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Abstract 
 

Virtual simulation is a vital tool for testing autonomous vehicle (AV) systems in hazardous 

scenarios due to its cost-effectiveness, reproducibility, and safety. The reliability of such 

simulations depends on the accuracy of vehicle dynamics, environmental models, and, 

critically, driver models, which must replicate human driving behaviour to ensure valid testing 

results. This study develops an artificial intelligence-based driver model tailored to the 

Malaysian driving environment, addressing significant differences in traffic behaviour between 

developing and developed countries. To achieve this, a non-linear 14 Degrees of Freedom 

(DOF) vehicle model was developed and validated through comparative analysis with 

experimental data to ensure accurate replication of vehicle handling characteristics. Real-world 

driving data were collected over 245 hours using an instrumented vehicle equipped with cost-

effective off-the-shelf sensors, covering diverse road networks, including urban, rural, and 

highway scenarios. Additionally, a mixed-reality driving simulator, integrating IPG CarMaker 

with a 6-degree-of-freedom motion platform and virtual reality, was employed to capture 

realistic human driving behaviours. Thirty participants were invited, and their driving styles 

were classified into aggressive, normal, and slow categories. The model was trained using 

normal driver data to develop a baseline for human-like driving behaviour. A hybrid 

Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model, 

incorporating attention mechanisms to capture spatial and temporal dependencies in driving 

behaviour, was implemented. The model achieved 84.63% accuracy in predicting steering, 

throttle, and braking inputs under simulated conditions. However, when tested with real-world 

data, accuracy declined to 67.23%, highlighting a generalization gap due to underrepresented 

road types, varying time-of-day conditions, and environmental factors such as weather 

variations. To mitigate this issue, further training was conducted using a combination of real-

world and simulation data, improving the model’s adaptability. The proposed driver model was 

benchmarked against existing deep learning-based driver models, demonstrating superior 

performance in replicating human-like driving behaviour within the Malaysian driving context. 

Despite its contributions, the study acknowledges limitations in data collection, including the 

limited number of participants, relatively short driving durations per driver, and insufficient 

representation of extreme driving behaviours. These constraints impact the generalizability of 

the model to all traffic scenarios. Future work should focus on expanding the dataset with more 

diverse driving conditions and optimizing the model to enhance its robustness in real-world 

applications. This research advances driver modelling by leveraging deep learning to create a 

more contextually relevant model for Malaysia, bridging the gap between virtual simulation 

and real-world driving behaviour. The developed model has significant implications for AV 

testing, driver training systems, and intelligent transportation applications in developing 

countries with complex driving environments. 
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Chapter 1: Introduction 

1.1 Overview 

As autonomous vehicle (AV) reaches higher Society of Automotive Engineers (SAE) 

levels with increasingly complex self-driving system and Advanced Driver Assistance System 

(ADAS) [1], testing the vehicle’s safety also become a challenging task. This is mainly because 

of the complexity to conduct the testing procedures [2] and requires hundreds of millions of 

road network for safety testing in order to demonstrate the system’s reliability in critical 

scenarios [3]. Therefore, automotive developers and safety testing agencies have proposed for 

virtual testing in simulated environment and physical testing in a closed-loop environment to 

ensure the credibility of the AV before deploying the vehicle in real traffic environment. 

Conventionally, before testing a vehicle in a real environment, the vehicle’s system will be 

tested in a virtual simulation platform with built-in simulated sensor models, vehicle dynamics 

model and virtual driver model. The advantages of using such platforms are cost effective, easy 

to re-generate the test scenarios for safety assessment and possible to test the vehicle’s system 

in critical scenarios. These critical scenarios are hard to be tested in real world which could 

harm the road users if the safety system failed. However, as the reliability of virtual simulation 

depends on the accuracy of the simulated sensor model, vehicle dynamic model, and 

environment model, it is important to reproduce the testing scenarios as close to the real-world 

environment in the virtual simulation platform. This is to ensure a good representative of the 

vehicle’s safety in these scenarios during simulation testing. 

Among the simulated models in the virtual simulation platform, driver model plays as 

an important module in the simulation platform. It functions as a decision-making controller 

that output driving manoeuvre to control the simulated vehicle in the virtual simulation 

platform. Driver models must be able to predict and reproduce the driving behaviour of human 

driver in specific scenarios, so that the testing result can be used as benchmark, when 

incorporate them into the advanced driving assistance system. However, every driver has their 

unique habits in handling and controlling the vehicle during accelerating, braking, and 

cornering in various scenarios. Not to be mentioned that there is a large gap in traffic conditions 

between a developing country and a developed country. It can be seen that previous research 

works on the driver model are mostly emphasizing on the traffic scenario from developed 

countries, which is not similar to developing countries such as in Southeast Asian countries 

like Malaysia. Therefore, development of a driver model that can reproduce the driving profile 

of drivers from developing countries is essential. This driving profile will be used as inputs for 

development of virtual simulation platform to evaluate the performance of autonomous vehicle 

based on various traffic conditions from developing countries. 

Therefore, this study investigates the development of a driver model based on artificial 

intelligence (AI) system by using driving profile from developing countries. The developed 

driver model was implemented in simulation-based testing platform for safety assessment of 

the driver model based on various test scenarios from Malaysian traffic scenarios. In the 

development process of the driver model, deep learning techniques has been adapted in this 

research to enhance the reliability of test outcomes in virtual simulations. Leveraging deep 
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learning, this research study aims to capture the driving behaviour of typical Malaysian drivers. 

The driving behaviours of Malaysian drivers were used as data inputs for generating steering 

wheel and speed controls for vehicles within a virtual environment. Considering that deep 

learning was predicated based on artificial neural networks (ANN) architecture to simulate the 

cognitive functions and learning mechanisms of the human brain, it is anticipated that the 

derived driver model will accurately emulate the steering and velocity representing Malaysian 

driver’s behaviours. This effort was proposed to narrow down the gap between virtual testing 

outcomes and real-world road-testing scenarios. 

The main works of this study include the modelling of a non-linear passenger car model, 

development of a virtual simulator with mixed reality motion platform based on traffic 

environment of Malaysia. The traffic environments were captured using an instrumented 

vehicle and the measured data is used for the development of driver’s behaviour prediction 

model for safety testing of autonomous vehicle in virtual environment. In the first stage, the 

study was performed analytically using computer simulation to develop the non-linear vehicle 

model. Then, the possibility of developing an instrumented vehicle for data recording of road 

traffic with cost-effective off-the-shelf components was investigated. Cost-effective 

components were used to reduce the cost needed for an instrumented vehicle so that it is 

affordable for developing countries to deploy in mass to increase the size of dataset. The 

instrumented vehicle was used to validate the non-linear vehicle model and vehicle model of 

the simulator using handling test based on SAE testing procedures. Next, the instrumented 

vehicle was used for data recording by driving at the selected Malaysian road network. The 

data recorded was categorized as “scenarios” whereby the scenarios are analysed and classified 

using YOLOv8 to extract road users and traffic objects information. Based extracted 

information, several virtual test cases were created using vehicle driving simulator. On the 

other hand, the interface for simulator with motion platform and virtual reality were also 

developed to provide test drivers immersive driving experience in the virtual simulation. 

Finally, a virtual driver model that can produce realistic human driving style was developed 

and tested based on driving data of human driver recorded. 

 

1.2 Problem Statement 

The quest for safer and more efficient roadways is an ongoing challenge, particularly 

in developing countries where traffic conditions are notably unpredictable and diverse. One 

approach adopted by automotive developers and policymakers is the use of autonomous vehicle 

(AV) technology. In order to ensure a safe deployment of AV on road, a driver model is 

required which can adapt to the traffic environment of the deployment area. The development 

of driver models that can accurately predict and mimic human driving behaviour is crucial for 

the advancement of intelligent transportation systems, autonomous vehicles, and driver 

assistance technologies. However, most of the existing driver models are predicated on data 

from developed countries, which may not accurately reflect the driving environment and 

behaviour in developing nations. These environments are often marked by significant 

differences due to variations in road infrastructure, traffic regulations, and cultural attitudes 

towards driving [4]. This disparity poses a significant challenge for automotive engineers and 

urban planners who strive to develop universally applicable systems that are attuned to the 

varied driving dynamics across the globe. Meanwhile, driving behaviour in developing 
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countries is distinguished by unique patterns that emerge from a blend of economic constraints, 

less structured traffic environments, and distinct societal norms [5]. These elements lead to a 

driving style that may not be sufficiently represented by current traffic environment and road 

conditions of developing countries, resulting in a gap for the predictive accuracy of driver 

behaviour simulations. Therefore, this research aims to bridge this gap by devising a 

comprehensive driver model that captures the distinct driving behaviours prevalent in 

developing countries. The goal of this study is to develop an artificial intelligence-based driver 

model that accurately evaluates vehicle dynamic systems and performs safe decision to handle 

traffic congestions without any hazard level while driving on the road.  Moreover, the driver 

model is designed as the benchmark model for various traffic conditions to support for the 

safety assessment of an AV using Malaysian driving scenarios. 

Deep learning, with its ability to learn from large datasets and identify intricate patterns, 

presents a promising avenue for developing such models. This study seeks to utilize the deep 

learning capability to forge a driver model that authentically mirrors the driving behaviour in 

developing countries. The model will be trained on an extensive dataset encompassing a broad 

spectrum of driving scenarios, environmental conditions, and driver interactions. Utilizing 

advanced neural network architectures, the model aims to deliver a realistic simulation of 

human driving behaviour, which is crucial for the evaluation and enhancement of various 

automotive systems. The significance of this research lies in its potential to enhance road safety 

and efficiency in developing countries, where the rate of traffic-related accidents and fatalities 

remains disproportionately high. The deep learning-based driver model will also contribute to 

the global effort of creating more adaptive and intelligent transportation systems that can 

operate seamlessly across different regions. Therefore, it is important to enhance the existing 

driver model to produce driving inputs that more closely align with developing countries such 

as Malaysia and incorporate personalized driver characteristics based on the road environment 

and traffic conditions where the autonomous vehicle will operate. The issues raised herein 

underscore the necessity for studies like the proposed one. 

1.3 Aim and Objectives 

The aim of this research is to develop a novel driver estimation and prediction models 

optimized for environment of Malaysia using deep learning algorithm for a virtual estimation 

platform for safety testing and deployment of autonomous vehicle in Malaysia. The driver 

estimation model is proposed based on the behaviour of human drivers as well as dynamic 

objects such as pedestrians, cyclist, and motor bikers in urban cities. The expected outcome of 

the driver model using deep learning is to reproduce the driving behaviour of actual Malaysian 

drivers. The testing result of the driver model using virtual simulator platform can provide a 

good representation of the vehicle’s safety system in the actual scenarios. 

The main objectives of this work are the following: 

1. To develop and validate a full vehicle dynamic model with integrated lateral and 

longitudinal dynamic model. 

2. To design a suitable driver prediction algorithm using deep learning with validated 

vehicle model. 
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3. To integrate the trained driver model developed into the virtual simulation platform for 

scenario-based safety testing of autonomous vehicle safety testing based on Malaysian 

traffic conditions such as congested city traffic and rural roads. 

4. To evaluate the performance of driver prediction algorithm using virtual environment 

model and real-world data based on Malaysian driving scenario. 

 

1.4 Scope of the Research 

The scope of this research covers the followings: 

1. Derivation of a non-linear 14 degrees of freedom vehicle model and development of 

vehicle model using MATLAB Simulink platform.  

2. System configuration of instrumented vehicle using cost-effective sensors such as 

camera, global positioning system (GPS), inertial measurement unit (IMU), steering 

wheel rotation encoder, and pedal sensor to capture driving inputs, vehicle responses 

and surrounding environment. 

3. Validation of vehicle model in terms of longitudinal and lateral manoeuvre tests using 

the instrumented vehicle. 

4. Data collection of traffic scenarios using the instrumented vehicle at several locations 

across the Malaysian road network, covering urban, rural, and highway environments. 

The data were collected under varying traffic conditions, including heavy congestion 

in urban areas, moderate traffic in suburban regions, and free-flow conditions on rural 

roads. Additionally, the study accounted for challenging road conditions, such as poorly 

maintained roads, potholes, inconsistent lane markings, and abrupt lane merges. To 

ensure comprehensive real-world representation, driving scenarios were recorded at 

different times of the day (morning, afternoon, evening) and under diverse weather 

conditions (clear, rainy). 

5. Development of virtual critical scenarios, encompassing various speeds, road shapes, 

and traffic conditions within the IPG CarMaker simulator using data collected from the 

instrumented vehicle based on international standards and operational design domain. 

6. Establishment of a virtual driving simulator, equipped with 6 degrees of freedom 

motion platform, IPG CarMaker simulation tool and virtual reality tool to incorporate 

driver-in-the-loop (DiL) system. 

7. Development of several driver model structures based on deep learning techniques and 

training the models using driving dataset from the vehicle driving simulator. 

8. Identification of most dominant driver model based on performance of the model’s 

capability to generate lateral and longitudinal controls that can represent the optimistic 

driving style for Malaysian driving scenario. 

9. Performance evaluation of the driver model using Software-in-the-loop (SIL) 

simulation and validation using Hardware-in-the-loop (HIL) simulation in terms of 

Mean Square Errors of longitudinal and lateral controls compared to average drivers. 
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1.5 Methodology 

This study focuses on developing a data-driven driver model capable of emulating 

human driving behavior in a virtual environment. The methodology consists of three main 

phases: (1) Vehicle Model Development and Validation, (2) Data Collection and Driving 

Simulator Development, and (3) Driver Model Development and Performance Evaluation. 

These phases ensure a systematic approach to model validation, data acquisition, and driver 

model optimization. 

Phase 1: Vehicle Model Development and Validation 

To investigate vehicle dynamic behaviour in response to driving inputs, a nonlinear 14-

degree-of-freedom (DOF) vehicle model was developed. The model was validated using IPG 

CarMaker, ensuring consistency between simulated vehicle responses and real-world dynamics. 

To further enhance model validation, an instrumented vehicle was constructed, equipped with 

sensors capable of capturing both road environment data and vehicle states. The vehicle was 

subjected to international standard tests including ISO 3888-1 (double lane change test), ISO 

3888-2 (severe lane change test), ISO 4138 (steady-state circular test), and ISO 15037 (general 

vehicle dynamics test procedures), evaluating its ability to replicate real-world driving 

behaviour. If discrepancies were detected, refinements were made to improve accuracy. Figure 

1-1 illustrated the methodologies in a flowchart for phase 1. 

 

Figure 1-1 Phase 1 flow chart 

Phase 2: Data Collection and Driving Simulator Development 

Since the goal is to develop a driver model suited for Malaysian driving conditions, 

real-world driving data was essential. A data collection campaign was conducted using the 

instrumented vehicle across congested road networks, capturing road actor interactions and 

driving behaviours. The collected data was analysed and classified into distinct driving 

scenarios based on the presence of vehicles, pedestrians, and other road actors. If the dataset 

lacked scenario diversity, additional data was collected to ensure comprehensive coverage. To 

facilitate large-scale data collection under controlled conditions, a motion platform-based 

Driver-in-the-Loop (DIL) simulator was developed. The simulator incorporated a 6-DOF 
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motion platform for realistic vehicle dynamics feedback, steering and pedal interfaces for 

driver interaction, and a virtual reality (VR) headset for immersive road scene representation. 

Human drivers participated in simulator-based driving sessions, covering various test scenarios. 

The recorded driving inputs and vehicle states were pre-processed into structured training 

datasets for the driver model. Figure 1-2 shows the methodologies in a flowchart for phase 2. 

 

Figure 1-2 Phase 2 flow chart 

Phase 3: Driver Model Development and Performance Evaluation 

A deep learning-based driver model was developed using a custom CNN-LSTM 

architecture. The model was trained with input data consisting of sequential image frames from 

the driving simulator, and vehicle state parameters such as speed and yaw rate. The model 

outputs steering angles, throttle, and braking commands, effectively mimicking human driving 

behaviour. Multiple architectures were tested to identify the most accurate model. The trained 

model was then evaluated for its ability to generate human-like driving responses. If the 

model’s accuracy was insufficient, it was refined through additional training and 

hyperparameter tuning. If the model met the required accuracy threshold, it was integrated into 

IPG CarMaker, replacing the default IPG Driver. To assess real-world applicability, the final 

model was further tested with real-world driving data from the instrumented vehicle. A 

comparative analysis was conducted between the developed driver model and the IPG Driver, 

ensuring the model's robustness and adaptability to varying input conditions. Figure 1-3 

illustrated the methodologies in a flowchart for this research activity. 
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Figure 1-3 Phase 3 flow chart 

1.6 Summary of Research Contribution 

The This research presents a novel approach to developing a data-driven driver model 

tailored specifically for Malaysian driving environments, addressing a critical gap in existing 

driver models which are primarily optimized for western road conditions. The main 

contributions of this work can be summarized as follows: 

1. Development of an Integrated Virtual Simulation Platform 

An end-to-end virtual simulation platform was developed, enabling human driving data 

collection and safety assessment of Level 3 autonomous vehicles. This system 

integrates IPG CarMaker with Simulink, a 6-DOF motion platform, and a virtual reality 

headset, providing an immersive driver-in-the-loop (DIL) simulation environment. The 

incorporation of realistic force feedback and a 360-degree virtual cockpit view 

enhances the realism of driver behavior data collection. 

2. Affordable, Real-World Data Collection using a Low-Cost Instrumented Vehicle 

A vehicle was instrumented with a low-cost sensor suite comprising IMUs, encoders, 

pedal sensors, and cameras to record real driving behaviours on Malaysian roads. The 

dataset captures critical driving events, including abrupt braking, quick acceleration, 

lane changes, and vehicle following, creating a comprehensive driver behaviour 

database for safety assessments in developing countries. 

3. Rigorous Validation of the Vehicle Model 

A non-linear 14-DOF vehicle dynamics model was developed and validated using real-

world data from an instrumented vehicle. The validation process included SAE standard 

vehicle tests such as double lane change and step steer tests, ensuring the accuracy of 

vehicle response simulation within the virtual environment. 

4. Novel Deep Learning-Based Driver Model for Malaysian Driving Environment 

The most significant contribution of this study is the development of a deep learning-

based driver model that accurately predicts human driving inputs (steering, throttle, and 

brake) in Malaysian road conditions. This model incorporates a CNN-LSTM 

architecture, leveraging spatiotemporal dependencies between visual perception and 
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vehicle dynamics. Unlike conventional driver models that are either rule-based or 

trained on Western datasets, this model:  

• Captures unique Malaysian driving behaviours, including interactions with 

diverse road users (motorcyclists, pedestrians, three-wheeled riders). 

• Trains on a mixed dataset of simulation and real-world driving data, ensuring 

generalizability across virtual and physical environments. 

• Outperforms the default IPGDriver model and existing driver model in 

replicating human-like driving behaviour, demonstrating an 84.63% accuracy 

in simulating Malaysian driving patterns. 

5. Integration and Benchmarking Against Industry Standards 

The driver model was seamlessly integrated into IPG CarMaker, replacing the default 

IPGDriver for scenario-based autonomous vehicle safety testing. A comparative 

analysis was conducted, benchmarking the performance of the proposed model against 

the built-in IPGDriver in various test scenarios, highlighting the limitations of generic 

driver models in accurately representing real-world driving conditions in Malaysia. 

 

1.7 Potential Impact of the Research 

Based on the outcome of this work, the potential impact of the research can be 

summarized into two potential impacts. First, the virtual autonomous vehicle safety assessment 

platform is applicable for safety assessment of autonomous vehicle in Malaysia as well as other 

developing countries. This work is also helpful for Malaysian government transportation 

agencies to conduct safety performance of automated vehicle. In future, it can also be used in 

the Malaysian autonomous vehicle testbed centre as well as cooperate with automotive 

industries agencies, university research centres and other companies. 

Secondly, the driver model that was tailored and trained to fit the culture a traffic of 

developing Asian countries can ease the development of driver model that can represent the 

majority drivers in Malaysia as well as other developing countries. Various types of human 

behaviours such as pedestrians, cyclist, motorbikes, three wheeled riders as well as vehicle 

drivers will be analysed and used to supervise the machine learned driver models. This driver 

model will be well trained based on Malaysian cultures and human behaviours where it will 

ease the implementation of the autonomous vehicles in Malaysian environments. Moreover, 

any developing countries with similar nature of traffic behaviours can adopt this driver model 

trained by deep learning to implement in the autonomous vehicle. Besides, this driver model 

could be used as a prototype for those automotive industries that aim to deploy their newly 

developed autonomous vehicles without necessarily being concerning about the nature of 

driving different environments. As for future prospect, supervised driver model in autonomous 

vehicle could lead for proper time management of deploying vehicles on the road based on 

traffic congestion. Besides, this could lead to the deployment of autonomous vehicles as a 

public transportation mode where it can be a solution to further improve the traffic congestion 

in most of the urban cities in developing countries. 
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1.8 Structure and layout of the thesis. 

This thesis comprises of seven main chapters and the chapters were organized as 

follows: The first chapter is the introduction chapter of this study. This chapter presents the 

research background, problem statement, aim and objectives, scopes of the study, methodology 

used for research work, summary of contribution and overall outline of the thesis. 

The chapter 2 presents the literature review on related subjects relating to this research 

study. In this chapter, various type of simulation platform for autonomous vehicle is 

investigated. Next, the investigation of instrumentation of vehicle and sensors used for traffic 

environment and driving data collection is presented in this chapter as well. Then, the published 

research related to the modelling of driver model using conventional mathematical modelling 

and using deep learning is presented in this chapter. Furthermore, the deep learning techniques 

commonly used in the autonomous vehicle field were discussed. Additionally, the adaption of 

international standards and digital twin technology were introduced in this chapter as well. 

Finally, the significant contribution based on the limitation and gap identified from the 

literatures is presented in chapter 2. 

Chapter 3 delves into the mathematical modelling of a vehicle and the validation of an 

instrumented vehicle. Initially, a 14-degree-of-freedom vehicle model is developed using 

mathematical modelling techniques, with several assumptions made to capture the vehicle's 

characteristics. Subsequently, a vehicle model is developed using Simulink based on the 

derived mathematical equations. The mathematical modelling process begins with the 

derivation of the seven-degree-of-freedom vehicle ride model, followed by the derivation of 

the Pacejka tire model. Additionally, the chapter covers the derivation of the seven-degree-of-

freedom vehicle handling model and the vehicle kinematics model. Finally, the vehicle model 

is fine-tuned and verified by comparing the vehicle state output of the derived model with that 

of the IPG CarMaker, using double lane change and bump tests. 

Chapter 4 focuses on the instrumentation of the vehicle, covering sensor selection, 

synchronization, and mounting for the collection of driving data and vehicle response. The 

chapter also presents the validation results of the 14-degree-of-freedom mathematical model 

and the instrumented vehicle. These results were derived from field tests conducted with the 

instrumented vehicle and simulations using IPG CarMaker and Simulink vehicle models, 

following SAE tests for autonomous vehicles, such as double lane change, step steer, and 

emergency braking tests at different speeds. Additionally, the chapter discusses the selection 

of several road networks for the collection of driving style and road traffic environment data. 

Chapter 5 details the integration of the 6-degree-of-freedom autonomous vehicle testing 

simulator with a motion platform and virtual reality, along with the configuration of the virtual 

platform to develop a simulation environment based on the actual traffic conditions in Malaysia. 

First, the chapter presents the system configuration of the 3D virtual simulation platform, which 

can be used as a driver-in-the-loop simulator to collect driving datasets necessary for the 

development of the driver model. Following this, a human-machine interface for controlling 

the virtual vehicle in the simulator using a steering wheel and pedals kit hardware is discussed. 

Additionally, the development of an interface for the motion platform and IPG CarMaker 
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virtual simulation software is outlined. Next, the chapter describes the development of an 

interface for the simulator and virtual reality headset. A dataset classification tool was also 

developed to extract and classify critical scenarios from raw data. Based on these critical 

scenarios, virtual scenarios were created for the development and testing of the driver model. 

Finally, the performance of the built-in driver model in IPG CarMaker was compared to the 

driving style of a human driver, highlighting the limitations of the current model and 

emphasizing the importance of developing an improved driver model. 

Chapter 6 presents the development of driver model and integration of the driver model 

into the simulation platform developed. In this chapter, the development of several types of 

driver models using deep learning algorithms was explored using human driving data inputs. 

The human driving data was recorded by inviting participants to drive on the virtual reality 

motion simulation platform with different virtual scenarios. The best driver model that able to 

provide the highest accuracy in estimating the driving input of average Malaysian drivers was 

selected as the final model. The driver model selected then tested by integrating with the 

Simulink vehicle model developed to test ability of the driver model driving a virtual vehicle 

based on the recorded input data. Once the ability of driving a virtual vehicle was verified, the 

driver model was finally integrated into the IPG CarMaker to replace the default IPGDriver so 

that Malaysian driving style can be simulated in simulation platform for testing of autonomous 

vehicle in Malaysia. Finally, the performance and accuracy of the driver model to provide 

Malaysian driving inputs was evaluated and presented in this chapter. 

Finally, in chapter 7, the conclusion chapter for the overall thesis is presented. This 

chapter summarizes the work done in this study. This chapter also provides recommendation 

for future research work.  
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Chapter 2: Literature Review 

2.1 Overview 

This chapter provides a comprehensive literature review pertinent to the safety 

assessment of autonomous vehicles and driver models. Structurally, it is organized as follows: 

The first section introduces the scope of the chapter. The second section reviews the autonomy 

levels of autonomous vehicles. The third section discusses the current trends in virtual 

autonomous vehicle simulation platforms, focusing on their limitations and applicability for 

implementation in Malaysia. The fourth section highlights the development of an autonomous 

vehicle simulation motion platform, designed as a driver-in-the-loop simulator. The fifth 

section examines the existing data collection platforms and technologies utilized within this 

study. The sixth section emphasizes the significance of sensor fusion for the instrumented 

vehicle and explores various relevant technologies. The seventh section discusses the 

advantages and drawbacks of integrating 5G technology in autonomous driving. The eighth 

section analyses the prevailing technological trends in driver model development and their 

limitations. The ninth section focuses on the background of international standards for safety 

testing of autonomous vehicles and introduces digital twin technology. Additionally, vehicle 

modelling is discussed in the eleventh section. The twelfth section addresses the potential 

research gaps identified through the review of existing literature. Finally, the chapter concludes 

with a summary. 

 

2.2 Autonomy Levels of Autonomous Vehicles 

 

The development of autonomous vehicles (AVs) represents one of the most 

transformative advancements in modern engineering, with the potential to revolutionize 

transportation systems, enhance road safety, and reduce environmental impacts. The Society 

of Automotive Engineers (SAE) International has established a widely accepted framework, 

SAE J3016, which classifies vehicle automation into six levels (Level 0 to Level 5) based on 

the degree of human intervention required [6]. This classification system provides a critical 

foundation for understanding the technological, regulatory, and societal implications of AVs. 

This review explores the historical context, technical distinctions, and real-world examples of 

each autonomy level, while addressing the challenges and future directions of this rapidly 

evolving field. 

The concept of autonomous driving dates back to the early 20th century, with visionary 

ideas such as General Motors’ 1939 Futurama exhibit, which envisioned automated highways 

[7]. However, practical research began in earnest in the 1980s with projects like Carnegie 

Mellon University’s Navlab, which developed some of the first semi-autonomous vehicles [8]. 

The 2004–2007 DARPA Grand Challenges marked a turning point, showcasing the feasibility 

of autonomous navigation in complex environments and spurring significant investment in AV 

technology [9]. By the 2010s, companies like Google (Waymo), Tesla, and traditional 

automakers began deploying prototypes, leading to the need for a standardized framework to 

define and communicate the capabilities of AVs. The SAE J3016 standard, first published in 
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2014 and revised in 2018 and 2021, emerged as the definitive guide for classifying autonomy 

levels [6]. 

The SAE levels provide a clear hierarchy of automation, ranging from no automation 

to full autonomy, each with distinct technical requirements and operational implications. 

• Level 0 (No Automation): The human driver is responsible for all aspects of driving, 

including steering, acceleration, and braking. Conventional vehicles without advanced 

driver assistance systems (ADAS) fall into this category. Examples include most 

vehicles produced before the mid-2000s [6]. 

• Level 1 (Driver Assistance): The vehicle can assist with either steering or 

acceleration/deceleration, but not both simultaneously. Adaptive cruise control (ACC) 

and lane-keeping assist (LKA) are common Level 1 features. For instance, Toyota’s 

2017 Corolla introduced radar-based ACC, allowing the vehicle to maintain a safe 

distance from the car ahead while requiring constant driver supervision [10]. 

• Level 2 (Partial Automation): The vehicle can control both steering and 

acceleration/deceleration simultaneously under specific conditions, but the driver must 

remain engaged and monitor the environment at all times. Tesla’s Autopilot (2015) and 

General Motors’ Super Cruise (2017) are prominent examples of Level 2 systems. 

These systems rely on a combination of cameras, radar, and ultrasonic sensors to enable 

features like lane-centering and traffic-aware cruise control [11]. 

• Level 3 (Conditional Automation): The vehicle can handle all aspects of driving in 

certain environments, such as highways, but may request human intervention when 

system limits are reached. Honda’s 2021 Legend, available in Japan, and Mercedes-

Benz’s Drive Pilot (2023), available in Germany, are among the first commercially 

available Level 3 vehicles. These systems use advanced sensor suites, including lidar, 

to enable hands-free driving in geofenced area [12]. 

• Level 4 (High Automation): The vehicle can operate autonomously within a defined 

operational design domain (ODD), such as urban areas or specific weather conditions, 

without requiring human intervention. Waymo’s robotaxi service in Phoenix, Arizona 

(launched in 2020), and Cruise’s autonomous ride-hailing fleet in San Francisco (2022) 

are examples of Level 4 systems. These vehicles rely on high-definition maps, lidar, 

and AI algorithms to navigate complex environments [13]. 

• Level 5 (Full Automation): The vehicle can operate autonomously in all conditions and 

environments without any human input. No commercially available Level 5 vehicles 

exist as of 2023, but companies like Zoox and Aurora are actively developing 

prototypes with the goal of achieving Level 5 capabilities by the end of the decade [14]. 

The progression through SAE autonomy levels reflects significant advancements in 

sensor technology, machine learning, and computational power. Each level introduces new 

capabilities and challenges. Levels 0–2 focus on enhancing driver safety and convenience, 

while Levels 3–5 aim to eliminate human error, which is responsible for over 90% of road 

accidents [15]. However, higher autonomy levels also raise critical technical, ethical, and 

regulatory challenges. For instance, Level 3 systems must address the “handover problem,” 

where the human driver must regain control in emergencies, while Level 4 and 5 systems 
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require robust fail-safes and ethical decision-making algorithms for edge cases [16]. 

Regulatory frameworks vary globally, with regions like Europe adopting UN-R157 for Level 

3 certification, while the U.S. relies on state-level regulations, creating a fragmented landscape 

for AV deployment [17]. Additionally, public trust and acceptance remain significant barriers, 

as high-profile accidents involving AVs have raised concerns about safety and reliability [18]. 

As a conclusion, the SAE autonomy levels provide a comprehensive framework for 

understanding the evolution of autonomous vehicle technology. While significant progress has 

been made, achieving full autonomy (Level 5) remains a complex, multidisciplinary challenge. 

Continued collaboration among engineers, policymakers, and ethicists will be essential to 

realize the transformative potential of AVs and ensure their safe and equitable integration into 

society. 

 

2.3 Virtual Autonomous Vehicle Simulation Platform 

Looking at the automotive industry, there are several types of testing methodologies for 

safety system assessment of autonomous vehicle. One of the methods is to use real-world 

testing or replay as shown in Figure 2-1. The vehicle is tested on selected real-world road 

environment directly or the data are collected by driving the real vehicle on-road, then the data 

is replayed back to test the vehicle safety system. The advantage of this method is that the data 

collected is high fidelity due to the physical sensors were used. However, this also meant that 

the only the scenarios observed by the vehicle can be tested. Hence, this method is not scalable 

as rare critical scenarios cannot be tested frequently in a go and time consuming. The second 

method is structured testing as shown in Figure 2-2, where a test track is specially designed to 

provide specific test scenarios depending on the system or sensor required to test. This method 

is also high fidelity because the data were also obtained from the real-world. However, this 

method is very expensive because one must build a test track. Furthermore, this method is also 

not scalable as the vehicle cannot be tested hundreds of times in the exact same conditions.  

The third method is using a virtual simulator for the simulation-based testing of 

autonomous vehicles as shown in Figure 2-3. Compared to the previous two methods, virtual 

simulators are cost effective and would not be any safety issue as the testing is not run in the 

real-world. By using realistic sensor models, virtual simulators can also provide data with a 

high level of fidelity. Virtual simulator is becoming more important in facilitating development 

of new autonomous system in industry. This is because from mechanical subsystems to 

structural integrity, electronics systems, and software development, virtual simulator is able to 

give deeper insight into all aspects of the development lifecycle. Aberdeen [19] shows that the 

abilities of a virtual simulator have been demonstrated to speed up the product development 

across the product lifecycle as well as increased business value for stakeholders. With the help 

of simulation toolkit, the development cost, time to market, and product quality improved by 

22%, 21%, and 17%, respectively [19]. In general, simulation platform for automated vehicle 

can be categorized into three types: 

• Low-level simulator: fixed-base (FB) simulator with fixed user display, 



14 

 

• Mid-level simulator: the simulator consists of advanced imaging technologies such as 

large projection screen, real vehicle, and a motion base, 

• High-level simulator: the simulator is accelerated using motion platform with more than 

6 degrees of freedoms. 

  
Figure 2-1 Waymo’s real-world testing [20] Figure 2-2 Zoox’s structured testing on test track 

[21] 

 
Figure 2-3: Types of vehicle simulation platform [22]. (a) Delft University of Technology’s Fixed-base 

simulator; (b) Toyota’s vehicle simulator; (c) University of Iowa’s National Advanced Driving Simulator 

(NADS). 

 General Motors was one of the early companies that start using simulator for vehicle 

testing, beginning in the 1960s [23]. Figure 2-4 shows one of the two 360-degree simulators of 

the automaker equipped with image generator that can produce 5-terabyte-per-second images 

and dynamically respond to the steering and pedal inputs within 50ms [24]. These 360-degree 

simulators allow pitch, row, and yaw of a vehicle to simulate movement of the vehicle as well 

as using as a driving simulator to study driver’s facial expressions and biometrics [25]. This 

allows the simulator to be used for testing of design concept, advanced driver assistance, and 

safety system. 

 

Figure 2-4: General Motors’ 360-degree simulator in Technical Centre in Warren, Michigan [24] 
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Numerous automotive developers have been developing automated vehicle platform 

such as RTLAB ORCHESTRA, NVIDIA DRIVE AV simulator, Real-time Technologies, 

MSC Software Simulations, rFpro, AVL, aVDS, ANSYS and LGSVL as shown in Table 2-1.  

Table 2-1: Comparison between different Autonomous Vehicle Simulators 

AV Simulators Required Criteria for testing AV 

Testing standard European countries ASEAN countries 

SAE ISO 

26262 

EURO 

NCAP 

ASEAN 

NCAP 

Road 

users’ 

behaviour 

Road and 

traffic 

environments 

Driver 

model 

Road 

users’ 

behaviour 

Road and 

traffic 

environments 

Driver 

model 

AVL 

Autonomous 

Driving and 

ADAS [26] 

Yes Yes Yes No Yes Yes Yes No No No 

LGSVL 

Simulator [27] 

No No No No Yes Yes Yes No No No 

aVDS [28] No No No No Yes Yes Yes No No No 

ANSYS ADAS 

[29] 

Yes Yes Yes No Yes Yes Yes No No No 

RT-LAB 

Orchestra [30] 

No No No No Yes Yes Yes No No No 

NVIDIA 

DRIVE 

Constellation 

AV Simulator 

[31] 

Yes Yes Yes No Yes Yes Yes No No No 

Realtime 

Technologies 

[32] 

No No No No Yes Yes Yes No No No 

Automated 

Driving [33] 

Yes Yes Yes No Yes Yes Yes No No No 

rFpro virtual 

testing [34] 

Yes Yes Yes No Yes Yes Yes No No No 

These platforms have been used as the virtual testing platform for autonomous vehicle 

before deployment in real world. However, it can be noted that most of the autonomous vehicle 

simulators focused on road and traffic environment in developed countries since the research 

and testing of autonomous vehicles were carried out in European countries. Besides, most of 

their testing have neglected the interaction between human driving and pedestrian behaviours. 

Moreover, the autonomous vehicle simulators were used to evaluate the highway driving 

condition using advanced driving assisted system such as Adaptive Cruise Control (ACC) and 

Lane Keeping Assisted System (LKAS). These types of active safety systems were used in 

highway driving scenarios with vehicle speed of 50 km/h – 80 km/h. Moreover, the scenarios 

considered were mostly involved with passenger and commercial vehicles and did not consider 

the vulnerable road users’ behaviours in these types of scenarios. It is noted that some 

automotive industries and research centres were actively focusing on virtual simulation testing 

platform for autonomous vehicle. Based on the report from Autonomous Vehicle Test & 

Development Symposium 2019 held at Stuttgart, Germany, the research and development on 

virtual testing platform has been initiated by most of the European countries [35].  

First of all, Siemens Company showed a positive approach in the development of virtual 

testing platform for autonomous vehicle using LMS.Imagine Lab Amesim in developed 

countries. Meanwhile, TASS International has developed the autonomous vehicle simulation 
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platform using the PreScan software. This platform focuses on the environmental and human 

effects for the autonomous vehicle in developed countries. Another company called PTV 

Group used VISSIM simulation software started to explore on the autonomous vehicle virtual 

testing. This company main focus was on the traffic flow simulation and recently, they have 

showed positive interest to explore autonomous vehicle technology using their simulation 

platform. Then, MIRA Company explored on the simulation in verification and validation of 

autonomous vehicle with the support of PEGASUS project in Germany [36]. Similarly, 

CETRAN, Singapore also focused on the simulation testing and validation from physical 

testing of autonomous vehicle in Singapore [37]. Both projects were designed to evaluate the 

performance of autonomous vehicles before actual deployment in open environments. 

However, these projects considering Singapore and European countries’ road and traffic 

environment for the testing. On the other hand, driving simulator also has been used as part of 

virtual testing platform for autonomous vehicles such as OKTAL and ANSIBLE MOTION. 

Both companies explored this research because they would like to explore the human driving 

behaviours and replicate as one of the autonomous driving behaviours for European countries.  

Based on the current research trend, it can be observed that most of the safety testing 

for autonomous vehicles were actively developed and explored in European countries. In Asian 

countries, CETRAN Simulation Platform in Singapore [37], NVIDIA Virtual Based 

Simulation Platform, Japan [31] and NAVER Labs [38] and Morai in Korea [39] were actively 

focusing on safety testing autonomous vehicle in virtual testing by considering their own 

countries road users’ behaviours and environment. Therefore, implementing their virtual 

testing platform in Malaysian road and traffic environment required a huge modification in the 

testing platform. Moreover, this modification will be very expensive to be implemented since 

it required a lot of information on road and traffic environment, road users and driving 

behaviours in Malaysia. Besides, most of the virtual testing platforms were designed based on 

the New Car Assessment Program (NCAP) from each country such as EURO NCAP for 

European countries and Singapore, J-NCAP for Japan and K-NCAP for Korea. Therefore, it is 

imperative to consider safety testing for autonomous vehicles based on human drivers and road 

users’ interaction from developing countries. This requires collecting information about real-

world traffic environments in developing countries, in our case, in Malaysia. Moreover, it is 

essential to consider the ASEAN NCAP testing standards as part of the virtual testing platform 

for safety assessment of autonomous vehicle in order the platform will suit the current 

automotive testing standards in Malaysia. 

Furthermore, by studying the system architecture of the virtual testing platforms 

available in the automotive industry in the past few years [40], [41], it is observed that most of 

them were built on top of physics/dynamic engines such as Unity game engine and Unreal 

Engine to create realistic graphics, sensors, vehicle dynamics and beautiful environments. 

Waymo (Google) has the most mature simulation environment development when compared 

to other companies with over 5 billion self-driving miles simulated. However, the perception 

problem was not addressed in the simulation environment because of the lack of realistic 

graphics. Uber is another self-driving vehicle developing company that has developed a 

powerful simulation environment for self-driving vehicles. Uber also provides open-source 

visualisation toolkits for evaluation of mobility and geography [42]. However, their simulation 
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platform, like Waymo’s, does not offer photo-realistic visuals. Besides, there are also open-

source simulators such as CARLA (Car Learning to Act), Baidu Apollo and Microsoft AirSim. 

CARLA is an open-source simulator for autonomous vehicles created by Intel Labs, Toyota 

Research Institute, and Barcelona’s Computer Vision Centre.  

CARLA is built on top of Unreal Engine to provide realistic graphics environment and 

enables for testing from perception to vehicle control. Microsoft AirSim is an open-source 

simulator not only for drones but also can be used for cars and more. The simulator is designed 

for artificial intelligence and computer vision experiments. Similarly, Microsoft AirSim uses 

the Unreal Engine and Unity game engines to help create a very detailed 3D urban environment 

and virtual vehicles. Moreover, Baidu Apollo [43] is another open-source simulator based on 

Unity game engine intended for training and validation of the perception algorithms of the self-

driving vehicle. Training and validation of perception algorithms requires ground truth data 

such as three-dimensional (3D) position and boundaries of obstacles, lane markings and other 

road users. Traditionally, these data are labelled manually by human which is cost and time 

consuming and subject to error. Whereas Apollo simulator can simulate realistic sensor to 

generate precise ground truth data at low cost and accelerate the development of perception 

algorithm for self-driving vehicles with high quality training and validation data. However, the 

simulator focused on graphics and lack the detail of vehicle dynamics. Gazebo [44] is a widely 

used simulator in robotics related research fields. This is because its modular architecture 

enables the simulator to be used with variety of sensor types and physic engines. However, 

creating a complicated environment in Gazebo is difficult and time consuming. Furthermore, 

Gazebo also lacks the technology to render realistic graphics that are available in many game 

engines such as Unreal and Unity game engines.  

Simulation tools like CarSim [45] are renowned for their accuracy and detailed methods 

in simulating the performance of passenger vehicles and light-duty trucks. Validated by 

automotive engineers for over two decades, CarSim is a preferred tool for vehicle dynamics 

analysis, active controller development, and safety system engineering. Its standalone 

operation, along with interfaces to MATLAB/Simulink, NI LabVIEW, and FMI/FMU, allows 

for versatile integration into various development processes. CarSim's built-in controllers and 

support for a wide range of model options make it a comprehensive solution for vehicle 

simulation. Its extensive real-world validation and standalone capabilities make it a reliable 

and efficient choice for many engineers. However, its focus on vehicle dynamics might limit 

its scope in broader simulation scenarios that require interaction with more complex 

environments. Virtual Test Drive (VTD) [46] offers a complete toolkit for driving simulation 

applications. Designed for the development of ADAS and automated driving systems, as well 

as training simulators, VTD stands out for its ability to create, configure, and evaluate virtual 

environments and scenarios for road and rail-based simulations. Its modular design and open 

platform allow for easy interfacing and integration with third-party or custom packages, 

making it highly adaptable to specific project needs. VTD's comprehensive environment 

creation and scenario definition tools enable detailed and varied simulations, but the 

complexity of the tool may require a steeper learning curve for new users. PanoSim [47], 

developed in China, provides an integrated testing and simulation platform for autonomous 

driving. It includes high-fidelity vehicle dynamics models, realistic driving scenarios, and 
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physics-based sensor models. PanoSim supports offline simulation, real-time simulation with 

various loops, and digital-twin simulation with virtual reality fusion. Its flexibility and 

openness facilitate third-party integration and application development, which is crucial for 

companies looking to customize their simulation experiences. PanoSim's emphasis on 

integration and customization offers great flexibility, but this comes at the cost of requiring 

more resources to tailor the platform to specific needs. 

It can be found due to the game engines are designed and optimized for games in mind, 

these platforms lack the capabilities of configurable vehicle dynamics model, personalized 

driver model, and vulnerable road user’s behaviours that are essential for automotive testing. 

Game engines also unable to provide physically accurate vehicle and sensor models which is 

one of the critical requirements for AV simulations. For AV simulations, the sensor 

computation loads are required to run across different nodes on a server to improve the 

performance of the simulations. However, game engines are designed for gamers which mostly 

only run on single GPU only. Table 2-2 shows comparison between the requirements of an AV 

simulator and the quality that can be provide by game engine to fulfil the task of an AV 

simulator. 

On the other hand, a well-known software in the automotive industry that satisfy these 

requirements is under IPG Automotive products, known as IPG CarMaker [48]. Unlike most 

other virtual platform that utilise physics engine to create vehicle dynamics model and 

environment model, IPG CarMaker provides high accuracy vehicle dynamics model that can 

reproduce the output of a real vehicle. In [49], a vehicle model of the Ford Fiesta car was 

generated and used to perform lane change test. The outputs obtained from the IPG CarMaker 

were compared with the sensor data collected with an instrumented Ford Fiesta experimental 

car performing the same lane change manoeuvres to validate the simulation model and they 

observed that the outputs obtained from the simulation model correlate well to the outputs of 

the experimental vehicle. Although the focus realm of the IPG CarMaker is on vehicle 

dynamics, unlike CarSim, IPG CarMaker provides toolkits for developers to create complex 

environment, planning of traffic for non-ego vehicles and pedestrians, and realistic sensor with 

different arrangement and configurations. Although it is a closed-source commercial software, 

it is open for integration of Simulink models for the developers to develop custom models and 

plugins such as sensor model and ADAS controller in Simulink which can then be integrated 

into the IPG CarMaker software. Besides, the state of the virtual environment in the IPG 

CarMaker such as the vehicle state and environment state can be accessed and controlled from 

external using Robot Operating System (ROS) [50], C code and Python through the 

CarMaker’s Applications Online (APO) and TCP/IP socket in real-time. This enable the 

software to be used not only as a virtual simulator for AV testing but also as a driving simulator 

for human’s driving data collection for development of driver model and controller for the 

AV’s system. 
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Table 2-2 Unsuitability of game engines for autonomous vehicle simulation 

 AV Simulator Requirements Game Engine 

Vehicle Dynamics Model Accurate and configurable Not accurate, limited parameters 

configurable 

Sensors Physically accurate, Repeatability Not accurate 

Road User Realistic and configurable 

behaviour 

Non-deterministic behaviour 

Scalability Test case automation, scalability 

across multiple computation nodes 

Not designed to scale across 

multiple nodes 

Driver Model Accurate and realistic driving 

behaviour 

Simple driver model 

Simulation World Ability to develop and modify 

world with ease, ability to replay 

simulation 

Requires expertise to build 3D 

models of simulation world, No 

history replay 

Modularity Easy to develop extension using 

third-party software 

Proprietary format 

  

2.4 Driver-in-the-loop simulator 

In order to develop an autonomous vehicle safety testing platform simulator, human 

driver’s interaction with the vehicle is an important aspect to be considered. This is because 

lower-level autonomous vehicle system requires drivers to take control of the vehicle during 

emergency or critical situations. Study from Koopman and Wagner [16] shows that validating 

such real-time system could take around one billion driven hours, which is impractical to be 

done on test tracks and in real-world environments. Therefore, to study the driver’s behaviour 

during critical situations, a driver-in-the-loop simulator that can simulate the real-world testing 

is required. However, due to limited intrinsic fidelity of the virtual models, it is still impossible 

to replace real-world assessment with simulator testing as a reliable tool for validating the 

system under test completely [51]. To fill the gap between real-world and simulated world, an 

immersive motion simulator is essential. This simulator will provide on-board impression for 

the driver as the driver is driving using an actual vehicle in simulated environment. 

To control the vehicle in the virtual environment, several input devices are needed for 

the driver such as the steering wheel and pedals. The steering wheel for simulator makes use 

of electronic position sensor to determine the displacement of the steering wheel. Therefore, 

the precision and range of this sensor that determine the smoothness of the steering input of a 

driver may be the one of the important differences between brands. Another consideration for 

choosing a steering wheel is the range of motion. Cheaper steering wheel normally do not allow 

for more than ±135 degrees of steering rotation, whereas more advanced and expensive wheels 

allow for up to ± 540 degrees of steering rotation. The last crucial requirement for a steering 

wheel is the Force Feedback (FFB) feature that can simulate forces on a steering wheel. From 

the FFB, driver can determine whether the wheel slides or the car hit a bump. Whereas for the 

pedals, similar to steering wheels, the pedal positions are measured using electronic sensors. 

Cheaper pedals make use of a spring for rebound, whereas advanced pedals use hydraulic 

systems which allow for customizable press force and actuation point to provide more realistic 

feel. Normally, the pedals are included in package with the steering wheel. 
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 For realistic simulation, it is necessary to use advanced steering wheel that can provide 

accurate position readings, large motion range and force feedback functionality. Some of the 

popular brands that can offers such advanced steering wheel and pedals are such as Logitech, 

Thrustmaster, Simucube and Fanatec. In order to choose the suitable steering wheel and pedals 

for this work, the offering from different brands is compared as shown in Table 2-3. 

Considering the price of the product, the Logitech G29 has the best value while providing 

advanced class specification at cheaper price. Due to the more affordable price of Logitech 

G29, there are more tutorials and videos about Logitech G29 setup. Besides, Simulink also 

provides a built-in plugin block to obtain raw input data from the Logitech G29 which can ease 

the development process of the driving simulator using Simulink. Therefore, it would benefit 

the research most to choose the Logitech G29 steering wheel with pedals kit. 

Table 2-3: Comparison between steering wheels from Logitech, Thrustmaster, Simucube and Fanatec. 

 Logitech G29 Thrustmaster TMX Simucube 2 Pro Fanatec CSL Elite 

Motion range ±900 degrees ±900 degrees ±1080 degrees ±1080 degrees 

Sensor 10-bit resolution 12-bit resolution 22-bit resolution 12-bit resolution 

Force 

feedback 

Dual-Motor Force 

Feedback 

Force Feedback Force Feedback Force Feedback 

Pedal Three-pedal board, 

nonlinear brake 

pedal 

Three-pedal board, 

customizable press 

force 

Two-pedal, 

customizable press 

force 

Three-pedal board, 

customizable press 

force 

Compatibility Compatible with all 

mounts 

Compatible with all 

mounts 

Required custom 

simulator skeleton 

Compatible with all 

mounts 

Price $299.99 $459.98 $2144 $599.90 

 Since driving simulators aim to replicate real-world driving to deceive perception, 

understanding how the human body perceives the driving experience is crucial. In driving 

simulators, self-motion perception is formed by combining multiple human sensory systems, 

as described in [52]. This is mainly because driving heavily relies on the human visual system, 

one of the most critical sensors for driving simulation. Most of the motion perception in a three-

dimensional environment is accounted by the visual system [53]. The optical flow, combined 

with visual direction and extra-retinal direction, forms the visual information that the brain 

interprets to define heading [54]. While all the motion perception is formed by the visual and 

auditory systems in static simulators. In contrast, dynamic motion simulators engage other 

body sensors, such as the somatosensory system, to enhance the driving experience. The 

somatosensory system contains neurons and receptors that help human’s brain to recognize 

body position and motion [54]. Hence, a motion simulator needs to trick the somatosensory 

system of the driver to get the perception of position and acceleration. As demonstrated in [55], 

by vibrating postural muscles, an illusion of motion can be created. Thus, the higher the fidelity 

of the cabin view and the motion produced by the motion platform, the more realistic the 

driving experience becomes. 

Several design configurations of parallel manipulators are appropriate for motion 

platform applications, including the Stewart platform [56]. Numerous driving simulators 

employ these types of manipulators for their motion platforms. Examples include the Daimler 

Benz driving simulator [57] and the National Advanced Driving Simulator (NADS) at the 
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University of Iowa [58] and 6 degree of freedom driving simulator developed by Khusro et al. 

[59]. However, these motion platforms are high cost and not suitable for non-commercial 

testing centres due to use of space constraints. Therefore, most research institutes used mid-

level motion platform that can provide required motion when developing their driver-in-the-

loop simulator. For example, Universiti Teknologi Malaysia (UTM), Delft University of 

Technology and Ain Shams University developed 6 degree of freedom vehicle driving 

simulators using steward platform [60], [61], [62]. Different design configurations of motion 

platform also exist, such as the parallel cable drive configuration [63] and the 5-axis motion 

platform [64].   

The field of view of visual is the horizontal angle of the generated image seen by the 

subject. Generally, a better sense of velocity can be provided by a wider field of view [65], 

whereas a narrow field of view can make certain manoeuvres difficult due to insufficient visual 

information, such as when turning at intersections. There are various types of design 

configuration for providing visual feedback to a driver.  

• Single Screen: A single screen generates the field of view, with the rear-view mirror 

typically rendered as part of the screen. Usually, the field of view is less than 60° 

horizontally. 

• Single Projector: Instead of a screen, a single projector is used. 

• Three Screens: Three screens are attached to a frame, allowing for a field of view of 

more than 150°. However, there are screen edges separating the image.  

• Three Projectors: Three projectors are used to project onto a (usually curved) screen. 

Edges are typically not visible due to soft blending techniques, allowing for a field of 

view of up to 190°.  

• Multi-Projectors: 6 to 9 projectors can be setup to render a full 360◦ view.  

• Virtual Reality Headset: A special helmet with two near-eye displays, which the user 

views through an optical system that compensates for the short focus. 

 

From literatures, there were many types of driver-in-the-loop simulator that had been 

developed.  Most studies developed their driver-in-the-loop simulator using environment based 

on Unity3D, Unreal Engine due to high fidelity graphics [66], [67]. As mentioned in the 

previous section, the vehicle dynamics models, sensor models from these simulators are based 

on game physics engine which are not as accurate and reliable as industrial engineering 

simulation software such as CarSim and IPG CarMaker. However, most of studies that used 

IPG CarMaker focused on static driving platform [68], [69], but there are limited literatures 

that developed a driver-in-the-loop motion simulator using IPG CarMaker [70]. Existing 

implementations with IPG CarMaker typically use monitors or projection screens for the cabin 

view [68], [70], which can limit the driver’s field of view and, consequently, limit the 

perception of velocity [65]. This narrow field of view can be problematic when executing 

certain manoeuvres, such as turning at crossroads, due to the lack of visually accessible 

information. To overcome this limitation, recent studies have focused on the implementing 

virtual reality (VR) headset to provide a fully immersive experience by virtually placing the 

user inside the virtual environment [66]. However, while there has been research on 
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implementing virtual reality in IPG CarMaker for pedestrian-in-the-loop simulators [51], [71],  

studies utilizing VR headsets for DIL simulator development remains underexplored. 

 

2.5 Data Collection Platform 

In order to design virtual scenarios for scenario-based testing, driving data in real-world 

is needed. There are many AV datasets publicly available for research. The most popular is the 

KITTI dataset that has been widely used as benchmark for development of AV. Besides, there 

are many automotive datasets recently developed such as the ApolloScape, Waymo, nuScenes, 

ONCE, RADIATE and Boreas due to the increase gain of research interest in autonomous 

vehicle field as shown in Table 2-4. Most of the dataset provides front camera view data and 

have sensor configuration of Global Positioning System (GPS), Inertial Measurement Unit 

(IMU) and Light Detection and Ranging (LiDAR). Some dataset however provides rear camera 

view, Radar sensor and driving input data. Waymo is a new dataset which is larger than KITTI 

and has more data diversity such as night and rain condition. However, Waymo dataset only 

provides front camera view and lack of rear or surrounding camera. ApolloScape, nuScenes 

and ONCE are some of the datasets that provide Asian road environment. However, the 

ApolloScape dataset does not consist of driving input data and lack of raining weather data 

which is important for developing countries. Similar to ApolloScape, ONCE dataset is captured 

in Asian road environment and provides both front and rear camera view data. ONCE has more 

data diversity as it consists of data captured in raining weather but stills lack driving input data. 

Meanwhile, nuScenes dataset is the most comprehensive dataset including every important 

element for automotive research from low level to high level autonomous vehicle. RADIATE 

focussed on Radar sensing solution instead of optical sensors so the dataset only consists of 

front camera data and the dataset also lack driving input data. Similar to RADIATE, Boreas 

dataset is one of the latest automotive datasets available and has large diversity of data 

including seasonal changes and weather such as snow falling, rain and sun. However, it lacks 

the rear camera view and driving input data. 

