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Abstract

During the initial design phases of complex multi-disciplinary systems such as urban tun-

nelling, the appraisal of different design alternatives can ensure optimal designs in terms

of costs, construction time, and safety. To enable the evaluation of a large number of

design scenarios and to find an optimal solution that minimises the impact of tunnelling

on existing structures, the design and assessment process must be efficient, yet provide

a holistic view of model interaction, including Soil-Structure Interaction (SSI) effects. In

this thesis, an integrated tunnel design tool is proposed for the initial design phases to

predict building damage due to ground settlements induced by tunnelling, leveraging em-

pirical and analytical solutions as well as simulation-based meta-models. Furthermore,

the visualisation of ground settlements and building damage categories is enabled by

integrating these solutions within a Building Information Modelling (BIM) framework

for tunnelling. This approach allows for near real-time assessment of structural dam-

age induced by settlements, considering SSI and the non-linear material behaviour of

buildings. Because this approach is implemented on a BIM platform for tunnelling, it

offers numerous benefits. Firstly, the design can be optimised directly in the design envi-

ronment, thus eliminating errors in data exchange between designers and computational

analysts. Secondly, the effect of tunnelling on existing structures can be effectively vi-

sualised within the BIM by producing risk maps and visualising the scaled deformation

field, which allows for a more intuitive understanding of design actions and collabora-

tive design. Having a fully parametric design model and real-time predictions, therefore,

enables the assessment and visualisation of tunnelling-induced damage for large tunnel
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sections and multiple structures in an effective and computationally efficient way.
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2. Ali Gamra, Jelena Ninić, Bahman Ghiassi, “A Comprehensive Parametric Study on

the Impact of Underground Tunnelling on Neighbouring Structures Using Machine

Learning,” 4th International Symposium of Machine Learning and Big Data in

Geoscience, Cork, Republic of Ireland, August 2023.

Presented in Chapters: 4, 6, 7, and 9.
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5.5 Input parameters related to the contact area between building and soil. . 104

5.6 Summary of input parameters in FEM implementation. . . . . . . . . . . 105

5.7 Correlations between dependent and independent parameters. . . . . . . 106

x



5.8 Constraints based on physical and numerical integrity. . . . . . . . . . . 107

5.9 Material properties for CDP development for a random selection of input

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.10 Relevant parameters for the evaluation of SSI using EBBEF2p model for

the same sample points of the CDP. . . . . . . . . . . . . . . . . . . . . . 113

5.11 Other model component specifications. . . . . . . . . . . . . . . . . . . . 119

6.1 Local building damage evaluation metrics of Figure 6.4. . . . . . . . . . . 134

6.2 Global building damage evaluation metrics of the case studies presented

in Figure 6.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Models input parameters for LTSM metrics. . . . . . . . . . . . . . . . . 142

6.4 Results for LTSM models presented in Figure 6.9. . . . . . . . . . . . . . 143

6.5 % of damaged areas, and εt values of Figure 6.11 case studies. . . . . . . 144

6.6 Categories of damage for the models presented earlier as case studies for

each damage criteria in comparison to their global categorisation of damage

(Part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7 Categories of damage for the models presented earlier as case studies for

each damage criteria in comparison to their global categorisation of damage

(Part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Average values (normalised) for each of Yi Region 1, 2 or 3 of input parameter

using µXi
and σXi

with % of total values falling within each region. . . . 161

6.9 Minimum values of input parameters used throughout iterations. . . . . . 163

6.10 Maximum values of input parameters used throughout iterations. . . . . 163

6.11 Categories of damage of metrics according to literature. . . . . . . . . . . 174

7.1 Hyperparameter limits for each model. . . . . . . . . . . . . . . . . . . . 181

7.2 Performance metrics for different models across various damage metrics. . 183

7.3 Cross-validation using the Max. Crack Width as output variable and a

total of 5 folds with a 20-80 split. . . . . . . . . . . . . . . . . . . . . . . 187

7.4 Cross-validation using εh,max as output variable. . . . . . . . . . . . . . . 188

xi



7.5 ANN performance with different transformation techniques on local and

global outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6 Performance metrics for different thresholds across global and local criteria.193

7.7 Performance metrics for different data splits across global and local outputs.193

7.8 Results of ANN-PSO performance on local and global outputs. . . . . . . 196

7.9 Values of the performance metrics for predicted local-global damage in-

dicators via the proposed PCA-NuSVR framework for the assessment of

building damage due to tunnelling. . . . . . . . . . . . . . . . . . . . . . 198

7.10 R2-values of the local and global indicators for the assessment of building

damage using different ML-based regressors. . . . . . . . . . . . . . . . . 201

8.1 Parameters for the description of geometric-semantic BIM for tunnelling. 205

8.2 Classification of building damage with the colour code for visualisation

using the LTSM damage classification system of (Burland et al. (1977)). . 207

xii



List of Figures

2.1 Description of the settlement trough, building geometry, sagging, and hog-

ging zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 3D settlement profile induced by tunnelling. . . . . . . . . . . . . . . . . 21

2.3 Definition of foundation movement (inspired by the works of Burland et al.

(1977)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Damage curves derived from case studies categorising damage based on β

and εh,max according to (Boscardin and Cording (1989)). . . . . . . . . . 32

2.5 Family tree of AI types including ML, deep learning, computer vision and

robotics (inspired by the work of (Huang et al. (2021))). . . . . . . . . . 50

2.6 Structure of a 4-layer ANN for predicting building strain due to tunnelling

(O1 to Om corresponding to Yi(Xn, w)). . . . . . . . . . . . . . . . . . . . 52

3.1 Concept for real-time damage assessment within BIM. . . . . . . . . . . . 60

3.2 Principal stages of methodology towards research goals. . . . . . . . . . . 61

3.3 Preparation stage (pre-analysis) schema of the methodology. . . . . . . . 63

3.4 Assessment stage (post-execution) of FEMmodels (back-end of the method-

ology). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Assembly of bar in tension with an applied maximum displacement of 0.05

mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 F-D diagrams of the simple bar in tension using different constitutive ap-

proaches including (a) Unregularised stress-strain (b) Regularised stress-

strain (c) and Internally Regularised stress-displacement. . . . . . . . . . 75

4.3 Macro-modelling of the shear panel. . . . . . . . . . . . . . . . . . . . . . 78

xiii



4.4 Failure patterns of experimental wall (After Lourenco (1996)). . . . . . . 79

4.5 Tension damage distributions contours maps from FEM simulations (val-

ues > 0.99 indicate fully developed damage “red”). . . . . . . . . . . . . 80

4.6 Comparison of diagrams between experiment curves and FEM output. . . 80

4.7 Parametric studies on CDP plasticity parameters (a) ψCDP (b) eCDP (c)

σ0b/σ0c (d) kCDP (e) µCDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Numerical modelling of Giardina (2013) experiment of masonry façade
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NOMENCLATURE

Nomenclature

[C(u, u̇)] Damping matrix (N·s/m)

[K(u)] Displacement-dependent stiffness matrix (N/m)

[ke] Stiffness matrix of the flexural beam element (N/m)

[kf ] Stiffness matrix of the elastic foundation (first subgrade) (N/m)

[kr] Stiffness matrix of the rigid base (second subgrade) (N/m)

[M(u, u̇)] Mass matrix (kg)

αf Angular strain

β Angular distortion (relative rotation)

∆L Change in building length (m)

∆Sv Relative or differential settlement between two points (m)

∆ Relative deflection (m)

γ Dimensionless shape parameter

γs Soil unit weight (kN/m³)

λ Learning rate

µCDP Viscosity parameter in CDP model
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NOMENCLATURE

µXi
Mean of input parameter Xi

ν Poisson’s ratio

νs Poisson’s ratio of the soil

ϕ(z) Function describing vertical deflection variation with depth

ϕ Threshold for feature importance

Ψ Bias term in neural network

ψCDP Dilation angle in CDP model

σc Compressive stress (MPa)

σm Compressive strength at failure (MPa)

σr Required face support pressure (kPa)

σs Surface surcharge (kPa)

σt Tensile stress (MPa)

σw Building stress

σR2 Standard deviation of R2

σrRMSE Standard deviation of rRMSE

σXi
Standard deviation of input parameter Xi

θf Rotation angle at foundation or ground level

εpc Plastic strain in compression

εinc Inelastic strain in compression

εh Horizontal strain

εm Equivalent inelastic strain at failure
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NOMENCLATURE

εt Total tensile strain

εpt Plastic strain in tension

εckt Cracking strain

εcrit Critical tensile strain

εh,max Maximum horizontal tensile strain

εlim Limiting tensile strain

εt,max Maximum total tensile strain

φ Angle of internal friction of the soil (°)

{ü} Acceleration vector (m/s²)

{u̇} Velocity vector (m/s)

{de} Nodal degrees of freedom vector (m, rad)

{F (t, u, u̇)} External force vector (N)

{Re} Distributed load vector (N and N·m)

{Se} Nodal load vector (N and N·m)

{u} Nodal displacement vector (m)

A Empirical parameter in settlement equation

B Building width

c Cohesion (Mohr–Coulomb parameter) (kPa)

D Tunnel diameter (m)

dc Damage variable in compression

dt Damage variable in tension
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NOMENCLATURE

Es Young’s modulus of the soil (kPa)

et Tunnel offset from centreline

eCDP Flow potential eccentricity in CDP model

Einit Initial elastic modulus

Err Error between predicted and target output

f() Activation function

Gf Fracture energy (N/m)

H Building height (m)

h Characteristic length (m)

Hs Influence zone depth in the soil medium (m)

I(Yi) Importance score of output Yi

iy Width parameter along longitudinal axis (m)

iz Distance from the tunnel centreline to the inflection point (m)

K Trough width parameter

kfold Number of folds in cross-validation

kCDP Ratio of stress invariants in CDP model

knorm Normal subgrade stiffness (N/m³)

kshear Shear subgrade stiffness (N/m³)

Kshear coeff. Shear interaction coefficient at soil-structure interface

L Building length (m)

Lt Tunnel length (m)
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NOMENCLATURE

Lt Tunnel length

Lw Building length

L12 Distance between two nodes (m)

LH Latin Hypercube sampling

m Parameter in compression constitutive equation

mpattern Number of training patterns

n Set of input parameters

ncombined Combined set of significant parameters

nglobal Globally significant input parameters

nlocal Locally significant input parameters

q Uniformly distributed load per unit length (N/m)

S Estimated settlement (mm)

s Slope

Sv(x) Ground settlement function relative to the transverse distance x (m)

Sv,max Maximum settlement at the tunnel centreline (m)

ut Cracking displacement

Ux Horizontal displacement

wij Weight from input to hidden layer

wjk Weight from hidden to output layer

x Perpendicular distance to the tunnel centreline (m)

Xi Input neuron
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NOMENCLATURE

Xi Input parameter i

y Distance from tunnel face along longitudinal axis (m)

yb Building displacement

Yi Output neuron

Yi Output response for input parameter Xi

yface Distance from tunnel entrance to the tunnel face (m)

Yi,Region 1 Average output in Region 1 for Yi

Yi,Region 2 Average output in Region 2 for Yi

Yi,Region 3 Average output in Region 3 for Yi

z Depth in the vertical direction (m)

Z0 Tunnel depth (m)
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Chapter 1

Introduction

Growing urbanisation, expansion of cities, and the demand for national and transna-

tional high-speed mobility have raised the need for efficient and environmentally friendly

transport infrastructure. In addition, due to the limited available surface space in cities,

development projects often rely on underground space. To accommodate this, major

urban tunnelling projects have been constructed in the last few decades (e.g., Cross-

rail and High Speed Two (HS2) in the UK). Despite the advanced technologies used for

underground construction in these projects, existing overground structures have been sig-

nificantly damaged due to tunnelling-induced settlements (DeJong et al. (2019); Milillo

et al. (2018)).

The response of existing structures to tunnelling-induced ground movement in urban tun-

nelling is a fully coupled problem of tunnel-SSI. Therefore, many design considerations,

such as tunnel location, existing buildings and infrastructure above and below ground,

the construction method, related construction details (e.g., driving parameters), geomet-

rical properties (e.g., depth, diameter, lining thickness), ground behaviour, and possible

critical geological conditions, play an important role in the selection of the optimal de-

sign solution (Loganathan and Poulos (1998)). This optimal design solution must satisfy

several design criteria, such as the structural integrity and durability of the tunnel struc-

7



1.1. RELATED WORK

ture for demanding use over 100+ years, face stability during tunnel construction, and

control of tunnelling-induced settlements to minimise the impact on the existing envi-

ronment. This thesis specifically focuses on the response of buildings founded on shallow

strip foundations, which are common in urban environments and particularly susceptible

to tunnelling-induced ground movements (Burland et al. (1977); Boscardin and Cording

(1989)). To achieve this, analytical, empirical, and numerical methods are employed to

evaluate these design objectives.

1.1 Related Work

Tunnelling activities inevitably induce ground displacements, which can adversely affect

nearby structures. These displacements depend on several geotechnical and operational

factors, and their prediction has been the focus of a wide body of empirical, analytical,

and numerical research (Mair et al. (1993); Broms and Bennermark (1967); Powderham

(1994); Loganathan and Poulos (1998)).

In the presence of surface structures, the interaction between soil and structure alters

the settlement induced by ground tunnelling. To relate the strain on the building to the

ground settlement, certain assumptions are required. One of the approaches that simulate

the interaction is the Limiting Tensile Strain Method (LTSM), a simple 2D analytical

method that represents the structure as a linear elastic beam model with its geometrical

properties and stiffness, enabling a fully decoupled soil-structure analysis. Due to its

simplicity, LTSM has disadvantages that may lead to conservative results, in some cases

underestimating the predicted outcome (Burland and Wroth (1975)). Over the last three

decades, many authors have proposed analytical solutions for the prediction of tunnelling-

induced damage in structures (Franzius (2003); Boscardin and Cording (1989); Potts

and Addenbrooke (1997); Goh and Mair (2011)). A comparison of different analytical

solutions for SSI due to tunnelling can be found in (Giardina et al. (2018)).
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To tackle the disadvantages of analytical and empirical methods, numerical models are

used to evaluate a broad range of possible outcomes, including non-linear responses (Bur-

land et al. (2002); Potts and Zdravković (2001)). Timoshenko beams founded on an

elastic continuum half-space with rigid links have been employed to infer the maximum

building strains based on a “direct strain-based approach” (Franza et al. (2020)). An

equivalent beam model has also been proposed for the assessment of tunnelling-induced

damage in masonry structures with pre-existing cracks (Acikgoz et al. (2021)). In parallel,

extensive multi-disciplinary research has been carried out to promote the development

of numerical models and design concepts capable of addressing the manifold complex

interactions and processes in urban tunnelling (Meschke (2018)). As a result, sophis-

ticated, process-oriented computational models have been developed to capture various

aspects of mechanised tunnelling, including SSI (Ninić et al. (2017a, 2014)). Advanced

computational models incorporating the non-linear behaviour of soil, buildings, and SSI,

following either a coupled or an uncoupled approach, have also been used for the predic-

tion of tunnelling- or settlement-induced damage to structures (Son and Cording (2005);

Giardina (2013); Yiu et al. (2017); Fargnoli et al. (2015); Boldini et al. (2018); Miliziano

and de Lillis (2019)). However, these advanced 3D computational models are typically

characterised by a high degree of detail at the cost of long computation times. To address

this issue, parallelisation strategies for High Performance Computing (HPC) have been

applied (Bui and Meschke (2020); Ninić et al. (2019)).

Another alternative solution to this problem is the substitution of computationally expen-

sive simulations with surrogate models trained offline (Freitag et al. (2018); Ninić et al.

(2017b)). This technique has recently been applied to assess tunnelling-induced damage

to structures (Obel et al. (2020); Cao et al. (2020a, 2022)). Firstly, Obel et al. (2020)

developed a meta-model-based approach to predict the non-linear structural response

to tunnelling-induced settlements, investigating two surrogate modelling techniques (re-

sponse surfaces and neural networks) to replace numerical models of a façade exposed

to analytically calculated surface settlements. Cao et al. (2020a) proposed an approach
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in which two decoupled Finite Element Method (FEM) models were developed to cal-

culate the non-linear response of the façade and the surface settlements resulting from

tunnel-SSI, and were then coupled using two types of Artificial Neural Networks (ANN)

in combination with Proper Orthogonal Decomposition (POD) to optimise TBM param-

eters and minimise the impact of tunnelling on the building. The authors extended their

approach to 3D building models with consideration of polymorphic uncertainty (Cao et al.

(2022)).

In the last decade, for large infrastructural projects that constitute complex multi-

disciplinary systems, the BIM framework has been increasingly employed due to sev-

eral features related to information management, processing, visualisation, and analysis

throughout the project life-cycle (Smith (2014); Daller et al. (2016)). A BIM can store

geometrical-semantic data about the project, such as ground, tunnels, above-ground in-

frastructure, and all parameters associated with these components, within its reposi-

tory (Koch et al. (2017)). Furthermore, BIM facilitates the processing of data to gen-

erate meaningful information that can be effectively presented and visualised, and ul-

timately used to support decision-making. To enable a seamless workflow, the data in

a BIM is organised in an object-oriented way, allowing links to be established between

objects (Eastman et al. (2008)). The final step in the BIM system is analysis.

One of the many benefits of the data obtained from a BIM is that it can be analysed

using a variety of methods developed over the years, which can be significant in the

decision-making process. For example, in urban tunnelling, a complex system requires

sophisticated analysis to identify a viable option for construction. BIM permits the

integration of complex models and effective analysis tools, enabling multiple scenarios

to be easily evaluated. This results in a powerful means of supporting decision-making,

particularly during the early design phases.
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1.2 The Gap in the Literature

BIM for tunnelling has been successfully linked to FEM simulations for applications in

both urban mechanised tunnelling and conventional tunnel excavation Ninić et al. (2017b,

2020); Alsahly et al. (2020); Ninić et al. (2021); Fabozzi et al. (2021), while Providakis

et al. (2019) used a BIM platform to process and visualise tunnelling-induced settle-

ments and the risks posed to existing infrastructure based on empirical solutions. Both

approaches, the assessment of design alternatives in BIM based on FEM simulations

or empirical models, have shown promising results. However, each has limitations: the

empirical model applied in Providakis et al. (2019) neglects SSI effects and non-linear

structural behaviour. The assessment of tunnel design in a BIM environment based on

FEM simulations is computationally expensive and may therefore limit the number of

design alternatives that can be studied. Other recently developed approaches for the

efficient investigation of building response to tunnelling and different design alternatives

have been implemented as stand-alone tools Cao et al. (2020a, 2022), and thus lack

integration with design platforms (e.g., BIM) for more holistic assessment.

In addition to the above gap, a further two gaps were identified in the literature. These

are presented below as follows:

• There is currently no comprehensive strategy for sampling model input parameters

when addressing complex tunnel–SSI problems computationally, including studies

that aim to predict the influence of individual model parameters on the overall

response of the system, such as in (Cao et al. (2020a, 2022); Obel et al. (2020);

Giardina et al. (2015); Son and Cording (2005)). Developing a foundational sam-

pling procedure is fundamental to establishing a robust modelling approach that

considers all possible configurations of the model.

• Building damage due to tunnelling has been investigated from various perspectives

in numerous studies, such as in (Burland and Wroth (1974); Burland et al. (1977);
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Rankin (1988); Charles and Skinner (2004); Boscardin and Cording (1989); Bur-

land (1997); Son and Cording (2005); Giardina et al. (2015); Cao et al. (2022)).

However, with the exception of Giardina (2013), none have addressed damage com-

prehensively, particularly across multiple buildings, by providing an overview of

the different damage assessment models and categorisation threshold distributions.

This includes the use of both localised criteria (e.g., crack development) and global

criteria (e.g., tilt (t), slope (s), horizontal tensile strain (εh,max), and Total Damaged

Area (Adamaged)). By conducting such a comprehensive comparative study, one may

draw insightful conclusions regarding the perceived levels of different damage types

for a single model, and for the entire dataset as a whole, thereby achieving a holistic

local–global assessment of building damage.

1.3 Research Question and Contributions

Research Question. How can a BIM-integrated surrogate-modelling framework be de-

veloped to provide rapid, yet accurate, predictions of tunnelling-induced building damage

while explicitly accounting for non-linear building response to SSI effects?

Scientific Contributions

1. Comprehensive sampling strategy: a sampling-with-constraints algorithm that

explores several hundreds feasible tunnel–soil–structure configurations (addresses

Gap 1).

2. Validated FEM dataset: high-fidelity simulations covering the sampled space,

publicly released for reproducibility.

3. Local–global damage framework: integration of crack-based, strain-based and

total-damaged-area criteria across multiple buildings (addresses Gap 2).
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4. Surrogate models: Principal Component Analysis (PCA)-Nu Support Vector

Regression (SVR) and ANN achieving between (1.5% − 9%) Relative Root Mean

Squared Error (rRMSE) relative to FEM results across all output variables, with a

speed-up of near-real-time.

5. BIM plug-in (Dynamo): a user-friendly tool that brings the surrogate into BIM,

enabling designers to assess damage scenarios in real time.

1.4 Thesis Aim

The overarching aim of this thesis is to develop, validate, and deploy a BIM inte-

grated surrogate-modelling framework that delivers rapid yet accurate predictions of

tunnelling-induced building damage, while explicitly capturing the non-linear response

arising from SSI. The framework will be released as an interactive Dynamo plug-in, en-

abling engineers to explore alternative tunnel–soil–building configurations in real time

and to make informed design decisions during the early stages of a project.

1.5 Thesis Objectives

• Model verification and validation (O1) Rigorously verify and validate high-fidelity

FEM models of tunnel–SSI, including (i) a shear wall under combined loading and

(ii) a masonry façade subject to settlement profiles.

• Constraint-aware sampling strategy (O2) Design and implement a sampling

scheme with explicit physical and numerical constraints, capable of generating sev-

eral tens of thousand feasible tunnel–soil–building scenarios per study.

• Generation of a validated FEM dataset (O3) Produce and release an openly

accessible dataset of ≈ 1000 3D FEM simulations of 2D façade that span the sam-
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pled parameter space and serve as ground truth for surrogate training.

• Local–global damage-assessment framework (O4) Formulate and code a uni-

fied set of local (crack- and strain-based) and global (e.g., total-damaged-area)

damage metrics for single and multiple buildings, calibrated against published ex-

perimental and field data.

• Global Sensitivity Analysis (SA) (O5) Quantify the influence of each tunnel,

soil, and structural parameter on the damage metrics, thereby guiding surrogate-model

architecture and input selection.

• Surrogate-model development and benchmarking (O6) Train, optimise, and

benchmark Machine Learning (ML) that reproduce FEM responses with as little

as ≤ 1.5% errors and achieve speed-ups considered near-real-time.

• BIM integration and real-time decision support (O7) Embed the best-performing

surrogate in a Dynamo-for-Revit plug-in that (i) auto-extracts geometric and ma-

terial data from BIM, (ii) returns damage predictions in under one second, and (iii)

visualises risk levels to support iterative tunnel-alignment and building-mitigation

studies.

1.6 Thesis Structure

• Literature Review (Chapter 2): Reviewing current research and methods across

various multidisciplinary aspects of the problem, including tunnelling-induced set-

tlements, building damage, SSI, numerical modelling, and ML.

• Methodology Overview (Chapter 3): Describing the sequence linking the

research objectives and highlighting the selected methods. This comprehensive

overview covers all steps from the identification of input parameters through to the

BIM implementation and application.
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• Numerical Modelling (Chapter 4): Detailed exploration of the numerical mod-

elling of building materials under combined loading conditions, including settle-

ments. In addition, the analytical validation of the SSI model is presented.

• Generation of Synthetic Dataset (Chapter 5): Building on the findings from

the literature while demonstrating the use of Python and the ABAQUS Python

Development Environment (APDE) to automate the generation of model scenarios

and the preparation steps for simulation execution.

• Evaluation of Local and Global Damage to Buildings – Case Study of

Numerical Simulations (Chapter 6): Presentation of local and global damage

assessments based on numerical case studies. This is followed by a discussion of the

differences between model outputs and the correlations between metrics. Further-

more, the overall distribution of damage across all simulations is illustrated, with

rebalancing techniques applied (e.g., performing SA and other statistical methods)

to enhance sparsely populated damage level regions. The entire damage assessment

process is automated using Python scripting to minimise human error.

• Machine Learning Training and Evaluation (Chapter 7): Using the dataset

from Chapter 6, the performance of various ML algorithms is evaluated.

• Integration into Building Information Modelling (Chapter 8): Implemen-

tation of the trained ML algorithm to evaluate building damage within BIM through

scripting. This includes the development of parametric input selection and predic-

tion of settlements and damage for visualisation purposes.

• Conclusion, Study Limitations, and Future Work (Chapter 9): Summaris-

ing the main research contributions, identifying the current limitations of the study,

and proposing directions for future research.
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Chapter 2

Literature Review

2.1 Tunnelling-Induced Settlements

Ground movements due to tunnelling are inevitable, as it is nearly impossible to create

a void by excavation and provide an infinitely stiff lining to fill it perfectly. Therefore, a

certain degree of ground deformation occurs at the depth of the tunnel. This, in turn,

triggers a chain of movements, resulting in settlements at the ground surface. These

settlements become more significant as the tunnel depth (Z0) decreases.

Tunnelling-induced settlements can be classified based on their primary causes: (i) settle-

ments due to ground loss during tunnel excavation, (ii) settlements resulting from tunnel

lining deformation (particularly relevant for large-diameter, shallow tunnels), and (iii)

settlements caused by post-construction soil consolidation (Guglielmetti et al. (2008)).

The first two are often associated with short-term, undrained conditions, while the third

typically occurs over longer periods.

Early investigations of tunnelling-induced settlements based on field observations are

notably found in the works of (Peck (1969); Attewell and Woodman (1982); Attewell et al.

(1986)). It was empirically determined that the shape of the settlement trough (in both
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2.1. TUNNELLING-INDUCED SETTLEMENTS

longitudinal and transverse directions) followed a form similar to a normally distributed

(Gaussian) curve, commonly referred to as the “Greenfield (GF)” in geotechnical terms.

Despite their widespread use, these methods were limited to a narrow set of parameters,

including tunnel depth, diameter, and the Volume Loss (VL) parameter.

Later investigations led to the development of numerous analytical models that incor-

porated additional parameters, improving the accuracy of settlement predictions. These

included the construction method, tunnel-driving details, initial stress state, radial dis-

placement due to ground loss, tunnel ovalisation, and the stress–strain behaviour of the

surrounding soil (Loganathan and Poulos (1998); Verruijt and Booker (1996)). Fur-

thermore, for different soil types, Franza and Marshall (2019) developed empirical and

semi-analytical expressions for sandy soils through experimental investigations, capturing

key effects from parameters such as the cover-to-diameter ratio and relative density. Ad-

ditionally, semi-analytical methods were developed for predicting ground movements in

multi-layered clayey soils, based on a modified version of Loganathan and Poulos (1998)

and combined with elastic equivalent theory (Cao et al. (2020b)).

With the development of computational methods, the use of FEM to predict tunnelling-

induced settlements has increased. FEM plays a key role in addressing some of the

deficiencies found in previous empirical and analytical methods.

For example, Ninić and Meschke (2015); Giardina et al. (2015); Yiu et al. (2017); Cao

et al. (2022) employed FEM to generate 2D and 3D tunnel–soil models, investigating

Tunnel Boring Machine (TBM) operational and design parameters such as slurry pres-

sure, grouting pressure, non-linear building behaviour, and time-dependent construction

processes. In addition to spatial and time analysis, FEM enables the modelling of com-

plex non-linear behaviours of the tunnel, soil, and their interaction. It permits accurate

representation of ground layers, groundwater tables, various material properties, and

more.

Later developments introduced the integration of ML for near real-time prediction of
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2.1. TUNNELLING-INDUCED SETTLEMENTS

tunnelling-induced settlements, thereby overcoming the computational expense and time-

intensive nature of FEM methods (Ninić et al. (2018, 2017a)).

2.1.1 The Volume Loss Method: An Overview

As previously mentioned, the settlement trough is generally expressed in terms of a Gaus-

sian distribution at a point source, for example, the centre of the excavation. Equation 2.1

shows the Gaussian function that can be used to describe the surface settlement trough,

as proposed by Peck based on studied case histories of field-observed data (Peck (1969);

O’Reilly and New (1982)).

Sv(x) = Sv,max exp

(
− x2

2i2x

)
(2.1)

Here, Sv(x) is the ground settlement function relative to the distance from the centreline

(m), Sv,max is the maximum settlement on the tunnel centreline (m), x is the perpendicular

distance to the tunnel centreline, and ix is the perpendicular distance from the tunnel

centreline to the point of inflection on the surface settlement trough in the transverse

direction (m). A typical settlement trough in the transverse direction is illustrated in

Figure 2.1. The change of slope occurs at the inflection point, which separates the regions

of Hogging and Sagging modes.

In clayey soils, it is assumed that the volume of surface settlements equals the ratio be-

tween the volume of excavated soil and the theoretical volume of tunnel per unit length,

which is denoted as VL (Potts and Addenbrooke (1997)). This assumption applies pri-

marily to the short-term undrained response of the ground. Based on this assumption,

and the assumption that the settlement profile can be described using a Gaussian curve,

the maximum settlement Sv,max can be calculated accordingly.
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Figure 2.1: Description of the settlement trough, building geometry, sagging, and hogging
zones.

Sv,max =

√
π

2

V L D2

4ix
(2.2)

where D is the tunnel diameter (m). It is common to find values of VL in the range of

0.2–5% according to various sources including (Mair et al. (1996); Marshall et al. (2012);

Burland et al. (2001a)). Similarly, the inflection point, where ix = K × Z0, defines

the trough width (m). Here, K is a parameter that typically ranges between 0.4 and

0.7 (O’Reilly and New (1982)).

As an example of a more advanced model, Chakeri and Ünver (2013) proposed an equa-

tion for estimating the maximum ground settlement (Sv,max) based on 3D FDM modelling

of a specific case study. Their formulation, referred to here as COM, was derived from

numerical and observed results and incorporates several Mohr-Coulomb strength param-

eters. The equation is expressed as follows:

Sv,max = AS where, (2.3)

A = 1.8825
D

Z0

and,

S = 1699.2

((
γsZ0 + σs − (c+ 0.3στ )

Es

)
(1− νs)(1− sinφ)

)0.8361
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2.1. TUNNELLING-INDUCED SETTLEMENTS

Where γs is the soil unit weight (kN/m3), Z0 is the tunnel depth (m), σs is the surface

surcharge (kPa), c is the cohesion (as a Mohr-Coulomb parameter) (kPa), στ is the

required face support pressure (kPa), Es is Young’s modulus of the soil (kPa), νs is

Poisson’s ratio of the soil, and φ is the angle of internal friction of the soil (◦). The unit

of S is (mm).

It is noted that this model is included to illustrate how more detailed empirical or numer-

ical formulations can be integrated into the proposed framework. Although Equation 2.3

was developed for a specific site using Mohr-Coulomb parameters, the overall approach

adopted in this study is not restricted to this or any other particular model. Instead, users

may adopt alternative settlement estimation methods (e.g., based on VL, field measure-

ments, or analytical expressions) depending on the project requirements, available soil

data, and design stage.

While parts of the study consider short-term undrained conditions (e.g., in early design

stages), the methodology presented is not confined to undrained behaviour alone. The

flexibility of the framework enables application across a range of soil types and loading

conditions, depending on the level of model complexity and data availability.

To capture the longitudinal variation in settlement, Hajjar et al. (2015) proposed the fol-

lowing expression, which complements the transverse and vertical components presented

above:

Sv(y)

Sv,max


exp

(
−(y − yface + iy)

2

(2i2y)

)
for y > yface − iy

1 for y ≤ yface − iy

(2.4)

Here, y is the distance from the tunnel face along the longitudinal axis (m), with y = 0 at

the face and positive values extending behind it in the direction of tunnel advance. yface

represents the distance from the tunnel entrance to the face (m), and iy is a width param-
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eter characterising the distance between the inflection point and the point of maximum

settlement (m).

By combining the transverse and longitudinal settlement profiles, the ground settlement

induced by tunnelling is obtained using Equations 2.1, 2.3 and 2.4. This yields the

following expression for the 3D settlement profile.

Sv(x, y, z) =
Sv(y)

Sv,max exp

(
− x2

2i2x

)


exp

(
−(y − yface + iy)

2

(2i2y)

)
for y > yface − iy

1 for y ≤ yface − iy

(2.5)

Therefore, Sv,max can be calculated either based on the VL parameter using Equation 2.2

(e.g., settlement method 1), or using the more comprehensive approach in Equation 2.3

(e.g., settlement method 2). Regardless of the chosen method, the resulting 3D settlement

profile is shown in Figure 2.2.
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Figure 2.2: 3D settlement profile induced by tunnelling.

To enable broader application of the developed tool within BIM, and in addition to meth-

ods 1 and 2, other solutions such as those described in Franza and Marshall (2019); Camós
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2.2. BUILDING DAMAGE

et al. (2016); Pinto and Whittle (2014) can also be implemented and made available to

users depending on the design requirements.

2.2 Building Damage

As described above, tunnelling excavations in soft ground result in ground movements

that can significantly affect buildings and infrastructure in urban environments. Hence,

accurately predicting both settlements and potential damage to structures is vital. These

considerations are essential during the planning, design, and construction phases of urban

tunnelling projects (Mair et al. (1996)).

