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Abstract

This thesis is divided in three independent chapters. In chapter 1, we prove

some explicit results concerning images under Shimura’s map, the methods

are elementary. In chapter 2, we provide results on two kernels of half integral

weight. Chapter 3 is an exposition to the results obtained as part of the col-

laboration with Wissam Raji, Larry Rolen and one of my supervisors Nikolaos

Diamantis [1], where we study periods in the half integral weight setting.
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Introduction

This thesis is divided into three distinct and independent chapters. These

can be described as 1) explicit computation of Shimura images, 2) analytic

properties of the Cohen kernel Ck/2 and of the double Eisenstein series Ek/2;

and finally, 3) period polynomials for half integral weight modular forms.

In Chapter 1, we consider the product of an integral weight cusp form against

a theta series and develop a method to compute its Shimura image by explic-

itly giving its coefficients. The culmination of this chapter is Theorem 1.2.2.

The proof relies crucially on Lemma 1.1.15 which relies on an idea that can

be traced back to Selberg. The methods of this chapter are completely ele-

mentary and do not use much beyond Möbius inversion. In addition to adding

this novel tool to our understanding, this helps recontextualise results that

were previously scattered in the literature. The author believes that the full

power of this tool has not yet been realised. In this direction, I give 3 open

problems in §1.4. We now give a brief idea of the main theorem. To each

fundamental discriminant D, one can define the Shimura map σD. In fact for

most purposes, it will suffice to look at the case σ1 (see remark 1.1.9). Let

ψ be a Dirichlet character modulo Nψ of parity ν, that is, ψ(−1) = (−1)ν

with ν = 0 or 1. Attached to ψ there is a theta series hψ(τ) =
∑

n ψ(n)n
νqn

2

which we multiply by a cusp form f of integral weight λ − ν (more precisely

we multiply by a “scaled up” version of f , namely f(Nψτ)). Then Theo-

rem 1.2.2 gives the coefficients of the q-expansion of σ1(f(Nψτ)hψ(τ)). In

fact, when λ and ν have the same parity, we can determine this image ex-

actly. We provide as well several examples as applications of our main result.

2
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Chapter 2 is roughly split into two parts. The first, up to §2.5 contains the

main theoretical content of the chapter, where the analytic properties of Ck/2

and Ek/2 are discussed. These two objects should be thought of as the inte-

gral weight analogs of the Cohen kernel and the double Eisenstein series that

appeared in the papers [7] and [8]. We first give the definition of these two

objects in Definition 2.2.1 and 2.1.1. The aims up to §2.5 are

(I) Prove absolute convergence

(II) Express the application of the kernel to a function f in terms of the

L-functions of f

(III) Give a meromorphic continuation.

We tackle (I)-(III) for the Cohen kernel Ck/2 first. This is because part (III)

for Ck/2 is used in the proof of part (II) for Ek/2. We first prove (I) for Ck/2

on the vertical strip σ ∈
(
1
4
, k
2
− 1

4

)
. On this region, when σ is fixed, we show

that the Cohen kernel is a cusp form (Corollary 2.2.9). Actually, the region of

absolute convergence can be improved to a left plane σ < k
4
− 1 by considering

the convergence of the Hurwitz zeta function
∑

n
1

(τ+n)s
(Proposition 2.2.10).

By a typical unfolding argument, we show part (II) in Proposition 2.2.11 and

thence deduce (III) in Corollary 2.2.12. Moving on to Ek/2, part (I) is proved

for s lying in the vertical strip (4, k − 4) and w lying on a left plane. On the

other hand, part (II) involves a rather technical use of lifts and epsilon factors,

and as mentioned before, uses part (III) for Ck/2. This culminates in Theorem

2.5.2 and part (III) follows from this. This concludes the theoretical part of

Chapter 2.

The next part, is separate and independent of work up to §2.5. We present

two supplementary results. The first result is inspired by work of Köhnen [15],

we give a general construction of how to compute the Shintani lift of a general

kernel in Lemma 2.6.4. Then we apply this to the integral weight double
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Eisenstein series E2λ introduced in [8]. This is Theorem 2.6.1. The second

result involves a half integral weight analogue of Zagier’s appendix in [17]. To

our knowledge, this appears to be new. With these two supplementary results,

we conclude Chapter 2.

Chapter 3 is the culmination of joint work with W. Raji, L. Rolen and one of

my supervisors N. Diamantis. For every half integral weight cusp form f on

the group Γ∗
0(4N), we define a polynomial Pa(τ) and show that (just as in the

integral weight case) this polynomial encodes the values of the L-function of f

within its coefficients. In §3.1 we use this polynomial to construct a parabolic

cocycle πf ∈ H1
par(PSL2(Z), Iλ). The main theorem in this chapter is Theorem

3.1.4, where for each cusp form f of (half integral) weight k/2 on Γ∗
0(4N), we

show there exists a modular form g of weight λ on Γ∗
0(4) satisfying a relation

between the L-values of f and those of g. The map f 7→ g can be thought

of as a “lift” and in section §3.2 we give an explicit way of expressing g using

only the information given by f .



Background

We begin by encouraging the reader to refer to Appendix A of all the notation

used in this thesis. Here we mention implicitly, always and throughout, k =

2λ + 1, where λ is a non-negative integer. We will often write k/2 = λ + 1/2

for the weight of a modular form in question. We give an overview of the

properties and known facts that we will need for the next three chapters. We

mostly follow the exposition in [24] and [26], especially §13 of [26] for the

section on Hecke operators.

0.1 Preliminaries

Given a discrete subgroup Γ of SL2(R) the projection of Γ onto PSL2(R)

acts discontinuously on H. In this thesis, we will only discuss the discrete

congruence subgroups Γ0(4N), Γ∗
0(4N) and Γϑ. These groups are defined as

follows.

Definition 0.1.1. (Congruence subgroup)

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

For a fixed integer N ≥ 1 we denote

W4N :=

 0 −1/2
√
N

2
√
N 0

 T :=

1 1

0 1

 .

Definition 0.1.2. Γ∗
0(4N) is the subgroup of SL2(R) generated by Γ0(4N)

and W4N .

To aid in exposition, we shall slightly abuse notation by writing γ for its image

γ in PSL2(R) with the understanding that γ = −γ. For N = 1, it is known

5
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(cf. [3] p26) that T and W4TW
−1
4 = ( 1

−4 1 ) generate the image of Γ0(4) in

PSL2(R). Given this, it follows that Γ∗
0(4) = ⟨T,W4⟩. For N > 1, the finite

index subgroup ⟨T,W4N⟩ need not generate all of Γ∗
0(4). We mention that

Γ∗
0(4N) is the normaliser of Γ0(4N) in PSL2(R). Explicitly, the action of W4N

is defined to be

W4Nf := (f |k/2W4N)(z) := (−2i
√
Nz)−k/2f(−1/(4Nz)). (0.1.1)

We define the theta group Γϑ as the group generated by the matrices T 2 = ( 1 2
1 )

and S = ( −1
1 ).

Quadratic residue symbol

Fix a ∈ Z and an odd b ∈ Z \ {0}. Then the Kronecker extension of the

Legendre symbol
(
a
b

)
enjoys the properties

1. gcd(a, b) ̸= 1⇒
(
a
b

)
= 0.

2. If b is prime, then

(a
b

)
= #{x(modb) : x2 ≡ a mod b} − 1.

3. If b > 0 then the character χ(a) =
(
a
b

)
has modulus b.

4. If a ̸= 0 then the character ψ(b) =
(
a
b

)
has modulus dividing 4a and

conductor equal to the minimal r such that Q(
√
a) ⊆ Q(ζr).

5.
(
a
−1

)
= sgn(a), a ̸= 0.

6.
(

0
±1

)
= 1.

This is the notation found in [24] p442 and is not conventional. In addition,

one has (a
b

)
= (a, b)∞

(
a

|b|

)
,

where (a, b)∞ is the Hilbert symbol (for a definition of this see A).
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0.1.1 Multiplier systems

We are now going to define a function σ. To do this, fix for now an arbitrary

τ ∈ H. Let Γ be a Fuchsian group and consider the function σ : Γ × Γ → C

defined by

σ(γ1, γ2) :=
j(γ1, γ2τ)

1/2j(γ2, τ)
1/2

j(γ1γ2, τ)1/2
. (0.1.2)

On the right hand side we define z1/2 = elog(z)/2, where the implied logarithm

is taken along its principal branch, so that −π < arg(z) ≤ π. It is well known

that the value of σ(γ1, γ2) is independent of the choice of τ . We denote by

T = {z ∈ C : |z| = 1}.
Definition 0.1.3 (Multiplier system of weight 1/2). A map v : Γ → T satis-
fying

1. v(γ1γ2) = σ(γ1, γ2)v(γ1)v(γ2)

2. v(−I) = −i.
is called a multiplier system of weight 1/2.

Example 0.1.4. The theta multiplier

vθ(γ) := ε−1
d

( c
d

)
is a multiplier system for Γ0(4) of weight 1/2. Here εd takes the value 1 or i
depending on whether d ≡ 1 (mod 4) or d ≡ 3 (mod 4).

We remark that the square of vθ is the non-trivial character χ1,4 modulo 4. This

next example involves a multiplier whose image lies in lµ.. 8 the cyclic subgroup

of T generated by the eighth root of unity ζ8 = e2πi/8.

Example 0.1.5. The map v∗θ : Γ∗
0(4) → lµ.. 8 given by sending T 7→ 1 and

W4 7→ ζ−1
8 is a multiplier system for Γ∗

0(4) that agrees with vθ on Γ0(4). This
is a consequence of Γ∗

0(4) = ⟨T,W4⟩ and the transformation formulas for the
Jacobi theta function

θ(τ) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + 2q16 +O(q25),

namely

θ(τ + 1) = θ(τ) θ(−1/4τ) =
√
−2iτθ(τ) = ζ−1

8

√
2τθ(τ).

In general, given a multiplier system v on Γ of weight 1/2, we can construct

Jv(γ, τ) := v(γ)(cγτ + dγ)
1/2, γ = ( ∗ ∗

cγ dγ ) ∈ Γ, τ ∈ H.



Chapter 0. Covers and lifts 8

Later on, in section 0.2.2 we will specify v to v∗θ from the above example. We

remind the reader that k = 2λ+1 is always an odd integer. If v is a multiplier

system of weight 1/2, then for any k ≥ 1 we call vk a multiplier system of

weight k/2.

Definition 0.1.6 (Slash action, half integral weight). Let v be a multiplier
system of weight k/2 for Γ. Given a function f : H→ C we set

f |k/2,vγ := v(γ)k(cτ + d)−k/2f(γτ), γ = ( ∗ ∗
c d ) ∈ Γ.

By zk/2 we understand ek log(z)/2 = (z1/2)k. When v = v∗θ of example 0.1.5, we

will suppress the v and just write f |k/2γ.

0.2 Covers and lifts

0.2.1 The quadruple cover

We follow the exposition of [24]. In general, given any group G and an abelian

group C, one can consider C-extensions G of G; namely exact sequences

0→ C → G → G→ 0.

Such exact sequences are said to be central if the image of C in G lies entirely

in the centre of G. This will be used in the sequel in the case when G =

GL+
2 (R) and C = lµ.. 4, because (informally) the correct object capturing the

level structure of a half integral weight modular form will be a quadruple cover

of a congruence subgroup (see §0.2.2 for a more precise statement). We denote

Hol(H) the set of holomorphic functions on the upper half plane. We define

set G to be

{
(γ, ϕ) ∈ G× Hol(H) : ϕ(τ)2 = ϵ(det γ)−1/2(cτ + d), ∀τ ∈ H ϵ = ±1

}
.

We equip G with a product defined by

(γ1, ϕ1) ⋆ (γ2, ϕ2) := (γ1γ2, ϕ3),
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where ϕ3(τ) = ϕ1(γ2τ)ϕ2(τ). We refer to G as the quadruple cover of GL+
2 (R).

The reason for the quadruple name is due to the fact that ϕ(τ)(det γ)1/4/(cτ +

d)1/2 lies in lµ.. 4, namely
√
ϵ ∈ {1, i} is a fourth root of unity. There is a

projection map proj : G → GL+
2 (R) given by proj(γ, ϕ) = γ and an exact

sequence

0→ lµ.. 4 → G → GL+
2 (R)→ 0.

Definition 0.2.1. The slash action for an element g = (γ, ϕ) ∈ G is defined
to be

(f |k/2g)(τ) := ϕ(τ)−kf(γτ).

For the rest of this chapter, we shall consider a subgroup H of {g ∈ G| det g =

1}. For g ∈ G, by det g we mean det proj(g). We shall say H is Fuchsian if it

satisfies:

(i) proj(H) is a discrete subgroup of SL2(R).

(ii) The projection map is a bijection of H onto its image and proj−1(−I) =

{(−I, 1)}.

If Γ = proj(H), condition (ii) guarantees the existence of a section L : Γ→ H

satisfying proj ◦ L = id and L(I) = (I, 1). We stress that L is not defined

globally on GL+
2 (R) since L is not defined outside Γ. One should have the

following picture in mind:

Γ

G

proj
L

Because of (ii) we have

(proj ◦ L)(α) = α.

The action of Γ is determined by that of H, so that if one considers b to be a

cusp of Γ then the stabilizer of b in H is

Hb = {h ∈ H|h(b) = b},



Chapter 0. Covers and lifts 10

and there exists an element Rb such that Hb is either of the form ⟨Rb⟩ or of

the form ⟨Rb⟩×⟨(−I, 1)⟩ when −I ∈ Γ. If we denote by γb the matrix sending

b 7→ ∞ and we set L(γb) = hb then for some w ∈ Z,

h−1
b Rbhb =

(
±
(
1 w

1

)
, ϵ
)
, ϵ ∈ lµ.. 4.

Without losing generality, w > 0 (otherwise swap hb by its inverse). Notice

that ϵ only depends on γb and not on the choice of Rb nor the choice of hb.

For a function f on H to be meromorphic at b we mean that

f |k/2hb =
∑

−∞≪n

cnq
(n+r)/w

where r ∈ {0, 1/4, 1/2, 3/4} is such that ϵk = e(r). We say that f is holomor-

phic at b if for all n < 0, we have cn = 0. We say that f vanishes at b if it is

holomorphic at b and if r = 0 we have c0 = 0. In the sequel we shall consider

the case when proj(H) = Γ∗
0(4) where we can be more explicit, namely we can

replace the condition of holomorphicity by imposing

f(τ) =
∑
n≥0

af (n)q
n f |k/2L ( 1

−2 1 ) =
∑
n≥0

a
(1/2)
f (n)qn

at each of the nonequivalent cusps {i∞, 1/2} of Γ∗
0(4).

Definition 0.2.2 (Modular form weight k/2). A function f ∈ Hol(H) satisfy-
ing

• f |k/2h = f for all h ∈ H

• f is holomorphic at all cusps of Γ = proj(H)

is said to be a modular form of weight k/2 on H.

This definition does not appear to depend on a choice of multiplier. The reason

for this choice is that such a multiplier is determined provided we know the

choice of lift L. In this way it appears implicitly. We say that f is a cusp

form if it is modular and vanishes at all the cusps of Γ. We denote the space

of modular forms of weight k/2 on H by Mk/2(H) and the subspace of cusp

forms by Sk/2(H). For β ∈ GL+
2 (R), define

Γβ := β−1Γβ and Γβ := Γ ∩ Γβ.
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If β ∈ GL+
2 (R) satisfies [Γ : Γβ] < ∞ and [Γβ : Γβ] < ∞ (i.e. Γβ and Γ are

commensurable) then the lift of an element of Γβ gives rise to a multiplier vβ

on Γβ. More precisely, if B ∈ G satisfies proj(B) = β, then

L(βγβ−1) = BL(γ)B−1(I, vβ(γ)) γ ∈ Γβ. (0.2.1)

We obtain a multiplier vβ : Γβ → lµ.. 4. We set Kvβ := {γ ∈ Γβ : vβ(γ) = 1}.

Let Hβ = B−1HB and

Hβ := H ∩B−1HB = H ∩Hβ.

Definition 0.2.3 (Double coset action). Let {ξν} be a set of coset represen-
tatives for H\HξH. Then

f |[HξH] := det(ξ)k/4−1
∑
ν

f |ξν .

Definition 0.2.4 (Commensurable). We say H is commensurable with H ′ if
and only if H ∩H ′ is of finite index in H and also in H ′.

Proposition 0.2.5 (Shimura, Prop.1.0 in [24]). Suppose β ∈ GL+
2 (R) satisfies

[Γ : Γβ] <∞ and [Γβ : Γβ] <∞. If [Γβ : Kvβ ] <∞, then

(i) Hβ = L(Kvβ);

(ii) H is commensurable with Hβ;

(iii) if vkβ is non-trivial then f |HhH = 0 for all f ∈Mk/2(H).

Proof (i) We have

h ∈ L(Kvβ) ⇐⇒ h = L(γ) with vβ(γ) = 1

⇐⇒ BL(γ)B−1 = L(βγβ−1) ∈ H

⇐⇒ L(γ) = h ∈ Hβ.

(ii) Applying proj and using (i) we see

[H : Hβ] = [proj(H) : proj(Hβ)] = [Γ : Kvβ ] ≤ [Γ : Γβ][Γβ : Kvβ ] <∞.

Similarly,

[Hβ : Hβ] = [proj(Hβ) : proj(H
β)] = [Γβ : Kvβ ] ≤ [Γβ : Γβ][Γβ : Kvβ ] <∞.
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(iii) Let {γi} and {δj} be a set of coset representatives for Γβ\Γ and Kvβ\Γβ

respectively. Then, since L is a homomorphism on Γ,

H =
∐
i

L(Γβ)L(γi)

=
∐
i,j

L(Kvβδj)L(γi)

(i)
=

∐
i,j

HβL(δj)L(γi). (0.2.2)

Multiplying the last expression by HB,

HBH =
∐
i,j

HB(H ∩Hβ)L(δj)L(γi)

=
∐
i,j

HB(Hβ)L(δj)L(γi)

=
∐
i,j

HB(B−1HB)L(δj)L(γi)

=
∐
i.j

HBL(δj)L(γi).

Since

L(βδjβ
−1)B(I, v(δj)

−1) = BL(δj),

and L(βδjβ
−1) lies in H and f is H invariant, we see

f |HBH = detBk/4−1
∑
i,j

f |BL(δj)|L(γi)

= det(β)k/4−1
∑
i,j

f |L(βδjβ−1)B(I, vβ(δj)
−1)|L(γi)

L(βδjβ
−1)∈H
= det(β)k/4−1

∑
i,j

(f |B)|(I, vβ(δj))−1|L(γi)

= det(β)k/4−1
∑
i,j

vβ(δj)
kf |B|L(γi)

= det(β)k/4−1
∑
i

(∑
j

vβ(δj)
k

)
︸ ︷︷ ︸

=:X

f |B|L(γi).

We now claim that the value of the sum X = 0. By assumption, the multiplier

system vkβ is non-trivial, so vβ(−I)k = (−i)k ̸= 1 as k is always odd. We claim
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that σ(−I, δj) is always equal to one for all j. This is because in general,

σ(γ1, γ2) = eis(γ1,γ2)/2

where

s(γ1, γ2) = arg j(γ1, γ2τ) + arg j(γ2, τ)− arg j(γ1γ2, τ).

Substituting γ1 = −I and γ2 = β gives

s(−I, δj) = arg(−1) + (arg j(δj, τ)− arg j(−δj, τ))

= −π + π = 0.

Thus, σ(−I, δj) = 1 and therefore vβ(−δj) = vβ(−I)vβ(δj). We have

vβ(−I)kX =
∑
j

vβ(−I)kvβ(δj)k =
∑
j

vβ(−δj)k = X.

This implies X = 0 as claimed. □

The conditions of this proposition are easy to satisfy. For instance, we have

Example 0.2.6. If β lies in the commensurator of Γ∗
0(4) then the conditions

of the proposition are met, since [Γ∗
0(4) : Kvβ ] ≤ [Γ∗

0(4) : Γ
∗
0(4) ∩ Γ1(4)] <∞.

Now let us specialize to the case when vβ is trivial on Γβ. This motivates the

following lemma.

Lemma 0.2.7. If B is any element of G such that proj(B) = β, then the
following are equivalent

(a) L(Γβ) = Hβ

(b) For all γ ∈ Γβ, we have L(β−1γβ) = B−1L(γ)B

(c) vβ is trivial on Γβ

(d) proj maps HBH bijectively onto ΓβΓ.

Moreover, if (a)-(d) hold then HBH =
⋃
iHL(βi) is a disjoint union if and

only if ΓβΓ =
⋃
i Γβi is a disjoint union.

Proof By (i) of the previous proposition, the RHS of (a) is L(Kvβ) and this

shows (a) ⇔ (b) ⇔ (c) because of equation (0.2.1). Now by (0.2.2) we have
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that BL(δjγi) is a set of representatives for H\HBH. Since βγi is a set of

coset representatives for Γ\ΓβΓ, it follows that proj(BL(δjγi)) = βγi and

(d) ⇔ proj(L(δi)L(γj)) = γj

⇔ proj(L(δi)) = 1 ∀i

⇔ Γβ = Kvβ

⇔ vβ = 1 on Γβ ⇔ (c)

The remaining claim follows from this. □

0.2.2 The lift

We now consider the case Γ = Γ∗
0(4N). To do this, we will choose a lift L.

Refering back to Example 0.1.5, denote

v∗θ(γ) =
θ(γτ)

(cγτ + dγ)1/2θ(τ)
.

Set L to be the choice ϕ(γ, τ) = J (γ, τ) = v∗θ(γ)(cτ + d)1/2, namely

L : Γ→ H

γ 7→ (γ,J )

We point out as well that under γ 7→ L(γ),

f |k/2L(γ) = f |k/2,vθγ := vθ(γ)
−k(cτ + d)−k/2f(γτ)

which in turn is the same as J (γ, τ)−kf(γτ). We denote Sk/2(Γ) = Sk/2(H)

the space of cusp forms of weight k/2 for Γ with multiplier system vθ. For a

character χ of Γ, we say that f ∈ Sk/2(Γ, χ) if the slash action in definition

0.2.2 can be replaced by

f |k/2L(γ) = χ(d)f, γ = ( ∗ ∗
c d ) ∈ Γ.

We can even set f |k/2,χL(γ) := χ(d)−1f |k/2L(γ) so that f ∈ Sk/2(Γ, χ) satis-

fies f |k/2,χ = f . Notice that when ( ∗ ∗
c d ) = γ ∈ Γ0(4), we have the explicit
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expression

v∗θ(γ) = vθ(γ) = ϵ−1
d

( c
d

)
as in example 0.1.4 so that by construction L(Γ0(4N)) is a subgroup of H.

We write Sk/2(4N,χ) to mean Sk/2(L(Γ0(4N)), χ). Similarly, we will write

Sk/2(Γ
∗
0(4N), χ) to mean Sk/2(H,χ).

Extending the definition of J

From now on, we shall loosely follow [26]. Recall that the definition of J (γ, z)

is valid only for γ ∈ Γ∗
0(4). In chapter 2 we shall need to extend the definition

of J to cover cases such as diagonal matrices in SL2(Q). To this end let P be

the subgroup of upper triangular matrices in SL2(Q). For β ∈ P set

J̃ (β, τ) := |dβ|1/2.

Define J̃ (βγ, τ) = |dβ|1/2J (γ, τ) for β ∈ P and γ ∈ Γ∗
0(4). The restriction of

J̃ to Γ∗
0(4) equals J . Moreover J̃ satisfies

J̃ (βγγ′, τ) = J̃ (β, τ)J̃ (γ, γ′τ)J (γ′, τ), β ∈ P, γ ∈ PΓ∗
0(4), γ

′ ∈ Γ∗
0(4).

The transfer map

The purpose of this subsection is to define and prove a bijection from G to a

new subgroup Gk. This is achieved in Lemma 0.2.9. Here Gk is constructed in a

similar way to G but only for matrices with determinant one. The “tradeoff” is

that we must keep track of the weight so that the action of Gk on modular forms

of weight k/2 agrees with that of G. We assume throughout that ψ ∈ Hol(H).