From Table 2.4, it can be noted that there is also no existing dataset that focusing on 

developing countries. Besides, these datasets used high end sensors on their instrumented 

vehicle such as Velodyne HDL-64e Lidar used in KITTI dataset, Navtech Radar used in 

RADIATE, Velodyne Alpha-Prime (128-beam) Lidar used in Boreas dataset. These sensors 

can provide high accuracy and high-quality data, but the cost of these sensors is quite 

prohibitive for a developing country’s economy. Hence, implementing such data collection 

frameworks are difficult in developing countries such as ASEAN countries. In order to develop 

a dataset that is suitable for these developing countries, there is a need of cost-effective data 

collection framework that can meet reliability and performance requirements. Using a scenario-

based virtual testing simulator approach, any real-world driving condition can be recreated, 

and thus endless testing can be carried out which can reduce the hazardous level. This data 

collection framework does not need to consider for autonomous driving but solely to collect 

data on human driving inputs and the surrounding traffic environment.  
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As the real-world dataset gathered from this vehicle is subsequently employed to 

construct the virtual environment and scenarios for the scenario-based virtual simulator. As a 

result, the emphasis on sensor quality is not as critical as it would be for sensors utilized in 

autonomous driving vehicles, since the scenarios are recreated in a virtual environment that 

can yield highly quality results. Lower-cost sensors can indeed facilitate the widespread 

deployment of data-capturing vehicles on the roads, enabling the collection of a larger volume 

of traffic environment data. By reducing the cost of implementation, it becomes more feasible 

to equip a greater number of vehicles with data-capturing capabilities, thereby expanding the 

Table 2-4 Comparison between existing autonomous vehicle dataset 

Dataset Year Camera View RGB 

resolution 

Sensor 

Configuration 

Driving input Diversity Location 

Front Rear   Steer Gas 

& 

Brak

e 

Ligh

t 

inten

sity 

Rai

n 

 

KITTI [72] 2013 Yes No 1392x512 GPS+IMU+Lidar No No No No Germany 

ApolloScap

e Lidar [73] 

2018 Yes Yes 3384x2710 GPS+IMU+Lidar No No Yes No China 

Waymo 

Open [20] 

2020 Yes No 1920x1080 GPS+IMU+Lidar Yes Yes Yes Yes USA 

nuScenes 

[74] 

2020 Yes Yes 1600x900 GPS+IMU+Lidar+

Radar 

Yes Yes Yes Yes Boston & 

Singapor

e 

ONCE [75] 2021 Yes Yes 1920x1080 GPS+IMU+Lidar No No Yes Yes China 

RADIATE 

[76] 

2021 Yes No 672x376 GPS+IMU+Lidar+

Radar 

No No Yes Yes UK 

Boreas [77] 2022 Yes No 2448x2048 GPS+IMU+Lidar+

Radar 

No No Yes Yes Canada 

Argoverse 

[78] 

2019 Yes Yes 1920x1200 Lidar+Radar Yes Yes Yes Yes USA 

Audi 

Autonomou

s Driving 

Dataset 

(A2D2) 

[79] 

2020 Yes Yes 1920x1080 Lidar+IMU+Lidar+

Radar+Microphone 

Yes Yes Yes Yes Germany 

Ad-datasets 

[80] 

2022 Yes Yes 1920x1080 GPS+IMU+Lidar+

Radar 

Yes Yes Yes No USA 

A*3D [81] 2020 Yes No 1920x1080 Lidar No No Yes Yes Singapor

e 

BDD100K 

[82] 

2020 Yes No 1280x720 GPS+IMU No No Yes Yes USA 

DriveSeg 

[83] 

2020 Yes No 1920x1080 GPS+IMU No No No No USA 

Comma.ai 

[84] 

2018 Yes No 874x1164 GPS+IMU Yes Yes No No USA 

Ford [85] 2020 Yes Yes 1288x964 GPS+IMU+Lidar No No Yes No USA 

Lyft Level 

5 [86] 

2020 Yes Yes 1280x720 Lidar+Radar No No Yes No USA 

Oxford 

RobotCar 

[87] 

2017 Yes Yes 1280x960 GPS+IMU+Lidar No No Yes Yes UK 
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coverage and diversity of the collected data. This increased availability of data can contribute 

to more comprehensive analyses and insights for development and safety improvements of 

autonomous driving systems in developing countries. From literature search, there is no 

existing automotive data collection system for autonomous vehicle which cost less than 1000$.  

 Developing a cost-effective instrumented vehicle for data collection requires 

understanding the types of data necessary for an autonomous vehicle dataset. Cameras are 

commonly used as the primary sensor for automotive data collection. Mcity data collection 

platform [88] equipped a total of five cameras on an instrumented Lincoln MKZ. Two of the 

cameras are front facing cameras where one of the cameras used lens with wider field of view 

for object detection and the other camera used lens with narrower field of view for traffic 

signals and signs. A wide field of view camera is placed facing backward of the instrumented 

vehicle to capture traffic behind the vehicle. The other two cameras are placed on the dashboard 

to capture relevant driver pose during driving such as head and eye movements which is 

important to study driver’s driving behaviour. From literature, it can be seen that there are many 

data collection platforms that rely solely on camera sensors for vehicle perception such as 

Cityscapes and ApolloScape [89], [90].  

However, it had been demonstrated by previous researchers that to perform object 

localization using only camera images are very challenging task [91], [92]. Therefore, most of 

the recent data collection platforms used combination of camera to provide visual information 

and ranging sensor such as Radar and LiDAR to provide distance information of the 

environment [76], [93]. These ranging sensors is robust in all light conditions [94] unlike 

camera sensor where the visibility of the object is influenced by the light conditions (For 

example, rain, fog, night, position of the sun and headlight from other vehicles) which had been 

demonstrated in [95]. The Radar sensor can be used to detect objects by analysing the Doppler 

spectrum as the spectrums are different for different objects [96]. However, radar sensors have 

low field of view angle and resolution when compared to camera sensor. Whereas automotive 

3D Lidars such as the Velodyne’s HDL-64E 3D LiDAR [97] are capable to provide 360 

degrees field of view and higher resolution with 64 or more sparse rotating laser beams. The 

laser beams are used to generate dense point cloud for omnidirectional environment modelling 

[98]. Conversely, LiDAR’s performance is influenced by weather condition such as fog and 

rain [99]. The sensor is also high cost and required higher computation power which is not 

ideal for a cost-effective data collection platform. 

Over the next decade, many autonomous vehicles are expected to be developed and 

introduced to the market. To gain user acceptance, these vehicles must be both safe and reliable, 

while also providing a comfortable driving experience. Although comfort is subjective and 

influenced by driving style, studies have shown that users prefer autonomous vehicles that 

drive similarly to their own style [100]. Recent studies such as [101] and [102] focused on 

developing human driver-like manoeuvres to offer a personalized driving experience, thus 

enhancing user acceptance of autonomous vehicles. Driving inputs such as steering angle and 

pedal inputs are critical for creating an autonomous vehicle dataset tailored to personalized 

driving style research. Most existing frameworks capture these inputs from the Control Area 

Network (CAN) bus [102]. However, accessing CAN bus data requires direct access to the 
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vehicle's CAN bus, which is not feasible for many vehicles. Alternatives include snap-on 

systems that can be added to existing steering wheels to measure the driver's input [88]. Other 

studies have demonstrated the estimation of steering wheel angles using Inertial Motion Units 

(IMU) on consumer devices like tablets and smartphones [103], as well as using cameras to 

capture steering wheel rotation and obtain angles through optical flow-based estimation [104]. 

For gas and brake pedal inputs, research has utilized specially designed load cells attached to 

the pedals to measure the force applied by the driver [105].  

Besides, Global Positioning System (GPS) is also important data for an AV for 

navigation and position information of the vehicle. GPS also works in all weather conditions 

and had been demonstrated to be high accuracy in providing vehicle position, speed, time. For 

instance, study from [106], [107] used speed and acceleration data obtained from GPS to detect 

and categorize driving behaviour into abnormal, normal and aggressive driving styles. 

Furthermore, the precision reliability and availability of the GPS signal in Bandar Baru Bangi, 

Malaysia had been tested and shown to be more than 99.7% [108]. Therefore, GPS sensor will 

be an adequate sensor for development of data collection platform in Malaysia. However, GPS 

sensor normally has low data rates and tall buildings in the urban area, tunnel and underground 

will obstruct the signals of the GPS and result in positioning failures [109]. Therefore, GPS are 

normally used with other sensors such as IMU [110] to increase accuracy and reliability.  

Finally, IMU is important to study the vehicle’s attitude, lateral and longitudinal 

accelerations, and jerks of the vehicle to improve user comfort. Study from Vaitkus et al. [111] 

had used IMU sensor to determine and classify driving styles. IMU sensors can provide signals 

at high data rates, but its accuracy degrades over time due to gyroscope drift [112]. Positioning 

fixes can be applied from other data sources such as LiDAR and GPS to compensate for 

standalone deficiencies using sensor fusion [113]. 

 

2.6 Sensor Fusion 

Sensor fusion is a fundamental task for the perception of an autonomous driving system, 

which involves combining data from multiple sensors such as cameras, LiDARs, radars, and 

ultrasonic sensors to achieve a more accurate and robust understanding of the vehicle's 

surroundings [114]. Popular sensor fusion techniques like the Kalman filters [115] and its 

variation such as the Extended Kalman filters (EKF) and Unscented Kalman filters (UKF) can 

enhance the performance and safety of autonomous vehicles by overcoming the limitations and 

uncertainties of individual sensors, such as occlusions, noise, blind spots, and varying weather 

and lighting conditions [116]. Sensor fusion methods for autonomous driving can be broadly 

classified into three categories based on the level of abstraction at which the fusion takes place: 

low-level fusion, intermediate-level fusion, and high-level fusion. In this section, the use of 

sensor fusion in autonomous driving, the advantages and disadvantages of various sensor 

fusion methods, and their suitability for various weather conditions are discussed. 

Low-level fusion, also known as raw data fusion or early fusion, refers to the process 

of fusing sensor data before any feature extraction or object detection is performed. This 

approach can exploit the complementary nature of different sensor modalities and preserve the 



26 

 

maximum amount of information available from the sensors. However, low-level fusion also 

faces several challenges, such as high computational complexity, data synchronization, spatial 

and temporal alignment, and sensor calibration [117]. Some examples of low-level fusion 

methods for autonomous driving are: 

• Image-LiDAR fusion: This method fuses images and point clouds to generate dense 

depth maps or semantic maps of the scene [118]. This can improve the performance of 

tasks such as object detection, segmentation, or classification. Image-LiDAR fusion can 

be achieved by using deep neural networks that learn to fuse features or representations 

from both modalities [119], or by using geometric methods that project point clouds 

onto images or vice versa [120]. 

• Image-radar fusion: This method fuses images and radar detections to generate 

enhanced images or radar maps of the scene [121], [122]. This can improve the 

visibility and robustness of objects in adverse weather conditions or low-light scenarios. 

Image-radar fusion can be achieved by using deep neural networks that learn to fuse 

features or representations from both modalities [123], or by using geometric methods 

that project radar detections onto images or vice versa [124]. 

• LiDAR-radar fusion: This method fuses point clouds and radar detections to generate 

fused point clouds or radar maps of the scene [125]. This can improve the range and 

resolution of objects in the scene and reduce the false positives and false negatives of 

radar detections. Radar-LiDAR fusion can be achieved by using probabilistic methods 

that model the uncertainty and noise of both sensors [126], or by using deep neural 

networks that learn to fuse features or representations from both modalities [127]. 

 

Intermediate-level fusion, also known as feature-level fusion or mid-level fusion, refers 

to the process of fusing sensor data after some feature extraction or object detection is 

performed on each sensor modality. This approach can reduce the computational complexity 

and data dimensionality compared to low-level fusion, while still retaining some information 

from each sensor. However, intermediate-level fusion also requires a common representation 

for different sensor modalities and a consistent confidence measure for each detection or 

feature [126]. Some examples of intermediate-level fusion methods for autonomous driving 

are: 

• Bounding box-based fusion: This method fuses the bounding boxes of detected objects 

from different sensors, such as cameras and lidars, using geometric or probabilistic 

models. The fused bounding boxes can provide more reliable and consistent object 

localization and classification results [128]. This can improve the safety and efficiency 

of autonomous driving by avoiding collisions and optimizing trajectories. 

• Region-based fusion: This method fuses the regions of interest (ROIs) from different 

sensors, such as cameras and radars, using pixel-level or feature-level alignment. The 

fused ROIs can provide more detailed and richer object appearance and motion 

information [129]. This can enhance the perception and understanding of complex 

scenes by capturing fine-grained details and dynamic changes. 
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• Deep feature-based fusion: This method fuses the deep features extracted from different 

sensors, such as cameras and lidars, using neural network architectures. The fused deep 

features can capture high-level semantic and contextual information from different 

modalities and enhance the performance of downstream tasks, such as object detection 

or segmentation [130]. This can enable more robust and flexible autonomous driving 

systems by adapting to various environments and scenarios. 

 

High-level fusion, also known as decision-level fusion or late fusion, refers to the 

process of fusing sensor data after a high-level abstraction or interpretation is performed on 

each sensor modality, such as object labels, semantic maps, traffic rules, and driving intentions, 

to support high-level tasks such as navigation, planning, and control. This approach can handle 

heterogeneous sensor modalities and different levels of uncertainty in each sensor. However, 

high-level fusion also loses some information from each sensor and may suffer from 

inconsistency or ambiguity in the decision making [131]. Examples of high-level fusion 

methods are: 

• Semantic mapping fusion is the process of combining semantic information from 

different sensors to create a rich and consistent representation of the environment. 

Semantic information can include object categories, attributes, locations, shapes, sizes, 

and relations. Semantic mapping fusion can be achieved by using probabilistic 

graphical models [132], deep neural networks [133], or hybrid methods [134]. Semantic 

mapping fusion can enhance the accuracy and robustness of localization and mapping, 

as well as provide useful information for situation awareness and decision making. 

• Situation awareness fusion is the process of fusing semantic information from different 

sensors to infer the current situation and context of the driving scenario [135]. Situation 

awareness fusion can involve reasoning about the traffic rules, road conditions, weather 

conditions, driving behaviours, and intentions of other agents. Situation awareness 

fusion can be achieved by using rule-based methods [136], Bayesian networks [137], 

or reinforcement learning [138]. Situation awareness fusion can improve the safety and 

efficiency of autonomous driving, as well as enable adaptive and cooperative 

behaviours. 

• Decision making fusion is the process of fusing semantic information from different 

sensors to generate optimal decisions for autonomous driving. Decision making fusion 

can involve planning trajectories, selecting manoeuvres, negotiating with other agents, 

and executing actions. Decision making fusion can be achieved by using optimization 

methods [139], game theory [140], or imitation learning [141]. Decision making fusion 

can enhance the performance and intelligence of autonomous driving, as well as ensure 

compliance with ethical and legal principles. 

 

The suitability of different sensor fusion methods for various weather conditions 

depends on several factors, such as the type and quality of sensors used, the robustness and 

adaptability of the algorithms employed, and the availability and reliability of prior knowledge 

or contextual information. In general, low-level fusion methods tend to perform better in clear 

weather conditions where the sensors can provide high-quality data with minimal noise and 
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distortion. However, low-level fusion methods may degrade significantly in adverse weather 

conditions such as rain, fog, snow, or dust, where the sensors may suffer from reduced visibility, 

increased noise, or false detections [142]. Intermediate-level fusion methods can cope better 

with moderate weather conditions where some features or objects can still be detected reliably 

by some sensors. However, intermediate-level fusion methods may also fail in extreme weather 

conditions where the features or objects are too occluded or distorted by the environmental 

factors [143]. High-level fusion methods can handle more complex and uncertain situations 

where different sensors may provide conflicting or incomplete information. Nevertheless, high-

level fusion methods may also introduce errors or biases in the decision making if the prior 

knowledge or contextual information is inaccurate or outdated [144]. 

In conclusion, sensor fusion is a key technology for autonomous driving that can 

improve the perception capabilities and safety performance of autonomous vehicles by 

integrating data from multiple sensors. Each level has its own advantages and disadvantages 

depending on the application scenario and weather condition. Therefore, choosing an 

appropriate sensor fusion method for autonomous driving requires a careful trade-off between 

computational efficiency, information preservation, robustness, and accuracy. 

 

2.7 5G in Autonomous Driving 

Autonomous driving hinges on three essential components: sensors, data integration, 

and safety decision-making. Historically, the limitations of network latency and reliability 

necessitated making most of the decisions locally within the vehicle. This placed significant 

demands on the vehicle, thereby delaying the widespread adoption of autonomous driving 

technologies. With the emergence of 5G, which is the fifth generation of mobile wireless 

technology that offers high speed, low latency, and high reliability for data transmission, these 

situations will be improved. The 5G can enable or streamline intelligent automation in different 

aspects of autonomous driving, such as tele-operated driving, high-definition maps, and 

cooperative collision avoidance.  

Tele-operated driving is a scenario where a human driver remotely controls a vehicle 

through a wireless network. This can be useful for situations where autonomous driving is not 

feasible or safe, such as complex urban environments, emergency situations, or extreme 

weather conditions. Tele-operated driving requires a high level of situational awareness and 

real-time feedback from the vehicle to the driver. Therefore, 5G is essential for providing low-

latency and high-bandwidth communication between the vehicle and the remote-control centre. 

A recent paper by Jin et al. [145] presents an experiment of tele-operated driving using 5G 

technology in a test track. The paper shows that 5G can achieve an end-to-end latency of less 

than 10ms and a throughput of more than 100 Mbps, which are sufficient for tele-operated 

driving with high-quality video streaming and haptic feedback.  

High-definition maps are another key component of autonomous driving that provide 

accurate and detailed information about the road environment, such as traffic signs, lane 

markings, road geometry, and dynamic objects. High-definition maps can enhance the 

perception and planning capabilities of autonomous vehicles and improve their safety and 
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efficiency. However, high-definition maps also pose significant challenges for data acquisition, 

processing, storage, and transmission. 5G can help to overcome these challenges by enabling 

fast and reliable data transfer between the vehicles and the cloud servers. A recent paper by 

Attaran [146] discusses how 5G can facilitate the creation and update of high-definition maps 

for autonomous driving by using edge computing and artificial intelligence. The paper also 

highlights the benefits of 5G for enabling vehicle-to-everything (V2X) communication, which 

can allow vehicles to share map data with each other and with the infrastructure. 

Cooperative collision avoidance is a use case where multiple vehicles coordinate their 

actions to avoid potential collisions. This can improve the safety and efficiency of autonomous 

driving, especially in scenarios where there are uncertainties or conflicts in the traffic situation. 

Cooperative collision avoidance requires a high level of communication and cooperation 

between the vehicles, which can be enabled by 5G. A recent paper by Hetzer et al. [147] 

proposes a framework for cooperative collision avoidance using 5G-V2X communication. The 

paper introduces a novel algorithm that can optimize the trajectories of multiple vehicles based 

on their positions, velocities, and intentions. The paper also presents a simulation study that 

shows that the proposed framework can achieve better performance than existing methods in 

terms of collision avoidance rate, travel time, and fuel consumption. 

In conclusion, 5G is a key enabler for intelligent automation in autonomous driving. 

5G can provide low-latency, high-bandwidth, and high-reliability communication for various 

use cases, such as tele-operated driving, high-definition maps, and cooperative collision 

avoidance. These use cases can improve the safety, efficiency, and user experience of 

autonomous driving. However, there are also many challenges and open issues that need to be 

addressed for the successful deployment of 5G for autonomous driving, such as network 

coverage, security, standardization, regulation, and interoperability. 

 

2.8 Driver Model 

The driver model plays a crucial role in virtual simulators for ADAS by simulating or 

predicting a human driver's actions and intentions, enabling ADAS to assist drivers effectively. 

Existing driver models typically represent the average driver, with fixed parameters that cannot 

adapt to different individuals. Accurate modelling of driving behaviour is a challenging task 

because human behaviour is inherently non-deterministic and influenced by factors such as 

individual variability, driving conditions, and interactions with other road users. Numerous 

studies have been conducted on modelling of driver behaviour models for ADAS [148], [149], 

[150]. 

 Current approaches for driver behaviour modelling can be categorized into two types 

of implementations, 1. Mathematical formulation, 2. Machine learning from data. Typically, 

both implementations follow a common process flow, which can be outlined as below: 

1. Collection of driving behaviour – Driving data are collected from a group of drivers 

using an instrumented vehicle or a virtual driving simulator. These data are analysed to 

study the different driver’s behaviour. 



30 

 

2. Modelling Driver behaviour – A driver model can be formulated mathematically by 

studying the driver’s behaviour from the data collected or learned from the data 

collected using machine learning techniques. 

3. Validation of the driver model – The driver model is validated and compared to the 

driving behaviour of the human drivers. Typically, the driver model will first be 

evaluated offline, with recorded driving data to verify that the model reproduces the 

driving behaviour accurately. Next, the driver model will be evaluated online by 

integrating the driver model into the virtual simulation platform and compared to the 

driving behaviour of human driver in the virtual simulated vehicle to verify the model’s 

performance in the virtual simulation platform. Finally, the virtual simulation platform 

with the driver model is compared to the human driver driving in real traffic to verify 

the accuracy of the virtual simulation platform representing the actual d riving 

behaviour. 

 

2.8.1  Mathematical Formulation of Driver Model 

 Modelling of driver has been studied since the early 1950s [151]. Since then, there is 

an increase of research in the modelling of driver, especially car following model, with the first 

non-linear car following model developed by General Motors in year 1961, also known as the 

General Motors model [152]. Most of the driver behaviour modelled using mathematical 

formulation focuses on one or few aspects only such as decision making based on the driving 

behaviour, lane changing, car following, trajectory following, acceleration, and braking models. 

In this section, the driver models based on mathematical formulation will be reviewed. 

In order to develop a driver model for virtual vehicle that can be used for testing of 

active control units, Preusse [153] defined the driver model as a sequence of numerical optimal 

control problems that required to be solved to predict the future tracking controls. The driver 

behaviour model was defined by an objective function and solved using Direct transcription 

and Sequential Quadratic Programming. However, this approach does not guarantee a global 

optimum and a single-track model for vehicle dynamics model that might not be able to 

reproduce responses of a real vehicle. Meanwhile, Kristoffer and Tony [154] constructed a car-

following driver model using state space modelling method. Their vehicle model was modelled 

using a state vector which consist of vehicle kinematics and driver’s intent. To express the car-

following behaviour, they used the well-established Gipps model [155] to estimate the velocity 

for the vehicle so that the vehicle can stop safely.  This enables the driver model to predict the 

future traffic situation and adjust the vehicle to stay safe. However, the mathematical model 

was only simulated in a two-dimensional road network and unable to run at real-time according 

to the authors. 

 Besides, Miyajima et al. [156] developed driver models for car following and pedal 

braking using a statistical method of a Gaussian mixture model (GMM) [157]and an optimal 

velocity (OV) model [158] estimated by a non-linear function. The driver models developed 

using the two methods were evaluated with driving data collected from eight human drivers in 

driver identification test. Their result shows that the GMM driver model was able to perform 

better than the OV model by up to 14.3%. They also demonstrated the driver models were able 
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to capture and predict driving behaviour during car following and lane changing manoeuvres, 

using multi-modal driving signals such as gas/brake pedal force, steering-wheel angle, distance 

between vehicles, vehicle speed, vehicle acceleration [159]. However, the research lacks the 

consideration of interaction with traffic signs and other road users such as motorcyclists and 

pedestrians. 

 Utilizing Model Predictive Control (MPC) [160] method for driver modelling was 

regarded as main research challenges [161]. Driver model based on MPC was required to 

predict the future response of a vehicle using a dynamics model of the vehicle and produce 

control inputs such as steering-wheel angle, gas/brake pedal force to control the vehicle so that 

the difference between the desired trajectory and the actual trajectory of the vehicle can be 

minimized. Using MPC method, MacAdam [162] developed a linear optimal trajectory 

tracking controller that can be updated to simulate the adaptation and learning abilities of an 

actual human driver. Meanwhile, Qu et al. [163] proposed a driver steering model using 

Stochastic MPC (SMPC) method where the uncertainties or variations in the model that cannot 

be deal by the classic MPC were modelled to have statistical properties. For example, 

uncertainty in road coefficient was modelled as driver’s knowledge regarding the road 

condition’s variations. Then, the SMPC can be used to minimize a cost function which is a 

weighted combination of trajectory tracking and ease of driver control. They also proposed a 

driver model which used switching based SMPC method [164]. This method enables the SMPC 

to switch between different driving strategies to adapt to varied road conditions. The result of 

the switching based SMPC is promising and able to track the desired trajectory accurately. 

However, the current driver model is limited to lateral control with fixed vehicle speed and 

would require future work to incorporate the longitudinal control into the driver model.  

Many of the research focussed on either lateral or longitudinal driver model 

development only. For lateral driver model that is responsible to the steering-wheel control, 

there are research that studies the modelling of eye movement and sensory delays of a human 

driver [165], [166], [167]. Whereas for longitudinal driver models that control the speed of the 

vehicle, these models are based on the reaction time, following distances and acceleration limits 

of a human driver [168], [169]. However, studies have shown that driver that provide lateral 

input (steer) and longitudinal input (brake) has a higher chance of avoiding collisions. 

Therefore, Zheng et al. [170] proposed a motion planning model that can provide lateral and 

longitudinal lane changing. Furthermore, Schnelle et al. [171], [172], [173] proposed a driver 

model that combines the lateral and longitudinal driver models to provide vehicle velocity and 

steering-wheel angle like a human driver in real-world collision avoidance and lane-change 

scenarios. The lateral driving model used is a first-order compensatory transfer function and 

an anticipatory component that consist of the desired trajectory of the driver. Whereas the 

longitudinal driving model consists of a feedforward component for selecting driver speed 

based on the curvature of the desired trajectory, and a feedback component for selecting 

following distance and speed relative to the preceding vehicle. Figure 2-5 shows the 

architecture of the combined longitudinal and lateral driver model. The driver model developed 

can reproduce most of the behaviour of the driver during lane-change and collision avoidance 

manoeuvres. 
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Figure 2-5: Architecture of the combined lateral and longitudinal driver model [171] 

 

2.8.2  Machine Learning Based Driver Model 

Research of modelling of driver model for virtual simulation platform have been long 

established as discussed in a survey [174]. Most existing work on driver estimation and 

prediction model focus on feature extractor engineering, integrated with basic temporal 

sequence model. These models require prior or expert knowledge to select features that are 

correlated to each action of interest of the driver. Many state-of-the-art machine learning 

algorithms such as Fuzzy-Logic [175], K-Nearest Neighbour (KNN) [176], Gaussian Mixture 

Model (GMM) [177], Hidden Markov Model (HMM) [178], Support Vector Machine (SVM) 

[179] and Multilayer Perceptron (MLP) [180] were also studied to model the driving 

behaviours and achieved remarkable result in various applications. However, most of the 

machine learning approaches had various shortcomings as well. For example, KNN model will 

increase the time complexity when computing the distance metrics that define similarities and 

dissimilarities between the unknown input and all known samples, if the training data is 

unbalance. HMMs such as first-order Markov model are also limited to contextual information 

representation, where the output is independent, and the present state depends solely on the 

prior state. Furthermore, since driver behaviour model construction can be formulated as a time 

series anomaly prediction problem, human-designed features that normally cannot guarantee 

optimal features could lead to restrictions on model precision and robustness. This is due to the 

driver prediction model should be capable of extracting features that are only important to 

predict future driver behaviours based on the scenarios. Therefore, a feature learning 

framework is required to take advantage of the sensor-rich input. In addition, most of the driver 

model focussed on either longitudinal control or lateral control only [181], [182], with a few 

carries out both longitudinal and lateral control synchronously [180]. 

Acosta and Kanarachos [180] proposed a hybrid driver model that combines a MPC 

and feedforward neural network, for autonomous drifting. The hybrid design used MPC for 

path following, whereas the feedforward neural network is used to estimate the unknown 

drifting operating point and tire friction properties from data of a real driver drifting in a driver-

in-the-loop (DIL) simulator. For MPC, the vehicle dynamics model used to predict the vehicle 
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response is a two-track vehicle planar dynamics model. The resulting driver model was robust 

enough to perform autonomous drifting even in road terrains that are not included in the 

training data. The advantages of using such a hybrid model instead of end-to-end machine 

approach is because it is very hard to fully verify and validate an end-to-end “black box” system 

[183]. However, the proposed idea was only implemented in two-dimensional (2D) planar, 

limited to drifting manoeuvre, and lack of consideration of other road users and traffic objects 

which will present in a real-world road environment. 

Deep learning is a great feature learning technique that make use of Artificial Neural 

Network (ANN) composed of layers of connected artificial neurons made of non-linear 

computational units to learn features directly from the input to eliminate the needs of feature 

engineering. Wu et al. [184] demonstrated their driver model based on deep learning 

outperform other machine learning methods, such as random forest. There are two types of 

implementations of deep learning for driver model which are the sequential perception-

planning-action pipeline system and the End-to-end learning system [185]. Figure 2-6 shows 

the differences in system architecture design between sequential pipeline system and end-to-

end system. For sequential pipeline system, each component in the system can be designed 

individually using artificial intelligence method or non-learning method. The components will 

then combine to form a complete driver model. Whereas for end-to-end system, the system is 

a direct mapping of a vehicle’s on-board sensor data to control commands for the vehicle such 

as steering-wheel angle, gas/brake pedal pressure.  

 

Figure 2-6: Deep learning techniques for driving model [185]: (a) sequential perception-planning-action 

pipeline system; (b) End-to-end system. 

 Sequential pipeline system is the traditional approach that divides driving task of a 

driver model into several parts such as perception and localization (object detection and lane 

detection), path planning, and motion controller. Normally, these components are researched 

separately. For perception and localisation, the lane detection task normally used computer 

vision techniques such as edge detection [186], and Hough transform [187]. Whereas for object 

detection task, normally object detection deep neural network (DNN) such as Single Shot 

Detector (SSD) [188] and You Only Look Once (YOLO) [189], [190] were used. Then, the 

path planning and motion controller will plan the trajectory and vehicle’s motion using the 
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information extracted during the perception and localisation stage, such as lane marking and 

traffic objects’ information.  

An example of driver model developed using sequential pipeline approach is in [191]. 

The intelligent virtual driver developed consists of 3 main subsystems, Visual Perception 

Model (VPM), Decision Making Model (DMM) and Execute Action Model (EAM). VPM is 

based on Scene Encapturing and Evaluation (SEE) model that provides scene capture and 

visual information processing. DMM is developed as a rule-based approach that execute 

decision based on visual information received from VPM and rule weightings. Finally, EAM 

will control the vehicle in terms of vehicle acceleration, braking and steering based on the 

decision made by DMM. However, one of the main disadvantages of the sequential pipeline 

approach is that minor error in the system will accumulate from stages to stages and finally 

result to an inaccurate prediction. 

Unlike sequential pipeline system, the end-to-end system as demonstrated by Bokarski 

et al. [192] used a single CNN only that takes raw camera frames as input and generate vehicle 

control signals directly. End-to-end system is able to provide better performance because the 

hyper-parameters of the model were self-optimised using driving data collected, hence the 

unnecessary or irrelevant features and steps were removed and will also resulting in a smaller 

system [193]. End-to-end driver model can either be DNN that trained offline using real-world 

driving data [194] and/or synthetic data generated from simulator [195], [196], or based on 

Deep Reinforcement Learning (DRL) that trained and validated in the simulator [197]. 

 

(a)  CNN 

The most used deep learning techniques is the convolutional neural network (CNN) that 

is utilized for image and speech processing tasks. CNNs made up of several layer of 

convolutional and subsampling layers with non-linear neural activations to extract feature maps 

from the input. Then, the feature maps are feed into a fully connected neural network for 

retrieval, clustering or classification [1]. In CNN, the input Red-Green-Blue (RGB) image is 

treated as a 3D matrix, while computing the dot product between the filter and the input entries 

to produce a smaller 2D output of that filter. A mathematical equation of 2D convolution is 

denoted as Equation 2.1 below.  

𝑦[𝑖, 𝑗] = ∑ ∑ ℎ[𝑚, 𝑛] ∙ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]

∞

𝑛=−∞

∞

𝑚=−∞

(2.1) 

For convolutional process, a filter (kernel) size and the corresponding strides is defined. Stride 

is the number of shifting pixels over the input matrix. With an input matrix of ℎ × 𝑤 × 𝑑, 

applying a convolution filter of 𝑓ℎ × 𝑓𝑤 × 𝑑 , the resultant output matrix will be (ℎ − 𝑓ℎ +

1) × (𝑤 − 𝑓𝑤 + 1) × 1. If the filter does not convolve perfectly towards the input matrix or 

image, either zero padding towards the edge or drop out the remainder part of the input matrix 

can be performed.  

The convolutional layers served as feature extractors. It can detect the similarity 

between current and previous layers of the same region and produce the respective feature maps 



35 

 

for the given input image. The neurons which represent local similarity feature maps will 

therefore form the local receptive fields. In the same convolutional layer, feature maps contain 

non-identical weights such to enable it to obtain multiple features at each location. Convolution 

is done between input image or feature maps with trained weights to generate a new feature 

map, and the output is delivered through a nonlinear activation function to acquire the final 

classification output. Activation functions are crucial in a neural network model as it 

determines the accuracy and respective output of a model. It also has major influence in the 

computational efficiency and converging time for a deep neural network. A general activation 

function notation is given as Equation 2.2 below: 

𝑌 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑ 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠 (2.2) 

The activation function which is used widely in state-of-the-art CNNs such as ResNet [198] is 

ReLU, as it is the simplest form of activation function and is computationally efficient. Defined 

mathematically as Equation 2.3 below: 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

(2.3) 

The ReLU outputs the input directly if it is positive; otherwise, it returns zero. This simple yet 

effective function introduces non-linearity into the model while maintaining computational 

efficiency. ResNet introduced an "identity shortcut connection," which offers several 

advantages, including:  

• Accelerating the speed of training deep networks 

• Increasing the network’s depth while maintaining its width, thereby reducing the 

number of parameters 

• Mitigating the Vanishing Gradient Problem effect in Conventional CNNs 

• Achieving higher network accuracy, particularly in Image Classification 

This is because Conventional CNNs are hard to train because backpropagating the 

gradient to earlier layers can result in repeated multiplication that causes the gradient to become 

extremely small over time. The issue is known as the vanishing gradient problem, which can 

be addressed by Batch Normalization, a technique utilized in ResNet. Another issue that arises 

when deep networks begin to converge is degradation. To tackle these challenges, the residual 

network (ResNet) was introduced. Residual neural networks explicitly fit the mapping F(x)+x, 

where x represents the input and F(x) denotes the mapping of the stack of non-linear layers 

(residual mapping). This enable the residual block to carry important information in the 

previous layer to the next layers which is similar to a principle introduced with LSTM cells. 

With this residual block, the ResNet can be made by stacking these residual blocks layers by 

layers. Even though this short connection looks like an addition to a conventional neural 

network architecture, the ResNet was able to go deep to 152 layers with much lower parameter 

than conventional CNN which is smaller in depth at the same time providing faster training 

performance. This is because the arithmetic addition of F(x)+x did not increase the network 
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parameters. Besides, it effectively solves the problem of degradation of conventional CNN as 

the network become deeper.  

In conventional neural network, it is assumed that two successive inputs are 

independent of each other. However, it is not true for couples of applications. For instance, it 

can be noted that the driver prediction model is a driving behaviour prediction based on time 

series data captured from sensors such as accelerometer, GPS information and video recording. 

Therefore, researchers such as Ha and Choi [199] proposed a state-of-the-art activity 

recognition model that applies convolution and pooling process along the time-series sensor 

data. Moreover, Recurrent Neural Networks (RNNs) such as Long Short-Term Memory 

(LSTM) [200] that are commonly used to process natural language, have feedback loops or 

gates (input and forget gates) to maintain information that had been calculated previously in 

memory over time.  

 

(b)  LSTM 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Long Short-Term Memories (LSTMs) have demonstrated effectiveness in various ADAS 

applications, as evidenced by their successful application in driver activity prediction [201], 

[202]. Jain et al. [203] utilized an RNN with LSTM units to capture long-term dependencies 

over time, applying their model to predict driver manoeuvres using real-world datasets. Olabiyi 

et al. [204] proposed a method employing deep bidirectional RNNs to anticipate driver actions, 

leveraging both past and future contextual information from sensor data. 

LSTMs, featuring a memory cell and three gates (input gate 𝑖, forget gate 𝑓, and output 

gate 𝑜), are pivotal in handling sequential data due to their ability to selectively retain or discard 

information over time. Figure 2-7 illustrates the architecture of an LSTM unit, which updates 

its internal state 𝑐𝑘 based on current inputs 𝑥𝑘, previous hidden state ℎ𝑘−1, and previous cell 

state 𝑐𝑘−1. This is governed by recursive equations (2.4). 

𝑖𝑘  =  𝜎(𝑊𝑖𝑥𝑘  +  𝑊𝑖ℎ𝑘−1  +  𝑏𝑖)  

𝑓𝑘  =  𝜎(𝑊𝑓𝑥𝑘  +  𝑊𝑓ℎ𝑘−1  +  𝑏𝑓)  

𝑔𝑘  =  𝑡𝑎𝑛ℎ(𝑊𝐼𝑔𝑥𝑘  +  𝑊𝑐ℎ𝑘−1  +  𝑏𝑔) (2.4)

𝑐𝑘  =  𝑓𝑘⨀𝑐𝑘−1  +  𝑖𝑘⨀𝑔𝑘

 

𝑜𝑘  =  𝜎(𝑊𝑜𝑥𝑘  +  𝑊𝑜ℎ𝑘−1  +  𝑏𝑜)  

ℎ𝑘  =  𝑜𝑘  tanh ⨀(𝑐𝑘)  

 

Figure 2-7 Architecture of LSTM [200] 
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Where, σ represents the sigmoid non-linearity, 𝑡𝑎𝑛ℎ  denotes the hyperbolic tangent non-

linearity, ⨀ is the element-wise product, and 𝑊and 𝑏 terms denote weight matrices and bias 

vectors, 𝑖𝑘,𝑜𝑘, 𝑔𝑘, 𝑓𝑘, and 𝑐𝑘 represents input gate, output gate, input modulation gate, forget 

gate, and memory cell and at time k. In spite of LSTMs' capability to model long-term 

dependencies, training them effectively can be challenging. In this context, a series of linear 

convolution layers are employed to extract the dynamics of the model, enhancing its ability to 

learn complex temporal patterns. 

 

(c)  CNN-LSTM 

CNNs are widely recognized for their capability to efficiently extract features from 

images by converting them into flat vectors. It is conventional to integrate a CNN at the 

beginning of the "encoder" module. When trained in conjunction with the "encoder-decoder" 

LSTM module, this CNN module contributes to the development of an advanced end-to-end 

model that exceeds the complexity of basic models. Furthermore, Ordóñez and Roggen [205] 

also proposed a state-of-the-art model with the combination of CNN and LSTM for wearable 

activity recognition. These designs enable neural networks to predict future output, which is 

depended on the previous computations. In fact, research from Sonja [206] shows that the past 

behaviour of a driver is the main contribution factor required to predict the driver’s intention 

due to the motive behind an action can be reasoned. Ever since NVIDIA developed the End-

to-end driving model known as PilotNet [207] in 2017, there have been a lot of research that 

utilized the similar architecture in driver model in the past few years. This approach trains CNN 

by mapping raw sensory data from the vehicle directly to the vehicle control commands. 

Meanwhile, Xu et al. [208] transform the autonomous driving problem into a vehicle future 

motion prediction problem by introducing temporal features into the end-to-end visual model. 

The method proposed is a combination of Fully Convolutional Network and Long-Short Term 

Memory (FCN-LSTM), where the FCN act as visual encoder to learn visual representation in 

each video frame, while the LSTM will act as temporal encoder to provide motion history 

information.  

This CNN-LSTM architecture has been applied to different aspect of automated driving 

such as localisation, prediction, decision making and control. For example, in localisation, 

Selvaraj et al. [209] combined CNN and convolutional LSTM (ConvLSTM) for detecting lanes 

and localisation of the car relative to the map from road images. In prediction, CNN-LSTM 

can be used to forecast the future states and behaviours of road users, such as their trajectories, 

speeds, and intentions [210]. In decision making, Cheng et al. [211] proposed a lateral 

manoeuvre decision making network based on CNN-LSTM architecture to make either lane 

change, or lane keep decision based on distance and speed of preceding and neighbour vehicles 

information obtained from motion image sequence. In control, CNN-LSTM model can be used 

to adjust either the steering angle or the speed of the self-driving car according to the planned 

path and the surrounding conditions [212][213][214][215]. Valiente et al. [216] employed a 

CNN-LSTM based network for autonomous steering control in cooperative self-driving 

vehicles. To enhance the steering angle control accuracy, they proposed a system that enables 

information sharing between these cooperative vehicles. 
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Similar idea has also been applied in [217], where the network used to develop driver 

steering model is a C-LSTM (Convolutional-Long Short-Term Memory). Whereas in [218], 

the proposed driver model requires multiple CNNs act as feature encoder and four LSTMs 

network that act as temporal encoder to process information coming from surround-view 

cameras. Then two more fully connected networks (FNs) are needed to provide control 

commands in terms of future steering angle and future speed. Whereas Qin et al. [219] proposed 

a car-following model using CNN-LSTM architecture to control speed of the vehicle so that a 

safety distance from the leading vehicle can be maintained. Vijitkunsawat et al. [220] 

successfully deployed CNN-LSTM algorithm on a scaled RC-Car platform powered by Nvidia 

Jetson Nano for self-driving car navigation at three different speeds with high accuracy. 

However, these studies only considered either controlling the steering angle while keeping 

constant speed or vice versa. Yang et al. [221] proposed a multi-modal system for self-driving 

to address previous end-to-end model that can only perform single task learning. By using 

multi-modal network, suitable model can be used for different task which in this case, the 

system predicts steering angle using CNN and speed value using LSTM. Instead of dividing 

the network into two, Gu et al. [222] proposed an end-to-end self-driving model based on CNN-

LSTM to predict both steering angle and speed control within a single model. They used LSTM 

to form the “encoder-decoder” structure to learn information hidden in the input features and 

managed to achieve high accuracy using Waymo Open dataset. However, the scenarios tested 

are just moving in straight line without large lateral motion such as car-following and 

deceleration.  

Zhang et al. [223] then further improve the CNN + LSTM architecture by introducing 

the attention mechanism [224] to the network. This is because the default LSTM or other 

Recurrent neural network (RNN) based network like the Gated Recurrent Unit (GRU) [225] 

have to encode the entire input sequence into a single vector. However, every feature maps 

have different contribution to the prediction of driver behaviour and the LSTM only has fixed-

length memory cell. This will cause loss of important information if the time series sensor data 

is large and complex. By introducing the attention mechanism into the network, the attention 

unit which is a neural network will learn the weightage for each feature map. Hence, only the 

feature maps that are relevant will remains and used as input for the LSTM or RNN. Zhao et 

al. [226]proposed an end-to-end self-driving model that can predict both steering angle and 

speed control but joined with attention mechanism to improve accuracy of scene perception 

based on vision. However, similar to the previous model, due to lack of input data such as 

trajectory waypoint, GPS data, both models do not have the ability to perform task such as path 

following and self-driving navigation tasks. 
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Figure 2-8: Architecture of different types of visual-temporal end-to-end deep neural network [208] 

Instead of using traditional method where CNN model is trained with offline training 

data, Perot et al. [227] proposed a driving model based on CNN + LSTM architecture but was 

trained using Reinforcement Learning (RL) in the Texas Off Road Championship (TORCS) 

game simulator. In RL, the DNN learn by trial and error in an interactive environment and uses 

reward and punishment as positive and negative feedback to the DNN. To maximize the 

accumulated reward and optimise the driving policy using only RGB image from a front facing 

camera as input, asynchronous advantage Actor-Critic (A3C) method is used to learn the 

vehicle controls in the simulator because it does not require experience replay for decorrelation 

during training. The system is then enhanced in [228] with full lateral and longitudinal control 

including hand brake control for drifting. The enhanced system also proved to converge faster 

and have better generalization of the car control. 

Other driver models based on Reinforcement Learning used different training strategies. 

For example, in [229], the Double Deep Q-Network (DDQN) [230] was used to implement the 

driving policy of the driver model based on classical Reinforcement Learning. Whereas in 

[231], the driving policy was implemented using Deep Deterministic Policy Gradient (DDPG) 

[232] algorithm that was proposed by DeepMind. This algorithm has good convergence, good 

stability, does not require a model, and can be used in a continuous action domain. It can be 

said that the most challenging part of developing driver model based on RL is to find the right 

reward function for the agent, so that the driver model will act like humans. In contrast, faulty 

reward function will make the trained model fails [233]. To obtain the optimum reward 

function, Huang et al. [234] used Inverse Reinforcement Learning (IRL) method to learn the 

reward function directly from human naturalistic driving data. This is done by adjusting the 

weights of the reward function so that the driving policy matches the decision-making scheme 

of humans. By using IRL, the proposed driver model could reduce error in human likeness by 

up to 24%. However, IRL relies on the assumption that the human’s decision-making scheme 

is optimal with respect to an unknown reward function [235]. 
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2.9 Safety Assessment of Autonomous Vehicle Systems 

 The process of verification and validation is crucial in the development and deployment 

of Autonomous Vehicles (AVs), ensuring that these complex systems operate safely and 

reliably. Standardization of testing procedures has emerged as a critical step towards achieving 

this goal, but the road to a unified approach has been winding and complex. ISO standards play 

a pivotal role in establishing the necessary frameworks for safety testing. The initial efforts in 

standardizing AV testing focused on adapting existing frameworks. With the groundwork laid 

in foundational research [16], researchers explored applying the well-established ISO 26262 

standard for functional safety in road vehicles [236], [237]This standard, designed for 

traditional cars, provided a strong foundation for safety considerations. However, as AV 

technology advanced, it became clear that adaptations were needed. The unique functionalities 

and reliance on complex algorithms in AVs necessitated a more nuanced approach. The 

International Organization for Standardization Technical Report (ISO/TR) 4804:2020, for 

instance, provides comprehensive guidelines for the design, verification, and validation of 

cybersecurity and safety for automated driving systems [238]. It emphasizes a safety- and 

cybersecurity-by-design approach, focusing on vehicles with level 3 and level 4 features as 

defined by SAE J3016:2018 [239]. This standard outlines methods for developing dependable 

systems by integrating the three dependability domains: safety of the intended functionality, 

functional safety, and cybersecurity. These domains work in tandem to create a robust system 

capable of withstanding various operational challenges 

 As research progressed, the complexities involved in standardizing AV testing became 

apparent [240]. The sheer diversity of real-world scenarios that AVs need to navigate 

effectively posed a significant challenge. Unlike traditional vehicle testing on controlled tracks, 

AVs need to be prepared for everything from sunny highways to unpredictable weather 

conditions on winding mountain roads. Additionally, the vast array of sensor technologies 

employed by different developers (cameras, LIDAR, Radio Detection and Raging (RADAR)) 

further complicated the issue. Different technologies necessitate different testing methods to 

ensure proper functioning. Responding to these challenges, a collaborative approach emerged 

with the proposal for a standardized, open-source repository of testing scenarios [241]. This 

collaborative approach allows researchers and developers to share a vast array of standardized 

test cases categorized by complexity and driving conditions. This not only accelerates 

development but also ensures a wider range of situations are considered, fostering the creation 

of more robust AV systems. 

 

(a) Adoption of International Standards for Safety Testing of Autonomous Vehicle 

The work of Koopman et al. [242] underscores a significant challenge in the 

development and testing of autonomous vehicles (AVs), particularly in relation to the 

Operational Design Domain (ODD). The ODD is a foundational concept in AV development, 

defining the specific conditions under which an AV is designed to operate safely. It 

encompasses a range of variables, including geographic, climatic, and traffic-related factors. 

The precise delineation of an AV’s ODD is crucial for the development of relevant test 

scenarios and for ensuring that the vehicle can handle real-world driving situations within its 
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designated domain. However, the limitations of current simulation-based testing methods, as 

highlighted by Koopman et al., stem from their inability to fully capture the complexity and 

variability inherent in real-world environments that an AV’s ODD must account for. 

Simulations are essential for AV development because they allow for the safe and controlled 

testing of vehicles under a wide range of scenarios. However, if these simulations are not 

sufficiently representative of the real world, they may fail to prepare the AV for the full 

spectrum of challenges it will face within its ODD.  

To address this, Koopman et al. emphasized the standardization of simulation 

environments and the integration of real-world sensor data into these simulations. By doing so, 

the simulations become more aligned with the ODD, enhancing their ability to replicate the 

diverse scenarios an AV will encounter. This integration ensures that AVs are tested against 

more realistic and challenging conditions, thereby improving their readiness for deployment in 

real-world traffic situations. In essence, the authors call for standardization in simulation 

environments and the integration of real-world sensor data to ensure that the ODD is thoroughly 

and accurately represented in testing protocols. This approach helps bridge the gap between 

theoretical testing and practical application, ensuring that AVs are truly prepared for the 

complexities of the environments they are designed to navigate. 

 While earlier research works [243], [244], [245], [246], [247], [248], [249] have 

focused on adapting existing standards like ISO 21448 Safety of the Intended Functionality 

(SOTIF) [250] and ISO 26262 Road Vehicles — Functional Safety. These standards were 

pivotal in earlier studies focusing on the development and deployment of autonomous vehicles 

in physical environments. a new player has emerged which is the ISO 3450X series standards. 

The ISO 34501 Road vehicles — Test scenarios for automated driving systems — Vocabulary  

[251] is the first document in the ISO 3450X series standard to specify the vocabulary and 

terminology used for the test scenario creations. ISO 34501 standardizes the vocabulary and 

terminology for creating test scenarios. It aligns with existing standards such as ISO 21448 and 

ISO 26262-1, ensuring consistency across technical documents. This standard is crucial for 

maintaining a unified language and understanding among researchers and practitioners 

working on automated driving systems.  ISO 34502 Road vehicles — Test scenarios for 

automated driving systems — Scenario based safety evaluation framework [252] outlines the 

safety tasks, scenario-based safety evaluation processes, and the relationship between the 

developed framework and other standards and legislation. It focuses on inputs such as 

Operational Design Domain (ODD), regulations, and expert knowledge, identifying critical 

scenarios based on risk factors. The document also describes the derivation of concrete test 

scenarios, test executions, and safety evaluations. This comprehensive approach ensures that 

all relevant factors are considered in the safety assessment process.  

ISO 34503 Road Vehicles — Test scenarios for automated driving systems — 

Specification for operational design domain [253] specifies the ODD, which identifies the 

capabilities of Autonomous Driving Systems (ADS). The ODD represents the operating 

conditions within the test environment in which an ADS can safely perform the dynamic 

driving task (DDT). This document, applicable to level 3 and level 4 ADS, leverages the BSI 

Flex 1889 framework to detail ODD and scenario levels. The specification of the ODD is 
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crucial for understanding the limits and capabilities of ADS in various conditions. The BSI 

Flex 1889 [254] provides a framework for classifying scenario abstraction levels, essential for 

designing scenario-based testing. Four types of scenario levels are defined: functional scenarios, 

abstract scenarios, logical scenarios, and concrete scenarios. Functional scenarios are non-

formal, human-readable explanations, often accompanied by visualizations. Abstract scenarios, 

on the other hand, are formalized and machine-readable, described based on cause-effect 

relationships. Logical scenarios involve parameterized sets of scenarios, incorporating ranges 

of variable scenario parameters. Concrete scenarios are specific scenarios with fixed 

parameters, typically written in OpenDrive and OpenScenario format. 

ISO 34504 Road vehicles — Test scenarios for automated driving systems — Scenario 

categorization [255] focuses on scenario categorization based on the ODD defined in previous 

standards. It introduces a tagging system to classify scenarios for the safety assessment of ADS. 

Tags categorize scenarios based on characteristics such as  

1. dynamic objects 

2. scenery aspects 

3. environmental situations 

4. desired test applications.  

This categorization facilitates a structured approach to scenario analysis and ensures that all 

relevant factors are considered in the safety assessment. The top-level taxonomy in Figure 2-9 

categorizes Operational Design Domain (ODD) attributes related to scenario categorization, 

classifying basic ODD based on scenery aspects, environmental situations, and dynamic 

objects. Each scenario category represents driving conditions at specific locations. Figure 2-10 

illustrates the relationship between scenarios and scenario categories. For example, scenario 

category A might be "daytime" and category B might be "jaywalking pedestrian." The 

overlapping elements of these tags represent scenarios occurring during daytime with a 

jaywalking pedestrian. Real-world data from instrumented vehicles is used to gather relevant 

scenarios based on deployment locations for autonomous vehicles. ODD is dependent on the 

application of autonomous vehicles, classifying operating conditions based on scenery, 

environment, and dynamic object detection. 

  
Figure 2-9 Top level taxonomy with ODD 

attributes [256] 

Figure 2-10 Relationship between scenario and 

scenario category 

 The difference between a scenario and a test case lies in the ODD, which defines the 

required test cases for safety assessment. ODD varies among vehicle types (e.g., passenger 

vehicle, buses, shuttles like NAVYA or WeRide), and test cases are generated based on 
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identified ODD and potential scenarios. Test cases are a subset of scenarios, defined based on 

real-world scenarios, and are not generated outside of the ODD. Figure 2-11 depicts the 

relationship between real-world data, scenarios, ODD, and test cases. Not all test scenarios are 

suitable for simulation and physical assessment as test cases. Test cases are designed based on 

specific characteristics necessary for assessment, such as test objectives, input data, procedures, 

identifiers, platform capabilities, and expected results. Scenario evaluation, based on ISO 

21448 (SOTIF), uses "Known/Unknown" and "Safe/Unsafe" scenario categories as shown in 

Figure 2-12 to categorize scenarios for critical level evaluation. Test cases for autonomous 

vehicles are generated based on scenario evaluation results and testing capabilities.  

 
 

Figure 2-11 Relationship between Real 

World, scenarios, ODD and test cases 

Figure 2-12 Illustration of Known/Unknown and 

Safe/Unsafe Scenario categories 

The upcoming ISO 34505 Road Vehicles – Test scenarios for automated driving 

systems – Scenario Evaluation and Test Case Generation" [257], marks a significant step 

forward in standardizing AV testing, addressing the gap identified in earlier approaches. ISO 

34505 adopts a two-pronged approach, focusing on both scenario evaluation and test case 

generation: 

1. Scenario Evaluation: This stage assesses the effectiveness of various test scenarios 

designed to challenge an AV's capabilities. The standard outlines factors to consider 

during evaluation, such as: 

a. Relevance: Does the scenario represent a realistic situation an AV might 

encounter on the road? 

b. Comprehensiveness: Does the scenario adequately test various aspects of the 

AV's perception, decision-making, and control systems? 

c. Difficulty: Does the scenario pose a significant challenge to the AV, pushing its 

boundaries and identifying potential weaknesses? 

d. Measurability: Can the outcome of the test scenario be objectively evaluated to 

determine the AV's performance? 

2. Test Case Generation: Once a scenario is deemed effective, ISO 34505 provides a 

framework for converting it into a concrete test case. This involves defining: 

a. Initial Conditions: The starting state of the AV and its surrounding environment, 

including weather, traffic, and road infrastructure. 

b. Stimuli: The specific events or actions that trigger the AV's response within the 

scenario, such as a car suddenly changing lanes or a pedestrian crossing the road. 

c. Expected Results: The desired outcome of the AV's behaviour in response to 

the stimuli within the scenario. This could involve successful avoidance of an 

obstacle, maintaining safe headway with other vehicles, or correctly interpreting 

traffic signals. 
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d. Pass/Fail Criteria: Clearly defined metrics for determining whether the AV's 

performance meets expectations within the test case. 

Unlike adapting generic safety standards, ISO 34505 focuses specifically on AV testing 

needs by providing targeted testing. This framework ensures test scenarios and cases are 

directly relevant to the challenges that might encounter by autonomous vehicles in the real 

world. This also enable developers to ensure the AV is tested against scenarios that is likely 

encounter within its ODD. By establishing a structured approach for scenario evaluation and 

test case generation, ISO 34505 streamlines the testing process. This reduces redundancy and 

ensures developers focus on the most impactful test cases. Besides, the ISO 34505 also 

enhanced comparability. This is because standardized test cases allow consistent evaluation of 

AV performance across different developers and platforms. This facilitates benchmarking and 

promotes progress in the field. The link between test scenarios and derived test cases also made 

explicit in ISO 34505. This traceability helps developers understand the rationale behind each 

test and identify the aspects of the AV system being evaluated. The connectivity between ISO 

standards, as illustrated in Figure 2-13, guides the safety assessment methodology for the 

validation and verification framework. 