This section presents a summary of design approaches commonly used for the prediction

of building damage due to tunnelling, covering definitions, risk evaluation, and various

damage categorisations, including the concept of critical strain (εcrit).

2.2.1 Definitions of Ground and Foundation Movements

A review of the literature by Burland andWroth (1974) uncovered a variety of inconsistent

symbols and terminology used to quantify building deformation. To address this, they

proposed a consistent set of definitions based on the displacements, either measured or

calculated, of discrete points on a building’s foundation. The variables used to quantify

building deformation, illustrated in Figure 2.3, are described below:

1. Horizontal strain (εh): Due to a change in building length ∆L (m), a positive

change in distance over the building length L (m) results in a positive average εh,

indicating tension, while a negative change indicates compression. Where:

εh =
∆L

L
(2.6)
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1                                 2                                3                                 4  

1                                 2                                3                                 4  

1                                 2                                3                                 4  

(a) Definition of settlement, (Sbv,max), relative settlement, (∆Sbv), rotation (θf )
and angular strain (αf ).

1                                 2                                3                                 4  

1                                 2                                3                                 4  

1                                 2                                3                                 4  

(b) Definition of relative deflection (∆) and deflection ratio Deflection Ratio (DR)

1                                 2                                3                                 4  

1                                 2                                3                                 4  

1                                 2                                3                                 4  

(c) Definition of tilt (t) and relative rotation (angular distortion) (β).

Figure 2.3: Definition of foundation movement (inspired by the works of Burland et al.
(1977)).

2. Settlement (Sbv,max) (m or mm): This term implies a vertical displacement of the

building foundation.

3. Relative or differential settlement (∆Sbv): The relative vertical displacement

between two points along the building foundation. The maximum relative settle-

ment is denoted as ∆Sbv,max. Where:
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2.2. BUILDING DAMAGE

∆Sbv = Sbv @ node 1 − Sbv @ node 2 (2.7)

Dividing this by the distance between the nodes, L12 (m), yields the value of the

slope s.

4. Rotation (θf ): Describes the change in angle of a line segment between two adja-

cent points at the foundation or ground level.

5. Angular strain (αf ): The angular strain is measured between two consecutive

building segments. Where:

αf @ 2 =
∆Sbv, 12

L12

+
∆Sbv, 23

L23

(2.8)

where 1, 2, and 3 are three consecutive points along the building foundation.

6. Relative deflection (∆): The displacement of a point relative to the line connect-

ing two reference points on the foundation, with the sign convention similar to that

of αf .

7. DR: This is the amount of relative deflection ∆, divided by the segment’s length

L, given by:

DR =
∆

L
(2.9)

The sign convention follows that of the ∆ and αf definitions.

8. Tilt (t): Describes the rigid body rotation of a structure’s end, or a well-defined

part of it, where:

t =
∆Sbh

H
(2.10)
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2.2. BUILDING DAMAGE

where ∆Sbh is the relative horizontal displacement between two horizontally aligned

points along the height of the building, and H is the building height (m).

9. Angular distortion (Relative rotation) (β): The rotation between two refer-

ence points relative to tilt t, given by:

β = s− t (2.11)

It is important to note that the definitions provided above apply solely to in-plane defor-

mations and do not account for behaviour in 3D space. While the approach proposed by

Burland and Wroth (1974) is widely adopted and recommended, Rankin (1988) suggests

that a larger number of observation points and detailed information on the foundations

and superstructure are required. However, in practice, such information is rarely avail-

able, and interpretation can be challenging.

2.2.2 Evaluation of Risk of Damage

The assessment of the risk of damage to buildings typically follows a three-stage proce-

dure, as employed in the construction of major projects such as the Jubilee Line Exten-

sion, the Channel Tunnel Rail Link, and the Crossrail Project (Mair et al. (1996)).

Stage one: Preliminary assessment: At this preliminary phase, it is practical to

assume that the foundations of the buildings conform to the shape of the settlement

trough. The evaluation of the critical deformation parameters is based on the slope of

the surface trough and the magnitude of Sv,max.

Stage two: second-stage assessment: In the second stage, a simple beam representing

the building is placed on a GF site, and the portion of settlement occurring beneath the

building is used to measure the maximum tensile strain value (εh,max), thereby obtaining

the corresponding potential damage category (Mair et al. (1996)). In practice, however,
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2.2. BUILDING DAMAGE

due to SSI effects, the actual damage is often less severe than the category initially

estimated.

Stage three: Detailed evaluation: For buildings classified in the second-stage assess-

ment as being at high risk of damage, a detailed evaluation must be carried out. This

includes the numerical modelling of buildings using FEM, incorporating geometrical de-

tails and non-linear material properties. More accurate predictions of tunnelling-induced

settlements that account for SSI effects Mair et al. (1996) mark the point where the

investigation mainly focuses. This involves examining buildings subjected to excessive

movements due to tunnelling, which may potentially lead to collapse. At this stage,

predicting structural behaviour using advanced numerical modelling and ML becomes

inevitable.

2.2.3 Categories of Damage

Numerous studies have investigated building damage using various observation points.

Burland et al. (1977) described the level of building damage based on approximate crack

width, as outlined in Table 2.1.

Burland (1997) highlights the importance of the dividing line between categories 2 and 3.

Previous studies of several case histories show that damage of category 2 and below can

result from a variety of causes which are not always related to ground movements (e.g.,

shrinkage or thermal effects). The identification of such causes is usually very difficult

and frequently it results from a combination of things. The causes are typically easier to

identify if damage exceeds Category 2 and it is often associated with ground movements,

implying the importance of division between these categories.

In addition, Rankin (1988) proposed criteria for the assessment of building damage using

slope s and settlement Sbv,max, as shown in Table 2.2. They recommend that structures

falling under categories 3 and 4, and in some cases, even category 2, should undergo
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2.2. BUILDING DAMAGE

Table 2.1: Classification of visible damage to walls with particular reference to ease of
repair of plaster and brickwork or masonry (adjusted from (Burland et al. (1977))).

Degree of
damage

Description of typical damage+ (Ease of re-
pair is underlined)

Approximate
crack width
(mm)

1. Very
slight

Hairline cracks of less than about 0.1 mm are
classed as negligible. Fine cracks which can easily
be treated during normal decoration. Perhaps
isolated slight fracture in the building. Cracks in
external brickwork are visible on close inspection.

< 1*

2. Slight Cracks easily filled. Re-decoration probably
required. Several slight fractures showing inside
of the building. Cracks are visible externally and
some re-pointing may be required externally to
ensure weather tightness. Doors and windows
may stick slightly.

< 5*

3. Moder-
ate

The cracks require some opening up and can be
patched by a mason. Current cracks can be
masked by suitable linings. Repointing of
external brickwork and possibly a small amount
of brickwork to be replaced. Doors and windows
sticking. Service pipes may fracture. Weather
tightness is often impaired.

5 to 15* or a
number of cracks
≥ 3

4. Severe Extensive repair work involving breaking-out and
replacing sections of walls, especially over doors
and windows. Windows and door frames are
distorted, the floor sloping noticeably, walls
leaning or bulging noticeably, and some loss of
bearing in beams. Service pipes disrupted.

15 to 25* but
also depends on
number of cracks

5. Very se-
vere

This requires a major repair job involving partial
or complete re-building. Beams lose bearing,
walls lean badly and require shoring. Windows
were broken with distortion. The danger of
instability.

usually > 25*
but depends on
number of cracks

+ In assessing the degree of damage account must be taken of its location in the
building or structure.

∗ Crack width is only one aspect of damage and should not be used on its own as a
direct measure of it.

a detailed evaluation. This emphasises the importance of considering multiple factors,

including soil and groundwater conditions, the structural elements of the building, and

any pre-existing deformations, in order to determine the likelihood of further movements

and the structure’s tolerance to them.
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Table 2.2: Typical values of maximum building slope and settlement for damage risk
assessment (adjusted from (Rankin (1988))).

Risk
Cate-
gory

Maximum
Slope s of
Building

Maximum
Settlement
of Building
(mm)

Description of Risk

1. Less than 1/500 Less than 10 Negligible: superficial damage un-
likely.

2. 1/500 to 1/200 10 to 50 Slight: Possible superficial damage
which is unlikely to have structural
significance.

3. 1/200 to 1/50 50 to 75 Moderate: Expected superficial
damage and possible structural
damage to buildings, possible dam-
age to relatively rigid pipelines

4. Greater than
1/50

Greater than 75 High: Expected structural damage
to buildings. Expected damage to
rigid pipelines, possible damage to
other pipelines.

Furthermore, Skinner and Charles (2004), using tilt (t), suggested criteria for acceptable

values of t in low-rise dwellings, developed through case histories. These criteria apply to

the overall tilt of a building and are based on the performance of two-storey structures.

This, in turn, may be more conservative for single-storey buildings and less so for three-

storey buildings. The proposed indicative values for acceptable tilt are presented in

Table 2.3.

2.2.4 Concept of Limiting Tensile Strain Method

Through a series of extensive tests on masonry panels, Burland and Wroth (1974) es-

tablished that visible cracks are associated with a well-defined average value of tensile

strain. This has been designated as the critical tensile strain (εcrit), measured over a

gauge length of at least one metre. Extending this framework, Boscardin and Cording

(1989) developed the concept of differing levels of tensile strain by analysing seventeen

case records of structural damage caused by excavation-induced subsidence across a va-

riety of building types. They demonstrated that the categories of damage presented in
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Table 2.3: Indicative values for t of low-rise housing (adjusted from (Skinner and Charles
(2004))).

Classification Tilt (t) Comment
Design limit
value

1/400 The maximum acceptable differential settlement
across the building is related to the design limit
value for tilt. If the building is likely to tilt more
than this limit value, ground treatment or deep
foundations may be required.

Noticeability 1/250 The point at which the tilt of a building becomes
noticeable will depend on the type and purpose of
the building, and the powers of observation and
perception of the occupiers. The tilt of low-rise
housing typically is noticed when it is in the region
of 1/250 to 1/200.

Monitoring 1/250 When tilt is noticed it is advisable to make some
measurements to confirm that the building has
tilted. If the measured tilt is greater than 1/250,
monitoring should be carried out to determine
whether the tilt is increasing.

Remedial ac-
tion

1/100 Where tilts of this magnitude are measured, or the
measured rate of increase of tilt indicates that this
degree of tilt will be exceeded, some remedial ac-
tion should be taken. This is likely to include re-
levelling the building, perhaps by grouting or un-
derpinning and jacking.

Ultimate limit 1/50 If tilt reaches this level, the building may be re-
garded as in a dangerous condition, and remedial
action either to re-level or demolish the building
will be required urgently.

Table 2.1 could be broadly related to ranges of the limiting tensile strain (εlim). These

categorisations were further detailed in Table 2.4, underlining the table’s significance in

linking expected building deformations to the severity of resulting damage.

2.2.4.1 Evaluating Strain in a Simple Beam

Timoshenko (1957) describes an expression for the total mid-span deflection ∆ of a cen-

trally loaded beam, accounting for both bending and shear stiffness, as follows:
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Table 2.4: Relationship between category of damage and limiting tensile
strain (εlim) (after (Boscardin and Cording (1989))).

Category of dam-
age

Normal degree of
severity

Limiting tensile
strain ϵlim (%)

0 Negligible 0 - 0.05
1 Very slight 0.05 - 0.075
2 Slight 0.075 - 0.15
3 Moderate* 0.15 - 0.3
4 to 5 Severe to very severe > 0.3
* Note: Boscardin and Cording (1989) describe the damage correspond-
ing to εlim in the range 0.15 - 0.3% as ’moderate to severe’. However,
none of the cases quoted by them exhibit severe damage for this range
of strains. There is therefore no evidence to suggest that tensile strains
up to 0.3% will result in severe damage.

∆ =
P

48
· L

3

EI

[
1 +

18

L2
· I
H

· E
G

]
(2.12)

where P is the centrally applied point load at mid-span (N), E is Young’s modulus (MPa),

G is the shear modulus (MPa), I is the second moment of area of the building material

and geometry (m4), and H is the beam height or depth (m).

Equation 2.12 can be rewritten in terms of the DR and the maximum bending strain

εb,max, as:

∆

L
= εb,max ·

L

12h′

[
1 +

18

L2
· I
H

· E
G

]
(2.13)

where εb,max is the maximum strain due to bending and h′ is the distance from the neutral

axis to the edge of the beam in tension (m). In this context, h′ = H for hogging and

h′ = 0.5×H for sagging.

Similarly, for shear strain εd,max, Equation 2.12 becomes:

∆

L
= εd,max

[
1 +

L2

18
· H
I

· G
E

]
(2.14)
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where εd,max is the maximum strain due to shear.

By substituting εb/d,max with εlim in Equations 2.13 and 2.14, the limiting values of the

deflection ratio (DR) for cracking in simple beams under bending and shear are defined.

It becomes apparent that for any given value of εlim, the limiting DR is a function of

the beam’s aspect ratio (L/H), the ratio of bending to shear stiffness (E/G), and the

position of the neutral axis, which influences the second moment of area I.

2.2.4.2 Influence of Horizontal Strain

Boscardin and Cording (1989) incorporated the horizontal tensile strain into the analysis

through simple superposition, assuming that the deflected beam is subject to uniform

extension over its depth. Therefore, the resultant extreme fibre flexural strain (εb,r) is

given by:

εb,r = εb,max + εh,max (2.15)

The resultant shear strain can be evaluated using Mohr’s circle of strain, given by:

εd,r = εh,max

(
1− ν

2

)
+

√
ε2h,max

(
1 + ν

2

)2

+ ε2d,max (2.16)

where ν is the Poisson’s ratio of the building material. Thus, the maximum tensile strain

value is the larger of the two values obtained from Equations 2.15 and 2.16. By knowing

the beam’s dimensions (L and H), and for a given value of DR, and εh,max, it is possible

to evaluate the value of maximum tensile strain (εb,r or εd,r) in terms of h′, E/G, and ν.

The resulting value of (εb,r or εd,r) can then be used with Table 2.4 to assess the potential

damage to buildings due to tunnelling.

In addition to the previously discussed tables, Boscardin and Cording (1989) applied
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deep beam theory to develop a series of curves correlating εh,max, β, and cracking damage

levels for masonry structures. Similarly, Burland (1997) presented comparable curves

relating DR and εh,max, drawn from Table 2.4, to predicted damage levels. Their research

included case studies from tunnel construction, shallow mines, and braced excavations.

They concluded that most observed damage levels fell within the predicted ranges set by

these curves.

Figure 2.4: Damage curves derived from case studies categorising damage based on β
and εh,max according to (Boscardin and Cording (1989)).

All presented damage categorisation frameworks are fundamental to the evaluation of

building damage. They offer diverse criteria to contextualise the level of induced damage

and enable comparisons between various approaches, incorporating both local and global

aspects of structural response.

2.3 Soil-Structure Interaction

As previously indicated, assessing building damage often involves the simplified assump-

tion that buildings are infinitely flexible i.e., they offer no resistance to soil deformation.

This assumption is commonly applied in preliminary and second-stage damage assess-
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ments, where the building is presumed to conform entirely to the ground surface defor-

mation (GF site). As a result, deformation parameters such as DR and (εb,r or εd,r)

tend to be overestimated, often categorising the predicted damage as more severe than

in reality.

The role of building stiffness in mitigating induced settlement is briefly addressed. For

instance, in the case of the Manson House in London, Frischmann et al. (1994) demon-

strated that building stiffness can reduce differential settlement (∆Sbv) beneath the struc-

ture due to the resistance provided by the superstructure. This highlights the importance

of considering SSI in damage assessments.

Numerous studies have investigated the SSI phenomenon using a range of analytical,

numerical, and experimental approaches. One of the earliest is the Winkler (1867) model,

which treats the soil as a set of discrete, independent springs. While simple, it fails to

account for soil continuity. This limitation was addressed by the Vlasov and Leont’ev

(1966) model, which introduced a more representative two-parameter elastic foundation

that captures both normal and shear subgrade stiffness. This model assumes the building

behaves as an elastic beam resting on a semi-continuous medium.

Building on this work, several other models were developed to conduct parametric studies

or incorporate additional variables, such as different loading types or material property

variation with depth (Teodoru and Muşat (2008); Vallabhan and Das (1991)). Acikgoz

et al. (2021) proposed an equivalent cracked beam model to overcome limitations of

elastic simplification. However, this method requires prior knowledge of crack location

and depth, which makes it unsuitable for use in scenarios where pre-tunnelling conditions

are unknown.

Subsequent studies expanded on this foundation modelling concept to include more real-

istic scenarios. For instance, Teodoru and Muşat (2008) and Vallabhan and Das (1991)

incorporated depth-dependent properties and different loading types. However, these

analytical approaches often require simplifications that limit their applicability. To over-
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come this, Acikgoz et al. (2021) proposed a cracked-beam model that better simulates the

in-service condition of buildings. Still, it depends on prior knowledge of crack location

and depth-information rarely available in pre-tunnelling scenarios.

With the advent of modern computational tools, finite element and finite difference meth-

ods have become increasingly common for SSI studies (Yiu et al. (2017); Jenck and Dias

(2004); Cheng et al. (2007); Teodoru (2009b)). A landmark contribution was made by

Potts and Addenbrooke (1997), who developed design curves based on extensive 2D FEM

parametric analyses of beams with varying stiffness relative to soil. These curves enable

practitioners to account for structural stiffness when predicting deformation troughs, sig-

nificantly improving the reliability of damage assessments.

This methodology was further refined by Franzius et al. (2004), who included additional

parameters such as building self-weight, interface behaviour, and foundation depth. Their

results remained consistent with the original design curves, reinforcing their practical

relevance.

In parallel, experimental studies using centrifuge modelling Ritter et al. (2017); Lo-

ganathan et al. (2000); Franza et al. (2020) have been essential in validating these nu-

merical methods. By including complex foundation geometries and pile–soil interactions,

these experiments help bridge the gap between theoretical predictions and real-world

behaviour.

2.3.1 Modified Vlasov Method

Building on the analytical work of Vallabhan and Das (1991), Teodoru (2009b) developed

a custom FEM tool named Euler Bernoulli Beam on Two Parameter Elastic Foundation

(EBBEF2p), based on a two-parameter elastic foundation model. In this method, the

beam is discretised into multiple line elements of length (l), with two nodes per element.

The elements are connected only at their nodes, and all forces are applied at these discrete
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points.

Prior to structural analysis, the stiffness of the soil must be established. Using variational

calculus, Vlasov’s parameters are defined as:

knorm =

∫ Hs

0

Es(1− νs)

(1 + νs)(1− 2νs)

(
dϕ

dz

)2

dz, (2.17)

kshear =

∫ Hs

0

Es

2(1 + νs)
ϕ2dz (2.18)

where knorm and kshear (N/m
3) are the normal and shear subgrade stiffnesses, Hs is the in-

fluence zone depth in the soil medium (m), and ϕ(z) describes vertical deflection variation

with depth:

ϕ(z) =

sinh

[
γ

(
1− z

Hs

)]
sinh γ

(2.19)

γ is a dimensionless shape parameter, determined iteratively using:

(
γ

Hs

)2

=
1− 2νs
2(1− νs)

·

∫ +∞
−∞

(
dSbv

dx

)2

dx∫ +∞
−∞ S2

bvdx
(2.20)

The computed values of knorm and kshear are then used in stiffness matrices:

[ke] =
EI

l3



12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2


(2.21)
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[kf ] =
l knorm
420



156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2


(2.22)

[kt] =
kshear
30l



36 3l −36 3l

3l 4l2 −3l −l2

−36 −3l 36 −3l

3l −l2 −3l 4l2


(2.23)

The global system is then assembled:

([ke] + [kf ] + [kt]){de} = {Se} − {Re} (2.24)

where [ke] is the stiffness matrix of the flexural beam element (N/m), [kf ] is the stiffness

matrix of the elastic foundation (first subgrade) (N/m), and [kt] is the stiffness matrix

of the rigid base (second subgrade) (N/m), {de}T = {dv1 , dθ1 , dv2 , dθ2} (m, rad) are the

nodal DOFs. {Se}T and {Re}T (N and N·m) are the nodal loads and distributed load

vectors, respectively:

{Re}T =

{
ql

2
,
ql2

12
,
ql

2
, −ql

2

12

}
(2.25)

The formulation for EBBEF2p presented above can be directly implemented in BIM as

a plug-in (Dynamo node) using Python. It is used to compute the settlement profile

resulting from SSI. In the current implementation, the SSI effect is considered for the

response of individual buildings to tunnelling-induced settlements, without accounting

for mutual effects between nearby buildings, which are assumed negligible in the case of

detached structures.
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This model has been implemented as a Python-based Dynamo plug-in within BIM, al-

lowing automated estimation of SSI settlement profiles. However, it currently assumes

independent building responses and does not account for group interaction effects, which

are assumed negligible for detached structures.

The limitations of this implementation, including the inherent assumptions of this method

and computational scalability, are further discussed in Section 4.

2.3.2 The Relative Stiffness Approach

A widely referenced method for estimating the influence of structural stiffness on tunnelling-

induced settlement is the set of design curves developed by (Potts and Addenbrooke

(1997)). These were derived from a series of two-dimensional FEM parametric studies

investigating the response of elastic beams on non-linear elastic–plastic soil, calibrated to

resemble London Clay. The studies varied key parameters such as tunnel depth, beam

width, eccentricity (beam position relative to the tunnel centreline), and stiffness ratios

between the structure and the ground.

The resulting design curves quantify the reduction in settlement due to building stiff-

ness by comparing it to the settlement profile of a ground-free (GF) site. This enables

a simplified adjustment of the predicted deformation and associated damage levels, mit-

igating the overestimation commonly associated with the flexible-structure assumption.

As such, they are particularly useful in early-stage assessments and have been widely

cited in practice-oriented research.

However, Potts and Addenbrooke (1997) also cautioned that the curves should be ap-

plied judiciously, as they are based on a specific range of conditions. Their use outside

the bounds of the original parametric studies, such as for different soil types, complex

geometries, or foundation systems, may lead to unreliable predictions. In such cases,

especially where buildings are structurally sensitive or higher damage categories are an-
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ticipated, more rigorous, structure-specific analyses using numerical modelling techniques

are recommended.

The relative stiffness approach is reviewed here for background context. It is not adopted

in the present study, which instead applies a modified Vlasov-based finite element method

for SSI analysis (see Section 2.3.1).

2.4 Numerical Modelling of Masonry Building

Masonry structures are inherently well-suited to resist gravitational loads due to their

compressive strength. However, they remain vulnerable under extreme loading conditions

such as seismic excitation or differential settlements, particularly when compared to more

ductile structural systems like steel or Reinforced Concrete (RC) frames. The modelling of

masonry structures presents challenges due to the material’s composite and brittle nature.

To address this, several strategies have been developed, each operating at different levels

of scale and fidelity. D’Altri et al. (2020) categorised these strategies into four groups,

in line with the earlier classification proposed by Lourenço et al. (1995) for the first two.

These include:

• Block-based Models (Micro-modelling): This approach explicitly models bricks,

mortar, and joints, capturing local interactions and heterogeneity. While it allows

detailed simulation of crack initiation and propagation, its high computational cost

limits its practical use to small-scale panels or substructures. Studies such as Roca

et al. (2010) employed this approach to replicate experimentally observed crack

paths under monotonic loading, showing good agreement but highlighting scale

limitations.

• Continuum Models (Macro-modelling): Here, masonry is idealised as a ho-

mogeneous material with averaged properties derived from tests or homogenisation.
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The simplification allows for coarser meshing and efficient computation, making it

suitable for global behaviour assessment. However, as shown by Lourenco (1996),

these models often struggle to accurately capture localised cracking patterns with-

out additional refinements or embedded discontinuity models.

• Geometry-based and Macro-Element Models: These models treat walls or

panels as structural macroelements with simplified mechanics, relying heavily on

geometry and empirical calibration. In macro-element modelling, the building is

reduced to a set of rigid blocks or macro-panels, each governed by phenomenolog-

ical behaviour. This trade-off in accuracy allows for rapid assessment of seismic

vulnerability, as seen in historical building assessments (Lagomarsino et al. (2013)).

Advanced modelling of masonry structures often requires the consideration of material

and geometric non-linearities. As outlined by Bathe et al. (1975), these analyses are

performed using incremental-iterative procedures, which are classified as either non-linear

static or non-linear dynamic:

• Non-linear Static Analysis: In this load-controlled, time-independent analy-

sis, displacements or forces are applied incrementally. Common solution algorithms

include Newton-Raphson, Quasi-Newton, Arc-Length, and Riks methods. The gov-

erning equation is:

[K(u)] · {u} = {Fext} − {Fint(u)} (2.26)

where [K(u)] is the displacement-dependent stiffness matrix (N/m), {u} is the nodal

displacement vector (m), {Fext} is the external load vector (N), and {Fint(u)} is the

internal force vector (N). This method has been widely used in pushover analyses

of masonry walls (Giardina (2013); Lourenco (1996)).

• Non-linear Dynamic (Time History) Analysis: This approach captures in-

ertia and damping effects during transient loading events. It is particularly useful

when convergence in static procedures fails due to high non-linearity. The general
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form of the dynamic equilibrium equation is:

[M(u, u̇)] · {ü}+ [C(u, u̇)] · {u̇}+ [K(u)] · {u} = {F (t, u, u̇)} (2.27)

where [M(u, u̇)] is the mass matrix (kg), [C(u, u̇)] is the damping matrix (N·s/m),

{ü} is the acceleration vector (m/s2), {u̇} the velocity vector (m/s), and {F (t, u, u̇)}

the external force vector (N).

Dassault Systèmes Simulia Corp (2021) and others have demonstrated the effective-

ness of this method in overcoming convergence issues in simulations of out-of-plane

wall collapse.

2.4.1 Smeared Cracking Concepts

In continuum-based models, cracking in masonry is often represented using the smeared

cracking approach introduced by (Rashid (1968)). This formulation distributes cracking

across finite elements through modified stress-strain relationships, allowing for crack de-

velopment without remeshing. Unlike discrete cracking models, the smeared approach

retains mesh topology and avoids bias in crack orientation.

Smeared crack models are broadly categorised into fixed and rotating crack models. In

fixed crack models, the crack orientation is determined at initiation and remains constant

throughout the analysis. However, this can lead to stress-locking or unrealistic stress

rotations. In contrast, rotating crack models allow the crack orientation to evolve with

the principal strain direction, offering improved numerical stability and more accurate

simulation of multi-directional cracking. This evolution was pivotal in advancing the use

of continuum models in masonry simulation, as highlighted by Rots and Blaauwendraad

(1989), who demonstrated the superior performance of rotating crack models in capturing

diagonal cracking in shear-dominated masonry walls.

Despite their popularity, smeared cracking models require careful calibration of post-peak
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softening behaviour to avoid mesh dependency and convergence issues. These limitations

continue to be a topic of ongoing research, especially in modelling cyclic or dynamic

responses.

2.4.2 The Concrete Damaged Plasticity Model

The non-linear material behaviour of the masonry façade in this thesis is modelled us-

ing the Concrete Damaged Plasticity (CDP) model available in ABAQUS. This choice

aligns with the adopted Macro-modelling approach, in which the composite behaviour of

masonry is represented as a homogeneous continuum and damage is smeared throughout

the material rather than explicitly modelled at joints. Alternative constitutive models

for masonry include the Micro-modelling of bricks and mortar joints as distinct mate-

rials Lourenco (1996), the discrete element method Pulatsu et al. (2016), and damage-

plasticity models tailored specifically for masonry-like materials (Addessi et al. (2002)).

While these approaches offer increased accuracy in capturing localised failure modes,

they require extensive calibration and computational cost, which can be prohibitive in

large-scale façade simulations. The CDP model, originally formulated for concrete but

now widely adopted for quasi-brittle materials including masonry Genikomsou and Polak

(2017); Saloustros et al. (2014), provides a robust and computationally efficient frame-

work that meets the requirements of this study. Its availability as a built-in model in

ABAQUS further facilitates its implementation and integration within the broader FEM

workflow developed in this thesis. Unlike smeared cracking concepts, the CDP model in

ABAQUS is a continuum, plasticity-based damage model tailored for concrete-like mate-

rials. It assumes that tensile cracking and compressive crushing are the primary failure

mechanisms.

Under uniaxial tension, the stress–strain response is linear up to the peak tensile stress,

σt, beyond which Micro-cracking initiates. This is followed by strain softening and lo-

calised deformation. Similarly, under uniaxial compression, the response is initially linear
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until the yield stress σc, after which strain hardening continues up to the ultimate com-

pressive stress σcu. This is followed by a softening response that reflects the progressive

degradation of the material. While idealised, this behaviour aligns with experimental

findings (Kaushik et al. (2007); Pluijm (1992)).

When unloading occurs from the softening branch of the stress-strain curve, the mate-

rial exhibits a reduction in stiffness compared to its initial elastic modulus Einit. This

degradation is quantified using two scalar damage variables, dt for tension and dc for

compression. These are functions of plastic strain (εplt , ε
pl
c ), temperature Θ, and other

field variables fi:

dt = dt(ε
pl
t ,Θ, fi); 0 ≤ dt ≤ 1, (2.28) dc = dc(ε

pl
c ,Θ, fi); 0 ≤ dc ≤ 1. (2.29)

The damage variables range from 0 (undamaged material) to 1 (complete failure). The

stress–strain relationships for the damaged material under uniaxial loading conditions are

defined as:

σt = (1− dt)Einit

(
εt − εplt

)
(2.30) σc = (1− dc)Einit

(
εc − εplc

)
(2.31)

Post-failure behaviour is defined using cracking and inelastic strain. The cracking strain

is:

εckt = εt − εel0t, where εel0t =
σt
Einit

(2.32)

The inelastic (crushing) strain in compression is:

εinc = εc − εel0c, where εel0c =
σc
Einit

(2.33)

These definitions allow the CDP model to represent degradation and post-peak material

softening under complex loading conditions.
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2.4.3 Plasticity Parameters of the Concrete Damaged Plasticity

Model

In addition to the uniaxial stress–strain curves, the CDP model in ABAQUS requires the

specification of at least five additional plasticity parameters. These include:

- The dilation angle, ψCDP , in the (p–q)CDP plane, which is model-dependent and can

vary significantly (Genikomsou and Polak (2015)). - The flow potential eccentricity,

eCDP , a small positive number that controls the asymptotic approach of the hyperbolic

flow potential. - The ratio of initial equibiaxial compressive yield stress to initial uniaxial

compressive yield stress, σ0b/σ0c. - The parameter kCDP , defined as the ratio of the second

stress invariant on the tensile meridian q(TM) to that on the compressive meridian q(CM) at

initial yield, for a given pressure invariant pCDP . This is defined under the condition that

the maximum principal stress is negative (σc < 0), consistent with the convention that

tension is positive and compression is negative in ABAQUS. The recommended range

for kCDP is 0.5 < kCDP < 1. - The viscosity parameter, µCDP , used for viscoplastic

regularisation of the concrete constitutive equations in ABAQUS Standard.

Additional parameters such as temperature and predefined field variables are optional

and may be included where necessary.

ABAQUS recommends default values of eCDP = 0.1, σ0b/σ0c = 1.16, kCDP = 2/3, and

µCDP = 0. However, parametric studies are advised to determine whether alternative val-

ues provide a more accurate fit to experimental results for specific applications (Rainone

et al. (2023); Behnam et al. (2018); Silva et al. (2021)).

43



2.4. NUMERICAL MODELLING OF MASONRY BUILDING

2.4.4 Stress-Strain Relationship and the Characteristic Length,

h

In models with extensive unreinforced regions, such as wall-bearing structures, the tensile

behaviour described earlier can lead to unreasonable mesh sensitivity. However, the

widely accepted approach proposed by Hillerborg et al. (1976) introduces fracture energy

Gf(c or t)
as a material parameter, which significantly mitigates this issue. This concept

defines the energy required to open a unit area of crack and is rooted in principles of

brittle fracture mechanics.

Notably, Lourenco (1996); Feenstra (1993); Rots (1988) introduced a characteristic length

parameter, h, to normalise the stress–strain relationship. This parameter, when used

with Gf(c or t)
, enables the formulation of a mesh-objective post-failure response, leading

to convergent results regardless of mesh refinement. The parameter h generally depends

on the element type, shape, size, and integration scheme. According to Feenstra (1993),

it can be computed using:

h = ah
√
Ae = ah

(
nξ∑
ξ=1

nη∑
η=1

det(J)wξwη

) 1
2

(2.34)

where wξ and wη are the Gaussian integration weights, and ξ, η are isoparametric coor-

dinates of integration points. The factor ah equals 1 for quadratic elements and
√
2 for

linear elements, as reported by (Rots (1988)). Estimates for h, obtained through trial-

and-error fitting to discrete crack models, can be made with sufficient accuracy depending

on the mesh type and integration order. These estimates are presented in Table 2.5.

Table 2.5: Recommendations for estimating the value of h.

Element Order Element Type Equivalent Length h

Linear
Tetrahedral le
Hexahedral le

√
2

Quadratic
Tetrahedral 0.5le

√
2

Hexahedral le
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Where le represents the length along an element edge assuming that the elements have

an aspect ratio of 1:1 (m or mm).