We define Gk to be the set of pairs (α, ψ) ∈ SL2(Q)× Hol(H) such that

ψ(τ)2 = ϵJ̃ (α, τ)k

with ϵ ∈ {±1} and J as above. Then Gk has a multiplication law

(α1, ψ1) ⋆ (α2, ψ2) = (α1α2, ψ1(α2τ)ψ2(τ))

and the projection map proj : Gk → SL2(Q) is the map proj(α, ψ) = α.
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Definition 0.2.8. The slash action for ξ = (α, ψ) ∈ Gk is

(f ||ξ)(τ) := ψ(τ)−1f(ατ).

Lemma 0.2.9. There exists an isomorphism of groups

ι : G → Gk
(γ, ϕ) 7→ (α, ψ) =

((
1/ det γ

1/ det γ

)
γ, det(γ)k/2ϕk

)
that preserves actions, namely

f |k/2(γ, ϕ) = f ||(α, ψ).

The proof consists of unraveling the definitions. Indeed, γτ = ατ is clear.

After choosing the lift, ϕ(τ) = J (α, τ)/
√
detα and putting ψ = ϕk then we

see ϕ(τ)−kf(γτ) = v(α)k(detα)k/2J (α, τ)−kf(ατ) = ψ(τ)−1f(ατ). From this

observation we see
G Gk

Γ

ι

L
Lk

hence we can obtain a new lift Lk : Γ → Gk. In particular because γ ∈ Γ

has det(γ) = 1, if L(γ) = (γ,J (γ, τ)) then the diagram above gives Lk(γ) =

(γ,J (γ, τ)k).

0.3 Hecke operators

0.3.1 The Hecke algebra

We summarize the Hecke theory for half integral weight modular forms. We

follow the exposition in chapter IV §13 in [26]. We now fix H to be the lift of

Γ∗
0(4N) as in §0.2.2. Recall that the hyperbolic measure dµ(z) = dxdy

y2
on H is

invariant under the action of Γ = Γ∗
0(4N).

Proposition 0.3.1. For any g ∈ G, assume gHg−1 is commensurable with H.
Then

|H\HgH| = [H : H ∩ g−1Hg] = [H : H ∩ gHg−1] = |HgH/H|

and there exists a set of coset representatives {hi} such that

HgH =
∐

Hhi =
∐

hiH.
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Proof Let Γ = proj(H) so that H = L(Γ), and put γ = proj(g). Then, since

µ is Γ-invariant, acting by γ gives

µ(Γ\H)[Γ : Γ ∩ γ−1Γγ] = µ(Γ ∩ γ−1Γγ\H)

= µ(Γ ∩ γΓγ−1\H)

= µ(Γ\H)[Γ : Γ ∩ γΓγ−1].

Giving [Γ : Γ ∩ γΓγ−1] = [Γ : Γ ∩ γ−1Γγ] and therefore [H : H ∩ g−1Hg] =

[H : H ∩ gHg−1]. This proves the middle inequality, for the other two, apply

either the bijection hi 7→ g−1hig or hi 7→ ghig
−1. To prove the claim about the

existence of {hi}, suppose we have

HgH =
∐

Hη′i =
∐

ηiH.

Since η′i ∈ HηiH we can find αi, βi ∈ H such that η′i = αiηiβi. Then, setting

hi = α−1
i η′i we have

∐
Hhi =

∐
Hα−1

i η′i =
∐

Hη′i =
∐

ηiH =
∐

ηiβi =
∐

hiH.

□

We now fix a subset Ξ ⊂ G containing H. By Definition 0.2.3, each ξ defines a

double cosetHξH and in turn an automorphism ofMk/2(H) via f 7→ f |[HξH].

We denote by R(H,Ξ) the set of formal finite sums of the form

∑
ξ∈Ξ

cξHξH cξ ∈ Q.

For a subgroup ∆ ⊂ GL2(Q), we can define in a similar way R(Γ,∆) to be

the set of formal finite sums
∑

δ∈∆ cδΓδΓ with cδ ∈ Q. One should think of

elements in R(Γ,∆) as behaving well under conjugation, for instance with our

usual notation of Γα = α−1Γα, we obtain

Proposition 0.3.2. Let Γ be a congruence subgroup. Let α ∈ M2(Z) have
positive determinant. Then, the map sending R(Γ,∆) to R(Γα, α

−1∆α) is an
isomorphism.
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Proof If {γi} is a set of coset representatives for Γδ\Γ (here Γδ = Γ ∩ Γδ),

then {δγi} is a set of coset representatives for Γ\ΓδΓ. Under γ 7→ α−1γα, Γδ

has image

α−1(δ−1Γδ ∩ Γ)α = (α−1δα)−1Γα(α
−1δα) ∩ Γα = (Γα)

α−1δα.

But this means that Γδ\Γ → (Γα)
α−1δα\Γα bijects and so does Γ\ΓδΓ →

Γα\Γα(α−1δα)Γα. The isomorphsim we seek is ΓδΓ 7→ Γα(α
−1δα)Γα. □

If {αi} and {βj} denote a set of representatives for H\Hα0H and H\Hβ0H

respectively then

Hα0Hβ0H =
⋃

Hαiβj =
∐

HξH

where in the last equality, the finite union is chosen to be disjoint for some

choice of representatives {ξ}. We define a multiplication on R(H,Ξ) as

R(H,Ξ)×R(H,Ξ)→ R(H,Ξ)

(Hα0H,Hβ0H) 7→
∑

cξHξH

where cξ is the number of (i, j) such that Hαiβj = Hξ. It can be verified

(see [26] p117) that this map is independent of the choice of representatives

{αi}, {βj} and {ξ}; so that R(H,Ξ) now becomes an associative algebra. We

call this algebra the Hecke algebra.

In general, R(H,Ξ) acts on modular forms in the following way. Given an

element HξH ∈ R(H,Ξ), we let {ξν}ν be a set of coset representatives of

H\HξH so that by Lemma 0.2.7 part (d), if we set αν = proj(ξν) then {αν}ν

becomes a set of coset representatives of Γ\ΓαΓ. This gives us a well defined

isomorphism

R(H,Ξ)→ R(Γ, proj(Ξ))

HξH 7→ ΓαΓ.

We stress that this isomorphism depends on the choice of the lift L. We
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mention here that the slash action on the right-hand side of Def.0.2.3 is the

one with respect to G. Of course, if Ξ′ ⊂ Gk, one can analogously the algebra

of formal finite rational sums of double cosets as before. To stress that we

are working over Gk, we shall denote Rk(H,Ξ
′) to be this algebra, with the

subscript reminding us that the slash action is with respect to Gk. In this case

we have

f ||[Hξ′H] := (dξ′)
k/2−2

∑
ν

f ||ξ′ν .

Here dξ′ is the bottom right entry of α′ = proj(ξ′), which is always an integer.

We shall exclusively use || to denote the action within Gk (as defined in §0.2.2).

This gives a map Rk(H,Ξ
′)→ Rk(Γ, proj(Ξ

′)).

Using the isomorphism of Lemma 0.2.9, if Ξ′ denotes the image of Ξ under

ι : G → Gk, then

HξH 7→ Hι(ξ)H

extends to a map R(H,Ξ)→ Rk(H,Ξ
′). All of this can be summarized in the

commutative diagram below.

R(H,Ξ) Rk(H,Ξ
′)

R(Γ, proj(Ξ)) Rk(Γ, proj(Ξ
′))

ι

(0.3.1)

Let us now specialize to the case Γ = Γ∗
0(4) with the choice of lift as in §0.2.2.

Let P be the subgroup of SL2(Q) of upper triangular matrices. Let Pn be the

subgroup of P consisting of matrices of the form
( n ∗
0 1/n

)
for some n ∈ Z \ {0}.

The set Ξn2 is the subset of G consisting of elements (γ, ϕ) with γ ∈ M2(Z)

and det γ = n2.

Lemma 0.3.3. The following hold:

(i) SL2(Q) = PΓϑ.

(ii) SL2(Q) = PΓ∗
0(4).

(iii) The map proj(Ξn2)→ PnΓ
∗
0(4) given by(

a b
c d

)
7→
(
n t
0 1/n

)(
x y
c d

)
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is a bijection.

Proof In order to prove parts (i) and (ii) we first claim that SL2(Q) =

P · SL2(Z). Let β ∈ SL2(Q) then (clearing denominators) the last row of β

can be written as qwT where q ∈ Q× and w is a primitive vector in Z2. Let

γ ∈ SL2(Z) be the unique matrix with bottom row w. Then βγ−1 = ( ∗ ∗
0 q ) ∈ P

showing that SL2(Q) = P ·SL2(Z) as claimed. With this in mind we can now

prove parts (i) and (ii).

(i) Notice that the generators of Γϑ are T 2 and S, but since T−1 ∈ P ,

T = T−1T 2 lies in P · Γϑ. Thus P · Γϑ = P · SL2(Z) = SL2(Q) as well.

(ii) Using the previous part and conjugating by

1/2

1

 we see that

PΓ∗
0(4) = P

1/2

1

Γϑ

2

1

 = PΓϑ

2

1

 = SL2(Q).

(iii) If det ( a bc d ) = n2 then
(
a/n b/n
c/n d/n

)
lies in SL2(Q). By parts (i) and (ii), this

matrix also lies in PΓ∗
0(4). For bottom rows to agree, it must be of the

form a/n b/n

c/n d/n

 =

n t

0 1/n


x y

c d

 ,

hence lie in PnΓ
∗
0(4). Here x, y ∈ Z solve xd− cy = 1 and t satisfies both

tc = a/n− nx and td = b/n− ny.

□

0.3.2 Definition of the Hecke operator

We have seen in the previous section that the map ι induces an isomorphism

between the Hecke algebras R(H,Ξ) and Rk(H,Ξ
′). Fix a congruence sub-

group Γ and a choice of lift L : Γ ↪→ H. In this section, we first construct an

operator Tm inside R(H,Ξ), find its description in Rk(H,Ξ
′) under ι. For now
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we maintain generality for Γ and L (and thence also H); later, we specialise to

the case when Γ = Γ∗
0(4) and L(γ) = (γ, v∗θ(γ)J (γ, τ)). Recall Ξ =

⋃
n∈N Ξn2

where Ξn2 is the subset of G consisting of integral matrices of determinant n2.

Definition 0.3.4. Let m ∈ N. In R(H,Ξ), the Hecke operator is defined to
be

Tm :=

[
H

((
1

m2

)
,
√
m

)
H

]
.

Now since det diag(1,m2)k/2 = (m2)k/2,

ι


1

m2

 ,
√
m

 =


1/m

m

 , (m2)k/2(
√
m)−k

 .

It follows that the image of Tm in Rk(H,Ξ
′) isH


1/m

m

 ,mk

H

 .
Informally, this means that the action of the a single element of the Hecke ac-

tion corresponding to mαm in G gets passed to the Hecke action corresponding

to αm in Gk under ι. More precisely, for m ∈ Z let αm = ( 1/m 0
0 m

), and set

ξm = L(αm) = (αm,m
k/2).

Writing HξmH =
∐
Hξν , we see that for f ∈Mk/2(4N,χ),

Tmf = mk/2−2
∑
ν

χ(dαν )
−1f |k/2αν .

On the other hand, one can consider the element

Tm := H
(
mαm,m

1/2
)
H = H


1

m2

 ,m1/2

H

so that for f ∈Mk/2(4N,χ),

Tmf := det(mαm)
k/4−1

∑
ν

χ(maαν )f |k/2ξν , αν = proj(ξν).

By construction, the action of both of these is the same. Such a Tm is written

TNκ,χ(m
2) in [24], and we call it the Hecke operator.
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Lemma 0.3.5. Suppose either (m,n) = 1 or every prime factor of m divides
N . Then TnTm = Tnm.

For a proof see Lemma 13.6 in [26]. We now specialise Γ = Γ∗
0(4N) with

lift L(γ) = (γ, v∗θ(γ)J (γ, τ)). As in the integral case, for a prime p, we can

describe the effect Tp has on the coefficients af (n) of f =
∑
af (n)q

n:

Theorem 0.3.6. Let f =
∑

n≥0 af (n)q
n ∈Mk/2(4N,χ). Then Tpf =

∑
b(n)qn

where

b(n) = af (p
2n) + χ(p)

(
−1
p

)λ(
n

p

)
pλ−1af (n) + χ(p2)pk−2af (n/p

2).

Recall the convention that af (n) vanishes when n is not an integer. We include

a sketch proof of this theorem so that we explicitly present the representatives

of H\HξpH. For a detailed proof, see either Theorem 1.7 in [24] or Theorem

13.9 in [26].

Proof [Shimura] We lift for each 0 ≤ ν < p2 and each 0 < h < p the

representatives

βν = ( 1/p ν/p
p ), γh =

(
1 h/p

1

)
, δ = (

p
1/p )

of Γ\Γ( 1/p
p )Γ to the representatives

L(βν) = (βν , p
k/2), L(γh) =

(
γh, ϵ

−1
p

(
−h
p

))
, L(δ) = (δ, p−k/2) (0.3.2)

of H\HξpH. This gives

Tpf = pk/2−2

(∑
ν

χ(paβν )f |L(βν) +
∑
h

χ(paγh)f |L(γh) + χ(paδ)f |δ

)

= p−2
∑
ν

f

(
τ + ν

p2

)
+ pk/2−2ϵ−1

p χ(p)
∑
h

(
−h
p

)
f(τ + h/p)

+ pk/2−2pk/2−2χ(p2)pk/2f(p2τ)

= p−2
∑
n≥0

af (n)q
n/p2

p2−1∑
ν=0

e(nν/p2)

+ pk/2−2ϵ−1
p χ(p)

∑
n≥0

af (n)q
n

p−1∑
h=1

(
−h
p

)
e(nh/p)

+ pk−2χ(p2)
∑
n≥0

af (n)q
np2
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To conclude, use Gauss sums and equate coefficients. □

The following two corollaries are jointly stated in Corollary 1.8 of [24]:

Corollary 0.3.7. We have that aT2f (n) = af (4n). Moreover, if f is an eigen-
function for T2 with eigenvalue ω2, then

ω2af (4
mn) = af (4

m+1n), m ≥ 1.

Corollary 0.3.8. Let D ∈ N and p be prime and assume p2 ∤ D. If Tpf = ωpf
then

1. ωpaf (D) = af (p
2D) + χ(p)

(
−1
p

)λ (
D
p

)
pλ−1af (p)

2. ωpaf (p
2mD) = af (p

2m+2D) + χ(p2)
(

−1
p

)λ
pk−2af (p

2m−2D)

and formally,

∑
n≥1

af (Dn
2)

ns
=
∑
p∤n

af (Dn
2)

ns

1− χ(p)
(

−1
p

)λ (
D
p

)
pλ−1−s

1− ωpp−s + χ(p)2p2λ−1−2s
.

For odd k and f, g ∈ Sk/2(Γ∗
0(4N), χ) we define the Petersson scalar product

as

⟨f, g⟩ :=
∫
Γ∗
0(4N)\H

f(z)g(z)yk/4
dxdy

y2
. (0.3.3)

Lemma 0.3.9. If f, g ∈ Sk/2(Γ∗
0(4N), χ) then for all primes p ∤ 4N ,

⟨Tpf, g⟩ = χ(p)2⟨f,Tpg⟩.

Proof Notice that if {ξν} is a set of representatives for HξpH then {ξ−1
ν } is

a set of representatives for Hξ−1
p H. The top left entries aν and a

′
ν of pproj(ξν)

and pproj(ξ−1
ν ) are related via aνa

′
ν ≡ p2 mod 4N . So χ(aν)χ(a

′
ν) = χ(p)2

and

p2−k/2⟨Tpf, g⟩ = ⟨f |HξpH, g⟩ =
∑
ν

χ(aν)⟨f |ξν , g⟩

= χ(p)2⟨f,
∑

χ(a′ν)g|ξ−1
ν ⟩ = χ(p)2⟨f, g|Hξ−1

p H⟩

= χ(p)2p2−k/2⟨f,Tpg⟩.

□
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Of course, when we are working over Γ∗
0(4) we have χ(p)

2 = 1 for all characters

so the above simplifies, when p is odd to

⟨Tpf, g⟩ = ⟨f,Tpg⟩.

In any case, as a consequence of the previous lemma, we see that χ(p)Tp

is a Hermitian operator for any odd prime p. This proves the existence an

orthogonal Heigenbasis (a Heigenbasis is a Hecke eigenbasis) for all odd n.

0.4 The L function and its functional equation

In Chapter 3, we will need to extend the slash-action of Definition 0.1.6 to

C[Γ∗
0(4N)] by linearity. This means that

∑
cγγ acts on f as

∑
cγ(f |γ). We

shall only be interested in the case Γ = Γ∗
0(4N) for some N , we will denote the

space of cusp forms of weight k/2 for a group by Sk/2(Γ
∗
0(4N)). As standard,

we let T, S and U be the following elements of SL2(Z):

T = ( 1 1
0 1 ) , S = ( 0 −1

1 0 ) , U = TS = ( 1 −1
1 0 ) .

To a form

f(z) =
∑
n≥1

af (n)e
2πinz ∈ Sk/2(Γ)

we attach the L-series

L(f, s) :=
∑
n≥1

af (n)

ns
.

This is absolutely convergent for ℜ(s)≫ 1 and can be analytically continued

to the entire complex plane. Its “completed” L function is

L∗(f, s) =
Γ(s)

(2π)s

∑
n≥1

af (n)

ns
=

∫ ∞

0

f(it)ts
dt

t
.

It satisfies the functional equation

L∗(f, s) = N
k
4
−sL∗

(
W4Nf,

k

4
− s
)
. (0.4.1)

We now state without proof a well-known proposition. Consider a sequence

{a(n)}∞n=1 ⊂ C such that |a(n)| ≪ nα for some α ∈ R. PutA(τ) =
∑

n≥1 a(n)q
n ∈
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Hol(H) and put also

(−2iτ)−k/2A(−1/4τ) =
∑
n≥1

â(n)qn.

We assume as well that |â(n)| ≪ nα. Then

Proposition 0.4.1. With the setting as above, the series

Γ(s)

πs

∑
n≥1

a(n)

nk/2−s
= 2s−k/2

Γ(s)

πs

∑
n≥1

â(n)

ns

is entire.

This is a very special case of Theorem 3.2 in [25].

0.5 Shimura’s isomorphism

We present a simplified version of Shimura’s result. For a general statement,

we recomend the more modern exposition in §12 chapter IV in the book [26]

rather than the original paper [24].

Theorem 0.5.1 (Shimura). Let D ∈ Z square-free. Set χ̌(m) := χ(m)
(
D
m

)
.

Then there exists a map

σD : Sk/2(4N,χ)→M2λ(2N,χ
2)

such that the image σDf of a form f =
∑
af (n)q

n has its L-function equal to

L(χ̌, s− λ+ 1)
∑
n≥1

af (|D|n2)

ns
. (0.5.1)

Proof We only provide a sketch of the case for N = 1 and D = 1. We do

this in two steps. Begin formally with the L-series

L(s) := L(χ̌, s− λ+ 1)
∑
n≥1

af (n
2)

ns
=
∑
n≥1

A(n)

ns

defined by (0.5.1) and check that L(s) satisfies the conditions of Weil’s converse

theorem; namely that for any primitive character ψ modulo rψ, the twist of

L(s) by ψ has absolute convergence on a half-plane, is bounded on every

vertical strip, has a holomorphic continuation and a functional equation. When

all these conditions are met, this will show that L(s) must be the L function of

a modular form. In other words,
∑
A(n)qn ∈M2λ. The absolute convergence
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and boundedness on vertical strips are easy to verify; and the holomophic

continuation will follow from the functional equation. Therefore it suffices to

check that ∑
n≥1

ψ(n)A(n)

ns
=
∑
n≥1

χ̌(n)ψ(n)

ns+1−λ

∑
m≥1

a(m2)ψ(m)

ms

has a functional equation. This is already known for the first sum, because

it is a Dirichlet series. Hence we must check that
∑
a(n2)ψ(n)n−s has func-

tional equation. This is achieved by the Rankin-Selberg method. We consider

unfolding B(z, s) = f(z)hψ(z)y
s+1 where hψ(z) =

∑
n≥1 ψ̄(n)n

νqn
2
. We have

Γ(s)

(4π)s

∑
n≥1

ψ(n)a(n2)

n2s−ν =

∫
Γ∞\H

B(z, s)dµ(z)

=

∫
Γ0(4r2ψ)\H

B(z, s)
∑

Γ∞\Γ0(4r2ψ)

B(γ, z, s)dµ(z)

=

∫
Γ0(4r2ψ)\H

B(z, s)Ẽ(z, s)dµ(z).

Here B(γ, z, s) = B(γz,s)
B(z,s)

. It turns out that the Eisenstein series Ẽ can be

expressed as

Ẽ(z, s) =
Γ(s)

πs
ys
∑
c,d

ψχ̌(d)(cz + d)λ−ν

|cz + d|2s−2ν+1

where c, d run through coprime integers such that 0 < c ≡ 0(4r2ψ). We include

(c, d) = (0, 1) in the sum as well. Such a series should be thought of as an

Eisenstein series of weight (λ− ν)/2. The strategy now to complete the proof

of the functional equation is to show the functional equation for Ẽ. This is a

deep and nontrivial result, but is well known in the literature. For a proof of

the functional equation of Ẽ see [24] Lemma 3.3. □

We end this section with a comment on what occurs when f is a Heigenform. A

Heigenform is a normalised Hecke eigenform. To do this we state [26] Theorem

13.11,

Proposition 0.5.2 (Shimura). Let f ∈ Sk/2(4N,χ) be a Heigenform for
all primes. Then there exists a normalised integral weight Heigenform g ∈



Chapter 0. Conjugating the theta group 27

M2λ(2N,χ
2) such that

L(χ̌, s+ 1− λ)
∑
n≥1

af (|D|n2)

ns
= af (|D|)L(g, s).

In particular if f is a Heigenform, there exists a normalised Heigenform g such

that

σDf = af (|D|)g. (0.5.2)

0.6 Conjugating the theta group

Recall that Γϑ is the subgroup of PSL2(Z) = Γ1 generated by T 2 and S.

Conjugating this group by ( 2
1 ) gives the group generated by T and W4,

namely Γ∗
0(4). Denote by ∆◦ the set of matrices of positive odd determinant

and integer entries. Write ∆ϑ ⊂ ∆◦ for the set of matrices with a ≡ d ̸≡ c ≡ b

modulo 2.

Proposition 0.6.1 ([23] Prop 3.30). There exists a homomorphism

R(Γϑ,∆ϑ)→ R(Γ1,∆
◦).

Fix δ ∈ ∆◦ and find γ ∈ Γ1 such that γ ≡ δ mod 2. This can always be done

since det δ ≡ 1(2) so δ mod 2 can be viewed as an element of SL2(Z/2Z)

and Γ1 surjects onto SL2(Z/2Z). Therefore γ−1δ ∈ ∆ϑ so Γϑγ−1δΓϑ maps to

Γ1γ
−1δΓ1 = Γ1δΓ1 showing the map is surjective. Moreover, if Γ1δ1Γ1 = Γ1δ2Γ1

then either δ1 ≡ δ2 mod 2 or δ1 ≡ Sδ2 mod 2. But since S ∈ Γϑ, we have

Γϑδ1Γ
ϑ =


Γϑδ2Γ

ϑ if δ1 ≡ δ2

ΓϑSδ2Γ
ϑ if δ1 ≡ Sδ2

= Γϑδ2Γ
ϑ.

For clarification, in either case, Γϑδ1Γ
ϑ = Γϑδ2Γ

ϑ. This shows that the homo-

morphism above is in fact a bijection and therefore we have proved

Proposition 0.6.2. The map R(Γϑ,∆ϑ) → R(Γ1,∆
◦) sending ΓϑαΓϑ 7→

Γ1αΓ1 is an isomorphism.

We point out that this is a different result to Proposition 3.31 of [25], because
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Γϑ is not of the form considered in equation (3.3.1’) of that book.