 

Figure 2-13 Relationship of ISO 3450X series standards 

 

(b) New Car Assessment Programme (NCAP) 

In addition to these standards, several New Car Assessment Programs (NCAPs) 

worldwide play crucial roles in assessing vehicle safety, including Euro NCAP [258], Global 

NCAP, Association of Southeast Asian Nations (ASEAN) NCAP, United States (US) NCAP, 

and China C-NCAP. The New Car Assessment Programme (NCAP) is a critical element in 

ensuring vehicle safety, offering a standardized approach to evaluating the safety features of 

new vehicles. Among the various NCAPs worldwide, Euro NCAP stands as a prominent entity, 

established with the support of several European countries and organizations. It provides 

consumers with safety assessments through rigorous testing procedures, thus guiding informed 

purchasing decisions. Global NCAP, another significant body, operates under the Towards 

Zero Foundation and aims to improve vehicle safety globally, often focusing on democratizing 

vehicle safety in support of UN Global Goals.  ASEAN NCAP, specifically tailored for 

Southeast Asian countries, was established by the Malaysian Institute of Road Safety Research 

(MIROS) and Global NCAP. It emphasizes raising consumer awareness and enhancing vehicle 
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safety standards within the region. The US counterpart, the National Highway Traffic Safety 

Administration (NHTSA)'s NCAP, known for its 5-Star Safety Ratings, helps consumers 

compare safety features more effectively and encourages manufacturers to incorporate 

advanced safety technologies. Japan's JNCAP, initiated by the Ministry of Land, Infrastructure, 

Transport and Tourism, along with the National Agency for Automotive Safety & Victims' Aid, 

informs consumers about safer vehicles and promotes the development and popularization of 

these vehicles. These programs collectively contribute to a global effort to improve vehicle 

safety, with each NCAP addressing specific regional needs and regulations, yet all aiming 

towards the common goal of reducing vehicular accidents and enhancing passenger safety. 

In the context of autonomous vehicles (AVs), the role of NCAPs is increasingly 

significant. AVs introduce a new paradigm in driving, where advanced driver-assistance 

systems (ADAS) take on tasks traditionally performed by human drivers. NCAPs assess the 

effectiveness of these systems in preventing and mitigating accidents, which is crucial as the 

industry moves towards higher levels of automation. The evaluation criteria include the 

performance of automatic emergency braking, lane-keeping assistance, and other proactive 

safety features that can dramatically reduce the likelihood of collisions. As AV technology 

continues to evolve, the NCAPs' testing methodologies are also adapting. The inclusion of 

ADAS in safety assessments reflects the changing landscape of vehicle safety, where the focus 

is shifting from passive safety features like airbags and crumple zones to active systems that 

can prevent accidents from occurring in the first place. This evolution in safety standards 

underscores the importance of NCAPs in guiding both consumers and manufacturers towards 

safer automotive technologies and practices. The comprehensive approach of NCAPs to 

vehicle safety, encompassing both traditional and autonomous vehicles, demonstrates their 

indispensable role in the automotive industry. By providing transparent and rigorous 

assessments, NCAPs empower consumers with the knowledge to make safety a priority when 

purchasing vehicles. Moreover, they drive innovation among manufacturers, pushing the 

industry towards continuous improvement in vehicle safety features. As vehicles become more 

connected and autonomous, the NCAPs' assessments will remain a key factor in shaping the 

future of safe mobility on a global scale. 

(c) International Standards for Vehicle Dynamics and Safety Testing of Vehicle 

The validation of instrumentation for data collection and autonomous vehicle (AV) 

testing is also a critical aspect of ensuring the safety, reliability, and performance of modern 

vehicles. This section explores the international standards that govern these processes to 

provide a framework for evaluating vehicle dynamics, safety, and performance under various 

conditions, which is essential for the development and deployment of autonomous vehicles. 

International standards for vehicle dynamics and safety testing like the ISO 3888-1:2018 - 

Double Lane Change Test specifies the dimensions and procedures for a double lane-change 

test, which evaluates a vehicle's ability to perform severe lane-change manoeuvres. This test is 

crucial for assessing the vehicle's stability, handling, and safety under extreme conditions. The 

standard applies to passenger cars and light commercial vehicles with a gross vehicle mass of 

up to 3.5 tons. It defines the test track layout, including the dimensions of the lanes and the 

required vehicle speeds, ensuring consistent and repeatable testing conditions [259]. 
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Besides, SAE provided guidelines for testing a vehicle's braking and acceleration 

performance. These guidelines are critical for assessing the vehicle's ability to stop safely and 

accelerate efficiently under various conditions. It includes detailed procedures for measuring 

braking distance, deceleration rates, and acceleration times, ensuring that vehicles meet safety 

and performance benchmarks [260]. Next, ISO 4138:2021 - Step Steer Test outlines the 

methodology for conducting step steer tests, which measure a vehicle's lateral transient 

response. This test is essential for evaluating the vehicle's handling characteristics, particularly 

its response to sudden steering inputs. The standard specifies the test conditions, including 

vehicle speed, steering angle, and data collection requirements, to ensure accurate and reliable 

results [261]. The ISO 7401:2011 - Lateral Transient Response Test then complements ISO 

4138 by providing additional methods for evaluating a vehicle's lateral transient response. This 

standard focuses on the vehicle's behaviour during sudden lane changes or obstacle avoidance 

manoeuvres, which are critical for autonomous vehicle testing. It specifies the test conditions 

and data collection methods to ensure consistency across different testing environments [262]. 

In addition, the ISO 15037-1:2019 addresses the general conditions necessary for 

testing of suspension systems and vehicle components. This standard is particularly relevant 

for autonomous vehicles, as it ensures that the suspension system can handle dynamic loads 

and maintain stability under various driving conditions. It provides guidelines for measuring 

the dynamic behaviour of suspension systems, including ride comfort and handling 

performance [263]. Moreover, ISO 22737:2021 - Low-Speed Automated Driving Systems 

provides specific guidelines for testing low-speed automated driving systems, such as those 

used in urban environments. This standard is particularly relevant for validating the 

performance of AVs in complex, low-speed scenarios, such as pedestrian crossings and traffic 

congestion [264]. 

Research in AV safety testing adopts a comprehensive approach, integrating 

simulations, empirical testing in real-world conditions, and scenario-based evaluations [265]. 

These tests yield critical insights into the AV’s interaction dynamics with various road users, 

diverse weather conditions, and unforeseen events. A thorough safety assurance framework is 

essential for AV deployment, encompassing meticulous system design, rigorous requirements 

analysis, detailed documentation, and robust verification traceability. Such a framework 

ensures that AVs are deployed successfully and safely. The process of verification and 

validation is fundamental to the development of AVs, ensuring their reliability and security. 

Adhering to established standards such as ISO 3888, ISO 4138, ISO/TR 4804:2020, ISO 26262, 

and ISO 34505, and integrating NCAP evaluations, constitutes a solid foundation for a 

comprehensive safety assurance strategy. As AV technology evolves, it is imperative to 

continually revise and enhance these standards and testing methodologies. This ongoing 

process will address the evolving challenges associated with autonomous driving systems, 

ensuring that safety remains at the forefront of AV development and deployment. 
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2.10 Application of Digital Twin in Autonomous Vehicle Safety Testing 

The concept of Digital Twin (DT) was first proposed by Grieves in 2003 but initially 

did not gain attention [266]. However, advancements in information technologies and hardware 

such as sensors, computers, artificial intelligence, and big data have made digital twins feasible. 

NASA reintroduced the concept in 2012 [267], leading to increased interest and investment in 

digital twin research by universities and enterprises. From 2017 to 2019, DTs were listed 

among Gartner’s top ten strategic technology trends, highlighting their potential to integrate 

physical and virtual spaces effectively for intelligent manufacturing [268]. Modelling methods 

are crucial in implementing digital twins, and various scholars have made significant 

contributions in this area. A digital twin framework consisting of virtual space, real space, and 

the connections to allow the flow of information and data between these spaces was introduced 

by Grieves et al. [269]. A five-dimension DT model was proposed Tao et al., encompassing 

virtual entity, real-world entity, service system, connection network, and digital twin data. 

Physics, Geometry, behaviour, and rule models are included in the virtual entity [270]. The 

digital twin concept and its implementation across different stages of lifecycle of a product is 

investigated by Zhuang et al. [271]. A reference DT model comprising cyber things, real-world 

things, and hybrid things is presented by Alam et al., providing foundational structures for DT 

systems [272]. 

Recently, DTs have found applications across diverse fields such as medical care [273], 

machinery manufacturing [274], aerospace [275], shipbuilding [276], and urban construction 

[277]. The automotive industry, in particular, has emerged as a significant application area for 

digital twins, attracting considerable scholarly attention and research efforts. In the context of 

autonomous vehicles, simulation-based DTs play an important role in speeding up AV 

verification and reducing development costs [266]. These virtual replicas can simulate a wide 

range of traffic and environmental scenarios, eliminating the needs for massive real-world 

testing. For instance, waiting months for major snowstorm for on-road AVs testing can be 

bypassed by creating a digital twin that simulates a major snowstorm and generates high-

quality testing data [278]. Vehicle dynamic simulators, such as those for testing cruise control 

systems, have been extensively utilized in the automotive industry for testing purposes [279]. 

Similarly, the aerospace industry has long employed simulation for various applications. 

Testing AVs in controllable virtual environments can significantly reduce time and costs of 

development. Simulators are widely utilised to evaluate the path-planning and decision-making 

modules across different scenarios. These simulators can provide perception data including the 

states and positions of the ego vehicle and other traffic actors[280]. This method is scalable 

and straightforward but lacks the fidelity to accurately represent real-world conditions, leading 

to several issues. 

Simulation tests cannot fully substitute for physical tests of the pipeline of the 

autonomous vehicle software, which includes sensing, localization, path planning, vehicle 

control, and decision-making. Physical tests are also constrained by environmental factors such 

as weather and lighting conditions. Simulators often utilize virtual town maps rather than real-

world road tests, and these do not accurately simulate road conditions [281]. To evaluate 
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Autonomous Driving (AD) functions such as highway ramps, which rely on traffic regulations 

and road geometry, a digital twin map is essential. Furthermore, pre-programmed car and 

pedestrian animations in simulations cannot mimic the complex interactions of real traffic, 

making it challenging to judge scenarios like aggressive driving and junctions. AV software 

testing in simulations often faces challenges with low-fidelity sensor data. Techniques such as 

ray casting and depth mapping, which simulate lidar sensors, struggle to accurately replicate 

real-world phenomena such as reflection and diffusion. These discrepancies underscore the 

disparities between simulations and real-world conditions. In contrast to AV software 

development, automotive hardware development benefits from "digital twin" physical 

simulation tools like Modelica and MATLAB, which expedite the development process [282]. 

Besides, in the automotive industry, DTs are employed to generate digital replicas of 

vehicles, facilitating personalized service and maintenance based on data on vehicle use and 

performance. These digital replicas can be either model copies or networked systems [283]. 

Engineers utilize simulations to explore AI and predict breakdowns and wear before the car 

reaches the assembly line. This approach can significantly reduce the need for extensive road 

testing and maintenance, thereby saving unforeseen costs. DT technology holds the potential 

to replicate and enhance various aspects of the system of a smart electric vehicle (EV), which 

could have significant implications [284]. Effective DT vehicle modelling necessitates a 

comprehensive understanding of the DT environment. Automakers use DTs to generate 

accurate digital replicas of automobiles, allowing for more targeted service and maintenance 

based on car performance data. By studying AI through simulations, engineers can predict 

breakdowns and wear, thereby reducing the need for maintenance and physical road testing for 

autonomous vehicles. DT technology has the capability to effectively replicate and enhance the 

systems of smart EVs. Consequently, successful DT vehicle modelling hinges on a thorough 

understanding of the DT environment. 

In Yu et al.’s paper [285], they shared real-life experiences of DTs as a practical 

approach for developing autonomous driving systems. They highlighted how digital twins 

create detailed, precise, and reliable models of the real-world environments, thereby reducing 

the need for physical testing. The primary contributions include the identification of limitations 

inherent in conventional AD simulation approaches and the demonstration of how digital twins 

can address these challenges. The authors summarized their experience in designing the 

autonomous driving DT system into three fundamental principles. They elaborated on the 

system’s architecture and components, which include gathering real-world mapping data, 

replicating sensor data, and synthesizing traffic participants. The contributions of the paper by 

Dong et al. [286] include detailing the AD DT system's structure and components, the creation 

of a working prototype under the digital twin paradigm, and the tracking of critical metrics 

such as time lag and localization precision. The system integrates Human-Machine Interface 

(HMI) devices, utilizing the HoloLens for controlling vehicles within a 3D environment, while 

the driving simulators with first-person perspective offer complete driver control.  

Moreover, Niaz et al. [287] examines the origins and deployment phases of digital twin 

technology, highlighting applications such as autonomous motion control, predictive mobility, 
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ADAS, battery management systems, vehicle health management systems, intelligent charging, 

electric power drive systems, and vehicle power electronic converters. Steinmetz et al. [288] 

contribute to the literature by proposing the use of digital twins (DT) to enable Car-as-a-Service 

(CaaS) in densely populated locations with significant traffic due to commercial expansions. 

The proposed design consists of several components: the city infrastructure, middleware for 

entity connectivity, DT models operating on the middleware, and applications such as car-

sharing. They demonstrated the implementation of this concept and highlighted key areas for 

future development. Meanwhile, Tsinarakis et al. [289] demonstrate that the entire electric car 

development process can be simulated using a Petri-net-based digital twin. This digital twin 

enables real-time data sharing between the physical system and its digital counterpart, leading 

to improved and quicker decision-making. The two systems collaborate to calculate and 

implement actions, generate updated schedules, and provide users with various scenarios 

(optimistic, most likely, pessimistic) regarding potential task delays.  

In a recent study, a Vehicle-to-Cloud (V2C) communicating linked car digital twin 

structure was proposed [290]. This structure integrates the Driver-Vehicle Interface (DVI) of 

the vehicle with cloud server data, enabling the display of advisory speed information to the 

driver for vehicle control. This digital twin framework is designed to enhance Advanced Driver 

Assistance Systems (ADAS) by leveraging the digital twin concept. The proposed structure 

underwent testing in real-world scenarios focused on cooperative ramp merging which 

involved three passenger vehicles. Meanwhile, Tsinghua University is working on a digital 

twin system focused on Connected and Autonomous Vehicles (CAVs), allowing for multi-

vehicle tests even without physical cars [291]. This approach combines physical and virtual 

automobiles to achieve desired outcomes. A sand table testbed facilitates the smooth operation 

of small cars, while a game engine creates a virtual environment through full-element 

modelling. This virtual space can display the real-time state of the sand table. The research 

suggests using a cloud vehicle to replace smaller autos. 

However, there are limitations to simulation-based testing. Five major challenges 

highlighted in implementing DT technology across various fields are: 

1. Data-related concerns: This includes concerns regarding privacy, trust, cybersecurity, 

acquisition, governance, convergence, and large-scale analysis. Some behaviours, like 

socioeconomic inequality, ecological stability, and political instability, are difficult to 

quantify, making it challenging for designers to replicate them accurately [292]. 

Addressing these concerns are crucial, especially in the early stages of DT development, 

to understand their potential impact on stakeholders and the environment. 

2. Lack in implementation of guidelines, standards, and regulations: The lack of 

universally accepted interoperability and standards in industries, such as manufacturing, 

limits the widespread adoption of DTs [293]. Establishing clear guidelines and 

standards through articles and research can help define the benefits and structures of 

DTs, facilitating their adoption. 

3. High implementation costs: Overcoming the challenge of high implementation costs, 

which arise from the requirement for additional sensors and computing power, is crucial 

for advancing DTs to higher maturity levels. This advancement is essential for 
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integrating DTs into commercial designs and achieving widespread deployment, 

especially in less affluent regions where resources are scarce [294].  

4. Utilizing big data and AI for large-scale and long-term analysis: Big data algorithms 

and Internet of Things (IoT) technology play a crucial role in successful DT 

implementations, as they help generate and analyse vast amounts of data [295]. 

Effectively leveraging these technologies can enhance data connectivity and processing, 

enabling bidirectional flow of information and autonomous operations. 

5. High speed connectivity: The adoption of advanced communication standards, such 

as 5G, plays a crucial role in facilitating real-time data connectivity and enhancing the 

operational efficiency of DTs [296]. The benefits of 5G technology, including high-

speed connectivity, ultra-low power consumption, and improved reliability, are pivotal 

for ensuring the smooth operation of DTs, particularly in applications like smart cities. 

Addressing these challenges is vital for the successful implementation and widespread adoption 

of DTs across various industries. 

In summary, despite facing several challenges, digital twins offer significant benefits. 

In the automotive industry, they facilitate the creation of digital vehicle copies, enabling 

personalized service and maintenance. Engineers can predict breakdowns and wear using 

simulation models, potentially saving unforeseen costs. Moreover, digital twin technology can 

enhance smart electric vehicle systems, impacting sustainability and efficiency. The integration 

of Digital Twin Technology (DTT) with real-world data involves a systematic approach 

encompassing data collection, processing, and simulation. By leveraging real-time sensor data, 

external data sources, AI algorithms, and robust connectivity, DTT creates highly accurate and 

dynamic scenarios for autonomous vehicle systems. These scenarios are invaluable for testing, 

validating, and optimizing autonomous vehicle performance, ensuring these vehicles can 

operate safely and efficiently in the real world. As DTT continues to advance, its ability to 

integrate with real-world data will further enhance, improving the fidelity and utility of the 

scenarios it can produce for autonomous vehicle systems. Therefore, to fully leverage digital 

twin capabilities, understanding the digital twin environment is crucial for accurate vehicle 

modelling and optimization. 

 

2.11 Vehicle Modelling 

The dynamic modelling of vehicles is a cornerstone in the design and control of 

autonomous driving systems. A robust understanding of vehicle dynamics is essential not only 

for evaluating ride comfort and handling performance but also for developing control strategies 

that ensure safety and efficiency in autonomous vehicles. In the literature, a wide range of 

vehicle dynamic models have been developed, each characterized by its DOF and tailored to 

different research objectives. The DOF in a dynamic model represent the independent motions 

that the vehicle or its subsystems can undergo. For example, a simple two‐DOF model captures 

the vertical translation motions of both the sprung and unsprung masses, whereas more 

sophisticated models allow for rotational movements such as pitch and roll. 
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A quarter car model is one of the most elementary representations of vehicle dynamics 

and is typically formulated as a two‐DOF system. In this model, one DOF represents the 

vertical motion (or bounce) of the sprung mass—a quarter of the vehicle’s body mass—while 

the second DOF captures the vertical motion of the unsprung mass (the wheel and tire 

assembly). Owing to its simplicity and low computational burden, the quarter car model has 

been widely adopted in early-stage suspension design studies and ride comfort analyses. For 

example, studies comparing the vibration attenuation of quarter, half, and full car models 

demonstrate that the quarter car formulation can effectively capture the essential vertical 

dynamics while sacrificing the ability to represent lateral or rotational effects [297]. However, 

the quarter car model does not capture the effects of vehicle pitching or rolling, and hence its 

scope is limited when predicting full-vehicle behaviour in more complex scenarios such as 

those encountered in autonomous driving. 

To overcome these limitations, researchers developed the half car model, which 

typically incorporates four DOF. This model considers two unsprung masses—one at the front 

and one at the rear—and introduces an additional DOF to represent the pitch motion of the 

chassis. By capturing the rotation about the lateral axis, the half car model enables the 

simulation of front–rear load transfer, which is crucial for assessing both ride comfort and road-

holding performance under various road excitations [297]. A further increase in modeling 

fidelity is achieved with full car models that incorporate seven DOF. In such models, the 

vehicle body is generally allowed three independent motions: vertical translation (bounce), 

pitch (rotation about the lateral axis), and roll (rotation about the longitudinal axis). In addition, 

each of the four wheels is modelled with one DOF, usually capturing its vertical displacement. 

The seven-DOF full car model offers a significantly enhanced representation of the vehicle’s 

dynamic response because it captures the interactions between chassis rotational dynamics and 

the individual suspension responses. Research using these models has provided valuable 

insights into active suspension design and control strategies that improve both ride comfort and 

stability [298], [299]. 

Even more detailed are the 14 DOF models, which include additional DOF to capture 

the rotational dynamics of the wheels and other localized motions such as lateral deformations 

in suspension components. In these models, besides the three DOF for the chassis and the four 

for the vertical motions of the unsprung masses, extra states are added to represent, for example, 

wheel rotational inertia and tire deformation effects. Although such detailed formulations 

promise to simulate subtle interactions—like the coupling between tire deformation and vehicle 

stability—the literature indicates that practical applications of 14 DOF models in autonomous 

vehicle control are sparse. The challenges here include extensive parameter identification, 

increased computational complexity, and difficulties in real-time implementation [300]. 

Beyond these vertical dynamics models, other vehicle models have been developed to 

address specific research needs. Kinematic models, such as the single-track or “bicycle” model, 

are commonly used for path planning and trajectory tracking tasks because they efficiently 

represent lateral and longitudinal motions without delving into the complexities of vertical 

dynamics. These models, while simpler, are particularly useful when the primary interest is in 
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planar motion [299]. At the opposite end of the spectrum, highly detailed multibody dynamic 

models may include 38 DOF or even exceed 100 DOF, capturing interactions among the 

chassis, suspension, powertrain, steering system, and even human body dynamics. Such models, 

often implemented in advanced simulation environments, offer unparalleled fidelity and are 

typically used for offline analyses or for validating new control strategies under extreme 

conditions [301]. 

In addition, there are specialized models that integrate active control elements. For 

instance, recent work on active suspension systems collaborating with an active aerodynamic 

surface in a quarter car model illustrates how additional forces can be integrated into the state-

space formulation to improve ride comfort and road-holding performance [302]. Collectively, 

these models form a hierarchy in which the selection of a vehicle dynamic model depends on 

the intended application. Simpler models (quarter and half car) are advantageous for 

preliminary control design and real-time applications, while higher-fidelity models (7 DOF and 

14 DOF) are necessary for a comprehensive understanding of vehicle behaviour under a wide 

range of driving conditions. However, a notable gap in the literature remains: the integration 

of 14 DOF models into real-time autonomous vehicle control frameworks is still 

underdeveloped due to the challenges of computational load and parameter calibration. Future 

research is expected to address these issues through advanced model order reduction techniques 

and robust parameter estimation methods, leading to improvements in both safety and 

performance for autonomous vehicles. 

Tire modelling is another important element in vehicle dynamics modelling, which has 

been a topic of intensive research for decades, as it provides the crucial link between vehicle 

dynamics and road behaviour. Early models sought to capture the basic physical phenomena 

governing tire’s road interaction, while more modern formulations focus on achieving a 

balance between computational efficiency and accuracy. The evolution of tire models reflects 

this balance, ranging from the simple analytical models based on physical principles to 

complex empirical formulations that are fitted to experimental data. 

One of the most influential models is the Magic Formula tire model, developed by Hans 

B. Pacejka in the 1980s. Despite its lack of a strict physical foundation, the Magic Formula 

gained widespread acceptance due to its ability to accurately replicate measured tire behavior 

over a wide range of operating conditions. The model employs a sine-arctan formulation to 

represent tire forces as functions of slip parameters, incorporating numerous coefficients that 

account for effects such as vertical load, camber, and combined slip [303]. Its flexibility and 

relatively low computational cost have made it a standard in vehicle dynamics simulations and 

control applications, even though its empirical nature means that its parameters must be 

carefully determined from experimental data. Researchers have noted that while the Magic 

Formula is highly accurate within the range of data used for calibration, its extrapolation 

beyond these conditions can be problematic. 

In contrast to the Magic Formula, semi-empirical models like the Fiala tire model and 

the TMeasy model incorporate a more direct physical interpretation of the tire’s behaviour. The 

Fiala model, dating back to the 1950s, conceptualizes the tire as a deformable structure where 
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a “brush” of elements represents the contact patch. This model divides the behaviour into 

regions of pure adhesion and partial sliding, offering insights into the physical mechanisms 

behind force generation. Although it uses a limited number of parameters and is relatively 

simple to implement, the Fiala model’s validity is often restricted to small slip conditions, 

which limits its usefulness in aggressive manoeuvres or when significant nonlinearities are 

present [304]. 

The TMeasy model represents another effort to bridge the gap between purely empirical 

and physically based approaches. It uses analytical approximations of tire force curves while 

keeping the number of parameters manageable. These parameters are typically identified 

through laboratory experiments, allowing the model to capture both pure slip and combined 

slip characteristics with reasonable accuracy. However, the TMeasy model often struggles with 

predicting aligning torque and exhibits limitations when extrapolating to conditions outside 

those for which it was calibrated. Despite these drawbacks, its computational efficiency and 

physical interpretability make it attractive for applications such as vehicle control design, 

where a balance between simplicity and fidelity is essential [305]. 

Physically based models, particularly the brush tire models, take a more fundamental 

approach by representing the tire-road interface as an array of bristles that deform under load. 

These models are grounded in mechanics, with parameters such as the tire’s material properties 

and geometric characteristics entering directly into the equations. Brush models can often 

provide better extrapolation under varying operating conditions because their parameters have 

clear physical meanings. However, they are not without limitations; many brush models 

assume simplified contact patch shapes and constant friction coefficients, which can lead to 

inaccuracies during transient or high-slip events. Recent extensions to brush models, including 

those that incorporate aspects of the LuGre friction model, have aimed to capture stick-slip 

phenomena and frictional hysteresis, thereby improving the predictive capability of these 

models. Yet, the increased complexity associated with these extensions often results in higher 

computational costs and more challenging parameter identification processes [306]. 

Comparative studies in the literature have shown that while the Magic Formula tends 

to offer the best fit to steady-state experimental data, its “black box” nature and the large 

number of parameters can be drawbacks, especially when extending the model to account for 

environmental variations such as temperature, tire wear, or inflation pressure. Semi-empirical 

models like TMeasy, by using fewer parameters, offer a more physically intuitive approach, 

but they may not capture all the nuances of tire behaviour under extreme conditions. Physically 

based models, including both traditional brush models and their modern extensions, excel in 

providing robustness and better extrapolation capabilities, though often at the cost of increased 

computational effort and complexity. 

In recent years, advances in computational power have enabled the use of more 

complex physical models in real-time simulations. For example, models such as FTire have 

been adapted for real-time applications, demonstrating that even highly detailed physics-based 

models can be used in simulations if computational efficiency is properly managed. This trend 

suggests that future tire models may increasingly blend the high accuracy of empirical 
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approaches with the robustness and physical interpretability of analytical models, offering 

improved predictions across a broader range of operating conditions [307]. 

In summary, the literature on vehicle dynamics and tire modelling reveals a rich history 

of development, marked by a continual trade-off between accuracy, computational efficiency, 

and physical insight. For vehicle dynamics modelling, a clear understanding of the DOF 

involved is essential to capture the nuances of vehicle behaviour, particularly as autonomous 

driving systems demand increasingly sophisticated control solutions. Although simplified 

models continue to be valuable for initial studies and control design, the development and 

integration of more detailed models, such as the 14 DOF full car model, represent critical 

research directions for future advancements in autonomous vehicle technology. Whereas for 

tire modelling, the Magic Formula model remains a benchmark for many applications, while 

semi-empirical and physically based models offer valuable alternatives that may be better 

suited to applications requiring extrapolation to extreme conditions. As measurement 

techniques improve and computational resources continue to grow, future research is likely to 

focus on hybrid models that combine the best features of these approaches, leading to more 

reliable and versatile tools for vehicle dynamics analysis and control. 

 

2.12 Research Gap 

The literature review highlights a significant gap in the development of autonomous 

vehicle simulation platforms and driver models that cater to the road environments and driving 

behaviours specific to developing countries. Existing simulators and datasets mostly focus on 

urban or rural environments in developed nations, necessitating extensive modifications for 

suitability in training autonomous vehicles for developing country road environments. In 

Malaysia, there's a need of available simulator platforms and datasets tailored to testing 

autonomous vehicle safety systems in the local context. Moreover, virtual simulation platforms 

often overlook the interaction between human drivers and other road users, a critical aspect in 

developing countries where traffic is less organized, pedestrians might crossroads 

unpredictably, and road markings may be poorly maintained. These factors significantly 

influence driving behaviour and must be considered in developing autonomous vehicle 

simulation platforms. 

Meanwhile, earlier standards like ISO 21488 and ISO 26262 provided foundational 

frameworks for assessing the reliability and safety of advanced systems, focusing on functional 

safety and managing potential risks associated with electronic and electrical systems within 

vehicles. These standards have been instrumental in guiding the industry through its nascent 

stages. However, as technology progresses, the need for updated and more comprehensive 

standards becomes apparent. The BSI Flex 1889 and the ISO 3450X series represent a new 

wave of standards aimed at addressing the complexities of Operational Design Domains (ODD) 

and specific scenarios that autonomous vehicles may encounter. The absence of literature 

developing scenario-based testing for ODDs in line with these newer standards indicates a 

significant research gap. This gap presents an opportunity for scholars and industry experts to 

pioneer methods that will ensure the safe integration of autonomous vehicles into transportation 

systems, considering the diverse and dynamic environments they will operate in. Bridging this 
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gap is crucial for advancing the field and maintaining public trust in these emerging 

technologies. Developing literature and practical testing methodologies based on BSI Flex 

1889 and the ISO 3450X series would mark a significant step forward. Such efforts would 

potentially set new benchmarks for the safety and reliability of autonomous vehicle technology, 

ensuring that these vehicles can perform safely and effectively in all anticipated operational 

conditions. 

Furthermore, existing driver models based on mathematical formulations or traditional 

AI algorithms like GMM and HMM typically focus on limited driving scenarios and lack the 

ability to consider previous decisions, actions, or interactions of other road users. For instance, 

end-to-end driver models using CNN, such as PilotNet, may identify a pedestrian but struggle 

to predict their movement speed or direction, hindering accurate collision avoidance 

manoeuvres during emergency braking. To address these limitations, employing recurrent 

neural networks (RNNs) with feedback loops enables driver models to retain information from 

previous states, allowing them to estimate the intentions of other road users more effectively. 

Combining CNNs with recurrent networks in hybrid architectures offers promise by processing 

time series data while maintaining an end-to-end design. 

Another avenue involves training driver models through reinforcement learning in 

interactive simulator environments. However, while suitable for optimizing driving policies, 

this method may not effectively replicate human driver actions. Inverse reinforcement learning, 

although valuable in learning from human expert demonstrations, relies on the assumption that 

the learned reward function is optimal. Additionally, the use of simplified vehicle models in 

MPC may limit the accuracy of vehicle motion representation in simulators. Developing driver 

models for safety testing simulators differs from those for self-driving vehicles. While the 

former aims to reproduce human driver anomalies or errors, most models focus on perfect 

driving skills. There's a need of research on driver models combining both lateral and 

longitudinal vehicle control through end-to-end deep learning methods. 

This endeavour seeks to address critical gaps by creating a novel end-to-end 

CNN+LSTM-based driver model capable of emulating human driving behaviour in developed 

countries with the ability of path following. It involves simulating diverse and realistic 

Malaysian road scenarios within a 3D environment to capture human driver actions. By 

incorporating an intricate vehicle model into imitation learning process, this approach aims to 

improve the precision of predicting vehicle responses. 

Table -2-5 Shortcomings of the existing CNN-LSTM network 

Paper Application Shortcomings 

End-to-end Learning of 

Driving Models from Large-

scale Video Datasets [208] 

Driver 

Model 
• The model primarily relies on visual data, which might not 

be sufficient for complex driving tasks. The lack of 

additional inputs such as trajectory waypoints, GPS data, 

and high-definition maps can limit the model's ability to 

perform precise path following and navigation tasks. 

• The model is trained on a corpus of demonstrated 

behaviour, which may not cover all driving scenarios. This 

limitation means the model might struggle with rare or 

unexpected events not represented in the training data. 
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• The learned policy is evaluated based on its ability to 

predict future actions in a held-out dataset but is never 

executed in a real-world or simulated environment. This 

lack of real-world validation raises questions about the 

model's robustness and reliability in practical applications 

• The approach combines a fully convolutional network 

(FCN) with a long short-term memory (LSTM) network for 

sequential image data. While effective, this method can 

suffer from information loss if the time-series data is large 

and complex. The integration of attention mechanisms 

could address this issue by highlighting relevant features, 

but this is not fully explored in the paper 

Lane detection and 

localization using hybrid 

deep neural network model 

[209] 

Perception • Used CNN and ConvLSTM for lane detection and car 

localization, which is effective for perception but lacks 

integration with real-time control and decision-making. 

Spatio-Temporal Image 

Representation and Deep-

Learning-Based Decision 

Framework for Automated 

Vehicles [211] 

Decision 

Making 
• The model relies heavily on simulated data and lacks real-

world testing to validate the model’s effectiveness and 

safety 

• The model is limited to 2D planar and specific manoeuvres, 

lacking consideration for real-world road users and traffic 

objects. 

Controlling steering angle 

for cooperative self-driving 

vehicles utilizing CNN and 

LSTM-based deep 

networks [216] 

Driver 

Model 
• The model only controls steering angle 

• The model relies heavily on image data shared via V2V 

communication, which may not always be reliable or 

available. 

• The model’s performance may vary with changes in vehicle 

speed or distance, affecting the relevance of shared images. 

• The model’s ability to generalize to different environments 

or vehicle types is not discussed. 

End-to-end Deep Learning 

for Steering Autonomous 

Vehicles Considering 

Temporal Dependencies 

[217] 

Driver 

Model 
• The model only controls steering angle 

• The model relies on the front camera images only 

• Traditional CNN-based methods do not account for the 

temporal relationship between frames, missing motion 

features. 

A CNN-LSTM car-

following model 

considering generalization 

ability [219] 

Driver 

Model 
• The model only controls vehicle speed 

• The model is limited to 2D planar and specific manoeuvres, 

lacking consideration for real-world road users and traffic 

objects 

Comparison of machine 

learning algorithms on self-

driving car navigation using 

Nvidia Jetson Nano [220] 

Driver 

Model 
• The accuracy of model decreases with the addition of more 

obstacles and higher speed levels. 

• The model control steering only  

• Limited to specific scenarios and speed levels. 

End-to-end multi-modal 

multi-task vehicle control 

for self-driving cars with 

visual perceptions [221] 

Driver 

Model 
• Multi-modal multi-task network to handle both steering 

and speed control. 

• The model predicts discrete speed commands (accelerating, 

decelerating, maintaining speed) with pre-fixed levels, 

which can limit the smoothness of vehicle control. 

• Using only visual inputs restricts the accuracy of command 

predictions, especially in scenarios where the vehicle’s 

current speed or road conditions should alter the command 

decision. 

An LSTM-based 

autonomous driving model 

using a waymo open dataset 

[222] 

Driver 

Model 
• End-to-end single model network to handle both steering 

and speed control. 

• The framework faces challenges in manual feature 

combination due to feature explosion, difficulty in design, 

and recognition of combined features. 
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• The model is trained on front-camera images from Waymo 

cars and may not generalize well to other car models with 

different camera positions 

• The model requires a specific input length (10 previous 

frames), which may not capture sufficient history for 

accurate predictions or could be unnecessarily complex. 

• The current training and testing approach don’t use 

predictions from previous frames as input, which differs 

from real-world scenarios where predictions would build 

on each other. 

A Deep Learning 

Framework for Driving 

Behaviour Identification on 

In-Vehicle CAN-BUS 

Sensor Data [223] 

Driver 

model 
• Modelling the temporal dynamics of feature activations 

explicitly is complex. 

• The high-dimensional nature of CAN-BUS data leads to a 

large feature space, increasing the complexity of model 

training. 

• The framework needs further validation on large-scale 

Naturalistic Driving Studies (NDS) datasets to ensure its 

effectiveness in real-world scenarios. 

End‐to‐end autonomous 

driving decision model 

joined by attention 

mechanism and 

spatiotemporal features 

[226] 

Driver 

model 
• The model has limited interpretability compared to rule-

based methods, making it challenging to understand the 

decision-making process. 

• The model’s performance in emergencies and its response 

ability are not fully proven in real-world scenarios due to 

the lack of depth information and reliance on virtual 

datasets. 

In summary, the research gap in driver models using deep learning lies in the need for 

models that can generalize to diverse driving scenarios, adapt in real-time, incorporate 

contextual information effectively, ensure interpretability and safety, and transfer effectively 

from simulation to real-world environments. Therefore, the focus of this study will be on 

addressing these gaps by developing a driver model that leverages deep learning techniques 

while considering these critical aspects. 

Another avenue involves training driver models through reinforcement learning in 

interactive simulator environments. However, while suitable for optimizing driving policies, 

this method may not effectively replicate human driver actions. Inverse reinforcement learning, 

although valuable in learning from human expert demonstrations, relies on the assumption that 

the learned reward function is optimal. Additionally, the use of simplified vehicle models in 

MPC may limit the accuracy of vehicle motion representation in simulators. Developing driver 

models for safety testing simulators differs from those for self-driving vehicles. While the 

former aims to reproduce human driver anomalies or errors, most models focus on perfect 

driving skills. There's a need of research on driver models combining both lateral and 

longitudinal vehicle control through end-to-end deep learning methods. 

It involves simulating diverse and realistic Malaysian road scenarios within a 3D 

environment to capture human driver actions. By incorporating an intricate vehicle model into 

imitation learning process, this approach aims to improve the precision of predicting vehicle 

responses. The goal is to generate commands for both lateral and longitudinal vehicle motions, 

effectively closing the disparity in replicating average human driving behaviour in developing 

countries. Such an approach is pivotal for rigorously testing autonomous vehicle safety systems. 
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2.13 Summary 

The literature review conducted in this chapter identifies key gaps in current driver 

modelling approaches and safety assessment frameworks for autonomous vehicles. While 

existing simulation-based validation methods provide a controlled environment for testing, 

they often fail to represent real-world driving conditions, especially in the context of 

developing countries like Malaysia. Most driver models have been developed based on western 

driving datasets, such as KITTI and nuScenes, which do not adequately capture heterogeneous 

traffic conditions, mixed road users, and unstructured driving patterns in developing regions. 

Furthermore, the integration of Operational Design Domain (ODD) frameworks in 

autonomous vehicle (AV) testing is still in its early stages. ISO 34502 provides a scenario-

based safety evaluation framework that outlines the process of identifying, designing, and 

validating test scenarios based on ODD attributes, such as road environment, weather, and 

dynamic objects. However, limited research has systematically integrated these standards into 

driver modelling frameworks. This study seeks to bridge this gap by incorporating ISO 34502 

and ISO 34503 to define a structured methodology for driver behaviour prediction under 

realistic ODD conditions. 

Existing driver models are generally categorized into rule-based approaches (e.g., 

Gipps’ car-following model, optimal control-based models) and data-driven deep learning 

models (e.g., CNN-LSTM architectures). Rule-based approaches perform well in structured 

environments, but they lack adaptability to complex traffic scenarios. On the other hand, deep 

learning-based models, while achieving high predictive accuracy, often suffer from limited 

interpretability and poor domain generalization. This study addresses these limitations by 

developing a hybrid CNN-LSTM driver model trained on real-world Malaysian driving data, 

ensuring greater generalizability across different traffic conditions. 

In addition, safety validation of driver models and AVs requires adherence to 

standardized ISO vehicle dynamics tests. ISO 3888-1 and ISO 3888-2 define double lane 

change manoeuvres, which are crucial for assessing a driver model’s response to sudden 

obstacle avoidance scenarios. Similarly, ISO 4138 evaluates steady-state circular driving to 

assess a vehicle's understeer and oversteer characteristics. However, few studies have 

integrated these tests into deep learning-based driver models. This research incorporates these 

ISO test standards into the driver prediction framework, ensuring comprehensive safety 

validation in both virtual and real-world environments. 

The scenario categorization methodology outlined in ISO 34504 introduces a 

systematic way to classify testing scenarios based on dynamic objects, environmental factors, 

and test objectives. This classification aligns with the risk-based safety assessment approach in 

ISO 26262 and ISO 21448, which focus on functional safety and safety of the intended 

functionality. By leveraging these standards, this study develops a structured test scenario 

framework, ensuring traceability and reproducibility of driver behavior evaluation under 

diverse driving conditions. 
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In conclusion, the present study addresses key gaps in driver model development and 

validation by: 

• Developing a driver-in-the-loop simulator that integrates VR and 6-DOF motion 

feedback for improved realism. 

• Proposing a hybrid CNN-LSTM driver model trained on real-world Malaysian traffic 

data, enhancing adaptability to local driving conditions. 

• Incorporating international standards such as ISO 34502, ISO 26262, and ISO 21448 

into the driver modelling framework, ensuring compliance with scenario-based safety 

evaluation methodologies. 

By integrating deep learning-based driver models with ODD-based scenario 

classification and ISO safety standards, this research establishes a novel framework for driver 

prediction and safety validation, contributing to the advancement of autonomous vehicle 

testing methodologies in developing countries. Based on the following literature review and 

research gaps, the methodology of this study has been designed and addressed in the following 

sections of this thesis.  
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Chapter 3: Development of Vehicle Dynamics Model 

3.1 Overview 

The chapter introduces the mathematical formulation of the 14 Degrees of Freedom 

(DOF) vehicle dynamics model, which comprises two primary modules: the 7 DOF ride model 

and the 7 DOF handling model. This model enables comprehensive examination of lateral, 

longitudinal, vertical, and rotational vehicle motions driven by specific driving inputs. The 

inclusion of the vehicle dynamics model is critical in this study as it plays an essential role in 

integrating with the driver model. This integration is necessary to produce accurate vehicle 

responses based on the driving inputs generated by the driver model. Therefore, ensuring the 

vehicle model accurately replicates real vehicle responses is crucial for benchmarking the 

driver model against ground truth data. 

This chapter is organized as follow: The first section provides an overview of the 

importance of development of vehicle dynamics model in this study. The next section presents 

the assumptions made during the process of modelling. In the third section, the modelling of 7 

DOF vehicle ride model followed by the modelling of Pacejka tire model in the fourth section. 

The fifth section presents the development of the 7 DOF vehicle handling model. Sixth section 

discussed about the longitudinal and lateral slip model. The seventh section shows the vehicle 

kinematics model. The model verification is included in the eighth section using IPG CarMaker. 

The last section discusses the summary and conclusion of this chapter. 

 

3.2 Modelling Assumptions 

Several assumptions were made while developing the vehicle model to balance the 

model’s fidelity with computational efficiency. Each assumption has been carefully chosen to 

capture the essential dynamics of the vehicle while ensuring that the simulation remains 

tractable for real-time analysis and integration with driver modelling frameworks. First, the 

vehicle chassis (sprung mass) is assumed to behave as a rigid body with 4 wheels (unsprung 

mass) attached to it at the corner. This assumption simplifies the dynamic equations by 

neglecting high-frequency flexible modes, which are not significant for the range of 

frequencies encountered in normal driving manoeuvres. The rigid body assumption is common 

in vehicle dynamics modelling because it permits the focus to be placed on the gross motion 

such as longitudinal, lateral, and yaw motions without the additional complexity of structural 

deformations [303], [308]. This level of abstraction is particularly justified when the primary 

objective is to assess driver behaviour and vehicle response under typical operating conditions 

rather than detailed structural analysis.   

Second, the model assumes a flat, planar road surface. Although real-world road 

profiles can vary significantly, this assumption is made to reduce the complexity of the model 

while still capturing the principal effects of tire-road interaction and vehicle dynamics. In 

controlled simulation environments, particularly when validating vehicle dynamics against 

standard test manoeuvres (e.g., double lane changes, step steer tests), a planar road is a 

reasonable approximation. Moreover, this assumption allows the focus to be placed on the 
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vehicle’s intrinsic dynamics without the confounding effects of road irregularities. This 

approach is supported by numerous studies in vehicle dynamics where the flat-road assumption 

has been used successfully to validate handling and braking performance under controlled 

conditions [309], [310]. 

Another critical assumption is that the mass and inertial properties of the vehicle are 

considered constant during the simulation. In practice, variations due to fuel consumption or 

load transfer during transient manoeuvres exist; however, these changes are generally small 

relative to the overall mass distribution and have a negligible effect on the dynamic response 

in the operating conditions of interest. The constancy of these properties is essential for 

ensuring that the derived equations remain linear (or quasi-linear) in the parameters of interest, 

which in turn simplifies both the formulation and the numerical solution of the dynamic 

equations. This assumption is standard in many full-vehicle models because it simplifies the 

computation and parameter identification process while still capturing the essential dynamics 

[311], [312]. 

The model further decouples the vehicle dynamics into two main subsystems—one for 

ride (vertical, pitch, and roll motions) and one for handling (longitudinal, lateral, and yaw 

motions). This decoupling is based on the observation that, under normal driving conditions, 

the interactions between ride and handling dynamics are relatively weak. By treating these 

subsystems separately, the model can be made more computationally efficient without a 

significant loss in accuracy. This method has been validated in several previous studies and is 

recognized as a pragmatic approach in comprehensive vehicle modelling [312], [313]. A 

further assumption involves the use of linear or quasi-linear approximations for the suspension 

system. While actual suspension behaviour can be highly nonlinear, assuming linear stiffness 

and damping characteristics over the operating range is often sufficient to capture the primary 

response of the system. This simplification reduces the number of parameters that need to be 

identified and calibrated, thereby streamlining the simulation process without a significant loss 

in accuracy for the targeted testing scenarios as corroborated by established texts [314]. 

Finally, the model assumes external disturbances, such as aerodynamic forces, are 

either negligible or can be incorporated into the formulation through simplified additive terms. 

For the speed range and operating conditions considered in this study, the aerodynamic effects 

are not the dominant factors influencing vehicle dynamics compared to tire forces, suspension 

responses, and load transfer phenomena. This assumption further simplifies the modelling 

process, allowing the focus to remain on the key dynamics that govern vehicle behaviour during 

the test scenarios relevant to autonomous vehicle safety assessment [310], [312]. 

 

3.3 Seven DOF Vehicle Ride Model 

In this section, the detail mathematical modelling of a 7 DOF vehicle ride model is 

presented. The 7 DOF model used considered the pitch, roll and vertical motion of the vehicle 

body, as well as the vertical displacement of the four unsprung masses as shown in Figure 3-1. 
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Figure 3-1: 7 degree of freedom vehicle riding model [315] 

Looking at Figure 3-1, from Newton second law, the equilibrium vertical force acting on the 

sprung mass is the summation of all the suspension forces (spring and damper forces) in the 

vertical direction and the vertical acceleration of the sprung mass can be obtained as shown in 

Equation (3.1) 

∑ 𝐹𝑏 = 𝑚𝑠𝑧�̈� 

𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟 = 𝑚𝑠𝑧�̈� 

𝑧�̈� =
𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟

𝑚𝑠

(3.1) 

Meanwhile, the pitch, 𝜃 and roll, ∅ motion of the sprung mass can be obtained as shown in 

equation 3.2 and 3.3 respectively. 

↺ ∑ 𝑀𝑝 = 𝐼𝑝�̈� 

−(𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟)𝑙𝑓 + (𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟)𝑙𝑟 = 𝐼𝑝�̈� 

�̈� =
−(𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟)𝑙𝑓 + (𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟)𝑙𝑟

𝐼𝑝

(3.2) 

↺ ∑ 𝑀𝑝 = 𝐼𝑟∅̈ 

0.5𝑤[(𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙) − (𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟)]  = 𝐼𝑟∅̈ 

∅̈ =
0.5𝑤[(𝐹𝑠𝑓𝑙 + 𝐹𝑑𝑓𝑙 + 𝐹𝑠𝑟𝑙 + 𝐹𝑑𝑟𝑙) − (𝐹𝑠𝑓𝑟 + 𝐹𝑑𝑓𝑟 + 𝐹𝑠𝑟𝑟 + 𝐹𝑑𝑟𝑟)]

𝐼𝑟

(3.3) 

where, 𝐹𝑠𝑓𝑙 is the suspension spring force at front left corner, 

𝐹𝑑𝑓𝑙 is the suspension damper force at front left corner, 

𝐹𝑠𝑓𝑟 is the suspension spring force at front right corner, 

𝐹𝑠𝑑𝑟 is the suspension damper force at front right corner, 
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𝐹𝑠𝑟𝑙 is the suspension spring force at rear left corner, 

𝐹𝑑𝑟𝑙 is the suspension damper force at rear left corner, 

𝐹𝑠𝑟𝑟 is the suspension spring force at rear right corner, 

𝐹𝑑𝑟𝑟 is the suspension damper force at rear right corner, 

𝑚𝑠 is the mass of the sprung mass, 

�̈�𝑠 is the acceleration of sprung mass at centre of gravity, 

𝐼𝑝 is the moment of inertia at pitch axis, 

𝐼𝑟 is the moment of inertia at roll axis, 

�̈� is the pitch acceleration at centre of gravity of sprung mass, 

∅̈is the roll acceleration at centre of gravity of sprung mass, 

𝑙𝑓 is the distance between the centre of gravity of sprung mass and the front wheels, 

𝑙𝑟is the distance between the centre of gravity of sprung mass and the rear wheels, 

𝑤 is the wheelbase of the vehicle. 

The 3 DOF of the vehicle ride model already derived in previous session, what is left is the 4 

DOF for suspension system at the four corners. The suspension system of the vehicle can be 

illustrated as a 2 DOF mass-spring damper system as shown in Figure 3-2. 

 

Figure 3-2: 2 degree of freedom suspension system of the vehicle model. 

The suspension spring and damper forces at the four corners can be obtained as shown in 

Equation 3.4. 

𝐹𝑠𝑓𝑙 = 𝐾𝑠,𝑓𝑙(𝑧𝑢,𝑓𝑙 − 𝑧𝑠,𝑓𝑙) 

𝐹𝑑𝑓𝑙 = 𝐶𝑠,𝑓𝑙(�̇�𝑢,𝑓𝑙 − �̇�𝑠,𝑓𝑙) 

𝐹𝑠𝑓𝑟 = 𝐾𝑠,𝑓𝑟(𝑧𝑢,𝑓𝑟 − 𝑧𝑠,𝑓𝑟) 

𝐹𝑑𝑓𝑟 = 𝐶𝑠,𝑓𝑟(�̇�𝑢,𝑓𝑟 − �̇�𝑠,𝑓𝑟) (3.4) 

𝐹𝑠𝑟𝑙 = 𝐾𝑠,𝑟𝑙(𝑧𝑢,𝑟𝑙 − 𝑧𝑠,𝑟𝑙) 

𝐾𝑠 𝐶𝑠 

𝐾𝑡 
𝑧𝑟 

𝑧𝑢 

𝑧𝑠 

𝑚𝑢 

𝑚𝑠 
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𝐹𝑑𝑟𝑙 = 𝐶𝑠,𝑟𝑙(�̇�𝑢,𝑟𝑙 − �̇�𝑠,𝑟𝑙) 

𝐹𝑠𝑟𝑟 = 𝐾𝑠,𝑟𝑟(𝑧𝑢,𝑟𝑟 − 𝑧𝑠,𝑟𝑟) 

𝐹𝑑𝑟𝑟 = 𝐶𝑠,𝑟𝑟(�̇�𝑢,𝑟𝑟 − �̇�𝑠,𝑟𝑟) 

where, 𝐾𝑠,𝑓𝑙  is the stiffness of the front left suspension spring, 

𝐾𝑠,𝑓𝑟 is the stiffness of the front right suspension spring, 

𝐾𝑠,𝑟𝑙  is the stiffness of the rear left suspension spring, 

𝐾𝑠,𝑟𝑟 is the stiffness of the rear right suspension spring, 

𝐶𝑠,𝑓𝑙  is the damping of the front left suspension, 

𝐶𝑠,𝑓𝑟 is the damping of the front right suspension, 

𝐶𝑠,𝑟𝑙  is the damping of the rear left suspension, 

𝐶𝑠,𝑟𝑟  is the damping of the rear right suspension, 

𝑧𝑢,𝑓𝑙  is the vertical displacement of the front left unsprung masses, 

𝑧𝑢,𝑓𝑟 is the vertical displacement of the front right unsprung masses, 

𝑧𝑢,𝑟𝑙  is the vertical displacement of the rear left unsprung masses, 

𝑧𝑢,𝑟𝑟  is the vertical displacement of the rear right unsprung masses, 

�̇�𝑢,𝑓𝑙  is the vertical velocity of the front left unsprung masses, 

�̇�𝑢,𝑓𝑟 is the vertical velocity of the front right unsprung masses, 

�̇�𝑢,𝑟𝑙  is the vertical velocity of the rear left unsprung masses, 

�̇�𝑢,𝑟𝑟  is the vertical velocity of the rear right unsprung masses. 

Next, the vertical displacement of the sprung mass at each corner can be described in the vertical 

displacement of sprung mass at centre of gravity and the angles of pitch and roll as shown in 

Figure 3-3. This motion can be formulated as shown in Equation (3.5). 

 
Figure 3-3 Displacement of the sprung mass during roll(a) and pitch(b) motion 

𝑧𝑠,𝑓𝑙     =   𝑧𝑠  −  𝑙𝑓  𝑠𝑖𝑛 𝜃 +  0.5𝑤 𝑠𝑖𝑛 ∅ 

𝑧𝑠,𝑓𝑟    =    𝑧𝑠  −  𝑙𝑓 sin 𝜃 −  0.5𝑤 sin ∅ (3.5) 

𝑧𝑠,𝑟𝑙     =   𝑧𝑠  +  𝑙𝑟 𝑠𝑖𝑛 𝜃 +  0.5𝑤 𝑠𝑖𝑛 ∅ 

𝑧𝑠,𝑟𝑟    =   𝑧𝑠  +  𝑙𝑟 𝑠𝑖𝑛 𝜃 −  0.5𝑤 𝑠𝑖𝑛 ∅ 
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Since the angles of pitch, 𝜃 and roll, ∅ are assumed to be very small as these motions were 

minimized by the vehicle’s suspension system, thus the Equation (3.5) can be simplified to 

Equation (3.6). 

 

𝑧𝑠,𝑓𝑙     =    𝑧𝑠  −  𝑙𝑓𝜃 +  0.5𝑤∅ 

𝑧𝑠,𝑓𝑟    =    𝑧𝑠  −  𝑙𝑓𝜃 −  0.5𝑤∅ (3.6) 

𝑧𝑠,𝑟𝑙     =    𝑧𝑠  +  𝑙𝑟𝜃 +  0.5𝑤∅ 

𝑧𝑠,𝑟𝑟    =    𝑧𝑠  +  𝑙𝑟𝜃 −  0.5𝑤∅ 

where, 𝑧
𝑠,𝑓𝑙 is the vertical displacement of front left sprung mass, 

𝑧
𝑠,𝑓𝑟

is the vertical displacement of front right sprung mass, 

𝑧
𝑠,𝑟𝑙 is the vertical displacement of rear left sprung mass, 

𝑧
𝑠,𝑟𝑟 is the vertical displacement of rear right sprung mass, 

�̇� is the pitch rate at centre of gravity of the sprung mass, 

∅̇ is the roll rate at centre of gravity of the sprung mass, 

𝑧𝑠 is the vertical displacement of the sprung mass at centre of gravity, 

�̇�𝑠 is the vertical velocity of the sprung mass at centre of gravity. 