According to Lourenco (1996), incorporating h into the constitutive equation for material

in compression results in the following formulation:

σ(εinc ) =



σi + (σc − σi) ·

√
2εinc
εp

− (εinc )2

ε2p
, for εinc ≤ εp

σc + (σm − σc) ·
(
εinc − εp
εm − εp

)2

, for εp < εinc ≤ εm

σr + (σm − σr) · exp
(
m · ε

in
c − εm
σm − σr

)
, for εinc > εm

(2.35)

with

m = 2

(
σm − σc
εm − εp

)
(2.36) εm =

(
75

67

Gfc

hσc

)
+ εp (2.37)

Here, it is assumed that all stress values in the inelastic law are determined from the peak

as: σi =
1
3
σc, σm = 1

2
σc, and σr =

1
10
σc. The equivalent inelastic strain, εp, corresponds

to the peak compressive strength. If experimental data is unavailable, this value can be

assumed as 2× 10−3 (Lourenco (1996)).

To prevent snap-back behaviour at the constitutive level, the following condition must

be satisfied; otherwise, the strength limit must be reduced:

εm ≥ σm
Einit

+ εp (2.38) σm =

(
75GfcEinit

67h

) 1
2

(2.39)

The uniaxial tensile stress–inelastic strain relationship proposed by Feenstra (1993) is

employed. Two types of softening laws are commonly used: linear and exponential.

These are described as follows:
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σ(εckt ) =



σt

(
1− εckt

εtu

)
, for linear softening

σt exp

(
−ε

ck
t

εtu

)
, for parabolic softening

where εtu = ksoft
Gft

hσt

(2.40)

Here, ksoft = 2 for linear softening and ksoft = 1 for parabolic softening, representing the

internal damage parameter.

If the condition in Equation 2.41 is not satisfied, the strength must be reduced according

to Equation 2.42:

h ≤ ksoft
GftEinit

σ2
t

(2.41) σt =

(
ksoftGftEinit

h

) 1
2

(2.42)

ABAQUS also offers two alternative models to simulate the brittle behaviour of materials

based on a stress–displacement rather than a stress–strain response. In this approach,

the fracture energy Gft can be defined directly as a material property. The cracking

displacement ut, which marks the complete loss of tensile strength, is given by:

ut =
2Gft

σt
(2.43)

Alternatively, σt can be defined directly in tabular form as a function of the associated

Gft . The post-cracking response is assumed to follow a linear loss of strength.

2.4.5 Material Modelling and Sensitivity Analysis

To ensure accurate simulation of building damage, particularly in masonry façades, it

is crucial to identify which modelling parameters most significantly influence the pre-

dicted structural response. While the preceding sections introduced material constitutive

models, such as the CDP model and fracture energy-based formulations, these rely on
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numerous input parameters, whose effects may vary with structural configuration and

loading conditions. Therefore, a systematic SA is essential to quantify the influence of

key parameters, including material properties, geometric characteristics, and boundary

conditions. Such analysis enhances model robustness and supports the prioritisation of

parameters for calibration and data collection. To achieve this, appropriate sampling

strategies are employed to enable comprehensive and efficient exploration of the param-

eter space, with consideration for both computational cost and memory allocation.

2.5 Sensitivity Analysis and Sampling

SA is a fundamental tool for quantifying the influence of input parameters on model

outputs, particularly in complex non-linear simulations such as those encountered in

structural and damage modelling. In the context of masonry façades, which often involve

material and geometric uncertainties, SA provides insight into which parameters most

significantly affect structural performance predictions.

Various global SA methods have been established in the literature. The Morris method Mor-

ris (1991) is widely used for screening purposes due to its computational efficiency, offering

a way to estimate both the mean and standard deviation of Elementary Effect (EE). More

comprehensive, Variance-based (VB) methods, such as Sobol indices Saltelli et al. (2008),

enable the decomposition of output variance into first-order, higher-order, and interac-

tion effects, but typically require a large number of simulations. As noted by Saltelli

et al. (2004), the trade-off between accuracy and computational cost must be considered

carefully when selecting an appropriate SA method for large-scale simulations.

Recent studies have also explored the integration of ML techniques into the SA frame-

work. RF regression, for instance, has been used as a surrogate model to approximate

the input–output relationship and extract feature importance (Antoniadis et al. (2021);

Baptiste et al. (2017); Menze et al. (2009)). This approach has the advantage of capturing
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complex non-linear interactions while maintaining robustness against overfitting, making

it especially suitable for high-dimensional input spaces. Feature importance can be eval-

uated via permutation techniques or through variance reduction metrics at decision tree

splits.

2.5.1 Sampling Methods

The performance of any SA technique depends not only on the sensitivity index but also

on the quality of the sampling. A well-distributed sample ensures that the input space

is comprehensively explored, thus enabling more robust conclusions about parameter

importance.

Several sampling techniques are reported in the literature. The One-At-A-Time (OAAT)

method is the simplest, varying each input parameter individually while keeping others

fixed. Although systematic, OAAT becomes inefficient for high-dimensional models and

may miss interaction effects.

Latin Hypercube (LH) sampling, by contrast, is a stratified technique that maximises

the coverage of the input space with relatively few samples. Each input parameter’s

range is divided into sstrat equally probable intervals, and samples are drawn such that

each interval is represented once. This ensures that all portions of the parameter domain

are sampled without clustering, making LH particularly effective in complex simulations

where sample efficiency is important (Saltelli et al. (2008); Obel et al. (2020); Gamra

et al. (2024)).

2.5.2 Application to Structural Modelling

Despite the increasing availability of SA tools, their application to structural and dam-

age modelling,particularly in the context of masonry façades,remains limited. Most

48



2.6. MACHINE LEARNING ALGORITHMS

studies either focus on analytical sensitivity indices or explore surrogate modelling in-

dependently (Zhao and DeJong (2023)). The combined application of LH sampling with

RF-based SA has not yet been widely explored in this domain.

To address this gap, the present study adopts a hybrid strategy that combines LH sam-

pling with RF regression to evaluate parameter influence. This approach balances com-

putational efficiency with the ability to capture non-linear and interaction effects, making

it suitable for assessing complex damage responses in Macro-scale structural simulations.

2.6 Machine Learning Algorithms

As previously introduced in Section 2.5.1, RF was used as a tool for SA through feature

importance ranking. However, in this section, the focus shifts to its application as a

predictive machine learning model.

Artificial Intelligence (AI) is increasingly regarded as a powerful alternative to classical

modelling techniques, including advanced numerical methods such as FEM and FDM. AI

is the branch of computer science where machines and software systems simulate human-

like intelligence. A general overview of the AI family tree is presented in Figure 2.5.

Among the various categories, ML is found to be the most widely adopted over the

past decade and a half in engineering applications, especially in geotechnics, as shown

in (Cao et al. (2022); Obel et al. (2020); Ninić et al. (2017b, 2024)). This includes

ANN, Support Vector Regression (SVR) (a kernel-based regression model), and Random

Forest Regression (RFR) (an ensemble-based method using decision trees), all of which

have been applied successfully in predicting tunnelling-induced ground movements and

assessing building damage (Mahmoodzadeh et al. (2022); Hou et al. (2022)).
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AI
(simulating hu-
man intelligence)

ML

Computer
Vision

Robotics

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Deep Learning

ANNSVR RFR

CNN

RNN

GRU

LSTM

ANN

Detection
& Matching

Segmentation

Image
Processing

Reconstruction

Automation

UAV

Legged
Robots

Legend of different models:
SVR: Support Vector Regression
ANN: Artificial Neural Network
RFR: Random Forest Regression
CNN: Convolutional Neural Network
RNN: Recurrent Neural Network
GRU: Gated Recurrent Unit
LSTM: Long Short-Term Memory
UAV: Unmanned Aerial Vehicle

Figure 2.5: Family tree of AI types including ML, deep learning, computer vision and
robotics (inspired by the work of (Huang et al. (2021))).
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2.6.1 Artificial Neural Networks

Among the commonly used models in geotechnical engineering is the ANN algorithm Ninić

et al. (2018) due to its strong predictive performance, which often surpasses other mod-

els in similar applications (Cao et al. (2022); Obel et al. (2020)). The ANN algorithm

attempts to replicate the human brain’s learning mechanisms by recognising patterns

across large, highly non-linear datasets. It establishes a relationship between the input

parameters Xi (input neurons) and output Yi (output neurons) via a network of hidden

neurons, each connected by weights w, as shown in Equation 2.44.

Yi(Xn, w) = f

(
mneurons∑

j=1

(wjk +Ψj)f

(
n∑

i=1

(wijXi +Ψi)

))
(2.44)

The activation function f() transforms the weighted inputs and biases before passing

them to the next layer. The weights wij and wjk connect input-to-hidden and hidden-to-

output layers, respectively, while Ψ represents the bias term.

The training process adjusts the weights w to minimise the error Err between the pre-

dicted output Yi and target value T , across mpattern training patterns. The weights are

updated via gradient descent as follows:

wkiter = wkiter−1 +∆w = wkiter−1 − λ
∂Err

∂w
(2.45)

where

Err =

mpattern∑
j=1

(Yi − Tj)
2 (2.46)

The model quality depends on the architecture (e.g., number of hidden layers and neu-

rons), and the learning process parameters such as learning rate λ and iteration count.
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A typical structure is illustrated in Figure 2.6.

Figure 2.6: Structure of a 4-layer ANN for predicting building strain due to tunnelling
(O1 to Om corresponding to Yi(Xn, w)).

2.6.2 Data Preprocessing and Training Optimisation

Data Normalisation or Standardisation: To eliminate the influence of input magni-

tudes and dimensional differences, it is necessary to perform either normalisation Ninić

et al. (2018) or standardisation (z-score) (Hou et al. (2022)).

For normalisation, inputs and outputs are mapped to [0.1, 0.9]. For a parameter Xi, the

normalised value is given by:

Xi, norm =
Xi −Xi,min

Xi,max −Xi,min

(
X∗

i,max −X∗
i,min

)
+X∗

i,min (2.47)

Where Xi,min and Xi,max are the original variable limits, and X∗
i,min = 0.1, X∗

i,max = 0.9.

For standardisation, values are scaled to have a mean of 0 and standard deviation of 1:

Xi,z =
Xi − µXi

σXi

(2.48)
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Where µXi
and σXi

are the mean and standard deviation of Xi.

Data Splitting: Data splitting divides the dataset into training, testing, and validation

sets. The training set fits the model, the test set tunes hyperparameters and prevents

overfitting, and the validation set assesses performance on unseen data.

Different ratios have been used in the literature:

• Ninić et al. (2018): 80% training, 15% testing, 5% validation.

• Obel et al. (2020); Cao et al. (2020a): 80% training, 10% testing, 10% validation.

• Cao et al. (2020a): 70% training, 15% testing, 15% validation.

• Hou et al. (2022): 90% training, 10% testing (including half for validation).

Ultimately, the optimal ratio is case-dependent and may require testing different config-

urations to achieve better accuracy. Thus, multiple ratios should be considered during

ML model training.

Model Optimisation Hyperparameter optimisation (HPO):

In essence, every strategy seeking the best solution (model optimisation) can be used

for tuning the ML hyperparameters. Various methods exist for model optimisation, in-

cluding model-free strategies like grid search and random search, as well as those that

use statistical models to predict optimal solutions, such as Bayesian optimisation meth-

ods (Feurer and Hutter (2019)). Additionally, stochastic methods like the Particle Swarm

Optimisation (PSO) have been applied in this context (Ninić et al. (2024)).

Grid search is the most basic HPO method, using a full factorial design. It evaluates the

Cartesian product of a finite set of hyperparameter values, testing all possible combina-

tions. The drawback is its computational cost, as it requires a large number of evaluations

to explore the full search space. Random search, by contrast, explores the space by ran-

domly sampling configurations within a limited budget. It can sometimes outperform
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grid search by allocating more evaluations to potentially influential hyperparameters,

although it may still miss the optimal solution.

Bayesian Optimisation (BO) is a more advanced technique for global optimisation of

hyperparameters. It operates iteratively, using a probabilistic surrogate model and an

acquisition function to select the next point for evaluation. With each iteration, the

surrogate model is refined based on all previous observations, improving its predictions.

A common acquisition function in BO is the Expected Improvement (EI) (Feurer and

Hutter (2019)). For PSO, the optimisation process begins with a population (swarm) of

particles that each represent a potential solution. Each particle has a velocity vij and a

position posij. The particle’s position is updated in each iteration according to its best-

known position pospbestij and the global best position posgbestij found by the swarm (Ninić

et al. (2024)).

2.6.3 Validation of Model Generalisation

kfold cross-validation is a widely used technique in ML to assess a model’s ability to

generalise to unseen data. This method ensures that performance accuracy is not the

result of overfitting. The dataset is divided into kfold equal parts; the model is trained on

kfold − 1 folds and validated on the remaining one. This process is repeated so that each

fold serves as the validation set once. Kohavi (1995) concluded that moderate values of

kfold between 10 and 20 strike a good balance by reducing variance at the cost of slightly

increased bias. Conversely, smaller values of kfold (e.g., 2–5), particularly with small

datasets, tend to increase variance due to instability in the training subsets.

2.6.4 Performance Metrics for Model Evaluation

Performance metrics play a fundamental role in evaluating the predictive accuracy and ro-

bustness of supervised ML models, particularly in regression tasks relevant to tunnelling-
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induced soil displacements and building damage prediction. Rather than relying on in-

dividual predictions, model performance is typically assessed across the entire dataset

using error-based metrics.

In the literature, a variety of performance metrics have been employed to assess model

suitability for geotechnical applications. For instance, Ninić et al. (2018) and Ninić

et al. (2024) adopted the Relative Root Mean Squared Error (rRMSE) (%) to facilitate

comparison across datasets with different scales, emphasising its advantage in normalising

the root mean square error by the mean of observed values. Similarly, Coefficient of

Determination (R2) was used by Obel et al. (2020) and Shreyas and Dey (2019) to

measure the proportion of variance explained by the model, a common choice in structural

damage prediction tasks due to its intuitive interpretability. Tang and Na (2021) further

incorporated the correlation coefficient Pearson Correlation Coefficient (R) to examine

linear dependency between predicted and observed values.

Despite the widespread use of these metrics, each has distinct strengths and limitations.

For example, the Mean Absolute Error (MAE), defined as:

MAE =
1

N

N∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (2.49)

provides a direct measure of average error (in original units) but lacks sensitivity to large

deviations. Conversely, the Mean Squared Error (MSE) and its root form, Root Mean

Squared Error (RMSE), defined respectively as:

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2 (2.50)

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi)2 (2.51)

penalise larger errors more heavily due to squaring, making them suitable when outlier
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sensitivity is desirable, a choice reflected in Shreyas and Dey (2019) when prioritising

safety in structural deformation estimates.

The coefficient of determination, R2, is commonly defined as:

R2 = 1−
∑N

i=1(Yi − Ŷi)
2∑N

i=1(Yi − µYi
)2

(2.52)

and remains a staple due to its intuitive percentage-based interpretation, though its

sensitivity to data variance can be misleading for skewed datasets.

In contrast, the relative root mean square error, rRMSE, offers a scale-independent mea-

sure:

rRMSE (%) =


√

1
N

∑N
i=1(Yi − Ŷi)2

µYi

× 100 (2.53)

and has been shown to provide more consistent comparability across heterogeneous con-

ditions in tunnelling studies (Ninić et al. (2024)).

Lastly, the Pearson correlation coefficient R, calculated by:

R =

∑
(Xi − µXi

)(Yi − µYi
)√∑

(Xi − µXi
)2
∑

(Yi − µYi
)2

(2.54)

was used by Tang and Na (2021) to assess the strength of linear relationships, particularly

when evaluating how well input features predict observed displacements.

In summary, while multiple performance metrics are available, their selection should be

based on the modelling objective. For tunnelling-related building damage, R2 is favoured

for model fit assessment, whereas rRMSE (%) ensures fair comparison across varying

magnitudes. The literature suggests that combining multiple metrics provides a more

comprehensive evaluation than relying on a single criterion (Obel et al. (2020); Ninić

et al. (2018); Gamra et al. (2024)).
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2.7 Summary

In this chapter, various components that constitute the methodological foundation of this

research are explored. The elements discussed above, when used in conjunction, enable

the achievement of the aims and objectives of this thesis. Below is a summary of the

methods and concepts addressed:

• Tunnelling-induced settlements: A review of historical and contemporary approaches

for estimating ground movements, including the Volume Loss (VL) and Chakeri &

Onver method (COM) methods. Definitions of key empirical parameters such as

settlement trough width ix and the settlement coefficient K were also discussed.

• Building damage: Definitions of ground and foundation movements, categorisation

of damage levels, and stages of damage risk assessment. The Limiting Tensile

Strain Method (LTSM) and its reliance on horizontal strain εh were introduced for

evaluating structural deformation.

• SSI: Analytical and numerical modelling approaches, including the Modified Vlasov

model implemented via the Euler Bernoulli Beam on Two Parameter Elastic Foun-

dation (EBBEF2p) computer code, and a Relative Stiffness-based approach using

FEM. The iterative estimation of the interaction factor γ and associated limitations

were reviewed.

• Numerical modelling of masonry: Modelling strategies including Micro- and Macro-

modelling, discrete and continuum methods, and non-linear material behaviour.

Special emphasis was placed on the Concrete Damaged Plasticity (CDP) model and

the role of mesh-objective constitutive modelling using the characteristic length h.

• Sensitivity Analysis (SA) and Sampling: A critical overview of global SA ap-

proaches, highlighting the importance of efficient sampling techniques such as Latin

Hypercube (LH) sampling. Emphasis was placed on the use of machine learning-
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based models, particularly Random Forest (RF) regression, for identifying influen-

tial parameters in high-dimensional structural simulations.

• Machine Learning (ML) algorithms: Focus on supervised learning models such as

Artificial Neural Networks (ANN), including preprocessing steps like data normali-

sation, standardisation, and splitting. Model training strategies were also reviewed,

including hyperparameter tuning, generalisation via cross-validation, and evalua-

tion through standard performance metrics.

These topics collectively form the basis of the methodology, which is presented in detail

in the following Chapter 3.
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Chapter 3

Methodology Overview

As briefly mentioned in the introduction chapter, the aim is to enable real or near-real-

time assessment of tunnelling-induced building damage within a BIM environment, as

illustrated in Figure 3.1. This approach is implemented as a user-friendly plug-in for

industry-standard BIM design software, allowing versatile integration of various analysis

and visualisation tools.

Initially, a parametric tunnel information model is developed using state-of-the-art BIM

design tools, offering a user-friendly interface to control tunnel design parameters. The

prediction of ground settlements based on these parameters is then implemented using

empirical solutions such as (Potts and Addenbrooke (1997); Chakeri and Ünver (2013);

Hajjar et al. (2015); Tan (2019)). The effects of SSI between the overlying building

and the induced ground movements are then evaluated using the Vlasov model (Teodoru

(2009a)).

Finally, the damage induced in buildings due to SSI is estimated through simulation-based

meta-models. These are developed using the best-performing ML algorithm, trained on

a synthetic dataset generated via a high-fidelity FEM model of a masonry structure

accounting for non-linear material behaviour. The dataset is further optimised through
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advanced optimisation algorithms such as BO or PSO.

BIM

Visualisation

Design Model Plug-in

Settlements
    Method 1
    Method 2

Risk Level Meta Model

ML (ANN) Numerical Simulations

Tunnel

Soil Profile

Scenarios

Geometry

Material

Position

Geometry
Design paramteres 
- Tunnel, Soil, Building

EBBEF2p (SSI)

Sv

Sb,vDamage

Figure 3.1: Concept for real-time damage assessment within BIM.

The FEM models form the basis of the methodology, integrating parameters such as

building length (L), percentage of openings (O), eccentricity relative to tunnel axis (e),

and settlement magnitude (Sv,max). Structural responses are evaluated in terms of induced

damage and classified using common damage scales such as the five-level classification

from Boscardin and Cording (1989), ranging from “negligible” to “severe.”

The trained meta-models are embedded in the BIM environment and use input param-

eters from tunnel design, surface settlements (Sv,max) accounting for SSI, and building

geometry and material characteristics. Both settlement and risk levels are then visualised

within the BIM interface (Figure 3.1, left: “Design Model”).

Compared to existing approaches that use complex coupled SSI models for damage pre-

diction Cao et al. (2020a, 2022), this method achieves similar predictive capabilities by

integrating simpler empirical and analytical methods widely accepted in practice. This

enables a more flexible and practical implementation within BIM environments.

The methodology is inspired by model design and analysis strategies proposed in the

literature Giardina et al. (2015); Cao et al. (2022); Obel et al. (2020), and is divided into

two main stages (illustrated in Figure 3.2):

1. Preprocessing phase: Identification of input parameters, numerical modelling
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and validation (i.e., Verification and Validation (VV)), and generation of synthetic

datasets.

2. Postprocessing phase: Evaluation of local and global damage risks, sensitivity

analysis (SA), ML model training and deployment, and implementation within the

BIM environment.

Input
Identifica-
tion and
Numerical
Modelling

Generating
Synthetic
Dataset

Building
Damage
and ML
Training

BIM Imple-
mentation

Integrating Parameters Into the Modelling Environment

Preprocessing Phase Postprocessing Phase

Figure 3.2: Principal stages of methodology towards research goals.

3.1 Input Identification and Numerical Modelling

The methodology commences with the identification of input parameters, followed by the

development and validation of both numerical and analytical models. These include FEM

and analytical SSI approaches. The FEM simulations are validated against experimental

data, while the SSI models are compared with observations from real-world field data,

providing two complementary validation pathways. The following steps are undertaken

to generate rich and diverse scenarios of different buildings exposed to tunnelling:

• Analysing real cases, experiments, and models for validation of the analytical and

numerical approaches. This includes studies such as Lourenco (1996); Teodoru

(2009b); Giardina (2013); Frischmann et al. (1994), which provide comprehensive

data on real projects and model scales relevant to tunnelling-induced damage.
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• Developing accurate modelling strategies to capture building behaviour under tun-

nelling effects, particularly accounting for non-linear structural response. Notable

strategies are highlighted by (Giardina (2013); Yiu et al. (2017)).

• Identifying relevant input parameters for the adopted modelling strategy, includ-

ing parameter domains and increments. This selection is supported by system-

atic literature reviews through multiple search engines (Scopus, NUSearch, Google

Scholar, etc.) using targeted keywords and Boolean operators. Notable references

include (Giardina et al. (2015); Mair et al. (1996); Franzius (2003); Son and Cording

(2007); Potts and Addenbrooke (1997)).

• Recognising correlations between parameters and physical constraints, such as those

explored by Ghiassi and Milani (2019); Mair et al. (1993) for tunnel and material

parameter interactions, and Hillerborg et al. (1976); Mair et al. (1993) for limits

on allowable settlement (e.g., Sv,max). Additionally, numerical stability consider-

ations, including snap-back effects at the constitutive level, are addressed based

on (Lourenco (1996); Feenstra (1993)).

3.2 Generating the Synthetic Dataset

Following the identification of input parameters, a model prototype (Model 0) is devel-

oped using FEM, incorporating an appropriate material model and optimising the FEM

solver setup. Through Python scripting, the model becomes parametrically adjustable,

accommodating changes in input parameters based on the sampled points. This enables

the autonomous generation of multiple tunnel–soil–building configurations, essential for

training ML algorithms, which require large datasets for learning and generalisation,

further discussed in Section 7.

The procedure, including input identification and model generation, is illustrated in the

schema in Figure 3.3, detailing each step in chronological order up to model execution.
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Parameters Investigation Com-
prising (Scopus, Web of Science,

Google Scholar, and more):

Increments
(Continuous
or Discrete)

Range
(Max.

and Min.)

Parameter
Identi-
fication

Conditions
(Numerical)

Correlations
(Physical)

Generating the Sam-
ple space using Inputs

Settlements Genera-
tion (e.g., VL method)

Material Models Gen-
eration (e.g., CDP)

Building Settlements
(SSI) (e.g., EBBEF2p

computer code)

Numerical
Modelling
and VV

Model
Prototype
(Model 0)

Model Assembly (Parametrically-
Adjustable) - ABAQUS

Simulation (in Batch) Execution (e.g.,
using the HPC facility at the UoN)

Figure 3.3: Preparation stage (pre-analysis) schema of the methodology.
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The schema in Figure 3.3 summarises the preparation phase. A detailed breakdown of

its components is provided below.

Parameter Investigation: This process involves collecting and coordinating the input

parameters through the following tasks:

• Parameter Identification: Extracting relevant modelling parameters via research

databases (e.g., Scopus, Google Scholar), guided by established works in the field.

• Range (Max and Min): Determining operational limits for each parameter.

• Increments (Continuous or Discrete): Establishing sampling resolution for

parameters based on whether they are continuous or discrete.

• Conditions (Numerical): Ensuring numerical stability of models, referencing

governing conditions (see Section 2.4.2).

• Correlations (Physical): Establishing logical relationships between parameters

(e.g., physical or structural constraints) as will be discussed in Section 5.1.

Generating Sampling Space: By using LH sampling as the preferred sampling pro-

cedure (as discussed in Section 2.5.1), a broad range of different scenarios is generated.

This ensures comprehensive coverage of building configurations with respect to tunnel

and soil properties, facilitating the development of a reliable and robust dataset for ML

model training.

Generating Numerical Model Components: The approach integrates empirical,

analytical, and numerical methods, as described below:

• Settlements Generation: (Sv,max and Sv(x)) are computed using the methods

described in Section 2.1.1, including the VL and/or COM approaches.
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• Material Model Generation: Non-linear material models are created using the

CDP model in ABAQUS to simulate the behaviour of masonry buildings, as detailed

in Section 2.4.2.

• Building Settlement (SSI) Generation: SSI effects are calculated using the

EBBEF2p computer code of Teodoru (2009b), as presented in Section 2.3.1.

Numerical Modelling and VV: In parallel with the generation of the sample space, a

rigorous VV process is carried out for the CDP model. The selected models are based on

key findings from the literature to ensure a comprehensive validation across fundamental

aspects of the VV process. The simulation results are compared against benchmark data

and experimental observations, as detailed below:

• Mesh-Independence Studies: In line with the recommendations of Lourenco

(1996); Feenstra (1993), mesh objectivity is verified through post-failure analysis

using multiple mesh sizes. This is achieved by correctly implementing the charac-

teristic length, h, at the constitutive level, as discussed in Section 2.4.4.

• Shear Wall under Combined Loading Conditions: To validate the CDP

model at a Macro level, a full-scale shear wall model is assessed under combined

loading. Validation is performed through comparisons of global Force-Displacement

(F-D) curves and visual damage patterns up to failure (Lourenco (1996)).

• Scaled Façade Subject to Tunnelling-like Subsidence: The experimental wall

test of Giardina (2013) is used to validate the behaviour of a structure undergoing

hogging-type settlement. This step serves as the closest verification scenario to

tunnelling-induced damage in buildings. The model is evaluated in terms of global

façade displacements and localised damage such as cracking.
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3.2.1 Integration to Model Prototype

Model Prototype (Model 0): Following the previous steps, a base model is developed

in ABAQUS, incorporating the CDP material model for the masonry façade and the

EBBEF2p-derived settlement profile as the foundation boundary condition. Addition-

ally, the model prototype includes geometric features such as door and window openings

to enhance realism. This prototype serves as the foundation for generating numerous

samples, with scenarios parametrically adjustable through Python scripting, including:

• Adjustable building-related parameters, such as geometry and material properties.

• Adjustable tunnel and soil parameters to account for varying applied settlements

at the building foundation.

Assembling for a Unified Model: As previously mentioned, all components are inte-

grated into a unified, parametrically adjustable model using the APDE environment in

ABAQUS. This setup accommodates the full range of input parameters from the sample

space, allowing for automated generation of various scenarios, as will be illustrated in

Section 5.

Simulations Executions: The generated input files are executed in batch mode using

the HPC facility at the UoN, which provides the computational power necessary to sim-

ulate a large number of models. This step is critical for building the extensive dataset of

input–output relationships required for training the ML algorithms.
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3.3 Post-Analysis Evaluation Using Damage Metrics,

Machine Learning, and Building Information Mod-

elling

Following the pre-analysis and execution stages, the evaluation of damage and subsequent

post-analysis begins. This process is schematically represented in Figure 3.4. During

this stage, various outputs from the FEM simulations are collected and linked to their

corresponding sampled input models. These data are then used for postprocessing tasks,

including SA and ML training.

The schema of Figure 3.4 illustrates the steps involved in the evaluation stage, includ-

ing the preparation (pre-training phase) of ML models. A detailed description of each

component is provided below:

Extraction of Field Outputs: Field outputs such as nodal displacements and max-

imum principal tensile strains are extracted from the simulations and utilised within

the damage assessment framework, following strategies similar to those used in building

damage studies (Giardina et al. (2015); Son and Cording (2005)).

Assigning Damage: Building damage is categorised based on the classification schemes

presented in Section 2.2.3, allowing the assessment of both global and local damage levels.

ML Initiation: As a pre-training requirement, all simulation data are cleaned, stan-

dardised, and split into training and testing datasets, as discussed in Section 2.6.

Optimisation and Generalisation of ML: Model training is enhanced using hyper-

parameter optimisation methods. To assess the generalisation of each trained model,

cross-validation techniques such as kfold are used, providing insight into how well the

model performs on unseen data (see Section 2.6).

Assessing Performance: The trained models are evaluated using metrics including the
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Extraction of Field Out-
puts (e.g., node dis-

placements, strains, etc.)

Assigning Dam-
age Output to
Each Model

Evaluating
Damage

(Global and
Local Aspects)

ML Initiation (e.g., Data
Collection, Standard-
isation, and Splitting)

Enhanced Training of
ML with Optimisation

Assessing
Generalisa-
tion (Kfold)

Assessing Performance
with R2 and rRMSE)

Tolerant
Errors?

Integrating ML to BIM
for Design Assessment

yes

No

Reevaluate

Figure 3.4: Assessment stage (post-execution) of FEM models (back-end of the method-
ology).
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coefficient of determination (R2) and the relative root mean square error (rRMSE), both

described in detail in Section 2.6.4.

Integrating ML into BIM: Once the desired prediction accuracy is achieved, the

trained ML model is integrated into a BIM environment (e.g., Revit) via Dynamo’s

parametric scripting. This enables real-time assessment of tunnelling-induced building

damage within the design model.

3.4 Summary

In summary, the methodology aims to develop a comprehensive framework for the assess-

ment of building damage due to tunnelling using ML algorithms, implemented within a

BIM platform. To summarise, the methodology is devised into:

• Pre-execution phase, including the generation of numerous FEM scenarios as-

sembled using ABAQUS ABAQUS Python Development Environment (APDE), by

means of:

– Systematic Verification and Validation (VV) of numerical and analytical mod-

els used for subsequent dataset generation and damage analysis (presented in

Chapter 4)

– Effective sampling procedures of the identified input parameters, including

considerations for parameter domain, increments, and physical and numerical

restraints. (presented in Chapter 5)

– A combination of empirical (e.g., VL), analytical (e.g., EBBEF2p), and nu-

merical (e.g., CDP) models. (presented in Chapter 5)

– Model batch executions using the HPC facility at the UoN. (presented in

Chapter 5)
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• Post-execution phase, including the assessment of building damage, training of

ML algorithms, and integration into BIM, by means of:

– Using a developed damage evaluation criterion to assess building damage on

the various FEM models. (presented in Chapter 6)

– Data processing of input–output correlations, model training, and evaluation.

(presented in Chapter 7)

– BIM implementation and in-tool scenario execution for near real-time predic-

tions of building damage. (presented in Chapter 8)

These steps ensure the achievement of efficient and reliable analysis of building damage

within the BIM platform, substituting the need for expert and advanced modelling tech-

niques or complex integration of various components constituting this multidisciplinary

problem. It also minimises potential human errors during data input, simulation execu-

tion, or manual damage assessments.
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Chapter 4

Numerical Modelling

Numerical models play a vital role in predicting material non-linear behaviours. In the

context of masonry structures, advanced numerical tools are essential for simulating build-

ing performance from the initial loading stages through to complete material failure, that

is, from the onset of cracking to the total loss of strength. As previously discussed in

Section 2.4, masonry can be modelled using Micro-modelling techniques, which involve

representing individual units, mortar, and interfaces, capturing the material’s heterogene-

ity at the cost of high computational demand. On the other hand, Macro-modelling as-

sumes masonry as an anisotropic composite material, relating average strains and stresses.

This approach offers a balance between accuracy and computational efficiency, making it

more suitable for large-scale simulations. It is phenomenological and relies on material

parameters derived from large-scale masonry tests conducted under homogeneous stress

conditions.

Nonetheless, both Micro- and Macro-models face significant challenges due to the in-

trinsic properties of masonry, Including the formulation of robust numerical algorithms

and the satisfactory representation of inelastic behaviour (Lourenco (1996)). Modelling

buildings subjected to tunnelling-induced settlements requires a focus on global structural

behaviour Lourenco (1996); Giardina (2013); Yiu et al. (2017), making Macro-modelling
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the most appropriate method in such cases.

In this section, the VV process based on benchmark data is conducted. As described

in Section 3.2, the VV investigation begins with the verification of mesh dependency

through characteristic length h, where the post-failure regime becomes objective under

mesh refinement, ensuring consistent post-peak behaviour regardless of mesh size (see

Section 2.4.4).