Corollary 0.6.3. Let ∆∗
0(4) be the image of ∆ϑ under conjugation by ( 2

1 ).
Then R(Γϑ,∆ϑ)→ R(Γ∗

0(4),∆
∗
0(4)) is an isomorphism.

Proof Apply Proposition 0.3.1 with Γ = Γϑ and α = ( 2
1 ) and combine this

with the Proposition 0.6.2. □

Explicitly, ∆∗
0(4) can be expressed as{

( a bc d ) : a, d ∈ Z, c ∈ 2Z, b ∈ 1

2
Z, a ≡ d(2), c/2 ≡ 2b(2), 0 < ad− bc ≡ 1(2)

}
Now fix the choice Γ = Γ∗

0(4) and the choice of lift as in §0.2.2. Then, because

of Lemma 0.2.7(d), since the image of ∆∗
0(4) is Ξ

∗
0(4) we see that the map

Ξ∗
0(4)→ ∆∗

0(4) (0.6.1)

is a bijection. In particular, R(H,Ξ∗
0(4))→ R(Γ∗

0(4),∆
∗
0(4)) is also a bijection.

The commutative diagram in (0.3.1) allows us to push forward this bijection

using ι. If ∆′ and Ξ′ are (respectively) the images of ∆∗
0(4) and Ξ∗

0(4) under ι,

then

Rk(H,Ξ
′)→ Rk(Γ

∗
0(4),∆

′)

is a bijection. Given a pair of matrices (( ∗ ∗
a b ) (

∗ ∗
c d )) ∈ Γϑ × Γϑ then provided

that a ≡ d(2) and ad − bc > 0 we see ( a bc d ) ∈ ∆ϑ. The converse need not be

true; for instance, 3S ∈ ∆ϑ is not of this form. This is because the image will

always have gcd(a, b) = gcd(c, d) = 1. Recall that for an integer u ≥ 1, Pu is

the subset of SL2(Q) consisting of matrices of the form
(
1/u ∗
0 u

)
. In Chapter 2,

we shall need to sum over elements of ∆ϑ. In order to do this we shall exploit

the following bijection. Let

∆ϑ
u,v := {δ ∈ ∆ϑ : gcd(aδ, bδ) = u, gcd(cδ, dδ) = v}.

Then it’s clear that ∆ϑ =
⋃
u,v≥1∆

ϑ
u,v and in fact

⋃
u≥1

PuΓ
ϑ ×

⋃
v≥1

PvΓ
ϑ → ∆ϑ (0.6.2)



Chapter 0. Definition of cohomolgy groups 29

is one-to-one and onto. This bijection is allowed to pass under the map ι in

(0.3.1). We obtain

⋃
u≥1

PuΓ
∗
0(4)×

⋃
v≥1

PvΓ
∗
0(4)→ ∆∗

0(4) (0.6.3)

In Chapter 2 §2.5 we shall need to take a sum over the action of matrices in

∆∗
0(4)u,v := {δ ∈ ∆∗

0(4) : gcd(aδ, bδ) = u, gcd(cδ, dδ) = v}. We claim that

summing over matrices in ∆0(4)u,v is the same as summing over matrices in

∆0(4)u2,v2 . Indeed those matrices Auv /∈ ∆0(4)u2,v2 with Auv ∈ ∆0(4)u,v will

have non-trivial vkAuv , so by Proposition 0.2.5(iii), the action of Auv will not

contribute to the sum. We will come back to this in chapter 2 §2.5 and give

another argument there. Similar arguments as these can be seen for instance

in [13], Chapter IV §3 Proposition 12 p204.

0.7 Definition of cohomolgy groups

In chapter 3 we will fix an integer ℓ ≥ 0 and work with one of three choices

for Γ, namely either PSL2(Z), Γϑ or Γ∗
0(4). We denote by Cℓ[τ ] the space

of polynomials with coefficients in C of degree ≤ ℓ. We equip Cℓ[τ ] with the

following action

(P |−ℓγ)(τ) = (cγτ + dγ)
ℓP

(
aτ + b

cτ + d

)
P ∈ Cℓ[τ ] γ ∈ Γ. (0.7.1)

We say that π : Γ→ Cℓ[τ ] is a cocycle if π(γ1γ2) = π(γ1)|−ℓγ2 + π(γ2) for any

γ1, γ2 ∈ Γ. We say that a cocycle π is a coboundary if there exists a polynomial

P ∈ Cℓ[τ ] such that π(γ) = P |−ℓ(γ − I). The space of cocycles modulo

coboundaries is call the cohomology group of Γ with values in Cℓ[τ ] and is

denoted H1(Γ,Cℓ[τ ]). Parabolic cocycles are those π ∈ H1(Γ,Cℓ[τ ]) satisfying

deg(π(Tw)) < ℓ where w = 2 in the case Γ = Γϑ and w = 1 for Γ = PSL2(Z)

or Γ∗
0(4). The space of parabolic cocycles is denoted H1

par(Γ,Cℓ[τ ]).



Chapter 1

Explicit images of Shimura’s
map

1.1 Introduction

The aim of this chapter is to prove explicit examples of the Shimura lift σD

using only elementary techniques. As in the previous chapter, let λ be a

positive integer and let ν ∈ {0, 1} and suppose that f ∈ Sλ−ν(Nf , χf ) is a

holomorphic cusp form of weight λ − ν. To a primitive Dirichlet character ψ

of conductor rψ satisfying ψ(−1) = (−1)ν , we shall consider the theta series

hψ ∈ S1/2+ν(4r
2
ψ, ψχ

ν
−4) given by

hψ(τ) =
∑
m∈Z

ψ(m)mνqm
2

.

An example of this is the choice ψ = (12/·), ν = 0 which gives rise to the

well-known eta product

∑
n≥1

(
12

n

)
qn

2

= η(24τ) := q
∏
n≥1

(1− q24n)

of level 576 and weight 1/2. Thus informally our goal will be to describe

explicitly σ(fhψ) in terms of f and the characters χf and ψ. We maintain

the convention k = 2λ + 1. By a Heigenform we will mean a normalized

Hecke newform. We shall denote ηba the function η(aτ)b defined above e.g.

h(12/·) = η24. For a formal power series f =
∑

n≥1 af (n)q
n define the operators

30
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Vd and Ud as follows

Vdf :=
∑
n≥1

af (n)q
dn Udf :=

∑
n≥1

af (dn)q
n.

It is known that if f ∈ Sk/2(N,χf ),

V|D|f ∈ Sk/2
(
|D|Nf ,

(
4|D|
·

)
χf

)
,

and if |D| divides Nf ,

U|D|f ∈ Sk/2
(
Nf ,

(
4|D|
·

)
χf

)
.

See for instance either Proposition 1.3 and Proposition 1.5 in [24] or Propo-

sition 3.7 in [20]. Define the twist of f =
∑
af (n)q

n by a character ψ to be

the power series
∑
af (n)ψ(n)q

n and denote it f ⊗ψ. Throughout this section

we denote by χ0,4 and χ1,4 the trivial and nontrivial characters modulo four.

We also denote χ0,N the trivial character of modulus N . Given a half integral

weight form f ∈ Sk/2(4N,χ), and a fundamental discriminant D, we define

the checked character

χ̌D(d) :=

(
4(−1)λ|D|

d

)
χ(d).

When D = 1 we simply write χ̌ = χλ1,4χ.

Definition 1.1.1 (Shimura image). Let λ ∈ N and D be a fundamental dis-
criminant. For f =

∑
n≥1 af (n)q

n ∈ Sk/2(4N,χ) set

σDf :=
∑
n≥1

AD(n)q
n

where

AD(n) =
∑
d|n

χ̌D(d)d
λ−1af

(
|D|n2

d2

)
.

Remark 1.1.2. If we wish to extend this definition to cover the case when f
is a modular form (not necessarily a cusp form) we add the constant term
af (0)

2
L((D/·), 1 − λ) to our definition of AD(n). In this chapter we will not

discuss this case.

Remark 1.1.3. Definition 1.1.1 is taken so as to agree with the L-function
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relation of Theorem 0.5.1, namely∑
n≥1

AD(n)

ns
= L(χ̌D, s− λ+ 1)

∑
n≥1

af (|D|n2)

ns
.

We begin with a simple result that to our knowledge has not appeared in the

literature. It says that Shimura images of hψ are twists of Eisenstein series.

More precisely we have

Lemma 1.1.4. Let ν = 1, let ψ be a non-trivial character and let E2 be the
weight 2 Eisenstein series of level 2. Then

σ1hψ = E2 ⊗ ψ.

Proof Since ahψ(n
2) = ψ(n)n, we see that the coefficients of σ1hψ are

A(n) =
∑
d|n

ψ(d)ahψ

(
n2

d2

)
=
∑
d|n

ψ(d)ψ(n/d) · (n/d)

= ψ(n)
∑
d|n

(d,rψ)=1

n

d
.

On the other hand, aE2(n) =
∑

d|n d. The result now follows. □

Example 1.1.5. Let ψ be the non-trivial character modulo 4. Then hψ = η38
so the lemma gives

σ1η
3
8 = σ1hψ = E2 ⊗ ψ =

η42η
4
8

η44
.

The last equality follows form checking enough coefficents.

Definition 1.1.6. We say f ∈ M2λ(N,χf ) is a CM form if there exists a
non-trivial character χ such that f ⊗ χ = f .

From this simple lemma we deduce

Corollary 1.1.7. No CM form is the Shimura image of some hψ under σ1.

Proof By the previous lemma, it suffices to show E2⊗ψ is never CM. Assume

not, then there exists a non-trivial character χ such that

E2 ⊗ (ψχ) = (E2 ⊗ ψ)⊗ χ = E2 ⊗ ψ.

This would imply χ is trivial modulo rχ, a contradiction. □

We now prove that the operators U and V behave nicely under σ:
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Lemma 1.1.8. Assume that |D| divides N . Then on the space Sk/2(4N,χ)
we have

(i) σDV|D|f = σ1f

(ii) σ1U|D|f = σDf

(iii) σDU|D| = U|D|σ1

(iv) U|D|σ1V|D| = σD

(v) V|D|σ1 = V|D|U|D|σ1V|D|2

Proof Fix f ∈ Sk/2(4N,χf ) and note that aV|D|f (n) = af (n/|D|) and aU|D|f (n) =

af (|D|n). Also U|D|V|D| is the identity but V|D|U|D| is not.

(i) The checked character of V|D|f with respect to D is ((D/·)χf )∨D = χ̌, where

χ̌ is χ̌f considered modulo lcm(4N, |D|). Hence

aσDV|D|f (n) =
∑
d|n

((D/·)χf )∨D(d)dλ−1aV|D|f

(
|D|n2

d2

)

=
∑
d| |D|n

χ̌(d)dλ−1af

(
n2

d2

)
= aσ1f (n).

In the penultimate equality we used the fact that if d| |D| then χ̌(d) = 0 does

not contribute to the sum.

(ii) As before, the checked character of U|D|f with respect toD is ((D/·)χf )∨D =

χ̌ considered again modulo lcm(4N, |D|). In a similar way,

aσ1U|D|f (n) =
∑
d|n

χ̌(d)dλ−1aU|D|f

(
n2

d2

)

=
∑
d|n

χ̌(d)dλ−1af

(
|D|n2

d2

)
= aσDf (n).

We remark that (i) and (ii) are equivalent, because σ1 = σ1U|D|V|D| = σDV|D|.

(iii) Indeed,

aσDU|D|f (n) =
∑
d|n

((D/·)χf )∨D(d)dλ−1aU|D|f

(
|D|n2

d2

)

=
∑
d|n

χ̌(d)dλ−1af

(
(|D|n)2

d2

)
= aσ1f (|D|n) = aU|D|σ1f (n).
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(iv) By part (iii), we have (U|D|σ1)V|D| = σDU|D|V|D| = σD.

(v) By part (i) and (iv), we have V|D|σ1 = V|D|σDV|D| = V|D|(U|D|σ1V|D|)V|D|.

□

Remark 1.1.9. Part (ii) of this lemma allows us to compute all images of σD
provided we know all images of σ1. In essence, (i) and (ii) say that finding σD
is as hard as finding σ1. The proof of (ii) was already known by Brown in his
thesis (cf [2] Proposition 2.5).

Remark 1.1.10. Having proved this lemma, it is tempting and quite natural to
conjecture that V|D|σD = σ1V|D|. However this is false and is explained by the
fact that although U|D|V|D| is the identity map, V|D|U|D| is not.

We can remove the condition that |D| dividesNf by use of L-functions. Indeed,

by Theorem 0.5.1, on the region of absolute convergence we have

L(σDV|D|f, s)

L(σ1f, s)
=

L(((D/·)χf )∨D, s− λ+ 1)

L(χ̌, s− λ+ 1)

=

∏
p∤lcm(4N,|D|)

(
1− χ̌(p)pλ−1−s)−1∏

p∤N (1− χ̌(p)pλ−1−s)−1

=
∏

p| |D|/(N,|D|)

(
1− χ̌(p)pλ−1−s) .

This proves the following formal equality of maps

σD ◦ V|D| =
∏

p| D
(N,D)

(1− χ̌(p)pλ−1Vp) ◦ σ1 (1.1.1)

It’s easy to see now that 1.1.8(i) is a special case of this when |D|/(N, |D|) = 1.

With our notation, the Sturm bound1 of the space M2λ(2N,χ
2) is at most

L =

λN2 ∏
p|N

p odd

(
1 +

1

p

) .
This of course can be much smaller if we work on the space of cusp forms

S2λ(2N,χ
2). If f and g are in correspondence σDf = g then we should expect

the Sturm bound on g to have an effect on the coefficients of f . Indeed, we

have

1the smallest integer L such that if f ̸= g then there exists 1 ≤ n ≤ L with af (n) ̸= ag(n).
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Lemma 1.1.11. Fix f ∈ Sk/2(4N,χ) and let L be the Sturm bound of S2λ(2N,χ
2).

Then, the following are equivalent:

1. σDf = 0

2. af (|D|n2) = 0 for all n ≥ 1

3. af (|D|n2) = 0 for 1 ≤ n ≤ L

4. af (|D|) = 0

Proof Clearly (2)⇒ (1)⇒ (4) since af (|D|) = AD(1) = 0. Also clear is the

direction (2)⇒ (3)⇒ (4). Möbius inversion proves (1)⇒ (2), since

af (|D|n2) =
∑
d|n

µ(d)χ̌(d)dλ−1AD

(n
d

)
︸ ︷︷ ︸

=0

To show (4) ⇒ (1) it suffices to show it for a Heigenbasis. This follows im-

mediately from equation (0.5.2), since there exists a normalised Heigenform g

such that σDf = af (|D|)g = 0. □

An alternative way of showing (4)⇒ (1) is to exploit Möbius inversion

af (|D|n2) = af (|D|)
∑
d|n

µ(d)χ̌(d)dλ−1AD

(n
d

)
,

but this also relies on the proof of [26] Theorem 13.11. Let D ∈ N be a

square-free integer. Immediately we see that f ∈ KerσD if and only if the

coefficients of f on the square class D ∈ Q×/(Q×)2 vanish. In particular, as

D runs through square-free integers,

⋂
D

KerσD = {0}.

Example 1.1.12. Since S2(30) has Sturm bound L = 3, any f ∈ S3/2(60)
with af (1) = af (4) = af (9) = 0 will have σ1f = 0.

Definition 1.1.13. Given a Dirichlet character χ of modulus N , we define its
Möbius inverse by

cχ(n) =
∑
d|n

µ(d)χ
(n
d

)
.

We of course interpret χ(n/d) = 0 when (n/d,N) = 1. We easily obtain:
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Lemma 1.1.14. The Möbius inverse of the trivial character χ0,4 modulo 4 is

cχ0,4(n) =


1 n = 1

−1 n = 2

0 otherwise.

Proof The first two cases are easily verified. It suffices to check prime powers

so either n = pα with p ̸= 2 or n = 2α with α ≥ 2. We have cχ0,4(p
α) =

χ0,4(p)
α−1(χ0,4(p)−1) for all p. If p is odd, χ0,4(p) = 1 and if p = 2, χ0,4(2)

α−1 =

0 as α ≥ 2. Either way, cχ0,4(p
α) vanishes. □

1.1.1 Historic background

We shall need the following known (cf 2.2 in [4]) elementary fact, which we

will refer as Selberg inversion.

Lemma 1.1.15 (Selberg Inversion). Let f ∈ Sλ(N,χ) be a normalised Heigen-
form. Then

af (m1m2) =
∑

e|(m1,m2)

µ(e)χ(e)eλ−1af

(m1

e

)
af

(m2

e

)
.

Proof Set D = ed and note that the right hand side is

∑
e|(m1,m2)

µ(e)χ(e)eλ−1
∑

d|(m1/e,m2/e)

χ(d)dλ−1af

(m1m2

d2e2

)

=
∑

D|(m1,m2)

∑
e|D

µ(e)

χ(D)Dλ−1af

(m1m2

D2

)
= af (m1m2).

□

We now give a brief historic survey of all previously known explicit Shimura

lifts. The first is credited to an unpublished result of Selberg, which first

appeared in Cipra’s article [4]. We give an exposition of this statement in

part (1) of the next proposition. Actually, as Cipra suggests, Selberg did not

consider the case with characters. With similar ideas, we give a proof involving

characters. In other words, whereas part (1) was previously known2, part (2)

of the next proposition appears to be new.

2see the main theorem in [4], although the version Cipra presents is more general, our for-
mulation does not use Dirichlet series but rather careful use of the modulus of the character
in Möbius inversion.
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Proposition 1.1.16 (Selberg). Let f ∈ Sλ(N,χf ) be a normalised Heigen-
form. Consider

f(4τ)θ(τ) ∈ Sk/2(4N,χfχ0,4).

1. If λ is even and N = 1, we have

σ1(f(4τ)θ(τ)) = f(τ)2 − 2λ−1f(2τ)2

lies in S2λ(2N,χ
2
f ). Otherwise, if N ̸= 1, we have σ1(f(4τ)θ(τ)) = f(τ)2.

2. If λ is odd then the coefficents of σ1(f(4τ)θ(τ)) are given by∑
s|n

χf (n/s)(n/s)
λ−1cχ1,4(n/s)af2(s),

where cχ1,4(n) =
∑

e|n µ(e)χ1,4(n/e) is the Möbius inverse of the charac-
ter χ1,4.

Proof (cf [4]) Since f(4τ)θ(τ) has coefficients

∑
m∈Z

af

(
n−m2

4

)
=: b(n)

and f(τ)2 has coefficients

∑
m∈Z

af (m)af (n−m),

we have,

b(n2) =
∑
m

af

(
(n−m)(n+m)

4

)
=
∑
m

af

(
m(2n−m)

4

)
=
∑
m

af (m(n−m)).

The middle equality follows from the substitution m 7→ m− n and the second

by noticing that m must be even so m 7→ 2m is allowed. By Selberg inversion

(1.1.15),

b(n2) =
∑
m

∑
e|(m,n)

µ(e)χf (e)e
λ−1af

(m
e

)
af

(
n−m
e

)
=

∑
e|n

µ(e)χf (e)e
λ−1
∑
m

af (m)af (n/e−m)

=
∑
e|n

µ(e)χf (e)e
λ−1af2(n/e)

the last line is just for easier substitution later. The checked character associ-
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ated to f(4τ)θ(τ) is χχλ1,4. Finally performing the Shimura lift gives

B(n) =
∑
d|n

χfχ
λ
1,4(d)d

λ−1
∑
e|n
d

µ(e)χf (e)e
λ−1af2

( n
ed

)
=

∑
d|n

∑
e|n
d

χfχ
λ
1,4(d)d

λ−1µ(e)χf (e)e
λ−1af2

( n
ed

)
=

∑
d|n

∑
e|n
d

χf (ed)(ed)
λ−1µ(e)af2

( n
ed

)
χλ1,4(d)

upon substituting n = eds,

B(n) =
∑
s|n

(n/s)λ−1χf (n/s)af2(s)
∑
e|n
s

µ(e)χλ1,4(n/es)

=
∑
s|n

(n/s)λ−1χf (n/s)af2(s)cχλ1,4(n/s).

This proves the case when λ is odd. By Lemma 1.1.14, when λ is even the

last term cχλ1,4(n/s) = cχ0,4(n/s) only the takes values +1 at n = s and −1 at

n = 2s and vanishing otherwise, therefore

B(n) = af2(n)− 2λ−1χf (2)af2(n/2) = af2(n)− 2λ−1χf (2)V2af2(n),

which combined with the fact that (V2f)
2 = V2(f

2) the result follows. Note

that when N = 1, χf (2) = 1 and when N ̸= 1 then χf considered modulo 2N

so χf (2) = 0. □

Example 1.1.17. Let f = η2η211 of level N = 11 ̸= 1 and even weight λ = 2.
By part (1) of Proposition 1.1.16, we have

σ(η24η
2
44θ) = η4η411.

This can be verified for instance with the pari-gp script:

f = mffrometaquo([1,2;11,2]);

F = mfmul(mfbd(f,4),mfTheta());

mf = mfinit(F);

sF = mfshimura(mf,F)[2];

mfisequal(sF,mffrometaquo([1,4;11,4]))

%5 = 1

Let us now consider a variation of this problem. Instead of θ we consider the
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weight 3/2 theta function

θ1(τ) =
∑
n∈Z

(−1)nqn2

.

Proposition 1.1.18. Let λ ∈ N be even and assume f ∈ Sλ(N,χ) is a Heigen-
form. Then the coefficients of σ(f(4τ)θ1(τ)) are{

(−1)naf2(n) when N ̸= 1,

(−1)n
[
af2(n)− 2λ−1af2(n/2)

]
when N=1.

Proof We follow the same proof strategy as the proof of Proposition 1.1.16.

The coefficients of f(4τ)θ1(τ) are

b(n) =
∑
m∈Z

(−1)maf
(
n−m2

4

)
,

so making the substitution m 7→ 2m− n,

b(n2) =
∑
m

(−1)m−naf

(
2m(2n− 2m)

4

)
= (−1)n

∑
m

af (m(n−m)).

By Selberg inversion (Lemma 1.1.15),

b(n2) = (−1)n
∑
e|n

µ(e)χf (e)e
λ−1af2(n/e).

Since the checked character in this case is χfχ0,4 (as λ is even) it follows that

the Shimura lift we seek has coefficients

B(n) =
∑
d|n

∑
e|n
d

(ed)λ−1χf (ed)µ(e)(−1)n/daf2
( n
ed

)
χ0,4(d)

=
∑
s|n

(n/s)λ−1χ(n/s)af2(s)
∑
e|n
s

µ(e)χ4,0

( n
es

)
(−1)es.

We note that χ4,0(n/es) only takes values when n/es is odd, so (−1)es = (−1)n.

To conclude, pull the factor of (−1)n outside and apply Lemma 1.1.14. □

Proposition 1.1.18 appears to be a new result. We give a brief application in

the next example.

Example 1.1.19. Let f = ηη2η7η14 ∈ S2(14). It is easy to verify that f(τ)2

has q-expansion at ∞

q2−2q3−3q4+6q5+2q6−q8−12q9+4q10+4q11−2q12+2q13−7q14+16q15+O(q16)
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By Proposition 1.1.18, it follows that σ1(f(4τ)θ1(τ)) has the q-expansion

q2+2q3−3q4−6q5+2q6−q8+12q9+4q10−4q11−2q12−2q13−7q14−16q15+O(q16),

obtained by changing the odd coefficients by −1. We have checked this agrees
with pari-gp.

In Cipra’s article [4], a generalisation of Selberg’s result is presented by con-

sidering the problem when θ is replaced by the theta function hψ with respect

to a primitive Dirichlet character ψ. Let f ∈ Sλ−ν(N,χ) be a Heigenform and

let ψ be a primitive Dirichlet character of conductor r. Assume r is a power

of a prime. Set

g(τ) =


f(τ)f(rτ) for ν = 0,

1
2πi

(f ′(τ)f(rτ)− rf(τ)f ′(rτ)) for ν = 1.

Proposition 1.1.20 (Cipra, 1987). With f , ψ, g as above,

σ1(f(4rτ)hψ(τ)) = g ⊗ ψ(τ)− 2λ−1χ(2)ψ(2)g ⊗ ψ(2τ)

lies in S2λ(2rNr, χ
2ψ2) where Nr := lcm(N, r).