 

The suspension spring forces, and damper forces can then be obtained by substituting 

Equation (3.4) into Equation (3.2). From the resulting equation, Equation (3.1) can be 

expressed as Equation (3.7) below: 

 

𝑚𝑠�̈�𝑠 = 𝐾𝑠,𝑓𝑙(𝑧𝑢,𝑓𝑙  −  𝑧𝑠  +  𝑙𝑓𝜃 −  0.5𝑤∅) +  𝐶𝑠𝑓𝑙(�̇�𝑢,𝑓𝑙  −  �̇�𝑠  +  𝑙𝑓�̇�  −  0.5𝑤∅̇)

+ 𝐾𝑠,𝑓𝑟(𝑧𝑢,𝑓𝑟  −  𝑧𝑠  +  𝑙𝑓𝜃 +  0.5𝑤∅) +  𝐶𝑠𝑓𝑟(�̇�𝑢,𝑓𝑟  −  �̇�𝑠  +  𝑙𝑓�̇�  +  0.5𝑤∅̇
 
)

+ 𝐾𝑠,𝑟𝑙 (𝑧𝑢,𝑟𝑙  −  𝑧𝑠  −  𝑙𝑟𝜃 −  0.5𝑤∅) +  𝐶𝑠𝑟𝑙 (�̇�𝑢,𝑟𝑙  −  �̇�𝑠  −  𝑙𝑟�̇�  −  0.5𝑤∅̇) 

                      + 𝐾𝑠,𝑟𝑟(𝑧𝑢,𝑟𝑟 −  𝑧𝑠  −  𝑙𝑟𝜃 +  0.5𝑤∅) + 𝐶𝑠𝑟𝑟(�̇�𝑢,𝑟𝑟  −  �̇�𝑠  −  𝑙𝑟�̇�  +  0.5𝑤∅̇) (3.7) 

 

Similarly, the pitch angle, 𝜃 and roll angle, ∅ from Equation (3.2) and Equation (3.3) of the 

sprung mass can be re-described as Equation (3.8) and Equation (3.8) respectively as shown 

below: 

 

𝐼𝑝�̈� =   − [𝐾𝑠,𝑓𝑙(𝑧𝑢,𝑓𝑙  − 𝑧𝑠  + 𝑙𝑓𝜃 − 0.5𝑤∅) + 𝐶𝑠,𝑓𝑙(�̇�𝑢,𝑓𝑙  − �̇�𝑠  + 𝑙𝑓�̇�  − 0.5𝑤∅̇)+ 

𝐾𝑠,𝑓𝑟(𝑧𝑢,𝑓𝑟 − 𝑧𝑠 + 𝑙𝑓𝜃 + 0.5𝑤∅) + 𝐶𝑠,𝑓𝑟(�̇�𝑢,𝑓𝑟 −�̇�𝑠+𝑙𝑓𝜃 ̇+0.5𝑤∅ ̇]𝑙𝑓+ 

[𝐾𝑠,𝑟𝑙 (𝑧𝑢,𝑟𝑙  − 𝑧𝑠  − 𝑙𝑟𝜃 − 0.5𝑤∅) + 𝐶𝑠,𝑟𝑙 (�̇�𝑢,𝑟𝑙  − �̇�𝑠  − 𝑙𝑟𝜃 ̇−0.5𝑤∅ ̇) + 
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𝐾𝑠,𝑟𝑟(𝑧𝑢,𝑟𝑟−𝑧𝑠−𝑙𝑟𝜃+0.5𝑤∅)+𝐶𝑠,𝑟𝑟(�̇�𝑢,𝑟𝑟−�̇�𝑠−𝑙𝑟𝜃 ̇+0.5𝑤∅̇)]𝑙𝑟                                (3.8) 

 

𝐼𝑟∅̈ =   0.5w [(𝐾𝑠,𝑓𝑙(𝑧𝑢,𝑓𝑙  − 𝑧𝑠  + 𝑙𝑓𝜃 − 0.5𝑤∅) + 𝐶𝑠,𝑓𝑙(�̇�𝑢,𝑓𝑙  − �̇�𝑠  + 𝑙𝑓�̇�  − 0.5𝑤∅̇ ) + 𝐾𝑠,𝑟𝑙 

(𝑧𝑢,𝑟𝑙 − 𝑧𝑠 − 𝑙𝑟𝜃 − 0.5𝑤∅) + 𝐶𝑠,𝑟𝑙 (�̇�𝑢,𝑟𝑙 − �̇�𝑠 − 𝑙𝑟𝜃 ̇ − 0.5𝑤∅̇ )) − (𝐾𝑠,𝑓𝑟(𝑧𝑢,𝑓𝑟 − 𝑧𝑠  + 

𝑙𝑓𝜃 + 0.5𝑤∅) + 𝐶𝑠,𝑓𝑟(�̇�𝑢,𝑓𝑟  − �̇�𝑠  + 𝑙𝑓�̇�  + 0.5𝑤∅̇ )  +𝐾𝑠,𝑟𝑟(𝑧𝑢,𝑟𝑟  − 𝑧𝑠  − 𝑙𝑟𝜃 + 0.5𝑤

∅) + 𝐶𝑠,𝑟𝑟(�̇�𝑢,𝑟𝑟  − �̇�𝑠  − 𝑙𝑟𝜃 ̇  + 0.5𝑤∅̇ )]             (3.9) 

The equation of motion of the unsprung masses at each corner can be described in the corresponding 

suspension spring force and damper force as shown in Equation (3.10) below: 

 

𝐹𝑡𝑓𝑙 − 𝐹𝑠𝑓𝑙 −  𝐹𝑑𝑓𝑙 = 𝑚𝑢,𝑓𝑙�̈�𝑢,𝑓𝑙 

𝐹𝑡𝑓𝑟 – 𝐹𝑠𝑓𝑟  –  𝐹𝑑𝑓𝑟 = 𝑚𝑢,𝑓𝑟�̈�𝑢,𝑓𝑟                  (3.10) 

𝐹𝑡𝑟𝑙 − 𝐹𝑠𝑟𝑙 − 𝐹𝑑𝑟𝑙 = 𝑚𝑢,𝑟𝑙�̈�𝑢,𝑟𝑙  

𝐹𝑡𝑟𝑟 − 𝐹𝑠𝑟𝑟 − 𝐹𝑑𝑟𝑟 = 𝑚𝑢,𝑟𝑟�̈�𝑢,𝑟𝑟 

 

where, 𝐹
𝑡𝑓𝑙

 is the tire forces acting at front left of sprung mass, 

𝐹
𝑡𝑓𝑟

is the tire forces acting at front right of sprung mass, 

𝐹
𝑡𝑟𝑙

 is the tire forces acting at rear left of sprung mass, 

𝐹
𝑡𝑟𝑟

is the tire forces acting at rear right of sprung mass, 

�̈�
𝑢,𝑓𝑙 is the acceleration of the Front left unsprung masses, 

�̈�
𝑢,𝑓𝑟 is the acceleration of the Front right unsprung masses, 

�̈�
𝑢,𝑟𝑙 is the acceleration of the Rear right unsprung masses, 

�̈�
𝑢,𝑟𝑟

 is the acceleration of the Rear right unsprung masses. 

By substituting Equation (3.8) and Equation (3.9) into Equation (3.10), the summation of 

vertical forces at each corner of the sprung mass can be obtained as Equation (3.11) below: 

 

𝑚𝑢,𝑓𝑙𝑧 ̈𝑢𝑓𝑙  =  𝐾𝑡,𝑓𝑙(𝑧𝑟,𝑓𝑙 − 𝑧𝑢,𝑓𝑙) − 𝐾𝑠,𝑓𝑙(𝑧𝑢,𝑓𝑙 − 𝑧𝑠 + 𝑙𝑓𝜃 − 0.5𝑤∅) − 

𝐶𝑠,𝑓𝑙(�̇�𝑢,𝑓𝑙  − �̇�𝑠  + 𝑙𝑓𝜃 ̇  − 0.5𝑤∅ ̇ ) 

𝑚𝑢,𝑓𝑟𝑧 ̈𝑢𝑓𝑟  = 𝐾𝑡,𝑓𝑟(𝑧𝑟,𝑓𝑟 − 𝑧𝑢,𝑓𝑟) − 𝐾𝑠,𝑓𝑟(𝑧𝑢,𝑓𝑟 − 𝑧𝑠  + 𝑙𝑓𝜃 + 0.5𝑤∅) −                                        (3.11) 

𝐶𝑠,𝑓𝑟(�̇�𝑢,𝑓𝑟  − �̇�𝑠  + 𝑙𝑓𝜃 ̇  + 0.5𝑤∅ ̇ 

𝑚𝑢,𝑟𝑙𝑧 ̈𝑢𝑟𝑙  =  𝐾𝑡,𝑟𝑙(𝑧𝑟,𝑟𝑙 − 𝑧𝑢,𝑟𝑙) − 𝐾𝑠,𝑟𝑙(𝑧𝑢,𝑟𝑙 − 𝑧𝑠 − 𝑙𝑟𝜃 − 0.5𝑤∅)  − 

𝐶𝑠,𝑟𝑙(�̇�𝑢,𝑟𝑙  − �̇�𝑠  − 𝑙𝑟𝜃 ̇  − 0.5𝑤∅ ̇ 

𝑚𝑢,𝑟𝑟𝑧 ̈𝑢𝑟𝑟=   𝐾𝑡,𝑟𝑟(𝑧𝑟,𝑟𝑟 − 𝑧𝑢,𝑟𝑟) − 𝐾𝑠,𝑟𝑟(𝑧𝑢,𝑟𝑟 − 𝑧𝑠  − 𝑙𝑟𝜃 + 0.5𝑤∅) − 

𝐶𝑠,𝑟𝑟(�̇�𝑢,𝑟𝑟  − �̇�𝑠  − 𝑙𝑟𝜃 ̇  + 0.5𝑤∅ ̇ 

Finally, the equation of the normal force, 𝐹𝑧 acting on the tires can be derived from Equation 

(3.4) as Equation (3.12) which can then be used for the development of tire model. 
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𝐹𝑧,𝑓𝑙     =  
𝑚𝑠𝑔𝑙𝑟

2(𝑙𝑟  +  𝑙𝑓) +  𝑚𝑢,𝑓𝑙𝑔 +  𝐹𝑠,𝑓𝑙   +  𝐹𝑑,𝑓𝑙
⁄  

𝐹𝑧,𝑓𝑟    =  
𝑚𝑠𝑔𝑙𝑟

2(𝑙𝑟  +  𝑙𝑓) +  𝑚𝑢,𝑓𝑟𝑔 +  𝐹𝑠,𝑓𝑟   +  𝐹𝑑,𝑓𝑟
⁄  

𝐹𝑧,𝑟𝑙       =   
𝑚𝑠𝑔𝑙𝑓  

2(𝑙𝑟   +  𝑙𝑓) +  𝑚𝑢,𝑟𝑙𝑔 +  𝐹𝑠,𝑟𝑙     +  𝐹𝑑,𝑟𝑙  
⁄                             (3.12) 

𝐹𝑧,𝑟𝑟      =  
𝑚𝑠𝑔𝑙𝑓

2(𝑙𝑟   +  𝑙𝑓) +  𝑚𝑢,𝑟𝑟𝑔 +  𝐹𝑠,𝑟𝑟   +  𝐹𝑑,𝑟𝑟
⁄  

 

where, 𝐹𝑧,𝑓𝑙   is the normal force acting on the Front left tire, 

𝐹𝑧,𝑓𝑟  is the normal force acting on the Front right tire, 

𝐹𝑧,𝑟𝑙   is the normal force acting on the Rear left tire, 

𝐹𝑧,𝑟𝑟   is the normal force acting on the Rear right tire, 

𝑚𝑢,𝑓𝑙 is the mass of the Front left unsprung mass, 

𝑚𝑢,𝑓𝑟 is the mass of the Front right unsprung mass, 

𝑚𝑢,𝑟𝑙  is the mass of the Rear left unsprung mass, 

𝑚𝑢,𝑟𝑟  is the mass of the Rear right unsprung mass, 

𝑔 is the Gravitational force, 9.81 𝑚𝑠−2. 

 

3.4 Pacejka Tire Model 

 An accurate tire model is an essential part of a vehicle model to simulate the 

longitudinal force, lateral force and aligning moment acting on the tires. A good choice of tire 

model that can provide a good accuracy in estimating the longitudinal and lateral dynamics is 

the Pacejka Tire Model or also known as the “Magic” formula [303]. This choice is 

underpinned by the extensive empirical validation and industry acceptance of the Magic 

Formula, which effectively captures the nonlinear relationship between tire slip and generated 

forces. Alternative models, such as the Brush Model or the Fiala Model, provide simplified 

representations of tire behaviour that tend to be inadequate for capturing the full nonlinear 

response, especially under extreme conditions such as emergency manoeuvres. While more 

advanced methods—such as neural network-based tire models or finite element-based 

approaches—could potentially offer higher fidelity, these methods require considerably more 

computational resources and complex parameter identification processes. Therefore, the 

Pacejka Magic Formula presents the best compromise between accuracy and computational 

efficiency, ensuring that tire forces are modelled with sufficient realism for the purposes of 

safety testing and driver behaviour prediction. The general force or moment equations for the 

tire model are given in Equation (3.13), Equation (3.14) and Equation (3.15) below. 

 

𝑦(𝑥) = 𝐷 sin[𝐶 tan−1(𝐵𝑥 − 𝐸(𝐵𝑥 − tan−1(𝐵𝑥)))] (3.13) 

𝑌(𝑋) = 𝑦(𝑥) + 𝑆𝑣 (3.14) 

𝑥 = 𝑋 + 𝑆ℎ (3.15) 

 

where, 𝐵 is the stiffness factor, 

 𝐶 is the shape factor, 
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 𝐷 is the peak value, 

 𝐸 is the curvature factor, 

 𝑆𝑣 is the vertical shift, 

 𝑆ℎ is the horizontal shift, 

𝑋 is either slip angle or longitudinal slip depending on the usage of the equations. 

 

X will denote the slip angle, 𝛼  when the equations are used for lateral force and aligning 

moment. Meanwhile, X will also denote the longitudinal slip, 𝜅 when the equations are used 

for longitudinal force and brake force. 𝐵, 𝐶, 𝐷 and 𝐸 are parameter dependent coefficients 

which varies according to the types of surfaces and the normal force of the tires, 𝐹𝑧 . The 

equations for the coefficients are given in Equation (3.16), Equation (3.17) and Equation (3.18) 

below: 

 

𝐷 = 𝑎1𝐹𝑧
2 + 𝑎2𝐹𝑍 (3.16) 

𝐵 ∙ 𝐶 ∙ 𝐷 =
𝑎3𝐹𝑧

2 + 𝑎4𝐹𝑍

𝑒𝑎5𝐹𝑧
(3.17) 

𝐸 = 𝑎6𝐹𝑧
2 + 𝑎7𝐹𝑍 + 𝑎8 (3.18) 

The vertical shift and horizontal shift are affected by the camber angle, 𝛾𝑐, with equations as 

shown in Equation (3.19) and Equation (3.20) below:  

 

𝑆ℎ = 𝑎9𝛾𝑐 (3.19) 

𝑆𝑣 = (𝑎10𝐹𝑧
2 + 𝑎11𝐹𝑧)𝛾𝑐 (3.20) 

 

Meanwhile, the value of the shape factor 𝐶 is given as below: 

𝐶 = 1.30 for lateral force, 𝐹𝑦, 

𝐶 = 1.65 for longitudinal force, 𝐹𝑥, 

𝐶 = 2.40 for aligning moment, 𝑀𝑍. 

 

Finally, the coefficients used for 𝑎1 to 𝑎11 are given in [303] as shown in Table 3-1 below: 

 

Table 3-1 Values of Coefficients 𝑎1to 𝑎11 for Pacejka Tire Model 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 

𝐹𝑥 -21.3 1144 49.6 226 0.069 -0.006 0.056 0.486 - - - 

𝐹𝑦 -22.1 1011 1078 1.82 0.208 0.000 -0.354 0.707 0.028 0.000 14.8 

𝑀𝑧 -2.72 -2.28 -1.86 -2.73 0.110 -0.070 0.643 -4.04 0.015 -0.066 0.945 

 

3.5 Seven DOF Vehicle Handling Model 

The 7 DOF vehicle handling model composed of 3 DOF representing the lateral, 

longitudinal and yaw motion of the vehicle sprung mass, and 1 DOF representing the rolling 

motion for each wheel which make up to the remaining 4 DOF. The 7 DOF vehicle handling 

model is illustrated as shown in Figure 3-4.  
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Figure 3-4: 7 degree of freedom handling model [316] 

Based on Figure 3-4, an equation that defines the total longitudinal forces of the vehicle model 

can be obtained as in Equation (3.21) and Equation (3.22): 

 

∑ 𝐹𝑥 = 𝑚𝑠𝑣�̇�  

= 𝐹𝑥,𝑟𝑟 + 𝐹𝑥,𝑟𝑙 − (𝐹𝑦,𝑓𝑟 + 𝐹𝑦,𝑓𝑙) sin 𝛿𝑓 + (𝐹𝑥,𝑓𝑟 + 𝐹𝑥,𝑓𝑙) cos 𝛿𝑓 + (𝑚𝑠𝑔 sin 𝜃𝑟) − ∑ 𝐹𝑑(𝑣𝑥) (3.21) 

 

∑ 𝐹𝑑(𝑣𝑥) = 𝐹𝑎 + 𝐹𝑟 = 0.5𝜌𝐴𝐶𝑑𝑣𝑥
2 + 𝑚𝑠𝑔𝐶𝑟𝑣𝑥 (3.22) 

Whereas the lateral forces of the vehicle model can be obtained as Equation (3.23) below: 

 

∑ 𝐹𝑦 = 𝑚𝑠𝑣�̇� 

= 𝐹𝑦,𝑟𝑟 + 𝐹𝑦,𝑟𝑙 + (𝐹𝑦,𝑓𝑟 + 𝐹𝑦,𝑓𝑙) cos 𝛿𝑓 + (𝐹𝑥,𝑓𝑟 + 𝐹𝑥,𝑓𝑙) sin 𝛿𝑓 (3.23) 

 

The self-aligning moment, 𝑀𝑍 about the z-axis can be obtained as Equation (3.24) below. The 

moment, 𝑀𝑍 is assumed to have the same direction with yaw motion, 𝜑. 

 

∑ 𝑀𝑦 = 𝐼𝑠�̈� 

= [𝐹𝑥,𝑟𝑟 − 𝐹𝑥,𝑟𝑙 − (𝐹𝑦,𝑓𝑟 − 𝐹𝑦,𝑓𝑙) sin 𝛿𝑓 + (𝐹𝑥,𝑓𝑟 − 𝐹𝑥,𝑓𝑙) cos 𝛿𝑓]𝑤 2⁄ −

[𝐹𝑦,𝑟𝑟 + 𝐹𝑦,𝑟𝑙]𝑙𝑟 + [(𝐹𝑦,𝑓𝑟 + 𝐹𝑦,𝑓𝑙) cos 𝛿𝑓 + (𝐹𝑥,𝑓𝑟 + 𝐹𝑥,𝑓𝑙) sin 𝛿𝑓]𝑙𝑓 +

[𝑀𝑧,𝑓𝑙 + 𝑀𝑧,𝑓𝑟 + 𝑀𝑍,𝑟𝑙 + 𝑀𝑧,𝑟𝑟] (3.24)

 

 

where, 𝐹𝑎 is aerodynamic force, 

 𝐹𝑟 is rolling resistance force, 

 𝜃𝑟 is the gradient of the road, 

 𝐶𝑑 is the coefficient of the aerodynamic, 

 𝐶𝑟 is the coefficient of rolling resistance of tire, 

 𝐹𝑥,𝑓𝑙 is the front left tire’s longitudinal forces, 

 𝐹𝑥,𝑓𝑟 is the front right tire’s longitudinal forces, 

 𝐹𝑥,𝑟𝑙 is the rear left tire’s longitudinal forces, 

𝐹𝑥,𝑟𝑟 is the rear right tire’s longitudinal forces, 
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𝐹𝑦,𝑓𝑙 is the front left tire’s lateral forces, 

𝐹𝑦,𝑓𝑟 is the front right tire’s lateral forces, 

𝐹𝑦,𝑟𝑙 is the rear left tire’s lateral forces, 

𝐹𝑦,𝑟𝑟 is the rear right tire’s lateral forces, 

𝑀𝑧,𝑓𝑙 is the front left tire’s moment, 

𝑀𝑧,𝑓𝑟 is the front right tire’s moment, 

𝑀𝑧,𝑟𝑙 is the rear left tire’s moment, 

𝑀𝑧,𝑟𝑟 is the rear right tire’s moment, 

𝛿𝑓 is the wheel steer angle in degree. 

 

The inertial acceleration in longitudinal, 𝑎𝑥  and lateral, 𝑎𝑦  direction is defined by the 

acceleration in lateral, 𝑣𝑦 and longitudinal, 𝑣𝑥 directions and centripetal acceleration in lateral 

𝑣𝑦�̇� and longitudinal 𝑣𝑥�̇� directions. Equation (3.25) represent the acceleration in longitudinal 

and lateral directions. 

 
𝑣�̇� = 𝑎𝑥 + 𝑣𝑦�̇�  
𝑣�̇� = 𝑎𝑦 + 𝑣𝑥�̇� (3.25) 

 

With the acceleration equations, the longitudinal and lateral velocities 𝑣𝑥  and 𝑣𝑦  can be 

obtained by simply performing integration to Equation (3.25). From Figure 3-5, it can be 

observed that the roll motion of the vehicle body is affected by the lateral acceleration, 𝑎𝑦 

obtained from Equation (3.25). To calculate the roll motion of the vehicle body, the centre of 

roll motion with a roll angle, 𝜙 is assumed at a position defined by a height of ℎ𝑟𝑐 from the 

ground and is below the center of gravity of the vehicle body. With this assumption, the roll 

motion of the vehicle body during lateral acceleration can be calculated with the summation of 

moment acting at the x-axis of the centre of roll motion as shown in equation below. 

 

(𝐼𝑟 + 𝑚𝑠(ℎ − ℎ𝑟𝑐)2)�̈� = 𝑚𝑠𝑎𝑦(ℎ − ℎ𝑟𝑐) cos 𝜙 + 𝑚𝑠𝑔(ℎ − ℎ𝑟𝑐) sin 𝜙 − 𝑘𝜙𝜙 − 𝛽𝜙�̇� (3.26) 

  

 
Figure 3-5: Roll motion due to lateral acceleration of the vehicle [2] 

Similarly, the pitch motion of the vehicle body is affected by the longitudinal acceleration 

during acceleration or braking of the vehicle. The centre of the pitch motion is assumed below 

the centre of gravity of the vehicle body as shown in Figure 3-6.  
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Figure 3-6: Pitch motion due to longitudinal acceleration of the vehicle [317] 

The pitch motion can be formulated as the summation of moment acting at the y-axis of the 

centre of pitch motion as shown in equation below. 

 

(𝐼𝑝 + 𝑚𝑠(ℎ − ℎ𝑝𝑐)
2

) �̈� = 𝑚𝑠𝑎𝑥(ℎ − ℎ𝑝𝑐) + 𝑚𝑠𝑔(ℎ − ℎ𝑝𝑐) sin 𝜃 − 𝑘𝜃𝜃 − 𝛽𝜃�̇� (3.28) 

 

The remaining four degrees of freedom (DOF) in the 7 DOF handling model refer to the 

rotational motion of the vehicle's four wheels. This motion is described by the wheel’s angular 

velocity, 𝜔. A wheel’s dynamic motion is illustrated as shown in Figure 3-7 below: 

 
Figure 3-7: Motion acting on the wheel [2] 

The equation of motion of the wheel is a summation of torque including the throttle torque, 𝑇𝑡, 

brake torque, 𝑇𝑏 , viscous friction torque, 𝑇𝑑  and rotational motion of the wheel. Since the 

vehicle is front wheel drive, the throttle torque, 𝑇𝑡  is assumed to be zero. The equation of 

motion of a wheel can be obtained as shown in Equation (3.28). 

𝐼𝑤𝑤𝑓𝑟̇ = 𝑇𝑡,𝑓𝑙 = 𝑇𝑡,𝑓𝑙 + 𝑇𝑑,𝑓𝑙 − 𝑇𝑏,𝑓𝑙 + [𝐹𝑥,𝑓𝑙 × 𝑅𝑤] 

𝐼𝑤𝑤𝑓𝑟̇ = 𝑇𝑡,𝑓𝑟 = 𝑇𝑡,𝑓𝑟 + 𝑇𝑑,𝑓𝑟 − 𝑇𝑏,𝑓𝑟 + [𝐹𝑥,𝑓𝑟 × 𝑅𝑤] 

𝐼𝑤𝑤𝑟𝑙̇ = 𝑇𝑡,𝑟𝑙 = 𝑇𝑡,𝑟𝑙 + 𝑇𝑑,𝑟𝑙 − 𝑇𝑏𝑟𝑙 + [𝐹𝑥,𝑟𝑙 × 𝑅𝑤] (3.28) 

𝐼𝑤𝑤𝑓𝑙̇ = 𝑇𝑡,𝑟𝑟 = 𝑇𝑡,𝑟𝑟 + 𝑇𝑑,𝑟𝑟 − 𝑇𝑏,𝑟𝑟 + [𝐹𝑥, 𝑟𝑟 × 𝑅𝑤] 

 

Where, the viscous friction torque, 𝑇𝑑 can be written as Equation (3.29) below: 

𝑇𝑑,𝑓𝑙 = 𝜔𝑓𝑙 × 𝐶𝑓,𝑓 

𝑇𝑑,𝑓𝑟 = 𝜔𝑓𝑟 × 𝐶𝑓,𝑓 

𝑇𝑑,𝑟𝑙 = 𝜔𝑟𝑙 × 𝐶𝑓,𝑟 (3.29) 

𝑇𝑑,𝑟𝑟 = 𝜔𝑟𝑟 × 𝐶𝑓,𝑟 

Where, 𝐶𝑓,𝑓 is the viscous friction coefficient of front wheels, 

 𝐶𝑓,𝑟 is the viscous friction coefficient of rear wheels. 
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3.6 Longitudinal and Lateral Slip Model 

 In previous section, the accelerations and velocities in longitudinal and lateral 

directions are obtained. So, in this section, the equations that define the longitudinal and lateral 

slip of the tires are obtained. First, the vehicle body side slip angle, 𝛽  can be defined as 

Equation (3.30) below: 

𝛽 = tan−1
∫ 𝑎𝑦

∞

0

∫ 𝑎𝑥
∞

0

(3.30) 

The lateral slip angle at the front, 𝛼𝑓 and rear tires, 𝛼𝑟 can be obtained as Equation (3.31). 

𝛼𝑓 = tan−1 (
𝑣𝑦 + 𝑙𝑓�̇�

𝑣𝑥

) − 𝛿𝑓 

𝛼𝑟 = tan−1 (
𝑣𝑦 + 𝑙𝑟�̇�

𝑣𝑥

) (3.31) 

The difference between the equation of the front and rear tires is because the steering angle for 

the rear wheels are always zero, where 𝛿𝑟 = 0. Meanwhile, the longitudinal slip at the front, 

𝜆𝑓 and rear, 𝜆𝑟 can be calculated using the equations below. 

𝜆𝑓 = 𝑣𝑤𝑥𝑓 − 𝜔𝑓𝑅𝑤 𝑣𝑤𝑥𝑓⁄  

𝜆𝑟 = 𝑣𝑤𝑥𝑟 − 𝜔𝑟𝑅𝑤 𝑣𝑤𝑥𝑟⁄ (3.32)  

The longitudinal slip under braking condition is used in this model due to the assumption of 

positive pitch motion during braking condition. The longitudinal velocities of the front and rear 

tires, 𝑣𝑤𝑥𝑓 and 𝑣𝑤𝑥𝑟 that are required in Equation (3.32) are given by the following equations. 

𝑣𝑤𝑥𝑓 = [√(𝑣𝑦 + 𝑙𝑓𝑟)
2

+ 𝑣𝑥
2] cos 𝛼𝑓 

𝑣𝑤𝑥𝑟 = [√(𝑣𝑦 + 𝑙𝑟𝑟)
2

+ 𝑣𝑥
2] cos 𝛼𝑟 (3.33) 

 

3.7 Vehicle Kinematics Model 

 The velocities obtained in the vehicle handling model are in local coordinate. In order 

to control the trajectory of the simulated vehicle, the local coordinate need to be resolved into 

the global coordinate. The global coordinate, 𝑋 and 𝑌 of the vehicle in global frame can be 

obtained by using Equation (3.34) below. 

𝑋 = ∫ (𝑉𝑥 cos 𝜑 − 𝑉𝑦 sin 𝜑)𝑑𝑡
𝑋0

0

 

𝑌 = ∫ (𝑉𝑥 sin 𝜑 + 𝑉𝑦 cos 𝜑)𝑑𝑡
𝑋0

0

(3.34) 

 

3.8 Verification of the Vehicle Model 

The mathematical model derived in the previous sections is developed in MATLAB’s 

Simulink platform. Figure 3-8 shows the block diagram of the vehicle model developed. 
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Figure 3-8: 14 degree of freedom vehicle dynamics Simulink model 

In order to validate the vehicle model developed, IPG CarMaker is used to develop simulation 

test cases by providing inputs for the vehicles and measure the outputs in terms of vehicle 

lateral and longitudinal behaviours. Then, the same control inputs from IPG CarMaker are 

provided to the vehicle model in Simulink and the outputs of the vehicle model are verified 

with IPG CarMaker responses. The simulation used the ode4 Runge-Kutta solver with a fixed 

step time of 0.001s to balance the numerical stability and computational cost. Besides, vehicle 

dynamics models that incorporate high-frequency phenomena—such as tire-road interactions 

modelled by Pacejka’s Magic Formula and rapid transient responses from braking or steering 

inputs—often require a sufficiently small time step to capture these dynamics without 

introducing numerical instability or excessive discretization error [303]. The parameters of the 

vehicle model are provided in Table 3-2 below: 

Table 3-2: Simulated vehicle's parameters 

Parameters Abbreviation Value Unit 

Moment of inertia of front and rear wheel 𝐼𝑤 15 𝑘𝑔𝑚2 

Sprung mass 𝑚𝑠 1463 𝑘𝑔 

Unsprung mass 𝑚𝑢,𝑓𝑙, 𝑚𝑢,𝑓𝑟, 𝑚𝑢,𝑟𝑙, 𝑚𝑢,𝑟𝑟 25 𝑘𝑔 

Height of centre of gravity ℎ 0.567 𝑚 

Tire radius 𝑅𝑤 0.318 𝑘𝑔 

Front length from centre of gravity 𝑙𝑓 1.240 𝑚 

Rear length from centre of gravity 𝑙𝑟 1.712 𝑚 

Frontal area 𝐴 1.5 𝑚2 

Wheelbase width 𝑤 1.092 𝑚 

Moment of inertia at pitch axis 𝐼𝑥 1.8745 × 103 𝑘𝑔𝑚2 

Moment of inertia at roll axis 𝐼𝑦 584.097 𝑘𝑔𝑚2 

Moment of inertia at yaw axis 𝐼𝑧 2058 𝑘𝑔𝑚2 

Spring stiffness of tire 𝐾𝑡,𝑓𝑙, 𝐾𝑡,𝑓𝑟, 𝐾𝑡,𝑟𝑙, 𝐾𝑡,𝑟𝑟 350000 𝑁/𝑚 

Spring stiffness of suspension 𝐾𝑠,𝑓𝑙, 𝐾𝑠,𝑓𝑟, 𝐾𝑠,𝑟𝑙, 𝐾𝑠,𝑟𝑟 35000 𝑁/𝑚 

damper stiffness of suspension 𝐶𝑠,𝑓𝑙, 𝐶𝑠,𝑓𝑟, 𝐶𝑠,𝑟𝑙, 𝐶𝑠,𝑟𝑟 3000 𝑁𝑚𝑠−1 
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3.8.1  Verification of Vehicle Ride Behaviour 

First, the ride model developed is validated using a test track developed in IPG 

CarMaker. This test is used to evaluate the suspension performance and effects of the road 

profile on the vehicle dynamics. The test track is a straight track with total driving distance of 

70m and consists of 3 bumps along the road separated by 15m. The three bumps have height 

of 0.02 m, 0.05 m and 0.1 m respectively. During the test, the vehicle is set to maintain a 

constant speed of 10 km/h, 40 km/h and 60 km/h to evaluate vehicle dynamics across a 

representative range of operating conditions. These specific speeds are chosen to encompass 

low-speed, moderate-speed, and higher-speed scenarios, each of which presents distinct 

dynamic behaviours and challenges. 

• Low-Speed (10 km/h): At this speed, the vehicle operates under conditions where 

inertial forces are minimal, and the dynamics are influenced by factors such as steering 

input and tire compliance. Simulating at 10 km/h allows for the assessment of vehicle 

control and stability during manoeuvres such as parking or navigating tight spaces. 

• Moderate-Speed (40 km/h): This speed represents typical urban driving conditions. 

Evaluating vehicle dynamics at 40 km/h provides insights into handling characteristics 

during common city driving scenarios, including lane changes and gradual turns. 

Studies have utilized similar speeds to assess driving behaviour and vehicle response 

in urban settings [318]. 

• High-Speed (60 km/h): Operating at 60 km/h introduces more obvious inertial effects, 

making it suitable for assessing vehicle stability and control during manoeuvres. 

Research indicates that vehicle dynamics can change significantly at speeds above 

60 km/h, affecting factors such as ride comfort and steering stability [319]. 

By selecting these speeds, the simulation aims to comprehensively evaluate vehicle 

performance across a spectrum of realistic driving conditions, ensuring that the model 

accurately captures the nuances of vehicle dynamics pertinent to each speed range. Figure 

below shows the test track developed in the IPG CarMaker. 

 
Figure 3-9: Ride model test track developed in IPG CarMaker 

Two road sensors were attached to the wheels of the vehicle, one of the sensors at the 

front wheel and another sensor at the rear wheel to record the road profile data experience by 

the vehicle’s front and rear wheels. The configuration of the road sensors is as shown in Figure 

3-10 below. The two green dots on the vehicle are the position of the road sensors located. The 

Road 

bumps 

Ego 

vehicle 
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preview distance is set to 0.0m and the “Consider bumps” option is checked so that the sensor 

will capture the height of the bumps at the position of the front and rear wheel.  

 
Figure 3-10: Configuration of road sensors in IPG CarMaker 

The road profile data captured using road sensors attached to the front and rear wheels is plotted 

using MATLAB as shown in Figure 3-11 below. 

 
Figure 3-11: Road profile captured from IPG CarMaker 

By providing the above road profile data to the vehicle model in Simulink, the normal 

forces acting on the sprung mass for vehicle test speed of 10 km/h can be obtained as show in 

Figure 3-12 below. 

 
(a) 𝐹𝑧𝑓𝑙 against time     (b) 𝐹𝑧𝑓𝑟 against time 
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(c) 𝐹𝑧𝑟𝑙 against time     (d) 𝐹𝑧𝑟𝑟 against time 

Figure 3-12: Riding model test result at 10 km/h  

The output obtained from the vehicle ride model in the Simulink is compared with the 

simulated normal force, 𝐹𝑧 data from the IPG Carmaker. As observed from Figure above, the 

result from the Simulink ride model developed closely follow the trend of the simulated data 

from the IPG CarMaker with minor deviation. By using data analysis method, Root Mean 

Square (RMS) as shown in Equation (3.35), the percentage of error between the Simulink 

model developed and the simulation data from IPG CarMaker can be calculated as shown in 

Table 3-3. 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟, 𝑅𝑀𝑆𝐸 = √∑
(𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑂𝑢𝑡𝑝𝑢𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑡))

2

𝑁

𝑁

𝑡=1

(3.35) 

Table 3-3: Percentage of RMS error for riding model test 

Observation data Root Mean Square (RMS) at 10 km/h Percentage of error (%) 

IPG CarMaker Simulink 

𝐹𝑧𝑓𝑙 4702 N 4416 N 6.089 

𝐹𝑧𝑓𝑟 4545 N 4416 N 2.845 

𝐹𝑧𝑟𝑙 3288 N 3297 N 0.2551 

𝐹𝑧𝑟𝑟 3138 N 3297 N 5.051 

 

Based on the table above, the Root Mean Square Error (RMSE) values show that the data 

obtained is within acceptable range which is less than 15% with the highest only up to 6.089% 

[320]. This indicates that the Simulink vehicle ride model developed is able to reproduce the 

desired output from the IPG CarMaker with minor error only. This minor error is occurred due 

to the difference between the vehicle parameter used in the Simulink model and the IPG 

CarMaker where in the Simulink model, constant values are used for the parameters such as 

suspension spring constants,𝐾𝑠 and damping constants, 𝐶𝑠; while in the IPG CarMaker, the 

suspension’s constants are defined using a look-up table as shown in Figure 3-13 below. 

Therefore, due to the relationship between the damping force and the velocity is non-linear in 

the IPG CarMaker, this causes the slight error in the values obtained. 
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Figure 3-13: Damping parameters used in IPG CarMaker 

The 7 DoF riding model is further tested at target speed of 40 km/h and 60 km/h 

according to SAE recommended speed for testing[321]. Figure 3-14 and Figure 3-15 show the 

response obtained from the Simulink model. It can be observed that the model is able to achieve 

response similar to the response from the IPG CarMaker even at these higher vehicle speeds. 

The verification tests show the percentage of RMS error for normal force acting at the front-

left, front-right, rear-left and rear-right tires are less than 15%. For vehicle speed of 40 km/h, 

the RMS value for front-left, front-right, rear-left and rear-right normal force responses 

obtained from Simulink are 4478 N, 4478 N, 3427 N and 3427 N, respectively. Whereas the 

RMS value of the responses obtained from the IPG CarMaker are 4448 N, 4289 N, 3549 N and 

3381 N respectively. Based on the result, the percentage of RMSE can be calculated as 

0.6369%, 4.388%, 3.423% and 1.369%, respectively. Besides, during the vehicle speed of 60 

km/h, the RMS values for response obtained from Simulink model are 4479 N, 4479 N, 3429 

N and 3429 N, respectively. On the other hand, the RMS value calculated from response from 

IPG CarMaker vehicle model are 4460 N, 4299 N, 3583 N and 3395 N, respectively. Hence, 

the percentage of RMSE can be identified as 0.42%, 4.184%, 3.75% and 0.9989%, 

respectively. It can also be observed from Table 3-4 that the percentage of RMS error for 

normal force acting at each wheel is less at higher speed is less than that at lower speed in the 

previous verification test. This is because at higher speed the value of spring and damping 

coefficients of the IPG CarMaker model are closer to the coefficients in the Simulink model, 

hence the model is able to obtain a better result. Therefore, from these verification test, it can 

be observed that the vehicle riding model developed can be used as a plant model for analysis 

of driver model, which will be discussed in the next chapter. 

 
(a) 𝐹𝑧𝑓𝑙 against time     (b) 𝐹𝑧𝑓𝑟 against time 
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(c) 𝐹𝑧𝑟𝑙 against time      (d) 𝐹𝑧𝑟𝑟 against time 

Figure 3-14: Riding model test result at 40 km/h 

 
(a) 𝐹𝑧𝑓𝑙 against time     (b) 𝐹𝑧𝑓𝑟 against time 

 
(c) 𝐹𝑧𝑟𝑙 against time     (d) 𝐹𝑧𝑟𝑟 against time 

Figure 3-15: Riding model test result at 60 km/h 

Table 3-4: Percentage of RMS error for riding model test at 40 km/h and 60 km/h 

Observation data RMS value Percentage of RMSE (%) 

40 km/h 60 km/h 

IPG CarMaker Simulink IPG CarMaker Simulink 40 km/h 60 km/h 

𝐹𝑧𝑓𝑙 4448 N 4478 N 4460 N 4479 N 0.6369 0.42 

𝐹𝑧𝑓𝑟 4289 N 4478 N 4299 N 4479 N 4.388 4.184 

𝐹𝑧𝑟𝑙 3549 N 3427 N 3583 N 3429 N 3.423 3.75 

𝐹𝑧𝑟𝑟 3381 N 3427 N 3395 N 3429 N 1.369 0.9989 
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3.8.2  Verification of Vehicle Lateral Behaviours 

In this subsection, the verification of vehicle handling model using lane change test is 

used. The testing methodology used is the Double Lane Change (DLC) based on the test track 

specification of the International Organization of Standardisation’s ISO 3888-1 which can be 

illustrated in Figure 3-16. Based on this specification, a test track developed for the DLC test 

in IPG CarMaker is as shown in Figure 3-17. In this simulation, the vehicle drives forward with 

a constant speed of 90km/h, and steering input was applied to the vehicle so that the vehicle 

passes through the route defined by the red pylons. The steering input and wheel steer angle 

for this manoeuvre are shown in Figure 3-18. 

 
Figure 3-16: The schematic drawing of double lane change test based on ISO 3888-1 [322] 

 
Figure 3-17: Double Lane Change test track developed in IPG CarMaker 

 

 
Figure 3-18: Steering-wheel angle and steer wheel angle simulated using IPG CarMaker 

By providing the same steering input to the vehicle model in Simulink, the results of the 

handling model verification for double lane change test are shown in Figure 3-19(a) to Figure 

3-19(d). The responses of the vehicle model that are investigated are the yaw rate, yaw angle, 

lateral acceleration, and lateral displacement. 

Pylon setup according to 

ISO 3888-1 
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vehicle 
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(a) Lateral displacement against time  (b) Lateral acceleration against time 

 
(c)Yaw rate against time   (d) Yaw angle against time 

Figure 3-19: Double Lane Change test result 

The comparative analysis of the vehicle response profiles from the Simulink model and the 

IPG CarMaker model reveals a high degree of correlation. Notably, the Simulink model’s 

outputs align closely with those from the IPG CarMaker, exhibiting only marginal 

discrepancies. Quantitatively, the root mean square (RMS) errors for lateral displacement and 

lateral acceleration are calculated to be 3.617% and 2.587%, respectively. Similarly, the RMS 

errors for yaw rate and yaw angle are 2.245% and 4.163%, respectively. Given that these errors 

fall well within the permissible threshold of 15%, it substantiates the validity of the Simulink 

vehicle handling model in replicating the dynamic responses observed in the IPG CarMaker. 

The assumption of the chassis to behave as a rigid body could be one of the reasons caused 

these errors. This assumption inherently neglects certain high-frequency flexible dynamics and 

localized deformations that may occur in an actual vehicle, especially during aggressive 

manoeuvres. As a result, discrepancies arise between the simulated yaw motion and those from 

the IPG CarMaker. 

In addition to the rigid body assumption, the suspension system is modelled using linear 

or quasi-linear approximations for its spring and damping characteristics. In reality, the 

suspension exhibits nonlinear behaviour over a broad range of operating conditions. Such 

simplifications can lead to deviations in the predicted load transfer during yaw motion, thereby 

contributing to the percentage error observed in Figure 3-19. Moreover, the tire forces—

calculated using Pacejka’s Magic Formula—are subject to uncertainties due to the empirical 

nature of the model. Although the Magic Formula has been widely adopted for its balance 

between accuracy and computational efficiency, it remains an approximation of the complex 

tire–road interactions and does not fully account for variations caused by factors such as tire 
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wear, temperature fluctuations, or road surface irregularities. 

Furthermore, parameter uncertainties in key inputs—such as chassis moment of inertia, 

suspension stiffness, and damping coefficients—are known to affect the accuracy of the 

dynamic response. Sensitivity studies in vehicle dynamics literature have demonstrated that 

even minor variations in these parameters can result in significant differences in the roll 

moment balance [308]. Thus, the percentage error trend shown in Figure 3.19 reflects not only 

the cumulative effect of modelling assumptions and simplifications but also the inevitable 

uncertainties in parameter estimation. 

In summary, it can be clarified that the percentage error trend represents the normalized 

difference between the simulation and experimental yaw dynamic variables. This error is 

primarily attributable to the rigid body assumption for the chassis, the linearization of the 

suspension behaviour, and the empirical approximations in the tire model, compounded by 

uncertainties in key model parameters. By analysing these sources of error, insight into the 

limitations of the current modelling approach is obtained and the potential area for 

improvement is identified, thereby enhancing the fidelity of future vehicle dynamics 

simulations. 

Table 3-5: Percentage of RMS error for handling model double lane change test 

Observation data Root Mean Square (RMS) Percentage of error (%) 

IPG CarMaker Simulink 

Lateral displacement, 𝑌 0.7233 0.7494 3.617 

Lateral acceleration, 𝑎𝑦 1.142 1.113 2.587 

Yaw rate 0.05458 0.05336 2.245 

Yaw angle 0.02936 0.02814 4.163 

 

3.9 Summary 

In this chapter, a fourteen-degree-of-freedom vehicle model is derived. This model 

integrates several subsystems, including a seven-degree-of-freedom ride model, a seven-

degree-of-freedom handling model, a lateral and longitudinal slip model, a powertrain model, 

and a steering model. Using this mathematical model, a Simulink-based vehicle model is 

developed. The Simulink model is then verified for vehicle ride and handling behaviours. The 

vehicle ride behaviour is validated by comparing the Simulink model's responses with those 

from IPG CarMaker's virtual vehicle, tested on a straight road with several bumps. The results 

show RMS errors of 6.089%, 2.845%, 0.2551%, and 5.051% for the normal forces acting on 

the front left, front right, rear left, and rear right wheels, respectively. For the handling 

behaviour, a double lane change test is conducted. The Simulink model's responses are 

compared with those from IPG CarMaker, yielding RMS errors of 3.617%, 2.587%, 2.245%, 

and 4.163% for lateral displacement, lateral acceleration, yaw rate, and yaw angle, respectively. 

As the RMS errors are all less than 15%, this demonstrates that the developed Simulink vehicle 

model can accurately represent the virtual vehicle model in IPG CarMaker under similar testing 

conditions.  
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Chapter 4: Validation of Vehicle Models using an Instrumented 

Vehicle 

4.1 Overview 

In the previous chapter, the detailed derivation of the vehicle model was explored to 

understand the lateral, vertical, and longitudinal dynamics. Based on the verification analysis 

of the developed vehicle model, the required system configuration to develop an instrumented 

vehicle was identified. In this chapter, an instrumented vehicle for data collection is developed 

using cost-effective sensors. The instrumented vehicle is developed using off-the-shelf sensors 

capable of synchronizing the recorded video data with other vehicle data as drivers operate the 

vehicle on public roadways. 

A personally owned vehicle, Volkswagen Polo Sedan with a 1600 cc displacement 

engine and automatic transmission was selected as the instrumented vehicle due to budgetary 

constraints that precluded the acquisition of a dedicated research vehicle to ensure the 

feasibility of the study within the available financial resources. The vehicle has a weight of 

1182 kg, a wheelbase of 2552 mm, a width of 1466 mm, hydraulic power rack and pinion 

steering, MacPherson Strut front suspension, and torsion beam rear suspension. The vehicle’s 

braking system uses a hydraulic system with ventilated discs on the front axle and drums on 

the rear axle and features an Anti-Lock Braking System (ABS). In the next section, the setup 

for the instrumented vehicle will be discussed. 

The following sections describe the testing procedure using the Society of Automotive 

Engineers (SAE) method and the validation of the 14DOF vehicle model based on the 

outcomes using the results from the instrumented vehicle during testing procedures. After the 

validation process, the vehicle is utilized to capture real-world driving data, which is essential 

for the validation of the vehicle dynamics model and the development of the driver model. 

Additionally, this chapter discusses the importance of adhering to international standards for 

scenario-based testing and classification, which are crucial for the safety assessment of 

autonomous vehicles. Finally, the chapter concludes with the preparation of the Malaysian 

Road Scenario Database (MaRSeD) and the classification of driving scenarios based on 

severity, contributing to the creation of a comprehensive testing environment for autonomous 

vehicle safety. 

 

4.2 System configuration of cost-effective instrumented vehicle 

For the development of instrumented vehicle, various types of sensors were mounted 

on the vehicle, as shown in Figure 4-1.  The data acquisition system consists of two cameras 

(front and rear camera), a steering angle sensor, two pedal sensors (gas and brake pedal), an 

Inertial Measurement Unit (IMU) and a Global Positioning System (GPS). In order to gather 

and synchronize the sensor data, a laptop has been used as a Host Personal Computer (PC) for 

in the instrumented vehicle. Besides, the Host PC also used for the data logging process.  
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The camera sensors were installed on the front and rear of the vehicle to capture the 

surrounding traffic and road environment. The camera sensors were mounted on the windshield 

of the vehicle using suction cup windshield car mount. The camera sensors used are Raspberry 

Pi 8 Megapixels IMX219 camera from Sony with up to 30 fps when recording at full binned 

Field of View (FOV) resolution of 1640x1232 pixels. By default, the camera comes with 62.2 

degrees of horizontal FOV lens which is too narrow for the usage of capturing surrounding 

environment. Therefore, the Pi camera’s lens was replaced with a wide-angle lens with 

horizontal FOV of 160 degrees so that more information can be captured by the camera. The 

cameras were connected to Raspberry Pi single board computer (SBC) through MIPI CSI 

connection. However, the Raspberry Pi SBC only has a single MIPI CSI port on-board. So, in 

this case, two Raspberry Pi SBC are required for two cameras. Raspberry Pi Zero SBC is 

selected in this study for cost effective, low-power (can be powered from laptop’s Universal 

Serial Bus (USB) port) and has sufficient computation power for video recording task. The 

SBC encoded the captured raw data from the camera into motion jpeg video format and stream 

the video to the laptop through USB communication. Figure 4-2 shows a sample frame of the 

environment captured using the front and rear camera on the instrumented vehicle.  

 

Meanwhile, the steering wheel angle was measured using an optical encoder. The 

optical encoder used is RE30E-500-213 from Nidec which provides up to 500 Pulse per 

Revolution (PPR). The 500 pulse per revolution can be referred as one pulse is equivalent to 

0.72 degrees. To configure the optical encoder for angular position measurement of the steering 

wheel, an Arduino Uno microcontroller is used to obtain pulse signal from the sensor and 

convert the pulse signal into angular position. The optical encoder has four wires, “Power +” 

 

Steering angle 

sensor 

  

Front camera 

  

Gas and Brake 

pedal sensors 

  

Rear camera 

  

IMU and GPS 

  

Data logging laptop 

Figure 4-1 Sensor configuration of the instrumented vehicle 

Figure 4-2 Front and rear camera footage captured by the instrumented vehicle. 
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and “Power –” for powering the sensor and two signals namely output “A” and output “B” for 

encoder signals. The hardware connection of the optical encoder to the Arduino is shown in 

Table 4-1.  

Table 4-1 Physical connection of Steering wheel optical encoder sensor to Arduino 

Wire Colour RE30E-500-213 Arduino Pin 

Red Power + 5V 

Black Power - Ground 

White Output “A” 2 (hardware interrupt) 

Green Output “B” 3 (hardware interrupt) 

According to the datasheet of the RE30E, the pulse signal is depicted as a square wave. 

There are a total of four phase changes in the optical encoder output: two for output "A" and 

two for output "B," as illustrated in Figure 4-3. Hardware interrupt pins on the Arduino are 

used to track any changes in the pulse signal from outputs "A" and "B". A hardware interrupt 

is a signal sent to the processor that immediately stops the current code execution to handle an 

urgent task. This mechanism allows the processor to respond quickly to external events, such 

as changes in the pulse signal from the optical encoder, without wasting time constantly 

checking the signal state. The interrupt service routine (ISR) is triggered at the rising edge of 

the pulse, and it increments or decrements a count value based on the direction of rotation. 

Since the interrupt is triggered twice for a single pulse, the optical encoder's resolution is 0.36 

degrees per count. To convert the encoder's angle of rotation to the steering wheel's angle of 

rotation, the diameters of both the encoder and the steering wheel are measured to calculate the 

transmission ratio, much like calculating a gear ratio, as shown in Figure 4-5. Therefore, the 

steering wheel angle is determined by multiplying the number of encoder’s counts by the 

encoder's angular resolution and the transmission ratio as shown in Equation 4.1. The measured 

angular position is then transmitted to a laptop for data logging via USB serial communication. 

 

Figure 4-3 Phase relationship between Output "A" and Output "B" to determine the direction of rotation 

 

 

HX711 amplifier and 

ADC module 

Pedal Sensor 

Arduino 

Figure 4-4 Physical connection of Pedal sensor-HX711-Arduino 
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𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑊ℎ𝑒𝑒𝑙 𝐴𝑛𝑔𝑙𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑠 × 0.36° 𝑝𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 ×
68 𝑚𝑚

390 𝑚𝑚
 (4.1) 

The gas and braking pedal forces applied by the driver was measured by using load 

cells that were fixed on the gas and braking pedal. In this research, the DYZ-105 sensor which 

is specially designed for pedal force measurement was used to obtain the pedal force applied 

by the driver. The operating range of the pedal sensor is from 0 N to 2000 N. To read the output 

from the sensor, a load cell amplifier, HX711, is used. The HX711 reads changes in the 

resistance of the load cell and amplify the analogue signal. It then uses its built-in 24-bit 

Analog-to-Digital Converter (ADC) to convert the analogue signal into digital data. An 

Arduino Uno is used as a bridge to connect the laptop to the HX711 through I2C interface. The 

hardware connection of the pedal sensors is shown in Figure 4-4 and the definition of each 

connection is defined in Table 4-2. Interrupt service routine is used to obtain the latest available 

data converted from analogue signal from the HX711. The data obtained is then transmit to the 

laptop through USB serial communication for data recording.  

Table 4-2 Definition of connection between Pedal sensor, HX711 and Arduino 

Wire Colour DYZ-105 HX711 Amplifier HX711 ADC Arduino Pin 

Red Power + Excitation + Vcc 5V 

Black Power - Excitation - Ground Ground 

Green Signal + Amplifier + SCK 4 

White Signal - Amplifier - DT 2 (hardware interrupt) 

The load cell in the pedal sensor is highly sensitive and this causes the outcome will vary based 

on external inputs. Therefore, pedal sensors need to be calibrated before it can be used for data 

collection process. Since strain gauges linearly relate strain to force applied, a linear 

relationship can be used to calibrate the load cell. The equation representing this relationship 

is defined in Equation 4.2. 

𝑦 = 𝑚𝑥 + 𝑏 (4.2) 

Where y is the value of the load applied on the sensor, 

 x is the HX711’s ADC value, 

m is a constant value which represent the slope of the calibration line, 

b is the tare value when the load applied on the sensor, y is zero. 

D = 390 mm 

D = 68 mm 

Figure 4-5 Transmission ratio from the steering wheel to the optical encoder 
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To calibrate the pedal sensor, two calibration points are required: the zero value and a known 

mass value. First, the pedal sensor is powered on, and the calibration is initiated using Arduino 

without any force applied to the sensor to obtain the tare value from the HX711's ADC. Then, 

an object with a known mass is placed on the sensor, and the sensor reading is measured based 

on the ADC value from the HX711. This data is used to calculate the slope of the calibration 

line using the Arduino. The tare and calibration values are saved to the Arduino's EEPROM to 

avoid re-calibration for future use with similar sensors under the same configuration. Figure 

4-6 shows the serial monitor printout during the calibration process of the pedal sensor. 

To obtain the attitude of the vehicle, a Pixhawk (PX4) controller which consists of ST 

Micro L3GD20 3 axis gyroscope, ST Micro LSM303D 3-axis accelerometer/magnetometer 

and Invensense MPU-6000 accelerometer/gyroscope is used in this study. Besides, a U-blox 

m8n GPS is connected to the PX4 controller to access GPS data of the vehicle. The m8n GPS 

is a cost effective low powered GPS when compared to centimetre-level GPS such as Real-

Time Kinematic (RTK) or Trimble Real-Time eXtended (RTX) GPS which are very expensive. 

However, the m8n still able to deliver high precision and sub-metre accuracy up to 0.6 meters. 

The laptop namely, Lenovo ThinkPad is used as the HOST PC for data recording 

process. The laptop is designed using an Intel Core i5 10th gen processor with 8 GB of 

Random-access Memory (RAM). Since video data recording task requires high disk write 

throughput, a one Tera Bytes (TB) Solid State Drive (SSD) with write speed of 500 MB/s was 

used for data storage. For connectivity with the sensors, the laptop however only supports up 

to two USB 3.0 Type A ports and one USB 3.1 Type C port while the sensor setup required up 

to five USB ports. Therefore, an external USB hub is used to provide additional USB ports 

required. The laptop also has a built-in 2.995 Ah / 46 Wh battery that can be used to power the 

laptop, as well as sensors through USB port’s 5V power line without any other external power 

supply. Despite having small sized battery, by using low powered laptop, SBCs and MCUs in 

the setup, the built-in battery was able to provide runtime of up to 3 hours in a single full charge 

which is sufficient for most data recording applications. Table 4-3 shows the power 

Figure 4-6 Calibration process of pedal sensor via Arduino serial monitor 
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consumption measured during data recording. The connection of the sensors to the laptop for 

data recording is shown in Figure 4-7. 

Table 4-3 Power consumption of data acquisition system measured during operation. 