This is followed by the modelling of a large-scale experimental wall under excessive in-

plane deformations. In this case, both tension and compression regimes are activated,

along with the plasticity parameters of the CDP model. This broader range of input

helps assess the model’s ability to predict masonry behaviour under combined loading

conditions. Lastly, an experimental masonry façade with openings is modelled to un-

dergo settlements similar to those produced by tunnelling activities (hogging mode in

this particular case). The model is validated using the CDP-calibrated parameters, and

its accuracy is assessed based on both global and local measures of damage, using previ-

ously discussed criteria (Section 2.2.2) and newly developed benchmarks.

4.1 Mesh Independence Study

In the analysis of post-peak behaviour of strain-softening materials, achieving mesh-

independent results is essential to ensure that numerical simulations yield objective and

reliable outcomes. This requirement has led to the introduction of an equivalent length,

h, into the stress–strain formulation, allowing the analysis to remain consistent under

mesh refinement. The concept of incorporating h has been widely discussed in the lit-

erature since the work of Bazant and Oh (1983), where the importance of objectivity in

relation to mesh size was first formally addressed. Achieving mesh independency ensures

that computed material responses, such as fracture energy, Gf(c or t)
, remain constant

regardless of mesh size, thereby enhancing the replicability and reliability of structural
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simulations. To demonstrate the role of h in preserving energy consistency during mesh

refinement, a simple bar loaded in uniaxial tension is presented, drawing parallels with

studies that verified this behaviour in tension Crisfield (1982) and compression (Feenstra

and Borst (1996); Lourenco (1996)).

Consider the bar depicted in Figure 4.1, which measures 80 mm thick, 240 mm wide, and

200 mm in height. The bar features a weakened central section with a strength reduced

by 10% compared to the edge elements, to trigger localisation. The material properties

for both the edge and core sections are as follows: the elastic modulus and Poisson’s ratio

are identical for both regions, with E = 10000 MPa and ν = 0.2, respectively. The tensile

strength, Ft, is 1 MPa for the edge and 0.9 MPa for the central section. The fracture

energies, Gft , are 0.029 and 0.026 N.mm/mm2, respectively.

The bar’s base is fully constrained against translational movement, while the top is re-

stricted from horizontal displacement and subjected to a uniaxial tensile force along the

top edge. Displacements are monitored at a designated point located at the top of the

bar.

(a) Bar geometry (including edge and
central sections), applied force and
boundary conditions.

(b) Distribution of εt (principle) contours lines
at end of simulation.

Figure 4.1: Assembly of bar in tension with an applied maximum displacement of 0.05
mm.

The analysis is performed following a two-phase procedure. Initially, the boundary con-
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ditions are activated to ensure the stability of the model. Next, a tensile force is incre-

mentally applied until complete failure of the bar. Shell elements (ABAQUS type S8R),

using quadratic integration for increased accuracy, are employed throughout. Mesh sizes

of 20, 10, and 5 mm are considered to evaluate the mesh independency of the post-peak

responses.

The first set of analyses is conducted without adjusting the equivalent length, h, in

the stress–strain relationships, contrary to the recommendations provided in Table 2.5,

to illustrate high mesh sensitivity. Subsequently, h-adjusted models are analysed (i.e.,

h = mesh size), using variable h in Equations 2.37 and 2.40. Lastly, ABAQUS’s stress-

displacement model is tested (as described in Section 2.4.4) to assess its built-in energy

regularisation capability.

The analysis is carried out using a general static step with the following settings: NLgeom

off, maximum number of increments = 100000, initial increment size = 0.0001, minimum

= 1E-35, and maximum = 0.03.

The energy-based regularisation comparative results are depicted in Figure 4.2. The

results show the Force-Displacement (F-D) response of the bar to be almost entirely

independent of mesh size when regularised. Specifically, in Figure 4.2b, where regulari-

sation is applied (i.e., h is equivalent to the mesh size), the model maintains consistent

post-peak behaviour across different mesh sizes.

In contrast, Figure 4.2a shows the response of the unregularised model using a consis-

tent value of h = 20 mm. In this case, the response becomes noticeably more brittle

as the mesh is refined. This occurs because h appears in the denominator of the regu-

larisation equation, resulting in smaller values of Gft being stored in smaller elements.

Consequently, this leads to a notable reduction in the ductility of the post-peak response.

On the other hand, Figure 4.2c presents the results using a stress-displacement relation-

ship instead of a stress-strain model. This approach does not involve h, and is solely
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(b) Regularised stress-strain (h equals re-
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(c) Internally regularised stress-
displacement (as a function in Gf ).

Figure 4.2: F-D diagrams of the simple bar in tension using different constitutive ap-
proaches including (a) Unregularised stress-strain (b) Regularised stress-strain (c) and
Internally Regularised stress-displacement.

based on the value of Gft .

Although this model shows some discrepancies during the initial phase of softening, it

clearly produces consistent curves that are comparable to those from the regularised

stress–strain model in Figure 4.2b. This consistency marks a significant topic in numer-

ical modelling, particularly in the context of post-peak behaviour in both tension and

compression. In conclusion, the uniaxial bar test serves as a clear and effective bench-

mark to demonstrate the importance of using regularised constitutive laws. Either a

stress–strain formulation with mesh-adjusted h, or a stress–displacement model based on

fracture energy Gft , must be adopted to ensure that simulation results remain objective

and independent of mesh refinement.
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4.2 Shear Wall and Confined Loading Conditions

Moving on to full-scale Macro-modelling of masonry structures, it is important to un-

derstand that this type of modelling involves approximations due to the complex failure

mechanisms inherent to masonry material. These mechanisms cannot be directly repli-

cated in models and are represented more broadly in a continuum. As mentioned before,

Macro-models are applicable when the global response is the primary target. Ideally,

the analysis of masonry structures should be performed using an anisotropic continuum

model validated against experimental data from the literature.

In the past few decades, experiments have been conducted on masonry at various scales,

including tests on small or single units to wallet-sized masonry triplets under uniaxial

and combined loading Kaushik et al. (2007); Furtado et al. (2016), as well as small- to

large-scale shear panels subjected to in-plane and out-of-plane cyclic or monotonic load-

ing (Lourenco (1996); Manchego and Pari (2016)). These have become widely available

in the literature. Since Macro-modelling is considered in this study, large-scale panels

are often preferred as a basis for numerical models (Lourenco (1996); Yacila et al. (2019);

Giardina et al. (2015)).

In this study, focus is placed on the large-scale tests conducted at ETH Zurich, as reported

in the work of (Lourenco (1996)). The test comprises an unreinforced masonry wall made

of hollow bricks, subjected to an initial vertical load followed by a horizontal force applied

to the confining slab. The loading is applied monotonically until complete failure of the

wall. These experiments are highly suited for model validation, as they not only involve

large-scale structures with well-distributed cracking, but also provide most of the essential

parameters needed to define the numerical model parameters that are obtainable from

biaxial testing.

Figure 4.3 illustrates the geometry of the wall, consisting of a masonry panel with dimen-

sions 3600 mm × 2000 mm × 150 mm, and two flanges with dimensions 150 mm × 2000
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mm × 600 mm attached to the panel’s ends. A concrete slab is placed on top of the spec-

imen with dimensions 3600 mm × 160 mm × 1400 mm. The material properties of each

component are found in Table 4.1. The constitutive material model is the orthotropic law

of CDP, using the relationship in Equation 2.35 to represent the compressive response and

Equation 2.40 for tension, similar to the bar validation in Section 4.1. The default set of

plasticity parameters is used and given as follows: ψCDP = 42◦ (calibrated), eCDP = 0.1,

σ0b/σ0c = 1.16, kCDP = 0.67, and µCDP = 0.0001.

A thorough investigation using both regularised stress-strain and stress-displacement

models was initially conducted across three mesh sizes (150, 75, and 50 mm). All mod-

els resulted in similar F-D curves, with the only difference being narrower crack bands

observed with decreasing mesh size. Shell elements (ABAQUS type code S8R), with

quadratic integration for increased accuracy, were used in the numerical simulations.

Since both constitutive laws and various mesh sizes produced similar results, only the

output from the regularised stress-strain model with 50 mm mesh is reported.

As briefly mentioned before, in the experimental setup, the concrete slab is reinforced

and connected to additional steel beams for the application of the confinement load. Due

to the absence of non-linear behaviour in the experimental results and the lack of infor-

mation regarding the slab’s behaviour, modelling the slab as linear elastic is considered

an acceptable approach.

The total vertical load (P ), evenly distributed on the wall, is 415 kN. A horizontal

force (displacement) (hf ), is further applied to the concrete slab from one end, and the

displacement is monitored from the other end. The base of the wall, including the panel

and both flanges, is restrained in all directions, while the top of the slab is restricted only

in the out-of-plane direction.

The analysis begins with the activation of boundary conditions. Vertical and gravitational

loads are applied simultaneously as confining loads, followed by an incremental increase

in hf until complete failure of the specimen is observed, i.e., at 15 mm total hf . A similar
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analysis procedure to that of the bar validation is followed initially, using a general static

procedure with the following settings: NLgeom off, maximum number of increments set

to 100000, and initial, minimum, and maximum increment sizes of 0.0001, 1E-35, and

0.03, respectively.

(a) Geometry of shear panel assembly, applied
loads and boundary conditions.

(b) 3D rendering of shell elements (true
thickness), depicting the location of the
monitoring point.

Figure 4.3: Macro-modelling of the shear panel.

Table 4.1: Model material properties and applied loads.

Properties Slab Panel Flanges

ρ (kg/m3) 2100 2100 2100
E (MPa) 30000 2460 2460

ν 0.20 0.18 0.18
ft(MPa) - 0.28 0.68
fc(MPa) - 1.87 9.50

Gft(N.mm/mm2) - 0.02 0.02

Gfc(N.mm/mm2) - 5.00 5.00
εp - 0.0008 0.0008

P (kN) 415 - -
hf (mm) 15 - -

The comparison of cracking patterns between experimental and numerical results is shown

in Figures 4.4 and 4.5, respectively. Each figure illustrates the wall’s response at the peak

load, reached at approximately hf = 2 mm (i.e., subfigure (a)), and at complete failure,

hf = 15 mm (i.e., subfigure (b)).

While the visible onset of cracking is observed at hf = 2 mm in the experimental results,
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these were not accurately captured by the FEM, as expected, since Macro-modelling

approaches typically struggle to reflect early-stage local non-linear deformations in the

material. On the other hand, at hf = 15 mm, better agreement in failure patterns is

observed, despite the limitations inherent to the assumptions of the CDP model and the

use of Macro-modelling techniques.

The FEM model, although not explicitly reproducing detailed local cracking, successfully

captures the general trend of damage evolution under combined vertical and horizontal

loading. Specifically, the model shows that cracks tend to initiate and propagate diago-

nally from one corner of the panel to the opposite, accompanied by flexural cracking at

both flanges. This progression ultimately leads to the formation of a shear band across

the specimen, connecting these regions of damage.

In conclusion, the model demonstrates the ability to capture the dominant, mature dam-

age mechanisms observed in the experimental structural failure.

(a) At peak load (total displacement 2 mm). (b) At failure (total displacement 15 mm).

Figure 4.4: Failure patterns of experimental wall (After Lourenco (1996)).

A F-D diagram of base reaction versus displacement at the monitoring point is illustrated

in Figure 4.6, comparing the experimental results, the FEM simulation, and the numerical

results reported by (Lourenco (1996)). The combination of a relatively low initial vertical

load and the confinement provided by the flanges led to extremely ductile behaviour.

Lourenco (1996) reports that the unloading observed at approximately 2 mm is attributed
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(a) Onset at 2 mm of applied displacement.
(b) Fully developed damage at 15 mm of ap-
plied displacement.

Figure 4.5: Tension damage distributions contours maps from FEM simulations (values
> 0.99 indicate fully developed damage “red”).

to Mode I crack opening in the left flange, an effect also captured in the FEM model.
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Figure 4.6: Comparison of diagrams between experiment curves and FEM output.

The general static step has been replaced with a dynamic implicit procedure, as it re-

sulted in faster analysis and more stable convergence during simulations. An initial

investigation showed that, on average, the dynamic procedure reduced analysis time by

up to threefold compared to the general static procedure. Furthermore, memory usage

was notably reduced, by up to tenfold, allowing for a wider range of incremental step

monitoring. Additionally, several simulations that failed to converge using the general

static approach were successfully completed using the dynamic procedure. Importantly,

comparisons between static and dynamic analyses showed that the resulting damage pat-

terns, displacements, and strains were identical, with no loss of accuracy. This conclusion

was supported by monitoring the kinetic and internal energy histories: the kinetic energy
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remained flat and within 5% of the internal energy, which is the accepted threshold for

quasi-static conditions with negligible inertia effects (Demirci et al. (2018)). However,

the total time assigned to the applied displacement hf must still be carefully selected, as

overly short periods can induce artificial inertia-driven damage (see Equation 2.27). To

evaluate this, several trial periods were tested (0.01, 0.02, 0.1, 0.5, 1, 2, and 3 seconds).

The results showed that periods of 1 second and longer maintained negligible inertia ef-

fects with no change in strain or displacement outcomes, while shorter periods introduced

artificial dynamic amplification. Longer periods offered no additional accuracy benefit

but increased computational time significantly. Therefore, a period of 1 second was se-

lected for the analysis, balancing computational efficiency and numerical stability. It is

noted that the optimal period may depend on the modelling scale, material properties,

and boundary conditions, and should therefore be evaluated on a case-by-case basis.

With this, the ideal settings for the analysis become: a period of 1 second, NLgeom off,

a maximum of 100000 increments, and initial, minimum, and maximum increment sizes

of 0.0001, 1E-15, and 0.03, respectively.

Upon concluding the initial phase of investigations by achieving good agreement between

the experimental results and the FEM output, alongside establishing a more efficient and

reliable analysis procedure using the dynamic implicit method, the next step is to monitor

the influence of CDP plasticity parameters on the output. Addressing the variability of

these parameters is known to significantly affect results (Silva et al. (2021); Behnam et al.

(2018); Rainone et al. (2023)). A systematic variation of these parameters is performed

using common domains and sampled via the OAAT method, with all simulations con-

ducted using the dynamic implicit approach based on the initial arrangement of values

as previously described.

Figure 4.7a illustrates the F-D diagrams for different values of ψCDP (ranging from 20◦

to 52◦ in increments of 4). From the figure, the stiffness of the response appears largely

unaffected by this parameter. This is because ψCDP , the dilation angle, governs the
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volumetric plastic strain and primarily influences the non-linear response of the material.

Therefore, the discussion now focuses on the peak and post-peak regions of the response.

Increasing ψCDP raises the peak strength of the model, aligning it more closely with the

experimental results. This is followed by a plateau phase, suggesting that ductility is

not significantly influenced by this parameter. These results show good agreement for

ψCDP values between 40 and 44 when compared to experimental data; hence, an average

value of 42 is considered ideal in this case. The strength enhancement observed with

increasing ψCDP is consistent with the findings of Rainone et al. (2023) and Silva et al.

(2021), although the exact optimal value appears to be case-specific, depending on the

modelling technique and applied loading conditions.

Furthermore, and in agreement with Silva et al. (2021), Figure 4.7b illustrates the impact

of varying eCDP , the flow potential eccentricity, which controls the shape of the plastic

potential function. Variations in this parameter result in negligible changes in model

response; hence, the default value of 0.1 recommended by ABAQUS is adopted. Similarly,

altering σ0b/σ0c (Figure 4.7c), which defines the ratio of biaxial to uniaxial compressive

strengths, results in only a slight reduction in the average force in the post-peak regime.

Therefore, the ABAQUS default value of 1.16 is retained.

In contrast to the conclusions of Silva et al. (2021) and Behnam et al. (2018), increas-

ing kCDP (Figure 4.7d), the parameter that defines the shape of the yield surface in

the deviatoric plane, produces negligible changes in the results. This is likely because

wall behaviour in this case is predominantly governed by tension, with the compressive

confinement being relatively low, while kCDP primarily affects the compressive response.

When kCDP = 0.5, the analysis was prematurely terminated due to convergence issues;

this case was not further investigated.

Finally, and in line with the findings of Silva et al. (2021), Behnam et al. (2018), and

Rainone et al. (2023), increasing µCDP (Figure 4.7e), the viscosity parameter which con-

trols viscoplastic regularisation, leads to higher peak strengths and more pronounced
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post-peak softening. Lower values of µCDP result in more localised damage distributions.

In this case, results for µCDP values of 0.0001 and below showed similar responses, while

values above 0.001 significantly expanded the damaged area and led to an exponential

increase in model strength, ultimately overestimating the wall’s actual behaviour.

From these analyses, it is concluded that some plasticity parameters of the CDP model

have significant impacts on the output, depending on the modelling technique and loading

conditions applied. In this case, both ψ and µ were found to be highly influential, as

shown in the parametric studies. The following values were determined for the plasticity

parameters, which were used in the subsequent analyses of a masonry façade exposed to

tunnelling-induced settlements. These analyses aimed to observe the model’s behaviour

and assess whether the results remained in good agreement with experimental data.

The parameters are set as follows: ψCDP = 42, eCDP = 0.1, σ0b/σ0c = 1.16, kCDP =

0.67, and µCDP = 0.0001. These values are not assumed to be universally optimal for

all masonry scales; rather, they were calibrated specifically for this study through the

previous experimental and numerical agreement. As such, they serve as a validated

starting point for future simulations of masonry-like materials using the CDP model.

Further adjustments may be necessary depending on the modelling scale and application.

4.3 Wall Exposed to Settlements

Following the modelling of the simple bar (mesh objectivity) and shear wall (CDP calibra-

tion), the next step involves testing the model’s ability to capture the structural response

of a scaled masonry façade subjected to settlements under experimental conditions. Util-

ising similar modelling procedures as before (dynamic, implicit), the numerical model is

validated by examining both global and local responses of the façade and comparing them

with experimental results. This ensures the suitability of CDP in accurately capturing

the behaviour of large-scale building scenarios exposed to tunnelling-induced subsidence.
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Figure 4.7: Parametric studies on CDP plasticity parameters (a) ψCDP (b) eCDP (c)
σ0b/σ0c (d) kCDP (e) µCDP .

The experimental wall from Giardina (2013) is used. The model’s global dimensions are

1428 mm in width and 1186 mm in height. The wall includes openings for doors measuring

126 mm x 326 mm, as well as several windows measuring 126 mm x 218 mm and 336 mm
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x 218 mm for the wider ones. Additionally, small brick-sized openings are introduced at

the locations of applied loads to compensate for scaling effects. Linear elastic lintels are

inserted above the doors and windows. The base of the structure is initially restricted in

both horizontal directions, leaving the vertical direction free to accommodate settlements.

The settlement profile applied in this case mirrors that obtained from the experimental

SSI results. The material properties of the wall are as follows: ρ = 1900 kg/m3, E =

3000 MPa, ν = 0.2, ft = 0.1 MPa, and Gft = 0.01 N.mm/mm2. The compressive

behaviour of the material is assumed to be linear elastic, as compressive damage is seldom

present due to the material’s brittleness in tension (Giardina (2013); Lourenco (1996)).

The lintel properties are: ρ = 500 kg/m3, E = 11000 MPa, and ν = 0.15. Details about

the model’s internal dimensions and the scaling-compensating vertical forces are provided

in (Giardina (2013)).

As previously mentioned, the analysis procedure follows recommendations from earlier

models. Here, a dynamic implicit analysis is used for the final step (applied settlements),

employing the same settings as those used for the shear wall in Section 4.2. The simulation

begins with boundary activation, followed by gravity and applied vertical loads. Lastly,

865 mm from the left-hand side of the wall’s base boundary in the vertical direction is

replaced with the applied settlements, in accordance with the experimental model results.

The settlements are incrementally applied while monitoring points A (at base), B, and C

(located near the top-left edge of the wall) for global displacements. Figure 4.8 shows the

model geometry, including applied loads, boundary conditions, and settlement profile.

The results in Figure 4.9 illustrate the damage patterns on the façade caused by subsi-

dence. The figure shows the tension damage distribution contours from the FEM model

(dt = 0.99 indicating full damage), while also depicting the actual cracks observed in the

experimental façade.

Close similarities are observed between the FEM results and the experiment. In partic-

ular, the numerical model closely replicates cracks 1, 2, 3, and 4, effectively splitting the
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Figure 4.8: Numerical modelling of Giardina (2013) experiment of masonry façade ex-
posed to settlements.

building into approximately two blocks. Crack 6 appeared prematurely and was under-

estimated, while crack 5 did not develop, likely due to stress redistribution near crack 3,

which reduced stress concentrations in the upper right side of the wall. These observa-

tions are further quantified in Table 4.2, which compares actual crack widths and global

deformations using the equations in Section 2.2.1.

The local aspect of damage (e.g., cracks) is focused on the deformation characteristics

along the x-axis only, using scalar representations of εckt to monitor crack activation and

measure crack width in a uniaxial direction. Assuming that εt along the x-axis is defined

as the sum of elastic strain, εel0t, and cracking strain, εckt , crack activation is then monitored

using the criteria in Equation 4.1. Here, ABAQUS computes the strains by extrapolating

and averaging the maximum principal εt values from the integration points of adjacent

mesh elements into the nodes.
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(a) FEM results. (b) Experimental cracks.

Figure 4.9: FEM simulation output of masonry façade under hogging mode of deforma-
tion, illustrating tension damage distributions (dt).

Single Crack Width =


0, for εt ≤ εel0t

εckt · le, for εt > εel0t

(4.1)

The cumulative crack width is then computed as:

Total Crack Width =

j∑
i

Single Crack Width (4.2)

where i and j are the starting and ending indices of the sequence of consecutive values

that satisfy the second condition in the case bracket of Equation 4.1.

The cracks are measured along a line of consecutive nodes anywhere in the wall. Crack

width is evaluated for each consecutive node according to the condition described above.

The total crack count is determined from the total number of sequences satisfying the

same condition. In other words, if two elements (i.e., a line with two elements comprising

three nodes) satisfy the second condition in the case bracket, then the summed values of

both crack widths are considered a single crack. On the other hand, if an intermediate

element does not satisfy the condition, then they are considered to be two separate

cracks and are evaluated independently. This method has proven to be highly accurate,
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as illustrated in this case and reported in Table 4.2.

The global movements of the structure are illustrated in Figure 4.10. Figure 4.10a shows

the applied vs. actual monitored settlements between the FEM and the experimental

model, also highlighting the location of structural splitting caused by the applied set-

tlement and the appearance of vertical cracks at the piers and spandrels. On the other

hand, Figure 4.10b illustrates the horizontal and vertical global displacements at monitor-

ing points. These movements are well captured by the FEM, particularly the horizontal

displacements at point C, where several cracks developing along the top edge of the façade

contributed to the accumulated global horizontal movement at that location.

Table 4.2: Comparison between FEM and experimental results for the global and local
assessments of building damage.

Criteria Component
FEM Experimental Relative

Results Results Difference (%)

Global

Top εt 0.0052 0.0058 10.3
Bottom εt 0 0 0

s 0.0067 0.0067 0
t 0.0107 0.0114 6.1
β 0.0041 0.0047 12.8

Horizontal disp. (mm)1 10.5 10.5 0
Vertical disp. (mm) 8.75 7.5 11.9

Local (mm)2

Crack 1 5.56 5 11.2
Crack 2 3.45 3.9 9
Crack 3 0.63/3.483 3.6 59.4/2.4
Crack 4 1.1 0.85 5
Crack 5 NA4 1.8 NA
Crack 6 0.49 3.1 52.2

1 The divisor here uses the maximum global displacement value of 10.5 mm, both horizontal and vertical displace-
ments are compared using this value.

2 Similarly to 1 the divisor is constant for all cracks based on the larger value (that is, 5 mm).
3 Crack 3 is singularly evaluated and summed of the accumulated cracks along the same height level due to the
spread distribution in the FEM model.

4 Crack 5 did not develop and instead a new crack at right of crack 3 developed of 1.94 mm width absorbing the
damage.

While the current model demonstrates good agreement with experimental results for a

façade subjected to hogging-mode settlements, this single scenario alone does not per-

mit generalisation to all tunnel-structure interaction cases. Broader applicability remains

limited by the scarcity of comprehensive experimental datasets that include full material
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Figure 4.10: Applied settlements and global displacements of the masonry façade FEM
vs Experimental.

properties, detailed geometry, and local damage characterisation. For instance, studies

such as Son and Cording (2007) lack complete material or geometric details, while Yiu

et al. (2017) adopt a perfectly plastic model without simulating damage, making it un-

suitable for local damage assessment. Similarly, Frischmann et al. (1994) omits key soil

and structural properties. As such, further calibration and validation would be necessary

to extend this model to different tunnel-wall interaction scenarios.

4.4 Soil-Structure Interaction using the Euler Bernoulli

Beam on a Two Parameter Elastic Foundation

Code

The EBBEF2p extends the classical Winkler foundation model by incorporating both

vertical and shear subgrade reactions, capturing soil continuity effects more realistically.

It is based on the modified Vlasov foundation model, which introduces an additional pa-

rameter to account for shear interaction within the soil medium. This formulation leads

to a two-parameter foundation model where the soil reaction is expressed not only as a

function of local displacement but also of its second derivative, improving the represen-

89



4.4. SOIL-STRUCTURE INTERACTION USING THE EULER BERNOULLI BEAM
ON A TWO PARAMETER ELASTIC FOUNDATION CODE

tation of beam–soil interaction over traditional single-parameter models.

In this thesis, the EBBEF2p model is implemented iteratively to account for beam–soil

compatibility under differential settlements, following the method introduced by (Teodoru

(2009b)). The beam is discretised using standard finite difference techniques, and the

model allows for updating SSI parameters based on relative stiffnesses. This results in

an efficient and stable solution method that supports the simulation of a wide range of

structural and soil stiffness scenarios with minimal computational demand.

Table 4.3: Input parameters for beam on modified Vlasov foundation, using the exam-
ple (Teodoru (2009b)). Hs denotes the depth of the soil medium (m).

Euler-Bernoulli Beam Elastic Foundation
L (m) B (m) H (m) E (MPa) Hs (m) Es (MPa) νs
20 0.5 1 27000 5 20 0.25

Elastic foundation
(Es=20 MPa, νs=0.25)

L/2=10 m

1.5 L

H

x

z

 Euler-Bernoulli Beam

P

Figure 4.11: Beam on elastic foundation: half-plane geometry and medium prop-
erty (Teodoru (2009b)).

Figure 4.12 shows the results from implementing EBBEF2p. The green line in Figure 4.12

represents the settlement results (Figure 4.12a), bending moments (Figure 4.12b), and

shear forces (Figure 4.12c), compared against Teodoru (2009b)’s benchmark results: the

2D FEM modelling (orange line) and their implementation of the same EBBEF2p com-

puter code (blue line).

The validation example uses the same beam model as in Figure 4.11, with a length

L = 20 m, supported by an elastic foundation (soil medium), and subjected to a centric
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load P = 500 kN. As mentioned earlier, due to axial symmetry, only half of the model is

considered.

The benchmark results from Teodoru (2009b) show good agreement between the FEM

model and their analytical code. The slight discrepancy between them is attributed to the

assumption of full displacement compatibility at the beam–soil interface in the 2D model,

whereas the Vlasov model assumes compatibility only in the vertical direction (Vallabhan

and Das (1991)).

Additionally, the output from the adaptation showed close agreement with the analytical

results of Teodoru (2009b), confirming the correctness of the implementation for valida-

tion purposes. This verification step not only demonstrates that the use of the EBBEF2p

solution is a valid analytical method to replace 2D FEM models in capturing SSI effects

accurately, but also highlights its efficiency by significantly reducing computational cost,

making it suitable for various simulation needs.

A parametric investigation was also conducted to examine the influence of varying the

beam E and soil Es values on the settlement profile due to SSI using the EBBEF2p

code. Figure 4.13 illustrates the changes in the differential settlement of the beam for E

values ranging from 27 GPa (as used in the example by Teodoru (2009b)) to 1 MPa (see

Figure 4.13a), and for Es values varying between 200 MPa and 2 MPa (see Figure 4.13b).

The final step involves testing the model under a real-case scenario initially presented

by Frischmann et al. (1994), of the Mansion House in London due to the construction of

the Dockland Light Railway. In this case, a building is subjected to settlements resulting

from excavation related to a railway extension. The building had previously experienced

ground movements and cracking associated with earlier tunnelling activities, and the

risk of structural damage was deemed unacceptable for the extension. The building is

reported to be supported on piled foundations.

Rough estimates for the building’s material properties Frischmann et al. (1994) and ge-
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Figure 4.12: Comparing results using the EBBEF2p implementation on benchmark data
from (Teodoru (2009b)).
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Figure 4.13: Comparison of settlement profiles with varying parameters values using the
EBBEF2p code (a) E varied (b) Es varied.
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ometrical configuration Selby (1999) are provided and summarised below. It is equally

important to note that the EBBEF2p model evaluates behaviour only within the linear

elastic domain for both the soil and the building. For this purpose, the building’s Young’s

modulus E is taken as 1 GPa, and Poisson’s ratio ν as 0.2. The tunnel diameter D is 3.05

m, and the VL parameter range was approximated to be between 2% and 2.5% (with 2%

selected). The depth to the tunnel axis Z0 is 15 m, and the trough width parameter K is

0.334, which is considered quite narrow according to literature (see Section 2.1.1). The

building length L is 50 m, and height H is 20 m.

As no detailed information is provided about the soil, Selby (1999) used an Es of 50 MPa

and νs of 0.49 for the same problem, indicating that these parameters are appropriate

for an undrained analysis of stiff clay. Since a wall is being analysed, no openings are

assumed. Lastly, the building is located at e = 15 m from the tunnel’s centreline.

Regarding parameters related to the EBBEF2p code, the maximum number of iterations

was set to 10, a medium (soil) depth (Hs) of 5 m, and an initial estimate of γ = 0.5. The

settlement predictions for the Mansion House are presented in Figure 4.14.
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Figure 4.14: Actual and predicted settlements of the west wall due to tunnelling.

As observed in Figure 4.14, the settlement underneath the building is far more rigid

than the initial GF settlements imposed if no building was placed. The numerical code
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EBBEF2p converged after only two iterations with final values of γ = 0.036. The model

demonstrated good agreement with field observations of ground movements at the foun-

dation level. It is noted that a spring was introduced at the location of the left edge of the

wall to compensate for the wall’s presence in the in-plane direction. The amount of force

was calibrated according to the closest possible similarity to given data as per (Frischmann

et al. (1994)).

Several alternative methods exist for assessing SSI in tunnel–building problems, including

single-parameter Winkler models, cracked beam models Acikgoz et al. (2021), design

curves based on 2D numerical analyses Potts and Addenbrooke (1997); Franzius et al.

(2004), and full 2D or 3D FEM simulations (Yiu et al. (2017); Cheng et al. (2007)). These

methods were previously reviewed in Section 2.3. While advanced numerical models can

offer detailed insights, particularly under highly non-linear or cracked conditions, they

are computationally intensive and often impractical for extensive parametric or ML-based

studies requiring hundreds of simulations.

The EBBEF2p model, on the other hand, provides a practical balance of accuracy and

efficiency in the linear elastic domain. Its closed-form and iterative formulation allows for

rapid settlement predictions while capturing essential SSI effects, making it particularly

suitable for the large-scale simulation demands of this thesis. However, as discussed

further below, it comes with limitations that should be considered when applying to

more complex or damaged structural states.

4.4.1 Advantages, Limitations, and Implications of the EBBEF2p

Model

The primary advantage of the EBBEF2p model lies in its efficiency. Compared to ad-

vanced 2D or 3D FEM approaches, this method significantly reduces computational time

and memory demand, making it particularly suitable for large-scale parametric studies
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and ML applications where hundreds or thousands of simulations may be required. It also

offers reliable results within the linear domain, and, through its iterative nature, captures

key stiffness interaction effects between soil and structure. In the FEM implementation

used here, the model further allows for displacement compatibility between the structure

and the ground surface, enabling partial decoupling that facilitates the observation of

expansion and gap formation.

Nonetheless, the model has several limitations. It operates within a linear elastic frame-

work and does not account for material nonlinearity, cracking, or plasticity effects. As

such, it cannot simulate post-cracking behaviour or structural segmentation, effects that

are often critical when buildings undergo significant settlement-induced damage. Addi-

tionally, the SSI is treated in a decoupled manner; ground settlements computed from

elastic soil models are applied independently of the structural response, which may lead to

inaccuracies when nonlinear interaction dominates. This also assumes negligible influence

from neighbouring structures, which may not hold in dense urban settings.

Compared to more advanced modelling approaches such as full 2D/3D FEM or continuum-

based damage models, the EBBEF2p solution trades off complexity for speed and gener-

ality. While this makes it unsuitable for high-fidelity modelling of damage mechanisms,

its strengths lie in efficiently capturing first-order effects of SSI, especially in the early

design stages or for probabilistic and data-driven assessments. Users of the model must

therefore remain aware of its assumptions and avoid over-interpreting results in regimes

where material or geometric nonlinearity becomes dominant.