As far as the author knows, this result was the first in the literature to give

an explicit description of a Shimura image. Notwithstanding, this only works

for primitive characters. The non-primitive case was answered by Hansen and

Naqvi [9]. In order to state the theorem, we introduce the notation ℓ||r to mean

ℓ is a divisor of r and gcd(ℓ, r/ℓ) = 1. We caution the reader that although

the conclusion is the same as that of Cipra’s result, the g in this next theorem

is not the same as Cipra’s, but rather involves taking a sum over ℓ||rψ, which

takes into account the non-primitivity of ψ.

Theorem 1.1.21 (Hansen, Naqvi, 2007 [9]). Let ψ be a character modulo r
(not necessarily primitive) of parity ν. Suppose that f ∈Mnew

λ−ν (N,χ). Then

σ1(f(4rτ)hψ(τ)) = g ⊗ ψ(τ)− 2λ−1ψ(2)χ(2)(g ⊗ ψ)(2τ)

lies in M2λ(2rNr, χ
2ψ2).

In more precise terms, if ψ is a (not necessarily primitive) Dirichlet character
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modulo rψ, then we can factor

ψ =
∏
ℓ

ψℓ =
∏
i

ψpαii where rψ =
∏
i

pαii .

Then the g in the theorem of Hansen and Naqvi [9] is given by

g(τ) =


∑

l||rψ ψl(−1)f(lτ)f
(
rτ
l

)
if ψ is even,

1
iπ

∑
l||rψ ψl(−1)lf

′(lτ)f
(
rτ
l

)
if ψ is odd.

(1.1.2)

If we write

gl(τ) =


f(lτ)f

(
rτ
l

)
if ψ is even,

l
iπ
f ′(lτ)f

(
rτ
l

)
if ψ is odd;

then we can express g =
∑

l||rψ ψl(−1)gl. We give a new proof of this using

the same Dirichlet convolution method as before:

Proof (We illustrate only the case when ψ is even). First note that

agl(n) =
∑
m

af

(
n− lm
r/l

)
af (m).

Also note that the coefficients of f(4rτ)hψ(τ) are given by

b(n) =
∑
m

ψ(m)af

(
n−m2

4r

)
.

If n+m is odd then so is n2−m2 = (n+m)(n−m) meaning (n2−m2)/4r is

not an integer so doesn’t contribute to the sum. This means we are allowed the

substitution n +m = 2k1l and n−m = 2k2r/l for each l||r for some integers

k1, k2. We have

b(n2) =
∑
m

ψ(m)af

(
n2 −m2

4r

)
=

∑
l||r

∑
k1,k2

ψ(k1l − k2r/l)af (k1k2)

where the second sum is taken over integer k1, k2 satisfying k1l + k2r/l = n.

If k1 = m then k2 = (n − lm)/(r/l). Using ψ(2ml − n) = ψ(−1)ψ(n) =
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ψl(−1)ψ(n) we can apply Selberg inversion to obtain

b(n2) =
∑
l||r

∑
m

ψ(2ml − n)af
(
m · n− lm

r/l

)

= ψ(n)
∑
l||r

ψl(−1)
∑
m

∑
e|(m,n−ℓmr/ℓ )

µ(e)χ(e)eλ−1af

(m
e

)
af

(
n− lm
re/l

)
.

If e divides r/ℓ then χf (e) vanishes and does not contribute to the sum. There-

fore e ∤ r/ℓ and e|
(
m, n−ℓm

r/ℓ

)
=
(
m, n

r/ℓ

)
. Thus we can sum over e|(m,n) and

it follows that

b(n2) = ψ(n)
∑
l||r

ψl(−1)
∑
e|n

µ(e)χ(e)eλ−1
∑
m

af (m)af

(
n/e− lm

r/l

)
= ψ(n)

∑
l||r

ψl(−1)
∑
e|n

µ(e)χ(e)eλ−1agl(n/e)

= ψ(n)
∑
e|n

µ(e)χ(e)eλ−1ag(n/e).

Therefore

B(n) =
∑
d|n

χ(d)ψ(d)χ0,4(d)d
λ−1b

(
n2

d2

)
=

∑
d|n

χ(d)ψ(d)χ0,4(d)d
λ−1ψ(n/d)

∑
e|n
d

µ(e)χ(e)eλ−1ag(n/de)

=
∑
d|n

∑
e|n
d

(de)λ−1χψ(de)ψ(n/de)ag(n/de)µ(e)χ0,4(d)

=
∑
s|n

(n
s

)λ−1

χψ
(n
s

)
ψ(s)ag(s)

∑
e|n
s

µ(e)χ0,4

( n
se

)
=

[
ag⊗ψ(n)− 2λ−1χ(2)ψ(2)ag⊗ψ(n/2)

]
.

These are precisely the coefficients we claimed. □

We note that in all of these theorems so far, one takes a product of an old

form f(4rτ) with a theta function hψ. We mention another result in a slightly

different direction, due to Brown [2]:

Theorem 1.1.22 (Brown, 2013, [2] Theroem 2.4). We have

(a) Let f ∈Mλ(N,χ) be a Heigenform. Then

σ(f(24τ)η24(τ)) = (f(τ)f(6τ)− f(2τ)f(3τ))⊗
(
12

·

)
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lies in S2λ(144N,χ
2).

(b) Let f ∈Mλ−1(N,χ) be a Heigenform. Then

σ(f(8τ)η38(τ)) =
1

2πi
· (f(2τ)f ′(τ)− f(τ)f ′(2τ))⊗

(
−4
·

)
lies in S2λ(16N,χ

2).

We shall be able to recover the proof of (a) as an application of our main

theorem. All of our Shimura images so far have involved the hψ. One can also

ask what happens if we replace hψ by VDhψ. This was answered recently by

Theorem 1.1.23 (Pandey, Ramakrishnan, 2022 [21]). Let 0 < D|N be square-
free and assume (D,N/D) = 1. Let f ∈ Sλ−ν(N,χ) be a normalised Hecke
eigenform. Fix ψ primitive mod r = rψ with (rψ, D) = 1. Set

gD = af (D)g

where g is as in (1.1.2). Then

σD(f(4rτ)hψ(Dτ)) = gD ⊗ ψ(τ)− 2λ−1χ(2)ψ(2)gD ⊗ ψ(2τ)

lies in S2λ(2rNr, χ
2ψ2)

In the same paper, Pandey and Ramakrishnan also prove

Theorem 1.1.24 (Pandey, Ramakrishnan, 2022 [21]). Let f ∈ Sλ−ν(N,χ) be
a normalised Heigenform and let ψ be primitive mod r = rψ. If D > 0 is
square-free then

σD(f(4rDτ)hψ(Dτ)) =
∏
p|2D

(1− χ(p)ψ(p)pλ−1Vp)(g ⊗ ψ)

lies in S2λ (2rNr, χ
2ψ2).

1.2 The main theorem

In this chapter we fix ξ ∈ {1, 2, 4} and define

(ξ′, ξ′′) :=


(1, 1) if ξ = 1

(2, 1) if ξ = 2

(2, 2) if ξ = 4.
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Lemma 1.2.1. Suppose ν ∈ {0, 1} and ξ ∈ {1, 2, 4}. Let f(τ) =
∑

n≥1 af (n)q
n ∈

Sλ−ν(N,χf ) be a Heigenform and let ψ be a Dirichlet character modulo Nψ.
Let

gℓ =

{
Vℓf · Uξ′/ξ′′VNψ/ℓf ν = 0,

(Vξ′ℓf) · q d
dq

(
Vξ′′Nψ/ℓU2f

)
ν = 1.

and let ξ∗ = 2 exactly when ν = 0, ξ′ = 1 and ξ∗ = 1 otherwise. If
f(ξNψτ)hψ(τ) has coefficients b(n) in the q-expansion, then

b(n2) = ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

e| 2n
ξ′′Nψ/ℓ

µ(e)χf (e)e
λ−1agl

(
ξ∗n

e

)
.

We remind the reader that the notation ℓ||Nψ means that ℓ is a divisor of Nψ

and that gcd(ℓ,Nψ/ℓ) = 1.

Proof A similar computation to those done previously shows

b(n2) =
∑
m∈Z

af

(
n2 −m2

ξNψ

)
ψ(m)mν .

When n2−m2

ξNψ
is not an integer, af

(
n2−m2

ξNψ

)
= 0. Now let ℓ = gcd

(
n−m
ξ′
, Nψ

)
.

We always have

n ≡ m (mod ξ′ℓ) and n ≡ −m (mod ξ′′Nψ/ℓ).

We claim that if ℓ′ = (ℓ,Nψ/ℓ) > 1 then there is no contribution to the sum.

Indeed, if ℓ′ ̸= 1, by the above congruences we would have m ≡ n ≡ −n ≡ 0

mod ξ′ℓ′ meaning ψ(m) = 0, hence no contribution. Therefore, without loss

of generality we can assume that ℓ||Nψ. We have

ψ(m) = ψℓ(m)ψNψ/ℓ(m) = ψℓ(n)ψNψ/ℓ(−n) = ψNψ/ℓ(−1)ψ(n).

Now we change the sum over m to a sum over m′ via the substitution n =

m+ ξ′ℓm′. Making the change of variables m← m′, we obtain

b(n2) = ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑
m∈Z

af

(
m(2n− ξ′ℓm)

ξ′′Nψ/ℓ

)
(n− ξ′ℓm)ν .
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Apply Selberg inversion (Lemma 1.1.15) the inner sum becomes

∑
m∈Z

∑
e|(m, 2n−ξ′ℓm

ξ′′Nψ/ℓ
)

µ(e)χf (e)e
λ−ν−1af

(m
e

)
af

(
2n− ξ′ℓm
eξ′′Nψ/ℓ

)
(n− ξ′ℓm)ν

=
∑

e| 2n
ξ′′Nψ/ℓ

µ(e)χf (e)e
λ−1
∑
m∈Z

af (m) af

(
2n

eξ′′Nψ/ℓ
− ξ′ℓm

ξ′′Nψ/ℓ

)(n
e
− ξ′ℓm

)ν
.

When ν = 0, we observe that the function

gℓ = Vℓf · Uξ′/ξ′′VNψ/ℓf

depends on ξ and has coefficients

agℓ(n) =
∑
m∈Z

af (m)af

(
ξ′

ξ′′
· n− ℓm
Nψ/ℓ

)
.

Therefore,

b(n2) = ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

e| 2n
ξ′′Nψ/ℓ

µ(e)χf (e)e
λ−1agl

(
ξ∗n

e

)
.

When ν = 1,

gℓ = (Vξ′ℓf) · q
d

dq

(
Vξ′′Nψ/ℓU2f

)
has coefficients

agℓ(n) =
∑
m∈Z

af (m)af

(
2n− ξ′ℓm
ξ′′Nψ/ℓ

)
(n− ξ′ℓm)

meaning

b(n2) = ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

e| 2n
ξ′′Nψ/ℓ

µ(e)χf (e)e
λ−1agl

(n
e

)
.

□

With the aid of this lemma, we are now in a position to state and prove the

main theorem. The lemma allows us to obtain explicitly, the coefficients of

f(ξNψτ)hψ(τ) under σ1.

Theorem 1.2.2. Suppose ν ∈ {0, 1} and ξ ∈ {1, 2, 4}. Let ξ′, ξ′′, ξ∗ be as in
Lemma 1.2.1. Let f ∈ Sλ−ν(N,χf ) be a Heigenform and let ψ be a Dirichlet
character modulo N . The image of f(ξNψτ)hψ(τ) under the Shimura map σ1
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has coefficients B(n) equal to

ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

s| 2nℓ
ξ′′Nψ

χf

(
2nℓ

sξ′′Nψ

)(
2nℓ

sξ′′Nψ

)λ−1

agℓ

(
sξ∗ξ′′Nψ

2ℓ

)
cχλ+ν1,4

(
2nℓ

sξ′′Nψ

)
.

In particular, when λ+ ν is even, if we set

g =
∑
ℓ||Nψ

ψNψ/ℓ(−1)gℓ

with gℓ as in Lemma 1.2.1, then we have

σ1(f(ξNψτ)hψ(τ)) =
[
Uξ∗ − χf (2)2λ−1Uξ∗V2

]
g ⊗ ψ.

Proof We use the fact that the coefficients of the image are

B(n) =
∑
d|n

χfψχ
λ+ν
1,4 (d)dλ−1b

(
n2

d2

)

Indeed, the character of f(ξNψτ)hψ(τ) is χfψχ
ν
−4 whose checked character is

(χfψχ
ν
1,4)χ

λ
1,4 = χfψχ

λ+ν
1,4 . Applying Lemma 1.2.1, setting 2nℓ = edsξ′′Nψ and

changing the order of the sum,

B(n) =
∑
d|n

χf (d)ψ(d)χ
λ+ν
1,4 (d)dλ−1ψ(n/d)

·
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

e| 2nℓ
dξ′′Nψ

µ(e)χf (e)e
λ−1agℓ

(
ξ∗n

de

)

= ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑
d|n

∑
e| 2nℓ
dξ′′Nψ

(ed)λ−1χf (de)µ(e)χ
λ+ν
1,4 (d)agℓ(ξ

∗n/ed).

This simplifies to

B(n) = ψ(n)
∑
ℓ||Nψ

ψNψ/ℓ(−1)
∑

s| 2nℓ
ξ′′Nψ

(
2nℓ

sξ′′Nψ

)λ−1

χf

(
2nℓ

sξ′′Nψ

)
agℓ

(
sξ∗ξ′′Nψ

2ℓ

)

·
∑

e| 2nℓ
sξ′′Nψ

µ(e)χλ+ν1,4

(
2nℓ

esξ′′Nψ

)
.

Using the definition of the Möbius inverse proves the claim about B(n). Now
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if λ+ ν is even, we can apply Lemma 1.1.14,

cχ0,4

(
2nℓ

sξ′′Nψ

)
=


1 2nℓ = sξ′′Nψ

−1 2nℓ = 2sξ′′Nψ

0 otherwise.

As such, when g =
∑

ℓ||Nψ ψNψ/ℓ(−1)gℓ,

B(n) = ψ(n)
[
ag(ξ

∗n)− χf (2)2λ−1ag(ξ
∗n/2)

]
.

Reading off the coefficients yields the result. □

1.3 Consequences

In this section we look at special cases of the main theorem.

1.3.1 Trivial theta character

We can apply Theroem 1.2.2 when ψ is trivial. Let us first look at the case

Nψ = 1 and ν = 0. By reading off the coefficients we obtain

Corollary 1.3.1. Let f ∈ Sλ(N,χf ) be a Heigenform. Then

σ1(f(τ)θ(τ)) = U2(f(τ)
2)− 2λ−1χf (2)f(τ)

2

and
σ1(f(2τ)θ(τ)) =

[
I − χf (2)2λ−1V2

]
(f · U2f).

Example 1.3.2. When ξ = 4 we immediately recover Selberg’s Proposition
1.1.16, namely

σ1(f(4τ)θ(τ)) = f(τ)2 − 2λ−1χf (2)V2f(τ)
2.

We make the choice ψ = (12/·) and ξ = 2. This means ξ′ = 2 = ξ∗ and ξ′′ = 1.

As discussed in the introduction, hψ = η24. If f is a Heigenform of even level,

χf (2) = 0. We factor ψ = ψ3χ1,4 where ψ3 is the non-trivial character modulo

3. Combining all of this with our main theorem gives

σ1(f(24τ)η24(τ)) = (U2V2 − χf (2)2λ−1V2)g ⊗ ψ = g ⊗ ψ

=
∑
ℓ||12

ψ12/ℓ(−1)Vℓf · U2V12/ℓf ⊗ ψ.
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The four terms in the sum are

∑
ℓ||12

ψ12/ℓ(−1)Vℓf · U2V12/ℓf =

(
12

−1

)
f · U2V12f + χ1,4(−1)V3f · U2V4f

+ ψ3(−1)V4f · U2V3f + V12fU2f

= f(τ)f(6τ)− f(3τ)f(2τ)

− f(4τ)U2f(3τ) + f(12τ)U2f(τ).

We now use the fact that since 2|N , U2 acts as the Hecke operator U2f =

T2f = af (2)f which commutes with V2, so

V4f · U2V3f = V4f · V3U2f = V4fV3T2f = af (2)V4f · V3f

= V4U2f · V3f = U2V4f · V3f = V2f · V3f.

A similar argument shows V12f · U2f = f · V6f . Therefore we obtain

σ1(f(24τ)η(24τ)) = 2 [f(τ)f(6τ)− f(3τ)f(2τ)]⊗
(
12

·

)
.

Up to a multiple of 2 (we used a different re-normalisation), this proves

Theroem 1.1.22(a).

We now give an example for the case ξ = 1:

Example 1.3.3. Let f ∈ Snew9 (4, χ−4) be given by

f(z) = q + 16q2 + 256q4 − 1054q5 +O(q6)

then fθ ∈ Snew19/2(4) and

f(z)2 = q2 + 32q3 + 256q4 + 512q5 + 6048q6 − 33728q7 + 65536q8 +O(q9).

We check that the first four coefficients (Sturm bound) are

σ(fθ) = q + 256q2 + 6048q3 + 65536q4 +O(q5)

which are precisely the even coefficients of f 2, hence U2f
2 = σ(fθ) and we do

indeed get the conclusion of the theorem.

Theorem 1.3.4. Suppose λ is even and let f ∈ Snewλ (Nf , χf ) be a normalized
newform and let ψ be an even character of conductor dividing Nf . Set

g := (f ⊗ ψ) · f.

Then
σ1(fhψ) = U2g − 2λ−1χf (2)ψ(2)g.
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Proof As usual we put χ = χfψ. The coefficients of fhψ are

b(n) =
∑
m

af (n−m2)ψ(m)mν

Since ψ is even this corresponds to the case when ν = 0. Selberg inversion

Lemma 1.1.15 allows

b(n2) =
∑
m

af ((n+m)(n−m))ψ(m)mν

=
∑
e|n

µ(e)χf (e)e
λ−1
∑
m

af (m)af

(
2n

e
−m

)
ψ

(
2n

e
−m

)

=
∑
e|n

µ(e)χ(e)eλ−1ag

(
2n

e

)
.

A similar argument to that of Proposition 1.1.16 gives

B(n) =
∑
d|n

χ̌(d)dλ−1
∑
e|n
d

µ(e)χ(e)eλ−1ag

(
2n

ed

)
=

∑
s|n

χ(n/s)(n/s)λ−1cχ0,4(n/s)ag(2s)

= ag(2n)− 2λ−1χf (2)ψ(2)ag(n),

which are precisely the coefficients of the claimed form. □

Example 1.3.5. Apply the previous theorem with f = ∆ ∈ Snew12 (1), so
λ = 12, Nf = 1 and χf is trivial modulo 1. Then with ψ trivial modulo 1,

σ1(∆θ) = U2∆
2 − 211∆2.

1.4 Future directions

The purpose of this section is to briefly speculate and provide some questions

for future work. The author feels that the elementary methods of this chapter

can be pushed even further. We provide three problems where it is hoped that

the methods of this chapter could aid in their solution.

Problem 1: In [14], it is shown that there is an isomorphism Mλ ⊕Mλ−2 →

M+
k/2(4) mapping two forms (f, g) 7→ f(4τ)θ(τ) + g(4τ)H5/2(τ). Here H5/2

denotes the Cohen-Eisenstein series as in §3 of [5]. We have already shown

in Proposition 1.1.16 how to treat σ1(f(4τ)θ(τ)). To give a complete explicit
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answer in the level four case, it is desirable to obtain, if possible, an expression

for σ1(g(4τ)H5/2(τ)). Can this be done?

Problem 2: Let Λ be a unimodular lattice and let the map Q : Λ→ Z given

by x 7→ Q[x] be an integral quadratic form with respect to Λ of level NQ. This

means that Q restricted to Λ is integer-valued. Let θQ(τ) =
∑

x∈Λ q
Q[x]. By

factoring n2 −Q[x] can one apply Lemma 1.1.15 to find σ1(f(NQτ)θQ(τ))?

Problem 3: In a beautiful paper, Tunnel [29] computed for a specific weight

one modular form f , the image σ1(fθ) and matched it to the corresponding

elliptic curve E to obtain an expression between af (n) and aE(n). Can one

use the main theorem to find an expression in general for σ1(fθ) for any form

f of weight one?



Chapter 2

Linear reproducing kernels

2.1 Introduction

The aim of this chapter is to study the properties of two linear reproducing

kernels of half integral weight, the first being the Cohen kernel Ck/2(τ, s; p/q)

and the second being the double Eisenstein series Ek/2(τ ; s, w). We shall de-

fine these two objects and prove their absolute convergence and functional

equations.

2.1.1 Motivation

We introduce some of the ideas by considering first the integral weight setting.

To maintain generality for now, let Γ be a Fuchsian group and a a cusp of Γ.

Consider first a general class of linear reproducing kernels of the form

Ka(τ) =
∑

γ∈Γa\Γ

(h|2λγ(τ). (2.1.1)

Here h is a nice enough function. The freedom in the choice of h allows, in

practice, many examples occur in this way. These are of interest since (after a

standard Rankin-Selberg argument) they enjoy the property that

⟨f,Ka⟩Γ = ⟨f, h⟩Γa (2.1.2)

whenever f is a cusp form of weight 2λ. In the setting of (2.1.2), we say Ka

is a reproducing kernel for h. When h = h(τ, z) is a function of two variables,

51
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the right hand side of (2.1.2) can be interpreted as an integral operator:

(Kf)(z) = ⟨f, h(·, z)⟩Γa

whose trace is found by integrating h along a “diagonal”

Tr(K) =

∫
Γ\H

h(τ,−τ̄)y2λdµ(τ).

Standard examples of kernels include h = 1 (Eisenstein series) and h(τ) =

e2πinτ (Poincare series). Another example that has recently been of interest

(see [7][8]), is the following choice:

h(z) =
∑

δ∈Γ∞\Γ
cδ>0

cw−1
δ j(δ, z)s.

Here Γ = PSL2(Z) and cδ denotes the bottom-left entry of the matrix repre-

sentative δ ∈ Γ∞\Γ. Upon substituting this into (2.1.1), we obtain

E2λ(τ ; s, w) :=
∑

γ,δ∈Γ∞\Γ
cδγ−1>0

cw−1
δγ−1

(
j(γ, τ)

j(δ, τ)

)−s

j(γ, τ)−2λ (2.1.3)

we stress that since the lower left entry cγ of a matrix γ ∈ PSL2(Z) is only

defined up to ±1, we take cγ to be the unique representative such that cγ > 0.

This ensures as well that

ℑ
(
j(γ, τ)

j(δ, τ)

)
= cδγ−1ℑ(τ) > 0,

so that (2.1.3) is well defined. We mention as well that the construction in

(2.1.1) allows us, provided that h decays sufficiently fast, to average over the

whole group Γ not just the quotient Γa\Γ:

K(τ) =
∑
γ∈Γ

h|2λγ.

With less control on the decay of h, in general we should expect that this limits

the range of convergence of the corresponding K. For instance, if Rh,ϵ is the
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region of points z ∈ H such that

|h(z)| ≪ϵ y
−1−ϵ as y →∞,

then K is absoultely convergent, uniformly on compact subsets on Rh,ϵ. To see

this, observe

|K(z)| ≤
∑
γ

|j(γ, z)|−2λ|h(γz)|

≪
∑

(c,d)=1

((cx+ d)2 + c2y2)−λℑ(γz)−1−ϵ

=
∑

(c,d)=1

((cx+ d)2 + c2y2)−λ+1+ϵy−1−ϵ

≪ y−1−ϵ
∑
c ̸=0

c−2(λ−1)

≪ y−1−ϵ.

