeling in Construction. In Proceedings of the 24th CIB W78

Conference, pages 195–202.

Zaveri, A., Kontokostas, D., Sherif, M. A., Bühmann, L., Morsey, M., Auer, S., and Lehmann, J. (2013).

User-driven quality evaluation of DBpedia. In I-SEMANTICS ’13: Proceedings of the 9th International

Conference on Semantic Systems, pages 97–104. ACM International Conference Proceeding Series.

Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., and Auer, S. (2016). Quality assessment

for Linked Data: A Survey. Semantic Web, 7(1):63–93.



116 BIBLIOGRAPHY

Zhang, C. (2019). Requirement checking in the building industry : enabling modularized and extensible

requirement checking systems based on semantic web technologies. PhD thesis, Technische Universiteit

Eindhoven.

Zhang, C., Beetz, J., and de Vries, B. (2017). BimSPARQL: Domain-specific functional SPARQL

extensions for querying RDF building data. Semantic Web, 9(6):829–855.

Zhang, C., Beetz, J., and Weise, M. (2014). Model view checking: automated validation for IFC building

models. eWork and eBusiness in Architecture, Engineering and Construction, 0:123–128.

Zhang, J., Seet, B.-C., and Lie, T. (2015). Building Information Modelling for Smart Built Environments.

Buildings, 5(1):100–115.

Zhang, Z., Cui, P., and Zhu, W. (2018). Deep Learning on Graphs: A Survey. IEEE Transactions on

Knowledge and Data Engineering, 34(1):249–270.

Zhang, Z., Jia, J., Wan, Y., Zhou, Y., Kong, Y., Qian, Y., and Long, J. (2021). TransR *: Representation

learning model by flexible translation and relation matrix projection. Journal of Intelligent & Fuzzy

Systems, 40(5):10251–10259.

Zhao, W. and Liu, J. (2008). OWL/SWRL representation methodology for EXPRESS-driven product

information model: Part I. Implementation methodology. Computers in Industry, 59(6):580–589.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2020a). Graph Neural

Networks: A Review of Methods and Applications. AI Open, 1:57–81.

Zhou, X., Carmeliet, J., Sulzer, M., and Derome, D. (2020b). Energy-efficient mitigation measures for

improving indoor thermal comfort during heat waves. Applied Energy, 278.

Zhou, Y., Aryal, S., and Bouadjenek, M. R. (2024). Review for Handling Missing Data with special

missing mechanism. arXiv preprint arXiv:2404.04905.



Appendix A

Source Code

A.1 Repository for the Project Source Code

github: https://github.com/BIM-and-Automation-Laboratory/phd-source
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Datasets

B.1 Repository for the Project Datasets
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