4.5 Summary

This chapter fulfils the requirements of the first objective (Objective 1 in Section 1.5) by

demonstrating the use of FEM models to simulate the non-linear response of masonry. It

validates material properties, both global and local structural behaviour, and SSI through
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the CDP and EBBEF2p models. The chapter is summarised in the following bullet points:

• A thorough investigation of mesh-independence studies via h-refinement was con-

ducted using a simple bar in tension with a reduced-strength section at the centre.

The study showcased different behaviours using: i) an unregularised stress–strain

law, ii) a regularised stress–strain model, and iii) a stress–displacement model.

• A shear wall subjected to combined loading conditions was investigated using non-

linear material properties and the concept of h-refinement. Additionally, a dynamic

implicit step was employed. F-D curves were plotted, and extensive parametric

studies were performed on the plasticity parameters of the CDP model.

• Numerical validation of a wall subjected to settlements was performed, including

global displacements, local damage (developed during the simulation), and both lo-

cal and global assessment metrics of building damage. The results were compared

between the FEM and the experimental data, demonstrating good agreement be-

tween the two.

• Analytical VV of the

In conclusion, this chapter demonstrates the successful implementation and valida-

tion of numerical and analytical models capable of simulating the complex behaviour

of masonry structures under settlement-induced damage. Through a combination

of detailed finite element analyses using the CDP model and efficient elastic founda-

tion modelling via the EBBEF2p framework, a robust platform has been established

for assessing both local and global building responses. These models have been val-

idated against experimental and benchmark cases, providing confidence in their use

for generating reliable synthetic data. While certain limitations, such as the linear

assumptions in the EBBEF2p model, remain, the methods presented here strike an

effective balance between accuracy and computational feasibility, especially when

considering the large-scale parametric and data-driven aims of this thesis. The next
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chapter builds on this foundation to systematically generate a synthetic dataset for

ML applications, drawing on the modelling approaches verified here.
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Chapter 5

Generation of Synthetic Dataset

It is important to develop a robust and rich dataset to minimise errors and ensure

reliable predictions in ML models. The quality of input, particularly in terms of

quantity and balanced output distributions, has a significant influence on model per-

formance, as will be demonstrated later in Chapter 7. In this section, the procedure

for generating a synthetic dataset using FEM is presented, incorporating the pre-

viously Verification and Validation (VV) Concrete Damaged Plasticity (CDP) and

Euler Bernoulli Beam on Two Parameter Elastic Foundation (EBBEF2p) models,

for tunnelling-induced building damage. The process begins with the identifica-

tion of input parameters. Since empirical, analytical, and numerical models are

combined, only parameters related to the components of the selected modelling

procedure are targeted.

For the prediction of settlements, the synthetic dataset is built using the VL method,

as it requires fewer input parameters than the Chakeri & Onver method (COM)

method for example. This allows a more detailed focus on building-related param-

eters such as geometry and material properties. Although it is possible to include

both settlement methods, doing so significantly increases computational costs, ap-

proximately proportional to the number of input variables. The VL method requires

four parameters to derive settlements, while the COM method requires ten. Us-
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ing the latter would increase the dataset size by approximately 2.5 times, due to

the inclusion of several additional variables, particularly when focusing on building

parameters (given the wide adoption of this method). As the exact number of sam-

ples needed is currently unknown, and to remain within a realistic timeframe and

available computational resources, a compromise was necessary. Therefore, the VL

method was selected as the basis for settlement modelling. The overview structure

of this chapter is illustrated in Figure 5.1.
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Figure 5.1: Generating synthetic dataset methodology overview.
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5.1 Identification of Input Parameters

Figure 5.2 provides a schematic overview of the tunnel-soil-structure system and

visually depicts the key input parameters presented in the following tables.

Ground Level

Tunnel

Z0

D

V L

ix

Sv(x) = −Sv,max exp
(
− x2

2i2x

)

Building

O = 0% H

L

e

Kshear & Knorm

Figure 5.2: Schematic of tunnel–SSI showing key input parameters including tunnel depth
(Z0), diameter (D), offset (e), building height (H), length (L), and settlement trough
width (ix). The settlement profile follows a Gaussian curve (Equation 2.1). Hatched area
indicates (VL). No openings are considered in the façade (O = 0%). The soil–structure
interface is represented by the normal and shear stiffness parameters (Knorm) and (Kshear),
respectively.

Table 5.1 presents a list of the identified parameters related to the VL method,

including their minimum and maximum values, as well as the increments used.

These inputs are derived from a combination of experimental studies, numerical

simulations, and field observations from previous tunnelling projects. As mentioned

earlier in Section 2.1, the soil type assumed for these analyses is homogeneous and

behaves linearly.

Providing these values (domains and increments) allows the identification of feasible

value boundaries and offers insight into previous investigations and the observations

made within these limits. These values also help in determining suitable domains

for appropriate sampling procedures. It is further observed whether finite or dis-

crete increments were used, either due to experimental constraints or numerical
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Table 5.1: Input parameters relating to the VL method.

Parameter
Symbol
(Unit)

Domain Increment Source

Volume Loss V L (%)

0.2 — 3 ≈a 0.5 —a 1
(Mair et al.
(1996))

0.32 — 5 ≈ 0.2 — 0.5
Marshall et al.

(2012)

0.39 — 3.3
≈ 0.05 — 0.5 -

1
Burland et al.

(2001b)

Cover/Diameter CT/D (–) —
1.3, 2.4 and

4.4b
Marshall et al.

(2012)

Depth Z0 (m)

— 20 and 34b
Potts and

Addenbrooke
(1997)

9 —
24(To Crown)

c ≈ 1 — 6
Burland et al.

(2001a)

15 — 37 ≈ 2 — 3.5
Burland et al.

(2001b)

— 90
High Speed
Two (HS2)
Ltd (2017)

Diameter D (m)

4.85 — 11.8 ≈ 0.75
Burland et al.

(2001b)

— 17.63
Chan et al.
(2021); Bao
et al. (2021)

Inflection
Point

ix (m) 6.35 — 16 ≈ 0.4 — 4.5
Burland et al.

(2001b)
a ≈ and — symbols represent the approximate values and investigated range, respectively.
b These are specific values used in the analysis, not increments.
c “To Crown” refers to the distance from ground surface to tunnel crown, which corresponds to CT .

efficiency requirements, and an assessment is made regarding whether reducing the

increments between values using the synthetic strategy would result in any benefit

(e.g., capturing non-linear relationships) or not.

Similarly, Table 5.2 lists the input parameters for the soil medium used in the

EBBEF2p model. While these parameters are sufficient to describe a linear re-

sponse, they were considered appropriate for establishing a SSI model that captures

some degree of non-linear behaviour, as previously demonstrated in the Mansion

House case study in Section

Furthermore, Table 5.3 contains a list of building material property parameters.
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Table 5.2: Input parameters related to soil while using the EBBEF2p method

.

Parameter
Symbol
(Unit)

Domain Increment Source

Trough Width
Par. (At

Surface Level)
K (–)

— 0.25 and 0.5
Mair et al.
(1996)

0.25 — 0.63 ≈ 0.2 — 0.5
Marshall et al.

(2012)

0.45 — 0.53 ≈ 0.02 — 0.03
Burland et al.

(2001b)
Deformation
Modulus

Es (MPa) 2 — 250 ≈ 10 — 150 Bowles (1996)

Poisson’s Ratio
of Soil

νs (–) 0.1 — 0.5 ≈ 0.05 — 0.2 Bowles (1996)

Parameters E, fc, ft, and Gft are included, all of which contribute to developing

the CDP model. Other parameters, including Poisson’s ratio (ν), are not included.

To the best of the author’s knowledge, no investigations have been conducted into

the influence of ν on global building behaviour using Macro-modelling. Therefore,

a constant value of 0.2 is used throughout. As buildings exposed to settlements

are more prone to fail in tension Lourenco (1996); Giardina (2013), the material

compressive fracture energy (Gfc) is not explicitly considered in this study. Instead,

Gfc is taken as a function of the material’s compressive strength (Fc), as given

by (Ghiassi and Milani (2019)):

Gfc = 15 + 0.43 fc − 0.0036 f 2
c (5.1)

Similarly, the density of the material (ρ), is taken from Giardina (2013), and is

given as 1900 kg/m3.

Additionally, Table 5.4 contains a list of input parameters related to building geom-

etry, including the building length (L), height (H), and the percentage of openings

(O). It is important to note that in this context, openings refer to those created by

the presence of windows and doors. In modelling these parameters, variation in the

percentage of openings reflects changes in spacing between openings rather than
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Table 5.3: Input parameters related to the building material using the CDP model.

Parameter
Symbol
(Unit)

Domain Increment Source

Elastic Modulus E (MPa)
—

1000, 3000 and
9000

Giardina et al.
(2015)

666 — 6035 ≈ 100 — 3000 Pluijm (1992)

Compressive
Strength

fc (MPa)
0.5 — 8 ≈ 0.1 — 1

Ghiassi and
Milani (2019)

2.3 — 48.2 ≈ 3 — 5
Kaushik et al.

(2007)

Tensile Strength ft (MPa)

— 0.1, 0.3 and 0.9
Giardina et al.

(2015)

0.05 — 0.58 ≈ 0.01 — 0.1
Schubertl
(1994)

0.13 — 1.47 ≈ 0.1 — 0.5 Pluijm (1992)

Tensile Fracture
Energy

Gft (N.m/m2)
—

10, 20, and
10000

Giardina et al.
(2015)

4 — 30 ≈ 3 — 8 Pluijm (1992)

Axial Stiffnessa EA (kN/m)
3.450× 106 —
1.725× 107

3.450× 106
Potts and

Addenbrooke
(1997)

Bending
Stiffnessa

EI (kN·m2/m)
2.208× 108 —
1.553× 1010

2.208× 108 and
3.105× 109

Potts and
Addenbrooke

(1997)
a The axial and bending stiffness values are derived from the contribution of the slab to framed structures of 1
to 5 floors in height. Although framed structures are beyond the scope of the current study, their inclusion
provides valuable insights for future applications considering frame buildings.

changes in their size, as was the case in (Giardina (2013)). This approach ensures

more realistic modelling of buildings with varying O values. The dimensions of the

openings are defined as 1200 mm × 1500 mm for windows and 1200 mm × 2000

mm for doors. Furthermore, as wall thickness was found to have negligible effects

in both the EBBEF2p and numerical models when assessing in-plane behaviour, it

is assumed constant at 250 mm.

Lastly, Table 5.5 provides input parameters related to the contact area between

the building foundation and the soil surface, including the parameter e, which

defines the offset from the tunnel centreline. In this investigation, buildings are

assumed to be supported by shallow strip footings, which simplify the modelling

of SSI (Giardina et al. (2015); Yiu et al. (2017); Cao et al. (2022)). Accordingly,
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Table 5.4: Input parameters relating to building façade geometry (2D).

Parameter Symbol (Unit) Domain Increment Source

Percentage of
Openings

O (%) 0 — 30 10

Son and
Cording
(2007);

Giardina et al.
(2015)

Length L (m)

16 — 60 ≈ 5 — 10
Potts and

Addenbrooke
(1997)

12.5 — 40 ≈ 0.5 — 7
Burland et al.

(2001b)

8 — 29 ≈ 1 — 8
Charles and

Skinner (2004)

Height H (m)
12 — 20 4

Burland et al.
(2001a)

— 16
Burland et al.

(2001b)

only the vertical and horizontal resistances, represented by the normal and shear

friction coefficients, (Knorm and Kshear or Kshear coeff.), are considered.

Table 5.5: Input parameters related to the contact area between building and soil.

Parameter
Symbol
(Unit)

Domain Increment Source

Interface Shear
Behaviour

Kshear (MPa)

—
Smooth and

Rougha

Giardina et al.
(2015)

0.33 — 0.6 ≈ 0.1 SupercivilCD

— 0.3
Yiu et al.
(2017)

Interface
Normal

Behaviour
Knorm (N/m3)

0.7×107 —
0.7×109

Domain ×10
Giardina et al.

(2015)

Position e (m)

—
Sagging and
Hogging

Giardina et al.
(2015)

0 — 28 ≈ 4 — 12
Potts and

Addenbrooke
(1997)

a Smooth and Rough interactions can otherwise be defined as frictionless and semi-/total adherence with the
ground.

To summarise the relevant parameter space described in Tables 5.1 to 5.5, the

complete set of input variables used to generate the synthetic dataset via FEM
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modelling is presented in Table 5.6. In addition to ranges, this table indicates the

type of incrementation used: either continuous (finite) or discrete. Although all

parameters are initially sampled as continuous, they are later adjusted for imple-

mentation in FEM, requiring specific increments. For example, an increment of

175 mm is used for L to ensure consistent mesh sizing across the wall, foundation,

and soil layers. A smaller increment of 5.5% is selected for O, as values below this

threshold caused errors in the model, preventing successful simulation. These errors

arise during the automated generation of facade openings: because door and win-

dow dimensions are fixed, any reduction in O below approximately 5.5% results in

insufficient wall space to accommodate even a single door and window combination,

which causes the script to fail during geometry creation. The height parameter (H)

is constrained between 2.8 m and 4.2 m to reflect typical residential or commercial

building heights and to ensure compatibility with the EBBEF2p model.

Table 5.6: Summary of input parameters in FEM implementation.

Parameter Min. Value Max. Value Increment (As used in FEM)
E (MPa) 666.0 9000.0 Continuous
ft (MPa) 0.05 1.47 Continuous

Gft(N.mm/mm2) 0.004 0.03 Continuous
H (m) 3.2 20.0 2.8 to 4.2
L (m) 8.0 60.0 0.175
O (%) 0.0 30.0 5.5
e (m) 0.0 45.0 Continuous

Es (MPa) 2.0 250.0 Continuous
νs (–) 0.1 0.49 Continuous
ix (m) 3.6 45.0 Continuous

Kshear coeff. (–) 0.0001 0.6 Continuous
VL (%) 0.2 5.0 Continuous
Z0 (m) 7.3 90.0 Continuous
D (m) 4.9 17.6 Continuous
fc (MPa) 0.5 48.2 Continuous

During the preliminary investigation, it was found that several input parameters

exhibit strong correlations, with some parameters acting as dependent variables

and others as independent. These relationships were particularly evident in ma-

terial properties of masonry Ghiassi and Milani (2019), the influence of soil type
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on settlement troughs Mair et al. (1993), and the influence of offset distance rela-

tive to tunnel diameter (D) (Peck (1969)). These dependencies are summarised in

Table 5.7, which maps dependent variables to their associated independent param-

eters. In addition to these dependencies, physical constraints Mair et al. (1993) and

the requirement for numerical stability in CDP models Lourenco (1996); Feenstra

(1993) are critical considerations. These aspects must be addressed when mod-

elling scenarios involving multiple interdependent parameters. Table 5.8 outlines

these conditions along with their corresponding mathematical formulations.

Table 5.7: Correlations between dependent and independent parameters.

Parameter
Symbol
(Unit)

Dependency Formula Source

Trough Width ix (m) K and Z0 K × Z0
Mair et al.
(1993)

Elastic Modulus E* (MPa) fc (300− 700) fc

Ghiassi and
Milani (2019);
Kaushik et al.

(2007)

Tensile Frac-
-ture Energy

Gft (N.m/mm2) ft (0.005− 0.05) ft

Ghiassi and
Milani (2019);
Giardina et al.

(2015);
Hillerborg
et al. (1976)

Distance e (m) D (0− 3) D Peck (1969)
* Parameter E can also be indirectly and/or directly dependent on parameter ft as well, as ft was found to
range between (10-20)% the value of fc (Ghiassi and Milani (2019)).

In Table 5.7, the dependency of the trough width parameter (ix) on Z0 via the

variable K is determined from several field measurements by plotting ix against Z0,

the depth of the tunnel axis below ground level. This relationship was originally

proposed as ix = 0.43 Z0 + 1.1 O’Reilly and New (1982), and, for practical pur-

poses, is often approximated as ix = K × Z0 (Mair et al. (1993)). Dependencies of

building material properties such as E and Gft are established through observations

of several experiments on individual masonry components or combined units under

various loading conditions. These studies provide a range of possible values for each

parameter as a function of fc and ft. In many cases, ft can also be expressed as a
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function of fc, such that ft = (10–20)% fc (Ghiassi and Milani (2019)). However,

this correlation is not included in the current work since the focus is primarily on

the behaviour of building material in tension. Lastly, Peck (1969) observed that pa-

rameter e values exceeding 3×D result in negligible soil movements around tunnel

excavations. Therefore, structures located beyond this limit are assumed to remain

unaffected by tunnelling activities.

Table 5.8: Constraints based on physical and numerical integrity.

Component Condition (Unit) Formula Source

Physical

Maximum
Settlementa, Sv,max,

in GF (mm)

√
π

2
· V L ·D2

4ix
< 60

or 150

Mair et al. (1993);
Burland et al.

(2001b)
Minimum

Overburden Height
(m)

Z0 > 1.5×D Mair et al. (1993)

Elastic Modulusb, E,
(MPa)

E < 9000 Giardina (2013)

Tensile Strengthc, ft,
(MPa)

ft ≥
E

10000

Hillerborg et al.
(1976)

Numerical

Characteristic
Length, h, (mm)

h ≤ ksoft ·Gft · E
f 2
t

Feenstra (1993)

Snap-Back in
Compression (–)

εm ≥ fc
E

+ εp Lourenco (1996)

a In Mair et al. (1993), it is reported that some tunnelling processes induced Sv,max of up to 150 mm.
b E is given an upper limit based on Giardina et al. (2015) to avoid scenarios in which higher stiffness contributes
to negligible differential settlement at the foundation level.

c ft is restricted using the limit of Hillerborg et al. (1976), avoiding misinterpretation of crack initiation of
buildings with high E and low ft.

5.2 Creating the Sample Space

With the input parameters and their corresponding properties familiarised, the sam-

ple space is generated using the information in Table 5.6, accounting for correlations

and constraints described in Tables 5.7 and 5.8. For an effective sampling distribu-

tion, the LH method is adopted, as it maximises the exploration of the search space

while requiring fewer samples than traditional techniques, an important advantage

when facing significant computational demands (Saltelli et al. (2008)). To this end,
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the SALib library in Python is used (Herman et al. (2022)). Scripting is initiated

by importing the necessary modules, such as the Latin module. The initial code

structure is detailed in Listing A.1.

The code in Listing A.1 is populated with the number of parameters, num vars

(i.e., 15), a list of names (e.g., E, ft, Gft , etc.), and the corresponding bounds for

each parameter, as provided in Table 5.6.

Functions are then defined to represent the correlations between dependent and

independent variables, based on the information in Table 5.7, and implemented

into the code using the code provided in Listing A.2.

A random value is selected between low and high, as given in Table 5.7, and is

multiplied by the independent parameter to compute the value of the dependent

parameter. Since four correlations were previously defined, this process is repeated

four times, once for each dependent parameter.

Functions are also defined to implement the physical and numerical constraints

described in Table 5.8. An example is provided in Listing A.3.

This example demonstrates how to define the maximum allowable settlement thresh-

old (e.g., Sv,max), ensuring that no combination of input parameters violates this

value (e.g., 60 mm or 150 mm). Similar logic is applied to all other constraints

listed in Table 5.8, with the Numpy library used to handle the required mathemat-

ical operations. With the parameter ranges, correlations, and conditions defined,

the LH method (specifically, the MLH variant) is applied to generate N samples.

Any sample that violates the predefined conditions is filtered out using Listing A.4.

The code then checks each generated sample using an if statement. If a violation

is detected, the else clause is executed to produce a replacement sample. This

ensures that all samples in the final dataset comply with the required constraints.

Through the MLH method, a sample space is obtained that respects both param-

eter correlations and physical/numerical conditions. The following plots illustrate
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the distribution of N = 500 sample points generated using this method. Figure 5.3

shows the distribution of material parameters, along with corresponding histograms

on the diagonal. The bounds for each sample are scaled by their associated inde-

pendent parameter, as defined in Table 5.7. Consequently, a larger value of the

independent parameter produces a wider possible range for the dependent param-

eter, and vice versa. If correlations were ignored, the histograms would show a

more uniform distribution, as is typical of standard LH sampling. Figure 5.4, on

the other hand, presents the distributions of tunnel and soil parameters, which are

mainly constrained by the conditions in Table 5.8. These include physical or nu-

merical limits that indirectly shape the sample distributions. One exception is e, a

dependent parameter based on D, where the upper bound of e is restricted as D

increases. This reflects the assumption that values of e beyond a certain threshold

are non-critical.

Finally, Figure 5.5 illustrates the distributions of other building and soil parameters

that are not directly governed by any defined correlation or constraint. These

appear more evenly distributed, though minor unevenness may result from the

rejection of samples that indirectly violated conditions. Across all three figures, the

diagonal histograms help identify the number of values sampled for each parameter,

offering insight into regions with dense or sparse data. The sampled values are

stored in plain ‘.txt’ files and are used to generate the various components of the

model, including the CDP material model, the EBBEF2p-based SSI settlements,

and parametric adaptations of the prototype model (Model 0).

5.3 Generating Concrete Damaged Plasticity Ma-

terial Models

The CDP material models are now developed using relevant parameters from the

sample points generated in the MLH sample space, for a total of N samples. To
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Figure 5.3: Sample distributions of material parameters.
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Figure 5.4: Sample distributions of soil and tunnel parameters.
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Figure 5.5: Sample distributions of additional soil and building parameters.

illustrate this process, three randomly selected samples, whose properties are re-

ported in Table 5.9, are plotted to demonstrate:

– The material’s compressive behaviour using Equation 2.35 (Figure 5.6a).

– Tensile behaviour using a parabolic curve from Equation 2.40 (Figure 5.6c).

– The corresponding stiffness degradation in both compression and tension using

Equations 2.30 and 2.31 (Figures 5.6b and 5.6d, respectively).

The area under the curves represents the value of Gf(c or t)
in the tension and com-

pression regions of the material. These values are also presented in Table 5.9.

Each individual CDP model requires the definition of the above-mentioned pa-

rameters (curves). Other parameters not explicitly listed are considered constant

and are assigned values consistent with those obtained from the validation models.

This includes the CDP plasticity parameters, specific analysis settings, and model-

related inputs such as wall thickness and ρ. These plots and the associated data

are generated using Python scripting and are then used to develop the FEM Model

Prototype within the material definition section of the ABAQUS interface.
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Table 5.9: Material properties for CDP development for a random selection of input
samples.

Sample Point E (MPa) fc (MPa) ft (MPa) Gft (N.mm/mm2)
1 6,271.6 18.25 0.69 0.0284
2 1,370.6 2.58 0.32 0.0135
3 5,797.6 11.61 0.62 0.0173
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Figure 5.6: CDP material behaviour in tension, compression and corresponding damage
degradation, respectively.
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5.4 Generating Soil-Structure Interaction Using

the Euler Bernoulli Beam on a Two Parameter

Elastic Foundation

In conjunction with the development of CDP models, SSI-induced settlement pro-

files are similarly generated using the iterative procedure described in Section 2.3.1,

incorporating relevant inputs from the MLH search space. The same sample points

used earlier to illustrate the CDP models are employed here to demonstrate the

corresponding SSI-induced settlements. The input values for these cases are listed

in Table 5.10. It is noted that material non-linear parameters (e.g., ft, fc, Gft)

and kshear coeff. are not considered in the prediction of building deformation using

the EBBEF2p model. This exclusion stems from the fact that the EBBEF2p code

operates based on linear elastic assumptions and does not accommodate non-linear

material behavior. Consequently, such parameters are only applicable within the

FEM model, which is capable of capturing material non-linearities.

Table 5.10: Relevant parameters for the evaluation of SSI using EBBEF2p model for the
same sample points of the CDP.

Parameter Model 1 Model 2 Model 3
E (MPa) 6271.5 1370.6 5797.6
H (m) 18.0 5.2 3.2
L (m) 14.2 30.2 50.1
O (%) 8.5 25.9 14.9
e (m) 4.9 13.4 4.3

Es (MPa) 29.7 47.0 89.6
νs 0.48 0.19 0.25

ix (m) 5.3 38.5 39.4
VL (%) 1.02 3.94 0.51
Z0 (m) 15.9 61.9 79.9
D (m) 5.7 8.9 15.5

Figure 5.7 illustrates the SSI effects for the selected sample points using the EBBEF2p

code. The variation in settlement response is significant. For instance, Figure 5.7a

demonstrates notable building resistance to deformation, attributed to high values

113



5.4. GENERATING SOIL-STRUCTURE INTERACTION USING THE EULER
BERNOULLI BEAM ON A TWO PARAMETER ELASTIC FOUNDATION

of E combined with relatively low Es, among other factors. In contrast, Figures 5.7c

and 5.7b show strong adherence of the building to the ground surface (GF) defor-

mation profile, indicating reduced structural stiffness and a heightened potential

for damage.
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Figure 5.7: SSI of buildings with various levels of resistance to deformation.

Applying settlements as point displacements at the foundation level in ABAQUS re-

quires a range of sometimes complex and stepwise considerations. ABAQUS allows

for the use of analytical field functions, enabling the user to apply any non-linear

displacement profile over a specified region by defining equations in terms of spatial

coordinates. Therefore, as an additional step, polynomial fits were evaluated for

each SSI model to identify the best-fitting settlement curve. Although polynomial

orders up to 16 were initially considered during exploratory testing, in practice,
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polynomials of degree 3 or 4 were sufficient for the vast majority of cases. The

resulting function is continuous and directly applied to the FEM model. Across

all models, the polynomial fitting achieves high accuracy, with an average R2 value

close to 1 and a minimum of R2 = 0.998.

5.5 Model Prototype (Model 0)

With both CDP material models and SSI settlement profiles for N samples from

the MLH search space now available, the step-by-step development of a parametric

FEM prototype model, referred to here as Model 0, is described. This model in-

cludes fields for variables corresponding to each sampled input parameter, which are

updated autonomously to simulate different structural conditions. This approach

eliminates the need for significant manual input during model assembly, thereby

minimising potential errors.

The model prototype is shown in Figure 5.8. The wall is modelled using 2D shell

elements (ABAQUS S8R) and is assigned CDP material properties. It is noted

that the use of 2D shell elements for the wall is consistent with earlier analyses

and validation efforts, where the nonlinear wall behaviour was also modelled using

shell elements in a 3D space. This modelling choice was made primarily to reduce

computational demands. Moreover, the EBBEF2p model, which informs settlement

inputs, is based on simplified 2D structural representations, further limiting the ne-

cessity or feasibility of full 3D modelling at this stage. However, this approach comes

with certain limitations. Specifically, shell elements do not capture out-of-plane or

torsional behaviours, which may be relevant in real structures. Additionally, struc-

tural components such as in-plane return walls, which could contribute significantly

to the stiffness at façade edges, are not modelled. As a result, the simulated stiffness

and deformation responses may be conservative or less representative of buildings

with more complex three-dimensional configurations.
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A foundation modelled using 3D solid elements (ABAQUS C3D20R) is further

added, applying the same material properties as those used for the wall. In this

case, the characteristic length h is calculated as 3
√
Volume, assuming a volumetric

aspect ratio of 1. Solid elements are required for the foundation because the im-

plementation of contact elements between the building and soil surface necessitates

one of the interacting bodies to be a solid (ABAQUS C3D20R) element. The soil is

modelled as an elastic plate extending 2 m from each edge of the building footprint,

allowing horizontal expansion in response to vertical cracking at the foundation.

The plate is 10 mm thick and adopts soil properties that vary by sample (e.g., Es,

νs). However, due to the de-coupled nature of the modelling approach, these soil

plate properties do not directly influence the output of the FEM model in terms of

SSI.

To model the interaction between the foundation and the soil plate, a frictional

contact interface is implemented using ABAQUS’s penalty method. This was de-

fined between the bottom face of the foundation and the top face of the soil plate

using the parameter kshear coeff., which was sampled from the MLH space. This

setup allows for sliding resistance via friction as well as separation through hard

contact, thereby enabling both relative translations and gap formation between the

interacting surfaces.

Because contact interactions between the building and soil plate are used, both

vertical and horizontal interaction properties are defined. These include vertical

stiffness (knorm), which allows hard contact with potential for gap formation, and a

penalty-based horizontal friction coefficient (kshear coeff.), which is sampled directly

from the MLH space. This setup results in a semi-coupled model: while the set-

tlements are externally imposed based on EBBEF2p outputs, the interaction be-

haviour during displacement is influenced by the defined contact properties.
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Figure 5.8: Model prototype with a basic definition and properties of the various com-
ponents, including the application of load and area of the contact interface.

5.6 Automating Model Generation

With all components now prepared and ready to be assembled into a unified model

(i.e., one FEM model per sample point), the model generation procedure begins.

This step is executed within the ABAQUS Python Development Environment

(APDE) environment, using a Python script that generates and exports input file

‘.inp’, with each file representing one FEM model. In total, N such files are created.

This section provides an overview of the main code components used in the au-

tomation process, with relevant snippets explained where appropriate. These steps

demonstrate how model assembly is managed between the APDE environment and

the ABAQUS interface. The process begins by importing the essential ABAQUS

libraries, presented in Listing A.5.

These imports enable the creation and management of geometry, materials, bound-

ary conditions, and output controls. Constants used across all models are then

defined, including window and door dimensions, material density (ρ), wall thick-

ness, mesh sizing, and door frequency. Next, the values of the input parameters
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from the MLH sample space are imported, which includes N = 500 samples for

each parameter.

The model assembly process begins with a for loop iterating through each sam-

ple. Input parameters are adjusted according to the model constraints described

previously in Table 5.6. All parameter values are also converted into International

System of Units (SI) units (N and mm) to ensure consistency with the CDP and

SSI definitions.

The major modelling steps are summarised below:

– Determining the number of floors based on the total building height H,

presented in Listing A.6.

– Calculating the number of virtual lines corresponding to the centrelines

of windows and doors. Each floor is assumed to contain the same number

and placement of openings, evenly and symmetrically distributed. Only the

ground floor contains door-sized openings, arranged such that two windows are

placed between every two doors, following the approach in (Giardina (2013)).

The number of columns of openings is determined using the Listing presented

in A.7.

– Defining the geometry of the wall, foundation, and soil. Partitioning is

applied to the soil to align with the mesh used for the wall and foundation,

presented in Listing A.8.

– Translating and assembling the model components in the ABAQUS

assembly module, presented in Listing A.9.

– Partitioning the wall to define window and door openings, as well as lintel

zones. These are implemented through several for-loops and conditions. Due

to their complexity, they are not detailed here.

– Loading CDP material curves for compression, tension, and their respec-

tive degradation values. These are applied to the wall and foundation based
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on the current sample point, detailed in Listing A.10.

These properties are not explicitly reassigned in each model, as the naming

conventions and constants are predefined and automatically linked to the rel-

evant model parts.

– Assigning the SSI settlement profile as a vertical displacement field using

the best-fit polynomial expression, presented in Listing A.11.

– Introducing the contact stiffness value kshear coeff. using a penalty-based

tangential behaviour definition, presented in Listing A.12.

The remaining boundary conditions (described later in this section) are then de-

fined, section properties are assigned, the mesh is generated, and field and history

output requests are defined. The script then proceeds to generate the model for the

next sample point (i+ 1), continuing until all N models have been produced.

Component-specific settings for boundaries, mesh types, and section assignments

are summarised in Table 5.11. Once complete, the generated ‘.inp’ files are passed

to the execution phase using HPC facilities, as described in Section 5.7.

Table 5.11: Other model component specifications.

Component Wall Foundation Soil Layer
Material Property CDP CDP Elastic

Section Type Shell (2D) Solid (3D) Shell (2D)
Thickness (mm) 250 250 10

Assembly Top Between Bottom
Interaction Tie- Tie-Contact -Contact (penalty with gap)
Mesh Type S8R C3D20R S8R
Seed (mm) 175 175 175

The analysis procedure for the various FEM models is identical and is defined

as a Dynamic, Implicit step with quasi-static application over a total execution

time of 2.5 seconds to minimise momentum effects. The numerical step settings

are: Maximum Number of Increments = 1000000; Initial Increment Size = 0.001;

Minimum Increment Size = 1.5× 10−15; and Maximum Increment Size = 0.025.
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The field outputs requested for each model include: “Stresses”, “Strains”, and “Dis-

placements”, along with “DAMAGEC” (dc) and “DAMAGET” (dt) contours, rep-

resenting zones of inelasticity due to compressive and tensile failures, respectively.

While “Displacements” and “Strains” are used for the evaluation of structural dam-

age, the “Stresses”, “DAMAGEC”, and “DAMAGET” are used for illustration

purposes only.

Additionally, history outputs are requested, including values over time for: To-

tal Energy, Internal Energy, Kinetic Energy, Artificial Energy, and the nodal dis-

placements of the foundation. Boundary conditions are applied as follows: both

horizontal movements of the soil layer (panel) are restricted, allowing only verti-

cal deformation to match the shape of the applied settlement trough; the wall is

constrained in the out-of-plane direction to prevent twisting or bending along its

thickness. Although the horizontal movement of the soil layer (panel) is constrained

to maintain the shape of the settlement trough, the building foundation remains

free to slide horizontally relative to the soil layer through the defined frictional

contact interaction, enabling simulation of sliding, separation, and gap formation

during settlement-induced deformation.

The same three sample points previously used for illustrating the CDP material

models (Section 5.3) and the SSI profiles (Section 5.4) are shown in Figure 5.9,

where the finalised FEM models are ready for execution.