Let us illustrate this with an example. Consider h(τ, s) = (τ + p/q)−s where

p, q are integers. Then h has corresponding kernel

C2λ(τ, s; p, q) :=
∑

γ∈Γ∞\Γ1

j(γ, τ)−2λ(γτ + p/q)−s, (2.1.4)

the so called Cohen kernel. Diamantis and O’Sullivan ([7] Prop.5.1.(ii)) showed

that C2λ(τ, s) is absolutely convergent on the strip 0 < ℜ(s) < λ. Our aim will

be to define (2.1.4) and (2.1.3) in the half integral weight setting. Analogous

to the classical kernels above, for a Fuschsian subgroup H of G as in §0.2.2, we

consider

Ka =
∑

γ∈Ha\H

h|k/2L(γ).

The choice

h(τ) =
∑

δ∈Γ∞\Γ
cδ>0

cw−1
δ J (δ, τ)s, w, s ∈ C

leads us to consider

Definition 2.1.1 (Double Eisenstein).

Ek/2(τ ; s, w) :=
∑

γ,δ∈L(B)\H
cγδ−1>0

cw−1
γδ−1

(
J (γ, τ)
J (δ, τ)

)−s

J (δ, τ)−k.
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Here B denotes the upper triangular matrices in Γ = proj(H). It is useful as

well to define the completed double Eisenstein series

E∗
k/2(τ ; s, w) := ζ(2− 2w + s)ζ(2− 2w + k − s)Ek/2(τ ; s, w). (2.1.5)

2.2 Meromorphic continuation of the Cohen

kernel

As discussed in the introduction of this chapter, the integral weight kernel

(2.1.4) was shown by Diamantis and O’Sullivan ([7]) to be absolutely conver-

gent and have a meromorphic continuation. Our aim in this section will be to

introduce the analogous object in the half integral weight setting. We begin

with the natural definition:

Definition 2.2.1 (Cohen Kernel). For p/q ∈ Q a cusp representative of a
Fuchsian group H, we set

Ck/2(τ, s; p/q) :=
∑
γ∈H

(γτ + p/q)−sJ (γ, τ)−k.

Implicitly, by Ck/2(τ, s) we shall mean Ck/2(τ, s; 0). Let us henceforth consider

a cusp a of H and set

cH := max
{
|c|−2 : c ̸= 0, ( ∗ ∗

c ∗ ) ∈ Hγa
}
.

Then the following lemma is useful

Lemma 2.2.2 (Jorgenson, O’sullivan[12] Lem.A1). For any τ ∈ H and any
cusp a,

max
γ∈H
ℑ(γγaτ) ≤ (cH + c−1

H )(y + y−1).

Proof Let Y be the right hand side of the inequality. Assume (for the sake

of contradiction) that there exists γ ∈ H such that ℑ(γγaτ) > Y . Then

|j(γγa, τ)|2 =
ℑτ

ℑ(γγaτ)
<

y

Y
.

If cγγa = 0 this implies y = ℑ(γγaτ) > Y , so the integer |dγγa| = |j(γγa, τ)| < 1

must vanish, a contradiction. If cγγa ̸= 0, then |cγγay|2 < y/Y so Y < cH/y

but this implies cH ≤ (cH + c−1
H )(y2 + 1) = Y y < cH , a contradiction. □
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Lemma 2.2.3. Fix τ ∈ H and let B(τ) be the ball of radius 1/2 centered at
τ . Set

B :=

{
w ∈ H : ℑ(w) < 3e

2
(y + y−1)

}
.

Then ⋃
γ∈H

B(γγaτ) ⊆ B,

where each point is counted with multiplicity ≪ y + y−1.

Remark 2.2.4. Since cH ≥ 1 for any Fuschsian group H, the sharpest bound
in Lemma 2.2.2 is 3

2
(y + y−1).

Proof If w ∈ B(τ) then ℑ(w) < ey so if w ∈ B(γγaτ), by Lemma 2.2.2

ℑ(w) < eℑ(γγaτ) ≤ 3e
2
(y + 1/y). □

In fact, Lemma 2.2.2 (see [12] Lem.A.1) remains valid if we change γ to σ−1
p,qγ

where σ−1
p,q is the inverse of the matrix in SL2(Z) that sends i∞ to −p/q. In

this case we have

ℑ(γγaτ)
|q|2|γγaτ + p/q|2

= ℑ(σ−1
p,qγγaτ)≪H y + y−1.

Multiplying by |q|2 we obtain

Lemma 2.2.5. Let γ ∈ H and τ ∈ H. Then

ℑ(γγaτ)
|γγaτ + p/q|2

≪q,H y + y−1.

Proposition 2.2.6 (Absolute Convergence of Cohen). On the region

1 < 4σ < 2k − 1,

the series Ck/2(τ, s; p/q) converges absolutely and uniformly on compact subsets.

Proof We use the integral bound of Imamoglu-O’Sullivan, valid for 1 ≤ k ∈

R,
ℑ(τ)k

|τ + p/q|4σ
≪
∫∫

B(τ)

ℑ(w)k

|w + p/q|4σ
dµw. (2.2.1)
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Here B(τ) is a ball centered at τ of radius 1/2. We have

|J (γa, τ)−kCk/2(γaτ, s)|4 ≤
∑
γ∈H

|γγaτ + p/q|−4σ|J (γγaτ)|−4k

≪ y−k
∑
γ∈H

ℑ(γγaτ)k

|γγaτ + p/q|4σ

(2.2.1)
≪ y−k

∑
γ∈H

∫∫
B(γγaτ)

ℑ(w)k

|w + p/q|4σ
dµw.

Let w = u+iv. Now Lemma 2.2.5 implies |w+p/q|−2 ≪ v−1(y+y−1) provided

that w ∈ B(γγaτ) and this also holds for w ∈ ∪γB(γγaτ) ⊆ B by Lemma 2.2.3.

For 1 < r < 4σ, we have

1

|w + p/q|4σ−r
≪q v

r/2−2σ(y + y−1)2σ−r/2. (2.2.2)

We bound∫∫
B

ℑ(w)k

|w + p/q|4σ
dµw ≤

∫∫
B

vk

|w + p/q|r|w + p/q|4σ−r
dudv

v2

(2.2.2)
≪

∫ 3e
2
(y+y−1)

0

∫ ∞

−∞

vk+r/2−2σ(y + y−1)2σ−r/2

((u+ p/q)2 + (v2))r/2
dudv

v2

≪ (y + y−1)2σ−r/2
∫ 3e

2
(y+y−1)

0

vk−r/2−2σ−2dv

≪ (y + y−1)2σ−r/2(y + y−1)k−2σ−r/2−1

= (y + y−1)k−r−1. (2.2.3)

We see that for k − r/2 > 2σ,

|J (γa, τ)−kCk/2(γaτ, s)|4 ≪ y−k
∑
γ∈H

∫∫
B(γγaτ)

ℑ(w)k

|w + p/q|4σ
dµw

= y−k(y + y−1)

∫∫
B

ℑ(w)k

|w + p/q|4σ
dµw

(2.2.3)
≪ y−k(y + y−1)(y + y−1)k−r−1

≪ y−r + yr−2k.

On the region 1 < r < 4σ < 2k−r < 2k−1, absolute convergence and uniform

convergence on compact subsets now follows. □

Remark 2.2.7. As discussed in Diamantis-O’Sullivan (cf Prop 5.2(iii) in [8])
one finds that the domain of absolute convergence of the integral weight Cohen
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kernel Ck is 1 < σ < k − 1 which is in some sense “double the length” of our
domain of convergence.

Remark 2.2.8. The domain of convergence of Ck/2 permits values on the line
σ = 1 to converge absolutely.

Corollary 2.2.9. On the region 1 < 4σ < 2k−1, Ck/2(·, s; p/q) lies in Sk/2(Γ).

Proof Prop.2.2.6 proves uniform convergence in this region. Therefore Ck/2

is holomorphic and the value of the coefficient aC,a(m) of the q expansion of

Ck/2 at the cusp a is

lim
Y→∞

∫ 1

0

J (γa, x+ iY )−kCk/2
(
γa(x+ iY ), s; p/q

)
e(−mx)e2πmY dx

= lim
Y→∞

(Y −r + Y r−2k)e2πmY .

When m ≤ 0 this vanishes. □

In the special case when k ≥ 5 is odd, we can exploit the symmetrized Hurwitz

zeta function ζZ(τ, s) =
∑

n∈Z(τ + n)−s. Well known (cf [7](5.20)) is the

estimate

ζZ(τ, s)≪s


e−2πy(1 + y−σ) σ ̸= 0

e−2πy(1 + | log y|) σ = 0.

(2.2.4)

We can now use this bound to obtain a left plane of absolute convergence:

Proposition 2.2.10. Suppose k ≥ 5. Then Ck/2(τ, s; p/q) is absolutely con-
vergent on the left-plane σ < k−4

4
.

Proof Fix τ ∈ H. The substitution γ 7→ γ

1 n

0 1

 gives, after summing

n ∈ Z,

|Ck/2(τ, s; p/q)| =

∣∣∣∣∣∣
∑

γ∈L(B)\H

∑
n∈Z

(γτ + n+ p/q)−sJ (γ, τ)−k
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

γ∈L(B)\H

ζZ(γτ + p/q, s)

J (γ, τ)k

∣∣∣∣∣∣
(2.2.4)
≪ y−k/4

∑
γ∈L(B)\H

ℑ(γτ)k/4−σ + ℑ(γτ)k/4

= y−k/4 [E(τ, k/4− σ) + E(τ, k/4)]
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proving that σ < k/4 − 1 is sufficient for absolute convergence, since we as-

sumed k ≥ 5. □

Now fix p, q as before and consider the character χp,q that sends m 7→ e(mp/q)

whenever (m, q) = 1 and zero otherwise. We are now in a position to prove

the analog of Proposition 5.4 of [7]. By the L-function of f̄⊗χp,q we will mean

the Dirichlet series given by

L∗(f̄ ⊗ χp,q, s) := π−sΓ(s)
∑
n≥1

af (n)χp,q(n)

ns
.

Observe that since p/q is a representative of a cusp for Γ,

L∗(f̄ ⊗ χp,q, s) =
∫ ∞

0

f̄

(
iy +

p

q

)
ys
dy

y

is analytic for all s ∈ C.

Proposition 2.2.11. For k ≥ 5, σ < k/4− 1 we have

⟨Ck/2(·, s; p/q), f⟩ =
πΓ(k/2− 1)

2k/2−2esiπ/2Γ(s)Γ(k/2− s)
L∗(f̄ ⊗ χp,q, k/2− s).

Proof We make use of

J (γ, τ)−kJ (γ, τ)−k(ℑτ)k/2 = (ℑγτ)k/2

and unfold

⟨Ck/2(·, s; p/q), f⟩ =

∫
H\H

∑
γ∈L(B)\H

ζZ(γτ + p/q, s)f(γτ)J −kJ −k(ℑτ)k/2dµ(τ)

=

∫
H\H

∑
γ∈L(B)\H

ζZ(γτ + p/q, s)f(γτ)(ℑγτ)k/2dµ(γτ)

=

∫
L(B)\H

ζZ(τ + p/q, s)f(τ)yk/2dµ(τ)

=

∫ ∞

0

∫ 1

0

(2π)s

esiπ/2Γ(s)

∑
m,n

ms−1e(mτ − nτ̄)af (n)e(pm/q)yk/2
dxdy

y2

=
(2π)s

esiπ/2Γ(s)

∫ ∞

0

∑
m

ms−1e−4πmyaf (m)χp,q(m)yk/2−1dy

y

=
(2π)s

esiπ/2Γ(s)

Γ(k/2− 1)

(4π)k/2−1

∑
m≥1

af (m)χp,q(m)

mk/2−s

=
πΓ(k/2− 1)

2k/2−2esiπ/2Γ(s)Γ(k/2− s)
L∗(f̄ ⊗ χp,q, k/2− s).
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The last line follows by definition. □

Corollary 2.2.12. For k ≥ 5, Ck/2(τ, s; p/q) has a meromorphic continuation
to all of s ∈ C.

Proof Take a normalised1 eigenbasis {fj} of the Hecke operators Tp on the

space of weight k/2 level 4 cusp forms for all primes away from 2. Then we

inherit meromorphic continuation from that of L∗(f̄ ⊗ χp/q, s):

Ck/2(τ, s; p/q) =
∑
j

⟨Ck/2, fj⟩fj (2.2.5)

=
πΓ(k/2− 1)

2k/2−2esiπ/2Γ(s)Γ(k/2− s)
∑
j

L∗(f̄j ⊗ χp,q, k/2− s)fj.

As a consequence, if k ≥ 5 the left hand side of (2.2.5) gives a meromorphic

continuation of Ck/2 to all of C. □

2.3 Absolute convergence of the double Eisen-

stein series

We remind ourselves that in Def.2.1.1 we defined the double Eisenstein series

of weight k,

Ek/2(τ ; s, w) :=
∑

γ,δ∈L(B)\H
cγδ−1>0

cw−1
γδ−1

(
J (γ, τ)
J (δ, τ)

)−s

J (δ, τ)−k.

To each cusp a we associate also

Definition 2.3.1 (Double Eisenstein with cusp a). Fix a cusp a and let γa be
the usual element that maps i∞ to a. Define

Ek/2,a(τ ; s, w) := J (γa, τ)k
∑

γ,δ∈L(B)\Ha

cw−1
γδ−1

(
J (γ, τ)
J (δ, τ)

)−s

J (δ, τ)−k.

Here Ha = γ−1
a Hγa.

We next prove the absolute convergence of this kernel.

Proposition 2.3.2 (Absolute Convergence of Double Eisenstein). Fix τ ∈ H
and k ≥ 9 an odd integer. Let r = ℜw and σ = ℜs. If s, w ∈ C are such that

4 < σ < k − 4,

r < min

{
k − σ
2
− 1,

σ

2
− 1

}
,

1By normalised we mean ⟨fj , fj⟩ = 1 here.
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then Ek/2,a(τ ; s, w) converges absolutely and uniformly on compact sets. More-
over, for fixed s, w the form Ek/2,a(τ ; s, w) lies in Sk/2(Γ0(4)).

Proof Let max{r, 1} := r′. We use the bound (cf [8] lemma 4.1)

cr−1
γδ−1 ≪ (ℑγτ)

1−r′
2 (ℑδτ)

1−r′
2 .

Valid for γδ−1 /∈ L(B). To see this, note

cγδ−1 ≤ j(δ, τ)ℑj(γ, τ)− j(γ, τ)ℑj(δ, τ)

=

(
j(δ, τ)

j(δ, τ)
− j(γ, τ)

j(γ, τ)

)
j(γ, τ)j(δ, τ)

2iy

since the first factor of the right hand side has absolute value ≤ 2, we see that

|cγδ−1| = |j(γ, τ)||j(δ, τ)|
y

= ℑγτ−1/2ℑδτ−1/2.

Raising to r − 1 powers and ensuring that γδ−1 /∈ L(B), we see the claim.

With this, since |J | = |j|1/2,

|J (γa, τ)−kEk/2,a(τ ;w, s)| ≤
∑

γ,δ∈L(B)\Ha

γδ−1 /∈L(B)

|cw−1
γδ−1|

∣∣∣∣J (γ, τ)J (δ, τ)

∣∣∣∣−σ |J (δ, τ)−k|
≪ y−k/4

∑
γ,δ∈L(B)\Ha

γδ−1 /∈L(B)

cr−1
γδ−1(ℑγτ)

σ
4 (ℑδτ)

k−σ
4

≪ y−k/4

 ∑
γ,δ∈L(B)\Ha

−
∑

γ,δ∈L(B)\Ha

γδ−1∈L(B)

 (ℑγz)
2−2r′+σ

4 (ℑδz)
2−2r′+k−σ

4

= y−k/4
[
Ea

(
γaτ,

2− 2r′ + σ

4

)
Ea

(
γaτ,

2− 2r′ + k − σ
4

)
−Ea

(
γaτ, 1− r′ +

k

4

)]
In the last line we used that γδ−1 ∈ L(B) means that ℑγτ = ℑδτ . In particu-

lar, when σ ∈ (4, k−4), the standard fact that Ea(τ, s) is absolutely convergent

for ℜs > 1 proves the uniform convergence of Ek/2,a in the desired region. A

standard argument shows modularity, so it remains to prove that Ek/2,a is cus-
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pidal in τ provided we fix s, w ∈ C. To do this, we want to show that the

expansion at a different cusp is also bounded. Indeed, by choosing a different

cusp γb we see J (γb, τ)−kEk/2,a(γbτ ; s, w) is bounded by

y−k/4
[
Ea

(
γbτ,

2− 2r′ + σ

4

)
Ea

(
γbτ,

2− 2r′ + k − σ
4

)
−Ea

(
γbτ, 1− r′ +

k

4

)]
≪ T.

□

2.4 Lemmas on epsilon factors

The purpose of this section is to introduce two factors ε and ε̃ and prove

some properties of these. This section can be ommited on first reading.

These properties will be needed in the proof of the analytic continuation of

the double Eisenstein series in section §2.5. Throughout this section we set

γ = ( ∗ ∗
a b ) δ = ( ∗ ∗

c d ) to be two distinct elements of Γ∗
0(4). For a fixed

integer u ≥ 1 we always have

u−s/2
[
v∗θ(γ)(aτ + b)1/2

]−s
=
(
v∗θ(γ)(auτ + bu)1/2

)−s
.

Set

βu =

1/u

u


and consider γu = β−1

u γβu. Likewise for v ≥ 1, consider δv = β−1
v δβv. We

define a new multiplier system on Γu = β−1
u Γ∗

0(4)βu via

ṽ(γu) := v∗θ(γ)
σ(γ, βu)

σ(βu, γu)
(2.4.1)

where σ is as in (0.1.2), namely

σ(γ1, γ2) =
j(γ1, γ2τ)

1/2j(γ2, τ)
1/2

j(γ1γ2, τ)1/2
.

Lemma 2.4.1. For γ ∈ Γ∗
0(4) and notation as above, we have

(i) σ(γ, βu) = 1

(ii) σ(βu, γu) = 1
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(iii) σ(γuδ
−1
v , δv) = σ(γδ−1, δ) =

{
−1 if a < 0, c ≥ 0

1 otherwise.

Proof (i) We are going to use Theorem 4.1 of [27], namely that

σ(γ, βu) = (σγσγβu , σβuσγβu)∞s(γ)s(βu)s(γβu)
−1. (2.4.2)

As a reminder, if γ = ( a bc d ) we denote by

σγ =


c c ̸= 0,

d c = 0

s(γ) =


1 c ̸= 0

sgn(d) c = 0.

The Hilbert symbol (x, y)∞ is −1 if both entries are negative, +1 other-

wise. A quick calculation shows

s(γ) =


1 c ̸= 0,

sgn(d) c = 0.

=


1 c/u ̸= 0,

sgn(du) c/u = 0.

= s(γβu).

Since s(βu) = 1, substituting this into (2.4.2), we have

σ(γ, βu) = (σγσγβu , σβuσγβu)∞ =


(c2/u, c)∞ c ̸= 0

(d2u, du2)∞ c = 0

= 1.

(ii) As in part (i), bearing in mind that s(βu) = 1 and s(γu) = s(γβu)

σ(βu, γu) = (σβuσγβu , σγuσγβu)∞s(γu)s(γβu)
−1

= (σγσγβu , σγuσγβu)∞

=


(c2/u, c/u3)∞ c ̸= 0

(du2, d2u)∞ c = 0

= 1.

(iii) Here we use Theorem 16 in [18]. A computation gives

4w(γuδ
−1
v , δv) =


(1 + sgn(c))(1− sgn(a)) ac ̸= 0

0 a = 0, c ̸= 0

2(1− sgn(aδv)) a ̸= 0, c = 0.
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Upon noticing that sgn(aδv) = sgn(aδ) we see that the left hand side does

not depend on u nor v. As such,

w(γuδ
−1
v , δv) = w(γδ−1, δ)

giving

σ(γuδ
−1
v , δv) = eiπw(γuδ

−1
v ,δv) = σ(γδ−1, δ).

For the final equality observe that by theorem 4.1 of [27]2 we have, for

ac ̸= 0,

σ(γδ−1, δ) = (na, ca)∞ = (a, ca)∞ = (a,−c)∞

since n > 0. Moreover, for a = 0 ̸= c,

σ(γδ−1, δ) = (nb, cb)∞sgn(b) = (nb,−n)∞sgn(b) = 1.

Furthermore, for a ̸= 0 = c,

σ(γδ−1, δ) = (na, da)∞sgn(d) = (na, n)∞sgn(d) = sgn(d) = sgn(a).

This concludes the proof. □

An immediate application of this lemma gives us that(
au2τ + bu2

cv2τ + dv2

)1/2

= σ(γδ−1, δ)
(au2τ + bu2)1/2

(cv2τ + dv2)1/2
. (2.4.3)

Proof Substitute γ1 = γu2δ
−1
v2 , γ2 = δv2 into (0.1.2). Then since

j(γu2δ
−1
v2 , δv2τ) =

det(δv2)(au
2τ + bu2)

cv2τ + dv2
,

and det(δv2) = 1, by (iii) of the previous lemma, we have σ(γu2δ
−1
v2 , δv2) =

σ(γδ−1, δ) so the claim follows. □

Definition 2.4.2. Set ε : Γ∗
0(4)× Γ∗

0(4)→ {±1,±i} where

ε(a, b, c, d) = ε(γ, δ) :=
v∗θ(γ)

v∗θ(δ)
σ(γδ−1, δ)−1, γ, δ ∈ Γ∗

0(4).

2One can just as well use theorem 16 in [18].
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It follows from (2.4.3) that

v∗θ(γ)(au
2τ + bu2)1/2

v∗θ(δ)(cv
2τ + dv2)1/2

= ε(a, b, c, d)

(
au2τ + bu2

cv2τ + dv2

)1/2

. (2.4.4)

Let us now set

µγ =
v∗θ(−γ)
v∗θ(γ)

.

Note that

µγ =


−i if a > 0 or a = 0, b = −1,

i if a < 0 or a = 0, b = 1

=


−sgn(a)i if a ̸= 0,

sgn(b)i if a = 0.

Lemma 2.4.3. We have

1. ε(−a,−b,−c,−d) = ε(a, b, c, d)

2. ε(−a,−b, c, d) = ε(a, b,−c,−d)

3. ε(2b,−a/2, 2d,−c/2) = ε(a, b, c, d)

4. ε(a, b− a, c, d− c) = ε(a, b, c, d)

Proof 1. We have

µγ
µδ

=


sgn(ac), a ̸= 0 ̸= c

−1 a = 0 ̸= c

1 a ̸= 0 = c

=
σ(γδ−1, δ)

σ(γδ−1,−δ)
.

Hence

ε(−a,−b,−c,−d)
ε(a, b, c, d)

=
µγ
µδ

σ(γδ−1, δ)

σ(γδ−1,−δ)
=

(
µγ
µδ

)2

= 1.

2. We can multiply µγ/µδ by µ
2
δ = −1 to see

µγµδ =


−sgn(ac) ac ̸= 0

1 a = 0 ̸= c

−1 a ̸= 0 = c

=
σ(−γδ−1,−δ)
σ(−γδ−1, δ)

.

Hence

ε(−a,−b, c, d)
ε(a, b,−c,−d)

= µγµδ
σ(−γδ−1,−δ)
σ(−γδ−1, δ)

= (µγµδ)
2 = 1.
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3. Recall that

σ(γ1, γ2γ3)σ(γ2, γ3) = σ(γ1γ2, γ3)σ(γ1, γ2)

and observe

γW−1
4 =

 ∗ ∗

2b −a/2

 .

Set γ1 = γδ−1, γ2 = δ and γ3 = W−1
4 into the above to see that

ε(2b,−a/2, 2d,−c/2) =
v∗θ(γW

−1
4 )

v∗θ(δW
−1
4 )

σ(γW−1
4 (δW−1

4 )−1, δW−1
4 )−1

=
v∗θ(γ)

v∗θ(δ)

σ(γ,W−1
4 )

σ(δ,W−1
4 )

σ(γδ−1, δW−1
4 )−1

=
v∗θ(γ)

v∗θ(δ)
σ(γδ−1, δ)−1 = ε(a, b, c, d)

4. Similar to 3 but with T in place of W4.

□

We need one final lemma on ε. Set

ε̃(au, bu, cv, dv) :=
ṽ(γu)

ṽ(δv)
σ(γuδ

−1
v , δv).