Component Voltage, V Maximum Current, A Power Consumption, W 

Laptop 17.2 0.638 10.974 

Raspberry Pi Zero + camera 5 0.385 1.925 

Arduino Uno + 2x pedal sensor 5 0.058 0.290 

Arduino Uno + steering sensor 5 0.062 0.310 

Pixhawk + GPS 5 0.840 4.200 

 

 

 
 

4.3 Sensor Synchronization and Sensor Fusion 

Since every sensor mentioned in the previous section have different sampling data rate 

as shown in Table 4-4, there’s a need to synchronize these sensors. All the sensors were 

synchronized to the Network Time Protocol (NTP) time which is synchronized to the 

Coordinated Universal Time (UTC) time reported by the laptop. For each sensor, a buffer was 

created to hold the latest readings reported by the sensor. To update all the sensors in 

simultaneously, threaded processes were created for each sensor so that each sensor can update 

the reading at their sampling rate. Another threaded process sampled at 100 Hz to match the 

sampling rate of the steering encoder. It captured all sensor data from the buffers, recorded the 

sensor data, and presented timestamps in the database. The file was named in the format: 

Sensordata-YYYY-MM-DD-HH-MM-SS.csv. Each data point recorded in the file has nine 

fields: t, lat, lon, pitch, roll, yaw, gas, brake, steer. The field 𝑡 represents the timestamp; 𝑙𝑎𝑡 

and 𝑙𝑜𝑛 represent the latitude and longitude data obtained from the GPS; 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙 and 𝑦𝑎𝑤 

represent the attitude data obtained from the PX4 IMU; 𝑔𝑎𝑠 and 𝑏𝑟𝑎𝑘𝑒 represent the gas and 

braking force measured by the pedal sensors; and 𝑠𝑡𝑒𝑒𝑟 represents the steering angle obtained 

from the steering angle sensor.  
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Figure 4-7 System architecture of data acquisition system 
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Table 4-4 Output signal of sensors 

For camera video recording, a free and open-source software, Open Broadcaster Software 

(OBS), was used. An OBS plugin was added to the software to insert a timestamp into each 

frame of the recorded footage. Since the raw camera data requires video encoding to be saved 

as a video file, there is a time delay between the real world and the recorded video. To measure 

the latency from the camera to the laptop, the camera was pointed at a laptop screen displaying 

a stopwatch application. The time difference between the stopwatch displays and the time 

captured by the camera was noted. For instance, if the stopwatch displayed 1:43.20 and the 

camera perspective showed 1:43.09, the latency from the camera to the laptop would be 0.11 

seconds, as shown in Figure 4-8. Furthermore, the latency between the front and rear cameras 

can be measured using the same method. As shown in Figure 4-9, the time captured by both 

cameras is the same, indicating that the latency between the two cameras is less than 10 

milliseconds and negligible. The recorded data is separated into different folders and identified 

by the location, date, and time at which they were recorded with the format of “Location-YYYY-

MM-DD-HH-MM”. The data for each recording is organized as shown below: 

• Location-YYYY-MM-DD-HH-MM 

o YYYY-MM-DD-HH-MM-SS.mkv 

o Sensordata-YYYY-MM-DD-HH-MM-SS.csv 

 

                         
                           

                            
                  

Sensor Specification Sampling Rate Channel Data Captured 

Camera Raspberry Pi 8MP Sony IMX219 Camera 30 fps 2 Front and rear view of 

road 

Steering 

sensor 

RE30E-500-213-1 optical encoder 100 Hz 1 Steering angle 

Pedal 

sensors 

DYZ-105 force sensor 80 Hz 2 Gas and brake pedal 

force applied 

IMU Pixhawk L3GD20 3-axis 16-bit gyroscope, 

LSM303D 3-axis 14-bit accelerometer 

with magnetometer and MPU6000 3-axis 

accelerometer/gyroscope 

25 Hz 1 Linear acceleration 

and angular velocity 

in x-y-z axis  

GPS U-BLOX NEO-M8N GPS with compass 10 Hz 1 Lateral and 

longitudinal position, 

and heading 

Figure 4-8 Camera facing monitor screen displaying a stopwatch application 
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Figure 4-9 Latency between front and rear camera 

To further optimize the latency when using a non-real-time operating system, the data capture 

pipeline was improved by employing a multithreaded process for each sensor node and a zero 

in-memory copy approach. This approach is similar to several methods based on the Robot 

Operating System (ROS) used in autonomous driving system to reduce latency and persist raw 

data [323], [324], [325]. By using multithreading, each sensor node can operate independently, 

reducing the processing time. The zero in-memory copy technique minimizes data duplication, 

further decreasing latency and improving overall system performance. 

 

4.4 Sensor Fusion for Instrumented Vehicle 

 Sensor fusion is a process of combining data from multiple sensors, such as camera, 

IMU, and GPS, to obtain a more accurate and reliable estimate of the state of a system. In this 

study, the sensor fusion is done using ROS (Robot Operating System), which is a framework 

that provides tools and libraries for developing robotics applications. The reason for choosing 

ROS is because ROS has several packages that can be used for sensor fusion, such as 

robot_localization, imu_tools, and navsat_transform_node. One of the applications of sensor 

fusion using ROS is to assist with the different driving and weather conditions. For example, 

sensor fusion can help to improve the localization and navigation of autonomous vehicles by 

fusing data from camera, IMU, and GPS sensors. Camera sensor can provide visual information 

about the environment, such as lane markings, traffic signs, and obstacles. Meanwhile, IMU 

can measure the linear and angular acceleration of the vehicle, which can be used to estimate 

its orientation and velocity. On the other hand, GPS can provide the global position of the 

vehicle, which can be used to plan the route and avoid collisions. However, each sensor has its 

own limitations and uncertainties. Camera can be affected by lighting conditions, occlusions, 

and distortions while IMU can be affected due to drift and noise. Besides, GPS can have errors 

due to multipath effects, signal loss, and interference. Therefore, sensor fusion using ROS can 

help to overcome these challenges by combining the data from different sensors and applying 

filtering techniques, such as Kalman filter or particle filter. The sensor fusion helps to reduce 

the noise and errors from the sensors. Moreover, the sensor fusion able to improve the accuracy 

and consistency of the estimation for the state of the sensor fusions. 

                 12.18 seconds 
         front                    

                     8         
         rear                    
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One of the most popular packages for sensor fusion in ROS is called as 

robot_localization, which provides nonlinear state estimation nodes that can fuse multiple 

sensor inputs using various flavours of Kalman filters. A Kalman filter is a recursive algorithm 

designed to estimate the state of a dynamic system based on noisy measurements by using a 

prediction-correction scheme. The Kalman filter can also handle uncertainties in the sensor 

data by using covariance matrices that represent the measurement errors and process noise. 

Meanwhile, rospy, a python client library for ROS is used to convert the raw sensor data into 

these sensor messages. In this study, robot_localization is used to fuse data from camera, IMU 

and GPS sensors for localization of the instrumented vehicle. In order to implement sensor 

fusion using robot_localization, several steps need to be taken, including data preparation, 

configuration of the Kalman filter nodes, and parameter tuning to achieve optimal performance. 

The first step is to ensure that the sensor data is published as ROS messages in the appropriate 

format and frame. To accomplish this, rospy, a python client library for ROS is used to convert 

the raw sensor data into these sensor messages: 

• For camera data, the images are published as sensor_msgs/Image messages, with the 

camera frame designated as the header frame_id. 

• For IMU data, the orientation, angular velocity, and linear acceleration are published 

as sensor_msgs/Imu messages, with the IMU frame specified as the header frame_id. 

• For GPS data, the latitude, longitude, and altitude are published as 

sensor_msgs/NavSatFix messages, with the GPS frame assigned as the header frame_id. 

Next, it is necessary to establish transforms between the camera frame and the IMU 

frame, as well as between the IMU frame and the GPS frame. This can be achieved using a tool 

provided by ROS which is the tf2_ros::StaticTransformBroadcaster. To use this tool, the 

transform between the camera frame and the IMU frame needs to account for any physical 

offset or rotation existing between the two sensors. Similarly, the frame transformation 

between the IMU frame and the GPS frame needs to account for any variations in magnetic 

declination or geodetic datum between the two sensors. To accomplish this, the mounting 

position of each sensor on the instrumented vehicle needs to be measured. Additionally, to link 

the camera frame with the odometry frame, viso2_ros package which provides a visual 

odometry algorithm is used in this configuration. The visual odometry algorithm estimates the 

motion of the camera from consecutive camera images and then publishes it as an odometry 

message.is used. The visual odometry algorithm estimates the motion of the camera from 

consecutive camera images and then publishes it as an odometry message. 

Lastly, the Kalman filter nodes that will fuse the sensor data is configured. The 

robot_localization package provides two types of Kalman filter nodes, namely the 

ekf_localization_node and ukf_localization_node. The former uses an extended Kalman filter 

(EKF), which is suitable for linear or mildly nonlinear systems. The latter uses an Unscented 

Kalman Filter (UKF), which is suitable for highly nonlinear systems. In this study, the 

ekf_localization_node as EKF is utilized even though UKF has higher accuracy because EKF 

is more straight forward to implement and require less computation power [115]. 

In low-light or adverse weather conditions, the camera data may exhibit noise or 

unreliability. However, the IMU and GPS data can still provide accurate information. In such 
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cases, the weights of the IMU and GPS data in the Kalman filter can be increased to rely more 

on their information. Conversely, in urban or indoor environments, the GPS data may either be 

unavailable or imprecise, while the camera and IMU data remain valuable. In this scenario, it 

is recommended to assign higher weights to the camera and IMU data within our Kalman filter 

to rely more on their information. To adjust the weights of different sensor sources in the 

Kalman filter, their covariance matrices can be modified. A lower covariance value means a 

higher weight, and vice versa. For example, if the weight of IMU data need to be increased, its 

covariance values in imu0_covariance parameter can be decreased. If the weight of GPS data 

needs to be decreased, its covariance values in Navigational Satellite (NAVSAT) parameter 

can be increased. 

 

4.5 Vehicle Model Validation using Instrumented Vehicle 

In order to calibrate vehicle models using the sensors equipped in the instrumented 

vehicle, several field tests were performed according to SAE vehicle safety testing standard. 

This calibration is required to ensure the vehicle response and driving data recorded by the 

sensors are accurate and reliable. Three field test scenarios were used which are the double lane 

change test, step steer test, sudden braking test. All the tests were carried out at parking lot of 

Asia Pacific University of Technology and Innovation (APU). The open space has a dimension 

of 100 x 60 m of asphalt road. Road items such as traffic pylons were used to define the test 

tracks according to the ISO 3888-2 SAE standard for double lane change test, step steer lateral 

test according to ISO 4138, and braking longitudinal test according to ISO 3833 SAE standard. 

 

4.5.1  Design of Field Test 

The tests are carried out starting at a constant speed of 20 km/h and increasing the speed 

of 10 km/h between experiments until 30 km/h. The reason for limiting the vehicle speed for 

not greater than 30 km/h is due to the constrained length of the test track, which prevents safety 

testing at higher speeds. Additionally, urban areas generally experience heavy traffic, causing 

vehicles to travel at idle or low speeds. Moreover, in the Fourth United Nation Global Road 

Safety Week, World Health Organization has released a Managing speed document to call 

policymaker for reduction in urban maximum road travel speed to 30 km/h [326]. Figure 4-10 

shows an outline of the SAE tests performed where there are three types of manoeuvre test for 

two test speeds. Altogether 6 test cases and each test cases were repeated for three times to 

ensure the result is consistent, reproducible, and more reliable. 

 

 

Double Lane Change Double Lane Change 

Step Steer Step Steer 

Sudden Brake Sudden Brake 

Speed 20 km/h Speed 30 km/h 

Figure 4-10 Test carried out according to SAE standards. 
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(a)  Double Lane Change Test 

In double lane change (DLC) test, the vehicle accelerates until the vehicle’s speed reach 

a constant speed of 20 km/h and 30 km/h. Then, steering input is applied by the driver to the 

vehicle so that the vehicle passes through the route defined by the traffic pylons. The test track 

was setup according to the ISO 3888-2 standard for double lane changes as shown in Figure 

4-11. Meanwhile, Figure 4-12 shows the instrumented vehicle carried out double lane change 

test. All sensor data that were collected throughout the test was recorded in storage to be 

analysed later.  

 

 

 

 
 

(b) Step Steer Test 

In step steer test, the vehicle first moves forward with a constant speed then a constant 

steering angle is applied to the vehicle so that the vehicle turns left following the circular route 

defined by the traffic pylons. When the vehicle reached the exit, the constant steering angle is 

released so that the vehicle moves in a straight line. The testing is conducted at two different 

speeds such as 20 km/h and 30 km/h. The test track was setup according to the SAE ISO 4138 

standard for lateral step steer test as shown in Figure 4-13. Meanwhile, Figure 4-14 shows the 

instrumented vehicle carried out step steer manoeuvre. All sensor data that were collected 

throughout the test was recorded in storage to be analysed later.  

2m 

10m 14m 12m 13m 12m 

Start point End point 

Figure 4-11 ISO 3888-2 test 

Figure 4-12 Double Lane Change field test 
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Figure 4-13 ISO 4138 test 

 

(c) Braking Test 

The test is begun with vehicle at stationary position at the starting point. Then, a full 

throttle is applied by the driver until the vehicle reaches the required speed. Then, a sudden 

braking with full pedal input is applied when the vehicle passes the vehicle braking point to 

stop the vehicle. This test is conducted according to the ISO 3833 longitudinal vehicle test as 

shown in Figure 4-15. Meanwhile, Figure 4-16 shows the instrumented vehicle performing 

accelerate and braking test. The gyroscope and the accelerometer inside the PX4 

microcontroller are used in this test to record the acceleration and the pitching angle of the 

vehicle for the validation test. 

 

 

Figure 4-16 Braking test. 

Radius = 7.5m 

End point 

Start point 

Start point 

End point 

Figure 4-14 Step steer field test 

Figure 4-15 ISO 3883 test 
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4.5.2  Results validation process from Instrumented Vehicle 

In order to validate the simulated vehicle with data recorded from instrumented vehicle, 

the same test tracks used in the field test were created in the vehicle simulation platform. IPG 

CarMaker, which is commonly used by automotive industry and validated in [327] using an 

instrumented Ford Fiesta car to perform lane change test is used. The test tracks created are as 

shown in Figure 4-17 for DLC test, Figure 4-18 for Step Steer test and Figure 4-19 for Braking 

test. 

 

Figure 4-17 Double Lane Change test track developed using IPG CarMaker 

 

Figure 4-18 Step Steer test track developed using IPG CarMaker 

 

Figure 4-19 Braking test track developed using IPG CarMaker 

The tests were carried out in the simulator with the same setting of the field test. The 

vehicle data from the IPG CarMaker simulation software were exported to compare with the 
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data recorded from the instrumented vehicle to validate the accuracy and reliability of the 

virtual vehicle model from IPG CarMaker and the 14 DOF vehicle model developed in the 

Chapter 3. 

 

4.5.3  Validation of vehicle model using data from Instrumented Vehicle 

In this section, the accuracy and validity of simulation are investigated by comparing 

the responses of the Simulink-based vehicle model and a virtual vehicle in IPG CarMaker to 

the data from the instrumented real vehicle. Three critical tests were performed: the Double 

Lane Change (DLC) Test, the Step Steer Test, and the Braking Test. These tests evaluate the 

lateral stability, yaw dynamics, and braking force distribution of the vehicle, ensuring that the 

models provide a reliable representation of real-world vehicle responses.  

Identical human driving inputs, such as steering angle, throttle, and brake inputs, were 

provided to both the virtual vehicle in IPG CarMaker and the 14-degree-of-freedom vehicle 

model in Simulink validated in previous research [313]. The vehicle states obtained from these 

models were then compared with sensor data from the instrumented vehicle. This comparison 

was conducted for specific driving manoeuvres, including double lane change tests, step steer 

tests, and braking tests at constant speeds of 20 km/h and 30 km/h. 

 

(a) Double Lane Change Test 

The double lane change test is a critical manoeuvre used to evaluate the dynamic handling 

and stability characteristics of a vehicle. Comparing vehicle states in these tests provides 

comprehensive insights into the vehicle's performance under rapid lateral manoeuvres. The 

vehicle states that are investigated for the DLC test are the local position, lateral acceleration 

and yaw rate of the vehicle because these metrics are critical indicators of vehicle dynamics 

and handling performance. Comparing these specific results allows for a detailed assessment 

of how accurately the simulated models replicate the real vehicle's behaviour under different 

driving conditions. 

 For instance, the local position tracks the vehicle's movement in the lateral direction. It 

is crucial for understanding how accurately the vehicle can follow the intended path during a 

lane change. By comparing the local position, the precision of the simulated vehicle's path-

following capabilities can be evaluated. Any deviations from the real vehicle's path can indicate 

areas where the simulation model needs improvement. While the yaw rate is the rate at which 

the vehicle rotates around its vertical axis. It is a critical parameter for evaluating turning 

performance and the vehicle's ability to maintain a stable trajectory during rapid directional 

changes. Comparing yaw rates helps determine how well the simulations replicate the real 

vehicle's rotational dynamics, which is essential for predicting the vehicle's behaviour during 

quick manoeuvres. Whereas the lateral acceleration measures the vehicle's ability to change 

direction laterally and is directly related to the grip and stability of the vehicle. It reflects how 

quickly and efficiently the vehicle can respond to steering inputs without losing traction. By 

comparing the lateral acceleration between the simulated models and the real vehicle, the 
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accuracy of the simulations in replicating real-world cornering forces and vehicle stability can 

be assessed. 

The double lane change test required approximately one minute for each execution. 

Initially, the driver accelerated the instrumented vehicle to and maintained the required 

constant speed. Upon reaching the starting point of the test, the driver initiated the double lane 

change manoeuvre. Each test was repeated three times to ensure the consistency and reliability 

of the results, crucial for validating the simulated vehicles. To ensure clarity, only the vehicle 

states during the double lane change manoeuvre are presented in this section, with the 

acceleration segment excluded from the results. The result for double lane change at constant 

speed of 20 km/h is shown in Figure 4-22, Figure 4-23 and Figure 4-21. Whereas the result for 

double lane change at 30 km/h is shown in Figure 4-26, Figure 4-27 and Figure 4-25.  

i. Results for Double Lane Change test for vehicle constant speed of 20 km/h 

  
Figure 4-20 Steering angle for double lane change 

at 20 km/h 

Figure 4-21 Local position plot for double lane 

change at 20 km/h 

 

  

Figure 4-22 Lateral acceleration for double lane 

change at 20 km/h 

Figure 4-23 Yaw rate response for double lane 

change at 20 km/h 
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ii. Results for Double Lane Change test for vehicle constant speed of 30 km/h 

  

Figure 4-24 Steering angle for double lane 

change at 30 km/h 

Figure 4-25 Local position plot for double lane 

change at 30 km/h 

  
Figure 4-26 Lateral acceleration for double lane 

change at 30 km/h 

Figure 4-27 Yaw rate response for double lane 

change at 30 km/h 

Table 4-5 Root Mean Square Error for30 km/h double lane change data. 

Root means square error 

20 km/h Lateral acceleration, 𝑚/𝑠2 5.216 

 Yaw rate, 𝑟𝑎𝑑/𝑠 4.527 

 Position, 𝑚 7.239 

30 km/h Lateral acceleration, 𝑚/𝑠2 5.179 

Yaw rate, 𝑟𝑎𝑑/𝑠 4.932 

Position, 𝑚 5.167 

From the plot, it can be observed that the vehicle responses from both Simulink model 

and virtual vehicle from IPG CarMaker shared the similar characteristic with the vehicle state 

data obtained using the instrumented vehicle. Table 4-5 shows the percentage of RMS values 

for the overall responses from the sensor measurements when compared to the vehicle response 

from Simulink model developed. The lateral acceleration, yaw rate and displacement of the 

vehicle moving at 20 km/h show the percentage difference of RMS errors about 5.22%, 4.53% 

and 7.24%, respectively. Whereas the lateral acceleration, yaw rate and displacement of the 
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vehicle moving at 30 km/h show the percentage difference of RMS errors about 5.18%, 4.93% 

and 5.17%, respectively. It can also be observed that the real vehicle is much more responsive 

and have a much obvious peak and low value. Figures 4-20 and 4-24 illustrate the applied 

steering angles for the two speed conditions. It is observed that at 30 km/h, the magnitude of 

the steering input is larger compared to 20 km/h due to the increased lateral forces acting on 

the vehicle. The local position trajectories of the instrumented vehicle, shown in Figure 4-21 

and Figure 4-25, align well with the simulated models, demonstrating that both models are 

capable of accurately replicating real-world lane change behaviour. However, minor deviations 

occur, particularly during the exit phase of the manoeuvre, where the real vehicle stabilizes 

slightly later than the simulations. This discrepancy can be attributed to variations in tire-road 

friction, unmodeled aerodynamic effects, and slight inconsistencies in the driver’s input timing. 

The lateral acceleration and yaw rate responses during the DLC test, as presented in Figure 

4-22 to Figure 4-27, indicate a strong correlation between the simulated and real-world results. 

The lateral acceleration peaks at the midpoint of the manoeuvre, where the highest lateral forces 

are encountered. The Simulink model slightly underestimates lateral acceleration, whereas the 

IPG CarMaker model overestimates the peak values. A similar trend is observed for yaw rate, 

where the peak values in the IPG CarMaker model are slightly higher than those in the real 

vehicle and Simulink model. These discrepancies arise due to differences in tire modeling, 

suspension compliance, and vehicle mass distribution. The Pacejka tire model, used in both 

simulation environments, assumes a continuous slip ratio, whereas real-world tires exhibit 

transient slip variations that influence lateral acceleration and yaw rate. Additionally, the 

instrumented vehicle experiences minor variations in weight distribution due to the presence 

of the driver and data logging equipment, which are not fully captured in the simulations. 

However, the root means square error (RMSE) calculated between the real model and IPG 

model for both 20km/h and 30km/h double lane change test are still under acceptable range 

which is less than 10%. Hence, it is shown that the simulated vehicle as developed in the 

Chapter 3 is valid and able to produce similar response to real vehicle during the transient state. 

Besides, it also shows that the instrumented vehicle is capable of capturing vehicle state when 

performing lateral manoeuvre. 

 

(b) Results of Step Steer Test at 60 Degree 

The step steer test evaluates the vehicle's transient response to sudden steering inputs, 

providing crucial insights into its dynamic behaviour. First, the vehicle is accelerated to the 

desired constant speed. After reaching this speed, the vehicle is stabilized to ensure consistent 

motion. Next, a sudden and decisive steering input is applied, such as turning the steering wheel 

to a specific angle. This manoeuvre is designed to test the vehicle's dynamic response to abrupt 

steering changes. To ensure the reliability of the results, the test is repeated three times, to 

ensure consistency. 

Similar to the double lane change test, parameters such as lateral acceleration, yaw rate, 

and local position are compared to assess the simulation's accuracy in replicating real-world 

vehicle dynamics during these manoeuvres. The local position determines how well the 

simulated vehicle follows the intended path during sudden steering inputs, highlighting any 
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discrepancies with the real vehicle's behaviour. The yaw rate however helps to assess the 

accuracy of the simulation in predicting the vehicle’s rotational behaviour under sudden 

steering manoeuvres. Finally, lateral acceleration evaluates how accurately the simulated 

vehicle replicates the real vehicle's ability to change direction laterally and reflects its dynamic 

stability during steering manoeuvres. 

For step steer test, the results obtained at constant speed of 20 km/h is shown in Figure 

4-30, Figure 4-31 and Figure 4-29. Whereas the result for step steer test at 30 km/h is shown 

in Figure 4-34, Figure 4-35 and Figure 4-33. The responses of the vehicle model that are 

investigated are the lateral acceleration, longitudinal acceleration, yaw rate, and local position 

of the vehicle. 

i. Step steer test results for vehicle constant speed of 20 km/h 

  
Figure 4-28 Steering angle for step steer test at 20 

km/h 

Figure 4-29 Local position plot for step steer test 

at 20 km/h 

  
Figure 4-30 Lateral acceleration for step steer 

test at 20 km/h 

Figure 4-31 Yaw rate response for step steer test at 

20 km/h 
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ii. Step steer test results for vehicle constant speed of 30 km/h 

  
Figure 4-32 Steering angle for step steer test at 30 

km/h 

Figure 4-33 Local position plot for step steer test 

at 30 km/h 

  
Figure 4-34 Lateral acceleration for step steer test 

at 30 km/h 

Figure 4-35 Yaw rate response for step steer test 

at 30 km/h 

Table 4-6 Root Mean Square Error for step steer test data. 

Root means square percentage error, % 

20 km/h Lateral acceleration, 𝑚/𝑠2 7.156 

 
Yaw rate, 𝑟𝑎𝑑/𝑠 3.617 

Position, 𝑚 4.574 

30 km/h Lateral acceleration, 𝑚/𝑠2 7.394 

 
Yaw rate, 𝑟𝑎𝑑/𝑠 4.163 

Position, 𝑚 7.108 

From the plot, it can be observed that the response of the vehicle obtained from real 

vehicle shared the similar characteristic with both the Simulink model and virtual vehicle from 

IPG CarMaker. Table 4-6 shows a summary of RMS percentage error for step steer at 20km/h 

and 30km/h when compared to the data obtained from the Simulink model developed. The 

lateral acceleration, yaw rate and displacement of the vehicle moving at 20 km/h show the 

percentage difference of RMS errors about 7.156%, 3.617% and 4.574%, respectively. 

Whereas the lateral acceleration, yaw rate and displacement of the vehicle moving at 30 km/h 
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show the percentage difference of RMS errors about 7.394%, 4.163%and 7.108%, respectively. 

Similar to the double lane change tests, higher peak and lower low values for the lateral 

acceleration measured from the real vehicle data when compared to the simulated vehicles. 

This can be explained by the displacement plot of the real vehicle and the simulated vehicle as 

shown in Figure 4-29 and Figure 4-33. From the displacement plot, it is observed that the radius 

of the circular motion of the real vehicle during step steer is small than the simulated vehicle. 

Since the steering angle input to the real vehicle and the simulated vehicles is the same, it can 

be deduced that the simulated vehicles do not encounter with unwanted disturbances in real 

time testing such as uneven road surfaces and mechanical friction between steering mechanism 

and wheel mechanism which is connected with rack and pinion system. Therefore, this caused 

some minor deviation in terms of vehicle lateral behaviour output between simulated vehicles 

and real vehicles even though the steering angle input is the same. Figure 4-31 and Figure 4-35 

show the yaw rate response, where the real-world data reveals a slightly slower stabilization 

time compared to the simulated models. This occurs because real vehicle suspension 

components exhibit elasticity and compliance effects, causing a delayed stabilization of yaw 

rate. Similarly, Figure 4-30 and Figure 4-34 present the lateral acceleration response, which 

demonstrates that the simulated models predict higher peak lateral acceleration compared to 

real-world data. This suggests that the real vehicle undergoes additional damping effects, likely 

caused by the deformation of suspension components and variations in road surface texture. 

Furthermore, minor aerodynamic disturbances such as crosswinds may introduce slight 

variations in real-world yaw rate, whereas the simulations assume an idealized aerodynamic 

environment. The differences in response time and acceleration profiles highlight the need for 

a more sophisticated tire-suspension interaction model to capture real-world dynamics with 

greater fidelity. However, the root means square error (RMSE) calculated between the real 

model and IPG model for both 20km/h and 30km/h step steer test are still under acceptable 

range, which is less than 10%.  Hence, it is noted that the vehicle model represents similar 

behaviour as the real vehicle which is capable of producing the similar lateral behaviours 

during the steady state response.  

 

(c) Braking test 

In this test, the vehicle will move at a constant speed and then applied with sudden 

braking input to come to halt the vehicle. This test is used to test the deceleration responses 

from the vehicle. The longitudinal speed, and the pitch angle will be used for comparison to 

show the similarity between the three model. 
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i. Sudden Brake Test under 20km/h 

  

Figure 4-36 longitudinal velocity against time 

(20km/h) 

Figure 4-37 pitch angle against time (20km/h) 

 

ii. Sudden Brake Test under 30km/h 

  

Figure 4-38 longitudinal velocity against time 

(30km/h) 

Figure 4-39 pitch angle against time (30km/h) 

Table 4-7 Root Mean Square Error for braking test. 

Root means square percentage error, % 

20km/h Velocity, 𝑚/𝑠 4.24 

Pitch angle, 𝑟𝑎𝑑 6.52 

30km/h Velocity, 𝑚/𝑠 3.90 

Pitch angle, 𝑟𝑎𝑑 6.18 

 

From the response from the plot, it shown that during the acceleration phase of the 

vehicle, both models shared the similar characteristic which can proved that the engine 

dynamic model and the engine mapping graph are reliable. Table 4-7 shows the RMS 

percentage error of the longitudinal velocity and pitch angle of the vehicle moving at 20 km/h 

and 30 km/h which are about 4.24%, 6.52%, 3.90% and 6.18%, respectively. Figure 4-36 and 

Figure 4-38 illustrate the velocity reduction profiles, which indicate that the real vehicle takes 

slightly longer to come to a complete stop compared to the simulated models. This suggests 

that the simulated braking force application is slightly overestimated. One reason for this 

discrepancy is the simplification of brake system dynamics in the simulation models, where 

factors such as thermal characteristic, brake piston, brake fluid pressure variations and 

mechanical response delays are not explicitly considered. Additionally, minor surface 
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irregularities and tire wear effects in the real-world braking test introduce variations in braking 

performance that are absent in the simulations. Figure 4-37 and Figure 4-39 show the pitch 

angle response during braking. It is observed that the real vehicle experiences a greater degree 

of forward pitch motion compared to the simulated models. This indicates that weight transfer 

effects are more significant in real-world conditions than what is predicted by the models. The 

simulations assume an idealized and symmetric braking force distribution, whereas in reality, 

braking force varies dynamically between the front and rear wheels, affecting pitch motion. 

Moreover, the condition of the braking system, such as brake pad friction characteristics and 

heat dissipation effect, further contributes to the observed differences. However, the root means 

square error calculated between the real model and Simulink model for both 20km/h and 

30km/h test are still under acceptable range for the validation. 

In summary, the comparative analysis demonstrates that the Simulink and IPG 

CarMaker vehicle models effectively replicate real-world vehicle behaviour under controlled 

test conditions. However, discrepancies arise due to tire-road interaction effects, suspension 

compliance, aerodynamic influences, and braking force distribution variations. The IPG 

CarMaker model tends to overestimate lateral acceleration and yaw rate due to its idealized tire 

model and reduced damping effects, whereas the Simulink model slightly underpredicts lateral 

acceleration due to simplifications in suspension compliance modelling. The braking test 

results suggest that further refinements are needed in the braking force distribution model and 

weight transfer dynamics to enhance the accuracy of pitch response predictions. These findings 

highlight key areas for future improvement, including incorporating advanced tire models, 

refining aerodynamic simulations, and integrating real-world road texture data into the vehicle 

model. Addressing these aspects will further enhance the reliability of simulation-based vehicle 

validation and improve the predictive accuracy of the developed models. 

 

4.6 Data Collection on Dedicated Routes for Scenario-Based Testing 

Following the system configuration of the instrumented vehicles for data recording 

capabilities of vehicle behaviours and surrounding environment, the vehicle is used to gather 

driving and traffic environment data on public roads. This collected data is analysed based on 

ISO standards such as ISO 34501, ISO 34502 and ISO 34503 for the Operational Design 

Domain (ODD) analysis. Based on the analysis, some of critical scenarios were extracted from 

the recorded datasets. The study involved repetitive driving condition using the instrumented 

vehicle across several selected road networks, namely: 

a) Route 1: University of Nottingham Campus 

- Representing campus-like road settings, which facilitated the collection of data in 

controlled and unpredictable traffic scenarios. 

b) Route 2: Jalan Pudu 

- Representing an urban road with moderate traffic and complexities. 

c) Route 3: Cyberjaya MaGIC Route A 
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- Representing a modern cityscape with urban road features. This is also approved 

test track for autonomous vehicle by Ministry of Transport, according to the 

“Guidelines of Autonomous Vehicle Trials”.  

d) Route 3: Cyberjaya MaGIC Route A 

- Representing a modern cityscape with highway lane driving features. This is also 

approved test track for autonomous vehicle by Ministry of Transport, according to 

the “Guidelines of Autonomous Vehicle Trials”.  

These locations were chosen based on the density of road users, including pedestrians, 

motorbikes, passenger vehicles, and commercial vehicles like buses and heavy vehicles. 

Furthermore, the emphasis was placed on areas with a high volume of pedestrians and 

motorbike users, aligning with the priorities of road safety agencies such as MIROS in 

investigating road accidents. Data collection was conducted under four distinct environmental 

conditions: morning, afternoon, evening, rainy day. During data collection, the instrumented 

vehicle was driven through the selected road networks while recording the data from the 

sensors mounted on the instrumented vehicle. The camera captured the visual information, the 

IMU captured the motion data, the GPS logged the vehicle's trajectory, and the steering wheel 

angle sensor and pedal sensor captured the driver's inputs evening, and rainy conditions.  

 

4.6.1  Data Recording Route 1: University of Nottingham Malaysia Route 

The route selected encompasses the University of Nottingham Malaysia, which 

experiences high traffic flow with various road users navigating in, out, and around the campus 

premises. The planned trajectory for data collection is detailed in Figure 4-40, incorporating 

roundabouts, parking lots, pedestrian crossings, speed bumps, and junctions to ensure a diverse 

dataset. The University of Nottingham Campus had a more controlled traffic environment with 

a mix of vehicles and pedestrians, leading to smoother driving patterns with less frequent 

acceleration and braking events. This is classified as the Operational Design Domain for 

campus environment. Data collection activities are conducted during peak hours in the morning, 

afternoon, and evening over a period of four weeks, encompassing weekends as well.   

 

Figure 4-40 GPS trajectory of University of Nottingham Malaysia route (aerial image obtained from 

Google Earth) 
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4.6.2  Data Recording Route 2: Jalan Pudu Masjid Jamek 

 The route along Jalan Pudu and Masjid Jamek was selected due to its bustling city 

centre, characterized by heavy traffic and dense buildings and public transportation 

connectivity such as LRT and public bus services. Jalan Pudu, characterized by high traffic 

congestion and frequent stop-and-go conditions, exhibited more abrupt braking and 

acceleration patterns. The presence of pedestrians, commercial activities, and public transport 

services led to unpredictable driving behaviour. These has been classified as different ODD for 

scenario categorise compared to Route 1 as mentioned above. Figure 4-41 displays the planned 

data collection route for this area. Data collection occurred on this route for two weeks, 

encompassing morning, afternoon, and evening periods. During the morning, the vehicle 

moved slowly and often stopped due to heavy traffic from buses, cars, and motorcycles, 

especially along Jalan Pudu, causing traffic jams. After the morning peak hours, traffic eased 

as vehicle volume decreased. Weekends revealed tourists strolling and vehicles parked along 

Merdeka Square Road, with frequent police patrols. 

Around noon, vehicular movement increased due to lunchtime traffic from workers 

frequenting the numerous restaurants lining Jalan Pudu. Contrary to the morning, afternoon 

traffic was faster paced, witnessing increased pedestrian activity and crossings, alongside 

numerous food delivery services' motorcycles. Merdeka Square Road experienced less 

congestion than Jalan Pudu, regardless of peak times, with only a few vehicles noted during 

each data recording lap. During the Muslim fasting month, from 4 PM onwards, numerous food 

trucks lined Jalan Pudu and Merdeka Square Road, attracting pedestrians buying food to break 

their fast. Consequently, traffic slowed during this period, exacerbated by police presence and 

roadblocks. These diverse traffic conditions and road actors at different times of the day offer 

valuable scenarios for analysis. Based on the above descriptions, it can be noted that the 

selected location contribution towards mixed traffic conditions which is heavily involved with 

pedestrians’ motion, passenger and commercial vehicles which creates heavy traffic conditions. 

This has been classified as part of the ODD for the Jalan Pudu and Masjid Jamek routes. 

  

Figure 4-41 GPS trajectory of Jalan Pudu and Masjid Jamek route (aerial image obtained from Google 

Earth) 
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4.6.3  Data Recording Route 3 and 4: Cyberjaya MaGIC Route A and Route B 

Cyberjaya's Malaysian Global Innovation and Creativity Centre (MaGIC) Route A and 

MaGIC Route B constitute the initial two approved autonomous vehicle testing tracks by 

Futurise and the Ministry of Transport of Malaysia [328]. Figure 4-42  illustrates the layout for 

MaGIC Route A, while Figure 4-43 depicts MaGIC Route B. Comparatively, MaGIC Route A 

is a track located within the Futurise Centre which is less frequented by road users, limiting the 

number of valuable scenarios for data collection. In contrast, Route B connects to the main 

road, offering increased encounters with road users and diverse traffic situations, thus 

providing more valuable data for recording purposes. As both routes exhibit a lower frequency 

of road users and traffic scenarios, data collection was conducted over a span of nine days to 

ensure an adequate collection of scenarios. The lower traffic density resulted in more consistent 

driving behaviours, with less variability in speed and manoeuvring. However, the lower 

frequency of interactions with other road users provided fewer critical driving scenarios, 

limiting the diversity of recorded data. Despite this, these routes served as valuable testbeds for 

controlled autonomous vehicle trials. Moreover, these routes have been considered as one of 

the important locations for data collection as these routes have been designated as testing area 

for Autonomous Vehicle. Therefore, identifying the potential location to conduct the scenario-

based testing is useful in this study. 

 
Figure 4-42 GPS trajectory of MaGIC Route A 

(aerial image obtained from Google Earth) 

 
Figure 4-43 GPS trajectory of MaGIC Route B 

(aerial image obtained from Google Earth) 

Figure 4-44 displays the total dataset length recorded in hours for various conditions, 

totalling approximately 245 hours of road environment and driving data. It can be observed 

that the Jalan Pudu route has the highest recorded dataset length in hours. This is due to heavy 

traffic congestion, frequent stop-and-go conditions, and diverse road users. The presence of 

multiple intersections, pedestrian crossings, and commercial activities results in prolonged 

travel times and increased driving data. The complex urban environment requires frequent 

braking, acceleration, and steering adjustments, further extending the dataset length. In contrast, 

Pavilion Bukit Bintang despite being in a busy commercial district, has better-managed traffic 

flow, one-way streets, and designated pedestrian zones, reducing prolonged vehicle 

interactions and unnecessary delays. As a result, less time is spent in active driving, leading to 

fewer recorded data hours compared to Jalan Pudu.  
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Figure 4-44 Dataset length for different conditions 

4.7 Summary 

This chapter presented the validation of the developed vehicle model using data 

collected from an instrumented vehicle. A low-cost sensor suite was integrated into the 

instrumented vehicle, enabling real-time acquisition of vehicle state parameters and 

surrounding traffic conditions. The validation process involved systematic testing using 

standardized driving manoeuvres, including the double lane change (DLC) test, step steer test, 

and braking test, to compare the Simulink-based 14-degree-of-freedom (DOF) vehicle model 

and IPG CarMaker virtual vehicle against real-world data. 

The results of the double lane change (DLC) test demonstrated a high level of 

agreement between the simulated and real vehicle responses in terms of steering angle, lateral 

acceleration, yaw rate, and local position. However, minor discrepancies were observed, 

particularly during the exit phase of the manoeuvre, where the real vehicle exhibited a slightly 

delayed stabilization compared to the simulations. These deviations were primarily attributed 

to tire-road interaction variations, suspension compliance, and transient aerodynamic effects, 

which were not fully captured in the simulation models. The Simulink model tended to 

underpredict lateral acceleration, while the IPG CarMaker model exhibited slightly 

exaggerated yaw rate peaks, likely due to differences in tire model formulations and damping 

characteristics. 

The step steer test evaluated the transient response of the vehicle to a sudden steering 

input. The yaw rate and lateral acceleration responses from the simulated models closely 

matched the real-world data, with slight differences in stabilization time and peak lateral 

acceleration values. The real vehicle exhibited greater damping effects, which were likely due 

to suspension compliance and tire deformation characteristics that were not fully modeled in 

the simulations. Additionally, external factors such as minor crosswinds and road surface 

irregularities may have contributed to variations in yaw rate stabilization in real-world 

conditions. The results suggested that further refinements in suspension dynamics and tire-road 

interaction modelling could improve the fidelity of the vehicle models. 

The braking test examined vehicle deceleration characteristics, including velocity 

reduction and pitch angle response. The simulated models generally overestimated braking 
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force application, leading to slightly shorter stopping distances compared to the real vehicle. 

The real-world data indicated a more pronounced forward pitch motion, which was attributed 

to greater weight transfer effects in actual braking scenarios. The simplified braking force 

distribution models in the simulations assumed symmetric braking, whereas real-world braking 

dynamics involve non-uniform brake force allocation and transient variations in brake pad 

friction. These findings highlight the need for a more sophisticated brake system model to 

enhance the accuracy of longitudinal dynamics predictions. 

Additionally, this chapter presented the data collection process on dedicated driving 

routes, including Jalan Pudu, Pavilion Bukit Bintang, University of Nottingham Malaysia 

(UNM) and MaGIC route A and B. This effort resulted in a total of 245 hours of driving data 

recorded across all selected road networks. The Jalan Pudu route recorded the longest dataset 

length due to its heavy urban congestion, frequent stop-and-go traffic, and diverse road users, 

which naturally extended the driving duration. In contrast, the Pavilion Bukit Bintang and 

UNM routes had shorter dataset lengths due to better-managed traffic flow and lower vehicle 

density, allowing vehicles to complete the routes more quickly. These variations in dataset 

length emphasize the influence of road network characteristics, traffic conditions, and driver 

interactions on data collection outcomes.  

Overall, this chapter established the validity of the developed vehicle model by 

demonstrating strong correlations between simulated and real-world vehicle responses. The 

discrepancies observed highlight the limitations of tire modeling, suspension dynamics, 

aerodynamic influences, and braking force distribution assumptions. Future refinements should 

focus on incorporating higher-fidelity tire models, improving aerodynamic modeling, and 

enhancing real-world road texture integration to further improve simulation accuracy. These 

findings provide a critical foundation for the subsequent development of an AI-based driver 

model, ensuring that realistic vehicle dynamics are accurately captured within the simulation 

framework.  
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Chapter 5: Development of An Autonomous Vehicle Testing 

Platform 

5.1 Overview 

 Safety assessment for autonomous vehicle has become one of the important elements 

before actual deployment on the road. This is to reduce the uncertainty that might occurs for 

the autonomous vehicle which lead road casualties such as traffic congestions or road accidents. 

One of the safety assessment methods is focusing on the simulation-based testing which can 

represents the actual environment and traffic scenarios. Besides, most of the autonomous 

vehicle developers are focusing on the safety issue for the vehicle, especially for Level 3 and 

Level 4 autonomous vehicle. A safety operator has been included as part of the vehicle 

operation to handle the vehicle during critical scenario. This has raised the additional concern 

on the capability of the safety operator to handle the autonomous vehicle during critical 

scenario. Therefore, driver-in-the loop simulation platform with human-machine-interface 

(HMI) is proposed as the safety testing platform for autonomous vehicle in this chapter. The 

simulation platform is developed using the simulation tool, IPG CarMaker. IPG CarMaker is 

used as the main component in the safety testing platform to develop the 3D virtual 

environment, traffic simulation, test cases, vehicle dynamic modelling and sensors simulation. 

Moreover, Simulink is used to design sub-models and algorithm such as ADAS controller, 

driver models and external steering and driving pedal mechanism which can then be integrated 

in the IPG CarMaker. 

In the safety testing platform, other than quality and the fidelity of the simulation 

images or videos generated by the virtual simulation environment are important, but the degree 

of immersion also plays an important role for the safety assessment. This could replicate the 

similar driving feel from actual vehicle for the drivers or safety operators. Based on the degree 

of immersion, the behaviour of the drivers to handle the autonomous vehicle during critical 

scenario can be estimated. Moreover, it can be noted that the driver’s experience such as driving 

in the real-world scenario is quite important for the development of the safety testing platform. 

This is mainly because the driver’s experience using driving simulator can be used as an input 

to train the developed driver model, which will be discussed in Chapter 6. In order to develop 

the driver model, relevant driving data are required based on different drivers. The IPG 

CarMaker is used as the main simulation platform to generate high fidelity virtual simulation 

environment. However, it can be observed that as a software tool, it is unable to provide 

physical motion feedback to drivers without external hardware. Therefore, integration of 

simulation tool, IPG CarMaker with 6DOF motion platform and Virtual Reality headset are 

emphasized in this chapter. Based on the integration, several test cases are developed using 

IPG CarMaker for the driver-in-the-loop safety testing to gather driver’s experience. 

This chapter start with the development of an interface of Logitech G29 Driving Force 

Steering Wheel and Pedals kit to CarMaker using Simulink model. Then, the details of 

interfacing the Logitech G29 Steering Wheel and Pedal with the IPG CarMaker is discussed in 

this chapter. Next, this chapter presents the development of virtual safety testing for 
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autonomous vehicle that integrates with driver-in-the-loop simulator, 6DOF motion simulator 

and virtual reality. is also discussed. The integration of 6 degree of freedom (DoF) motion 

simulator with virtual reality (VR) is discussed in the following section. Then, this chapter also 

discussed on followed by the development of scenario-based testing using data recorded from 

the previous chapter. Furthermore, the performance of the built-in driver model of the IPG 

CarMaker compared to a human driver driving on the developed scenario-based testing 

platform is evaluated. Finally, the final section will summarise the chapter. 

 

5.2 Configuration of Interface between CarMaker and Simulink  

 MATLAB Simulink is one of the most popular tools used for Model Based Software 

Development in the automotive industry. Simulink has been used in various application and 

able to interface with external tools such as CarSim and IPG CarMaker.  In terms of integration 

of IPG CarMaker, this simulation tool also provides advanced software package for easier 

integration of custom Simulink models such as controller and driver models into IPG CarMaker 

software. Moreover, IPG CarMaker supports for co-simulation with Simulink and able to 

integrate external build-in Simulink model for the simulation-based testing. In this chapter, the 

main focus is the integration of external hardware into the IPG CarMaker simulation tool so 

that the virtual ego vehicle can receive driving inputs from the human driver. 

            In order to achieve this goal, a human interface hardware is required to allow human’s 

interaction with the simulation during real-time testing. The hardware is required with physical 

interaction for steering inputs, brake input, throttle input and gear inputs (for manual driving 

only). Thus, Logitech G29 Driving Force Steering Wheels and Pedals are used in this study to 

enable human control of vehicle steering angle, gear, gas pedal position and brake pedal 

position as shown in Figure 5-1. The Steering wheel allows 900 degrees’ (−450° for full left 

and +450° for full right) lock-to-lock rotation and force feedback to provide realistic driving 

experience. This configuration which is important to ensure that the human’s responses are 

gathered for each test cases conducted using the IPG CarMaker. Moreover, the responses 

gathered from the hardware are compared with “DrivMan” Simulink block. This is to validate 

the responses collected from the simulation tool similar to the actions taken by same driver 

while driving in real life environment. 

 

Figure 5-1: Logitech G29 Driving Force Steering Wheel and Pedals 

In order to interface the Logitech G29 kit to IPG CarMaker, a Simulink model is 

developed as shown in Figure 5-2. The Simulink model is used to map the control signals from 

the Logitech G29 kit into steering angle, gear, gas pedal and brake pedal signals which can be 

accepted in the IPG CarMaker. By default, IPG CarMaker used built-in driver model, known 
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as IPGDriver to drive the virtual vehicle. In order to bypass the IPGDriver and use external 

driver’s control input instead, the output of the default IPG’s Simulink driver model is replaced 

with the corresponding outputs of the external driver model developed, as shown in Figure 5-3. 

The steering wheel and pedal interface were assessed by inviting participants to test it, with the 

goal of evaluating its realism and identifying any issues. Several scenarios developed to 

conduct this test. Figure 5-4 shows a participant driving the virtual vehicle model in IPG 

CarMaker via the virtual environment namely IPG Movie using the hardware interface. 

Through the human-machine-interface (HMI) using Logitech Steering and Pedal Input, the 

human inputs can be measured and able to control externally based on participant driving 

behaviour. However, it can be noted the limitations of the static driving simulator based on 

participant’s feedback. The limitations are addressing lack of motion feedback to provide a 

sense of speed and vehicle motion, hindering the ability to handle the car naturally. Moreover, 

the participants also feedback that the visualization of the simulation setup does not provide a 

sufficient field of view to observe the side-view and rear-view of the vehicle. This drawback 

causes some difficulties for the participant to conduct critical test scenarios such as lane change 

conditions and overtaking scenarios, which requires surrounding view of the vehicle. 

 

Figure 5-2: Logitech G29 Driving Force Simulink model. 

 

Figure 5-3: Logitech G29 interface with CarMaker for Simulink 
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Figure 5-4: Human machine interface using IPG CarMaker and Logitech G29 steering wheel. 

 

5.3 Integration of Virtual Simulator with 6 Degree of Freedom Motion Simulator  

  A motion simulator was developed to enhance the immersion of the driving simulator 

and provide the motion feedback that was lacking in previous tests, as indicated by participant 

feedback. This development aimed to ensure that the driving inputs applied by the drivers on 

the simulator were similar to those in the real world. The motion simulator has a floor footprint 

of 120 × 250 𝑐𝑚, and features seven linear actuators designed to provide the 6-DOF motions: 

pitch, roll, yaw, surge, sway, and heave. The 6-DOF simulator is important for replicating 

vehicular movements, encompassing acceleration, braking, cornering, and impacts. This 

provides drivers an authentic driving experience, which is important in mitigating simulator 

sickness by aligning the simulated experience with the driver’s anticipations and corporeal 

movements. Figure 5-5 shows the 3D model of the motion platform designed using SolidWorks 

and Figure 5-6 shows the actual 6 DOF motion platform developed. 

  
Figure 5-5 Motion simulator 3D model Figure 5-6 6 DOF motion platform 

In this section, the detailed development of the interface between the IPG CarMaker 

and the 6 DOF motion simulator will be discussed. Controlled by the Thanos AMC-AASD15A 

servo motion controller, the 6 DOF motion platform's linear actuators are managed based on 

the received motion input. The default configuration does not equip with Application 

Programming Interface (API) to support the interaction between IPG CarMaker and the 6 DOF 

motion platform. On the other hand, the motion simulator was designed with the Sim Racing 

Studio (SRS) API. This interface was developed for the sole purpose of gaming activities. Thus, 

the existing API has been modified in order to enable the API to communicate between IPG 

CarMaker and the motion platform via a TCP/IP socket. However, creating a TCP/IP bridge 

with the motion simulator poses a significant challenge. This challenge stems from the basic 
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design of Simulink's TCP/IP function block, which is not inherently equipped to communicate 

via specific APIs on such networks. 

5.3.1  Interfacing IPG CarMaker with Python 

Generally, Simulink platform works great with IPG CarMaker for model-based 

development and co-simulation-based testing. However, to communicate with the motion 

platform using SRS API through TCP/IP network, an open-source platform is required to 

establish the interface between motion platform and Logitech G29 steering wheel and pedal 

kit. Therefore, Python is used in this study for the API configuration process. It can be observed 

that Simulink is not as convenient as Python due to more powerful and easy to use libraries 

such as TensorFlow and PyTorch are available through Python, which have vast community 

resources and supports. Therefore, developing an interface between IPG CarMaker and Python 

is very important not only for the communication with the motion platform but also for 

integration between IPG CarMaker with the external AI based driver model, which will be 

discussed in the next chapter. However, there is no established configuration to integrate 

between Python with IPG CarMaker, such as IPG CarMaker for Simulink. Nonetheless, IPG 

CarMaker allows TCP/IP sockets for communication with external open-source platforms. By 

establishing a TCP/IP bridge between the IPG CarMaker and the Python program, the Python 

program can access and manipulate the quantities of the IPG CarMaker via Direct Variable 

Access (DVA) during simulation. Once the TCP/IP bridge is established, the program can 

request the value of required quantity data by simply transmitting “DVAWrite” message 

encoded with the name of the quantity data, duration and the desired parameters’ values to IPG 

CarMaker. Whereas to read quantity data, it can be done by simply sending a “DVARead” 

message encoded with the name of the quantities. Then, IPG CarMaker will transmit back the 

specified value of the quantity as shown in Figure 5-7 instantaneously. 

 

 

Besides accessing and manipulating the quantities of IPG CarMaker, Video Data 

Stream (VDS) generated by virtual cameras are mounted on the ego vehicle. The data from 

virtual cameras can be exported over TCP/IP and accessed by Python program. This is one of 

the steps that has been implemented for the interface because it’s crucial for vision-based 

Figure 5-7 Reading vehicle speed, brake pedal, gas pedal and steering angle quantities from IPG 

CarMaker using Python. 
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autonomous vehicle’s controllers to gather images as data input. Unlike accessing the quantities 

of the IPG CarMaker, a configuration file for IPGMovie is required before using the VDS. The 

configuration file is required to define the TCP/IP socket for streaming and camera’s 

configuration such as resolution, framerate, relative distance, orientation of the camera and 

other parameters of the camera sensor. Additionally, more than one camera can be defined in 

the same configuration file as shown in Figure 5-8. However, increasing VDS will affect the 

latency of each frame cycle, which in result will slow down the simulation speed. Therefore, 

the number of cameras used for the streaming process is limited to 4 views only. After the 

configuration is completed and simulation initiated, each VDS camera frame will be rendered 

in each frame cycle sequentially before start of the next frame cycle.  

 

Each transmitted image is encoded with a header information string that has a format as follow: 

“*VDS <label of camera> <image format> <time> <width>x<height> <length of the image 

in bytes>\n”. 

Python is used to decode and extract the image data from the VDS received. The image data is 

reshaped into RGB three color channels image based on the width and height information 

decoded from the header information string. Finally, the image can be used according to user’s 

requirement such as feeding as inputs into a vision-based controller’s algorithm and displaying 

on the screen using OpenCV library as shown in Figure 5-9.  

 

Figure 5-8 Example of VDS configuration with two cameras (front and rear) with TCP/IP socket of 2211 

Figure 5-9 Video stream data exported from four cameras mounted on ego vehicle, where frame 1 is from 

front camera, frame 2 is from rear camera, frame 3 is from right side mirror camera and frame 4 is from 

left side mirror camera. 
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5.3.2  Interfacing IPG CarMaker with Motion Simulator 

After the interface between Python and IPG CarMaker is completed, the data exchange 

between both platforms can be achieved in real-time. By using the same API protocol, the data 

exchange from the motion platform and IPG CarMaker can be established. The parameters 

required by the motion simulator can be accessed and obtained by transmitting “DVARead” 

message from the IPG CarMaker via TCP/IP 16660 socket. The signals required from the IPG 

CarMaker, and the corresponding signals of the motion platform are shown in Table 5-1. By 

using the Sim Racing Studio API, the IPG CarMaker signals are encoded into a telemetry 

message which is sent to the motion simulator through TCP/IP socket 33001. Figure 5-10 

shows the communication architecture between the IPG CarMaker and the motion simulator. 

 

Figure 5-10 CarMaker-motion platform interface architecture 

Table 5-1 Motion simulator integration signals 

CarMaker Signals Motion Simulator Signals Description 

Env.WindVel speed Wind speed in m/s 

Vhcl.Engine.rotv rpm Rotation per minute of the engine 

PT.GearBox.GearNo gear Gear position 

Vhcl.Pitch pitch Pitch angle in degrees -180 to +180 

Vhcl.Roll roll Roll angle in degrees -180 to +180 

Vhcl.Yaw yaw Yaw angle in degrees -180 to +180 

Car.vy lateral_velocity Lateral velocity in m/s used for traction loss 

simulation 

Car.ax lateral_acceleration Lateral direction g-force in values between -10 to 10 

Car.az vertical_acceleration Vertical direction g-force in values between -10 to 

10 

Car.ay longitudinal_acceleration Longitudinal direction g-force in values between -10 

to 10 

Car.DampFL.l suspension_travel_front_left Suspension travel of front left wheel in value 

between -10 to 10 

Car.DampFR.l suspension_travel_front_right Suspension travel of front right wheel in value 

between -10 to 10 

Car.DampRL.l suspension_travel_rear_left Suspension travel of rear left wheel in value between 

-10 to 10 

Car.DampRR.l suspension_travel_rear_right Suspension travel of rear right wheel in value 

between -10 to 10 

Python Program 

TCP/IP Socket 
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TCP/IP Socket 

33001 

Vehicle response data 

Telemetry message 

Encode with  
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DVARead 

Encoded data 

stream 
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As shown in Table 5-1, the signals from the IPG CarMaker need to be mapped to the 

corresponding signals for the motion simulator. However, the convention used by the two 

platform is different such as the value of the pitch angle from the IPG CarMaker is in radian 

whereas the value accepted by the motion simulator is in degrees. Therefore, the Python 

program also need to convert the signals received from the IPG CarMaker to the correct format 

before the values can be passed to the motion simulator. In order to convert the pitch, roll and 

yaw angle from radian to degrees, a standard mathematical conversion formula for converting 

angular measurements from radians to degrees [329] is shown in Equation 5.1 and applied to 

the angles’ value obtained from the CarMaker. 

𝑎𝑛𝑔𝑙𝑒𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑎𝑛𝑔𝑙𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ×
180

𝜋
(5.1) 

Whereas for converting the lateral acceleration, vertical acceleration and longitudinal 

acceleration which has value in 𝑚/𝑠2  to the corresponding g force, the value from IPG 

CarMaker is divided by gravitational acceleration, 𝑔 which is 9.81 𝑚/𝑠2 to obtain the g force 

experience by the virtual vehicle. To convert the suspension travel length in metres to 

suspension travel scaling from range 0 to 10, a normalization method that is commonly used 

in vehicle dynamics simulation [301] as shown in Equation 5.2 is applied. 

𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑚𝑜𝑡𝑖𝑜𝑛 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 =
𝑙𝑠𝐶𝑀

− 𝑙𝑠𝑑𝑟𝑜𝑜𝑝  

𝑙𝑆𝑏𝑢𝑚𝑝  − 𝑙𝑠𝑑𝑟𝑜𝑜𝑝  

× 10 (5.2)   

Where, 𝑙𝑆𝐶𝑀
 is the suspension travel length in metres obtained from CarMaker, and 

𝑙𝑆𝑏𝑢𝑚𝑝
 and 𝑙𝑠𝑑𝑟𝑜𝑜𝑝  is the suspension travel clearance allowed for bump and droop behaviour of 

the wheel respectively. Figure 5-11 shows bump and droop behaviour of suspension on an 

uneven terrain. From the CarMaker, the buffer of the vehicle is defined as a spring to limit the 

wheel travel in one direction. From Figure 5-12, the characteristic of the buffer shows that the 

maximum travel of the suspension spring defined for “Push”/Bump is 0.075 𝑚, whereas the 

maximum travel of the suspension spring defined for “Pull”/Droop is 0.025 𝑚. Therefore, the 

total suspension travel clearance for this vehicle is 1𝑚. With all the parameters available, the 

python program developed then proceed to encode using SRS API and send the data to the 

motion simulator via TCP/IP network.  

 

 
Figure 5-11 Bump and droop behaviour of a suspension 

[330] 

Figure 5-12 Buffer characteristic definition 

of CarMaker virtual vehicle. 
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 In order to provide visual feedback to human driver that sits on the motion simulator, a 

camera is mounted on the driver seat. The view captured from the driver seat is displayed on 

the monitor’s screen so that the driver has a feeling of sitting in the virtual vehicle. Figure 5-13 

shows the position of a camera sensor mounted on the driver seat of the virtual vehicle and the 

view captured from the driver seat camera. 

 
Figure 5-13 (a) Driver view camera mounted on the driver seat using IPG CarMaker and (b) camera view 

captured from camera mounted on driver seat. 

Once the 6 DOF vehicle driving simulator is in fully functional mode, the driver-in-the-

loop (DiL) simulator can be developed. The DiL can be designed using the Logitech G29 

steering wheel and pedal kit by interfacing it using Simulink model configuration as shown in 

previous section. Human driver can drive the virtual vehicle by interacting with the steering 

wheel and pedals to provide steering wheel angle, acceleration or braking inputs to the virtual 

vehicle and receiving visual feedback from the monitor screen and motion feedback from the 

motion simulator. Figure 5-14 shows a human driver driving the virtual vehicle on the motion 

simulator. 

 

Figure 5-14 Driver-in-the-loop simulator with motion feedback. 

 

5.4 Integration of Virtual Simulator with Virtual Reality 

 The introduction of virtual reality (VR) via an Oculus Quest 2 headset enriches the 

immersive quality of the simulator, bridging the gap between the real world and simulation. As 

the drivers put on the VR headset, they are transported into a virtual world that feels just like 

being inside a real car. The use of VR headset in driving simulator also offers a stereoscopic 

3D view that mimics the depth perception experienced in a real world. This is achieved through 
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the independent screens for each eye, creating a sense of depth and space. It is an essential 

feature for realistic simulations because it helps drivers judge distances and speeds more 

accurately, just as they would on an actual road. Despite low cost, the Oculus Quest 2 head-

mounted display (HMD) also equipped with a built-in visual and inertial based motion tracking 

system to provides precise movement tracking. Additionally, the integrated stereo speakers 

within the headset contribute to immersive sound feedback. Notably, the Quest 2's wireless 

capability enhances user freedom during operation, eliminating the need for wired connections.  

However, integrating VR with IPG CarMaker presents challenges due to the absence of native 

VR support. In order to implement VR with IPG CarMaker, development of an interface 

between the IPG CarMaker and the VR headset is required. This interface is required to engage 

virtual reality headset with IPG CarMaker simulation platform. 

 

5.4.1  Virtual Reality Headset Interface 

During the development of the interface process between Oculus Quest 2 and IPG 

CarMaker. a few challenges have been identified. Firstly, the orientation and position of the 

camera sensor in the IPG CarMaker is fixed and cannot be rotated and moved during the 

simulation. Secondly, the IPG CarMaker does not have an interface to receive input from the 

Oculus Quest 2 headset. Therefore, a customize plugin are required to transmit the orientation 

of the headset to the IPG CarMaker. This is to control the position and orientation of the camera 

so that the camera turns according to the orientation of the headset. To solve the first challenge, 

a free moving traffic geometry object with 3D model of a driver is generated using the 

CarMaker’s Traffic editor as shown in Figure 5-15. This is because the position [𝑡𝑥, 𝑡𝑦, 𝑡𝑧] and 

orientation [𝑟𝑥, 𝑟𝑦, 𝑟𝑧]  of the free moving geometry can be accessed via Direct Variable 

Access (DVA) of the CarMaker. Next, the driver camera view is configured by attaching to the 

geometry object in order to make the camera move and rotate along with the geometry object. 

Hence, by using Simulink or Python, the geometry object can be manipulated during the 

simulation which resulting the camera view to rotate and move together. 

Next, to solve the second challenge, third party software such as Simulink and Python 

is used to develop the interface with the Oculus headset using OpenVR API. OpenVR API is 

an open-source API to interface with VR headset with other simulation platform. Therefore, 

by using the OpenVR API, not only the Oculus headset will be supported but any VR headsets 

that are compatible with OpenVR API can be used. Initially, Python is chosen to set up a bridge 

between the Quest 2 and the CarMaker. However, it has been identified that there is a lot of 

delay using this method which caused the driver view to always be lagged and could not move 

with the virtual vehicle smoothly. This is because Python is an interpreted language where the 

code is interpreted during runtime but not compiled to native code. Therefore, Python is slower 

than native programming language such as C/C++. To make the driver geometry object move 

smoothly with the virtual vehicle, Simulink is used as a bridge to interface the Oculus Quest 2 

headset with the IPG CarMaker. This is mainly because the function blocks in the Simulink 

were compiled before it starts to run the simulation process. Figure 5-16 shows the design of 

the interface for using virtual reality with CarMaker. 
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Figure 5-15 Virtual driver geometry object generated using Traffic editor. 

 

Figure 5-16 Overview design of VR-CarMaker interface developed. 

 In CarMaker, the position of all the geometry objects and vehicles are relative to the 

origin position of the map. In order to identify the driver’s position, kinematic model that 

describe the relationship between the driver object and the vehicle in 2D planar are designed 

as shown in Figure 5-17. This position is identified so that the geometry object can be placed 

on the driver seat of the virtual vehicle. 

 

Figure 5-17 Kinematic model of the driver object in 2D planar. 

To find the driver position relative to the origin, a transformation matrix, 𝑇 that describe the 

translation and rotation required to transform the position of the driver from origin to the 

desired position is defined in Equation 5.3.  

𝑇 = 𝑅𝑧𝑂
(𝑞1)𝑇𝑥𝑂

(𝑎1)𝑅𝑍𝐶
(𝜓)𝑅𝑍𝐶

(𝑞2)𝑇𝑥(𝑎2) 

𝑇 = (
cos(𝑞1 + 𝑞2 − 𝜓) sin(𝑞1 + 𝑞2 − 𝜓) 𝑎2 cos(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 cos 𝑞1

sin(𝑞1 + 𝑞2 − 𝜓) sin(𝑞1 + 𝑞2 − 𝜓) 𝑎2 sin(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 sin 𝑞1
0 0 1

) (5.3) 
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Where, 

𝑎1 is the displacement from the virtual vehicle’s centre point to the origin, 

𝑎2 is the displacement from the driver’s centre point to the virtual vehicle’s centre point, 

𝑞1 is the angle between the virtual vehicle’s frame and the global frame,  

𝜓 is the yaw angle of the virtual vehicle relative to the 𝑌 axis, and 

𝑞2 is the angle between the driver’s frame and the virtual vehicle’s frame. 

Since this is a homogeneous transformation matrix which combined rotation matrix, 𝑅 and 

translation matrix, 𝑃 into a single matrix 𝐻 which is shown in Equation 5.4, the equations that 

describe the displacement of the driver object from the origin is defined in Equation 5.5. 

𝐻 =  (
𝑅 𝑃
0 1

) (5.4) 

𝐻 = (
𝐶1 −𝑆1 𝑥𝑑

𝑆1 𝐶1 𝑦𝑑

0 0 1

) (5.5) 

By comparing Equation 5.3 and Equation 5.5, Equation 5.6 can be found as below: 

(
𝐶1 −𝑆1 𝑥𝑑

𝑆1 𝐶1 𝑦𝑑

0 0 1

) = (
cos(𝑞1 + 𝑞2 − 𝜓) sin(𝑞1 + 𝑞2 − 𝜓) 𝑎2 cos(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 cos 𝑞1

sin(𝑞1 + 𝑞2 − 𝜓) sin(𝑞1 + 𝑞2 − 𝜓) 𝑎2 sin(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 sin 𝑞1
0 0 1

) 

(
𝑥𝑑

𝑦𝑑
) = (

𝑎2 cos(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 cos 𝑞1

𝑎2 sin(𝑞1 + 𝑞2 − 𝜓) + 𝑎1 sin 𝑞1
) (5.6) 

The yaw angle, 𝜓 can be obtained from the IPG CarMaker’s “Car.Yaw” quantity via DVA. To 

obtain 𝑞1 and 𝑎1 from the instantaneous position of the virtual vehicle, Equation 5.7 and 

Equation 5.8 can be used to calculate the two values respectively, based on basic trigonometry. 

𝑞1 = tan−1
𝐶𝑎𝑟. 𝑡𝑥

𝐶𝑎𝑟. 𝑡𝑦
(5.7) 

𝑎1 =
𝐶𝑎𝑟. 𝑡𝑥

cos 𝑞1
(5.8) 

The value of 𝑞2 and 𝑎2, which describe the displacement of the driver seat to the centre point 

of the vehicle body, remain constant because the driver seat is fixed to the chassis of the vehicle. 

The final step is to provide the head tracking signals of the Oculus headset to the driver 

geometry object so that the camera mounted on the object will rotate according to the 

orientation of the VR headset. Figure 5-18 shows the model configuration using the VR headset 

with the CarMaker. A Python program is developed to obtain head tracking signals from the 

VR headset through OpenVR API. The Python code then normalise and mapped the signals to 

an emulated virtual joystick using a virtual joystick device driver (vJoy). The reason for 

mapping the head tracking data to a virtual joystick is because the Simulink does not have 

native method to read the tracking data, but it has a built-in joystick function block to obtain 

signals from external device. Next, the VR headset orientation in pitch, roll and yaw angles can 

be converted from the joystick signal. To make sure the driver object always facing at the same 

direction of the car when there is no head movement, the car’s instantaneous orientation 

obtained from CarMaker is added to the driver object’s orientation. Figure 5-19 shows the view 

of a scene inside the virtual vehicle in the CarMaker. 
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Figure 5-18 Implementation of Oculus’s head tracking in CarMaker 

 

Figure 5-19 View of inside the virtual simulator with virtual reality where each frame represents the 

driver's view as the driver turn their head left, right, up and down, illustrating 360-degree view 

5.4.2  Motion Compensation 

Driving inside a fully equipped cockpit with VR headset and head tracking gives drivers 

the feeling of driving like in a real car. However, when combine the use of VR with motion 

simulator, there is a serious flaw where the seat movement of the motion platform will be 

captured and recognized by the VR headset as head movements. An example of a driver using 

the VR headset with motion simulator is shown in Figure 5-20. It can be observed from the 

figure below that without motion compensation, when the driver perform double lane change, 

the motion simulator performed yaw and roll movements to simulate a force that indirectly 

disengage the driver’s body outside the seat. The VR headset identified this movement as the 

driver’s head movements and processes them in the normal way which resulting the driver’s 

view tilted and looks like it is moving toward the side windows which is unpleasing. 

 

Figure 5-20 Driver's view during double lane changes with motion compensation (left) and without motion 

compensation (right). 
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 In order to eliminate the issue, motion compensation is required to cancel the motion 

generated by the motion simulator from the VR headset’s head tracking value. The process of 

motion compensation is shown in Figure 5-21. The response generated by the motion simulator 

is captured and used to calculate the correction needed to apply to the head tracking data 

captured by the VR headset at runtime.  

 

Figure 5-21 Process of motion compensation for head tracking. 

In order to capture the movement of the motion simulator, one of the touch controllers 

of the Oculus Quest 2 is mounted on the motion simulator to move with the simulator as shown 

in Figure 5-22. The Oculus Quest 2’s touch controller has built-in three DOF IMU sensor that 

can be used to measure the motion of the simulator. By making the controller as a reference 

tracker, VR headset’s head tracking is first calibrated to the IMU sensor reading of the 

controller. Hence, when the driver is facing the same direction as the touch controller, the 

motion captured by the VR headset is not counted as the head movement of the driver. Only 

when the captured head tracking values are more than or less than the value of the controller’s 

sensor value, the difference between the values is considered as the head movement of the 

driver. With this motion compensation, the driver’s view will not be affected by the platform’s 

movements and can provide a more immersive and authentic driving experience to the drivers. 

Figure 5-23 shows the system overview of the virtual simulator developed with integration of 

VR and motion platform. 

 

Figure 5-22 Virtual autonomous vehicle simulator with virtual reality and motion simulator. 

It is worth noting that many driving simulators utilize either the Stewart or compact 

configuration for their motion base. The compact type of simulator, as the name suggests, offers 

advantages such as lower cost and a compact design, making it easily transportable for events 

and customer demonstrations. However, compact simulators have limited stroke, which makes 

them unsuitable for high-fidelity motion simulation. On the other hand, the Stewart type, also 

known as the hexapod type, originates from aircraft simulators. In this study, the wedge type 

simulator, specifically designed to simulate vehicle motion with lower latency, is utilized. The 

motion and visual latency tolerated in aerospace simulators typically range from 100 ms to 150 

ms [331]. In contrast, experienced automotive test drivers have limited tolerance for latencies 

around 30 ms or even as low as 10 ms for racing drivers. The driving simulator developed in 

this study employs the wedge configuration, which helps reduce mass, size, and complexity, 

Reference tracker 
VR headset 
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lower the centre of gravity, maximize the range of motion, and independently and linearly 

control the axes of motion to replicate short and sharp movements. While recent novel 

techniques such as driving simulators with rail and movement concepts and omnidirectional 

wheels can provide high-fidelity translational motion, they are expensive and require 

significant space for the simulator to move. In comparison, the wedge simulator in this study 

offers advantages in terms of reduced mass, size, and complexity, as well as the ability to 

replicate short and sharp movements. Additionally, the Stewart simulator requires motion 

inputs as if they are originating from the driver's head position. In contrast, the simulator used 

in this study utilizes the suspension travel of the four wheels to simulate vehicle motion. This 

design is based on the 14 DOF mathematical vehicle model developed in Chapter 3, employing 

four vertical direction actuators that independently emulate the suspension travel of the wheels. 

Consequently, the simulator in this study can provide a more realistic driving experience, 

especially in events such as bumps, braking, accelerating, and cornering, compared to the 

Stewart type, which has limited stroke. Moreover, the simulator in this study is capable of 

emulating skid and traction loss situations, such as wet road conditions and locked wheels, 

which are challenging to achieve in the Stewart simulator. 

 

Figure 5-23 System architecture of the virtual simulator based-on IPG CarMaker with integration of VR 

and motion platform. 

In terms of the visualization interface and software utilized, no implementation of a 

driving simulator integrating a VR headset with IPG CarMaker software is available. This 

limitation arises because IPG CarMaker was not designed with the intention of being used for 

virtual reality driving simulators and lacks the necessary features for interfacing with VR 
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headsets. On the other hand, game engines like Unity3D provide tools for interfacing with VR 

equipment and motion platforms more easily. Additionally, game engines can offer high-

fidelity visualization of the driving environment, unlike IPG CarMaker, where reflections in 

IPGMovie are computed on the Central Processing Unit (CPU), resulting in low resolution and 

framerate when reflections are enabled [332]. However, these simulators that utilize game 

physics engines for vehicle dynamics and sensor models are not as accurate as the vehicle 

dynamic model and realistic sensor models provided by IPG CarMaker. Furthermore, by 

utilizing a workstation with higher computational CPU power, this study enables the simulation 

of the driving environment with high-fidelity graphics, including enabled reflections, while 

maintaining a high framerate. To compare the driving simulator developed with other driving 

simulator with motion base, the degree of freedom, type, software used, fidelity of the simulator 

and visualization interface were compared in Table 5-2. 

Table 5-2 Comparison of existing driving simulator. 

Driving Simulator Degree 

of 

Freedom 

Type of Motion 

Platform 

Software Fidelity Visualization 

interface Textures 

resolution 

Reflection 

Tractor driving 

simulator (TDS) 

[333] 

3 Stewart Unity 5 Low No VR headset 

Compact 3 DOF 

Driving Simulator 

using Immersive 

Virtual Reality 

[334] 

3 Compact Unity3D High Yes VR headset 

VR DS [335] 6 Compact Unity3D High Yes VR headset 

CASTER [332] 6 Stewart IPG 

CarMaker 

Low No Triple 

monitor setup 

Dynamic driving 

simulator with a 

novel rail and 

movement concept 

[336] 

6 Rail and 

movement 

concept 

IPG 

CarMaker 

Yes Yes CAVE 

Wheeled mobile 

driving simulator 

[337] 

6 Omnidirectional 

wheel based 

IPG 

CarMaker 

High Yes Not 

implemented 

This study 6 Wedge IPG 

CarMaker 

High Yes VR headset 

 

5.5 Scenario Identification and Classification for Scenario-Based Virtual Testing 

From the real-world data captured using the instrumented vehicle, the relevant 

scenarios are gathered based on the location for the deployment of the autonomous vehicle's 

operation. However, not all test scenarios can be used for test cases to conduct simulation and 

physical assessment. This is primarily because the test cases need to be designed based on 

necessary characteristics required for the assessment, such as test objectives, input data, test 

procedures, unique identifiers, testing platform capabilities, and expected results. Therefore, 
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scenario identification is required based on international standards such as ISO 21488 (Safety 

of the Intended Functionality or SOTIF) and ISO 26262 (Road Vehicles - Functional Safety), 

which are fundamental for the safety assessment of autonomous vehicles in physical 

environments. Additional standards, such as BSI Flex 1889, ISO 34501, ISO 34502, ISO 34503, 

and ISO 34504, provide comprehensive guidelines for scenario-based testing, scenario 

categorization, and the specification of the operational design domain (ODD), as presented in 

Chapter 2. 

Based on these standards, the raw data collected using the instrumented vehicle in the 

previous section must undergo manual pre-processing to extract longitudinal scenarios such as 

vehicle following, vehicle overtaking, and pedestrian jaywalking. Next, machine learning 

algorithms are used to identify specific events, such as near misses or accidents, from the pre-

processed data. Features that characterize the scenarios, including vehicle speed, distance 

between objects, weather conditions, and actor actions, are extracted from the data. These 

features are used to classify the scenarios into different categories relevant to the ODD and 

testing objectives. This classification process should be aligned with the ISO standards for 

scenario-based testing and classification. Finally, the classified scenarios are subjected to risk 

and hazard assessment to evaluate the potential safety risks associated with each scenario. This 

assessment involves qualitative and quantitative analysis methods. The scenario extraction 

process is discussed in detail in the following section and illustrated in Figure 5-22. 

 

Figure 5-24 Process of data extraction and scenario classification in autonomous vehicle 

 

5.5.1  Development of Malaysian Road Scenario database (MaRSeD) 

In order to extract and classify the scenarios from the raw data, this study proposes the 

Malaysian Road Scenario Database (MaRSeD), a scenario classification database. One primary 

function of MaRSeD is to develop a generic database that identifies potential test scenarios 

from the Malaysian environment for autonomous vehicle safety testing and maps them to 

international standards. Three main input data types have been considered for the classification 

process in MaRSeD. The first data type focuses on normal driving scenarios, which are low-

risk but frequently occurring in daily Malaysian driving conditions, such as pedestrian 

jaywalking, motorbike cut-ins, traffic vehicle cut-outs, and construction scenarios. The second 

type of scenario classification focuses on near-miss accident scenarios in the selected location. 
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Video data from instrumented vehicles are inputs that can lead to potential critical test scenarios 

common in the selected location. However, important scenarios from areas outside of the 

selected locations might be missed, crucial for test scenarios. Therefore, online videos uploaded 

by Malaysian road users on social media were used to re-create potential test scenarios as well.  

Additionally, road accident videos were obtained from the Malaysian Institute of Road 

Safety Research (MIROS), responsible for investigating road accidents in Malaysia. The 

collected raw videos were analysed to identify and label potential scenario classifications 

according to their severity. The test scenarios were further classified into four categories: 

Functional Scenario, Abstract Scenario, Logical Scenario, and Concrete Scenario, discussed in 

the following section. These categories were used to parameterize test scenarios for 

autonomous vehicle safety assessment into basic behaviour testing and critical test scenarios, 

discussed in the next section. The process flow is shown in Figure 5-25. 

 

Figure 5-25 Scenario classification process flow based on input data from instrumented vehicle 

Machine vision was considered in this study for scenario identification and 

classification based on Malaysian driving scenarios from raw video inputs, classified as 

Functional Scenarios. This raw video input was used to determine the severity encountered by 

the ego-vehicle (the testing vehicle for autonomous vehicles) during driving conditions. By 

measuring the distance between target actors (movable or static traffic objects) and the ego-

vehicle, the severity of a scenario can be determined. In this study, YOLOv8 tracking capability 

was used to determine the distance between target actors and the ego-vehicle. YOLOv8 was 

used to identify the object and determine its ID in the frame. Once the object reached a certain 

threshold, the severity index was triggered as part of the visualization stage. In the visualization, 

only the highest severity index for a scenario is displayed, while lower severity indexes from 

previous detections are not displayed. The machine vision flowchart using YOLOv8 for object 

detection and visualization is presented in Figure 5-26. 

The scenarios from the video database were fed into the machine vision algorithm once 

the configuration stage was completed. YOLOv8 utilized non-maximum suppression to 

eliminate unwanted overlapping detections. Based on this suppression approach, the remaining 

bounding boxes and class labels were extracted from the input frame using the prediction from 

the detection model. To demonstrate the detected objects through bounding boxes in the frame, 

the OpenCV library was used in this study. YOLOv8 utilized OpenCV's cv2.rectangle function 

to configure the rectangular shape around the object for each frame during the iteration process. 

Based on the coordinates for the bottom-right to top-left corners of the bounding box, the 

rectangle shape was drawn using the object detection model. In the next stage, a set of trackers 

was configured for each detected object to track objects in the frame. The trackers were linked 

with each bounding box, updating the position and size of the bounding box based on the 
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object's motion. Regions of Interest (ROIs) were established based on the distance between 

actors and the ego-vehicle. Based on the proximity between the ego-vehicle and the actor, a 

severity index was assigned to each ROI, increasing as the proximity range increased. The 

object IDs were gathered into the local database to eliminate repeated counts. The severity 

associated with the ROI was appended to a variable that stores the scenario severity. However, 

a new severity index would be considered for storage if an object appeared with a higher 

severity value in the ROI. The algorithm continued processing every frame until the final input 

frame provided in the machine vision algorithm. The outputs from the recorded data are based 

on severity rating, region of interest boundaries, and object detection bounding boxes. 

 

Figure 5-26 Flow chart for the objection detection using machine vision 

Using the YOLOv8 algorithm, two main tasks were completed. The first task focused 

on detecting target actors, and the second on quantifying object IDs for each target actor from 

the video. The region of interest was displayed in the frame for visual analysis purposes, and 

five regions were designed for each level of severity. Figure 5-27(i) shows the representation 

of the five regions for a sample scenario on a highway. Five horizontal lines display the ROI 

that the vehicle presides in once it crosses the region corresponding to the severity levels. The 

severity levels are color-coded as follows: Level 1 in green, Level 2 in yellow, Level 3 in 

orange, Level 4 in pink, and Level 5 in scarlet. The highest severity index value measures the 

potential risk of each target actor, multiplied by other factors such as controllability and 

frequency. The initial object detection process and identification of severity within ROI are 

illustrated in Figure 5-27(i). Whereas Figure 5-27(ii) illustrates the updated severity index 

based on changes in the ROI. Based on the ROI, the scenarios are tagged and categorized under 

Abstract Scenarios, defined into several sub-categories as described in Table 5-3. 
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(i) Machine Vision Far Point (ii) Machine Vision Near Point 

Figure 5-27 Region of interest detected using machine vision 

Table 5-3 Description of scenario 

Tag Description 

Main Scenario Primary scenario categorizing the level scenarios that commonly occurred on Malaysian 

driving environment. There are three main scenario tags as describe below: 

• Normal Driving Scenario (NORM) 

• Near Miss Scenario (NM) 

• Accident Scenarios (ACCD) 

A normal scenario classified for a vehicle driving without any hazard level and following 

all the traffic rules and regulation. A near miss addressing the certain level of hazardous 

conditions which has high potential for road accidents. The third scenario focusing on the 

accident scenario which addressing the high level of hazard situation. 

1st sub-scenario The first sub-scenario addressing the driving direction of the ego-vehicle that commonly 

occurred in Malaysian road traffic. This scenario can be tagged as  

• Driving in straight direction 

• Left turn driving 

• Right-turn driving 

2nd sub-scenario The second sub-scenario focusing on the ego-vehicle driving speed which is tagged into 

three level such as: 

• Longitudinal high speed 

• Longitudinal moderate speed 

• Longitudinal low speed 

3rd sub-scenario The third sub-scenario are addressing the signalling or non-signalling conditions on 

Malaysian routes. The scenario tags for third sub-scenario are: 

• Signalled routes 

• Non-signalled routes 

Operational 

Design Domain 

The ODD focusing on the road infrastructure that occurred at the designated testbeds 

Actor Addressing the potential actors that might interact with the ego-vehicle in a scenario 

Day/Night This scenario tags emphasizing the scenario occurred during night and during day.  

Weather This scenario tag focusing on different whether conditions which is generally classified 

as good or bad weather. Bad weather encompasses rain, mist, and haze while good 

weather addressing on sufficient day light, no rain and clear skies. 

Severity Displays the severity due to proximity of Ego vehicle and target actor via machine vision 

application. 

Expected Severity Displays the expected severity from looking at all the videos. 

Scenario 

Variation 

Provides an in-depth description towards scenario. 

Characteristic of 

ego vehicle 

Description of ego-vehicle behaviour during specific scenario 

The Automotive Safety Integrity Level (ASIL) is a risk classification system that 

specifies automotive safety standards under the ISO 26262 standard. Based on severity, 

exposure, and controllability, the risk analysis of a potential hazard and assessment of risk 



129 

 

factors are conducted to assign the ASIL level. The risk index is measured using Equation 5.9 

based on ISO 26262: 

𝑅𝑖𝑠𝑘 = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (5.9) 

Table 5-4 presents the ASIL distribution used for comparison with calculated risk. The original 

ISO 26262 allocation table includes three severity classes (S1, S2, S3), four probability classes 

(E1, E2, E3, E4), and three controllability classes (C1, C2, C3). This study, however, expands 

the risk allocation table to five severity classes: 1-No Injuries, 2-Light Injuries, 3-Moderate 

Injuries, 4-Severe Injuries, and 5-Life Threatening Injuries, and five frequency classes: 1-Very 

Low, 2-Low, 3-Medium, 4-High, and 5-Very High. The controllability classes which depend 

on the capability to avoid dangerous situations remain as C1 Easy, C2 Moderate, and C3 

Difficult. These expanded classes allow for a more detailed classification of scenarios. In Table 

2, different colour codes correlate with ASIL values: ASIL A (green) represents the lowest 

hazard level, while ASIL D (red) represents the highest. 

Table 5-4 Risk Allocation Table 

Severity Frequency 
Controllability 

C1 Easy C2 Moderate C3 Difficult 

1 

No Injuries 

1 Very Low 1 1 1 

2 Low 2 2 2 

3 Medium 3 3 3 

4 High 4 4 4 

5 Very High 5 5 5 

2 

Light Injuries 

1 Very Low 2 2 2 

2 Low 4 4 4 

3 Medium 6 6 6 

4 High 8 8 8 

5 Very High 10 10 10 

3 
Moderate Injuries 

1 Very Low 3 3 3 

2 Low 6 6 6 

3 Medium 9 9 9 

4 High 12 12 12 

5 Very High 15 15 15 

4 
Severe Injuries 

1 Very Low 4 4 4 

2 Low 8 8 8 

3 Medium 12 12 12 

4 High 16 16 16 

5 Very High 20 20 20 

5 

Life Threatening 
Injuries 

1 Very Low 5 5 5 

2 Low 10 10 10 

3 Medium 15 15 15 

4 High 20 20 20 

5 Very High 25 25 25 
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A Graphical User Interface (GUI) is developed to measure and analyse the risk, as 

shown in Figure 5-28. The GUI helps obtain the abstract scenario based on initial scenario 

classification. This study develops the logical scenario category, as stated in ISO 34504, 

focusing on the parameterization of scenario sets. Logical scenarios emphasize parameter 

ranges and distribution in scenario classification, which are defined quantitatively. These 

parameters can vary based on the Operational Design Domain of the vehicle and the 

deployment location of the autonomous vehicle. Parameterization includes ego-vehicles, 

dynamic traffic objects, and static traffic objects based on the scenario category. 

 

Figure 5-28 Graphical User Interface (GUI) for Scenario Classification 

 

5.6 Development 3D Environment Model for Scenario-Based Testing 

According to the process flow proposed, in order to develop scenarios for the scenario-

based testing, the data collected using the instrumented vehicle must first be analysed and 

identified. The video recordings were feed to a deep learning neural network which is YOLOv8 

for object detection. Based on the traffic object detection result, the critical scenarios occurred 

in the campus can be identified and extracted. Six different road actors were found in the 

datasets including car, truck, bus, bicycle, motorcycle, pedestrian. Figure 5-29 shows examples 

of the scenes identified. Figure 5-30 shows the road actors identified from data recorded at the 

selected road network. 
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Figure 5-30 Distribution of object category for each route. 

 

5.6.1  Development of 3D environment model 

The 3D environment models, serving as a digital twin of the selected road environment 

for scenario development, are created using IPG CarMaker. Upon running the program, the 

software menu is displayed, where the Scenario/Road option can be found under the 

Parameters toolbar, as highlighted in Figure 5-31. As shown in Figure 5-32, the Scenario 

Editor function is used to build a virtual driving environment, allowing roads to be modelled 

without needing actual road data. Any road network can be created as desired. 
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Figure 5-29 Examples of scenarios captured by the instrumented vehicle. 
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Figure 5-31 IPG CarMaker main GUI menu 

 

Figure 5-32 Scenario Editor tools for development of 3D environment model 

In Scenario Editor, it is important to ensure the settings are adjusted appropriately. 

Scenario Settings should be selected to access Localised Settings in the right sidebar. The 

default Driving Side should be changed from Right-hand to Left-hand traffic to match 

Malaysian driving regulations. The speed limit for each road type can also be adjusted here. To 

replicate the road network of a specific location, Background Image should be selected under 

Tools in the left sidebar to import a map from Google Maps. This map will serve as a reference 

for constructing the road network. The orientation and scale of the map image can be modified 

as needed. The Road features in the left sidebar include Road Segment, Lane Section, Lane, 3D 

Surface, Lateral Offset, and Bumps, which are used to create and modify the road network. 

The road network is defined by Links, consisting of road segments that can be straight, 

turns, ramp, or junction. The Lane Section feature allows a Link to be split into sections, with 

modifications affecting only the selected section. The Lane feature enables the modification of 

existing lanes or addition of new lanes, and the adjustment of lane width. The 3D Surface 

feature allows modifications to lateral, longitudinal, and camber gradients to illustrate slopes. 

The Lateral Offset feature allows the reference line to be moved laterally, which is useful for 

creating exit and entrance turns. The Bumps feature adds various road bumps, commonly used 

to illustrate sidewalks. The Road Marking feature allows lines to be drawn on the road, such 
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as no parking areas and zebra crossings. The Road Decoration feature configures road textures 

and adds lane or bus lane markers. The Traffic Sign feature allows the insertion and 

modification of traffic signs, while the Traffic Light feature adds and configures traffic lights. 

The Traffic Barrier feature places traffic barriers like guardrail and Jersey barriers. The 

Guideposts feature adds guideposts along the road. The Bridge and Tunnel features add these 

structures to the road network. The Geometry Object feature adds objects like houses, street 

furniture, animals, and people. The Sign Plate feature inserts images on sign plates, typically 

for road directions or advertisements. The Tree Strip feature adds multiple trees along the road, 

and Terrain Generation generates terrain around the created scenery. 

Besides, creating a realistic testing environment involves including static objects such 

as buildings and train stations. Using Google Maps Street View, buildings and landmarks were 

surveyed, and 3D models were sourced from 3D Warehouse. These models were converted 

from “.skp” to “.kmz: format using SketchUp before being imported into IPG CarMaker. For 

examples, the 3D model of Sultan Abdul Samad Building, as shown in Figure 5-33, was 

imported into IPG CarMaker for use in the Light Rapid Transit (LRT) Masjid Jamek location. 

The building, located opposite Merdeka Square, is an iconic structure featuring domes and a 

clock tower. It is typically crowded with tourists, especially on weekends, as it is one of Kuala 

Lumpur’s most famous landmarks. Another 3D model that was imported into IPG CarMaker 

for use in the LRT Masjid Jamek location is the 3D model of train station, as shown in Figure 

5-34. The station, situated near Masjid Jamek in central Kuala Lumpur, is named after the area. 

It serves as an interchange station between the Ampang Line and Kelana Jaya Line, allowing 

commuters to switch between lines via a connected walkway. Using these tools, the 3D model 

of the selected road network is developed with reference to Google Maps as shown in Figure 

5-35. Consequently, 3D virtual road models based on the actual dimensions of the selected 

road networks were created. 

1. Figure 5-36 shows the 3D virtual road model developed based on University of 

Nottingham Malaysia campus route.  

2. Figure 5-37 depicts the 3D virtual road model developed for Jalan Pudu Masjid Jamek.  

3. Figure 5-38 demonstrates the 3D virtual road model developed for Pavilion Bukit 

Bintang. 

4. Figure 5-39 presents the 3D virtual road model developed for MaGIC route A. 

5. Figure 5-40 displays the 3D virtual road model developed for MaGIC route B. 

  
Figure 5-33 3D model of Sultan Abdul Samad 

Building 

Figure 5-34 3D model of train station and 

track 
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Figure 5-35 3D preview of the road environments developed in IPG CarMaker 

 

Figure 5-36 3D virtual road model of the University of Nottingham Malaysia 

 

Figure 5-37 3D virtual road model of the Jalan Pudu Masjid Jamek area 

 

Figure 5-38 3D virtual road model of the Pavilion Bukit Bintang area 
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Figure 5-39 3D virtual road model of the MaGIC route A 

 

Figure 5-40 3D virtual road model of the MaGIC route B 

 

5.6.2  Development of scenarios 

Based on the MaRSeD scenario classification tool developed, a total of 30 critical test 

scenarios were selected from the classified dataset and used to develop virtual scenarios. While 

numerous scenarios were created, only a subset from each route is presented here. The first two 

scenarios occurred at the University of Nottingham Malaysia. The first scenario involves 

avoiding a road obstacle, typically represented by a hole in the road with traffic pylons placed 

around it. This scenario mirrors common situations in Malaysia where road hazards require 

drivers to manoeuvre around them. The second scenario depicts a road crossing pedestrians’ 

scenario, where drivers must slow down and stop to allow pedestrians to cross safely. 

Moving on, the third and fourth scenarios took place in Kuala Lumpur's capital city 

area. The third scenario unfolded at the Pavilion Bukit Bintang area, simulating congested 

traffic with slow-moving vehicles. This scenario includes a sudden cut-in by a motorcycle, a 

common occurrence in congested Malaysian traffic. The fourth scenario occurred at Jalan Pudu 

Masjid Jamek area, where congestion and frequent stops by vehicles loading or unloading 

along the road are typical. Drivers must change lanes to avoid these stopped vehicles. 

The fifth and sixth scenarios are set around the MaGIC area. The fifth scenario, at 

MaGIC route A, is a car-following scenario where the vehicle must follow a lead vehicle that 

is constantly changing speed. This scenario was chosen to add variety to the MaGIC route A, 

which sees little traffic and requires all vehicles to adhere to speed limits. While not critical, 

including scenarios like this is important for testing autonomous vehicles on this route, which 

is certified for such testing. Lastly, the sixth scenario at MaGIC route B involves an animal 

crossing the road, a scenario often leading to accidents in Malaysia as drivers attempt to avoid 

colliding with animals. Including such scenarios is crucial for comprehensive testing. 
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(a)  Road Object Avoidance 

This scenario took place at the University of Nottingham Malaysia’s route between the 

Sport Complex and student accommodation hall. In this scenario, the ego vehicle needs to 

travel forward however there are obstacles on the way in front, so the ego vehicle needs to 

apply manoeuvre to avoid collision with the obstacles. The obstacles are traffic pylons which 

are put on the centre of the junction as there is a hole on the road. At the beginning of this 

scenario, there is a road bump on the road, so the vehicle needs to slow down to cross the bump. 

There are also pedestrians walking along the right lane, so the ego vehicle can only travel on 

the left lane apply manoeuvre adjustment to the left side of the road to avoid collision with the 

obstacles. Furthermore, there are many vehicles parked at the side of the road, so the vehicle 

also needs to prevent collision with these vehicles when avoiding the obstacles. Figure 5-41 

shows the road object avoidance test scenario developed using IPG CarMaker and Figure 5-42 

shows the comparison between the video frame captured from the instrumented vehicle and 

the video frame captured from the virtual vehicle. 

 

Figure 5-41 Road object avoidance test scenario developed using IPG CarMaker 

 
Figure 5-42 Onboard camera comparison. Top figure shows the video frame recorded from instrumented 

vehicle and the figure below is the video frame from IPG CarMaker. The frame on the left is the front view 

and the right is the rear view. 

 

 

Pedestrian 
Pylons Road sweeper 

Front view (Actual) Rear view 

(Actual) 

Front view (Virtual) Rear view (Virtual) 
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(b)  Pedestrian Road Crossing 

The second scenario took place at the pedestrian crossing in front of the University of 

Nottingham Malaysia’s Trent building. In this scenario, the ego vehicle is following a red car 

in front with vehicle speed of 20 km/h. However, there is a group of pedestrians crossing the 

road in front. The red car in front applied brake and stopped to let the pedestrians to cross. 

Therefore, the ego vehicle needs to apply brake to slow down while maintaining distance with 

the vehicle in front and stop the vehicle to wait the pedestrians to cross. Once the pedestrians 

crossed the road, the red car in front will start moving and the ego vehicle will follow the red 

car.  Figure 5-43 shows the pedestrian road crossing virtual scenario developed and Figure 5-44 

shows the onboard camera comparison between real-world and virtual simulation. 

 
Figure 5-43 Pedestrian Road crossing test scenario developed using IPG CarMaker 

 
Figure 5-44 Onboard camera comparison 

(c)  Motorcycle Cut-in 

This scenario occurred at one of the right turn corners near the Pavilion, Bukit Bintang, 

Kuala Lumpur. In this scenario, the ego vehicle followed the stop-and-go rhythms of the 

congested traffic flow, adjusting its speed to match the nearby vehicles. As the ego vehicle was 

about to make its manoeuvre to close-up the distance from the front vehicle, a motorcyclist 

suddenly cut into its lane from the left as shown in Figure 5-45. To avoid a collision, the ego 

vehicle had to apply emergency braking. After the motorcyclist passed by, the ego vehicle 

continued its path through the congested road. 

 

Ego vehicle 

Pedestrians 

Leading car 

Start point 

End point 

Pedestrian 

Leading car 

Front view (Actual) Front view (Virtual) 
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Figure 5-45 Moment of the motorcycle cut-in occurred captured by onboard camera. 

 

(d)  Lane Change Overtaking 

This scenario occurred at Jalan Pudu area, where the ego vehicle needs to overtake a 

stopped vehicle ahead by changing lane. However, due to the congested traffic, there are 

vehicles coming from the fast lane as shown in Figure 5-46. So, the driver needs to make sure 

no vehicle coming from the fast lane, and it is safe to perform overtaking. Once no more vehicle 

coming from the right-hand side, the ego vehicle performs lane change to overtake the stopped 

vehicle ahead.  

 

Figure 5-46 Ego vehicle waiting until safe to overtake. 

 

(e)  Car Following 

In everyday driving scenarios, the “car-following” scenario is the most encountered 

situation. In this scenario, the ego vehicle maintains a consistent speed while ensuring a safe 

distance from the leading vehicle ahead. The scenario occurred at MaGIC route A as shown in 

Figure 5-47. The ego vehicle adjusts its acceleration in response to changes in the speed of the 

vehicle ahead in the "car-following" scenario. Figure 5-48 shows how the leading vehicle looks 

like from the ego vehicle perception both in real world and simulation. The drivers are required 

to follow the car while maintaining a safe distance from it. This will generate a valuable dataset 

for training the driver model to regulate speed when following another vehicle. 

Front view (Virtual) Front view (Actual) 
Leading vehicle 

Motorcyclist 

Front view (Actual) Front view (Virtual) Stopped vehicle. 

Vehicle coming 

from right lane. 
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Figure 5-47 Ego vehicle following car while maintaining a safe gap. 

 
Figure 5-48 Front camera view from the ego vehicle. 

 

(f)  Animal Road Crossing 

This scenario took place on MaGIC route B. While the ego vehicle was moving at 

approximately 30 km/h, an animal suddenly appeared in the middle of the road, crossing it, as 

shown in Figure 5-49. The ego vehicle had to brake to avoid colliding with the animal. After 

the animal crossed the road, the ego vehicle accelerated and resumed its path. Figure 5-50 

shows the appearance of the animal from the perspective of the ego vehicle, both in the real 

world and in the simulation. It can be observed that the animal is very small, making it difficult 

for drivers to notice it from a far distance while driving, which poses a challenging test for the 

driver's reaction. 

 
Figure 5-49 Animal road crossing scenario developed in the IPG CarMaker 

Leading vehicle 

Front view (Actual) Front view (Virtual) 
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Figure 5-50 Animal front camera view of the ego vehicle. 

 

5.6.3  Comparing built-in IPGDriver against human driver. 

Virtual scenarios were developed in IPG CarMaker based on actual scenarios captured 

from the instrumented vehicle. However, to test a safety system for an autonomous vehicle, a 

driver model is required to manoeuvre the vehicle by providing driving inputs to the virtual 

vehicle in the simulator. The accuracy of the driver model in replicating the driving style of 

human drivers is crucial to ensure the reliability of the test results. Therefore, in this section, 

the driving data recorded from the instrumented vehicle is compared with the data simulated 

in IPG CarMaker. In this experiment, the driver in the instrumented vehicle is a human driver, 

whereas the driver in the IPG CarMaker virtual vehicle is the built-in IPGDriver, designed to 

replicate the driving style of average drivers. The first two scenarios that were mentioned in 

the previous section were selected to evaluate the performance of the IPGDriver in reproducing 

the driving input of the human driver. 

 

(a)  Road obstacle avoidance 

Figure 5-51 shows the screenshots of virtual ego vehicle manoeuvring to avoid the road 

obstacle in front by sliding to the left side of the road. Figure 5-52 to Figure 5-56 shows the 

vehicle response obtained from the instrumented vehicle and the IPG CarMaker simulation. 

The vehicle responses that are analysed in this scenario are the pitch rate and yaw rate of the 

vehicle. Meanwhile, driving inputs that are used for the analysis are steering angle, gas pedal 

input and brake pedal input. From the data plots, it can be observed that the driving input 

produced by the IPGDriver and the vehicle response from the IPG CarMaker is similar to the 

actual driving input and vehicle response. From Table 5-5, it can be observed that the steer 

angle, brake input, gas input, pitch rate and yaw rate show the percentage difference of RMS 

errors about 10.42%, 30.67%, 3.18%, 51.33% and 17.55% respectively.  

Figure 5-55 and Figure 5-56 show noticeable differences in yaw rate and pitch rate 

between the real-world and the virtual scenario. These differences can be attributed to several 

factors. Firstly, simulations often rely on idealized representations of road geometry and 

surface conditions, which may not capture the variability and unpredictability inherent in real-

world environments. This disparity can lead to differences in vehicle dynamics and sensor 

responses between simulated and actual conditions. A study comparing real and simulated 

performance for an off-road autonomous ground vehicle in obstacle avoidance highlighted such 

Animal 

crossing the 

road 

Front view (Actual) Front view (Virtual) 
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discrepancies, noting that simulations might not fully account for the complexities of real-

world terrains and obstacles [338].  

Secondly, the simplifications inherent in sensor models within simulations can 

contribute to these errors. Simulated sensors often operate under controlled conditions, lacking 

the noise, environmental interferences, and occlusions present in real-world scenarios. This can 

result in simulated sensor data that is less variable and more predictable than actual sensor 

outputs, leading to discrepancies when algorithms trained or tested in simulation are deployed 

in real-world applications. Research on the transferability of virtual versus physical-world 

testing of autonomous driving systems has emphasized the challenges posed by such "reality 

gaps," where the performance in simulation does not fully translate to real-world effectiveness 

[339]. Besides, the driving style of a human driver and the virtual IPGDriver is not the same. 

From Figure 5-53, it can be observed that at around 1.5 seconds, the IPGDriver pressed the 

brake pedal later than the human driver. So, the IPGDriver needs to apply braking force to the 

vehicle at a shorter time as shown by the gradient of the pedal inputs. This caused the vehicle 

to stop at a higher deceleration. As a result, the vehicle pitched down at a higher rate due to 

higher inertial value.  

 

 

Similar to the braking scenario, the IPGDriver also applied gas input to the vehicle at a 

higher rate as shown in Figure 5-54. Therefore, the vehicle pitched up at a higher rate as shown 

in Figure 5-55. Whereas the large yaw rate difference at around 2 seconds of the experiment is 

due to the higher steer angle provided by the IPGDriver at 2 seconds. However, it can still be 

observed that the pattern of the vehicle response and driving data obtained from the virtual 

environment closely followed the data captured from real world environment. Furthermore, the 

large RMS errors also show that the driving behaviour between a human driver and the default 

virtual driver are different. Therefore, the IPGDriver is not suitable to be used as driver model 

for evaluation of safety system of autonomous vehicles for Malaysia driving conditions. 

Figure 5-51 Road obstacle avoidance scenario manoeuvre 
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While no simulation can perfectly replicate the real-world complexities, in order to 

address these issues, one proposed solution involves enhancing the simulation environment to 

better mimic real-world variability [340]. This includes incorporating more detailed road 

surface models and dynamic obstacle representations to reduce the gap between simulated and 

actual conditions. Additionally, improving sensor models to account for noise and 

environmental uncertainties can make simulated sensor data more representative of real-world 

scenarios. Techniques such as domain randomization, which involves varying environmental 

parameters during simulation, have been shown to improve the robustness of models when 

transferred to real-world applications [341], [342]. 

Despite the high percentage of error observed, the testing platform's results are 

considered acceptable and reliable for the current work. The identified discrepancies are largely 

due to known limitations in the simulation's ability to replicate all aspects of real-world 

environments. By acknowledging these limitations and implementing the proposed solutions, 

the simulation platform can serve as a valuable tool for preliminary testing and validation of 

autonomous vehicle systems [342]. Furthermore, simulations offer a controlled environment 

to test scenarios that may be challenging to reproduce consistently in the real world, providing 

insights that are crucial for the iterative development of advanced driver assistance systems. 

 
 

Figure 5-52 Steering angle input for road obstacle 

avoidance 

Figure 5-53 Brake pedal input for road obstacle 

avoidance 

  
Figure 5-54 Gas pedal input for road obstacle 

avoidance 

Figure 5-55 Pitch rate response for road obstacle 

avoidance 
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Figure 5-56 Yaw rate response for road obstacle avoidance. 

Table 5-5 Percentage of RMS error for road obstacle avoidance test 

Testcase Observation data 
Root Mean Square (RMS) Percentage of error 

(%) IPG Real 

Road obstacle 

avoidance 

Steering angle, 𝑟𝑎𝑑 0.6481 0.7235 10.42 

Brake input, % 0.1006 0.1451 30.67 

Gas input, % 0.1590 0.1541 3.18 

Pitch rate, 𝑟𝑎𝑑/𝑠 0.05752 0.03801 51.33 

Yaw rate, 𝑟𝑎𝑑/𝑠 0.07661 0.06517 17.55 

 

(b)  Pedestrian at zebra crossing 

For pedestrian road crossing scenario, the ego vehicle followed the traffic vehicle in 

front and stop behind the red vehicle while waiting for the pedestrians to cross the road in 

lateral direction. After the pedestrians crossed the road, the leading traffic vehicle start moving 

from the current positions. Then, the ego vehicle starts moving following the leading traffic 

vehicle by maintaining the longitudinal distance. Figure 5-57 shows the screenshots of the 

lateral trajectory for the pedestrian road crossing scenario. Figure 5-58 to Figure 5-60 show 

the vehicle response obtained from the instrumented vehicle and the virtual vehicle model from 

IPG CarMaker simulation. The vehicle responses such as pitch rate response are evaluated in 

this test scenario since the vehicle driving in a straight direction without any steering input. 

Meanwhile, gas pedal input and brake pedal input are used to analyse as the driving inputs of 

the vehicle. 

From the data plots, it can be observed that the driving input applied by the driver and 

the vehicle response from the IPG CarMaker simulation are similar to the actual driving inputs 

and vehicle response. In Figure 5-58 , both the human driver and IPGDriver applied up to 46.57% 

and 42.53% of the brake pedal input, respectively, at the start of the experiment. However, the 

human applied a large braking force only for the first two seconds, then reduced the braking 

input to around 30% after the car stopped moving. In contrast, the IPGDriver maintained a 

higher braking force until the distance from the leading car exceeded the default safe distance 

of 2 meters.  
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Figure 5-57 Pedestrian crossing road scenario’s manoeuvre. 

In Figure 5-59, it can be observed that once there was enough gap from the leading car, 

both the human driver and IPGDriver applied gas input to follow the leading car. However, the 

IPGDriver demonstrated a more aggressive driving style compared to the human driver, as 

shown by the higher gradients in its inputs. As a result, the brake input, gas input, and pitch 

rate show percentage differences in RMS errors of about 0.1388%, 12.83%, and 14.75%, 

respectively. The large RMS errors indicate that the IPGDriver is unable to replicate human 

driving behaviour accurately in this test case. Therefore, a driver model that can reproduce 

human driving behaviours is needed.  

Additionally, the pitch rate of the vehicle obtained from the real-world and IPG 

CarMaker showed noticeable differences. Several factors contributed to this discrepancy, 

primarily related to differences in road-surface modelling, variations in vehicle dynamics, and 

the contrasting driving styles between human drivers and the IPGDriver simulation model. One 

key factor leading to the high RMS errors is the difference in road surface representation 

between the virtual and real-world environments. The real-world road surface exhibits minor 

undulations, variations in texture, and localized irregularities, which affect vehicle motion, 

particularly in longitudinal dynamics and pitch angle fluctuations. In contrast, the virtual road 

model is based on an idealized, mathematically smooth surface that does not account for these 

small-scale road imperfections. This disparity influences both vehicle acceleration and braking 

responses, leading to differences in pitch motion, as real-world suspension and tire compliance 

interact with uneven terrain in a way that is not fully replicated in the simulation. 

Another significant cause of the high RMS errors is the difference in driving styles 

between human drivers and the IPGDriver model. Human drivers exhibit adaptive, experience-

based decision-making, adjusting acceleration, braking, and steering input based on external 

cues, perceived pedestrian behaviour, and environmental feedback. For instance, the human 

driver applied a gradual acceleration strategy when the front car start moving, incorporating 

real-time visual cues and personal judgment regarding pedestrian movement. The IPGDriver, 

Ego vehicle 

Leading car 

Pedestrian 

Driving at 20 km/h Brake applied when leading car halted. 

Brake released after leading car moved. Applied gas input to move ego vehicle. 
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however, operates based on predefined mathematical models that lack the intuitive variability 

of human behaviour. It often follows an algorithmically optimized driving profile, which can 

be more abrupt or overly conservative compared to the smoother, anticipatory driving patterns 

exhibited by human drivers. This difference in accelerating and braking patterns leads to 

inconsistencies in the vehicle’s pitch response, as sudden acceleration in the simulation causes 

a more pronounced backward pitch motion compared to the real-world vehicle, which may 

exhibit more progressive suspension dynamics, as shown in  Figure 5-60. Consequently, more 

precise measurement of the real environment is needed for the development of the environment 

model to ensure that the vehicle response in the real and virtual environments is identical. The 

summary of RMS percentage errors for the pedestrian crossing test is shown in Table 5-6. 

  

Figure 5-58 Brake pedal input for pedestrian 

crossing scenario 

Figure 5-59 Gas pedal input for pedestrian 

crossing scenario 

 

Figure 5-60 Pitch rate response for pedestrian crossing scenario. 

Table 5-6 Percentage of RMS error for pedestrian crossing scenario. 

Testcase Observation data Root Mean Square (RMS) Percentage of error (%) 

IPG Real 

Pedestrian crossing Brake input, % 0.1441 0.1439 0.1388 

Gas input, % 0.2022 0.1792 12.83 

Pitch rate, 𝑟𝑎𝑑/𝑠 0.01648 0.01405 14.75 
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5.7 Summary 

 In this chapter, a motion simulator was developed and integrated with IPG CarMaker 

to provide realistic motion feedback for an immersive driving experience. To enhance 

immersion further, a virtual reality (VR) headset was incorporated, allowing drivers to 

experience a 360-degree cockpit view within the simulated environment. The development of 

this simulation platform aimed to bridge the gap between real-world driving and virtual testing, 

providing a high-fidelity environment for evaluating driving behavior and vehicle responses. 

A systematic approach was established to extract and classify real-world driving 

scenarios, ensuring adherence to international safety testing standards. The Malaysian Road 

Scenario Database (MaRSeD) was developed as a comprehensive tool for identifying key 

traffic scenarios unique to Malaysia’s driving conditions. Using video data recorded from the 

instrumented vehicle, road users and objects were detected and classified with the YOLOv8 

deep learning object detection algorithm, enabling a structured approach to analysing real-

world traffic interactions. From this dataset, 30 unique driving scenarios were identified, and a 

subset of them was selected for 3D environment modelling within IPG CarMaker. These virtual 

scenarios were designed to closely replicate real-world road environments, allowing for 

controlled and repeatable testing conditions. 

To evaluate the accuracy of the virtual models and the performance of IPG CarMaker’s 

built-in driver model (IPGDriver), comparative analyses were conducted between real-world 

driving data and simulated vehicle responses. The results demonstrated that the virtual 

simulations were able to reproduce the key characteristics of real-world scenarios, capturing 

the overall trend of vehicle dynamics and interactions. However, significant discrepancies were 

identified between human driver behaviour and the default IPGDriver model, particularly in 

braking strategies, acceleration profiles, and steering input adaptation. These differences 

resulted in noticeable variations in vehicle pitch, yaw rate, and speed regulation, making the 

default IPGDriver unsuitable for safety testing in Malaysian traffic conditions. 

Recognizing these limitations, the study emphasized the need for a driver model 

optimized for Malaysia’s traffic environment, ensuring reliable and representative safety 

testing for autonomous vehicles. To facilitate the development of this data-driven driver model, 

a human-in-the-loop approach was implemented, where participants were invited to drive on 

the simulator under different traffic scenarios. Their driving inputs, reaction times, and 

behavioural patterns were recorded to construct a dataset reflecting natural driving tendencies. 

The collected data served as the foundation for training a deep learning-based driver model, 

which will be used to enhance the accuracy and realism of virtual driver behaviour within the 

simulation platform. 

The findings of this chapter reinforce the validity of using a high-fidelity simulation 

environment for vehicle safety assessment, while also highlighting the need for region-specific 

adaptations in driver modelling. The development of a Malaysia-optimized driver model will 

contribute to more reliable, representative, and scalable autonomous vehicle testing, ensuring 

that future AV technologies are evaluated under realistic, locally relevant driving conditions. 
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Chapter 6: Development of An Artificial Intelligence Driver Prediction 

Model for Autonomous Vehicle Testing Platform 

6.1 Overview 

Deep learning requires a large amount of labelled driving dataset to train. As discussed 

in Chapter 2, capturing and labelling driving dataset from actual driving in real world is time 

consuming and expensive. Therefore, another method that can generate high quality driving 

dataset easily and at low cost is using synthetic dataset.  However, as the aim of this study is 

to train the driver model to reproduce the driving behaviour of Malaysian drivers, an artificial 

intelligence-based driver model is proposed in this chapter. 