5.7 High Performance Computing for ‘.inp’ File

Execution

A complete set of N FEM-based input files ‘.inp’ is now prepared for execution. For

this task, the HPC facility at the UoN is used. Both PuTTY (Figure 5.10a) and

WinSCP software are utilised (Figure 5.10b). The user must be connected either

via a WLAN cable (when on-site) or through a VPN connection (when off-site). A
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(a) Model 1, 5 floors and located on hogging region.

(b) Model 2, 1 floor and located (centered) on inflexion point.

(c) Model 3, long structure, located on sagging region.

Figure 5.9: Model assembly in FEM, comprising geometry, material (CDP), applied
settlements SSI (boundaries), and numerical settings.
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good working knowledge of Linux and its terminal commands is also required.

Let Jobi denote the i-th input file, where i ∈ [1, N ]. These jobs are executed

using a Bash shell script ‘.sh’ i.e., ‘Jobs.sh’, containing a loop to submit a batch

of jobs within a given range. The script is submitted using the code presented in

Listing A.13.

(a) PuTTY login window configuration. (b) WinSCP configuration (online with HPC).

Figure 5.10: Software to transfer, access, and execute ABAQUS ‘.inp’ files.

Upon execution, each job is placed into a queue depending on the number of avail-

able ABAQUS licenses at that moment.

Once the simulations are complete, results stored in the output database (‘.odb’)

files are transferred using WinSCP from the remote HPC repository (right window)

to the local machine (left window) for post-processing. Furthermore, by dividing

the total jobs into multiple batches (e.g., 20 jobs per script), several ‘.sh’ scripts

can be executed in parallel, significantly increasing the number of simulations run

concurrently. This is particularly useful for time-constrained tasks requiring a large

number of simulations.
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5.8 An Iterative Procedure for Data Rebalancing

From the literature, it is concluded that the potential for output overfitting or un-

balanced distributions can be inevitable in certain circumstances. Several studies in

geotechnical engineering have proposed the use of Active Learning (AL) approaches

as an effective way to address imbalanced output distributions. These methods se-

lectively query the most informative and under-represented data points, enabling

the model to train and test on a more diversified dataset, thereby improving the

predictions of ML models (Qu et al. (2023)). However, one limitation of AL is its

difficulty in handling data with high levels of noise or fluctuations Settles (2012),

which is typical in tunnelling-induced damage scenarios in brittle materials.

Alternatively, Saadallah et al. (2019) applied under-sampling techniques to address

data imbalance. They found that reducing the amount of majority-class data by

up to 60% improved the prediction accuracy of tunnelling-induced settlements by

up to 20%. Nonetheless, the effectiveness of under-sampling can vary depending on

dataset characteristics. Oversampling techniques such as those proposed by Kubat

and Matwin (2000); Lúıs et al. (2013) generate synthetic samples by interpolating

between minority-class instances. While effective in some cases, these methods

may produce unrepresentative samples when the minority target values are widely

scattered.

To address these limitations, this section introduces an iterative approach aimed

at developing robust datasets and improving the quality of synthetically generated

outputs in the presence of skewed data. The proposed method adapts to learned

statistical patterns by refining the input space over several iterations, potentially

enhancing ML prediction performance.

The iterative procedure consists of the following steps:

i) Identification of influential parameters via SA;

ii) Statistical analysis of input parameter distributions;
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iii) Identification of high-impact parameter regions;

iv) Resampling of refined input space.

A schematic representation of this approach is shown in Figure 5.11.

Initialise n
Identify

nlocal, nglobal

Evaluate
ncombined

Calculate
µXi

, σXi

Ascending?

Exclude
Yi Region 1

values

Exclude
Yi Region 3

values

Update n
domain

yes no

Repeat

(Yi Region 1 < Yi Region 3) (Yi Region 1 > Yi Region 3)

Figure 5.11: Flowchart of the iterative procedure including feature selection, statistical
exploration, and range adjustment.

Step 1: Identification of Influential Parameters

The process begins by identifying influential input parameters that significantly

affect system responses. Let the dataset inputs be denoted as n = {X1, X2, . . . , Xn},
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shared across all output variables. Using a RFR model, the importance I(Yi) of

each input Xi is computed for each output variable (Menze et al. (2009); Antoniadis

et al. (2021)).

A threshold of ϕ = 0.05 is used to identify significant features:

nlocal = {Xi ∈ n | I(Yi)local ≥ ϕ} (5.2)

nglobal = {Xi ∈ n | I(Yi)global ≥ ϕ} (5.3)

The final set of important features combines both:

ncombined = nlocal ∪ nglobal (5.4)

A parameter is deemed influential if it exceeds the threshold for at least one output

variable.

Step 2: Statistical Exploration

The statistical distribution of each selected parameter Xi ∈ ncombined is analysed by

computing its mean µXi
and standard deviation σXi

. The domain is divided into

three regions:

Region 1: where Xi < µXi
− σXi

(5.5)

Region 2: where µXi
− σXi

≤ Xi ≤ µXi
+ σXi

(5.6)

Region 3: where Xi > µXi
+ σXi

(5.7)

Step 3: Identifying Regions of Interest

For each region, the average output value is computed: Yi,Region 1, Yi Region 2, and
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Yi Region 3. The direction of impact is determined by comparing Yi Region 1 and

Yi Region 3:

– If Yi Region 1 < Yi Region 3, the trend is ascending (increased values produce more

damage).

– If Yi Region 1 > Yi Region 3, the trend is descending (decreased values produce

more damage).

Depending on the trend, low-impact regions are excluded from the sampling space

in the next iteration. If conflicting trends exist for a parameter across outputs, the

steeper gradient is prioritised.

Through this process, it is possible to: i) identify influential parameters, ii) evaluate

their distributions, and iii) target impactful regions. This results in increasingly

damage-prone FEM models per iteration, improving dataset quality and reducing

computational waste. Further implementation is discussed in Section 6.4.1.

5.9 Summary

This chapter presented the methodology for identifying input parameters, their cor-

relations, and interdependencies, while accounting for both physical and numerical

constraints. A MLH sampling procedure was employed to generate a diverse set of

input configurations. These configurations were then used to automatically assem-

ble FEM models via the APDE tool and executed on the UoN HPC facility through

batch processing.

This chapter fulfilled the second and third objectives of the thesis (Objectives 2 and

3 in Section 1.5). In addition, it introduced an iterative refinement procedure aimed

at improving output balance and dataset representativeness. The implementation

and impact of this procedure are further explored in Chapters 6 and 7.
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Chapter 6

Evaluation of Local and Global

Damage to Buildings - Case Study

of Numerical Simulations

From the analysis performed on the numerous synthetic FEM models, the research

question is addressed: How do various local and global damage assessment methods,

as found in the literature (Section 2.2), perform in determining and understanding

building damage in numerical case studies? By employing these methods, the dif-

ferences in damage understanding based on the specific approaches used are show-

cased. Hence, both “local” and “global” damage metrics are assessed, providing

key insights into building behaviour in response to tunnelling. This chapter begins

with the extraction of model node displacements, as well as ε values from the ‘.odb’

files produced by the executed simulations. This is followed by the assessment of

local (e.g., Maximum Crack Width), global (e.g., εh,max), analytical-global (i.e., the

LTSM method), and a numerical local-global approach (i.e., Total Damaged Area

Adamaged and values of εt). An evaluation of overall distributions and correlation

studies concludes the chapter. A flowchart of the chapter logic is presented in

Figure 6.1.
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Extraction of
Node Variables
(Horizontal dis-
placements from

‘.odb’ files (e.g., Ux)
and Total Tensile
Strains (e.g., εt))

Evaluation of
Local Damage

Evaluation of
Global Damage

Evaluation of
analytical-global

Evaluation
of Numerical
Local-Global

Producing Total
Damage Distributions

for Rebalancing
Evaluation Purposes

Applying the It-
erative Procedure
of Section 6.4

Observing
Correlations

Figure 6.1: Flowchart illustrating the process of damage evaluation and processing
pipeline.
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When considering local aspects of building damage, the focus is on examining each

individual element in the model to identify extreme strain values indicative of dam-

age. Due to the Macro-modelling nature of the mesh, this cannot be classified

as a discontinuity but rather as a smeared damage within a continuum. Various

approaches exist to assess local damage, including the measurement of bending

and shear in individual elements, as used innovatively in the LTSM method (Sec-

tion 2.2.4), or by evaluating crack width magnitude and count.

However, in this chapter, local damage assessment refers exclusively to the Maxi-

mum Crack Width and the Total Number of Cracks. Due to technical challenges

in automating damage evaluation, particularly during the meshing of the building

model, both criteria are currently measured only at the extreme fibres (i.e., the

top and bottom wall fibres). When modelling the building, the meshing process

does not enforce horizontal partitioning between levels; instead, the mesh is gen-

erated randomly within the building’s main body. In contrast, the extreme fibres

are typically fixed and vertically aligned, which greatly facilitates their automated

identification and subsequent calculations. This approach represents a limitation

of the present methodology. The variable Maximum Crack Width is defined as

the highest crack value detected along the extreme fibres, while Total Number of

Cracks is the cumulative count of all cracks identified within these regions. The in-

ability to partition the building horizontally means that cracks occurring between

these extreme regions, including variations in crack depth with height or cracks

near openings, may not be captured accurately. Addressing this would require the

building to be partitioned into distinct horizontal layers at the desired levels prior

to meshing, an enhancement that was not implemented in the current study. The

method used for identification follows the same approach as in Section 4.3.

Global damage assessment methods, on the other hand, pertain to the behaviour of

the building as a whole or as partial segments, typically measured in the continuum.

The key global metrics of interest include s, t, β, and εh,max, measured either at
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the top fibre (hogging mode) or the bottom fibre (sagging mode), depending on

deformation patterns. These metrics, in conjunction with the local metrics, can be

categorised into damage levels as defined in Section 2.2.3, offering comprehensive

insights into the extent of building damage.

Traditionally, global metrics are applied to entire structures or visually identified

damaged zones. Son and Cording (2005) adopted such methods effectively, lever-

aging manual inspections to locate the most critical segments. However, this is

feasible only when analysing a small number of buildings. In this study, where

hundreds of buildings with varied properties are analysed, a scalable alternative is

proposed: the “screening over the façade” approach.

To capture potential critical damage occurring at different scales, the building is

iteratively partitioned into progressively larger segments: 1/8th, 1/6th, 1/4th, 1/3rd,

1/2nd, 2/3rd, and the entire building. At each segmentation level, global damage

metrics (s, t, β, εh,max) are computed for each segment, and the maximum value

within each partition is retained. The final reported metric is then selected as the

highest value obtained across all segmentation levels, ensuring that both localised

and distributed damage patterns are adequately identified.

Figure 6.2 shows an example segment from a randomly selected building model,

extracted from an executed ‘.odb’ file in ABAQUS. It presents the damage in tension

(DAMAGET) distribution (where 1 indicates full tensile damage) with the reference

corner points A, B, C, and D marked. These reference points are used to evaluate

node displacements for subsequent global metric calculations.

6.1 Evaluating Building Damage using Various

Criteria

Building damage is evaluated systematically and automatically; thus, each individ-

ual FEM model is not inspected manually. Using Python scripting, the extraction
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Figure 6.2: Damage distributions (DAMAGET) of building segment exposed to sagging
mode of deformation.

of field variables (e.g., Ux and εt) is automated by calling the ‘.odb’ files within the

ABAQUS interface in background mode. A code snippet demonstrating this logic

is shown in Listing A.14.

Each output is stored with a unique reference name. The script processes each

‘.odb’ file and exports ‘.txt’ files containing nodal displacements and strain values

at element centroids, along with DAMAGET contour plots in ‘.png’ format for

each FEM model. It is worth noting that ABAQUS Python scripts can either be

written from scratch using the user manual Dassault Systèmes Simulia Corp (2021)

or generated automatically via ‘.rpy’ recordings from manual operations, which can

then be refined, looped, and parameterised to suit different model development

needs.

For this damage evaluation, the focus is placed solely on the façade and foundation;

the lintels and soil plate are neglected.
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6.1.1 Case Studies - Local Damage Evaluation

In this section, local building damage metrics are evaluated using highly impacted

FEM case studies. Figure 6.4 presents a selection of buildings subjected to vary-

ing degrees of damage, focusing specifically on Maximum Crack Width and To-

tal Number of Cracks. Figure 6.4a shows a building located near the inflection

point of the deformation curve, exhibiting widespread DAMAGET values due to

high εt, which is linked to relatively low tensile properties: ft = 0.372 MPa

and Gft = 0.00174 N.mm/mm2. Additionally, the low stiffness of the building

(E = 1930 MPa) and the relatively high soil stiffness (Es = 204 MPa) resulted

in pronounced SSI behaviour, forcing the structure to conform more closely to the

ground deformation (GF) profile, contributing further to induced damage.

In this scenario, damage is mostly concentrated in the hogging and sagging zones,

a typical pattern in such cases Burland (1997); Burland et al. (1977); Boscardin

and Cording (1989), with one prominent crack initiating near the inflection point.

These cracks generally begin at the extreme fibres and can propagate vertically

along the height (H), particularly near wall openings due to their weakened cross-

sectional resistance, an observation consistent with the experimental validation from

Section 4.3 and earlier findings by (Son and Cording (2005)).

Figure 6.4b illustrates a second building under hogging deformation. Vertical cracks

are observed developing in the upper fibre and propagating downward across open-

ings. In this and the previous case, when cracking propagates significantly along

the height (H), the building is expected to split vertically into separate structural

blocks, initiating at the top and progressing downwards, particularly near the in-

flection point (see Figure 4.10a of Section 4.3). However, due to the decoupling

of SSI in the EBBEF2p model, this effect cannot fully develop due to the settle-

ment profile being fixed, contributing to further supporting the structure even after

complete loss of strength, leading to an underestimation of the Maximum Crack

Width.
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Nevertheless, the predicted crack locations and their vertical propagation patterns

are consistent and show good agreement with the observations made by (Son and

Cording (2005)). The main exception is that the cracking in Son and Cording

(2005) followed shear patterns (zig-zagging), which can again be attributed to the

additional support provided by the predetermined SSI settlement profile. In other

words, as non-linear behaviour introduces discontinuities in the continuum, the re-

distribution of stresses between the building and the ground is absent. Additionally,

because the model is vertically restricted by the imposed settlement profile, only

horizontal movements are permitted through frictional properties defined at the

soil–foundation interface. This, in turn, can increase axial strain along the wall

cross-section.

Lastly, Figure 6.4c shows a slightly damaged building under the sagging mode of

deformation. In this model, cracks propagate along the height of the building from

the bottom fibre, and the length of these cracks along H is considerable. It is

therefore reasonable to assume that the building has segmented into three parts,

with limited connection between them.

The segmentation approach, where different segments are considered as separate

structures, is more evident when fully coupled analyses are performed, particularly

when examining discontinuities in the SSI settlement profile.

However, as explored, this is also highly dependent on the length of the cracks along

H. Whether segmentation should be considered when cracking reaches 25%, 50%,

or 75% of H, or based on the magnitude of change in s between segments, is not

clearly defined in the literature.

Figure 6.3 illustrates the distribution of input parameters used for the selected case

studies. In this figure, the extended bars represent the parameter ranges, while

the I-shaped markers indicate the value of each parameter for each model and its

relative position within the total range. Furthermore, Table 6.1 summarises the

local damage metrics: Total Number of Cracks, Maximum Crack Width and its
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location, as well as the assigned damage category in accordance with Table 2.1 of

Section 2.2.3.
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Figure 6.3: Input parameter distributions (in normalised terms) for the models used for
the local damage evaluation of the selected case studies in Figure 6.4.

Table 6.1: Local building damage evaluation metrics of Figure 6.4.

Damage Evaluation Model a Model b Model c
Tot. No. Cracks 15 3 2

Max. Crack Width (mm) 16 9.5 3.5
Location (% from left edge) 33.9 31.3 27.3

Category of Damage Moderate Slight Slight

As seen from Table 6.1, evaluating local damage through scripting does not include

the identification of cracks between the extreme fibres of the wall, nor does it

estimate their depth along H. This limitation is due to the complex and unique

mesh arrangement generated within the wall boundaries and across different models.

While this can be partially addressed by first partitioning the wall along H, that

approach is not applied in the current analysis.

The above observations on façade cracking correspond to the final (mature) crack

state under the theoretical GF values of Sv,max. The foundation’s history outputs
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(a) Considerable building local damage “At inflection”.

(b) Building local damage “At hogging”.

(c) Slight building local damage “At sagging”.

Figure 6.4: Several categories of building damage are observed for the various configura-
tions (DAMAGET contours). In addition to presenting the location of Maximum Crack
Width.

of nodal displacements were monitored throughout the application of load, allowing

me to identify the moment and location of crack initiation and propagation. This

is illustrated in Figure 6.5. In this figure (Figures 6.5a and 6.5b), the relative

positions of foundation nodes are normalised from zero and plotted horizontally
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from a reference point, showing progression up to Sv,max. Clusters of points indicate

sections of the building that move as unified blocks without cracking in between,

thus, the gaps between clusters represent cracks.

Figure 6.5a demonstrates the development of 11 cracks at the foundation level due to

sagging deformation (as seen in Figure 6.5a), with an additional 4 cracks, totalling

16 as shown in Table 6.1, forming above the hogging region and not captured

during load application. Notably, the Maximum Crack Width of 16 mm initiated

at approximately Sv(x) = 15 mm and continued to widen thereafter. Conversely,

Figure 6.5b depicts the crack initiation and propagation for the wall shown in

Figure 6.4c. The initial crack formed to the left of the eventual Maximum Crack

Width, which emerged around Sv(x) = 18 mm. This crack subsequently released

tension from the first crack, causing the earlier crack to close at about Sv(x) =

32 mm. This segmentation behaviour persisted as the newer crack propagated to

its final width. A further crack was then initiated at approximately Sv(x) = 35 mm.
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(a) Node displacements (model of Figure 6.4a).
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(b) Node displacements (model of Figure 6.4c).

Figure 6.5: Foundation nodes displacements with increased values of Sv(x) until reaching
Sv,max.

Figure 6.6 illustrates the initiation and increasing crack width values of the Maxi-

mum Crack Width for each model presented above, up to Sv,max. The purpose of

this plot is to provide a deeper understanding of crack development and propaga-

tion as settlement increases, offering further insights into key aspects of building
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Figure 6.6: Initiation and propagation of Maximum Crack Width values with increased
values of normalised Sv(x).

damage.

Figure 6.6 illustrates the initiation and increasing crack width values of the Maxi-

mum Crack Width for each model presented above, up to Sv,max. The two curves

represent different building positions along the settlement trough: the “Inflection

model” corresponds to a building located near the inflection point of the settle-

ment curve, whereas the “Sagging model” represents a building located within the

sagging (concave) zone. The purpose of this plot is to provide a deeper understand-

ing of crack development and propagation as settlement increases, offering further

insights into key aspects of building damage.

It is noted that categorising damage solely based on local aspects of building per-

formance may limit the understanding of the overall potential risk. Nonetheless,

valuable insights can still be drawn from local assessments, although additional

evaluation criteria are typically recommended (Burland et al. (1977)).

6.1.2 Case Studies - Global Damage Evaluation

Similarly, building damage in highly impacted FEM case studies is reassessed ac-

cording to global metrics. The examination begins by illustrating two buildings

believed to experience significant global deformations, as shown in Figure 6.7.
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It is immediately evident that the building shown in Figure 6.7a did not exhibit ma-

terial non-linearity, as indicated by its ft = 0.51 MPa andGft = 0.0021 N.mm/mm2.

Yet, from a global perspective, the building undergoes significant deformations, as

seen in the values of t and s. This response can be attributed to a combination of

E = 4180 MPa, L = 20.3 m, e = 14.8 m, ix = 10.9 m, and a VL value of 3.76%.

The relatively high stiffness and volume loss values, together with the proximity

between e and ix (i.e., placing the building at the inflection zone where s is max-

imised), and a comparatively small building length all contribute to elevated global

deformation metrics, resulting in a damage category that exceeds negligible.

In contrast, Figure 6.7b presents a building displaying significant non-linear be-

haviour, with increased values of β (attributable to larger θ) and εh,max (due to

horizontal expansion from crack development), consistent with findings reported

in (Son and Cording (2005); Giardina et al. (2015)). The observed increase in β

is partly attributed to the limited building height (H = 3.72 m), coupled with

relatively high soil stiffness (Es = 172 MPa), which makes the structure more com-

pliant with ground deformations. Similarly, the elevated εh,max is associated with

a low fracture energy (Gft = 0.0015 N.mm/mm2) and low structural height, both

contributing to increased horizontal expansion due to the development of multiple

cracks across the building segments.

Figure 6.8 illustrates the distribution of input parameters used in these selected case

studies. In addition, Table 6.2 summarises the global damage metrics, including

s, t, β, and εh,max. The corresponding damage categories are assigned using the

classification criteria in Tables 2.2, 2.3, and 2.4, as well as the damage curves

presented in Figure 2.4.

It is important to highlight that, depending on the metric used, a building may

fall into different damage categories. As observed in Table 6.2, the same model

may be classified with slight damage based on s, but severe damage according to

β. This is in addition to the variations observed from local damage metrics. Hence,
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(a) Structure undergoing large values of t and s.

(b) Structure undergoing large values of β and εh.

Figure 6.7: Example structures with significant damage according to global metrics (il-
lustration of DAMAGET contours).

Table 6.2: Global building damage evaluation metrics of the case studies presented in
Figure 6.7.

Damage Evaluation Model a Model b
s 0.006604 (1/151) 0.004907 (1/204)

Category for s 3/4 (Moderate) 2/4 (Slight)
t 0.006550 (1/153) 0.004582 (1/218)

Category for t 3/5 (Monitoring) 3/5 (Monitoring)
βa 5.4 ×10−5 3.162 ×10−3

Category for β 0/4 (Negligible) 5/5 (Severe)
εh,max 2.5 ×10−5 2.776 ×10−3

Category for εh,max 0/5 (Negligible) 3/5 (Moderate)
a Damage categorisation using the variable β must be used in conjunction with the corresponding value of
εh,max in Figure 2.4 to determine the level of induced damage.

it is crucial to include a combination of multiple metrics, capturing both localised

and global structural responses, to ensure a comprehensive evaluation of building

damage. Moreover, depending on the specific use and requirements of the structure,
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Figure 6.8: Input parameter distributions (in normalised terms) for the models used for
the global damage evaluation of the selected case studies in Figure 6.7.

it may be appropriate to prioritise some metrics over others.

6.1.3 Case Studies - Limiting Tensile Tensile Method As-

sessment

For comprehensiveness, the analytical-global LTSM method is also applied to eval-

uate building damage in case studies identified as highly impacted with respect to

this criterion. This method is widely adopted for assessing the global behaviour of

buildings (Burland et al. (1977)). Although simplistic, it serves as a useful addition

to the overall assessment framework when used alongside the previously described

local and global methods.

The results presented here are derived from the outputs of the analytical model,

which incorporates linear input variables. Specifically, the calculated values are

obtained by applying equations 2.12 to 2.16 as defined in Section 2.2.4.

However, the method is limited, as it assumes linear elastic behaviour and idealises

140



6.1. EVALUATING BUILDING DAMAGE USING VARIOUS CRITERIA

the structure as a simple beam, which may not fully capture complex structural re-

sponses. Nonetheless, the building does not follow a GF settlement profile; instead,

it resists ground movement based on the relative stiffness between the structure

and the soil. Although SSI effects are indirectly considered through this interac-

tion, the simplifications may still lead to an under- or overestimation of the induced

damage in certain scenarios. To evaluate these metrics, εb, εd, and εh are measured

to determine the failure type and damage category using the equations presented

in Section 2.2.4, specifically equations 2.12 to 2.16. The assessment framework is

implemented in Python and does not require any FEM outputs, as it is a fully ana-

lytical approach that relies solely on the input parameters defined at each sampled

point. Two examples are used to demonstrate the outcomes of this method, with

the corresponding input parameters provided in Table 6.3.

In the LTSM calculations, the shear stiffness G was derived using the standard

elastic relationship:

G =
E

2(1 + ν)
(6.1)

However, both E and G were adjusted to account for the presence of openings in

the façade or wall layout. These reductions were based on empirical relations de-

rived using the reduction assessments from Son and Cording (2007), which provide

equivalent elastic properties suitable for representing openings in masonry. This

modification enables a more realistic representation of the building’s flexural and

shear behaviour than assuming a solid section.

Figure 6.9 illustrates the building’s location with respect to the tunnel centreline

and the settlement trough, incorporating both vertical and horizontal ground dis-

placements. This is a key distinction from the previously described EBBEF2p

approach used for the FEM models, which considers only vertical settlement. The

inclusion of horizontal displacements in the LTSM method provides a more com-
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prehensive representation of SSI, especially for estimating deformations in hogging

and sagging regions. Dashed lines in different colours indicate the corresponding

building sections within each ground deformation zone.

Table 6.3: Models input parameters for LTSM metrics.

Parameter /
Figure 6.9a Figure 6.9b

Model of
E (MPa) 3,762.5 5,791.9
H (m) 11.6 4.1
L (m) 58.0 40.5
O(%) 15.0 24.6
e (m) 11.4 36.3
ix (m) 17.7 13.2
VL (%) 3.46 2.51
Z0 (m) 34.9 25.7
D (m) 11.5 12.7
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(b) Building on hogging deformation.

Figure 6.9: Building location WRT settlement trough for the assessment of building
damage according to the LTSM method.

Specifically, Figure 6.9a illustrates a building located in the region between sagging

and hogging modes of deformation, crossing through the inflection point (similar

to the case in Figure 6.4a). Along each segment of the building (before and af-

ter the inflection point), the values of ∆ are measured, and subsequently the DR

parameter. Using the equations for the LTSM method, predictions are made for

each segment for the values of εb and εd, also considering εh. These values are

then compared with εlim across the segments to determine the dominant mode of
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failure and its magnitude, thereby reflecting the level of induced damage based on

the categorisation described in Table 2.4.

On the other hand, Figure 6.9b shows a building positioned exclusively in the

hogging region. The entire building is considered as a single segment, with the

corresponding calculations performed similarly to the previous example. The results

for both models are summarised in Table 6.4.

Table 6.4: Results for LTSM models presented in Figure 6.9.

Model DR εb εd Failure Mode Damage Category
Figure 6.9a 9.00E-04 2.62E-03 1.48E-03 Bending Moderate
Figure 6.9b 5.62E-04 -5.21E-05 8.96E-07 Bending Negligible

Although a simplistic method, the inclusion of the LTSM in the assessment frame-

work is beneficial, as it enriches the initial understanding of building damage using

considerably fewer computational resources. Its outputs can be directly compared

with those from more advanced methods for further investigations, such as compar-

isons of direct damage categorisation, correlation studies, and more.

6.1.4 Case Studies - Overall Damage and ε Over the façade

This method involves calculating the total area of damaged elements across the

façade and plotting the corresponding εt values. In some cases, εt at 99% is used as

a representative metric, commonly referred to as the “characteristic strain.” Unlike

the definition in Yiu et al. (2017), where characteristic strain is defined as the

strain below which a certain percentage of the wall area does not exceed, here it is

calculated by first sorting all εt values from highest to lowest and excluding the top

1% of extreme values. The 99th percentile value is then taken from the remaining

distribution to avoid over-representing highly localised or spurious peaks. This

approach enables a more stable assessment of global façade damage, while still

aligning with the benchmark categorisation shown in Table 2.4, as used also for the

LTSM method.
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Figure 6.10: Input parameter distributions (in normalised terms) for the models used for
the global damage evaluation of the selected case studies in Figure 6.11.

Below is an example of three selected structures with varying levels of overall dam-

age, where values of εckt are used to identify elements undergoing non-linear be-

haviour. This value is measured at the element centroid, as required during the

early stages of ‘.odb’ file postprocessing (Section 6.1). Figure 6.11 illustrates the

distributed damage across the wall façades. Figure 6.11a corresponds to minimal or

no damage, Figure 6.11b represents moderate damage, and Figure 6.11c shows sig-

nificant or considerable damage. The exact strain values, percentages of damaged

elements, and corresponding model input parameters are provided in Figure 6.10

and Table 6.5, respectively.

Table 6.5: % of damaged areas, and εt values of Figure 6.11 case studies.

Damage Evaluation Model a Model b Model c
Damaged Area (%) 1.93 4.62 9.56

εt (Category) 0.0058 (Severe) 0.0407 (Severe) 0.0442 (Severe)
εt at 99% (Category) 0.0012 (Slight) 0.0042 (Severe) 0.0074 (Severe)
εt at 95% (Category) 0.00007 (Negligible) 0.00014 (Negligible) 0.00138 (Slight)

The area percentages correspond to a weighted average, calculated by multiplying

the damage variable by the element’s area. Since the areas of the elements compris-
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(a) Low to no damaged elements.

(b) Moderate numbers damaged elements (with clustering).

(c) Significant numbers of damaged elements including both clustering and spread.

Figure 6.11: Evaluating damage according to damaged elements, illustrating DAMAGET
contours on building façade.

ing the wall are not all identical, this approach provides more accurate calculations

than a simple averaging of εt values. This method can be considered a global ap-

proach to building damage assessment, as it does not explicitly identify the location

of the damaged areas or their spread but rather provides an overall estimate for the

entire façade, unless additional improvements are implemented.

In this section, the difference between local and global damage methods is exam-

ined, each describing a different aspect of model deformation. Initially, each metric

appears to provide significantly different levels of damage from one another, even

for the same model. This is particularly evident when damage is categorised ac-

cording to criteria in the literature. For example, a building that incurs high values
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of s or t may not necessarily exhibit severe discontinuities in the building material,

and therefore, no cracking may be observed.

Ideally, this necessitates the use of a holistic damage assessment framework (sim-

ilar to Giardina (2013)), in which considerations for all of the above metrics are

combined or correlated. Depending on the function and use of the building, pri-

oritisation of one method over another may also be necessary. Nonetheless, simply

illustrating and evaluating each metric of building damage independently still en-

ables the development of a broad, rich-data, and diverse outlook on the risk induced

to buildings exposed to tunnelling.

6.2 Summary of Methods For All Case Studies

While the previous observations focused on identifying buildings with the highest

damage values relative to their respective damage criteria (i.e., selecting the most

severely damaged building based on its specific damage model, local, global, or

otherwise), a brief presentation is provided of the different levels (categories) of

all damage variables for each of the previously presented models, compiled into one

comprehensive table. A summary of these results is presented below in Table 6.6 for

the local and global damage assessment metrics, and Table 6.7 for the analytical-

global and numerical local-global damage metrics.

It is noted that some consistencies and contradictions are observed across the dam-

age classifications of various models. For instance, model (a) from the local as-

sessment section exhibited significant levels of induced damage across all damage

variables, which is consistent across the different methods. In contrast, model (b)

from the LTSM method presents a notable contradiction. While local, global, and

numerical local-global evaluations indicate substantial damage, the LTSM method

classifies it as negligible. This discrepancy may stem from the limited input pa-

rameters and the underlying assumption of linear behaviour in the LTSM method,
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Table 6.6: Categories of damage for the models presented earlier as case studies for each
damage criteria in comparison to their global categorisation of damage (Part 1).

Model Max. Crack Width s t β εh,max

Local a Very Severe Moderate Moderate Very Severe Very Severe
Local b Moderate Slight Very Slight Moderate Moderate
Local c Slight Slight Very Slight Very Slight Very Slight
Global a Very Slight Moderate Moderate Negligible Negligible
Global b Moderate Slight Slight Moderate Moderate
LTSM a Moderate Slight Very Slight Moderate Moderate
LTSM b Moderate Slight Very Slight Moderate Moderate
Area-Strain a Very Slight Slight Very Slight Negligible Negligible
Area-Strain b Moderate Slight Very Slight Slight Slight
Area-Strain c Moderate Slight Slight Slight Slight

Table 6.7: Categories of damage for the models presented earlier as case studies for each
damage criteria in comparison to their global categorisation of damage (Part 2).

Model εbor d Damaged Area εt εt @ 99% εt @ 95%

Local a Very Severe 6.51 Very Severe Very Severe Slight
Local b Very Severe 2.93 Very Severe Very Severe Negligible
Local c Very Severe 0.92 Very Severe Negligible Negligible
Global a Very Severe 0 Negligible Negligible Negligible
Global b Very Severe 6.87 Very Severe Very Severe Slight
LTSM a Moderate 2.48 Very Severe Very Severe Negligible
LTSM b Negligible 3.28 Very Severe Moderate Negligible
Area-Strain a Very Severe 1.93 Very Severe Slight Negligible
Area-Strain b Very Severe 4.62 Very Severe Very Severe Negligible
Area-Strain c Very Severe 9.56 Very Severe Very Severe Slight

which can overlook the effects of highly non-linear material responses. In particu-

lar, although the structure may not undergo pronounced bending or displacement,

the material could still experience significant damage due to high tensile strains,

captured by advanced non-linear FEM but missed by simplified approaches. These

findings underscore the importance of a comprehensive damage assessment frame-

work that incorporates multiple evaluation methods to achieve a more accurate and

reliable understanding of tunnelling-induced building damage.