Lemma 2.4.4. For u, v ≥ 1 we have

ε̃(au, bu, cv, dv) = ε(a, b, c, d).

Proof This is just an application of Lemma 2.4.1. Indeed, substituting

(2.4.1), by definition

ε̃(au, bu, cv, dv) =

σ(γ,βu)
σ(βu,γu)

σ(δ,βv))
σ(βv ,δv)

· v
∗
θ(γ)

v∗θ(δ)
σ(γuδ

−1
v , δv),

and by parts (i),(ii) of Lemma 2.4.1 the factor on the left of v∗θ is one. By part

(iii), the factor on the right is σ(γδ−1, δ). □

This means that we can rewrite (2.4.4) as

v∗θ(γ)(au
2τ + bu2)1/2

v∗θ(δ)(cv
2τ + dv2)1/2

= ε̃(au2, bu2, cv2, dv2)

(
au2τ + bu2

cv2τ + dv2

)1/2

. (2.4.5)
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Now for A = ( a bc d ) let ε(A) = ε(a, b, c, d). By Lem2.4.3 part (1) we see

ε(−A) = ε(A). Likewise since S, T generate SL2(Z), combining Lem2.4.3

parts (3) and (4) gives

ε(Aγ−1) = ε(A) γ ∈ SL2(Z).

In particular ε̃(Bh) = ε̃(B). In the sequel, A ∈ GL2(Q) and so if τ ∈ H,

(Aτ)1/2 will have argument in (0, π/2). Since ε only takes values at fourth

roots of unity, we see that ε(A)(Aτ)1/2 never crosses the branch cut, so

(ε(A)(Aτ)1/2)−s = ε(A)−s(Aτ)−s/2.

If we now set Auv =
(
au2 bu2

cv2 dv2

)
, lemma 2.4.4 says that ε̃(Auv) = ε(A). By the

same argument,

(
ε̃(Auv)(Auvτ)

1/2
)−s

= ε̃(Auv)
−s(Auvτ)

−s/2. (2.4.6)

Recall that Ξ is the subset of G consisting of elements (γ, ϕ) ∈ G with γ ∈

M2(Z). We write Ξn2 for those elements in Ξ of determinant n2 A consequence

of Lemma 0.3.3(iii) we obtain the commutative diagram

G Gk

GL+
2 (Q) SL2(Q)

ι

proj proj

α 7→ α√
detα

which after restricting to Ξn2 gives

Ξn2 Ξ′
n2

nPnΓ
∗
0(4) PnΓ

∗
0(4)

ι

proj proj

As such by extension, we obtain an isomorphism of Hecke algebras

R(H,Ξn2)→ R(Γ∗
0(4), Pn)

The usefulness of the bijection (iii) above is that it can now be pushed forward

onto ε̃ to obtain a map N× PΓ∗
0(4)→ {±1,±i}.
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2.5 Analytic continuation of the double Eisen-

stein series

We now come back to the main object of interest, namely the completion of

the Eisenstein series E∗
k/2(τ ; s, w) stated in (2.1.5):

E∗
k/2(τ ; s, w) := ζ(2− 2w + s)ζ(2− 2w + k − s)Ek/2(τ ; s, w), (2.5.1)

which expressed differently is

∑
u,v≥1

u2w−2−sv2w−2+s−k
∑
( ∗ ∗
a b ),

∑
( ∗ ∗
c d )∈Γ

∗
0(4)

(ad−bc)w−1

(
v∗θ(γ)(aτ + b)1/2

v∗θ(δ)(cτ + d)1/2

)−s

J (δ, τ)−k

which equals

∑
u,v≥1

∑
a,b,c,d

(au2dv2−bu2cv2)w−1

(
v∗θ(γ)(au

2τ + bu2)1/2

v∗θ(δ)(cv
2τ + dv2)1/2

)−s

(v∗θ(δ)(cv
2τ+dv2)1/2)−k.

In this section we shall frequently reference the previous section §2.4 and refer

to the notation therein. By (2.4.5), if we set Auv =
(
au2 bu2

cv2 dv2

)
we have

(
v∗θ(γ)(au

2τ + bu2)1/2

v∗θ(δ)(cv
2τ + dv2)1/2

)−s

=

ε̃
au2 bu2

cv2 dv2

(au2τ + bu2

cv2τ + dv2

)1/2


−s

= ε̃(Auv)
−s(Auvτ)

−s/2.

The last equality is justified by the following. Suppose detAu,v ̸= 0. Since

we are assuming −I ∈ Γ∗
0(4), we can assume after a change of variables

(au2, bu2, cu2, du2) 7→ (−au2,−bu2, cu2, du2) if necessary, without loss of gen-

erality, that Auv ∈ GL+
2 (Q) holds. Therefore if τ ∈ H then so does Auvτ ∈ H

so (Auvτ)
1/2 has argument lying in (0, π/2). Since ε̃ only takes values at fourth

roots of unity, using the fact that ε̃ remains unchanged under (au2, bu2, cu2, du2) 7→

(−au2,−bu2, cu2, du2) (for this see Lemma 2.4.3) Auvτ never crosses the branch

cut. This justifies the last equality.
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Recall §0.6 we considered the map

Pu2Γ
∗
0(4)× Pv2Γ∗

0(4)→ ∆∗
0(4)u2,v2 ∗ ∗

au2 bu2


 ∗ ∗

cv2 dv2

 7→
au2 bu2

cv2 dv2

 = Auv

Recall that in (0.6.3) we obtained the bijection

⋃
u≥1

PuΓ
∗
0(4)×

⋃
v≥1

PvΓ
∗
0(4)→ ∆∗

0(4)

Recall also the bijection (0.6.1)

∆∗
0(4)→ Ξ

Auv 7→ A

We now abuse notation slightly and also call ε̃ on Ξ the map defined by ε̃ on

∆∗
0(4) under the above bijection. We can now exploit both of these bijections.

Indeed combining all this together we see

E∗
k/2(τ ; s, w) =

∑
u,v≥1

∑
Auv∈∆∗

0(4)u2v2

det(Auv)
w−1ε̃(Auv)

−s(Auvτ)
−s/2J̃ (Auv, τ)−k

=
∑
A∈Ξ

detA=□

det(A)w−1ε̃(A)−s(Aτ)−s/2J̃ (A, τ)−k.

If we let ξn =
((

1
n2

)
,
√
n
)
then every A ∈ Ξ of determinant n2 in the sum

above must appear in some coset A ∈ Hξν of HξnH for some ξν ∈ H\HξnH.

This means

E∗
k/2(τ ; s, w) =

∑
n≥1

n2w−2
∑

h∈HξnH

ε̃(h)−s (hτ)−s/2 J̃ (h, τ)−k

=
∑
n≥1

n2w−2
∑

ξν∈H\HξnH

(∑
h∈H

ε̃(h)−s(hτ)−sJ (h, τ)−k
)
|ξν .

Now by Lemma 2.4.4 we see that ε̃(h) = ε(W4h, h) = v∗θ(W4) = ζ−1
8 is inde-

pendent of h. As such, recalling the definition of Ck/2, we see

E∗
k/2(τ ; s, w) = ζs8

∑
n≥1

n2w−2
∑

ξν∈H\HξnH

Ck/2(τ ; s/2)|ξν
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which can be expressed as

ζs8
∑
n≥1

TnCk/2(τ ; s/2)
nk/2−2w

.

By Corollary 2.2.12, we know that Ck/2(·; s) is a cusp form for all s ∈ C. Since

Tn preserves cusp forms, we see that ⟨TnCk/2, f⟩ is meaningful provided f is a

cusp form.

Remark 2.5.1. The reason for using u2 and v2 instead of the more natural u
and v is the following. Had we chosen the latter, we would have obtained the
expansion

E∗
k/2(τ ; s, w) = ζs8

∑
n≥1

nw−1
(
Ck/2(τ ; s/2)| [H ( 1 0

n )H]
)
.

Now observe that the multiplier vk
( 1 n )

in Proposition 0.2.5(iii) is trivial if and

only if n is a perfect square, hence there is no contribution for those terms.

We are finally in a position to prove the meromorphic contintuation of E∗
k/2

Theorem 2.5.2. Let k ≥ 5 be odd. If τ ∈ H is fixed, then E∗
k/2(τ ; s, w) has a

meromorphic continuation with respect to (s, w) ∈ C2.

Proof Let {fj} be a Heigenbasis for Γ∗
0(4) of weight k/2. By Lemma 0.3.9,

E∗
k/2(τ ; s, w) =

∑
j

⟨E∗
k/2, fj⟩
⟨fj, fj⟩

fj =
∑
n≥1

∑
j

⟨TnCk/2(; s/2), fj⟩
nk/2−2w⟨fj, fj⟩

fj

= ζs8
∑
n≥1

∑
j

⟨Ck/2(; s/2),Tnfj⟩
nk/2−2w⟨fj, fj⟩

fj.

Now Thm.0.3.6 shows that Tnfj = bj(n)fj with

bj(n) =
∏
p|n

(
aj(p

2) + χ(p)pλ−1aj(p)
)

where aj(n) is the n-th coefficient of fj in its q-expansion at∞. We can bound

this by using |aj(n)| ≪ nk/4 to see

|bj(n)| ≪ nmax{k/2,λ−1+k/4}.

This implies that
∑ bj(n)

ns
is absolutely convergent for s ≫ 1. Apply now
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Prop.0.4.1 for the sequence bj(n) to see that

∑
n≥1

bj(n)

n2w
= 22w−k/2

∑
n≥1

b̂j(n)

nk/2−2w
,

where b̂j(n) denotes the coefficients of the image of W4 on
∑

n≥1 bj(n)q
n. By

Cor.2.2.12,

E∗
k/2(τ ; s, w) =

4πΓ (k/2− 1) ζs8
2k/2esiπ/4Γ

(
s
2

)
Γ
(
k−s
2

)∑
j

L∗(f̄j, k/2−s)

(∑
n≥1

bj(n)

nk/2−2w

)
fj

⟨fj, fj⟩
.

Finally, combining the functional equation (0.4.1) for fj with the above, we

see that

E∗
k/2(τ ; s, w) =

4s+w+1πΓ (k/2− 1)

2kΓ
(
s
2

)
Γ
(
k−s
2

) ∑
j

L∗(f̄j, s)

(∑
n≥1

b̂j(n)

n2w

)
fj

⟨fj, fj⟩
.

The right hand side now gives the desired meromorphic continuation. □

From the proof of this theorem, we see immediately the following corollary:

Corollary 2.5.3. Denote

E∗
k/2(τ ; s, w) :=

2kisΓ
(
s
2

)
Γ
(
k−s
2

)
4s+w+1πΓ (k/2− 1)

E∗
k/2(τ ; s, w).

Let f ∈ Sk/2(Γ∗
0(4), χ) be a Heigenform with Heigenvalues b(n), namely Tnf =

b(n)f . Set (∑
n≥1

b(n)qn

)∣∣∣∣∣W4 =
∑
n≥1

b̂(n)qn

Then for all (s, w) ∈ C2,

⟨E∗
k/2( · ; s, w), f⟩ = L∗(f̄ , s)

∑
n≥1

b̂(n)

n2w
.

Remark 2.5.4. Although we have shown the invariance under s 7→ k/2− s and
w 7→ k/4−w, it is unclear if there are more “intertwining” functional relations
between s and w, say of the form (s, w) 7→ (w, s) or (s, w) 7→ (2w, s). This
establishes at least a lµ.. 2 × lµ.. 2 symmetry as an analog of the D8 symmetry
equations (2-14) and (2-15) in [7]. We expect that no larger symmetry group
exists, but this remains an open question.



Chapter 2. The Shintani lift of the double Eisenstein series and its kernel71

2.6 The Shintani lift of the double Eisenstein

series and its kernel

In this section we shall only deal with the special case of level one. Our

ultimate aim will be to give an explicit expression in terms of L-functions of

the Petersson inner product of an arbitrary half integral weight modular form

f against the Shintani lift of E2λ(τ ; s, w) defined in (2.1.3). We set

A(λ, s) :=
1

3 · 2λ−1

(−2πi)s

Γ(s)

Γ(2λ− 1)

(4π)4λ−1
,

and

A∗(λ, s, w) =
(2π)2λ−s(2π)2λ−w

Γ(2λ− s)Γ(2λ− w)
· A(λ, s), w ∈ C.

Recall that the plus space S+
k/2(4) is the subspace of Sk/2(Γ0(4)) consisting of

forms whose n-th Fourier coefficient vanishes whenever ň := (−1)λn ≡ 2, 3

(mod 4). This is the notation adopted in Kohnen’s thesis [14] and different

to that adopted in [15]. Given a fundamental discriminant D, for a level one

cusp form ϕ of weight 2λ, the Shintani lift of ϕ with respect to D is defined to

be

σ∗
Dϕ :=

∑
m≥1

m̌≡0,1 (mod 4)

r(ϕ;D, m̌)qm,

where

rλ(ϕ;D, m̌) :=
∑

Q∈Q|D|m

ωD(Q)

∫
C(Q)

ϕ(z)dQz.

The sum above runs through reduced binary quadratic forms Q of discriminant

|D|m and when Q = [A,B,C], the integrand is taken over a cycle C(Q) defined

by the image of A|z|2 +Bℜ(z) +C = 0 in SL2(Z)\H. We take this path to be

anticlockwise. Finally, dQz = Q(z, 1)λdz. This will be clearer next subsection.

Our main result in this section is the following:

Theorem 2.6.1. Let f ∈ S+
k/2(4) and suppose ϕD ∈ S2λ(1) is such that σDf =

ϕD under Shimura’s map. Then σ∗
DE2λ(·; s, w) is the kernel for the product

of four L functions, ⟨f, σ∗
DE

∗
2λ(·; s, w)⟩ has a meromorphic continuation with

respect to (s, w) ∈ C2 and

⟨f, σ∗
DE2λ(·; s, w)⟩ = A∗(λ, s, w)

L∗(ϕD, s)L
∗(ϕD, w)

ζ(2λ− s− w)ζ(1 + s− w)
.
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Moreover, when ℜ(s) > λ+ 1, ⟨f, σ∗
DE2λ( · ; s, w)⟩ equals

A(λ, s)
L(χ̌, s− λ+ 1)L(χ̌, w − λ+ 1)

ζ(2λ− s− w)ζ(1 + s− w)

(∑
n≥1

af (|D|n2)

ns

)(∑
n≥1

af (|D|n2)

nw

)
.

The main tool used is a result of Kohnen ([15] Thm 2) which we will review

in the next section.

2.6.1 Background on Kohnen’s theorem

Let f ∈ S+
k/2(4) be a cusp form and fix a fundamental discriminants D and

m̌ = (−1)λm. Denote by QD the set of binary quadratic forms of discriminant

D. We define a map ωD : Q|D|m → C via

Q = [A,B,C] 7→


0 if (A,B,C, |D|m) = 1(

|D|m
n

)
if (n, |D|m) = 1 and n is represented by Q.

This can be shown to be independent of the representative n and thus well

defined. We set

fλ(z;D, m̌) =
∑

Q∈Q|D|m̌

ωD(Q)

Q(z, 1)λ
.

Consider the Kohnen kernel defined by the following expansion with respect

to τ ∈ H,

Ωλ,D(z, τ) := c−1
λ,D

∑
m≥1

m̌≡0,1(4)

mλ−1/2fλ(z;D, m̌)e(mτ), z ∈ H

for some constant cλ,D. It turns out that one can express the Fourier series in

z of Ωλ,D(z, τ) with coefficients involving half integral weight Poincaire series

in the variable τ . The precise statement we mean is given in equation (2.6.3)

which we will give shortly, so let us now give more details on this. First, let

us define

Definition 2.6.2 (Poincare series, half integral weight).

Pm
k/2(τ) :=

∑
γ∈L(B)\H

J (γ, τ)−ke2πimγτ .
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It is known (see [10](3.19)), that the q-expansion of Pm
k/2 is

∑
n≥1

[
(n/m)(k−2)/4

(
δnm + 2πi−k/2

∑
c>0

Sθ(m,n; c)

c
Jk/2−1

(
4π
√
mn

c

))]
qn,

where

Sθ(m,n; c) =
∑

( a ∗
c d )∈Γ∞\Γ∗

0(4)/Γ∞

v∗θ(γ)e

(
ma+ nd

c

)
, (2.6.1)

and

Jk/2−1

(
4π
√
mn

c

)
=
∑
j≥0

(−1)j(2π
√
mn/c)2j+k/2−1

j!Γ(j + k/2)
.

Moreover, if m̌ ≡ 0, 1(4) then for any f ∈ Sk/2(4) one also has3

⟨f, Pm
k/2⟩ =

Γ(k/2− 1)

6(4πm)k/2−1
af (m), m ≥ 1. (2.6.2)

Kohnen has established (Thm 1 of [15]) the expansion of Ωλ,D(z, τ) with respect

to z ∈ H, namely

Ωλ,D(z, τ) = B(λ,D)
∑
n≥1

n2λ−1ωn(−τ̄)e(nz), (2.6.3)

where

ωn(−τ̄) =
∑
d|n

(
D

d

)
d−λP

n2|D|/d2
k/2 (τ).

Here B(λ,D) = 22λ(2π)λ−1|D|λ−1/2(λ−1)!
(2λ−2)!

. We can now state the result we shall

need in the sequel.

Theorem 2.6.3 (Kohnen, [15] Thm.2.Eq.10)). Let ϕ ∈ S2λ(1). Then for every
fixed τ ∈ H, the form Ωλ,D(·, −τ̄) lies in S2λ(1) and

⟨ϕ,Ωλ,D(·,−τ̄)⟩ = σ∗
Dϕ.

2.6.2 A general lemma

Our aim in this next section will be to apply Thm.2.6.3 with the choice ϕ = K.

The following lemma is of independent interest since it can be applied to any

kernel K provided that (a) it is a cusp form and (b) its reproducing kernel h

is “nice” in the sense described below.

3Compare with [15] Eq.4 where Kohnen’s k is our λ and i−1
4N = i−1

4 = 1/6. See also [10]
Thm.3.3.
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Lemma 2.6.4. Let λ ≥ 2 and let K ∈ S2λ be a kernel of the form (2.1.1)
where

h(z) =
∑
m≥1

am(y)e
2πimx,

with |e2πmyam(y)| ≪ 1 uniformly in y. Then, the D-th Shintani lift σ∗
DK of K

is

B(λ,D)
∑
n≥1

n2λ−1ωn(−τ̄)
∫ ∞

0

an(y)e
−2πnyy2λ−1dy

y
.

Here B(λ,D) = 22λ(2π)λ−1|D|λ−1/2(λ−1)!
(2λ−2)!

and

ωn(−τ̄) =

∑
d|n

(
D

d

)
d−λP

n2|D|/d2
λ (−τ̄)

 .

Proof By Thm.2.6.3, we unfold ⟨K,Ωλ,D⟩, that is∫
Γ\H

∑
Γ∞\Γ

h(γz)j(γ, z)−2λΩλ,D(z,−τ̄)y2λdµ(z)

=

∫
Γ\H

∑
Γ∞\Γ

h(γz)j(γ, z)−2λj(γ, z)−2λΩλ,D(γz,−τ̄)y2λdµ(z)

=

∫
Γ\H

∑
Γ∞\Γ

h(γz)Ωλ,D(γz,−τ̄)(ℑγz)2λdµ(γz)

=

∫
Γ∞\H

h(z)Ωλ,D(z,−τ̄)y2λ
dxdy

y2
.

Now substitute the expansion of Ωλ,D and the assumed expansion of h. By

orthogonality we see that

B(λ,D)

∫ ∞

0

∑
m,n

n2λ−1ωn(−τ̄)
(∫ 1

0

e(mx)e(−nx)dx
)
am(y)e

−2πnyy2λ−1dy

y

= B(λ,D)
∑
n≥1

n2λ−1ωn(−τ̄)
∫ ∞

0

an(y)e
−2πnyy2λ−1dy

y
,

and the lemma follows. □

We point out that this method does not extend to kernels lying in M2λ, due

to convergence issues with the integral.

2.6.3 Proof of the theorem

Given s, w ∈ C fixed we will now find the Shintani lift of E2λ(z; s, w). We want

to use Lemma 2.6.4 for K(z) = E2λ(z; s, w). We need to find what the an(y)
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are in this case, so we require the q-expansion of the sum

h(z) =
∑
cγ>0

cw−1
γ

∑
(c,d)=1

(cz + d)−s,

as this will allow us to find an(y), thence by Lemma 2.6.4 obtain the desired

lift. First let χ0,c(n) be the trivial character modulo c, that is χ0,c(n) = 1 if

and only if (n, c) = 1 and zero otherwise. Then by the Lipschitz formula (see

[6]§3.5),

∑
d∈Z

χ0,c(d)

(cτ + d)s
=

1

cs

c−1∑
l=0

χ0,c(l)
∑
d∈Z

(τ + l/c+ d)−s

=
(−2πi)s

csΓ(s)

∑
n≥0

(
c−1∑
l=0

χ0,c(l)e(ln/c)

)
ns−1qn, ℜ(s) > 1.

The inner sum can be expressed as a Ramanujan sum (see [11] Eq.3.1)

S(0, n; c) :=
∑

ℓ∈(Z/cZ)×
e

(
ℓn

c

)
.

It is a well known fact (see [28](1.5.4)) that

Zn(s) :=
∑
c≥1

S(0, n; c)

cs
=
σ1−s(n)

ζ(s)
, ℜ(s) > 1.

We can read off the coefficient an(y) of h to be

an(y) =
(−2πi)s

Γ(s)
Zn(s− w + 1)ns−1e−2πny,

defined on the region ℜ(s) > max{1,ℜ(w)}. In this same region, the conditions

of Lemma 2.6.4 are satisfied. We deduce that up to a factor of B(λ,D),

σ∗
DE2λ(·; s, w) equals

∑
n

n2λ−1ωn(−τ̄)
∫ ∞

0

(−2πi)s

Γ(s)
Zn(s− w + 1)ns−1e−4πnyy2λ−1dy

y

=
(−2πi)s

Γ(s)

∑
n

n2λ−1ωn(−τ̄)Zn(s− w + 1)ns−1

∫ ∞

0

e−4πnyy2λ−1dy

y

=
(−2πi)s

Γ(s)

∑
n

n2λ−1ωn(−τ̄)Zn(s− w + 1)ns−1Γ(2λ− 1)

(4πn)2λ−1

=
(−2πi)sΓ(2λ− 1)

(4π)2λ−1Γ(s)

∑
n

ns−1Zn(s− w + 1)ωn(−τ̄).
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Multiplying both sides by B(λ,D) gives

σ∗
DE2λ(·; s, w) =

2|D|λ−1/2Γ(λ)(−2πi)s

(2π)λΓ(s)

∑
n≥1

ns−1Zn(s− w + 1)ωn(−τ̄) (2.6.4)

Proof [of Theorem 2.6.1] We have the relation σDf = ϕD, which in terms of

coefficients is

aϕD(n) =
∑
d|n

(
D

n

)
dλ−1af

(
n2|D|
d2

)
.

Using (2.6.2), we see

⟨f, ωn(−τ̄)⟩ =
∑
d|n

(
D

d

)
d−λ⟨f, P n2|D|/d2

λ (−τ̄)⟩

=
Γ(k/2− 1)

6(4π)k/2−1|D|k/2−1
n2−k

∑
d|n

(
D

n

)
dλ−1af

(
n2|D|
d2

)
=

Γ(k/2− 1)

6(4π|D|)k/2−1
n1−2λaϕD(n). (2.6.5)

Let us set

A(λ, s) =
1

3 · 2λ−1
· (−2πi)

s

Γ(s)
· Γ(2λ− 1)

(4π)2λ−1
.