The chapter begins with the development of a driver model designed to replicate human 

driving styles. The first section covers the collection of human driving data for training the 

model. This involves inviting participants to drive on a simulator, evaluating the simulator's 

performance based on participant feedback, and recording their driving data. The recorded data 

is classified by driving style, and data exhibiting normal driving behaviour is extracted to 

construct the training dataset. The second section details the preprocessing and preparation of 

the dataset for training. The third section discusses the construction and training of the driver 

model's neural network. Following this, the chapter examines the model's performance using 

both simulation and real-world testing data. The final section provides a summary of the 

chapter. 

 

6.2 User Experience Evaluation of the Driving Simulator 

To assess the immersive nature and realism of the VR Driving simulator and gather 

feedback for enhancement, a user test involving 30 participants was conducted. In accordance 

with the University of Nottingham's Code of Research Conduct and Research Ethics, this study 

underwent a comprehensive ethical review to ensure adherence to the highest standards of 

research integrity and participant welfare. The ethical review process was conducted by the 

University's Research Ethics Committee, which operates under the guidelines established in 

the University's Code of Practice for Research Ethics Committees. This framework aligns with 

the principles outlined in the Declaration of Helsinki, emphasizing respect for individuals, 

informed consent, and the prioritization of participant welfare.  

The ethical review encompassed a thorough evaluation of the study's aims, 

methodologies, and data management procedures. Key considerations included ensuring that 

participants' dignity, rights, and safety were upheld throughout the research process. The 

committee assessed the procedures for obtaining informed consent, measures for maintaining 

confidentiality, and strategies for minimizing potential risks associated with participation. 

Participants were provided with detailed information about the study's objectives, procedures, 

and any potential risks or benefits involved. This transparency allowed individuals to make 

informed decisions regarding their involvement. Consent was obtained prior to participation, 
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ensuring that individuals were aware of their rights, including the option to withdraw from the 

study at any point without any negative consequences. 

The study's design included measures to protect participant confidentiality and data 

security. All personal information and responses were anonymized and securely stored, 

accessible only to authorized research personnel. This approach aligns with the University's 

commitment to maintaining high standards of data protection and participant privacy. By 

adhering to the University's ethical guidelines and obtaining the necessary ethical clearance, 

the study ensured that all research activities were conducted responsibly and ethically. This 

rigorous ethical oversight not only protected the participants but also enhanced the credibility 

and integrity of the research findings. 

The evaluation employed both pre-Test (pre-TQ) and Post-Test (po-TQ) questionnaires. 

The pre-TQ comprised four sections: personal data, 3D gaming and HMD familiarity, and 

driving experience. Participants completed this questionnaire before the test session to gauge 

susceptibility to motion sickness. Users with minimal or no exposure to 3D gaming or prior 

HMD usage were cautioned beforehand. The po-TQ, comprising 23 questions, was derived 

from expert evaluation using the ITC-Sense of Presence Inventory (ITC-SOPI) [343] to gauge 

presence in immersive VR environments. Focused on user experience with the prototype, this 

questionnaire was completed by participants after the driving session to assess the perceived 

realism of the driving experience. It mainly queried aspects related to typical virtual reality 

systems, contrasting them with real-world experiences. 

6.2.1  Participant Composition  

The study comprised 30 participants, consisting of 23 males and 7 females. The test 

drivers were selected without prior knowledge of their backgrounds. All participants were 

affiliated with the University of Nottingham Malaysia, including lecturers, staff, and students. 

The age of the participants varied between 18 to 60 years, averaging 32.7 years old. All 

participants possessed a minimum of secondary school education, with 10 individuals holding 

university degree with an average of 16.1 years of education. The majority, constituting 70% 

of the sample (21 individuals), identified as Chinese, while 13% were Malay (4 individuals), 

10% Indian (3 individuals), and 7% classified themselves as other (2 individuals). During 

testing, 83% (25 individuals) reported being active drivers, whereas 17% (5 individuals) had 

limited or discontinued driving. In this study, “active” driving was defined as engaging in at 

least single driving experience per week. Among those who were not active drivers, the primary 

reasons for discontinued driving were the lack of personal vehicle ownership, due to financial 

constraints or reliance on public transportation. The average driving experience, defined as the 

total number of years of holding a driver's license, was 15 years for the group. Except for five 

users, all participants had experience with 3D content, including 3D movies using regular 3D 

glasses and virtual reality. An average duration of 45 minutes was allotted for each participant. 

The sample size for the driving simulator experiment was determined based on an 

empirical method proposed by Wang et al. [344], who used the mean squared error (MSE) 

curves of significant variables to infer the proper sample size for a driving simulator experiment 
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to evaluate the safety of freeway driving design. The experiment indicates that 30 was an 

acceptable sample size. Besides, lengthy experimental procedures (providing information, 

training, etc.) and high cost of running simulator studies also lead to small samples were tested 

which is also supported by other studies that used similar or smaller sample sizes for simulator 

studies [345]. Therefore, same method was applied to this study, which involved testing the 

effects of integrating VR to the driving simulator system. 

 

6.2.2  Execution of the User Test 

First, the participants completed the pre-TQ questionnaire, followed by an orientation 

on the simulator's basic operations. Information about simulator sickness, including its 

occurrence and symptoms, was provided before the formal testing commenced. Following that, 

participants wore the Oculus Quest 2 to experience an immersive visual simulation of sitting 

in the cockpit of a virtual vehicle within the system. During the test session, various driving 

scenarios representing Malaysian traffic conditions were presented. These included typical 

maneuvers such as curve driving, car following, emergency braking, and lane departure 

warnings, as well as unexpected events like an approaching motorcycle or a pedestrian crossing 

the road to simulate avoidance of head-on collisions. Upon completing all driving tasks, 

participants were then asked to fill out the post-TQ questionnaire. 

 

6.2.3  User Test Result 

 

The post-test questionnaire (po-TQ) comprised 23 items utilizing a 5-point Likert scale, 

designed to evaluate the concept of presence. Through factor analysis, four key factors emerged: 

controllability of the system, spatial presence, naturalness, and negative effects. Table 6-1 

displays the items alongside the average scores provided by participants for both the driver-in-

the-loop simulator with and without virtual reality integration. 

The quantitative analysis of po-TQ responses revealed intriguing findings: when 

queried about feeling present in the virtual environment, a significant 80% of participants 

reported a heightened sense of presence while using the virtual reality (VR) simulator. Notably, 

with the VR headset, users could freely move and rotate their heads within the cockpit, 

contributing to an improved view and higher scores regarding difficulties in observing lane 

markers. Moreover, this enhanced cockpit view provided a sense of better control, reducing 

incidents of the vehicle steering off the road, particularly during sharp turns. These outcomes 

generally support the hypothesis that VR yields a more realistic driving experience compared 

to a fixed-screen setup. 

However, some findings contrasted this trend. For instance, regarding the perception of 

controlling vehicle speed using the gas pedal and brake, most users favoured the fixed-screen 

setup, expressing challenges with control inside the VR headset. Users reported difficulties in 

perceiving their body's movement, pedals, and steering wheel due to limitations of the IPG 

CarMaker, making vehicle control more challenging within the VR environment. Another 

noteworthy discovery arose from the question "I am still aware of the real world." Surprisingly, 

more users acknowledged awareness of the real world within the VR simulator (80%), with 
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20% showing disengagement and 2% remaining neutral. This phenomenon could stem from 

heightened sensory sensitivity when the brain perceives a non-real environment, causing users 

to become more attuned to external stimuli. Additionally, users noted that the lack of a realistic 

surround sound system reduced the overall immersive experience within the VR setting. 

 

Table 6-1 po-TQ questionnaire and the corresponding responses collected. 

po-TQ item Average Score 

Without 

VR 

With 

VR 

Controllability  I can control the speed of the vehicle using the gas pedal and brake. 4.1 3.8 

I have difficulty seeing the lane markings in the simulator 3.6 2.9 

Driving with simulator feels almost like driving in a car cockpit. 3.3 4.2 

I think that the car will go off the road often when I drive with the 

simulator 

3.5 3.1 

I feel like I am in control of the car when driving with the simulator 3.6 4.4 

Spatial 

Presence 

I was aware of the real world 3.5 3.3 

I wanted to see more of the space in the displayed environment than 

I was able to 

3.9 3.3 

I found it easy to forget that I was watching a display 2.6 4.3 

I felt I was visiting the places in the displayed environment 3.9 4.3 

I had a sense of being in the scenes displayed 3.6 4.5 

I felt that the characters and/or objects could almost touch me 3.3 4.0 

The temperature of the real world distracted me 3.7 3.9 

I was distracted by the quality of the technology 2.8 3.1 

Naturalness The content seemed believable to me. 3.8 4.3 

The displayed environment seemed natural 3.7 4.1 

I had a strong sense that the characters and objects were solid. 3.5 3.8 

Did the 6 degree of freedom movements of the motion platform 

contribute to the realistic of the driving simulator 

3.8 4.1 

How much did this experience seem consistent with your real-world 

experiences 

3.5 4.7 

Were the motion and visual feedback synchronized together? 3.9 4.5 

Negative 

Effects 

I felt prone to vomiting 1.8 2.6 

I felt dizzy 2.1 3.2 

I felt nauseous 1.5 1.5 

I felt fear  1.6 1.7 

Moreover, the analysis revealed that over half of the users experienced motion sickness 

during the VR tests, particularly on curvy routes. Three participants experienced simulation 

sickness within the initial five minutes and had to halt their sessions. Interestingly, most users 

experiencing motion sickness had minimal or no prior HMD experience, except for one user. 

Notably, none of the users experienced vomiting. The motion sickness experienced by users 

likely stemmed from the VR system's low refresh rate and resolution. This mismatch created a 

sensory conflict between the visual and motion feedback delivered by the simulator and the 

cognitive expectations of the users. 

Furthermore, another limitation of the current setup is the lack of a surround sound 

system. Accurate auditory feedback is essential for drivers to gauge their speed, especially 
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when visual cues are limited or absent. Studies have shown that drivers tend to underestimate 

their speed in the absence of acoustic feedback [346]. In a simulator, a surround sound system 

can replicate the spatial and directional qualities of sound, providing cues about movement and 

speed. This auditory information, combined with visual feedback, helps create a more 

immersive experience that closely mimics real-world driving, allowing for more accurate speed 

perception and decision-making by the driver. Therefore, sound, and visual enhancements can 

be implemented to further improve the immersion of the current system. 

 

6.2.4  Comparison of driving behaviour of test drivers 

In this section, the driving behaviour of four participants, including an aggressive 

driver, two average drivers, and a careful driver, was selected for comparison out of thirty 

participants. Four scenarios, involving motorcycle cut-in, lane change, car following, and 

animal road crossing, were chosen for evaluation. Drivers were classified based on speeding 

behaviour, identified as the most prevalent aggressive action and the primary cause in 30.7% 

of fatal crashes according to a study in [347]. The percentage of time spent travelling at a speed 

exceeding 60 km/h by each driver was calculated using Equation 6.1: 

%𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 =
𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 60 𝑘𝑚𝑝ℎ

𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 20 𝑘𝑚𝑝ℎ
× 100 (6.1) 

The threshold of 60 km/h was chosen as it represented the 99th percentile of the vehicle 

speed distribution in the dataset, exceeding the 50 km/h speed limit on most urban roads [348]. 

Only time spent traveling faster than 20 km/h was considered, presuming speeds below 20 

km/h were due to reasons other than driver aggressiveness, such as roadblock or traffic 

congestion. In Figure 6-1, the speed distribution profiles of both a non-aggressive and an 

aggressive driver are illustrated. It can be observed that more time at higher speeds was 

allocated by the aggressive driver compared to the non-aggressive driver. Using Equation 6.1, 

the percentage of time spent speeding for all participants was calculated, with results presented 

in Figure 6-2. The findings indicate that over 10% of driving time exceeding 60 km/h was spent 

by the top 10% of participants, equating to five individuals. Conversely, a percentage of time 

speeding below 4% was exhibited by the bottom 10% of participants. 

  
Figure 6-1 Speed distribution of a non-aggressive 

driver and an aggressive driver. 

Figure 6-2 Percentage of time spent exceeding 60 

km/h for all 30 participants. 

In the second method, drivers were categorized based on aggressive tailgating 

behaviour. Among various aggressive behaviours as defined by NHTSA [349], tailgating was 
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chosen primarily because it can be quantitatively measured more conveniently compared to 

behaviours like erratic driving or failure to yield. The percentage of time spent following the 

vehicle ahead with a time to collision less than 2.56 sec was calculated using Equation 6.2.  

%𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡𝑎𝑖𝑙𝑔𝑎𝑡𝑖𝑛𝑔 =
𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2.56 𝑠

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 5 𝑠
(6.2) 

The threshold of 2.56 seconds was chosen based on research conducted by Yue et al. 

[350], which determined that the average time to collision without any accidents over a 45-day 

investigation period was 2.56 seconds. Additionally, Hirst and Graham [351] observed that a 

4-second time to collision could differentiate between situations where drivers inadvertently 

find themselves in danger and scenarios where they maintain control. Saffarzadeh et al. [352] 

also noted that drivers' behaviour varies across different situations, suggesting that there is no 

absolute time to collision threshold to distinguish between safe and unsafe car-following 

situations. Therefore, only times with a time headway of less than 5 seconds were considered, 

presuming that a TTC greater than 5 seconds indicated free-flowing traffic rather than close 

following. After calculating these percentages for each driver, rankings were determined in 

descending order based on these percentages. The top 10% (N = 5) were categorized as 

"aggressive drivers," the bottom 10% as "slow drivers," and the remaining 20 participants as 

"normal drivers". The driving style, reaction time and steering angle consistency of all the 

participants is shown in Table 6-2. 

Table 6-2 Performance of all the participants 

Driver ID Driver Type Reaction Time (s) Steering Angle Consistency (%) 

1 Normal 1.45 82 

2 Slow 2.30 92 

3 Normal 1.45 81 

4 Aggressive 0.95 67 

5 Aggressive 1.00 66 

6 Normal 1.55 85 

7 Normal 1.52 80 

8 Normal 1.55 81 

9 Normal 1.58 83 

10 Slow 2.25 89 

11 Aggressive 0.85 68 

12 Normal 1.50 80 

13 Aggressive 0.90 70 

14 Normal 1.60 83 

15 Normal 1.50 84 

16 Normal 1.48 79 

17 Slow 2.20 90 

18 Normal 1.47 82 

19 Slow 2.35 91 

20 Normal 1.60 83 

21 Normal 1.50 80 

22 Aggressive 0.80 65 

23 Slow 2.40 93 

24 Normal 1.52 80 

25 Normal 1.47 81 
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26 Normal 1.55 82 

27 Slow 2.25 89 

28 Normal 1.50 80 

29 Normal 1.48 75 

30 Normal 1.55 81 

 

(a)  Motorcycle Cut-in 

First of all, it is important to clarify that all 30 participants successfully completed all 

test cases without any issues. However, for the purpose of detailed analysis, only four drivers 

were selected to represent different driving profiles in this section. These selected drivers were 

chosen to provide a representative comparison of different driving behaviours, including 

aggressive, normal, and cautious driving styles. Additionally, it should be noted that the Driver 

1, Driver 2, Driver 3, and Driver 4 labels do not correspond to the same individuals across 

different test cases. Instead, they are used to illustrate distinct driving behaviours within each 

scenario. This approach ensures that the discussion remains focused on variations in driving 

styles rather than individual driver performance, providing a more generalizable and 

meaningful interpretation of the results.  

In this scenario, participants drove until simulation time t=16 seconds, when a 

motorcyclist abruptly cut into the ego vehicle’s lane, requiring the test drivers to apply the 

brakes to slow down and avoid a collision. From Figure 6-3, it is evident that driver 1 exhibited 

the most aggressive driving behaviour, reaching the highest speed. Consequently, driver 1 also 

experienced the highest deceleration during the emergency braking process to avoid colliding 

with the motorcyclist. Figure 6-4 also shows that driver 1 travelled the farthest among the four 

drivers, indicating that the vehicle came to a stop very close to the motorcycle, with only 3 

meters of separation between them. On the other hand, driver 4 demonstrated extremely careful 

driving behaviour, as evidenced by starting to slow down from a distance when the motorcyclist 

was approaching from behind, resulting in no need for full braking. Drivers 2 and 3 exhibited 

behaviours between the extremes of driver 1 and driver 4. These drivers showed average 

acceleration and deceleration, enabling them to maintain a safety distance of up to 10 meters. 

Therefore, drivers whose graphs resemble those of driver 2 and driver 3 will be labelled as 

normal drivers, and their driving data will be used for the development of the driver model in 

the next chapter. 

  
Figure 6-3 Vehicle speed of different drivers in the 

motorcycle cut-in test scenario. 

Figure 6-4 Distance gap between the vehicle 

driven by different drivers with the motorcycle. 
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(b) Lane Change Overtaking 

In this scenario, a vehicle is stopped on the road, requiring drivers to perform a lane 

change to overtake it. This scenario exhibits the largest deviation in driving behaviours. There 

are three different types of lane-changing manoeuvres. First, drivers such as driver 2 and driver 

4 notice the stopped vehicle from a distance, driving at a low speed and searching for 

opportunities to change lanes. However, driver 4, unlike driver 2, is less patient. When driver 

4 sees a sufficient gap from the car behind, driver 4 quickly turns the steering wheel and 

accelerates to change to the right lane. Due to the low speed, driver 4 must apply a large steer 

angle, as shown in Figure 6-5. Meanwhile, driver 2 stops the vehicle and turns the steering 

wheel to prepare to change lanes, as shown in Figure 6-6. Once the vehicle from the right lane 

has passed, only driver 2 accelerates to perform the lane change. Therefore, driver 2 is 

considered a careful driver. An impatient driver like driver 3, driving at high speed, performs 

a lane change without carefully checking whether it is safe to do so. Driver 1 is between driver 

3 and driver 4, exhibiting fast driving behaviour but ensuring it is safe to perform a lane change. 

Figure 6-7 shows the changes in latitude of each driver over time. It can also be observed that 

unlike other drivers who maintain at the right lane after changing lanes, driver 4 performs a 

double lane change in this scenario to return to the left lane.  

  
Figure 6-5 Steer angle applied by different drivers 

in the lane change test scenario. 

Figure 6-6 Vehicle speed of different drivers in 

the lane change test scenario. 

 

Figure 6-7 Changes in latitude of different drivers in the lane change test scenario. 
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(c)  Car Following 

In this scenario, drivers need to follow a leading vehicle with variable speed while 

maintaining a safe distance between the vehicles. Comparing the velocity of the drivers in 

Figure 6-8, it is evident that Driver 3’s graph fluctuates the most, with the highest velocity 

reaching 20m/s, whereas Driver 1 is a careful driver who maintains an almost constant speed 

between 3m/s and 10m/s. Driver 2 and Driver 4 exhibit similar graphs, representing standard 

driving behaviour. Figure 6-9 shows the distance travelled over time by each driver. It can be 

observed that driver 1 and driver 3 have similar graphs in the first half of the simulation, which 

is consistent with their velocity graphs. However, in the second half of the simulation, driver 3 

displays impatience by following the leading car more closely in an attempt to overtake it. This 

results in driver 3 accelerating and decelerating more frequently. In contrast, driver 4 is more 

aggressive, driving at a higher speed and reducing the gap from the leading vehicle, whereas 

driver 2 and driver 1 attempt to maintain the distance between the vehicles.  

  
Figure 6-8 Vehicle speed of different drivers in the 

car following test scenario. 

Figure 6-9 Distance travel of different drivers in 

the car following test scenario. 

 

(d) Animal Road Crossing 

In this scenario, a small animal is in the middle of the road, located 80 meters away 

from the starting point. Figure 6-11 reflects the reckless driving behaviour of driver 1, who 

stopped before the animal at the lowest distance to crossing among the eleven drivers, marked 

at -0.24m. Driver 4 drove very carefully, maintaining a low speed of around 7m/s as shown in 

Figure 6-10. Therefore, driver 4 did not have to apply a large braking force to decelerate the 

vehicle and could maintain a distance of more than 10 meters from the small animal. 

Meanwhile, driver 2 and driver 3 exhibited similar driving behaviours, both driving at around 

10m/s with only slight differences in braking and accelerating behaviours. Driver 3 tended to 

accelerate and decelerate faster than driver 2.   

 

 

  

  

  

  

                                       

  
  
  
  
  
  
   
 
  
 

        

                     

                            

 

   

   

   

   

   

   

   

                                       

 
  
  
  
  
  
  
  
   
 

        

                       

                            



156 

 

  
Figure 6-10 Vehicle speed of different drivers in 

the animal crossing test scenario. 

Figure 6-11 Distance gap between the vehicle 

driven by different drivers with the animal. 

From the driving data recorded from the participants, it can be observed that for a driver model 

to exhibit normal driving behaviour, the difference in vehicle speed should not exceed 4m/s 

compared to a normal driver's data. This threshold range is crucial for indicating whether the 

driver model is performing normal driving during the performance evaluation of the driver 

model later. 

 

6.3 Pre-processing and Preparation of Training Data 

Based on previous research works [353], dataset generation for training, validation, and 

testing forms the cornerstone of every supervised machine learning application. Accuracy is 

crucial in achieving desired outcomes in supervised machine learning, which heavily relies on 

how input data is collected, fed into the learning agent, and extracted. Additionally, data 

science principles, particularly the extraction of relevant data, are applied in this study. Given 

the complexity involved, statistical analysis of the data is necessary to mitigate the risk of 

creating a flawed database. Hence, this section outlines the strategy for extracting and 

partitioning the dataset into three subsections. To facilitate training of a neural network model 

through supervised learning, the dataset is structured as an input array with dimensions 𝑛 × 5 

every delta (∆) time, where n represents the number of timestamps in the dataset. Each row in 

the matrix includes the following features, as shown in Equation 6.3: 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 =  [𝑣, 𝛿, 𝜌, 𝜏, 𝑤𝑡+∆𝑡  ] (6.3) 

Where, 𝑣 is the vehicle velocity, 𝛿 is the steering angle, 𝜌 is the throttle input, 𝜏 is the brake 

input, 𝑤𝑡+∆𝑡 is the next waypoint of the test track. 

The idea for including only the variables in Equation 6.3, while omitting other vehicle 

states, is to enable the neural network to develop a more complex representation of these 

parameters. This approach allows the network to predict odometry for various types of vehicles 

through training. To create the dataset for training of time-series neural network, first, the raw 

dataset as shown in Figure 6-12 is pre-processed where the driving inputs, vehicle speed and 

waypoint data were normalized using min max scaler to the range of 0 to 1. Besides, frame 

images are extracted from the videos recorded from front and rear facing cameras as shown in 

Figure 6-13 so that repeated frames are readily available for analysis. Moreover, this will 
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ensure that the repeated frames do not need to be extract from the videos repetitively and this 

could enhance the training process. 

 

In order to initiate the training process for the driver model, the dataset needs further 

processing. The recorded driving data includes various scenarios typical of Malaysian traffic, 

such as driving forward, making turns, changing lanes, driving at normal speeds or moving 

slowly in traffic jams, and driving on straight or curved roads. Figure 6-14 represents the 

steering angle distribution, showing the number of data points recorded in each interval using 

a histogram. It can be observed that the dataset is highly unbalanced, with an overwhelming 

number of neutral and small steering angles. This imbalance occurs because roads are straight, 

and only a small portion requires high steering angles. A model trained on such unbalanced 

data might tend to drive straight, even while showing low mean square errors during training. 

To address this bias, data points with steering angles larger than 5 degrees and counts less than 

the mean of the intervals are resampled three times. The datasets are then randomly shuffled 

before initiating the training process for the machine learning model.  

 

In deep learning training, it is common practice to split the dataset into three parts: 

training, validation, and testing datasets for cross-validation [354]. A training dataset is used 

to tune the weights of the neural network to fit the input data. A validation dataset is similar to 

the testing dataset, where the samples are not used to tune the weights of the neural network. 

However, the validation dataset provides continuous, unbiased evaluations of the model’s 

performance on unseen data during training. This helps in tuning hyperparameters, selecting 

Figure 6-12 An example of raw driving data collected 

from the dataset. 

Figure 6-13 An example of front camera image 

frame from the dataset. 

Figure 6-14 Histogram of steering angles in the dataset. 
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the best model, and preventing overfitting by enabling early stopping. Meanwhile, a testing 

dataset provides an unbiased evaluation of the final neural network. This evaluation is based 

on the accuracy of the neural network to generalize the problem using samples that are not used 

to update the weights of the network. Unlike the validation dataset, the testing dataset is 

employed only after the model has been fully trained to offer a final, unbiased measure of the 

model's performance, assessing how well the model generalizes to completely unseen data. In 

this study, the dataset is split into training, validation, and testing datasets with a ratio of 

70:20:10. 

6.4 Neural Network Models 

This section presents the architecture of a novel driver model for autonomous vehicles 

based on CNN-LSTM. The proposed model leverages the strengths of convolutional neural 

networks (CNNs) and long short-term memory (LSTM) networks to process multimodal input 

data, including RGB images, depth images, and vehicle state data. The model is configured to 

extract features from RGB images using a pre-trained ResNet-50, extract temporal 

dependencies using LSTM, and utilize custom CNNs to process depth images. The final 

predictions for steering angle, gas, and brake inputs are made through fully connected layers. 

This methodology emphasizes the novelty of integrating attention mechanisms and 

autoencoders, which enhance the model's performance and robustness compared to traditional 

CNN-LSTM models. The combination of these techniques addresses specific challenges in 

autonomous driving, providing significant advantages over traditional CNN-LSTM models. 

The model is trained using Red-Green-Blue-Depth (RGB-D) camera images and vehicle state 

data, ensuring a comprehensive approach to enhancing the accuracy and robustness of 

autonomous vehicle navigation. Figure 6-15 shows the model architecture of the driver model. 
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Figure 6-15 Architecture of the proposed driver model 

 

6.4.1  RGB Image Processing with ResNet-50 

The RGB image input consists of a sequence of 12 frames, each of size 224 × 224 

pixels with 3 colour channels (RGB). To extract high-level features from these images, a pre-

trained ResNet-50 model is used. ResNet-50 is known for its ability to capture intricate spatial 

hierarchies within images through its deep residual learning framework. Atliha et al. [355] 

demonstrated that ResNet performed better than other state-of-the-art CNN like the Visual 

Geometry Group Network (VGGNet) as encoders for image captioning. This is because the 

“shortcut-connections” in its architecture allows it to capture more complex features from the 

image. Hence, the output of its second last layer will be a high-quality representation of the 

input image. 

The input to ResNet-50 is the sequence of RGB images, and the output is a feature map 

representing each frame. ResNet-50 is a deep convolutional neural network with 50 layers. The 

key innovation of ResNet is the introduction of residual learning through skip connections, 
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which allows for the training of very deep networks by addressing the vanishing gradient 

problem. A residual block in ResNet-50 is defined as follows: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (6.4) 

where 𝑥 is the input to the block, 𝐹(𝑥, {𝑊𝑖}) represents the residual mapping to be learned, and 

𝑦 is the output. The residual mapping 𝐹() is typically composed of two or three convolutional 

layers, and the identity connection 𝑥 is added to the output of 𝐹(). 

The architecture of ResNet-50 consists of the following components: 

1. Conv1: 7 × 7 convolution, 64 filters, stride 2 

2. MaxPool: 3 × 3 max pooling, stride 2 

3. Conv2_x: 3 residual blocks, each with 3 × 3 convolutions 

4. Conv3_x: 4 residual blocks, each with 3 × 3 convolutions 

5. Conv4_x: 6 residual blocks, each with 3 × 3 convolutions 

6. Conv5_x: 3 residual blocks, each with 3 × 3 convolutions 

7. Average Pooling: Global average pooling 

8. FC: Fully connected layer 

Notably, the fully connected layer of ResNet-50 is removed, so that the feature maps can be 

further processing directly. The feature extraction process for each frame 𝐼𝑖 in the RGB image 

sequence is represented as: 

𝐹𝑅𝐺𝐵,𝑖 = 𝑅𝑒𝑠𝑁𝑒𝑡50(𝐼𝑅𝐺𝐵,𝑖) (6.5) 

where 𝐼𝑅𝐺𝐵,𝑖 is the 𝑖-th frame in the RGB image sequence, and 𝐹𝑅𝐺𝐵,𝑖 is the extracted feature 

map for the 𝑖-th frame. 

In order to enhance the feature representation compared to the existing CNN-LSTM 

models, an attention mechanism is applied to the features extracted by ResNet-50. Traditional 

models treat all features equally, potentially missing critical information. The attention 

mechanism helps the model focus on the most relevant parts of the image, improving its ability 

to make accurate predictions. The attention mechanism computes the attention weights 𝛼𝑖 for 

each frame's feature map 𝐹𝑅𝐺𝐵,𝑖: 

𝑒𝑖 = tanh(𝑊𝑎𝑡𝑡𝑛𝐹𝑅𝐺𝐵,𝑖 + 𝑏𝑎𝑡𝑡𝑛) (6.6) 

𝛼𝑖 =
exp(𝑒𝑖)

∑ exp(𝑒𝑗)12
𝑗=1

(6.7) 

where 𝑊𝑎𝑡𝑡𝑛 is the weight matrix for the attention layer, 𝑏𝑎𝑡𝑡𝑛 is the bias vector, and 𝑒𝑖 is the 

attention score for the 𝑖-th frame. 

The attended feature map 𝐹𝑅𝐺𝐵,𝐴𝑡𝑡,𝑖 is then computed as: 
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𝐹𝑅𝐺𝐵,𝐴𝑡𝑡,𝑖 = 𝛼𝑖 ⊙ 𝐹𝑅𝐺𝐵,𝑖 (6.8) 

where ⊙ denotes element-wise multiplication. 

 

6.4.2  Depth Image Processing with Custom CNN 

The depth image input also consists of a sequence of 12 frames, each of size 224 × 224 

pixels but with a single channel. A custom convolutional neural network (CNN) is designed to 

process these depth images. The custom CNN includes several convolutional layers followed 

by activation functions and pooling layers to capture important spatial features. The 

architecture of the custom CNN for depth image processing is as follows: 

1. Conv1: 3 × 3 convolution, 32 filters, stride 1, ReLU activation 

2. MaxPool1: 3 × 3 max pooling, stride 2 

3. Conv2: 3 × 3 convolution, 64 filters, stride 1, ReLU activation 

4. MaxPool2: 3 × 3 max pooling, stride 2 

5. Conv3: 3 × 3 convolution, 128 filters, stride 1, ReLU activation 

6. MaxPool3: 3 × 3 max pooling, stride 2 

7. Conv4: 3 × 3 convolution, 256 filters, stride 1, ReLU activation 

8. MaxPool4: 3 × 3 max pooling, stride 2 

9. Conv5: 3 × 3 convolution, 512 filters, stride 1, ReLU activation 

10. MaxPool5: 3 × 3 max pooling, stride 2 

The feature extraction process for each frame 𝑖 in the depth image sequence is represented as: 

𝐹𝐷𝑒𝑝𝑡ℎ,𝑖 = 𝐶𝑁𝑁(𝐼𝐷𝑒𝑝𝑡ℎ,𝑖) (6.9) 

where 𝐼𝐷𝑒𝑝𝑡ℎ,𝑖 is the 𝑖 -th frame in the depth image sequence, and 𝐹𝐷𝑒𝑝𝑡ℎ,𝑖 is the extracted 

feature map for the 𝑖-th frame. 

Similar to the RGB features, an attention mechanism is applied to the depth features to 

focus on the most important aspects of the depth images. The attention mechanism computes 

the attention weights 𝛽𝑖 for each frame's feature map 𝐹𝐷𝑒𝑝𝑡ℎ,𝑖: 

𝑑𝑖 = tanh(𝑊𝐷𝑒𝑝𝑡ℎ,𝑎𝑡𝑡𝑛𝐹𝐷𝑒𝑝𝑡ℎ,𝑖 + 𝑏𝐷𝑒𝑝𝑡ℎ,𝑎𝑡𝑡𝑛) (6.10) 

𝛽𝑖 =
exp(𝑑𝑖)

∑ exp(𝑑𝑗)12
𝑗=1

(6.11) 

Where 𝑊𝐷𝑒𝑝𝑡ℎ,𝑎𝑡𝑡𝑛 is the weight matrix for the attention layer, 𝑏𝐷𝑒𝑝𝑡ℎ,𝑎𝑡𝑡𝑛 is the bias vector and 

𝑑𝑖 is the attention score for the 𝑖-th frame. 

The attended feature map 𝐹𝐷𝑒𝑝𝑡ℎ,𝐴𝑡𝑡,𝑖 is then computed as: 

𝐹𝐷𝑒𝑝𝑡ℎ,𝐴𝑡𝑡,𝑖 = 𝛽𝑖 ⊙ 𝐹𝐷𝑒𝑝𝑡ℎ,𝑖 (6.12) 
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6.4.3  Vehicle State Data Processing with Dense Layers 

The vehicle state data includes a sequence of 12 instances, each with 5 features: speed, 

steering angle, gas, brake, and waypoint data. Before preprocessing, the vehicle state data is 

flattened into a 1D vector: 

𝑉𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑉) (6.13) 

where 𝑉 is the input vehicle state data matrix of shape 12 × 5, and 𝑉𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑  is the flattened 

vector of shape 60 × 1. Dense layers are then employed to process this data, with two dense 

layers of 128 and 64 units, respectively, each followed by ReLU activation functions. The 

transformation can be expressed as: 

𝐻1 = 𝑅𝑒𝐿𝑈(𝑊1𝑉𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 + 𝑏1) (6.14) 

𝐻2 = 𝑅𝑒𝐿𝑈(𝑊2𝐻1 + 𝑏2) (6.15) 

where 𝑊1  and 𝑊2   are the weight matrices, 𝑏1   and 𝑏2  are the biases, 𝐻1  is the hidden 

representation after the first dense layer, and 𝐻2  is the output of the second dense layer. 

 

6.4.4  Feature Concatenation 

The outputs from the RGB CNN with attention, depth CNN with attention, and dense 

layers processing vehicle state data are concatenated to form a combined feature vector: 

𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [𝐹𝑅𝐺𝐵 ,𝐴𝑡𝑡 , 𝐹𝐷𝑒𝑝𝑡ℎ,𝐴𝑡𝑡 , 𝐻2] (6.16) 

where 𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 represents the concatenated features. 

 

6.4.5  Temporal Dependency Extraction with LSTM 

The combined feature vector is then fed into an LSTM network, which is designed to 

capture temporal dependencies within sequential data. The LSTM network consists of two 

layers, with 2048 and 1024 units, respectively. The LSTM processes the concatenated features 

over time, learning patterns and dependencies that are crucial for making accurate driving 

decisions. The LSTM transformations are given by: 

ℎ𝑘 = 𝐿𝑆𝑇𝑀(𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑) (6.17) 

where ℎ𝑘 is the hidden state at time step 𝑘. The LSTM equations for the hidden state updates 

can be represented as: 

𝑖𝑘  =  𝜎(𝑊𝑖𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘  +  𝑊𝑖ℎ𝑘−1  +  𝑏𝑖)  

𝑓𝑘  =  𝜎(𝑊𝑓𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘  +  𝑊𝑓ℎ𝑘−1  +  𝑏𝑓)  

𝑔𝑘  =  𝑡𝑎𝑛ℎ(𝑊𝐼𝑔𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘  +  𝑊𝑐ℎ𝑘−1  +  𝑏𝑔) (6.18)

𝑐𝑘  =  𝑓𝑘⨀𝑐𝑘−1  +  𝑖𝑘⨀𝑔𝑘

 

𝑜𝑘  =  𝜎(𝑊𝑜𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘  +  𝑊𝑜ℎ𝑘−1  +  𝑏𝑜)  

ℎ𝑘  =  𝑜𝑘  tanh ⨀(𝑐𝑘)  
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where 𝑓𝑘, 𝑖𝑘, 𝑔𝑘, 𝑜𝑘 are forget, input, input modulation, and output gates, respectively; 𝑐𝑘   is 

the cell state; 𝜎  is the sigmoid non-linearity activation function; and ⨀  denotes matrix 

multiplication. 

Dropout regularization is employed to enhance the robustness and generalization of the 

temporal feature learning within the LSTM layers. Dropout is a crucial technique used to 

prevent overfitting, a common issue where the model performs well on training data but fails 

to generalize to new, unseen data. In the context of LSTM networks, dropout can be applied 

both to the input units and the recurrent connections between the LSTM units. For input 

dropout, a fraction of the input units is randomly set to zero during each forward pass in the 

training phase. This is mathematically represented as:  

�̃�𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘, 𝑝) (6.19) 

Where 𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘 is the input at time step 𝑘, �̃�𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑘 is the input after applying dropout, and 

𝑝 is the dropout rate indicating the probability of setting an input unit to zero. This process 

helps to prevent the network from becoming overly reliant on specific input features, thereby 

reducing the risk of overfitting. 

Recurrent dropout, on the other hand, is applied to the connections between the hidden 

states of the LSTM units. This can be described by the equation: 

ℎ̃𝑘−1 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(ℎ𝑘−1, 𝑝) (6.20) 

where ℎ𝑘−1 is the hidden state from the previous time step, ℎ̃𝑘−1 is the hidden state after 

applying dropout, and 𝑝 is the dropout rate for the recurrent connections. By regularizing these 

connections, recurrent dropout prevents the co-adaptation of recurrent units, encouraging the 

LSTM to learn more generalized and robust features. In the proposed driver model, the LSTM 

layer incorporates both input and recurrent dropout to address these challenges. Specifically, 

the LSTM layer with 256 units employs a dropout rate of 0.2 for both inputs and recurrent 

connections. This configuration is denoted as:  

ℎ𝑘 = 𝐿𝑆𝑇𝑀(𝐹𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.2, 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.2) (6.21) 

By setting 20% of the input units and 20% of the recurrent connections to zero during training, 

the model is forced to learn more meaningful patterns and relationships in the data, leading to 

improved generalization and performance. The incorporation of dropout in the LSTM layers 

ensures that the proposed driver model can effectively handle the complexity and variability 

inherent in driving data. This results in a model that is more resilient to overfitting and better 

equipped to generalize to new driving scenarios, thus providing a significant advantage over 

models that do not utilize dropout regularization. 

 

6.4.6  Fully Connected Layers for Driving Input Prediction 

The final hidden state from the LSTM is passed through fully connected layers to 

predict the driving inputs. The first fully connected layer has 128 units with ReLU activation, 
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followed by a second layer with 64 units. The output layer consists of 3 units, corresponding 

to the steering angle, gas, and brake inputs, with linear activation functions to provide the final 

driving commands: 

𝐷1 = 𝑅𝑒𝐿𝑈(𝑊3ℎ𝑘 + 𝑏3) 

𝐷2 = 𝑅𝑒𝐿𝑈(𝑊4𝐷1 + 𝑏4) (6.22) 

𝐷3 = 𝑅𝑒𝐿𝑈(𝑊5𝐷2 + 𝑏5) 

[𝛿, 𝜌, 𝜏]  = 𝑊6𝐷3 + 𝑏6  

Where 𝑊3, 𝑊4 ,𝑊5  and 𝑊6  are the weight matrices, 𝑏3, 𝑏4, 𝑏5 , and 𝑏6 are the biases, 𝐷1, 𝐷2 

and 𝐷3 are the outputs of the first, second and third dense layers, respectively,  𝛿  is the 

predicted steering angle, 𝜌 is the predicted gas input, and 𝜏 is the predicted brake input. 

The novelty of this model configuration lies in its comprehensive integration of 

multimodal data using advanced neural network techniques. Several advanced features have 

been incorporated into the proposed driver model to address key issues found in traditional 

CNN-LSTM driver models, enhancing performance, robustness, and accuracy. A major issue 

with traditional models is their inability to focus on the most relevant parts of the input data, 

leading to suboptimal performance in complex environments. This issue is addressed by 

incorporating attention mechanisms, allowing the model to dynamically prioritize important 

features from both RGB and depth images. This ensures concentration on critical objects and 

regions in the driving environment, such as pedestrians, vehicles, and road signs, thereby 

improving situational awareness and decision-making. For instance, in scenarios with multiple 

vehicles, the attention mechanism enables the model to focus on vehicles directly in the path 

of the autonomous vehicle, ignoring irrelevant background details. 

The use of the state-of-the-art ResNet-50 for RGB image processing addresses another 

significant issue: the limited ability of simple CNNs to capture intricate spatial hierarchies 

within images. ResNet-50, with its deep residual learning framework, effectively captures 

high-level spatial features, mitigating the vanishing gradient problem commonly encountered 

in deep networks. This leads to improved feature extraction, allowing accurate identification 

of traffic lights, signs, and lane markings under various lighting conditions, thus providing 

robust feature maps for subsequent processing. Similarly, the custom CNN designed for depth 

image processing addresses the challenge of fully exploiting the spatial information present in 

depth images, which traditional models often fail to do. The custom CNN captures vital depth 

information that complements the RGB data, enabling accurate detection of obstacles and 

determination of their distances. This is particularly important for safe navigation in 

environments with varying terrain and object proximity. 

Vehicle state data has traditionally been processed using simple concatenation or basic 

feedforward networks, which may not capture the complex relationships within the data. This 

model uses dense layers to process vehicle state data, allowing for a better understanding and 

leverage of these relationships. This leads to more accurate predictions of driving inputs. For 
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example, the correlation between speed and steering angle can be analysed, enabling more 

informed control decisions, such as adjusting speed during sharp turns to maintain stability. 

Temporal dependencies in sequential data are captured by employing an LSTM network to 

process the concatenated features over time, addressing another challenge faced by traditional 

models. Temporal patterns and dependencies critical for driving tasks are captured by the 

LSTM. Patterns such as decelerating before a turn and accelerating after completing the turn 

are learned, mimicking human driving behaviour for smoother control. 

Multimodal data from different sources (RGB, depth, and vehicle states) has 

traditionally been integrated inefficiently. By concatenating the attended features from RGB 

and depth images with the processed vehicle state data, a comprehensive representation of the 

driving environment is provided. This holistic integration helps the model make well-informed 

decisions, such as determining the best path to avoid obstacles while maintaining optimal speed 

and steering. Finally, the fully connected layer transforms the integrated features into precise 

driving inputs (steering angle, gas, and brake), addressing the issue of high-dimensional feature 

spaces leading to overfitting and increased computational complexity. The fully connected 

layer balances complexity and performance, ensuring accurate prediction of necessary control 

actions based on a comprehensive analysis of the input data, thereby ensuring smooth and safe 

vehicle operation. 

In summary, critical issues found in traditional driver models are effectively addressed 

by the proposed CNN-LSTM model with attention mechanisms, ResNet-50, custom CNN, and 

dense layers. By focusing on relevant features, capturing high-level spatial and temporal 

dependencies, and processing vehicle state data efficiently, the model enhances performance, 

robustness, and accuracy, ensuring reliable operation in diverse and complex driving 

environments. This holistic approach distinguishes the proposed model from existing CNN-

LSTM models, offering a more sophisticated and accurate solution for autonomous driving 

tasks. 

 

6.4.7  Integration with a Validated 14 DoF Mathematical Vehicle Model 

To enhance the training and testing processes of the final driver model, the validated 

14 DoF mathematical vehicle model has been integrated. This step addresses significant 

challenges associated with using the vehicle model from the IPG CarMaker. The dataset 

utilized for training the driver model has been recorded from a virtual driving simulator, which 

provides detailed and realistic driving scenarios. However, testing the driver model necessitates 

generating vehicle state outputs, such as vehicle speed, longitudinal and lateral displacement, 

based on the predicted steering angle, gas, and brake outputs from the driver model. The vehicle 

model in the IPG CarMaker, although accurate, requires substantial time and hardware 

resources to run, making it impractical for extensive testing and iterative development. 

To overcome these limitations, the validated 14 DoF mathematical vehicle model 

developed in the Chapter 3 has been employed as a replacement for the virtual simulator vehicle 

model. The integration process involves several key steps. Firstly, input data synchronization 
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ensures that the driver model, which processes RGB images, depth images, and vehicle state 

data, receives synchronized input data corresponding to the outputs and states of the 14 DoF 

vehicle model. This synchronization guarantees that the training and testing data reflect 

realistic driving scenarios. Secondly, the 14 DoF vehicle model generates realistic sensor data, 

such as vehicle speed, longitudinal and lateral displacement. This simulated data is fed into the 

driver model during training and testing, mimicking the data that would be collected from 

actual sensors on a real vehicle. 

A feedback loop is established where the driver model's outputs (steering angle, gas, 

brake) are used to control the 14 DoF vehicle model. This loop ensures that the driver model 

learns to control the vehicle dynamics accurately in response to various driving scenarios. The 

integrated system undergoes extensive validation to ensure that the driver model performs well 

under different conditions. This includes testing the model in various simulated environments, 

such as urban, highway, and off-road scenarios, and refining it based on performance metrics. 

Figure 6-16 shows the training process of the proposed driver model. The integration of the 

driver model with the 14 DoF vehicle model offers several significant advantages. By using a 

detailed vehicle dynamics model, the driver model is tested in a highly realistic simulation 

environment, improving its performance in real-world conditions.  

The 14 DoF mathematical vehicle model consumes fewer resources and less time to 

run compared to the virtual simulator vehicle model, making it more practical for extensive 

testing and iterative development. The integrated system allows for thorough validation of the 

driver model, ensuring it can handle a wide range of driving scenarios and conditions. The 

complex interactions and dynamics captured by the 14 DoF model help the driver model learn 

more sophisticated control strategies, leading to improved driving behaviour and safety. The 

feedback loop between the driver model and the vehicle dynamics model enables continuous 

refinement and improvement of the driver model based on simulated performance. 

By integrating the final driver model with a validated 14 DoF mathematical vehicle 

model, the training and testing processes are significantly enhanced. The detailed vehicle 

dynamics model provides a realistic and resource-efficient simulation environment, ensuring 

the driver model is well-equipped to handle real-world driving scenarios, resulting in a robust 

and accurate autonomous driving system. This integrated approach addresses the limitations of 

traditional training methods and ensures that the driver model is capable of safe and efficient 

vehicle control in diverse and complex environments. 
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Figure 6-16 Training process of the proposed driver model 
 

6.4.8  Comparison of Driver Model Performance with Baseline Models 

To comprehensively evaluate the performance of the proposed driver model, two 

baseline models were developed for comparison: an CNN-only model and a traditional CNN-

LSTM model. This comparative analysis aims to highlight the effectiveness and advantages of 

the novel driver model configuration. 

 

(a)  Baseline Model 1: CNN-Only Model 

The CNN-only model is based on NVIDIA's PilotNet architecture, which is designed 

to process image data and directly predict the driving inputs. This model serves as a simpler 

baseline to assess the benefits of incorporating temporal modelling and attention mechanisms 

in the proposed model. Figure 6-17 shows the architecture of the baseline model 1. The 

architecture of the CNN-only model is as follows: 

• Input Layer: Receives RGB images with dimensions (224, 224, 3). 

• Convolutional Layers: Multiple convolutional layers are used to extract spatial 

features from the RGB images. The layers include convolution, ReLU activation, and 

pooling operations. This CNN module employs a structure akin to ResNet. Following 

the CNN layer, the output is flattened into flat data, leading to the last two layers, which 

are the dense layers and the output layer. 

o Conv1: 24 filters, kernel size 5 × 5, strides 2 × 2, ReLU activation.  

o Conv2: 36 filters, kernel size 5x5, strides 2x2, ReLU activation. 

o Conv3: 48 filters, kernel size 5x5, strides 2x2, ReLU activation.  

o Conv4: 64 filters, kernel size 3x3, strides 1x1, ReLU activation. 

o Conv5: 64 filters, kernel size 3x3, strides 1x1, ReLU activation.  

• Flatten Layer: Flatten the 2D data Conv5 output into 1D. 

• Dense Layers: Fully connected layers are used to map the extracted features to the 

driving inputs. 
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o Dense1: 100 units, ReLU activation.  

o Dense2: 50 units, ReLU activation.  

o Dense3: 10 units, ReLU activation.  

• Output Layer: Predicts the steering angle, gas, and brake values. 

 

Figure 6-17 Architecture of the end-to-end baseline model 1 

 

(b) Baseline Model 2: Traditional CNN-LSTM Model 

The traditional CNN-LSTM model incorporates convolutional layers to process image 

data and LSTM layers to handle the sequential nature of the data. This model serves as a 

benchmark to demonstrate the improvements gained by introducing the novel components in 

the proposed model. Figure 6-18 shows the architecture of the baseline model 2. The 

architecture of the traditional CNN-LSTM model is as follows: 

• Input Layers: There are two input layers. One of the input layers receives RGB images, 

while the other input layer receives vehicle state data such as vehicle speed, the driver's 

applied steering wheel angle, and the intensity of throttle and brake pedal usage. 

• CNN Layers: Processes the RGB images to extract spatial features. The CNN typically 

includes convolutional, ReLU, and pooling layers. 

o Conv1: 24 filters, kernel size 5x5, strides 2x2, ReLU activation.  

o Conv2: 36 filters, kernel size 5x5, strides 2x2, ReLU activation.  

o Conv3: 48 filters, kernel size 5x5, strides 2x2, ReLU activation.  

o Conv4: 64 filters, kernel size 3x3, strides 1x1, ReLU activation.  

o Conv5: 64 filters, kernel size 3x3, strides 1x1, ReLU activation.  

• Flatten Layer: Flatten the 2D data Conv5 output into 1D 

• LSTM Layers: Captures temporal dependencies from the sequential data, integrating 

features from both the CNN and the vehicle state inputs.  

o LSTM1: 256 units. Drop out 0.5. 

• Dense Layer: Maps the combined features to the driving inputs. 

o Dense1: 100 units, ReLU activation. 

o Dense2: 50 units, ReLU activation.  

o Dense3: 10 units, ReLU activation.  
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• Output Layer: Predicts the steering angle, gas, and brake values. 

 

Figure 6-18 Architecture of the end-to-end baseline model 2 

 

6.5 Experiments and Results using Simulated Data 

Each model undergoes evaluation using identical test data sampled from IPG CarMaker. 

Mean Squared Error (MSE), presented in Equation 6.23, serves as the primary metric for 

assessing the prediction accuracy of the trained model. MSE is computed as the average of 

squared errors across all video clips in the test dataset. MSE is advantageous because it 

effectively captures differences between predicted and true values, which aids in comparing 

model performance. However, MSE may diminish these differences, particularly for small 

driving inputs typical of steady AV movement on congested roads where absolute values 

generally remain below 0.5. 

𝑀𝑆𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑔𝑖|

𝑛

𝑖=1
(6.23) 

Where 𝑝𝑖 represents the predicted outcome, and the 𝑔𝑖 denotes the ground truth. 

Since the focus of this study is to minimize differences between model output and 

ground truth, not necessarily to achieve exact replication. Therefore, a small error threshold 𝑡𝑠 

is established to evaluate driving manoeuvres (𝐷𝑀). Predicted outcomes with 𝑀𝑆𝐸 below 𝑡𝑠 

indicate valid driving manoeuvres (𝑉𝐷𝑀) , while those above 𝑡𝑠  denote false driving 

manoeuvres (𝐹𝐷𝑀). This distinction between 𝑉𝐷𝑀 and 𝐹𝐷𝑀 is quantified in Equation 6.24. 

{
|𝑝𝑖 − 𝑔𝑖| ≥ 𝑡𝑠, 𝐷𝑀 = 𝑉𝐷𝑀
|𝑝𝑖 − 𝑔𝑖| < 𝑡𝑠, 𝐷𝑀 = 𝐹𝐷𝑀

(6.24) 

Then, the system performance score is defined as 𝑃𝐸𝑆𝐶 in Equation 6.25 to evaluate the system: 

𝑃𝐸𝑆𝐶 =
𝑉𝐷𝑀

𝑉𝐷𝑀 + 𝐹𝐷𝑀
(6.25) 

As mentioned earlier, to make sure the driving behaviour is normal driving, it is crucial 

to make sure the error is within the 4 m/s for the speed. Hence the threshold is set as 4 degrees 

for steering angle. Given that control decisions are made every half second, positional errors 

in the vehicle's direction are 0.4m horizontally and 0.06m vertically. Such minor deviations are 

typically accommodated within safety margins designed into roads and traffic systems, thereby 

minimizing risk of accidents or damage [356]. 
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6.5.1  Evaluation of Sequential Data Input Interval 

In order to ensure the driver model retains essential information, the optimal interval 

between input data is determined. This interval aims to prevent an excess of redundant data, 

which would otherwise slow down the inference speed of the driver model. In this experiment, 

the interval 𝑥 is varied while keeping other parameters constant. Given a data sampling rate of 

30, each vehicle control decision corresponds to 𝑥/30 seconds. Values of 𝑥 are tested from 

{2,4,6,8,10,12,14,16,18,20,22,24,26,28}, and the 𝑥 that yields the best performance across 

steering angle and speed MSE metrics is identified. Figure 6-19 illustrates the MSE results for 

different 𝑥 values, clearly showing that the interval between input data significantly impacts 

system performance. From the results, 𝑥 = 12 emerges as optimal for both steering angle and 

speed, indicating that decisions made with input data every 0.4 seconds achieve the best overall 

performance. 

 

6.5.2  Driver Model Performance Results using Simulated Data 

From Table 6-3, Baseline Model 1 (CNN-only) and Baseline Model 2 (CNN-LSTM) 

serve as benchmarks for evaluating the effectiveness of different driver model architectures. 

Baseline Model 1 (CNN-only) utilizes a convolutional neural network (CNN) architecture, 

which extracts spatial features from images but lacks temporal awareness. This model performs 

significantly worse than models incorporating long short-term memory (LSTM) networks, as 

it is unable to capture the sequential dependencies essential for driving behaviour prediction. 

The mean squared error (MSE) for steering and speed in Baseline Model 1 is the highest, 

indicating that relying solely on CNN-based spatial feature extraction is insufficient for 

modeling complex driver behaviors that depend on historical driving states. 

Baseline Model 2 (CNN-LSTM) introduces LSTM layers to handle temporal 

dependencies in driving sequences, leading to substantial performance improvements. The 

CNN extracts spatial features from camera images, while the LSTM captures sequential 

information from past frames, enabling better driving input prediction. This is reflected in the 

lower MSE values and a higher PESC score compared to Baseline Model 1. However, despite 

the improvement, Baseline Model 2 does not integrate additional attention mechanisms or 

leverage multi-camera information effectively, limiting its ability to adapt to complex, real-

world driving scenarios. Furthermore, it was observed that the CNN-LSTM with attention 

Figure 6-19 Driver model performance using different parameter x. 
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mechanism model, as proposed in [223] , did not achieve satisfactory performance even after 

being retrained using the Malaysian driving dataset developed. While the model demonstrated 

improved speed prediction accuracy, with a lower mean squared error (MSE) compared to 

Baseline Model 2, its performance in steering angle prediction was significantly weaker.  

The primary reason for this limitation is that the model lacks a navigation mechanism, 

which is crucial for decision-making at intersections and junctions. Without waypoints to guide 

its trajectory, the model struggles to determine the correct path, often selecting incorrect exits 

or failing to make appropriate turns, leading to higher steering prediction errors. To address 

this issue, the driver model proposed in this study incorporates a waypoint-based navigation 

system, ensuring that the model follows a predefined route toward the intended destination. By 

integrating waypoints as part of the input features, the model is able to improve trajectory 

planning and steering accuracy, resulting in more reliable and realistic driving behaviour in 

simulation and real-world testing. 

The proposed model using 5 features, the front and rear camera images have 

outperformed most of the other models. This demonstrates that adding information about the 

current driving input to the input layer significantly improved the model's performance 

compared to baseline models and the model using only front camera image information. 

However, the model using all cameras performed similarly to the model using only the front 

and rear cameras, contrary to expectations. Several factors contribute to this unexpected result. 

Firstly, the additional side camera images introduced redundant or irrelevant information, 

increasing noise in the input data and making it harder for the model to extract meaningful 

features. Secondly, the spatial misalignments or inconsistencies between the side, front, and 

rear camera images confused the model, as it had to reconcile different perspectives and 

orientations. 