To address the variability observed across different damage metrics, a structured

decision-making approach can be adopted. One effective strategy would involve

defining clear selection criteria based on the project’s specific requirements and
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objectives. These criteria might include the sensitivity of metrics to different dam-

age mechanisms, the comprehensiveness of capturing local versus global effects, the

ease of metric interpretation, and the compatibility with available data inputs. For

example, if the primary concern is local structural integrity, metrics sensitive to

crack widths and strain distributions would be prioritized. Conversely, if broader

structural stability or serviceability is of greater importance, global or numerical

local-global metrics may be more relevant. Additionally, employing weighted scor-

ing or Multi-Criteria Decision Analysis (MCDA) Valerie and Theodor (2002) could

systematically quantify the relative importance of each metric, aiding in the selec-

tion of the most appropriate damage assessment method.

6.3 Distribution of Damage Variables

Since the purpose of the FEM models is the training of ML algorithms, a funda-

mental question must be addressed first: how well are the output values distributed

across the full range of each damage variable? In other words, do the output vari-

ables (i.e., local, global, etc.) sufficiently cover the significant regions corresponding

to different levels of building damage? Is the data distribution adequate for effec-

tive training of ML algorithms, particularly in light of clustering and overfitting

concerns?

In this section, the distribution of damage values across the entire set (N = 500)

of FEM models is examined, considering both local and global damage metrics.

The natural clustering (or skewing) and highly imbalanced distribution of data are

then highlighted. A novel technique is proposed to redistribute the data, thereby

reducing training bias and mitigating the risk of overfitting in ML models. This

approach is described in detail in Section 6.4, from which it is concluded that

it directly improves predictions for lightly non-linear outputs and also provides

recommendations to increase the number of samples in cases involving more highly
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non-linear outputs.

In Figure 6.12, the distribution of local output variables (i.e., Maximum Crack

Width and Total Number of Cracks) is plotted against the number of total sim-

ulations, referred to here as the original dataset composed of N = 500 samples,

generated as previously discussed in Section 5.2, and arranged in ascending order.

Initially, this excludes the dataset iterations addressed later in Section 6.4. It is

clearly visible that a large number of simulations did not exhibit any non-linear

response based on the local criteria.

In fact, only around 20% of the data (≈ 100 simulations) produced output val-

ues other than zero for the damage variables. This means that only one out of

five combinations of input parameters in the original MLH sampled dataset (Sec-

tion 5.2) resulted in any measurable damage, i.e., an output that is not zero or

null. These non-zero outputs are inherently necessary for effective ML training and

for conducting input parameter SA studies aimed at evaluating system response.

Therefore, the remaining 80% (approximately four out of five samples) converged

to a single “null” output, i.e., no damage. Nonetheless, a “null” or zero output still

holds value, provided that the ratio of such samples is balanced relative to the total

number of simulations, as it helps identify combinations of input parameters that

do not lead to damage.
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Figure 6.12: Original distributions of local damage metrics with simulations.
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Moving on to the global assessment metrics, namely, s, t, β, and εh,max, the distri-

bution of these output variables across simulations is illustrated in Figure 6.13. The

highly non-linear outputs, such as β (Figure 6.13c) and εh,max (Figure 6.13d), ex-

hibit greater skewness in their data distributions compared to s (Figure 6.13a) and

t (Figure 6.13b). In particular, a noticeable increase in the values of β and εh,max

is observed around the 20% (1:5) mark, as previously seen in the case of local met-

rics. This comes as no surprise, as both parameters are linked to the initiation and

propagation of cracks, leading to their exponential growth. The segmentation of

walls into separate blocks contributes to higher θ values and significantly increases

∆L, both of which are key contributors to increasing β and εh,max, respectively.

In contrast, s and t are found to be less affected by crack initiation, as these outputs

are more dependent on the shape of the settlement trough from SSI, influenced by

parameters such as e, VL, D, and Z0, rather than the building’s non-linear proper-

ties. Similarly, initial observations of these trends suggest the need for rebalancing

techniques. Although not all output variables indicate a sharp increase in value,

the primary interest is in the highly non-linear outputs. In these cases, rebalancing

is expected to significantly improve model performance, whereas its effect on less

non-linear variables is minimal. This will be further illustrated later in this chapter.

Furthermore, Figures 6.14 and 6.15 illustrate the output distributions of ε(b or d), r

from the LTSM method and of the damaged elements of the wall alongside εt values,

plotted against simulation numbers, respectively. It is immediately apparent that

the distribution of ε(b or d), r values resembles those of the global variables s and t.

This similarity arises because the LTSM model is also based solely on the material’s

elastic properties and is fully analytical, requiring no FEM outputs.

Still, a notable increase in the rate of change is observed after approximately 70–80%

of the simulations. This is attributed to the natural exponential rise of Sv,max

when the results are reordered in ascending order against the sample points (Fig-

ure 6.14b). This pattern also applies to all other damage metrics. On the other
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Figure 6.13: Initial distributions of global metrics with simulations.

hand, the strain values (Figures 6.15b to 6.15d) and the damaged elements of the

façade (Figure 6.15a) show a distribution similar to that observed in the local

metrics, namely, Maximum Crack Width and Total Number of Cracks. Both the

damaged elements and εt follow a comparable trend, showing an approximate 1:5

ratio of damaged models. These metrics are typically triggered and recorded as

soon as cracking occurs, regardless of the crack magnitude. A similar pattern is

observed in the distribution of εt at 99%. In contrast, εt at 95% appears in only 2% of

the total simulations. While this value carries no specific technical meaning, it sim-

ply indicates how few buildings experience substantial cracking, both in magnitude

and frequency, beyond a 5% threshold derived from εt.

Even a 50-50 use of Null combined with meaningful data (i.e., more useful for the
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Figure 6.14: Initial distributions of LTSM damage criteria and Sv,max.
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Figure 6.15: Initial distributions of additional metrics (Damaged Area and εt) with sim-
ulations.
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training of ML),Even with a 50-50 mix of “null” and meaningful data (i.e., data

more suitable for the training of ML models), adopting the current distribution

state means that a significant portion of simulations may not contribute effectively.

In fact, they could negatively impact the overall training process due to the pre-

viously discussed issues of bias and overfitting. Additionally, at this stage, it is

still unknown which input parameters have the greatest influence on the outputs.

Current assumptions are based primarily on engineering judgement and existing

literature.

Hence, in the following section, the SA of input parameters is carried out as a first

step toward identifying the most influential factors. This step guides the novel

approach in generating a more targeted sample space that focuses on highly non-

linear output variables.

6.4 An Iterative Procedure of Data Rebalancing

From the previous section, it was concluded that the distribution of output vari-

ables based on the current MLH samples demonstrates significant skewness in data,

resulting in major imbalance. It was observed that approximately 1 in 5 simulations

of highly non-linear metrics were useful, while the remaining 80% of total simula-

tions resulted in similar outcomes, consuming significant computational resources

and time, providing little benefit to the overall usefulness of these results due to

similarity in values.

6.4.1 Implementation of the Iterative Procedure

To improve the distribution and representation of damaged cases in the dataset, the

iterative procedure is implemented on the synthetic datasets produced by the FEM

models, as described in Section 6.1. This approach aims to increase the proportion

of simulations that result in meaningful local and global damage outputs, thereby
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reducing the dominance of majority-class (i.e., undamaged) cases and avoiding un-

necessary computations caused by highly clustered output distributions.

The RFR ensemble model from sklearn in Python and the RandomForestRegres-

sor model, with n estimators = 1000 to improve the model’s stability and identify

the most influential parameters through feature importance for the SA. A threshold

ϕ = 5% is used to distinguish important parameters from non-important ones. The

analysis is performed on an initial set (N = 500) of data points, using two ensemble

models trained separately: one with local output values and the other with global

output values. The selection of output variables for the SA is based on the highest

expected levels of non-linearity. Specifically, εh,max is used for the global assess-

ment, and Maximum Crack Width is used for the local assessment. The SA results

of both models are shown below in Figure 6.16. From this figure, the most impor-

tant parameters can be identified. Nonetheless, significant error bars are initially

observed, likely due to the initial number of simulations being insufficient coupled

with the presence of high levels of data clustering. Applying techniques of over- or

under-sampling could potentially enhance the initial estimates of SA, though this

was not further investigated.

By performing SA, parameters that would benefit from improved dataset quality can

be identified by further analysing their statistical metrics, regions of interest, and

then resampling for each iteration. Less influential parameters remain unchanged.

Notably, for each iteration, SA is performed on the current dataset along with pre-

vious ones, including the original dataset. This approach avoids over-reliance on a

single dataset and makes decisions based on the accumulated sample points, provid-

ing higher accuracy in SA predictions due to the increased number of simulations

used and improved population of the minority classes of output variables.

Figure 6.16 illustrates the parameters with the highest impact using the sample

points from the initial dataset. Figure 6.25a illustrates the SA of the global metric,

indicating the most impactful parameters as follows (in order of importance): ix,

154



6.4. AN ITERATIVE PROCEDURE OF DATA REBALANCING

0.0 0.1 0.2 0.3
Parameter Importance

ix
Es
L

VL
kshear coeff.

e
D
Fc
E
H

Z0
Ft
O
s

Gft

*
*

*
*
*

*

>5% Threshold

(a) According to εh,max.

0.0 0.1 0.2
Parameter Importance

ix
L

VL
Es
E

Fc
e
D

Z0
H

kshear coeff.
s

O
Ft

Gft

*
*

*
*

*
*
*

>5% Threshold

(b) According to Max. Crack Width.

Figure 6.16: Importance score of input parameters using the RFR, totalling a sum of 1.

Es, L, VL, kshear coeff., and e. In contrast, Figure 6.25b illustrates the SA of the

local metric, revealing the most influential parameters in order of importance as: ix,

L, VL, Es, E, fc, and e. Notably, some parameters are important in both datasets,

indicating their broad influence across different outputs.

Step 2 - Statistical Exploration using µXi
and σXi

: Once the most important

parameters are identified using the original dataset µXi
and σXi

are determined for

the input values of each influential parameter. This is a foundational step in deter-

mining separate regions of parameter distributions (Step 3). The output distribu-

tions with respect to influential parameters are also examined, visually illustrating

how outputs vary with increased values of influential parameters.

Figure 6.17 illustrate the distributions of Maximum Crack Width along ranges of

values of the most influential parameters and for the original dataset. The axis

values in these graphs are normalised between 0.1 and 0.9 for consistency. From

these figures, clear trends of increasing or decreasing behaviour in damage with

increased parameter values can be observed, depending on the parameter in ques-

tion. For example, parameters ix (Figure 6.17a), fc (Figure 6.17f), and E (Figure

6.17e) are all generally following a similar trend, in which a decline in damage val-

ues is observed with increased parameter values (negative correlation), indicating

that damage values associated with higher values of such parameters are of lower
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magnitude and vice versa. On the contrary, parameters such as L (Figure 6.17b),

VL (Figure 6.17c), and Es (Figure 6.17d) illustrate an increase in damage values at

higher values of input parameters (positive correlation), indicating an opposite ef-

fect, in which lower parameter values introduced fewer Maximum Crack Widths and

vice versa. Finally, observations of parameters such as e (Figure 6.17g) (although

influential as per step 1) initially provide unclear behaviour (trend) on whether

increasing or decreasing this input will introduce more damage. Nonetheless, a

slight decrease in damage with increased input values is still observed, indicating a

negative correlation between the two. This is further clarified with increased iter-

ations as average determinations of Step 3 are applied, where regions of influential

parameters are statistically determined by the µXi
measure.
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Figure 6.17: Damage distributions in normalised values of the Max. Crack Width against
the most influential parameters and for the original dataset.
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The results from the global output variable εh,max are presented in Figure 6.18,

where the distributions of global damage are plotted against the most influential

input parameters. Similarly to the local results, axis values are normalised for con-

sistency. Consistent with the trends observed in the local output results, parameter

ix (Figure 6.18a) shows a decline in global damage values with increasing input

values. This suggests that larger values of ix, which contribute to the widening

of the settlement trough, significantly reduce global building damage, indicating a

negative correlation.

On the contrary, parameters such as Es (Figure 6.18b), L (Figure 6.18c), VL (Fig-

ure 6.18d), and kshear coeff. (Figure 6.18e) demonstrate increased damage with higher

input values. These show a positive correlation similar to their local counterparts,

except for kshear coeff., which was not influential in the local results but shows a

clear positive correlation here. Lastly, the e parameter (Figure 6.18f) also shows a

negative correlation with global damage, more clearly than in the local case.
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Figure 6.18: Damage distributions in normalised values of εh,max against the most influ-
ential parameters and for the original dataset.

The mixed response between parameters over local and global damage metrics

makes this investigation highly beneficial in understanding each parameter’s over-

all impact on a selected output. In addition to helping identify regions of high

influence, it aids in determining whether increasing or decreasing values of a given
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parameter have a positive or negative correlation to building damage. This paves

the way for refining the input space and incrementally targeting more influential

regions of input parameters per iteration.

Step 3 - Identifying Regions of Interest: The final step before resampling is the

identification of regions of interest. In Step 2, the distribution of parameters along

with their respective µXi
and σXi

was presented. These two statistical measures

are now used to divide the range of input values into three distinct regions:

– Below µXi
− σXi

,

– Between µXi
− σXi

and µXi
+ σXi

,

– Above µXi
+ σXi

.

In a normally distributed curve, approximately 68% of all values fall within the

central region (i.e., between µXi
− σXi

and µXi
+ σXi

), while the remaining 32%

are split between the lower and upper ends. Although the sample points are not

strictly normally distributed, they exhibit similar distribution patterns depending

on the relative position of a given parameter, including the effects of correlations

and constraints previously discussed.

To this end, the average output value Yi Region (1 and 3), that is, the selected local

metric “Maximum Crack Width” or global metric “εh,max”, is calculated for each

of the three defined regions. Based on these average values, an ascending or de-

scending trend is determined. By comparing these regional averages, the region of

lower influence can be identified and then excluded from the input space domain of

the relevant input parameter for the MLH resampling in the subsequent iteration.

This strategy effectively targets input value regions with higher potential to induce

building damage for the selected output metric. For both metrics, the influential

parameters are combined into a single table. The average output for each region

of each input parameter is evaluated, such that a single representative value per

region per parameter is ultimately obtained.
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Table 6.8: Average values (normalised) for each of Yi Region 1, 2 or 3 of input parameter
using µXi

and σXi
with % of total values falling within each region.

Parameter Reg. 1 Reg. 2 Reg. 3 % Reg. 1 % Reg. 2 % Reg. 3
E 0.164 0.143 0.127 19.98 51.42 28.61
L 0.103 0.137 0.177 23.58 58.33 18.09
e 0.147 0.136 0.131 12.24 49.06 38.70
Es 0.112 0.133 0.174 20.97 57.75 21.29
ix 0.207 0.127 0.102 22.10 46.88 31.02

kshear coeff. 0.124 0.134 0.130 20.40 57.49 22.11
V L 0.110 0.136 0.164 18.42 57.23 24.35
fc 0.150 0.145 0.134 12.86 41.61 45.53

As mentioned above, Table 6.8 illustrates the average normalised output values for

both local and global damage metrics across the three regions defined by µXi
and

σXi
for the most influential parameters identified in the first cycle of the iterative

procedure. Additionally, the table shows the percentage of data points falling within

each region. From this table, the following conclusions are drawn:

– Increasing the values of E, e, ix, and fc contributes to reducing the overall

damage induced to buildings (negative correlation). Since the goal of the iter-

ative procedure is to target parameter ranges more likely to result in damage,

the region Yi Region 3 is removed for these parameters. Therefore, sampling in

the next iteration will only include values from Yi Region 1 and Yi Region 2.

– In contrast, increasing the values of L, Es, kshear coeff., and VL results in greater

building damage (positive correlation). Accordingly, Yi Region 1 is excluded

from the input space for the next iteration to focus the sampling on regions

more prone to inducing damage.

It is worth noting that the material parameter fc is often overlooked in similar

studies Giardina et al. (2015); Lourenco (1996), with the reasoning that buildings

in such loading conditions do not undergo significant compressive stress. How-

ever, in this work, fc emerged as influential due to its high correlation with other

critical parameters, particularly E, which is widely acknowledged as an influential

factor (Giardina et al. (2015)). Therefore, it is concluded that SA is clearly sensi-
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tive to parameter correlations introduced by the MLH sampling approach, although

this relationship was not further explored in this study. By repeatedly applying this

iterative procedure, the proportion of simulations that result in building damage is

significantly increased. This is achieved by systematically removing the least influ-

ential parameter regions, as determined by SA, thereby favouring the generation of

non-linear behaviour and reducing unnecessary computational overhead through a

structured and statistically grounded method.

Summary of Results from the Iterative Procedure.

The iterative process was repeated five times. Although no universal rule exists to

determine the optimal number of iterations, five cycles were deemed appropriate

based on improved distribution of output variables observed during the process.

Table 6.9 presents the minimum value ranges of each input parameter across all

iterations. If a parameter’s minimum remained unchanged or slightly increased,

it indicates that the parameter had little to no influence on the output damage

metrics and was likely below the importance threshold (ϕ < 0.05) identified in Step

1. Thus, these parameters remained unaltered in subsequent iterations.

Conversely, Table 6.10 displays the maximum value ranges per iteration. A signif-

icant reduction in maximum values for a parameter indicates its association with

lower damage outputs, warranting its upper range to be trimmed to encourage

more damage-prone configurations. If both the minimum and maximum bounds

for a parameter remained unchanged, it suggests the parameter did not contribute

meaningfully to the outcome and was therefore excluded from targeted refinement.

However, if both bounds shifted across iterations, this indicates a changing trend in

correlation caused by evolving sample populations, necessitating dynamic adjust-

ment during the rebalancing process.

Tables 6.9 and 6.10 are further illustrated in Figure 6.19 using radar charts. These

charts are normalised to ensure consistency in visualisation across iterations. They

provide a visual representation of the gradual reduction in the range of values for
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Table 6.9: Minimum values of input parameters used throughout iterations.

Parameter Original Dataset Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
E 666 666 666 666 666 666
ft 0.05 0.05 0.05 0.05 0.05 0.05
Gft 0.004 0.004 0.004 0.004 0.004 0.004
H 3.2 3.2 3.2 3.2 3.2 3.2
L 8.0 20.3 27.0 32.8 37.6 37.6
O 0 0 0 0 0 0
e 0.0 0.0 0.0 0.0 0.0 0.0
Es 2.0 54.0 82.4 108.3 131.4 131.4
νs 0.1 0.1 0.1 0.1 0.1 0.1
ix 3.6 3.6 3.6 3.6 3.6 3.6

kshear coeff. 0.0001 0.123 0.188 0.188 0.27 0.27
V L 0.20 1.08 1.61 2.04 2.29 2.29
Z0 7.3 7.3 7.3 7.3 7.3 7.3
D 4.9 4.9 4.9 4.9 6.1 6.1
fc 0.5 0.5 0.5 0.5 0.5 0.5

Table 6.10: Maximum values of input parameters used throughout iterations.

Parameter Original Dataset Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
E 9000 6616 6616 6616 6616 4841
ft 1.47 1.47 1.47 1.47 1.47 1.47
Gft 0.03 0.03 0.03 0.03 0.03 0.03
H 20.0 20.0 20.0 20.0 20.0 20.0
L 60.0 60.0 60.0 60.0 60.0 55.5
O 30 30 30 30 24.585 19.91
e 45.0 27.6 27.6 27.6 27.6 27.6
Es 250.0 250.0 250.0 250.0 250.0 250.0
νs 0.49 0.49 0.49 0.49 0.49 0.49
ix 45.0 32.2 26.3 22.9 20.4 19.4

kshear coeff. 0.60 0.60 0.60 0.51 0.51 0.51
V L 5.00 5.00 5.00 5.00 5.00 4.06
Z0 90 90 90 90 90 90
D 17.6 17.6 14.7 14.7 14.7 11.6
fc 48.2 26.48 15.77 15.77 15.77 8.03

each input parameter, starting from the original dataset (Figure 6.19a) up to the

input space defined in iteration 5 (Figure 6.19f). As the parameter ranges shrink, it

is important to note that the reduced area under the radar chart does not represent

any objective or physical truth. Instead, the purpose of these charts is to visually

communicate how the search space is progressively reduced through each iteration,
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highlighting both the direction of reduction (i.e., whether the range is being trimmed

from the minimum or maximum side) and the magnitude of this reduction (i.e., the

proportion of the range that has been removed).
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(f) Iteration 5 dataset (N ≈ 100).

Figure 6.19: Distribution of input parameters between iterations using radar charts.
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The progressive increase in building damage per simulation with increased iterations

is illustrated in Figures 6.20 and 6.22. With each iteration, the rate of simulations

undergoing significant non-linear behaviour increased, indicating the successful out-

come of applying the iterative procedure. Figure 6.20 shows the distributions of

the local metrics: Maximum Crack Width (Figure 6.20a) and Total Number of

Cracks (Figure 6.20b) across different iterations. In both figures, the number of

simulations exhibiting non-zero crack initiation and total crack counts increased by

approximately 5–20% per iteration, corresponding to an additional 5 to 20 simula-

tions per cycle, higher increases being observed in earlier iterations. By iteration

5 (not executed), more than 97% of simulations showed significant damage with at

least one identified crack. Compared to the original dataset in Figure 6.12, a clear

improvement is observed, with a notable reduction in the most populated region of

the output variable, namely, the undamaged building cases.
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Figure 6.20: Distributions of local metrics with increased iterations (y-axis normalised
between 0 and 1).

Similarly, Figure 6.21 illustrates the improved distributions of global damage met-

rics. In particular, Figure 6.21d, which shows the distribution of εh,max, reveals a

trend comparable to that of the Maximum Crack Width metric, with a steady in-

crease in the number of simulations exhibiting damage. This similarity is expected,

as εh,max is strongly associated with the initiation and propagation of cracks and is
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the only global metric that primarily reflects the model’s non-linear behaviour. In

contrast, Figures 6.21a through 6.21c, which depict the metrics s, t, and β, exhibit

less noticeable improvements with the iterative procedure. This is because these

metrics depend largely on the shape of the settlement trough, which is governed by

the elastic properties of the soil and the building. Since the iterative approach is

specifically designed to enhance non-linear FEM-based responses, its influence on

metrics driven by elastic behaviour is naturally limited.
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Figure 6.21: Distributions of local metrics with increased iterations (y-axis normalised).

Lastly, Figure 6.22 illustrates the distribution of other global and local damage

metrics, including the LTSM method (Figure 6.22a). A noticeable increase in the

rate of induced damage can be observed. Although the point of damage initiation

remains unchanged, the overall increase in values, despite not involving FEM-based
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outputs, is attributed to the screening-over-the-façade approach. Specifically, the

increased values of parameter L, as influenced by the iterative procedure, allow for

a broader selection of segments across the settlement trough. This enhances the

likelihood of higher damage calculations, especially when considered in conjunc-

tion with other impactful parameters. On the other hand, Figure 6.22b shows the

distribution of damaged elements based on the area metric. The damage initia-

tion here mirrors that of previously discussed non-linear metrics, such as Maximum

Crack Width and εh,max. A similar trend is observed for the strain metric εt in Fig-

ure 6.22c. However, the improvements in damage distribution are less prominent

for the εt at 99% metric, as shown in Figure 6.22d. The models generated in each

iteration were not discarded but were instead cumulatively added to the original

dataset. This growing pool of simulations, encompassing both early low-damage

and later high-damage cases, served as the full input set for training the ML mod-

els in Chapter 7. As such, the iterative approach not only refined the input space

but also ensured a diverse and well-balanced dataset for supervised learning.

While the iterative procedure was designed to enrich the dataset with more simula-

tions showing non-linear behaviour, this does not introduce bias in the traditional

sense. The goal was not to reflect the real-world distribution of damaged vs un-

damaged cases, but to enhance the ML model’s ability to generalise across a wider

range of outputs, especially rare but critical failure cases. As these improved dis-

tributions are observed as a result of the iterative procedure, potential benefits are

anticipated during the training of ML models. These aspects are further explored

in Chapter 7.
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Figure 6.22: Distributions of additional global and local metrics with increased iterations
(y-axis normalised).

Figures 6.23 and 6.24, on the other hand, present a comparison of input parameter

distributions between the original dataset and the complete dataset (i.e., original

plus iterations 1 to 5). These figures include only the parameters identified as

highly influential (e.g., ϕ > 0.05) during the SA of iteration 5. The comparison is

made using both the local metric (Maximum Crack Width) and the global metric

(εh,max). Both µXi
and σXi

in these figures serve as strong indicators of parameter

behaviour across iterations. Notably, µXi
shows meaningful trends. For example,

parameter ix, as shown in Figures 6.23a and 6.24a, exhibits a clear shift in µix

toward lower input values. This trend is driven by the progressive reduction of the

upper bound of the parameter range throughout the iterative process. Additionally,
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a narrower spread of values is confirmed by the decrease in σix compared to the

original dataset. Conversely, parameters such as L (Figures 6.23b and 6.24c) and

VL (Figures 6.23c and 6.24d) show a noticeable shift in µXi
toward higher values.

This behaviour results from a consistent reduction of the lower bound of their

input ranges. Although these parameters also exhibit a reduced σXi
, their standard

deviations remain slightly larger than that of ix, reflecting the nature and extent

of their iteration-driven range adjustments. These observations are similarly valid

across the remaining influential parameters, where each µXi
and σXi

reflect the

overall shift in parameter central tendency and the narrowing of value ranges before

and after applying the iterative procedure.
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Figure 6.23: Damage distributions in normalised values of the Max. Crack Width against
the most influential parameters and for the entire dataset.
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Figure 6.24: Damage distributions in normalised values of εh,max against the most influ-
ential parameters and for the entire dataset.
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The final SA performed on the entire dataset (i.e., the original dataset plus iterations

1 to 5) is illustrated in Figure 6.25. From this figure, it is concluded that after five

iterations of model refinement using the iterative procedure described above, the

list of the most influential parameters can be summarised as follows:

– For the local metric (Maximum Crack Width), in order of importance: ix, L,

VL, O, fc, and D, respectively.

– For the global metric (εh,max), in order of importance: ix, L, VL, O, and E,

respectively.

Parameters ix, L, VL, and O consistently appear as the top four influential inputs

across both metrics, taking first, second, third, and fourth place, respectively. In

contrast, parameters such as fc and D appear to be influential exclusively in the

local metric after including all iterations, while E is found to be influential only in

the global metric. Nonetheless, it is common for some parameters to fall below the

importance threshold in certain iterations. The results shown in Figure 6.25 reflect

only the outcome from iteration 5 of the SA. Therefore, these rankings may differ

if the SA were conducted using earlier iteration results, such as iteration 2 or 3.
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Figure 6.25: Importance score of input parameters using the RFR for the entire dataset.
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6.5 Correlation Between Damage Metrics Across

the Entire Set of Simulations

As mentioned earlier and outlined in the objectives of this thesis, this section briefly

explores the correlations between various damage metrics, focusing on both poten-

tial correlations and similarities across the spectrum of output variables. For this

purpose, a total of eight pairs of variables were analysed, and the four most highly

correlated pairs (based on the R2 criterion) as well as the four least correlated pairs

were identified. The damage categories for each metric, along with the correspond-

ing levels of damage, are also presented in Table 6.11. These categories align with

the thresholds recommended in the literature discussed in Chapter 2.2.3. The anal-

ysis includes all simulations, incorporating both the original dataset and the results

from iterations 1 to 5.

Table 6.11: Categories of damage of metrics according to literature.

Parameter / level of damage 1 2 3 4 5
Max. Crack Width V. Sl. Sl. M. Se. V. Se.
Tot. No. Cracksa Sl. Sl. Se. Se. Se.

s Ne. Sl. M. H. H.
t D. Lim. No. Mo. R. A. U. Lim.
β Ne. V. Sl. Sl. M. Se.

εb or d, r Ne. V. Sl. Sl. M. Se.
εt Ne. V. Sl. Sl. M. Se.

Damaged Areaa Sl. Sl. Se. Se. Se.
a The Tot. No. Cracks are assumed based on the recommendations of Table 2.1. As no criteria
is yet developed for the Damaged Area metric, this followed suite with the Tot. No. Cracks,
using a 2.5% values as a threshold.

Note The abbreviations are given as following: V. = Very; Sl. = Slight; M. = Moderate; Se. =
Severe; Ne. = Negligible; H. = High; D. Lim. = Design Limit; No. = Noticeable; Mo. =
Monitoring; R. A. = Remedial Action; U. Lim. = Ultimate Limit.

Figure 6.26 illustrates the best correlating pairs of damage metrics. Colour cod-

ing is used to indicate damage levels, with green, yellow, orange, red, and pink

corresponding to levels 1 through 5, as defined in Table 6.11. The strongest corre-

lation is observed between t and s (Figure 6.26b), with an R2 score of 0.991. This

is closely followed by the correlation between εh,max and Maximum Crack Width
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(Figure 6.26a), which has an R2 value of 0.965. Both correlations demonstrate con-

sistency across various data regions, including those with fewer instances of higher

damage levels. Additionally, the correlation between Maximum Crack Width and

εh,max (Figure 6.26c), as well as β and Total Number of Cracks (Figure 6.26d), show

a generally strong relationship. However, these correlations exhibit greater variabil-

ity as damage levels increase, suggesting a reduced correlation at higher damage

values.
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Figure 6.26: Closest 4 correlations found between pairs of metrics using the entire dataset.

Conversely, Figure 6.27 illustrates the best correlating pairs between other output

variables. The results indicate that the variable most closely correlated with LTSM

is s (Figure 6.27a), with an R2 score of 0.479. Meanwhile, the Damaged Area shows

a somewhat stronger correlation with the Total Number of Cracks (Figure 6.27b),
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SET OF SIMULATIONS

achieving an R2 score of 0.722, though this correlation weakens as damage levels

increase. On the other hand, despite the iterative procedure, both εt at 99% and

εt at 95% (Figures 6.27c and 6.27d) show some degree of data clustering towards the

lower end of values, with poor performance according to the R2 score. This is rea-

sonable, given that εt affects only a small percentage of the façade area, even amidst

high levels of non-linearity. Ignoring the top 1% of strain values significantly reduces

the potential of finding high damage values, and hence, reducing an additional 4%

further increases data skewness, as depicted in Figures 6.15c and 6.15d.
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Figure 6.27: Furthest 4 correlations found between pairs of metrics using the entire
dataset.

It is noted that in both Figures 6.26 and 6.27, a non-diagonal distribution of damage

classifications is observed (as indicated by the colour boxes bounds). This occurs
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because not all metrics are designed to assess damage in the non-linear domain;

therefore, some values are forced to fall outside of the designated areas. For example,

Figure 6.26a shows a very limited extension of the first four categories on the y-axis

when considering traditional strain damages (hence, the other metric is used to

assign the damage level). This is because damage, according to LTSM, yields very

small values when considering a linear beam. Similar patterns can be observed in

Figures 6.27a and 6.27c.

6.6 Summary

This chapter fulfils the fourth and fifth objectives of the thesis (Objective 4 and 5

in Section 1.5), by examining several aspects of local and global building damage

metrics, investigating the total distributions of damage with simulations, proposing

an iterative procedure, and identifying meaningful correlations between the damage

metrics. During the investigation, the following observations were made:

– Building damage category is highly influenced by the specific metric used for

its assessment, depending on the required output of the specific case study.

For example, a building may indicate severe damage based on a global metric

while simultaneously showing negligible damage using a local metric, and vice

versa. Therefore, the inclusion of multiple metrics provides a holistic view of

the various damage levels, enriching the understanding of building damage.

– The distributions of damage and all related metrics showed varying levels of

data skewness or imbalance (with some being very severely skewed), suggesting

that using input data produced by the initial sampling of a selected search

space is not necessarily sufficient to produce high-quality datasets (i.e., evenly

populated output classes). Therefore, rebalancing techniques such as over-

and under-sampling, or the proposed iterative procedure (depending on the

nature of the data), must be used in accordance with design requirements to
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achieve this goal.

– The suggested iterative procedure effectively addressed this issue by produc-

ing better distributions of output variables, especially in the case of highly

non-linear outputs such as Maximum Crack Width and εh,max (which were

used as targets in this case). Nonetheless, this method necessitates further

improvements. Severe limitations include the lack of optimisation in different

framework components such as: the number of samples in the initial and iter-

ation datasets, the total number of iterations, validation of the value of ϕ used

for the SA threshold, and determining an optimal range of reduction (rather

than using a fixed 1 σXi
for all parameters), depending on the rate of change

in influence between Yi Region 1 and Yi Region 3.

– Correlation studies indicated that the strongest relationships occurred between

s and t, Maximum Crack Width and εt, εh,max and Maximum Crack Width,

and Total Number of Cracks and β, respectively. Conversely, the weakest

correlations were found between εb or d, r and s, εt at 95% and β, εt at 99% and

εh,max, and Damaged Area and Total Number of Cracks, respectively.

A key step in producing a high-quality synthetic dataset is proposed in this chapter.