Then by (2.6.4) and (2.6.5),

⟨f, σ∗
DE2λ(·; s, w)⟩ =

3(−2πi)sΓ(2λ− 1)

(2π)λΓ(s)Γ(λ)

∑
n≥1

ns−1Z(s− w + 1)⟨f, ωn(−τ̄)⟩

= A(λ, s)
∑
n≥1

Zn(s− w + 1)

n2λ−s aϕD(n),

which simplifies to

A(λ, s)
∑
n≥1

ns−2λaϕD(n)
∑
c≥1

cw−s−1S(0, n; c) =
A(λ, s)

ζ(s− w + 1)

∑
n≥1

σw−s(n)aϕD(n)

n2λ−s .

This latter sum is known to converge to (see for instance corollary 10.8.2 in

[6]), ∑
n≥1

σw−s(n)aϕD(n)

n2λ−s =
L(ϕD, 2λ− s)L(ϕD, 2λ− w)

ζ(2λ− s− w)
,

valid on λ + 1 − δ > ℜ(s) for some δ > 0. Our original region ℜ(s) >

max{0,ℜ(w)} of absolute convergence for ⟨f, σ∗
DE2λ⟩ has non-empty intersec-

tion with the region λ + 1− δ > ℜ(s) on the right hand side. Since the right
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hand side admits also a meromorphic continuation, we deduce that ⟨f, σ∗
DE2λ⟩

does also. As such,

⟨f, σ∗
DE2λ(·; s, w)⟩ = A(λ, s)

L(ϕD, 2λ− s)L(ϕD, 2λ− w)
ζ(2λ− s− w)ζ(1 + s− w)

.

By the functional equation, we see

⟨f, σ∗
DE2λ(·; s, w)⟩ = A∗(λ, s)

L∗(ϕD, s)L
∗(ϕD, w)

ζ(2λ− s− w)ζ(1 + s− w)
.

Finally, combine the above expression with equation (0.5.1) of Theorem 0.5.1;

namely that we can express the L function of ϕ as an L-function of f as follows:

L(ϕD, s) = L(χ̌, s− λ+ 1)
∑
n≥1

af (|D|n2)

ns
, ℜ(s) > λ+ 1.

Rearranging terms concludes the proof. □

2.7 A kernel for the Hecke operator

This section is independent of the other sections in this chapter. Our aim will

be to find a reproducing kernel for the map f 7→ Tmf . This is the analog of

Thm.1 of Zagier’s Appendix in [17] for the half integral weight setting.

Lemma 2.7.1. Let f ∈ Sk/2(Γ). Then∫ ∞

−∞

f(x+ iy)

(x− iy − w)k/2
dx =

2π

Γ(k/2)

∑
n≥1

af (n)n
k/2−1e−4πnye(nw).

Proof Let CR be the semicircle along [−R,R]. Then,∣∣∣∣∫
CR

e(nx)

(x− iy − w)k/2
dx

∣∣∣∣ = o(e−RR−k/2).

Therefore we have∫ ∞

−∞

e(nx)

(x− iy − w)k/2
dx = 2πiResx=iy+w

e(nx)

(x− iy − w)k/2

− lim
R→∞

∫
CR

e(nx)

(x− iy − w)k/2
dx

= 2πi
e(niy + nw)

iΓ(k/2)
nk/2−1 − lim

R→∞
o(e−RR−k/2)

=
2πnk/2−1

Γ(k/2)
e−2πnye(nw).
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Then∫ ∞

−∞

f(x+ iy)

(x− iy − w)k/2
dx =

∑
n≥1

af (n)e
−2πny

∫ ∞

−∞

e(nx)

(x− iy − w)k/2
dx

=
2π

Γ(k/2)

∑
n≥1

af (n)n
k/2−1e−4πnye(nw),

as desired. □

We introduce the following kernel

Definition 2.7.2. For m ∈ N, z, w ∈ H, set

Km(z, w) :=
∑
ξ∈Ξm2

(w + z)−k/2|k/2ξ,

the action here is with respect to the first variable.

As per our discussion in §2.1.1, for fixed w, |w + z|−k/2 ≪ |y|−k/2. It follows

that for k ≥ 3, Km(·, w) is holomorphic. We are now going to fix Γ = Γ∗
0(4)

and the choice of lift H as in §0.2.2. Then for L(γ) ∈ H, since Ξm2H = Ξm2 ,

Km(·, w)|L(γ) =
∑
ξ∈Ξm2

(z + w)−k/2|ξL(γ) = Km(·, w)

shows modularity in the first variable. This calculation remains valid for the

two transition matrices γ∞ = T ∈ Γ∗
0(4) and γ1/2 = ( 1

−2 1 ) and gives a holo-

morphic right hand side. This shows that Km(·, w) is a cusp form as well.

Proposition 2.7.3. For all f ∈ Sk/2(4, χ),

⟨f,Km⟩ =
χ(m)2(4πk)

(4πm)k/2−1
Tmf.

Proof We first prove it for m = 1. Since Ξ1 = H,

⟨f,K1⟩ =

∫
Γ\H

f(z)K1(z,−w̄)yk/2dµ(z)

=

∫
Γ\H

f(z)
∑
h∈H

(−w + z̄)−k/2|h yk/2dµ(z)

=

∫
Γ\H

f(γz)
∑
γ∈Γ

(−w + γz̄)−k/2ℑ(γz)k/2dµ(γz)

=

∫
H

(−w + z̄)−k/2f(z)yk/2dµ(z)

=

∫ ∞

0

∫ ∞

−∞

f(x+ iy)

(x− iy − w)k/2
dxyk/2−1dy

y
.
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Now the previous lemma tells us that

⟨f,K1⟩ =
2π

Γ(k/2)

∑
n≥1

af (n)

∫ ∞

0

e−4πny(ny)k/2−1dy

y
e(nw)

= k(4π)2−k/2f(w).

Replacing f by Tmf shows ⟨Tmf,K1⟩ = k(4π)2−k/2Tmf(w). Therefore

⟨f,Km⟩ =
⟨f,TmK1⟩
mk/2−1

= χ(m)2
⟨Tmf,K1⟩
mk/2−1

=
χ(m)2(4πk)

(4πm)k/2−1
Tmf.

□

Consider a Heigenbasis {fj} of Sk/2(4, χ). Then expanding Km(·, w) in this

basis, we may write

Km(z, w) =
∑
j

fj(z)

⟨fj, fj⟩
g(w)

for some holomorphic function g. If fi has Heigenvalue ωi,m, subsituting f = fi

into the previous proposition shows

ωi,,m
χ(m)2(4πk)

(4πm)k/2−1
fi(w) = g(w)

therefore g(w) is also a cusp form and

Km(z, w) =
∑
i

ωj,m
⟨fi, fi⟩

χ(m)(4πk)

(4πm)k/2−1
fj(z)fj(w).

Another interesting consequence of the proposition is the fact that it allows

an explicit computation of the trace of Tm. Indeed,

Tr(Tm) =
(4πm)k/2−1

χ(m)2(4πk)

∫
Γ∗
0(4)\H

Km(z,−z̄)yk/2
dxdy

y2
. (2.7.1)

We end this section with the following open question. Can one exploit some

kind of bijection (analogous to the integral weight case), such that matrices

with fixed trace in Ξm2 get mapped to quadratic forms? If so, what is the

arithmetic significance of the right hand side of (2.7.1) and can one obtain a

similar result to Theorem 2 in Zagier’s Appendix of Lang’s book [17]?



Chapter 3

Period polynomials

This chapter is based on the joint work [1] coauthored with N. Diamantis,

W. Raji and L. Rolen. After proving the key Lemma 3.0.2 on the family

of transformation of Φa for each a, we construct the analogue of the period

polynomial Pa for half integral weight cusp forms. We maintain the usual

convention k = 2λ + 1, λ > 2. In this chapter it will be convenient to set

ℓ = λ− 2 and κ = ℓ+ 1/2 = k/2− 2. This will mean that k−5
2

= ℓ.

3.0.1 The definition of Pa

Consider f ∈ Sk/2(Γ∗
0(4N)) with expansion

f =
∑
n≥1

af (n)q
n/w

where w is the width of the cusp i∞. Then, the usual bound on the coefficients

af (n) (we raise to the power of half the weight, i.e. |af (n)| ≪ n
1
2(

k
2 ) = nk/4),

gives

L∗(f, s) :=

∫ i∞

0

f(z)zs
dz

z
=

Γ(s)ws

(2πi)s

∑
n≥1

af (n)

ns
, ℜ(s) > k/4 + 1,

which has functional equation

L∗(f, s) = ik/2(4N)k/4−sL∗(f |W4N
, k/2− s).

When m,n are half integral, we set(
n

m

)
:=

Γ(n+ 1)

Γ(m+ 1)Γ(n−m+ 1)
.

80
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It will be implicitly assumed unless otherwise specified that a ∈ [0, κ+ℓ]. With

this in mind we set, for fixed a ∈ [0, κ+ ℓ]

Φa(τ, z) :=
ℓ∑

n=0

[(
κ

n

)
(4iNτ)nza−n +

ik/2

(4N)1/4

(
κ

n+ 1/2

)
(iτ)n(−4Nz)κ+ℓ−a−n

]
.

The analogue of the period polynomial is

Definition 3.0.1 (Period polynomial). The period polynomial is defined to
be

Pa(τ) :=

∫ i∞

0

f(z)Φa(τ, z)dz.

We introduce as well

Fa(τ) :=

∫ i∞

τ

f(z)Φa(τ, z)dz.

Lemma 3.0.2. Let λ > 2, a ∈ [0, κ+ ℓ]. Then

1. −(2i
√
Nτ)ℓ(−2i

√
Nz)κ(iτ)n−ℓ(−4Nz)l−n−a = ik/2

(4N)1/4
(iτ)n(−4Nz)κ+ℓ−a−n

2. −(2i
√
Nτ)ℓ(−2i

√
Nz)κ ik/2

(4N)1/4
(4iNτ)n−ℓza−n−κ = (4iNτ)nza−n

3. −(2i
√
Nτ)ℓ(−2i

√
Nz)κΦa(W4Nτ,W4Nz) = Φa(τ, z).

Proof Observe first that (4N)κ/2−ℓ/2 = (4N)1/4.

1. If we use −(−iz)κ = ik/2(−z)κ then

−(4N)ℓ/2+κ/2(−iz)κ = − 1

(4N)1/4
(−4iNz)κ = ik/2

(4N)1/4
(−4Nz)κ

and (1) follows.

2. Use instead −ik/2(−iz)κ = zκ so

−(4N)κ/2−ℓ/2
ik/2

(4N)1/4
(−iz)κ = −ik/2(−iz)κ = zκ

and (2) follows.

3. We make the change of variables n 7→ ℓ − n so that
(
κ
n

)
changes to
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(
κ
ℓ−n

)
=
(

κ
n+1/2

)
. With this, we have that the left hand side of (3) is

− (2i
√
Nτ)ℓ(−2i

√
Nz)κ

ℓ∑
n=0

[(
κ

n

)
(iτ)−n(−4Nz)n−a

+
ik/2

(4N)1/4

(
κ

n+ 1/2

)
(4iNτ)−nza+n−ℓ−κ

]
n 7→ℓ−n

= − (2i
√
Nτ)ℓ(−2i

√
Nz)κ

ℓ∑
n=0

[(
κ

n+ 1/2

)
(iτ)n−ℓ(−4Nz)ℓ−n−a

+
ik/2

(4N)1/4

(
κ

n

)
(4iNτ)n−ℓza−n−k

]
.

Apply parts (1) and (2), to conclude. □

By a character χ of Γ∗
0(4N) we mean a character χ of Γ0(4N) with χ(W4N) ∈

{±1}. Since Γ∗
0(4N) is generated by Γ0(4N) and W4N this is enough to com-

pletely determine the character.

Proposition 3.0.3. Let λ > 2, f ∈ Sk/2(Γ∗
0(4N), χ), a ∈ [0, κ+ ℓ]. Then

Fa|−ℓ,χ(I − iℓW4N) = Pa.

Proof By part (3) of Lemma 3.0.2,

iℓFa|−ℓ,χW4N = χ(W4N)
−1(2i

√
Nτ)ℓ

∫ ∞

W4N τ

f(z)Φa(W4Nτ, z)dz

= χ(W4N)
−1(2i

√
Nτ)ℓ

∫ 0

τ

f(W4Nz)Φa(W4Nτ,W4Nz)d(W4Nz)

= −(2i
√
Nτ)ℓ

∫ 0

τ

f(z)(−2i
√
Nz)κΦa(W4Nτ,W4Nz)dz

=

∫ 0

τ

f(z)Φa(τ, z)dz

=

(
−
∫ i∞

0

+

∫ i∞

τ

)
f(z)Φa(τ, z)dz

= −Pa(τ) + Fa(τ).

Rearranging, we obtain the claim. □

Corollary 3.0.4. If ℓ is even, then Pa|−ℓ(I + iℓχ(W4N)W4N) = 0.

Proof First write

Fa|−ℓ,χ(I − iℓW4N)) = Fa|−ℓ(I − iℓχ(W4N)W4N).
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Since ℓ is even and χ(W4N)
2 = 1, by Proposition 3.0.3 it follows that

Pa|−ℓ(I + iℓχ(W4N)W4N) = Fa|−ℓ(I − iℓχ(W4N)W4N)(I + iℓχ(W4N)W4N)

= Fa|−ℓ(I −W 2
4N) = 0.

□

Remark 3.0.5. If ℓ is even and χ(W4N) = ∓iℓ then Pa|−ℓW4N = ±Pa.

Remark 3.0.6. We emphasise that in contrast to [1], we do not assume that ℓ
is a multiple of four.

Our aim now will be to explicitly compute the polynomial Pa(τ). We will do

this by using the definition of Φa(τ, z) and swapping the sum and the integral.

In the next proposition it will be useful to consider the norm 1 complex number

η(n, k, a) := e

(
1

2

[
3n− k + 9

2
+ a

])
. (3.0.1)

Proposition 3.0.7. The period polynomial Pa(τ) satisfies

Pa(τ) =
ℓ∑

n=0

[(
κ

n

)
(4iN)nL∗(f, a− n+ 1)

+

(
κ

n+ 1/2

)
(4N)ℓ/2η(n, k, a)L∗(f, a+ n+ 1− ℓ)

]
τn. (3.0.2)

Here η is as in (3.0.1).

Proof Substituting definition (3.0.1) of Φa into Pa we see

Pa(τ) =
ℓ∑

n=0

(
κ

n

)
(4iNτ)n

∫ i∞

0

f(z)za−ndz

+
ik/2

(4N)1/4

(
κ

n+ 1/2

)
(iτ)n

∫ i∞

0

f(z)(−4Nz)κ+ℓ−a−ndz

which can be expressed as

Pa(τ) =
ℓ∑

n=0

(
κ

n

)
(4iNτ)nL∗(f, a− n+ 1)

+
ik/2

(4N)1/4

(
κ

n+ 1/2

)
(iτ)n(4N)κ+ℓ−a−ne−πi(κ+ℓ−a−n)L∗(f, κ+ ℓ− a− n+1).

In the second integral we have used the fact that (−z)s = e−πiszs for z ∈ H
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and s ∈ R. The functional equation then allows us to write

L∗(f, κ+ ℓ− a− n+ 1) = ik/2(4N)k/4−(κ+ℓ−a−n+1)L∗(f, a+ n+ 1− ℓ).

Substituting and simplifying we obtain the result. □

We shall term the polynomial Pa(τ) in (3.0.2) the period polynomial attached

to f . Observe that Pa encodes within its coefficients the L values of the L∗(f, s)

at s = a + 1 − ℓ, a + 2 − ℓ, . . . , a, a + 1. In the sequel, since it will be useful

for us to just consider the τn coefficient, we introduce some notation. Given

a polynomial f(τ) =
∑J

j=0 ajτ
j we denote [τ j]f(τ) = aj the coefficient of τ j.

This way, we may write

[τn]Pa(τ) =

(
κ

n

)
(4iN)nL∗(f, a− n+ 1)

+

(
κ

n+ 1/2

)
(4N)ℓ/2η(n, k, a)L∗(f, a+ n+ 1− ℓ), (3.0.3)

where η(n, k, a) is given by (3.0.1).

Remark 3.0.8. Under the mild assumption that ℓ is even, we can deduce that
the coefficient of τ ℓ/2 is[(

κ

ℓ/2

)
iℓ/2 + η(n, k, a)

(
κ

(ℓ+ 1)/2

)]
(4N)ℓ/2L∗(f, a+ 1− ℓ/2).

We also mention that we have allowed certain flexibility in a. We will next

show that the choice a = κ allows an interpretation in terms of the Eichler

cocycle map

ψf : Γ
∗
0(4N)→ Hol(H−)

γ 7→
∫ i∞

γ−1i∞
f(z)(z − τ)κdz.

Here the image is contained in the set of holomorphic functions on the closure

of the lower half plane H− = {τ ∈ C : ℑ(τ) < 0}. In fact, we will show that

the evaluation ψ∗
f = ψf (W4N) of the Eichler cocycle ψf at W4N is (up to an

error bound) the period polynomial at a = κ at the point iy. More precisely,

we have
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Proposition 3.0.9. For y > 1,

Pκ(iy) = ψ∗
f (4Ny) + (−1)λ+1(2

√
Ny)ℓψ∗

f (1/y) +O(yℓ+1).

Proof Since ℓ+1 > κ, we can bound the error term in the Taylor expansion

(1 + 4Niy/t)κ −
ℓ∑

n=0

(
κ

n

)
(4Niy/t)n

≪ℓ

∫ 1

0

(1− ξ)ℓ(1 + 4Niyξ/t)κ−ℓ−1(4Niy/t)ℓ+1dξ ≪ℓ (y/t)
ℓ+1.

Similarly, [
(1 + i/ty)κ −

ℓ∑
n=0

(
κ

n

)
(i/ty)n

]
≪ (yt)−ℓ−1.

Combining these two error terms with the assumption that y > 1, we see

that in both cases we can bound by Oℓ(y
ℓ+1). We now substitute the Taylor

expansion with this error term and use the substitution n 7→ ℓ − n in the

second sum to see

ψ∗
f (4Ny) + (−1)λ+1(2

√
Ny)ℓψ∗

f (1/y)

= iκ+1

∫ ∞

0

f(it)
[
(1 + 4Niy/t)κ + (−1)λ+1(2

√
Ny)ℓ(1 + i/yt)κ

]
tκdt

=
ℓ∑

n=0

(
κ

n

)[
(4Niy)nin − i2λ+n(2

√
Ny)ℓ(i/y)n

]
L∗(f, κ+ 1− n) +Oℓ(y

ℓ+1)

n 7→ℓ−n
=

ℓ∑
n=0

[(
κ

n

)
(4Ni)nL∗(f, κ+ 1− n)

− i2(λ+ℓ)−3n

(
κ

n+ 1/2

)
(4N)ℓ/2L∗(f, κ+ 1− ℓ+ n)

]
(iy)n +Oℓ(y

ℓ+1)

(3.0.2)
= Pκ(iy) +Oℓ(y

ℓ+1).

In the last step, to check that the powers of i agree with those of the period

polynomial (3.0.2), it is easy to check that −i2λ+2ℓ−3n = i3n+ke−πi(k−9/2−κ).

□

A general theme in studying the period polynomials of modular forms is that

there exists a construction of these polynomials using the Eichler integral. In

the half integral weight setting, such an object was studied by Kohnen and
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Raji [16], namely given a cusp form f ∈ Sk/2(Γ∗
0(4N)) they considered

Ef (τ) :=
1√
π

∑
n≥1

af (n)

nk/2−1

(
e(−nτ)Γ(1/2,−2πnz)− (2πnτ)−1/2

)
and showed ([16] Thm2 p19) that

Ef |−κ(I −W4N) =
ℓ∑

n=0

(
L(f, κ+ 1− n)

Γ(n+ 1)
+
L(f, λ− n)
Γ(n+ 1

2
)

(
2πτ

i

)− 1
2

)(
2πτ

i

)n
.

In general, the right hand side of this expression does not lie in a finite dimen-

sional vector space. In joint work, [1], it was shown that the main contribution

of Ef is an integral also.

Proposition 3.0.10. For τ ∈ H,

Ef (τ) = αk(−iτ)
1
2

∫ i∞

τ

Ff (z)(z − τ)ℓdz −
L (f, λ)√
−2π2iτ

where

Ff (z) :=

∫ ∞

0

f (tz)√
t+ 1

tλ
dt

t

and

αk =
(−2πi)κ+1

π
1
4 ℓ!

.

Proof Upon using

Γ(1/2, w) = w1/2

∫ ∞

1

e−wt
dt√
t
, ℜ(w) > 0

we see that

Ef =
1√
π

∑
n≥1

af (n)

nk/2−1

(
e(−nτ)Γ(1/2,−2πinτ)− (−2πnτ)−1/2

)
=

1√
π

∑
n≥1

af (n)

nk/2−1
e(−nτ)

√
−2πinτ

∫ ∞

1

e(ntτ)
dt√
t
− (−2τ)−1/2

π

∑
n≥1

af (n)

n(k−1)/2

=
√
−2iτ

∫ ∞

1

∑
n≥1

af (n)

nκ
e(n(t− 1)τ)

dt

τ
− L(f, λ)

π(−2τ)1/2

= (−2iτ)1/2
∫ ∞

1

(−2πi)ℓ+1

ℓ!

∫ ∞

(t−1)τ

f(w)(w − τ(t− 1))ℓdwdt− L(f, λ)

π(−2τ)1/2

= αk
√
τ

∫ ∞

0

tλ−1

(t+ 1)1/2

∫ i∞

τ

f(tz)(z − τ)ℓdzdt− L(f, λ)

π(−2τ)1/2
.

On the last line we used the change of variables t 7→ t− 1 and z 7→ w/(t− 1).

Now change the order of integration to conclude. □
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3.1 The main theorem

The aim of this section will be to give an explicit expression between the L-

values of a half integral weight cusp form on one side and the L-values of an

integral weight modular form on the other. The exact expression is given in

Theorem 3.1.4. This method exploits the isomorphism between Γ∗
0(4) and Γϑ.

We construct and describe fully a parabolic cocycle πf ∈ H1
par(PSL2(Z), Iλ)

with values in a finite dimensional space Iλ. With πf we apply a result of

Pasol and Popa [22] and again compare coefficients. The construction of πf is

done in several steps. From the period polynomial Pa of the previous section,

we construct a cocycle πϑf on Γϑ. From πϑf we induce a cocycle π̃f . Sadly, π̃f

is not necessarily parabolic, but this can be fixed, we shall prove that a small

adjustment πf of π̃f is parabolic.

A possible set of coset representatives for Γϑ\PSL2(Z) is {I, T, U}. We shall

fix these representatives. If we denote by ψ(x) the element of {I, T, U} that

corresponds to the coset Γϑx. For example, it is easy to check that ψ(T−1) = T .

The relation T 2SU = UT−1 shows that

ψ(UT−1) = ψ(T 2SU) = ψ(U) = U. (3.1.1)

The map

α : Γϑ\PSL2(Z)×PSL2(Z)→ PSL2(Z)

(Γϑx, g) 7→ ψ(x)gψ(xg)−1

is well defined independent of the choice of the coset representative x (see

property (i) below). In addition, this map also enjoys the properties

(i) Γϑx = Γϑx′ ⇒ ψ(x) = ψ(x′), ψ(xg) = ψ(x′g)⇒ α(x, g) = α(x′, g).

(ii) x ∈ Γϑ ⇒ α(x, g) = gψ(g)−1 (put x′ = 1 into (i))

(iii) α(x, g1g2) = α(x, g1)α(xg1, g2).
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This ensures that α is well defined. We now define

I := {v : Γϑ\PSL2(Z)→ Hol(H)}.

With the setting 4|ℓ and λ as before, we also consider the subset Iλ ⊂ I defined

by

Iλ := {v : Γϑ\PSL2(Z)→ τ−1Cλ[τ ]}.

Since g ∈ PSL2(Z) acts on Hol(H) via ·|−ℓg, we can use this to define an action

on I:

(v||g)(x) := v(ψ(xg−1))|−ℓg x ∈ Γϑ\PSL2(Z) g ∈ PSL2(Z).