In contrast, the significant performance improvement of the model with front and rear 

camera images over the model with only a front camera is attributed to the complementary 

nature of the information provided by these two cameras. The front camera captures the 

immediate driving environment, while the rear camera provides additional context, such as 

vehicles behind the driver. By combining both views, the model gains a more comprehensive 

understanding of the surrounding traffic, enabling better driving decisions. Overall, the failure 

of the model with all four camera images to outperform the model with only front and rear 

camera images indicate that using all four camera images (front, rear, left, and right) does not 

necessarily improve performance over the model using only front and rear cameras. This 

outcome underscores the importance of careful feature selection, as adding more input data 

does not always lead to better performance due to: 

• Introduction of Redundant or Irrelevant Information: When incorporating left and right 

camera images, the model encounters additional visual data that may not always be 

relevant for decision-making. Unlike the front and rear cameras, which provide direct 

information about immediate and trailing traffic conditions, the side cameras capture 

peripheral views that may not always contribute critical information for tasks such as 

steering and speed control. The presence of irrelevant features can dilute the model’s 
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ability to focus on key decision-making elements, leading to higher prediction error and 

degraded overall performance. 

• Spatial Misalignment and Perspective Variability: The integration of images from 

multiple camera angles introduces orientation mismatches that the model must 

reconcile. The front and rear cameras have a clear and linear relationship, making it 

easier for the network to learn the temporal transitions between observed traffic and 

driving inputs. However, the side camera views are angled differently, capturing 

information from a different perspective, making it harder for the model to extract 

consistent patterns. This spatial inconsistency confuses the model, reducing its ability 

to generalize and make accurate predictions. 

• Noise Amplification and Increased Computational Complexity: Including all four 

cameras increases the dimensionality of the input space, leading to greater 

computational demands and potential overfitting. The model must process a larger 

feature set, which not only increases training time but also amplifies noise if certain 

camera views contribute conflicting or less relevant information. Instead of improving 

performance, the additional side views create ambiguity in learned representations, 

leading to higher error rates. 

Therefore, the result demonstrated that feature selection must be guided by relevance 

and data efficiency. While adding complementary sources of information can improve 

performance, including excessive or less useful features can introduce noise, redundancy, and 

model confusion. The best-performing configuration which used only front and rear cameras, 

demonstrated that combining a primary viewpoint (front) with a supplementary, context-

providing viewpoint (rear) enhances predictive accuracy without unnecessary complexity. This 

insight is critical for future work in autonomous driving and driver modelling, reinforcing the 

need for careful sensor fusion strategies to ensure optimal performance without unnecessary 

computational overhead. 

Table 6-3 Performance of different driver model architecture with or without LSTM 

Models MSE Steering MSE Speed PESC 

CNN Only baseline model 1 0.4014 0.4312 33.17 

CNN-LSTM baseline model 2 0.2985 0.2802 64.25 

CNN-LSTM with attention mechanism proposed in [223] 0.3296 0.2619 61.04 

Proposed (front camera) 0.1781 0.1863 75.48 

Proposed (front + rear cameras) 0.1278 0.1327 84.63 

Proposed (front + rear + right + left cameras) 0.1379 0.1308 83.59 

A comparison of different CNN architectures was also carried out through experiments. 

Specifically, three different CNN-LSTM combination architectures were implemented: 

NVIDIA PilotNet, VGGNet, and ResNet-50 CNN architectures. Furthermore, since the 

introduction of Transformers for natural language processing, Transformers have become 

increasingly popular not only in language processing but also in other field like Vision 

processing. Two different Transformer models were implemented and subjected to comparison 

in this experiment as well: Vision in Transformer (ViT) [357] and Compact Convolutional 
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Transformer (CCT) [358]. Table 6-4 shows the results, where MSE for the lateral and 

longitudinal controls for the five architectures are listed. 

Table 6-4 Performance of different image feature extractor network. 

Image Feature Extractor MSE Steering MSE Speed PESC #Params MACs 

NVIDIA 0.1828 0.2089 67.73 348.82 k 0.82 G 

VGGNet 0.1356 0.1468 78.91 134.7 M 15.61 G 

ResNet-50 0.1278 0.1327 84.63 25.56 M 4.14 G 

Vision in Transformer (ViT-Base/16) 0.0927 0.0989 88.27 86.8 M 49.35 G 

Compact Convolutional Transformer (CCT) 0.1363 0.1269 84.26 22.51 M 15.02 G 

It can be noted that the ViT-LSTM architecture have the best performance among all 

the five architectures. ViT, based on the Transformer architecture originally designed for 

natural language processing task, employs self-attention mechanisms to model dependencies 

between words in text. Similarly, in ViT, input images were represented as a series of patches 

which act like a series of word embeddings used when using Transformer for text. However, 

training and deploying ViT required vast computational resources due to high computational 

complexity compared to those older and well-established CNN models. To counter this issue, 

instead of patching, CCT uses convolutions to perform sequence pooling which have been 

proved to be efficient in CNN networks for extracting and encoding features in images. This 

enable CCT to increase performance while reducing the size of the model due to smaller 

number of parameters compared to ViT. Despite having a smaller number of parameters, the 

performance of the CCT is on par with or slightly better than the ResNet-50 in some cases. 

However, due to the architecture of the Transformer, the Multiply-Accumulate Operations 

(MACs) of the CCT are more than three times those of ResNet-50, requiring significantly more 

hardware resources to deploy the model for real-time detection. 

 

6.5.3  Visualization of the Driver Model Result 

Upon completion of the training phase, the driver model is integrated into the IPG 

CarMaker to evaluate its performance in a realistic and controlled driving environment. This 

integration is crucial for ensuring that the driver model is reliable and robust enough for safety 

testing of autonomous vehicles, which require a highly accurate and responsive driver model 

for validation and verification purposes. Within this integration, the driver model receives real-

time input data, including RGB and depth images from both front and rear cameras, along with 

the current vehicle states data provided by IPG CarMaker. These inputs encompass crucial 

information about the vehicle’s speed, steering angle, gas throttle, brake status, and waypoints. 

The driver model processes the RGB and depth images through its pre-trained ResNet-50 and 

custom CNNs, respectively. Simultaneously, it analyses the vehicle states data using dense 

layers. The integration of attention mechanisms ensures that the model focuses on the most 

relevant features from the visual and state inputs. After extracting and combining these features, 

the LSTM network captures temporal dependencies to predict the driving control outputs. 

The final outputs from the driver model are the steering angle, brake, and gas controls, 

which are used to manoeuvre the virtual vehicle within the IPG CarMaker simulator. This setup 
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allows for a comprehensive assessment of the model's capability to handle dynamic driving 

scenarios, respond to real-time environmental changes, and make precise driving decisions. 

The use of IPG CarMaker provides a robust platform to simulate various driving conditions 

and validate the model's effectiveness in an environment that closely mimics real-world driving. 

By integrating the driver model into the IPG CarMaker simulator, it is possible to perform a 

direct comparison with the built-in driver model provided by IPG CarMaker. This comparison 

involves evaluating the performance of both models under identical driving scenarios, enabling 

an assessment of the novel driver model's advantages in terms of accuracy, responsiveness, and 

robustness. Key performance metrics such as steering precision, brake and gas control, and 

overall driving behaviour can be measured and analysed. The integration and comparison 

process ensures that the developed driver model is rigorously tested and benchmarked against 

established standards. Figure 6-20 illustrates the driver model integrated into the IPG CarMaker, 

replacing the built-in IPGDriver to control the ego vehicle. 

 

Figure 6-20 Integration of driver model into IPG CarMaker 

To further ensure the reliability of the driver model for safety testing of autonomous 

vehicles, the driver model's performance is visually assessed by feeding predicted steering 

angles and pedal inputs into IPG CarMaker to control the virtual vehicle and generating videos 

as output. The visualized results were analysed across several common driving scenarios: 

• The “vehicle-following” scenario: In this scenario, the ego vehicle maintained a safe 

distance from the leading car and travelled at a steady speed. This evaluation 

highlighted the model's capability to accurately replicate acceleration trends in response 

to speed changes of the preceding vehicle. Among all tested scenarios, "vehicle-

following" showed the highest level of accuracy, with the prediction curve closely 

aligning with the ground-truth curve. This indicated the model's effectiveness in 

replicating real-world driving behaviours in this common driving situation.  

• The “emergency braking” scenario: During the deceleration phase, the driver model 

detected the motorcycle cutting in and responded by releasing the throttle and applying 

the brakes, mirroring the human driver’s actions to maintain a safe distance. Once the 

motorcycle left the lane, the ego vehicle accelerated. Both the ground truth and 

predicted acceleration curves rise, though the predicted curve peaked slightly lower 

than the ground truth. 
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• The “pedestrian crossing scenario”: When the pedestrian crossed the road, the driver 

model needed to apply the brakes to halt the car. Once the pedestrian had left the road, 

the ego vehicle accelerated and resumed its planned path. 

• The “overtaking” scenario: The driver model needed to overtake traffic vehicle ahead 

by changing lane. The driver model needed to ensure no vehicles were coming from 

the right lane to safely perform overtaking. 

In the data plots, the vertical axis represents the values of driving inputs, whereas the 

horizontal axis indicates the timestamp. The vertical axes are scaled to [−1.0,1.0] for steering 

input and [0.0,1.0] for throttle and brake inputs to ensure accurate interpretation. For horizontal 

axes, due to the extensive length of the recorded data, only key timestamps relevant to specific 

driving events are extracted and presented in this thesis. This selective presentation ensures 

that critical moments of interest are highlighted while reducing redundancy. Values of the 

driving inputs for both ground-truth and prediction were displayed on the generated video, 

identified as “ground truth” and “prediction” in the legends, respectively. By combining the 

data plots with actual video frames, it provides an intuitive method to examine prediction 

deviations across continuous spatial and temporal ranges. Figure 6-21 illustrates sample frames 

extracted from the simulation video, showcasing the steering angle and speed of the ground 

truth, the driver model, and the default IPGDriver model used in IPG CarMaker. 

Looking at the example frames of a “pedestrian crossing” scenario as shown in Figure 

6-21, it can be observed that the driver model able to produce steering angle and vehicle speed 

close to the ground truth human driver. As comparison, the IPGDriver provided by IPG 

CarMaker applied brake and bring the car to idle at 0km/h speed once pedestrians are crossing 

the road. Whereas the driver model could reproduce the driving style of human drivers where 

a human driver will slow down the vehicle instead of applying large braking force to stop the 

vehicle immediately, like the IPGDriver. The steering and braking profiles of the human driver 

and the driver model are illustrated in Figure 6-24. Small peaks and troughs in both the 

prediction and ground truth lines indicate slight variations in steering behaviour. The close 

alignment between the two profiles suggests that the driver model accurately mimics human 

steering actions during the pedestrian crossing scenario. Similarly, the prediction and ground 

truth lines exhibit fluctuations in the braking profile. The model’s ability to replicate human 

braking patterns is evident from the consistent alignment between the two lines. 
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The steer angle, throttle and brake control predicted by the driver model can be seen in 

Figure 6-22, Figure 6-23, Figure 6-24 and Figure 6-25. As previously mentioned, the predicted 

curves in “car-following” scenario as shown in Figure 6-22 have least error when compared to 

the ground truth. This is because in vehicle following scenarios, the driving data mostly 

depends on the speed of the vehicle in front and the road shape, there were no large variation 

between the training data of different drivers. Therefore, the driver model can provide a good 

prediction of the maneuverer in this scenario. Whereas, in critical scenarios such as “pedestrian 

crossing”, “emergency braking” and “overtaking”, this is where the driving style of a human 

driver will affect a lot in the driving data. Since every driver has different driving style, it is 

difficult to make an average driver prediction model to predict driving input that can fit every 

single driver without personalization of the driver model tailored for a single driver. This can 

be seen clearly from the braking profile in Figure 6-23 “emergency braking” scenario where 

there are some obvious differences between the predicted curve and the ground truth curve. 

However, the throttle profile in “emergency-braking” scenario shown that the model able to 

produce throttle control closely match the ground truth. Similarly, this behaviour is evident in 

the steering and speed control profile during the “overtaking” scenario depicted in  Figure 6-25, 

where the predicted curve closely mirrors the overall trend of the ground truth curve, resulting 

in minimal prediction error. Thus, it is observed that the model exhibits driving behaviour 

closely resembling that of average Malaysian drivers, despite with slightly more conservative 

predictions in acceleration and deceleration. Other than the difference in shape of the curve, 

there is also noticeable difference between the response time in a human driver and the driver 

model. In most of the time, the driver model reacts to the scenario much faster than human 

driver. Hence, although the driver model can predict the driving input at high accuracy, it still 

lacks the ability to accurately reproduce the response time of human driver with the current 

architecture proposed. 

 

Human Driver (Ground Truth) Driver Model Developed IPG CarMaker built-in IPGDriver 

   

      
GT Angle:  23.93° Predicted Angle: 24.25° IPGDriver Angle 23.32° 

GT Speed: 8.25 km/h Predicted Speed: 8.14 km/h IPGDriver Speed: 0 km/h 

  Error: 0.32° 

0.11km/h 

Error: 0.61° 

8.25km/h 

Ego vehicle Pedestrian 

Figure 6-21 Example frames with the driving inputs from the ground truth, prediction of the driver model 

and generated by IPGDriver. 
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Figure 6-24 Driving profile of human driver and driver model developed in a pedestrian crossing scenario 

 

   

   

   

   

   

   

                                    

  
  
   
  
  

        

                                                    
                                

                      

    

     

     
     
     

 
    

    
                                        

  
  
   
  
   
 

        

                                                 
                                   

                      

Figure 6-22 Driving profile of human driver and driver model developed in a car following scenario. 

Figure 6-23 Driving profile of human driver and driver model in an emergency braking scenario. 
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6.6 Experiments and Results using Real World Data 

Synthesized data is a valuable resource for training and validating the deep neural 

networks especially for tasks that require high fidelity ground truth labels and rare cases. 

However, synthesized data may not accurately capture the characteristics and variations of real-

world data, such as sensor noise, lens artifacts, lightning conditions. Therefore, after the 

performance of the driver model is evaluated using synthesized data, the driver model is 

evaluated using real world data captured with the instrumented vehicle as well. However, the 

raw data captured from the instrumented vehicle cannot be fed directly into the driver model 

since it lacks several input parameters such as vehicle speed and waypoint to guide the driver 

model. Therefore, the preprocessing of the real-world raw data is crucial to convert the data to 

the format that is compatible with the driver model. The following section presents the data 

conversion methodology and then follow by the evaluation of the driver model performance 

using the real-world data. 

 

6.6.1  Real-world Data Conversion 

The driver model developed required waypoint and vehicle speed as input to generate 

the steering angle, throttle, and braking driving inputs. The raw data obtained from the sensors 

mounted on the instrumented vehicle did not have such parameters. To obtain the waypoint in 

terms of Cartesian (x,y,z) like the IPG CarMaker from the real data, the GPS data recorded is 

used. Assuming the GPS has no positional error, the XYZ Cartesian coordinates can be 

obtained as shown in Equation 6.26. 

𝑋 = 𝑅 × cos(𝑙𝑎𝑡) × cos (l𝑜𝑛) 

𝑌 = 𝑅 × cos(𝑙𝑎𝑡) × sin(l𝑜𝑛) (6.26) 

𝑍 = 𝑅 × 𝑠𝑖𝑛(𝑙𝑎𝑡) 

𝑅 = 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 + 𝑅𝑒𝑎𝑟𝑡ℎ (6.27) 

Where, lat and lon are the lateral and longitudinal coordinates obtained from the GPS. R is 

defined as in Equation 6.27. Meanwhile, altitude is the height above sea level obtained from 

GPS. 𝑅𝑒𝑎𝑟𝑡ℎ is the radius of the earth which is approximately 6371km. Next, to obtain the 

Figure 6-25Driving profile of human driver and driver model developed in an overtaking scenario. 

(a) (b) 
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vehicle speeds, computer vision calculation for optical flow is used to estimate the speed of the 

vehicle from the front facing camera data. Optical flow is the vector for each pixel that defines 

the relative motion between two sequential images. First, to obtain the optical flow frames from 

the recorded video using the instrumented vehicle, state-of-the-art deep learning model 

Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) is used. After obtaining the 

optical frames from the video, the speed of the instrumented vehicle can be estimated using a 

pre-trained CNN network, Video Odometry using Optical Flow (VOOF) model which the 

architecture is based on Efficient Net. The system architecture to estimate the instrumented 

vehicle speed is as shown in Figure 6-26. Based on the system architecture estimation, the 

result of the speed estimation model is shown in Figure 6-27. With these pre-processed data, 

the dataset of the real-world data can be fed into the developed driver model to evaluate its 

performance and robustness while handling different types of data. 

 
Figure 6-26 Optical flow frame extracted from video captured. 

 
Figure 6-27 Estimated vehicle speed(left) and combined output with optical flow frame overlay(right). 

 

6.6.2  Evaluation of Driver Model Performance using Real-world Data 

In order to assess the robustness of the driver model, three models trained on different 

datasets were compared: the first model trained exclusively on simulation data, the second 

model trained solely on real-world data, and the third model trained on a combination of 

simulation and real-world data. Table 6-5 presents the performance metrics for these three 

models.  As indicated in the table, the performance of the driver model trained solely on 

simulation data significantly decreased when evaluated with real-world data. This decline can 

be attributed to a domain gap between the two datasets. Simulation data tends to be more 

idealized, uniform, and less noisy compared to real-world data, which exhibits greater 

complexity, variability, and noise. Consequently, a model trained exclusively on simulation 
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data may struggle to generalize well to real-world scenarios, leading to reduced robustness and 

performance. 

Table 6-5 Performance of driver model trained with different type of data tested with real-world data. 

Model training data MSE Steering MSE Speed 

Simulation only 0.4251 0.3623 

Simulation + Real-world 0.3278 0.3108 

Real-world only 0.5278 0.4937 

On the other hand, the driver model trained exclusively on real-world data exhibits the 

poorest performance among the three models. In contrast, the model trained using both 

simulation and real-world data achieved the highest accuracy when evaluated with real-world 

data. This limitation arises from the limited diversity and quantity of critical test scenarios 

present in real-world data. This scarcity of data is insufficient to effectively train deep neural 

networks, which typically require extensive datasets for optimal performance. As a 

consequence, the driver model trained solely on real-world data tends to underfit, meaning it 

fails to adequately capture the complexity and variability inherent in real-world driving 

scenarios. This underfitting results in the model's inability to learn the underlying patterns and 

relationships within the data. Underfitting occurs when a model is too simplistic to capture the 

complex structures present in the data. Consequently, such models may exhibit poor 

performance and lack robust generalization capabilities, affecting their efficacy on both 

training and test datasets. 

Whereas simulation data can provide more diversity and coverage of the input space, 

while real-world data provide more realism and variability of the input conditions. By 

combining both types of data, the driver model can learn from different sources of information 

and generalize better to new data. Therefore, the driver model trained with both data can obtain 

a higher accuracy. However, it is also noted that the accuracy of this model is lower than the 

accuracy when tested with simulation data. This could be caused by several reasons such as: 

• The mixed data is not well balanced. For example, if the mixed data contains too little 

real-world data, or the real-world data is not diverse or relevant enough, the driver 

model may not learn the features and patterns of the data properly. 

• The mixed data introduces noise or inconsistency that confuses the driver model. For 

example, if the real-world data has different quality, resolution, format, or annotation 

than the synthesized data, the model may not be abler to handle the variation and 

discrepancy between the two types of data. 

• The mixed data requires more complex or flexible models or training methods. For 

example, if the mixed data has a larger or more heterogeneous input space than the 

simulated data, the model may need more layers, parameters, or regularization 

techniques to fit the data well. 

To address these issues, some possible solutions are: 

• Improve the quality and diversity of the mixed data, such as by using data 

augmentation, domain adaption, or domain randomization techniques. 
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• To align the characteristics and distributions of the real-world and synthesized data, 

such as by using data preprocessing, normalization, or domain translation techniques. 

• To use more advanced or customized models or training methods, such as by using 

multi-task learning or meta-learning techniques. 

Several scenarios from the real-world dataset were selected to evaluate the driving 

behaviour of the driver model compared to a human driver. The first testcase is a vehicle cut-

in scenario occurred at the Jalan Pudu area during peak hours as shown in Figure 6-28. In the 

first test case, the ego vehicle follows a white van in congested traffic at Jalan Pudu. At a 

junction, a black passenger car cuts in from the left, entering the ego vehicle's lane. The driver 

model must decide whether to brake or change lanes, considering the available space on the 

right and the oncoming traffic, as shown in Figure 6-28(b) and Figure 6-28(c). Figure 6-29 and 

Figure 6-30 compare the vehicle speed and steering angle applied by the driver model trained 

with different data types against the ground truth. The model trained with mixed data 

(simulation + real-world) closely matches the ground truth, particularly when braking to slow 

down for the cut-in vehicle. In contrast, the simulation-only model applies a much stronger 

brake, resulting in a higher deceleration. This discrepancy suggests the simulation-only model 

is not fully adapted to real-world vehicle responses. The real-world-only model performs 

poorly due to insufficient data, driving slowly initially and accelerating abruptly later. Given 

the straight road scenario, deviations in steering angles between the models and the ground 

truth are minimal. 

  
Figure 6-28 Extracted frames of a vehicle cut-in scenario from tested real-world data. 

Ego vehicle 

Leading vehicle 

Cut-in vehicle. 

Vehicle coming 

from side. 

Vehicle coming from 

side. 

(a) (b) 

(c) (d) 
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Figure 6-29 Comparison of vehicle speed in real-

world vehicle cut-in scenario 

Figure 6-30 Comparison of steer angle in real-

world vehicle cut-in scenario 

The second scenario involves a pedestrian crossing at the Pavilion Bukit Bintang area 

during peak hours, as shown in Figure 6-31. The ego vehicle is driven slowly in congested 

traffic. A pedestrian begins to cross the road despite the green light, as the vehicles ahead are 

moving very slowly, as shown in Figure 6-31(b). Consequently, the ego vehicle must be 

stopped to avoid colliding with the pedestrian. Once the pedestrian has safely crossed, the brake 

of the ego vehicle is released, allowing it to continue moving forward. The braking and steering 

angle profile applied by the driver model trained by different training data were compared with 

the ground truth data in Figure 6-32 and Figure 6-33. From the braking percentage against time 

graph, it can be observed that the model trained with mixed data has similar response to the 

ground truth, indicating a more balanced response to a pedestrian crossing scenario. Similarly, 

the steer angle profile of the driver model trained with mixed data has a profile closer to that 

of the ground truth. In contrast, the simulation-only model exhibits a more aggressive braking 

and steering pattern, suggesting an overestimation of the required deceleration and steer angle. 

This could be attributed to the model’s limited exposure to real-world vehicle dynamics, which 

are challenging to replicate precisely in a simulated environment. On the other hand, the real-

world-only model underperforms, due to insufficient training data. Overall, the graph 

underscores the importance of integrating real-world data into driver model training to achieve 

a more accurate and reliable representation of vehicle behaviour. 
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Figure 6-31 Extracted frames of a pedestrian crossing scenario from tested real-world data 

  
Figure 6-32 Comparison of braking profile in 

real-world pedestrian crossing scenario 

Figure 6-33 Comparison of steer angle between in 

real-world pedestrian crossing scenario 

The third scenario is an overtaking manoeuvre that occurred in the Jalan Pudu area 

during off-peak hours, as illustrated in Figure 6-34. In this scenario, the ego vehicle is driving 

along the road when the leading vehicle stops at the side to drop off a passenger. The ego 

vehicle slows down upon approaching the stopped vehicle and comes to a halt while waiting 

for an opportunity to overtake. This is shown in Figure 6-34(b).  Once it is safe to overtake, the 

ego vehicle moves into the right lane, as shown in Figure 6-34(c). Finally,  Figure 6-34(d) 

shows the ego vehicle successfully overtake the stopped vehicle. the ego vehicle successfully 

overtaking the stopped vehicle. The braking, throttle, and steering angle profiles applied by the 

driver model, which was trained using different datasets, were compared with the ground truth 

data, as shown in Figure 6-35, Figure 6-36 and Figure 6-37. From the braking profile, it can be 

observed that the simulation-only model shows a higher degree of braking, particularly at 

around 11 to 13 seconds, indicating an overly aggressive response compared to the real-world 

data. This suggests that the simulation-only model may not adequately capture the subtleties 

of human braking behaviour. The real-world only model underestimates braking in several 
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instances, pointing to a lack of sufficient training data. The model trained with a mix of 

simulation and real-world data closely aligns with the ground truth, albeit with some deviations. 

This indicates that incorporating real-world data enhances the model’s realism, though further 

tuning may be necessary to refine the braking response.  

For the throttle profile, once the ego vehicle starts to overtake the vehicle ahead, the 

ground truth data shows a smooth increase and decrease in throttle application, reflecting an 

average human driver control. The simulation-only model exhibits abrupt changes in throttle 

application, particularly noticeable at the beginning and around 6 to 7 seconds. This abruptness 

suggests that the simulation data alone may not fully encapsulate the variability in human 

driving behaviour. The real-world only model shows inconsistent throttle application, due to 

insufficient training data. The mixed data model again demonstrates the closest alignment with 

the ground truth, but with some over- and under-estimations at different points. This reinforces 

the benefit of using a combination of data sources to train the model, improving its fidelity to 

real-world behaviour. In terms of steering angle, the ground truth indicates balanced control. 

The simulation-only model's frequent sharp adjustments suggest an overly sensitive response. 

The real-world-only model's instability highlights the challenge of training with limited data. 

The mixed data model is closest to the ground truth, though deviations during rapid corrections 

suggest a need for fine-tuning. 

Overall, the results indicate that driver models trained with mixed data (simulation + 

real-world) perform better in replicating real-world human driving behaviour compared to 

models trained solely on simulation or real-world data. The simulation-only model tends to 

exaggerate responses, both in braking and throttle applications, due to potential discrepancies 

between simulated and real-world vehicle dynamics. The real-world only model, constrained 

by limited data, struggles to generalize across different scenarios, leading to less reliable 

performance. By integrating real-world data into the training process, the mixed data model 

benefits from the realism and variability inherent in human driving, leading to more accurate 

and nuanced control responses. However, this model still exhibits some deviations from the 

ground truth, highlighting the need for further refinement and potentially more sophisticated 

data augmentation techniques to bridge the remaining performance gap. In conclusion, training 

deep learning models for autonomous driving requires a balanced approach that leverages the 

strengths of both simulation and real-world data. While simulation provides a controlled 

environment for extensive scenario coverage, real-world data ensures the model captures the 

complexities of human driving behaviour. The combined approach offers a robust path towards 

developing driver models that can more accurately mimic human driving in diverse real-world 

scenarios. 



185 

 

 
Figure 6-34 Extracted frames of an overtaking scenario from tested real-world data 

  
Figure 6-35 Comparison of braking profile in 

real-world overtaking scenario 

Figure 6-36 Comparison of throttle profile in real-

world overtaking scenario 

 
Figure 6-37 Comparison of steer profile in real-world overtaking scenario 

 

 
   
   
   
   
   
   
   

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

  
    

  
    

  
    

  
    

  
  
  
  
  
  
  
  
   

       

             

                                 

                              

 

   

   

   

   

 

                                

  
  
   
  
  
  
  
  
  
   

       

                

                                 

                              

    
    
    
    
 
   
   
   
   

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   

  
    

  
    

  
    

  
    

  
  
   
  
  
   
  

       

                   

                                 

                              

(a) (b) 

(c) (d) 

Ego vehicle 

Vehicle coming from side lane 
Leading vehicle stopped 

Overtaking the stopped vehicle 



186 

 

6.7 Summary 

 In this chapter, a driver model based on CNN-LSTM is developed to adapt to normal 

driving behaviour of Malaysian driver. End-to-end learning approach is used for the 

development of the driver model that can automatically produce steering angles and throttle 

and brake inputs from image frames capture by the stereo front-view and rear-view cameras. 

The driver model is trained and evaluated using Malaysian road dataset, which contains image 

frames and driving data captured from human on-road driving. The test results show that the 

model can produce relatively accurate driving manoeuvre of average Malaysian drivers up to 

82.17% when compared to the default IPGDriver model provided by the IPG CarMaker. After 

evaluated with simulation data, the driver model also evaluated using real-world data which 

collected using instrumented vehicle in the previous chapter. The driver model is retrained with 

mixed data and real-world data. By comparing the result with the ground truth data, the trained 

driver model with the mixed data obtained the highest accuracy when compared with the driver 

model trained only with simulation or real-world data. This is because the simulation data is 

ideal and do not contain complexity such as sensor noise and fidelity issues. Whereas the driver 

model trained with real-world data only had limited numbers of data variation and diversity to 

help the driver model to generalise the problem. Mixed data help the driver model to adapt to 

both variation of data and complexity in the real-world. However, the driver model with mixed 

data still only able to obtain accuracy up to 67.23% only. This is due to noise and inconsistent 

of the real-world data confused the driver model and would need a more advanced driver model 

architecture to adapt to these data. 
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Chapter 7: Conclusion and Recommendations for Future Works 
 

7.1 Overview 

In this study, the use of deep learning algorithm in development of a driver model for 

predicting the lateral and longitudinal driving controls was explored. The study begins with the 

modelling of a non-linear mathematical model of 14 DOF vehicle. By developing the 

mathematical model, the optimum position to mount the sensor can be identified by comparing 

the data output produced by the sensors mounted on the virtual vehicle in IPG CarMaker and 

the vehicle response produced by the mathematical model developed. 

In order to validate the vehicle model developed, an instrumented vehicle is developed 

using sensors such as camera, IMU, GPS, pedal sensors, and steering angle sensor. The 

developed mathematical model is validated using the instrumented vehicle in terms of handling, 

accelerating and braking behaviour tests based on ISO standards. Once the model is validated, 

the instrumented vehicle is used for data recording of driving inputs and road environment at 

several road network selected based on the traffic condition and at the autonomous vehicle 

testing road provided by the law makers in Malaysia to increase the variation and diversity of 

the dataset. The record data is then analysed and classified into critical and normal driving 

scenarios for development of dataset.  

Based on the road environment captured by the instrumented vehicle, digital twin of 

the road network is developed using IPG CarMaker simulator software. In the virtual 

environment, virtual test scenarios were developed based on the actual critical scenarios 

identified. In order to obtain driving reaction data of Malaysian drivers in these scenarios, a 6 

DOF motion driving simulator integrated with virtual reality is developed to provide both 

visual and motion feedback to the drivers while driving in the virtual environment. The driving 

simulator closed the gap between the virtual and reality world to ensure the driving controls of 

the drivers aligned with the real-world. Total of thirty participants with different background 

and driving skills were invited to drive on the driving simulator with different test scenarios. 

The driving data of the participants were recorded and analysed to extract the driving data of 

the normal driving drivers to develop the training dataset of the driver model. 

Then the driver model is developed with the dataset obtained from the participants. First, 

the training dataset undergo a series of preprocessing so that the dataset is normalized and not 

biased so that the driver model can generalized well. Three different driver model is developed 

based on CNN and LSTM architecture so that the CNN layer can capture the underlying spatial 

features from the image whereas the LSTM layers can capture the time series features from the 

input data. The performance of the driver models developed is evaluated using different sets of 

testing data that were not used for training process so that the robustness of the model can be 

tested. The driver model with the best performance is selected for the evaluation. 

Moreover, the performance selected driver model is compared with other more 

advanced large model to identify the performance improvement by using a larger neural 

network with the cost of computing resources. Finally, the driver model also tested using real-
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world data recorded from the instrumented vehicle to investigate the performance of the driver 

model when implementing on an actual vehicle in the future research.  

 

7.2 Conclusion 

Based on the results and discussion from the previous chapters, the conclusion that can 

be drawn from the overall study are presented in the following paragraphs. Firstly, it can be 

concluded that the non-linear 14 DOF vehicle model developed in this study represents well 

the actual behaviour of vehicle in the form of handling characteristics as well as the behaviour 

of the vehicle in the presence of the riding characteristics. The accuracy and validity of the 

developed model was also shown by comparing the yaw rate, yaw angle, lateral acceleration, 

and lateral displacements at various testing conditions. Generally, it can be seen that the trends 

between simulation results and experimental data are almost similar, but slightly different in 

magnitude. This is due to the simplifications and assumptions considered in the vehicle 

dynamics modelling. 

Secondly, an instrumented vehicle equipped with affordable off-the-shelf sensors was 

developed to collect road environment and driving data. This setup enables near real-time 

performance without the need for a stringent real-time OS or bare-metal embedded system. 

The instrumented vehicle underwent field tests, including SAE standard manoeuvres like 

double lane changes, step steering, and emergency braking, to evaluate the data recording 

system. The recorded vehicle response data was compared against responses from IPG 

CarMaker and a Simulink 14 DOF mathematical model. The results showed that the sensors 

captured the vehicle's responses with a root mean square error of less than 5%, indicating the 

virtual vehicle's ability to accurately replicate actual vehicle responses. Data collection took 

place on various road networks, such as the University of Nottingham Malaysia campus route, 

Jalan Pudu and Masjid Jamek route, and Cyberjaya MaGIC routes, during morning, afternoon, 

and evening sessions, resulting in a total of 245 hours of driving data recorded. 

Thirdly, a motion simulator was developed and seamlessly integrated with IPG 

CarMaker, providing precise motion feedback. To deepen the immersive experience, a virtual 

reality headset was employed, offering drivers a complete 360-degree view of the cockpit. The 

recorded data from the instrumented vehicle underwent thorough analysis using the YOLOv8 

deep learning object detection algorithm, allowing for the precise identification of road users 

and objects. Building on these identified scenarios, virtual scenarios were meticulously 

reproduced in IPG CarMaker. Once the system is configured, thirty participants were invited 

to take the virtual wheel and test the driving simulator. Their reactions and driving inputs were 

carefully recorded as they navigated through various scenarios. Their feedback was 

overwhelmingly positive, indicating that the simulator successfully bridged the gap between 

the virtual and real worlds, offering a remarkably lifelike driving experience. Each participant's 

driving data was meticulously analysed and classified into three categories: aggressive, normal, 

and slow drivers. Specifically, the driving data of the normal drivers was isolated and 

earmarked to create training dataset for the driver model. The results were promising, 

showcasing that the virtual simulations were adept at reproducing actual scenarios and vehicle 

responses with striking similarity. However, it was noted that the default driver model provided 
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by IPG CarMaker exhibited slightly different driving behaviour compared to that of human 

drivers. This observation highlighted the necessity of developing a driver model optimized for 

the Malaysian traffic environment, a crucial step to ensure the reliability of safety testing using 

the simulation platform. 

Fourthly, the proposed model combined convolutional neural networks (CNNs) and 

long short-term memory (LSTM) networks to extract spatiotemporal features from camera 

images, vehicle dynamics, and waypoints. Evaluations conducted on a large dataset of 

Malaysian driving scenarios revealed that the driver model outperformed several baseline 

models, achieving high accuracy of up to 84.63% in predicting driving inputs. These findings 

suggest that the driver model effectively predicted driver actions and intentions, including 

steering, braking, accelerating, lane changing, and turning. Moreover, the model demonstrated 

high accuracy, robustness, and generalization across various driving scenarios and situations, 

surpassing existing models based on conventional machine learning or single deep learning 

methods such as FCN, CNN or LSTM. Additionally, the driver model was tested with real-

world data recorded using the instrumented vehicle. Initially trained solely on simulation data, 

the model did not perform well when tested with real-world data due to fidelity and noise 

differences between the two datasets. However, after further training with real-world data, the 

model's accuracy improved significantly, reaching up to 67.23%. This indicates that providing 

a greater variety of real-world data to the driver model can enhance its ability to generalize and 

improve overall performance. 

The limitations of this research were related to the data collection and the model design. 

The data collection was limited by the number of participants, the duration of driving, the 

diversity of road environments, and the ethical issues of informed consent and privacy 

protection. The model design was limited by the choice of input features, output variables, 

network parameters, and optimization algorithms. These limitations may affect the validity, 

reliability, and scalability of the driver model, and thus require further investigation and 

improvement. The implications of this research were significant for both theory and practice. 

For theory, this research contributed to the advancement of knowledge and understanding of 

driving behaviour and driver modelling, by applying the state-of-the-art deep learning method 

CNN-LSTM model, which can capture the spatial and temporal features of driving behaviour 

and predict the driver’s actions and intentions. For practice, this research provided a practical 

and effective solution for developing driver models, which can be used for various purposes, 

such as driver assistance systems, autonomous driving systems, driver training systems, and 

driver behaviour analysis systems. 

The findings of this research present significant contributions to the fields of driver 

behaviour modelling, driving simulation, and autonomous vehicle validation. The development 

of a Malaysian-specific driver model using deep learning techniques marks a notable 

advancement in adaptive AI-driven driving systems, particularly in addressing the limitations 

of conventional models that do not fully capture region-specific driving behaviours and traffic 

conditions. Additionally, the integration of a high-fidelity motion simulator with virtual reality 

(VR) immersion provides a more realistic and interactive test environment, bridging the gap 

between traditional driving simulators and real-world driving experiences. The creation of the 
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Malaysian Road Scenario Database (MaRSeD) offers a novel, structured dataset for testing 

driver models under realistic and locally relevant conditions, which has been largely 

overlooked in existing studies focused on Western driving environments. Furthermore, the 

CNN-LSTM-based driver model has demonstrated superior performance over conventional 

approaches, showing its potential for applications in driver assistance systems, human-in-the-

loop autonomous driving research, and intelligent vehicle safety systems. These advancements 

contribute to the next generation of AI-based driving technologies, reinforcing the importance 

of regionally optimized, data-driven solutions in enhancing road safety and autonomous 

vehicle development. 

 

7.3 Recommendation and future works 

The recommendations for future research were focused on enhancing the data collection and 

the model design. Some directions for future research are: 

1. Data Collection: For data collection, the current data recorded is very limited due to 

time constraint to complete the research study which could have missed a lot of 

important scenarios that are happening in Malaysia. The dataset also lack data during 

nighttime, heavy rain, and fogging situation due to limitation of the sensors used in the 

instrumented vehicle having difficulty capturing data in the dark. Therefore, it is 

suggested to increase the number of participants, the duration of driving, the diversity 

of road environments, and the ethical standards of informed consent and privacy 

protection, to obtain more comprehensive and representative driving data. Furthermore, 

more sensors such as Lidar, Radar can be used on the instrumented vehicle to capture 

data during nighttime, heavy rain, and fogging where the visibility from the camera 

sensor is low. 

2. Model Design: For model design, the current driver model only focuses on the lateral 

and longitudinal control of the vehicle due to action of other road actors such as 

pedestrians, car, motorcycle. However, in the real-world, there are other factors that 

need to be considered such as road signs and traffic lights. Therefore, it is suggested to 

incorporate more information sources into the model, such as road maps, traffic signs, 

and vehicle-to-vehicle communication, which can enrich the model’s perception of the 

environment and improve its prediction accuracy.  

3. Model Architecture: In this study, the driver model architecture is based on CNN-

LSTM only. This is because due to difficulty to obtain a high-performance computing 

GPU for inferencing. This limited the size of the model that can be developed which 

can improve the performance of the driver model in predicting the driving controls more 

accurately. Therefore, it is also suggested to compare and integrate the driver model 

with other deep learning methods or hybrid methods, such as integration with Visual 

Transformers model, to further improve the accuracy, robustness, and generalization of 

the driver model. Furthermore, the model also can be extended to predict other aspects 

of driving behaviour, such as driver’s intention, attention, and emotion, which can 

enhance the understanding of driver’s cognitive state and decision-making process. 
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4. Real-world deployment: In this study, the driver model only tested with data 

recordings from the instrumented vehicle. This is due to the difficulty to obtain an actual 

autonomous vehicle for testing the algorithm developed on a real vehicle. The data 

recordings have limitation such as the data is fixed and will not respond to the 

manoeuvre produced by the driver model. Therefore, extending the evaluation of the 

driver model in real-world driving conditions using an actual vehicle is necessary to 

provide insights into practical challenges and risks.  

5. Safety Testing of Autonomous Vehicles: The driver model can play a crucial role in 

the safety testing of AVs by simulating human driving behaviours and responses. It 

could be integrated into simulation platforms to replicate realistic driving scenarios and 

evaluate how an AV reacts to dynamic traffic conditions, such as sudden stops, 

pedestrian crossings, or erratic manoeuvres by other vehicles. This approach allows for 

a thorough examination of the AV's capabilities and limitations in a controlled 

environment, ensuring the vehicle can safely navigate real-world driving conditions 

before deployment. Additionally, the driver model could aid in developing human-

machine interfaces (HMIs) by providing insights into how a human driver would 

interact with the AV's systems, which is critical for Level 3 and above autonomous 

vehicles where human intervention may be necessary. Overall, the driver model is an 

indispensable tool in the verification and validation framework for AV safety testing, 

contributing to the advancement of reliable and secure autonomous driving technology. 

6. Motion Platform and Teleoperation: The 6DOF AVES Motion Driving Simulator 

(AMoDS) could play a vital role in the safety testing of AVs by providing a realistic 

driving experience for safety operators. It could allow for the simulation of various 

driving scenarios, including emergency conditions, to evaluate the operator's responses 

and the vehicle's systems. The integration of Virtual Reality (VR) could enhance 

immersion, aiding in the assessment of the Human-Machine Interface (HMI) and the 

operator's decision-making process. Teleoperation, particularly for Level 5 AVs, could 

be essential when the AV encounters scenarios not covered by its AI algorithms. The 

use of 5G technology ensures low latency and high reliability, allowing commands from 

the safety operator to be transmitted to the AV with minimal delay, which is crucial for 

the safety of both the vehicle and surrounding traffic. 

7. Malaysian Road Scenario Database: The MaRSeD could play a crucial role in 

enhancing the safety testing of AVs in Malaysia. It is a comprehensive collection of 

test scenarios derived from real-world driving conditions that reflect the unique traffic 

patterns and road behaviours prevalent in Malaysia. By incorporating these scenarios 

into the safety testing framework, developers could rigorously assess the adaptability 

and capability of AVs to handle complex and unpredictable situations. This localized 

context ensures that AVs are evaluated against scenarios representative of actual 

challenges on Malaysian roads. MaRSeD aligns with international standards, 

promoting a standardized approach to scenario-based testing and facilitating the 

comparison of AV performance across different regions. It serves as a valuable resource 

for AV developers, researchers, and regulatory bodies in establishing safety guidelines 

and approval processes for AV deployment in Malaysia. 
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In summary, future research could focus on expanding data collection efforts, 

incorporating additional information sources and advanced model architectures, and 

thoroughly testing the driver model in real-world scenarios to enhance the performance, safety, 

and reliability of autonomous vehicles. 
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Appendix A: Sensor Specifications 
 

Pedal Force Sensor 
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Steering Angle Encoder Sensor 
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Appendix B: System and Environment Configuration 
 

Deep learning is highly data-driven and requires significant computational resources. 

To expedite the training process, GPUs are preferred over CPUs due to their ability to perform 

parallel computations. While CPUs handle complex calculations sequentially, GPUs, with their 

numerous programmable streaming multiprocessors and floating-point capabilities, excel in 

parallelizing tasks such as matrix multiplications. Modern GPUs can deliver performance more 

than ten times that of general-purpose CPUs. 

Choosing the Right GPU 

Selecting an appropriate GPU is crucial for building a deep learning workstation. While 

AMD and NVIDIA are the main GPU manufacturers, NVIDIA's GPUs are preferred due to 

their support for CUDA architecture, cuBLAS, and cuDNN libraries. Although AMD has 

recently introduced the ROCm library for AI computing, its support and resources are limited 

compared to NVIDIA's established presence in the AI industry. NVIDIA's latest Ampere 

architecture features Tensor Cores, designed specifically for deep learning tasks, offering up 

to 20 times the speed of traditional CUDA cores. 

VRAM Considerations 

The size of a GPU's video RAM (VRAM) affects the capacity to train large neural 

networks and handle substantial batch sizes. For instance, a GPU with less than 6 GB of VRAM 

cannot train a Style GAN model with 256x256 pixel images. In this research, the NVIDIA 

GeForce RTX 3060 was chosen for its 3584 CUDA cores, 112 Tensor Cores, and 12GB 

GDDR6 VRAM, making it a cost-effective yet powerful option. To overcome the memory 

limitations for large models, two RTX 3060 GPUs were installed in the workstation. With 

model parallelism, large models that typically require a GPU with 24GB VRAM, such as the 

RTX 3090, can also be trained using this configuration at a significantly lower cost. 

Workstation Specifications 

1. CPU: Intel Core i9-11900KB (8 cores, 16 threads, up to 4.9GHz) 

2. Motherboard: NUC11 Extreme Beast Canyon 

3. RAM: 128GB (2x 64GB 3200MHz) 

4. GPU: 2x NVIDIA GeForce RTX 3060 (12GB GDDR6 VRAM) 

5. Storage: 

o 1TB XPG SX8200 Pro NVMe PCI-E 3.0 SSD (512GB partitioned for Windows, 

512GB for Ubuntu) 

o 2x 4TB XPG S70 BLADE NVMe PCI-E 4.0 SSD (data storage) 

o 8TB Western Digital SN640 U.2 PCI-E 3.0 SSD (data storage) 

6. Connectivity: Intel AX210 Wi-Fi 6E dual band with Bluetooth 5.3 PCI-E card 

7. Power Supply Unit: Corsair 650W 80+ Gold 

Operating System Selection 
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For deep learning applications, Linux is preferred over Windows for several reasons: 

1. Open Source: Linux has a large open-source community, with most deep learning 

frameworks and libraries first available on Linux. 

2. GPU Support: Installing CUDA toolkit and cuDNN library is simpler on Linux, with 

abundant online resources. Additionally, TensorRT, which optimizes deep learning 

performance, supports only Linux for Python API. 

3. Performance: Linux performs better than Windows for deep learning due to lower 

resource utilization by the OS, leaving more resources for the applications. 

4. Ease of Use: Installing packages or dependencies is straightforward on Linux with 

single commands. 

Ubuntu Installation 

Ubuntu is a popular Linux distribution for deep learning, supported by extensive 

documentation and community resources. Ubuntu 20.04 LTS was chosen for its compatibility 

with the RTX 3060 GPU and its long-term support until April 2025. 

Installation Steps: 

1. Create Bootable Drive: Use a USB flash drive (minimum 8GB) to create a bootable 

drive from the Ubuntu desktop image, downloadable from the official site. Use Etcher 

as shown in Figure 1 to flash the image. 

 
Figure 1: Etcher images flashing tool UI interface 

2. Boot from USB: Insert the bootable drive, restart the system, and enter the boot menu 

(F12 for the motherboard). Select the USB drive to boot the Ubuntu live image. 

3. Install Ubuntu: Follow the installation instructions to set up the installation drive, 

region, language, username, and password. 

4. Post-Installation: After installation, remove the USB drive and restart the system. To 

install NVIDIA’s driver, the following commands are used: 

#Add NVIDIA package repository 

$ sudo add-apt-repository ppa:graphics-drivers/ppa 
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#Install NVIDIA driver 

$ sudo apt-install nvidia-driver-460 

 

#Reboot the system 

$ sudo reboot 

 

#Verify installation 

$ nvidia-smi 

 

# Successful installation will display driver version and corresponding CUDA version. 

 
NVIDIA driver information 

Proper configuration of the workstation, including GPU selection and operating system 

setup, is essential for efficient deep learning research. By leveraging NVIDIA's GPUs and 

Ubuntu's robust support, this setup ensures optimal performance for deep learning tasks. 

Deep Learning Framework 

Deep learning frameworks provide libraries that simplify the design, building, training, 

and validation of deep learning models through high-level programming interfaces. Popular 

frameworks include TensorFlow, PyTorch, Caffe, Keras, and MATLAB. Both TensorFlow and 

PyTorch were utilized in this research. 

TensorFlow and Keras 

TensorFlow, integrated with Keras for high-level programming, offers numerous built-

in functions that facilitate the early stages of neural network development. TensorFlow uses 

static computation graphs, requiring operations to be defined before running the model, which 

can limit flexibility during experimentation. 

PyTorch 

In contrast, PyTorch employs dynamic computation graphs, allowing seamless 

experimentation and fine-tuning of neural network hyperparameters. This makes PyTorch 

more adaptable for iterative research and development processes. 

Python for Deep Learning 
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Python is the preferred programming language for deep learning research due to its 

interpreted nature, which compiles and executes code line-by-line, simplifying error debugging 

and shortening development time. Additionally, Python offers numerous built-in functions and 

libraries that accelerate deep learning research. 

Compatibility Issues and Workarounds 

During the setup of the deep learning workstation, it was found that the latest stable 

version of TensorFlow-GPU was incompatible with the RTX 3060 and NVIDIA Linux driver 

460.56, which required CUDA 11.2 and cuDNN 8.0 libraries. As a workaround, NVIDIA’s 

build of TensorFlow 1.15 was installed. 

Anaconda Installation 

Before installing TensorFlow, Anaconda was installed. Anaconda is a software 

distribution that includes essential packages for data science and deep learning, such as: 

1. Scikit-Learn: Deep learning framework. 

2. Numpy, Scipy, Pandas: Data processing and manipulation. 

3. Matplotlib: Data visualization. 

Anaconda also provides virtual environments to manage packages and specific library and 

Python versions without affecting other projects. The installation procedures for Anaconda on 

Ubuntu are detailed as follow: 

 

TensorFlow Installation 

Following the Anaconda installation, NVIDIA’s build of TensorFlow was installed. A 

conda environment named "tf1-nv" with Python 3.8 was created. The procedures shown in the 

figure below were followed to complete the installation. Essential Python packages for image 

processing, such as OpenCV and Pillow, were installed using: 

• pip install opencv-contrib-python 

• pip install pillow 
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PyTorch Installation 

A separate conda environment was created for PyTorch to isolate its dependencies from 

the TensorFlow environment. The following commands were executed to create and activate 

the environment, and to install PyTorch, torchvision, and torchaudio: 

 

Development Tools 

Microsoft Visual Studio Code (VS Code) was installed as the source code editor to 

facilitate deep learning model development. After downloading the .deb file from the official 

website, a terminal was opened in the directory containing the file (usually the Downloads 

directory) and the following command was executed: 

 

Since Anaconda is the default Python installation, VS Code uses Anaconda’s Python interpreter 

to run Python code automatically. 

Virtual Autonomous Vehicle Simulation Platform 

 In this research, the IPG CarMaker was selected as the virtual simulation platform due 

to its widespread use in the automotive industry, accurate vehicle dynamics model, and 

capability to personalize driver models and vulnerable road user behaviours. The installation 

procedures for IPG CarMaker on Linux are provided by IPG. 
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IPG CarMaker Installation 

To install IPG CarMaker on Ubuntu: 

1. Navigate to the CD-ROM containing the installation package using the command line 

terminal. 

2. Initialize the IPG installer with the command: 

 

3. Follow the steps in the graphical user interface of the IPG installer. 

4. Set the installation directory to the standard path /opt/ipg. 

5. Allow the installer to scan the installation package for installable IPG products. 

6. Select the IPG products to install, such as CarMaker 9.0.3 (64 bit), IPGMovie, 

IPGControl, and IPGGraph. 

7. Once the installation is complete, place the license file obtained from IPG in the license 

directory of IPG CarMaker (/opt/ipg/etc/). 

The IPG CarMaker will then be ready for developing the virtual simulation platform. 

MATLAB and Simulink 

MATLAB and Simulink are widely used for programming and numeric computing, 

essential for plotting functions and data, developing models, and interfacing CarMaker with 

external modules. This research relies heavily on MATLAB and Simulink for developing 

vehicle dynamic models and driver models. 

To install MATLAB on Ubuntu: 

1. Download the MATLAB installer zip file from the official site. 

2. Unzip the installer into the matlab_2020a_installer folder with the command: 

 
3. Open a command line terminal in the matlab_2020a_installer directory. 

4. Start the MATLAB installer using the command: 

 
5. Follow the steps in the graphical user interface, selecting necessary products such as 

the Deep Learning Toolbox and Automated Driving Toolbox. 

6. After installation, MATLAB can be launched with the following commands: 

 

This setup enables the development of vehicle dynamic models and driver models essential for 

the research.  
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Appendix C: Questionnaire Form for AMoDS 
 

Virtual Driving Simulator Questionnaire 

Personal Information 

1. Age:  

2. Gender: 

3. Total numbers of years driving: 

Driving Style 

1. Do you break the motorway speed limit? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

2. Do you drive fast? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

3. Do you exceed the 30km/h speed limit in built up areas (campus, urban, residential areas, 

cities and village)? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

4. Do you become flustered when faced with sudden dangers while driving? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

5. Do you remain calm when things happen very quickly and there is little time to think? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

6. Is your driving affected by pressure from other motorists? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

7. Are you happy to receive advice from people about your driving? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 
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8. Do you dislike people giving advice about your driving? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

9. Do you drive cautiously? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

10. Do you find it easy to ignore distractions while driving? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

11. Do you ignore passengers urging you to change your speed? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

12. How often do you set out on an unfamiliar journey without first looking at a map? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

13. Do you plan long journeys in advance including places to stop and rest? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

14. Do you overtake on the inside lane of a dual carriageway if you have the opportunity to do 

so? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

15. Do you ever drive through a traffic light after it has turned red? 

Very infrequently 

or never 

    Very frequently 

or always 

1 2 3 4 5 6 

 

Driver-in-the-loop simulator with Fixed screen 

Spatial Presence 

1. I can control the speed of the vehicle using the gas pedal and brake. 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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2. I have difficulty seeing the lane markings in the fixed screen driving system. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

3. Driving with fixed screen feels almost like driving in a car cockpit. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. I had a sense of being in the scenes displayed 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. I felt I was visiting the places in the displayed environment. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

6. I felt that the characters and/or objects could almost touch me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

7. To which extend do you feel present in the virtual environment, as if you were really there. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

8. I think that the car will go off the road often when I drive with fixed screen driving system 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

9. I feel like I am in control of the car when driving with the fixed screen driving system. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

10. The content seemed believable to me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

11. The displayed environment seemed natural 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

12. I had a strong sense that the characters and objects were solid. 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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13. I was aware of the real world. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

14. I wanted to see more of the space in the displayed environment than I was able to. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

15. I found it easy to forget that I was watching a display. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

16. The temperature of the real world distracted me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

17. I was distracted by the quality of the technology. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

18. I felt I knew what was going to happen next. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

 

Motion Platform 

1. Did the 6 degree of freedom movements of the motion platform contribute to the realistic of 

the driving simulator? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

2. How much did this experience seem consistent with your real-world experiences? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

3. How strong was your feeling of self-motion? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. Were the motion and visual feedback synchronized together? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. Was the system comfortable? 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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6. How much did you enjoy using the system? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

Simulator Sickness 

1. I felt prone to vomiting. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

2. I felt dizzy. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

3. I felt nauseous. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. I felt I had a headache. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. I had eyestrain. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

6. I felt mental pressure. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

7. I felt fear. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

8. I felt anxiety. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

Driver-in-the-loop simulator with Virtual Reality 

Spatial Presence 

1. I feel comfortable using the Virtual Reality Driving Motion Platform. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

2. I can control the speed of the vehicle using the gas pedal and brake. 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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3. I have difficulty seeing the lane markings in the Virtual Reality Driving System. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. Driving in the Virtual Reality Driving System feels almost like driving in a car. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. I had a sense of being in the scenes displayed 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

6. I felt I was visiting the places in the displayed environment. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

7. I felt that the characters and/or objects could almost touch me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

8. To which extend do you feel present in the virtual environment, as if you were really there. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

9. I think that the car will go off the road often when I drive the VR Driving System. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

10. I feel like I am in control of the car when driving with the Virtual Reality Driving System. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

11. Wearing the Head Mount Display makes it difficult for me to drive in the Virtual Reality 

Driving System. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

12. The content seemed believable to me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

13. The displayed environment seemed natural 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

14. I had a strong sense that the characters and objects were solid. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

15. I was aware of the real world. 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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16. I wanted to see more of the space in the displayed environment than I was able to. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

17. I found it easy to forget that I was watching a display. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

18. The temperature of the real world distracted me. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

19. I was distracted by the quality of the technology. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

20. I felt I knew what was going to happen next. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

 

Motion Platform 

1. Did the 6 degree of freedom movements of the motion platform contribute to the realistic of 

the driving simulator? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

2. How much did this experience seem consistent with your real-world experiences? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

3. How strong was your feeling of self-motion? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. Were the motion and visual feedback synchronized together? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. Was the system comfortable? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

6. How distracting was the control mechanism? 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

 

7. How much did you enjoy using the system? 

Strongly disagree    Strongly agree 

1 2 3 4 5 
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Simulator Sickness 

1. I felt prone to vomiting. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

2. I felt dizzy. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

3. I felt nauseous. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

4. I felt I had a headache. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

5. I had eyestrain. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

6. I felt mental pressure. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

7. I felt fear. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

8. I felt anxiety. 

Strongly disagree    Strongly agree 

1 2 3 4 5 

 

 

Thank you very much for your cooperation. 
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