Notice that in general, ·||g does not preserve the space Iλ as τ−1Cλ[τ ] is not

preserved under ·|−ℓg. However, on the subspace

Wλ = {v ∈ Iλ : v||(S + I) = v||(U2 + U + I) = 0}

the || action is preserved. From now on we impose the condition that 4|ℓ so

that λ > 2 is always even. Analogously to the classical setting, if ε = ( −1 0
0 1 ),

then Wλ decomposes into W+
λ ⊕W

−
λ . We put

v± =
v ± v||ε

2
∈ W±

λ .

The period polynomial for Γϑ of weight λ

In this subsection we give an exposition of a result of Pasol and Popa ([22])

which is a generalisation of the fact that the period polynomial of a modular

form f is essentially given by f̃ |(I − S), the Eichler integral slashed by I − S.

Our setting here will be for weight λ and on the theta group Γϑ. Suppose that

f ∈Mλ(Γ
ϑ) has q-expansion f =

∑
n≥0 af (n)q

n and denote by f0

f0(τ) = f(τ)− af (0).
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This makes f0 vanish at the ∞ cusp. Since we still maintain the notation

ℓ = λ− 2, the Eichler integral is the holomorphic function

f̃(γ)(τ) :=

∫ i∞

τ

(f |γ)0(w)(w − τ)ℓdw, γ ∈ PSL2(Z), τ ∈ H.

The slash action f |γ = f |λγ is understood to be of weight λ here and will be

ommited henceforth. Observe this defines an element f̃ ∈ I. We denote by

rf (γ) := f̃(γ)||(I − S).

Proposition 3.1.1 (Pasol, Popa [22]). We have the following

(1) The cocycle rf lies in Wλ and

rf (γ)(τ) =

∫ i∞

τ0

(f |γ)0(w)(w − τ)ℓdw − af |γ(0)
∫ τ0

0

(w − τ)ℓdw

−
[∫ i∞

Sτ0

(f |γS)0(w)(w − τ)ℓdw − af |γS(0)
∫ Sτ0

0

(w − τ)ℓdw
]
|−ℓS

+
af |γ(0)
λ− 1

τλ−1 +
af |γS(0)

λ− 1
τ−1

for any γ ∈ PSL2(Z) and any τ0, τ ∈ H. Moreover, rf (γ) is independent
of τ0.

(2) The map

r− :Mλ(Γ
ϑ)→ W−

λ

f 7→ r−f

is an isomorphism.

Proof (1) See [22] Prop.8.1

(2) Use the fact that Γϑ is PSL2(Z) conjugate to Γ(2) which is of the form

prescribed in [22] Prop.4.4. This allows us to apply [22]Prop.8.4(b).

□

We are now going to define a 1-cocycle π̂f on Γ∗
0(4) with values in Cℓ[τ ],

the space of polynomials of degree ≤ ℓ with coefficients in C. Let f ∈
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Sk/2(Γ
∗
0(4N), χ) and set

π̂f : Γ
∗
0(4N)→ Cℓ[τ ]

W4 7→ Pa(τ/
√
N) =: P̂a(τ)

By imposing that π̂f (T ) = 0, that ℓ is even and that χ(W4N) ∈ {±1}, the map

π̂f is well-defined since the cocycle action gives

π̂f (W
2
4N) = π̂f (W4N) + π̂f (W4N)|−ℓ,χW4N = P̂a|−ℓ,χ(I +W4N)

= P̂a|−ℓ(I ±W4N) = 0.

Here the action (Q|−ℓ,χγ)(τ) means χ(γ)j(γ, τ)ℓQ(γτ). From §0.6 we know

that Γ∗
0(4) and Γϑ are conjugate. The homomorphism sending T 7→ T 2 and

W4 7→ S is a group isomorphism from Γ∗
0(4) onto Γϑ. This allows us to transfer

π̂f to Γϑ:

πϑf (S)(τ) = P̂a(τ/2) πϑf (T
2) = 0.

We have obtained a non-trivial class in H1
par(Γ

ϑ,Cℓ[τ ]) with action defined by

|−ℓ.

Following the construction of Pasol and Popa [22], we can induce a 1-cocycle

π̃f on PSL2(Z) with values in I from πϑf as follows

π̃f (g)(x) = πϑf (α(x, g
−1)−1)|−ℓψ(x), Γϑ\PSL2(Z).

We now claim that π̃f is indeed a 1-cocycle. To show this we make use of two

facts, the first

α(x, g−1
2 )−1ψ(x) = ψ(xg−1

2 )g2 (3.1.2)

follows from the definition of α. The second, uses property (iii) of §3.2, namely

α(x, g−1
2 g−1

1 )−1 = α(xg−1
2 , g−1

1 )−1α(x, g−1
2 )−1. (3.1.3)



Chapter 3. The main theorem 91

We have

(π̃f (g1)||g2) (x) + π̃f (g2)(x) = π̃f (g1)(xg
−1
2 )|g2 + πϑf (α(x, g

−1
2 )−1)|ψ(x)

= πϑf (α(xg
−1
2 , g−1

1 )−1)|ψ(xg−1
2 )g2

+πϑf (α(x, g
−1
2 )−1)|ψ(x)

(3.1.2)
= πϑf (α(xg

−1
2 , g−1

1 )−1)|α(x, g−1
2 )−1ψ(x)

+πϑf (α(x, g
−1
2 )−1)|ψ(x)

=
[
πϑf (α(xg

−1
2 , g−1

1 )−1)|α(x, g−1
2 )−1

+ πϑf (α(x, g
−1
2 )−1)

]
|ψ(x)

=
[
πϑf (α(xg

−1
2 , g−1

1 )−1α(x, g−1
2 )−1)

]
|ψ(x)

(3.1.3)
= πϑf (α(x, g

−1
2 g−1

1 )−1)|ψ(x)

= π̃f (g1g2)(x).

This proves our claim that π̃f is a cocycle. Alternatively, we could have shown

that π̃f is a 1-cocycle by invoking Shapiro’s lemma (cf [19] p59).

The next proposition we will prove is rather surprising, although we cannot

claim that π̃f is parabolic1, a small adjustment will be and, even better, the

coefficients of this adjusted cocycle will have values in Iλ. Precisely, we have

Proposition 3.1.2. There exists v : Γϑ\PSL2(Z)→ Cλ−1[τ ] such that

πf (g) := π̃f (g)− v||(g − 1) ∀g ∈ PSL2(Z)

is a parabolic cocycle with coefficients in Iλ. Furthermore, πf (S) ∈ Wλ.

Proof We evaluate

π̃f (T )(x) = πϑf (ψ(xT
−1)Tψ(x)−1)|ψ(x)

at x = I, T, U respectively. One finds

π̃f (T )(I) = πϑf (ψ(T
−1T )) = πϑf (T

2) = 0,

π̃f (T )(T ) = πϑf (Tψ(T )
−1)|ψ(T ) = πϑf (I)|T = 0.

1we will prove π̃f (T ) is not always vanishing
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Moreover, since UTU−1 = S−1T−2 and ψ(UT−1) = U ,

π̃f (T )(U) = πϑf (ψ(UT
−1)Tψ(U)−1)|ψ(U)

= πϑf (UTU
−1)|U = πϑf (S

−1T−2)|U

= πϑf (S)|T 2U + πϑf (T
2)|U = πϑf (S)|T 2U

= P̂a(τ/2)|−ℓT 2U.

We now consider a polynomial Qf (τ) ∈ Cλ+1[τ ] with the property that

Qf (τ)|(T − I) = Qf (τ + 1)−Qf (τ) = P̂a(τ/2)|−ℓT 2U. (3.1.4)

This exists since degQf = deg P̂a + 1 (for a proof of this see [1] Lem.4.3). Al-

ternatively, we can find Qf in the following way. Set [τ ℓ+1]Qf =
[τℓ]P̂a(τ/2)|−ℓT 2U

ℓ+1

and use the recursive formula

ℓ+1∑
j=n+1

(
j

n

)(
[τ j]Qf

)
= [τn]

(
P̂a(τ/2)|−ℓT 2U

)
, 0 ≤ n ≤ ℓ− 1.

Therefore, we can construct v as follows, we impose

v(I) = v(T ) = 0 v(U) = Qf .

With v shown to exist, we are now in a position to define πf to be the difference

πf (g) := π̃f (g)− v||(g − 1).

Subtracting the coboundary v||(g − I) from the cocycle π̃f (g) implies πf is

indeed a cocycle. To prove that πf is parabolic, it suffices to show that πf (T )(x)

vanishes for all x ∈ Γϑ\PSL2(Z). Unraveling the definitions, we have for

g ∈ PSL2(Z), x ∈ Γϑ\PSL2(Z)

πf (g)(x) = πϑf (ψ(xg
−1)gψ(x)−1)|ψ(x)− v(ψ(xg−1))|g + v(x). (3.1.5)

Indeed, substituting g = T and x = I above,

πf (T )(I) = π̃f (T )(I)− (v||(T − I))(I) = 0− (v(T−1)|T − v(I)) = 0,
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and

πf (T )(T ) = π̃f (T )(T )− (v||(T − I))(T ) = 0− (v(I)|T − v(T )) = 0.

Finally,

πf (T )(U) = π̃f (T )(U)− (v||(T − I))(U)

= Qf |(T − I)−
(
v(UT−1)|T − v(U)

)
= v(U)|(T − I)− v(U)|(T − I) = 0.

Moreover, since v takes values in Cλ−1[τ ] we see that

πf (g)(x) = π̃f (g)(x)︸ ︷︷ ︸
∈Cℓ[τ ]

−

v(xg−1)|−ℓg)︸ ︷︷ ︸
∈τ−1Cℓ[τ ]

− v(x)︸︷︷︸
∈Cλ−1[τ ]

 ,
meaning that πf (g)(x) takes values in (at worst) τ−1Cλ−1[τ ]. Therefore, πf (g)

takes values in Iλ. To conclude the proof it remains to show that πf (S) lies in

Wλ, but this follows from the cocycle condition, as πf (S) = πf (U) and

πf (S)||(S + I) = πf (S)||(U2 + U + I) = 0.

□

Remark 3.1.3. It is possible to explicitly construct Qf from (3.1.4).

In fact, the existence part of the proposition allows us to compute explicitly,

the value of πf (S). For x = I,

πf (S)(I) = πϑf (ψ(S
−1S))|ψ(S−1) + v(I)︸︷︷︸

=0

− v(I)|S︸ ︷︷ ︸
=0

= πϑf (S) = P̂a

( ·
2

)
. (3.1.6)

We found that π̃f (S)(x) vanishes for x = T, U in which case only the contri-

bution of πf (S) comes from v, namely

πf (S)(x) = −(v||(S − I))(x) = v(x)− v(xS−1)|S x = T, U.

For x = T ,

πf (S)(T ) = v(T )− v(TS−1)|S = −v(U)|S = −Qf |−ℓS.
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For x = U ,

πf (S)(U) = v(U)− v(US−1)|S = v(U)− v(T )|S = Qf .

Combining this with the previous remark gives a full description of πf .

Theorem 3.1.4. Suppose ℓ > 0 is a multiple of four. Fix f ∈ Sk/2(Γ∗
0(4N))

and a ∈ [0, κ + ℓ]. There exists g ∈ Mλ(Γ
∗
0(4)) such that for all odd n ∈

{1, · · · , ℓ− 1},

(4N)−n/2
[(

κ

n

)
(4iN)n/2L∗(f, a+ 1− n)

+

(
κ

n+ 1/2

)
(4N)ℓ/2η(n, k, a)L∗(f, κ+ ℓ− 1− a− n)

]
= −2ℓ+1−n

(
ℓ

n

)
L∗(g, ℓ+ 1− n).

Proof By Proposition 3.1.2 we know πf (S) ∈ Wλ. It follows that the element

πf (S)− πf (S)||ε
2

= πf (S)
−

lies in W−
λ . We can now apply the isomorphism r− of Proposition 3.1.1(2) to

obtain the existence of a form g1 in Mλ(Γ
ϑ) such that

πf (S)
− = r−g1 . (3.1.7)

Since ψ(εTε) = T and ψ(εUε) = U , we see that πf (S)
− and r−g1 are the odd

parts of πf (S) and rg1 respectively. In particular the polynomials πf (S)(I)(τ)
−

and rg1(I)(τ)
− agree, and we are led to compare the coefficients between these

two polynomials. From (3.1.6) we have

πf (S)(I)(τ) = P̂a(τ/2) = Pa(τ/2
√
N).

This gives us the coefficients on the left hand side. For the right hand side use

Proposition 3.1.1 part (1) and a binomial expansion to see that the n-th term

is

rg1(I)(τ) =
ℓ∑

n=0

(
ℓ

n

)[∫ i∞

τ0

g1(w)0w
l−ndw − ag1(0)τ

ℓ−1+n
0

ℓ− 1 + n

−(−1)n
∫ i∞

Sτ0

(g1|S)0(w)wndw −
ag1|S(0)(Sτ0)

n+1

n+ 1

]
(−τ)n.
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Set τ0 = i. Using g1|S = g1 and using the integral expansion

L∗(g1, s) =

∫ i∞

0

g1(w)0w
sdw

w
,

we see

rg1(I)(τ) =
ℓ∑

n=0

(
ℓ

n

)
L∗(g1, ℓ+ 1− n)(−τ)n + ag1(0)

ℓ+ 1
τ ℓ+1 +

ag1(0)

ℓ+ 1
τ−1.

For odd 0 ≤ n ≤ ℓ, the n-th coefficient of rg1(I) is

[τn]rg1(I) = −
(
ℓ

n

)
L∗(g1, ℓ+ 1− n).

Finally the substitution g(τ) = g1(2τ) ∈Mλ(Γ
∗
0(4)) gives 2

−sL∗(g, s) = L∗(g1, s),

so the desired coefficients on the right hand side. □

3.2 Explicit description of the lift

The purpose of this section is to put into context the result of Theorem 3.1.4,

namely we want to explicitly describe the map

Sk/2(Γ
∗
0(4N))→Mλ(Γ

∗
0(4))

f 7→ g

This will be achieved by writing the image g as a linear combination of cuspidal

and Eisenstein components. To describe this we will need another result of

Pasol and Popa [22].

We introduce some notation to this end. From the normalised weight λ Eisen-

stein series

Eλ(τ) = 1− 2λ

Bλ

∑
n≥1

σλ−1(n)q
n,

we set

E1(2τ) := Eλ(2τ), E2(2τ) := 2λEλ(4τ) + Eλ(τ)

to be the two forms that form a basis for the Eisenstein subspace inMλ(Γ
∗
0(4)).

Given any g ∈Mλ(Γ
∗
0(4)) there exists some cusp form g̊ ∈ Sλ(Γ∗

0(4)) such that

g(τ) = g̊(τ) + α1E1(2τ) + α2E2(2τ) for some α1, α2 ∈ C.
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The change of variable τ 7→ τ/2 ensures E1(τ), E2(τ) ∈ Mλ(Γ
ϑ) and g̊1(τ) ∈

Sλ(Γ
ϑ). The Eisenstein series have constant terms

aE1(0) = 1 and aE2(0) = 2λ + 1

respectively. Therefore, by (3.1.7),

πf (S)
− = r−g1 = r−g̊1 + α1r

−
E1 + α2r

−
E2 .

Claim: Let bℓ+1 denote the coefficient of τ ℓ+1 of the polynomial Qf discussed

in (3.1.4). Then we have

α1 =
2λ + 1

2λ − 1
(ℓ+ 1)bℓ+1 and α2 =

−1
2λ − 1

(ℓ+ 1)bℓ+1.

Proof Since g̊ is cuspidal, [τ−1]r−g̊ = 0. Therefore

[τ−1]πf (S)(x)
− = α1[τ

−1]rE1(x)
− + α2[τ

−1]rE2(x)
−.

Since

[τ−1]πf (S)(I) = 0 and [τ−1]πf (S)(U) = [τ−1]Qf = bℓ+1,

we have

0 = [τ−1]πf (S)(I)
− = α1 · [τ−1]rE1(I)

− + α2 · [τ−1]rE2(I)
−

=
α1aE1(0) + α2aE2(0)

ℓ+ 1

=
α1 + α2(2

λ + 1)

ℓ+ 1
.

It follows that α1 = −(2λ + 1)α2. Let’s compute aE2|U(0), observe
1
2
(Uτ) =

ST−2S ·
(
τ−1
2

)
so

E2|λU = Eλ(τ/2)|λU + 2λEλ(2τ)|λ ( 1 −1
1 0 )

= τ−λEλ

(
1

2
(Uτ)

)
+ 2λτ−λEλ

(
2

(
τ − 1

τ

))
= τ−λEλ

(
ST−2S ·

(
τ − 1

2

))
+ j(S, τ/2)−λEλ(S(τ/2))

= Eλ

(
τ − 1

2

)
+ Eλ(τ/2).
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Hence aE2|U(0) = aEλ(0) + aEλ(0) = 2. Moreover, aE1|U(0) = aE1(0) = 1.

Therefore,

bℓ+1 = [τ−1]πf (S)(U)
− = α1 · [τ−1]rE1(U)

− + α2 · [τ−1]rE2(U)
−

=
α1aE1|U(0) + α2aE2|U(0)

ℓ+ 1

=
α1 + 2α2

ℓ+ 1
.

With these two relations, solving for α1, α2 gives the claim. □

We have completely determined the Eisenstein component. To determine the

cuspidal component, we seek a description of g̊1. Define the set Iℓ to be the

set of f ∈ Iλ with the property that f(x) ∈ Cℓ[τ ] for all x ∈ Γϑ\PSL2(Z). We

define an inner product ⟪·, ·⟫ : Iℓ × Iℓ → C

⟪f, g⟫ :=
∑

x∈Γϑ\PSL2(Z)

⟨f(x), g(x)⟩,

where the inner product ⟨·, ·⟩ : Cℓ[τ ]× Cℓ[τ ]→ C is defined by〈
ℓ∑

n=0

anτ
n,

ℓ∑
n=0

bnτ
n

〉
:=

ℓ∑
n=0

(−1)n
(
ℓ

n

)−1

anbℓ−n.

In order to not cause confusion, we shall denote (g, h) for the Petersson inner

product in Sλ(Γ
ϑ). If g ∈ Mλ(Γ

ϑ) but h ∈ Sλ(Γϑ) impose (g, h) = (̊g, h). By

[22] Prop.8.1, we can decompose r ∈ Wλ as

r = r̊ + r̃||(I − S)

for some r̊ ∈ Iℓ and some r̃(x) of the form c(x)τ ℓ+1 with x ∈ Γϑ\PSL2(Z).

With this decomposition, we can define the inner product {·, ·} : Wλ×Wλ → C

{r1, r2} := ⟪r̊1||(T − T−1), r̊2⟫+ ⟪2r̃1||(T − T−1), r̊2⟫+ ⟪r̊1, 2r̃2||(T−1 − T )⟫.

Theorem 3.2.1 (Pasol, Popa [22] Thm.8.6(c)). Let h ∈ Sλ(Γ
ϑ) and g1 ∈

Mλ(Γ
ϑ). Then

−3(2i)ℓ+1(̊g1, h) = {r−g1 , r
+
h }.

Actually the theorem proved in [22] is much more general, but for our purposes,
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this will suffice. Since rh = r̊h = r̊h, we conclude from Theorem 3.2.1 that

−3(2i)ℓ+1(̊g1, h) = ⟪r̊−g1||(T − T−1), r+h ⟫+ ⟪2r̃g1||(T − T−1), r+h ⟫.

Claim: We have that r̃g1(x) = r̃g1(x)
− = c(x)τ ℓ+1 with c(I) = c(T ) = 0 and

c(U) = bℓ+1.

Proof Observe

r̃g1||(I − S)(x) = c(x)τ ℓ+1 +
c(xS)

τ
.

Since c(S) = c(I), substituting x = I gives 0 = c(I)(τ ℓ+1 + 1/τ) so c(I) = 0.

Substituting x = T gives bℓ+1

τ
= c(T )τ ℓ+1+c(U)/τ so c(T ) = 0 and c(U) = bℓ+1.

□

We have

r̊−g1||(T − T
−1)(x) = r̊−g1(xT )|−ℓ(T − T

−1) =
ℓ∑

j=0
j even

sj(xT )τ
j, (3.2.1)

where

sj(x) = 2
ℓ∑
i=0

(
i

j

)
[τ i]πf (S)(x).

Also

r̃−g1||(T − T
−1)(x) = c(xT )[(τ + 1)ℓ+1 − (τ − 1)ℓ+1] =

ℓ∑
j=0
j even

2c(xT )

(
ℓ+ 1

j

)
τ j.

(3.2.2)

Theorem 3.2.2. Let ℓ be even and χ(W4) = ±i−ℓ. For f ∈ Sk/2(Γ∗
0(4N), χ)

and a ∈ [0, κ+ ℓ], the form g ∈Mλ(Γ
∗
0(4)) in Theorem 3.1.4 satisfies

g(τ) =
−(2i)−1−ℓ

3

∑
x∈Γϑ\PSL2(Z)

ℓ∑
j=0
j even

[
sj(xT ) + 2c(xT )

(
ℓ+ 1

j

)]
R+
x,j(2τ)

+
2λ + 1

2λ − 1
(ℓ+ 1)bℓ+1E1(2τ) +

−1
2λ − 1

(ℓ+ 1)bℓ+1E2(2τ).

Proof We work over Γϑ first. For any h ∈ Sλ(Γϑ), we have −3(2i)ℓ+1(g, h) =
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−3(2i)ℓ+1(̊g1, h) which equals

= ⟪r̊−g1||(T − T−1), r+h ⟫+ ⟪2r̃g||(T − T−1), r+h ⟫

=
∑

x∈Γϑ\PSL2(Z)

⟨̊r−g1(xT )|−ℓ(T − T
−1) + 2r̃g||(T − T−1)(x), r+h ⟩

=
∑

x∈Γϑ\PSL2(Z)

〈
ℓ∑

j=0
j even

(
sj(xT ) + 2c(xT )

(
ℓ+ 1

j

))
τ j,

ℓ∑
j=0

(
ℓ

j

)
ρ+h (x, j)τ

ℓ−j

〉

=
∑

x∈Γϑ\PSL2(Z)

ℓ∑
j=0
j even

[
sj(xT ) + 2c(xT )

(
ℓ+ 1

j

)]
ρ+h (x, n− j)

=
∑

x∈Γϑ\PSL2(Z)

ℓ∑
j=0
j even

[
sj(xT ) + 2c(xT )

(
ℓ+ 1

j

)]
(R+

x,j, h).

It follows that

g̊1(τ) =
−(2i)1−ℓ

3

∑
x∈Γϑ\PSL2(Z)

ℓ∑
j=0
jeven

[
sj(xT ) + 2c(xT )

(
ℓ+ 1

j

)]
R+
x,j.

To switch back to Γ∗
0(4) perform the change of variable τ 7→ 2τ . □
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Appendix A

List of Notation

N {1, 2, 3, · · · }
H Upper half plane {τ ∈ C : ℑ(τ) > 0}
a(c) a modulo c (when context is clear)(
c
d

)
See section 0.1

εd 1 if d ≡ 1(4) and i if d ≡ 3(4)

I

(
1 0
0 1

)
T

(
1 1
0 1

)
S

(
0 −1
1 0

)
U

(
1 −1
1 0

)
= ST

WN

(
0 −1/

√
N√

N 0

)
Γ0(N) See Definition 0.1.1
Γ∗
0(4N) ⟨W4N ,Γ0(4N)⟩, the group generated by Γ0(4N) and W4N

T The set of complex numbers of modulus one
H The lift of Γ∗

0(4) (see section 0.2.2)

jγ(z) = j(γ, z) cz + d if γ =

(
∗ ∗
c d

)
Jv
SL2(R) Determinant one 2× 2 matrices with coefficients in R
PSL2(R) SL2(R)/{±I}
vθ See example 0.1.5
q e2πiτ

(a, b)∞ Hilbert symbol: −1 if a < 0 and b < 0; +1 otherwise

lµ.. n The cyclic subgroup of T of order n

ζn e(1/n) = e2πi/n

Hol(H) The set of holomorphic functions on H
Heigenform Hecke eigenform (shorthand)
Heigenbasis Hecke eigenbasis (shorthand)
χ1,4 the non-trivial character modulo 4

diag(a, b)

(
a

b

)
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