These improved datasets are used in Chapter 7 for the training of ML algorithms,

with the goal of determining whether improved model assessment metrics in ML

can be achieved. This potentially reduces the need for advanced ML model manip-

ulation or added complexity to generate better model predictions.
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Chapter 7

Machine Learning Training and

Evaluation

Using the datasets from the previous chapter, this chapter assesses the performance

of several common ML algorithms. These algorithms are tested using various seg-

ments of the dataset to evaluate the impact of the iterative procedure, utilising

the original dataset, the improved datasets (iterations 1 to 5), and a combination

of both. The primary output variable used for training the models is the same as

that used in the iterative framework, namely, the Maximum Crack Width as the

local metric and εh,max for the global metric. Each output variable is trained using

a separate ML model, with a single output neuron per model. Additionally, other

global and local metrics are also used to train and assess the performance of the

ML models.

In this investigation, the ANN, SVR, and RFR ML models, which are specific to

regression tasks, are used and evaluated. These models are implemented using

Python’s scikit-learn library, which allows manipulation of model hyperparam-

eters, selection of appropriate activation functions where applicable, and other ad-

justments depending on the model used. Each model is trained using the 15 input

parameters outlined in Table 5.6 to predict the local and global metrics described
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earlier. Training is performed on the raw data rather than using damage classifi-

cations based on damage categories. As a result, the output variables are treated

as continuous, making this a regression task that requires appropriate evaluation

metrics such as R2 or rRMSE. Conversely, if damage categories were used, classi-

fication metrics such as accuracy and precision would be applied. The predictive

performance of each model is then compared, and the best-performing model is

selected for making predictions. These models were chosen due to their capabil-

ity in addressing complex geotechnical engineering challenges, as demonstrated in

studies such as (Cao et al. (2022); Mahmoodzadeh et al. (2022); Hou et al. (2022)).

Additionally, the impact of applying several techniques commonly used in the liter-

ature to enhance the models’ predictive capabilities is explored. These are described

below:

– Feature Selection: Used to identify key parameters and exclude less relevant

ones during training, potentially increasing model training performance (Tang

and Na (2021));

– Advanced Optimisation Techniques: Such as BO to find optimal model

hyperparameters instead of relying on fixed values, which may limit perfor-

mance, as highlighted by (Shreyas and Dey (2019));

– Data Transformation: Including input-output standardisation (Equation 2.48),

normalisation (Equation 2.47), and power transformation scaling methods as

suggested by Hou et al. (2022), or a combination of both;

– Cross-validation (kfold): Used to assess model generalisation to unseen data

and evaluate prediction bias and overfitting risk (Mahmoodzadeh et al. (2022)).

Common bounds of hyperparameter domains indicated in the literature are used to

define the search space for the BO algorithm. These bounds are listed in Table 7.1.

To fine-tune the hyperparameters, BO is employed, which operates by constructing

a probabilistic surrogate model of the objective function. The process begins with

ninit randomly selected samples to initialise the surrogate function, which is then
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explored efficiently over niter iterations using an acquisition function. This func-

tion identifies candidate samples expected to yield improvement, which are then

evaluated on the actual objective function.

Table 7.1: Hyperparameter limits for each model.

Model Hyperparameter
Minimum Maximum
Range Range

ANN
Number of layers (n layers) 3 4
Number of nodes (n nodes) 32 128
Log learning rate (log lr) -4 -1

RFR
Number of estimators (n estimators) 50 1000

Maximum depth (max depth) 2 30
Minimum sample split (min samples split) 2 10

SVR
Log C (log C) 0 3

Epsilon (epsilon) 0.01 1.0
Kernel numeric (kernel numeric)1 0 3

1 Kernel numeric: 0 is linear, 1 is polynomial, 2 is Radial Basis Function (RBF), and 3 is sigmoid.

Once data is transformed according to its specific needs (e.g., using standardisa-

tion or normalisation), it is further divided into training and testing sets using an

80/20 split. Subsequently, a 5-fold cross-validation (kfold) is applied to evaluate the

generalisation ability of the model. This method divides the dataset into five equal

parts. Each subset is used once as a validation set, while the remaining four subsets

are used for training. This process is repeated five times so that each subset is used

for validation exactly once. The cross-validation procedure is performed after the

initial training stage, once the ML model structure has been determined.

7.1 Training Performance on Different Datasets

The training performance of each model across different datasets is summarised in

Table 7.2. From the table, it is observed that the best-performing model overall,

across various datasets and both local and global output metrics, is the ANN, with

SVR and RFR yielding comparable but slightly inferior results. In particular, on

the combined dataset (original plus iterations 1 to 5), the ANN achieved a low
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relative root mean square error (rRMSE) of 4.51% and a high coefficient of deter-

mination (R2) of 0.94, both indicating strong predictive performance. However, a

closer examination reveals that significant improvements across datasets were not

achieved for certain highly non-linear outputs, such as Maximum Crack Width,

Total Number of Cracks, and εh,max. Conversely, more linearly behaving output

variables (e.g., s, t, and β) showed consistent improvement with each iteration of

the dataset.

This behaviour can be attributed to the differences in output redistribution and

their respective levels of non-linearity. While the iterative procedure improved the

data distribution and reduced the dominance of underrepresented regions, this re-

finement was more effective for linearly responsive outputs. These benefited from

the increased number and diversity of samples, enabling the model to better ap-

proximate the regression line. For non-linear outputs, the improvements were more

modest, suggesting that the number of new samples was insufficient to enhance

predictive accuracy significantly.

Although the distributions were significantly improved in both cases, helping to

reduce potential biases in the original dataset predictions, this improvement also

revealed a key limitation. The previously better training performance of the original

dataset was largely due to the concentration of clustered outputs near the lower

end of the value range, which were closer to the regression line. However, this

clustering did not represent the full range of damage scenarios and thus did not

reflect the model’s true predictive ability. Nonetheless, since the prediction metrics

were comparable across all three datasets, especially for the non-linear outputs,

the second (iterated) and third (combined) datasets are considered to provide more

reliable predictive performance. These datasets enable a more balanced assessment

across the full output domain.

To better illustrate this phenomenon, the actual versus predicted outputs are pre-

sented in Figures 7.1 and 7.2. In these figures, clustering of data points is clearly
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Table 7.2: Performance metrics for different models across various damage metrics.

Model Metric Original Iterations Combined Hyperparametersb

ANN

Max. Crack Width (6.26, 0.83)a (12.24, 0.68) (7.80, 0.75) 3/116/0.0165
εh,max (8.98, 0.78) (11.64, 0.68) (9.00, 0.77) 3/85/0.0001

Tot. No. Cracks (5.67, 0.81) (7.32, 0.86) (8.74, 0.82) 3/99/0.0001
s (8.83, 0.87) (6.39, 0.92) (4.78, 0.93) 3/124/0.0115
t (8.57, 0.87) (6.47, 0.92) (5.19, 0.94) 3/86/0.0279
β (3.82, 0.91) (6.18, 0.90) (4.51, 0.93) 3/119/0.0367

RFR

Max. Crack Width (11.17, 0.45) (13.78, 0.59) (9.57, 0.62) 565/17/2
εh,max (13.04, 0.54) (13.31, 0.58) (8.90, 0.78) 50/13/7

Tot. No. Cracks (7.74, 0.65) (10.17, 0.73) (11.07, 0.72) 423/22/2
s (12.03, 0.76) (9.88, 0.81) (7.07, 0.85) 641/29/4
t (11.48, 0.76) (9.82, 0.82) (8.27, 0.84) 509/24/2
β (6.99, 0.70) (11.48, 0.64) (8.14, 0.77) 137/11/2

SVR

Max. Crack Width (9.01, 0.64)c (12.66, 0.66) (8.90, 0.67) 1.58/0.281/RBF
εh,max (11.98, 0.61) (11.60, 0.68) (9.18, 0.76) 2.3/0.106/RBF

Tot. No. Cracks (8.00, 0.62) (8.24, 0.82)c (9.53, 0.79) 3.61/0.37/RBF
s (11.57, 0.77) (7.80, 0.88) (6.46, 0.88) 9.46/0.024/RBF
t (11.00, 0.78) (8.11, 0.87) (7.49, 0.87)c 5.79/0.079/RBF
β (7.56, 0.65) (7.44, 0.85)c (6.62, 0.85) 839/0.118/RBF

a These values represent the rRMSE in % and R2, respectively.
b The model structure (hyperparameters) is representative of the model trained on the combined dataset, it represents the
number of layers, nodes per layer, and Learning Rate (LR), for the ANN model, respectively.

c Total number of BO iterations had to be reduced from 110 to 85 due to convergence difficulties.

visible in the original dataset (Figures 7.1a and 7.2a), which contributes to predic-

tion bias (Ψ), resulting in deceptively low values of rRMSE and high values of R2.

By increasing the spread of data points and reducing the dominance of clustered

regions, the model becomes capable of making predictions in less populated areas

of the output space. However, due to the high variability typically associated with

non-linear outputs, this increase in predictive scope may come at the cost of slightly

higher error values in rRMSE and R2, as seen in Figures 7.1d and 7.2d.

Nevertheless, such models are considered more reliable, as they are capable of

making informed predictions in output regions that were previously underrepre-

sented or unseen in the original dataset, an important consideration for general-

ising across a broader damage domain. Finally, the combined dataset (original +

iterations) demonstrates the model’s ability to adapt to the expanded distributions

(Figures 7.1c and 7.2c). Notably, the model trained on this combined dataset per-

forms comparably to the original in terms of Ψ-biased accuracy metrics (as shown

183



7.1. TRAINING PERFORMANCE ON DIFFERENT DATASETS

in Table 7.2), while also achieving a far more balanced and comprehensive spread

across the entire output domain. This results in more robust and generalisable

predictions of building damage across a wider range of cases.
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(a) Original dataset.
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(b) Iterations dataset.
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(c) Combined dataset.
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(d) Combined dataset (standardised).

Figure 7.1: Actual vs predicted values using the Max. Crack Width metric. Illustrating
standardised values too (sometimes helping in visualising data better).

Model training is terminated once the loss function converges to a predefined low

value for the selected criterion, in this case, MSE for the ANN, and shows no im-

provement over several consecutive iterations. Figure 7.3 illustrates the evolution

of the loss function during the training process of the ANN model for the global

metric (Figure 7.3a) and the local metric (Figure 7.3b). The model is programmed

to identify convergence when the MSE drops below a tolerance threshold of 0.0001

and remains consistently below this value for 10 consecutive iterations. From Fig-
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(b) Iterations dataset.
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(c) Combined dataset.
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(d) Combined dataset (standardised).

Figure 7.2: Actual vs predicted values using the εh,max × 10−3 metric.

ure 7.3a, a relatively smooth, parabolic decline in MSE values is observed for the

global metric, with convergence achieved at approximately 420 iterations out of a

total of 2500 maximum iterations defined. In contrast, the model trained on the

local metric exhibits a much steeper reduction in MSE, reaching very low values

within the first 30–40 iterations and achieving convergence at approximately 68

iterations (Figure 7.3b).

Both models demonstrate stable and efficient convergence, which indicates that

further improvements in predictive accuracy, measured by rRMSE and R2, could

be achieved by refining the model’s hyperparameter space (e.g., expanding the

search bounds or increasing the number of BO iterations), or by enhancing the size

and diversity of the training dataset, particularly for outputs associated with high
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non-linearity.
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Figure 7.3: Loss function (MSE) convergence for ANN with increased iterations.

Having identified the best-performing model, namely, the ANN, and confirmed its

convergence to a stable solution based on the MSE criterion, the model is subse-

quently subjected to a rigorous cross-validation procedure to evaluate its gener-

alisation capability. The results of this evaluation, using a 5-fold cross-validation

(kfold = 5), are presented below. Each fold uses an 80/20 data split, ensuring each

subset of the data is used once for validation while the remaining serve as training

sets. Table 7.3 presents the rRMSE and R2 values obtained for each fold using the

Maximum Crack Width as the output variable. The average performance across

all five folds yields an rRMSE of 10.15% with a standard deviation σrRMSE = 1.83,

and an R2 value of 0.65 with σR2 = 0.043.

Similarly, Table 7.4 shows the results for the global metric εh,max. The average

values across folds are 9.76% for rRMSE with σrRMSE = 1.62, and 0.71 for R2

with σR2 = 0.043. Each table is accompanied by plots illustrating actual versus

predicted values for each fold, highlighting the spread and alignment of predictions

relative to the ideal diagonal fit line. While minor fluctuations are observed across

folds, the relatively low values of σrRMSE and σR2 indicate that the model structure

established during combined dataset training does not overfit the training data.

These results confirm the model’s robust generalisation performance and reliability
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when applied to unseen data.

Table 7.3: Cross-validation using the Max. Crack Width as output variable and a total
of 5 folds with a 20-80 split.

Fold Number (rRMSE (%), R2) Actual vs Predicted
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Table 7.4: Cross-validation using εh,max as output variable.

Fold Number (rRMSE (%), R2) Actual vs Predicted
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7.2 Impact of Feature Engineering and Split Ra-

tio on Performance

In the case of skewed output variable distributions, as encountered in this study,

data transformation is a common and effective strategy that can improve the per-

formance of ML models (Hou et al. (2022)). In this investigation, the models are

trained using transformed datasets; however, the outputs are returned to their

original scale when making predictions and evaluating performance. This section

assesses the performance of the ANN model using three different transformation

techniques applied to the output variable only: the square root, logarithmic, and

inverse transformations. The original (untransformed) output distribution is also

included for comparison. To isolate the effects of the transformation techniques,

the optimised hyperparameters used in Table 7.2 are fixed and applied accordingly

for each respective output variable. The focus is placed on the local output met-

ric, Maximum Crack Width, and the global output metric, εh,max, using the entire

combined dataset for training and evaluation.

In addition to transformation, all training is performed on the standardised dataset.

The sequence of data preprocessing follows these steps: transformation of the out-

put variable, followed by standardisation of the full dataset (inputs and transformed

outputs) before training. During the prediction and evaluation stages, the inverse

process, destandardisation and then detransformation, is applied to obtain results

in the original physical scale. The resulting distributions of the output variables af-

ter each transformation are presented in Figures 7.4 and 7.5. Each figure illustrates

the frequency distribution using 20 bins. Only the original distribution plots (Fig-

ures 7.4a and 7.5a) display the true physical values of the output variable along the

x-axis, with appropriate units included. The remaining transformed distributions

(Figures 7.4b to 7.4d and 7.5b to 7.5d) illustrate the spread of values in transformed

space. These are not physically interpretable in terms of building damage but are
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useful for identifying whether clustering in the output data has been mitigated,

thereby improving the model’s training potential.
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(b) Square Root.
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(d) Inverse.

Figure 7.4: Transformed local output (Max. Crack Width) variable using different trans-
formation techniques.

Training performance for both output variables, evaluated in terms of rRMSE and

R2, across the various transformation techniques is presented in Table 7.5. For

the local output metric, the performance differences among the transformation

techniques are relatively minor. Both the square root and logarithmic transfor-

mations yield slightly better predictive accuracy compared to the original dataset.

In contrast, the inverse transformation produced unrealistic results, with abnor-

mal values for both rRMSE and R2; this outcome was not further investigated.

For the global output metric, performance improved more notably with the appli-

cation of the square root transformation, followed closely by the logarithmic and
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(d) Inverse.

Figure 7.5: Transformed global output (εh,max) variable using different transformation
techniques.

original (untransformed) datasets, which yielded very similar results. The inverse

transformation again resulted in the poorest performance.

From these findings, it is concluded that appropriate data transformation can im-

prove model prediction accuracy, even when preceded by a rebalancing procedure

such as the iterative approach. Transformations help to further alleviate skewness in

the output distributions, making the training process more effective. In this investi-

gation, only a limited selection of transformation techniques was applied. However,

many other approaches exist and could potentially enhance model training depend-

ing on the dataset characteristics, model structure, and domain expertise.

The influence of feature selection is further investigated. In the previous models,
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Table 7.5: ANN performance with different transformation techniques on local and global
outputs.

Transformation Local Global
rRMSE R2 rRMSE R2

Original 8.74 0.68 10.4 0.7
Square Root 8.57 0.69 9.11 0.77

Log 8.58 0.7 10.39 0.7
Inverse NA NA 11.7 0.61

all 15 input parameters were used for training, regardless of their individual impact

on the output. However, excluding irrelevant parameters during model training

can enhance predictive performance (Tang and Na (2021)). To explore this, model

performance is assessed using the standardised square-root-transformed output, ap-

plying five different thresholds for ϕ: i) no threshold, ii) 1%, iii) 3%, iv) 5%, and

v) 10%, based on the most influential parameters identified using the RFR model

previously applied in the SA. The outcomes of this investigation are presented in

Table 7.6.

Although the literature generally supports the use of feature selection techniques to

improve model performance, this was not observed in the present case. In fact, re-

ducing the number of input parameters resulted in a decline in predictive accuracy.

This may be attributed to complex, higher-order interactions between parameters,

which the model may depend on for improved learning and performance. Con-

sequently, for this specific case, retaining all input parameters, i.e., applying no

threshold for ϕ, proved to be the most effective approach. Nonetheless, it is recom-

mended that this process be applied routinely across different datasets and output

variables, as varying levels of parameter interaction may produce differing effects

on model performance.

Finally, three data-splitting ratios, as described in Section 2.6, are investigated:

10/90, 20/80, and 30/70 splits. The goal was to determine which split provides the

best balance between model training quality and prediction performance. This in-

vestigation was carried out using both the local (Maximum Crack Width) and global
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Table 7.6: Performance metrics for different thresholds
across global and local criteria.

Importance
global local

rRMSE R2 rRMSE R2

No threshold (15) 9.11 0.77 8.6 0.69
1% (15) 9.11 0.77 8.6 0.69
3% (9/7)a 11.22 0.65 11.78 0.42
5% (4) 10.96 0.66 11.84 0.42
10% (3) 11.56 0.62 11.53 0.45

a The values between the brackets indicate the number of influential
parameters above the threshold, using the / indicate different num-
ber of influential parameters for different outputs (9 for local and
7 for global in this case) using the same threshold.

(εh,max) output variables, with the corresponding results presented in Table 7.7.

It is observed that model accuracy, as measured by rRMSE, improved for both out-

put variables as the training portion of the split increased. However, at the 30/70

split, a decline in R2 scores was noted, indicating potential overfitting, where the

model learns the training data too closely and performs poorly on unseen data.

Therefore, it is concluded that a 20/80 split achieves an optimal balance between

training performance and generalisation capability. This trade-off is commonly

encountered in ML, as larger training sets can improve learning but may simulta-

neously reduce the model’s ability to generalise, depending on the algorithm and

dataset characteristics.

Table 7.7: Performance metrics for different data splits across global and local outputs.

Split ratio
global local

rRMSE R2 rRMSE R2

10/90 split 9.94 0.73 9.49 0.62
20-80 split 9.11 0.77 8.6 0.69
30-70 split 7.44 0.64 7.73 0.63
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7.3 Artificial Neural Network with Particle Swarm

Optimisation

The performance of ML training is further assessed by implementing an ANN op-

timised using a PSO meta-model, applied to the combined dataset. This model is

briefly described in Section 2.6. An 80/10/10 split is used for training, testing, and

validation, respectively. The dataset is normalised using Equation 2.47, and model

accuracy is evaluated using the rRMSE metric (expressed in %).

The training and optimisation process is illustrated in Figure 7.6. The figure out-

lines the iterative training approach used to optimise the model’s architecture and

learning rate. Following the dataset split, the PSO is initialised with defined num-

bers of swarms and particles, including their initial positions and velocities. For

each particle, an ANN is trained iteratively using the training subset, and the fitness

function, based on the testing subset, is computed. Upon reaching the maximum

training iterations, the prediction error, i.e., the rRMSE, is evaluated using the

validation subset. This validation error is then used to update particle positions,

thereby optimising the network weights (w) and biases (Ψ).

The configuration used in this study includes 30 PSO particles and 15 optimisation

iterations for velocity and position updates. The ANN is trained with a learning

rate (LR) of 0.001 and up to 3000 maximum iterations. Figure 7.7a presents the

actual vs. predicted outputs for the global metric εh,max, while the convergence

of the PSO for this metric is shown in Figure 7.7b, indicating convergence after

just two iterations and reaching a plateau of performance thereafter. In contrast,

Figure 7.7c illustrates the actual vs. predicted performance for the local metric

(Maximum Crack Width). The corresponding convergence curve in Figure 7.7d

indicates that the model reached a stable solution after seven iterations, slightly

more than the global metric. Finally, the predictive performance in terms of rRMSE

for both output metrics is summarised in Table 7.8.
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Figure 7.6: Schema for training of ANN optimised by PSO.
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Figure 7.7: Actual vs predicted values plots in addition to the convergence performance
of the PSO.

Table 7.8: Results of ANN-PSO performance on local and global outputs.

rRMSE (%) εh,max Max. Crack width
Train 16.42 17.09
Test 19.93 23.69

Validation 27.3 30.65

It is quite noticeable that the performance metrics achieved by the ANN-PSO mod-

els are significantly less accurate compared to the results obtained from the models

presented in Section 7.1. When comparing performance on the test set, it is ob-

served that the ANN optimised via BO achieved approximately 4.5 times better

predictive accuracy for the local output and around 2.3 times better performance

for the global output compared to the ANN optimised with PSO. A more direct and

fair comparison would involve using PSO to optimise the model’s hyperparameters,
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similar to the approach used with BO, rather than only optimising weights (w) and

biases (Ψ) while keeping the hyperparameters fixed. However, this aspect was not

further investigated.

7.4 Principal Component Analysis NU-Support

Vector Regression Approach on Dataset

In this section, a novel framework recently proposed by Izonin et al. (2024)is im-

plemented, which integrates unsupervised and supervised learning via the combi-

nation of Principal Component Analysis (PCA) and Nu Support Vector Regression

(NuSVR), forming a unified PCA-NuSVR model. Their approach includes algo-

rithms for training and application, employing 5-fold cross-validation, and eval-

uating results using standard performance metrics. Individually, PCA is a sta-

tistical method used to transform original data into a new coordinate system by

replacing the original features with uncorrelated variables called principal compo-

nents (Shakhovska et al. (2020)). A detailed mathematical overview of this method,

including its advantages and limitations, is available in (Jolliffe and Cadima (2016)).

In the context of this framework, PCA is applied to both the input and output

variables simultaneously, creating a single hyperbody, a multidimensional structure

representing the dataset. This allows the prediction of all six output attributes

simultaneously (presented below in Table 7.9) and also permits inverse predictions

of input features, if required, based on the hyperbody structure.

To perform these predictions, the NuSVR algorithm is used. NuSVR, a variation

of the standard SVM, is tailored for regression tasks and constructs a regression

function by controlling the fraction of data points used as support vectors through

the Nu parameter. This method typically requires fewer optimisation parameters

compared to classical SVR with an RBF kernel, thus potentially lowering compu-

tational complexity. Its main advantages include high modelling efficiency, reduced
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sensitivity to overfitting, and the ability to generalise well on smaller datasets.

However, it is known to be sensitive to outliers and still requires careful parameter

tuning.

By combining these two techniques, the PCA-NuSVR framework effectively ad-

dresses the regression problem defined in this thesis. The full structure of the

framework is shown in Figure 7.8, adapted from (Izonin et al. (2024)). To simplify

the presentation, the term “ML System” is introduced to refer to the collection of

eight independent NuSVR models, each responsible for predicting one of the output

damage metrics.

The framework is divided into three main components: the preparation block, the

training block, and the application block. For convenience, the preparation and

training blocks are combined into a single mode referred to as the “training mode”,

while the third operates as the “application mode”, used for making predictions on

unseen data.

Table 7.9: Values of the performance metrics for predicted local-global damage indicators
via the proposed PCA-NuSVR framework for the assessment of building damage due to
tunnelling.

Error Tot. No.
t s εh,max

Max. Crack
β

Metric Cracks Width
MaxError 8.06 0.0024 0.0024 0.0026 9.51 0.0010
MedError 0.52 0.0002 0.0002 0.0002 0.97 4.9E-08
MAE 1.03 0.0003 0.0003 0.0003 1.59 0.0001
MSE 2.72 1.96E-07 2.04E-07 2.26E-07 5.45 2.8E-08
RMSE 1.65 0.0004 0.0004 0.0005 2.14 0.0002
rRMSE (%) 3 1.5 1.5 3.5 3.7 9.2
R2 0.776 0.893 0.897 0.707 0.7 0.8
Optimal Nu value 0.26 0.89 0.99 0.70 0.2 0.8
Optimal C value 0.297 0.94 2.38 0.841 0.187 0.53

The results of the proposed PCA-NuSVR framework for both global and local out-

put metrics, based on the combined dataset, are summarised in Table 7.9. This

table presents a comprehensive evaluation using several performance metrics, in-

cluding the average values derived from a 5-fold cross-validation. In particular, the

rRMSE and R2 values for both the Maximum Crack Width and εh,max are used to
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Figure 7.8: Flowchart of the proposed PCA-NuSVR framework (Izonin et al. (2024)).

assess the predictive accuracy of the model. From the results, a marked improve-

ment in the rRMSE values is observed compared to previous models, including
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the ANN results reported in Table 7.2. While the improvements in R2 scores are

less pronounced, the PCA-NuSVR approach demonstrates comparable or superior

predictive reliability.

Additionally, the actual versus predicted values for the testing sets are illustrated

in Figure 7.9. These include the Maximum Crack Width (Figure 7.9a) and εh,max

(Figure 7.9b). Similar to prior methods, a noticeable clustering of data is observed

near the lower end of the value spectrum, particularly in the Maximum Crack

Width results, due to the cracking activation criteria. However, this effect is less

pronounced in the εh,max distribution. Nevertheless, thanks to the iterative data

rebalancing procedure introduced earlier, the model benefits from a more represen-

tative and diversified dataset. As a result, the PCA-NuSVR model is capable of

reliably predicting across a wider range of output values, including those in less

common or sparsely populated regions of the output domain.
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(b) εh,max × 10−3.

Figure 7.9: Actual vs predicted values using the PCA-NuSVR model on testing sets for
the (a) local output (b) global output.

Additionally, to provide a more comprehensive comparison of the accuracy of the

proposed PCA-NuSVR framework, a selection of widely used ML methods were

also evaluated. These include: the baseline NuSVR model, which serves as the

foundation of the proposed framework; the classical SVR with a radial basis function

(RBF) kernel, which is methodologically similar; and a range of ensemble-based
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regression models including the RF, Gradient Boosting (GB), eXtreme Gradient

Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM) regressors.

Table 7.10 summarises the comparative results for all investigated methods based

on their R2 scores, which are used to assess the accuracy of predictions for both

local and global output indicators of building damage. This comparative analysis

further supports the robustness and predictive strength of the proposed framework

relative to conventional regression techniques.

Table 7.10: R2-values of the local and global indicators for the assessment of building
damage using different ML-based regressors.

Damage Proposed
NuSVR SVR-RBF LGBM XGBoost RFR GB

Metric Framework
Crack Width 0.697 0.664 0.639 0.619 0.572 0.575 0.546
Tot. Cracks 0.776 0.730 0.700 0.699 0.648 0.639 0.630
εh,max 0.707 0.668 0.643 0.635 0.598 0.579 0.556
β 0.799 0.764 0.739 0.691 0.705 0.682 0.670
s 0.897 0.889 0.875 0.830 0.853 0.831 0.864
t 0.893 0.883 0.868 0.822 0.849 0.823 0.852

As evident from Table 7.10, the ensemble methods such as RF, GB, and XGBoost

demonstrated relatively unsatisfactory prediction accuracy for the local indicators.

Slightly improved results were observed with the classical SVR using an RBF kernel

and the LGBM regressor. Notably, significantly higher accuracy was achieved by

the basic NuSVR, which forms the foundation of the proposed framework. However,

the proposed PCA-NuSVR framework yielded the lowest prediction errors for the

local indicators associated with tunnelling-induced building damage. It achieved a

5% improvement in R2 values for the Maximum Crack Width over the next best-

performing model, NuSVR. Similar performance trends were observed across the

global indicators. In particular, while NuSVR consistently showed strong results,

the proposed PCA-NuSVR model delivered a further 5.8% improvement in the R2

value for εh,max, again outperforming all tested methods.
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7.5 Summary

This chapter addresses the sixth objective of the thesis (Objective 6 in Section 1.5)

by exploring the application of various ML models for regression-based prediction

of tunnelling-induced building damage, assessed using both local and global output

metrics. Throughout the chapter, the influence of multiple techniques to improve

model performance is evaluated, including data transformation, feature selection,

hyperparameter optimisation, and model-specific training strategies. The following

key findings are highlighted:

– The ANN-BO model consistently outperformed both the RFR-BO and SVR-

BO models across all local and global damage metrics, as optimised using the

bounds provided in Table 7.1.

– The effect of dataset composition was found to be output-dependent: while

linear outputs showed incremental improvement with each iteration, highly

non-linear outputs (e.g., Maximum Crack Width, εh,max) did not demonstrate

the same degree of enhancement. This suggests that further data augmentation

may be required to improve predictions for such variables.

– The iterative rebalancing procedure successfully enabled broader prediction

coverage across the full output domain, reducing model bias (Ψ) and mitigating

overfitting by increasing the reliability of performance metrics such as rRMSE

and R2.

– Cross-validation demonstrated that the chosen ANN structure generalises well

to unseen data, with an inter-fold variation of 18% in rRMSE and 6.6% in R2.

– Among the tested data transformation methods, the square root transforma-

tion yielded the best prediction accuracy. Meanwhile, feature selection based

on importance thresholds did not enhance model performance, and the full

input set proved most effective. Nonetheless, both approaches should be con-

sidered on a case-by-case basis.
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– The ANN-PSO model underperformed relative to earlier approaches. Future

enhancements may include using PSO for hyperparameter tuning or a hybrid

ANN-PSO-BO framework.

– The proposed PCA-NuSVR of Izonin et al. (2024) was so far the best predictive

model with notably low values of rRMSE in comparison to the best performing

model (ANN-BO), while similar values of R2 scores were obtained with no

significant improvement. The model is further compared to other conventional

and ensemble models which it outperformed.

Overall, this chapter has demonstrated the value of combining advanced machine

learning models with tailored optimisation and preprocessing strategies for the re-

liable prediction of complex structural responses. It is considered best practice

to evaluate multiple models, transformations, and training techniques, especially

when dealing with highly non-linear data, to achieve generalisable and accurate

predictions.
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Chapter 8

Integration into Building

Information Modelling

BIM, a collaborative platform, has emerged as a transformative technology in the

Architecture, Engineering, and Construction (AEC) industries. It provides an ef-

fective means to create and manage digital representations of the physical and

functional characteristics of infrastructure, enabling the modelling, analysis, and

communication of complex interdependencies (International Tunnelling and Under-

ground Space Association (2022); Ninić and Meschke (2015)). As discussed previ-

ously, predicting building damage induced by tunnelling activities is a critical chal-

lenge. The integration of ML-based predictive models into BIM facilitates seamless

representation and analysis of tunnelling-induced damage. BIM enables efficient pa-

rameter management for scenario analysis, supporting more informed and proactive

(near real-time) decision-making. Additionally, it provides a platform for visual-

ising the spatial relationships between the ground, tunnels, and buildings (Ninić

et al. (2019, 2017b)). This chapter aims to effectively address the thesis’s objective

7 from Section 1.5, where a step-by-step description of the tool’s key development

steps is illustrated.

The first step in the implementation is to develop a fully parametric information
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Table 8.1: Parameters for the description of geometric-semantic BIM for tunnelling.

Tunnel Soil Building
D (m) Geometry (m × m× m) H (m)
Z0 (m) Es (kPa) B or W (m)
Lt (m) c (kPa) L (m)
et (m) νs (–) E (kPa)
yface (m) φ (◦) ν (–)
στ (KPa) γs (kN/m

3) e or xb (m)
Deformation scale factor (–) K (–) yb (m)

model for tunnelling within a suitable BIM environment, providing a user-friendly

interface, easy control of the design parameters, and therefore efficient investiga-

tion of design scenarios. The state-of-the-art Autodesk BIM design software Revit,

alongside the add-on Dynamo, is selected for this purpose (Autodesk (2019)). Dy-

namo is a built-in graphical algorithm editor in Revit, introducing programming

aspects into the environment, which are necessary for integrative design, allow-

ing developers to directly access the software’s Application Programming Interface

(API). A fully parametric tunnel model is created, considering ground, tunnel, and

building components described with the 22 parameters listed in Table 8.1. While a

“dummy” tunnel geometry can be modelled directly in Dynamo, the model would

not carry semantic parameters, such as the D parameter, which are required for

analytical studies. To tackle this issue, the tunnel and structure are created using

a Revit “family”, and Dynamo is used instead to provide and control the required

parameters. A family in Revit is a class with parametric definitions and constraints,

allowing the definition of specific family attributes for individual family instances

(Revit objects). The design model is then created by inserting instances of the fam-

ily with the assigned corresponding geometric-semantic parameters. This means

that multiple instances can also be inserted in the same model (e.g., for multiple

buildings). Figure 8.1(a) shows the parametric tunnel model with all geometric

parameters being retrieved and controlled in Dynamo using integer sliders.
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Figure 8.1: Assembly of the whole tunnel-soil-building interaction model in BIM using
dynamo in Revit.

8.1 Algorithmic Implementation

The algorithms for calculations of building damage due to tunnelling-induced set-

tlements have been implemented into Dynamo as Python scripts, as shown in Fig-

ure 8.2. The parameters used for the generation of the tunnel model are also used

as input variables for the implemented algorithms. Therefore, each change in the

design model will automatically be applied to the analysis. Moreover, a clear visu-

alisation of the analysis results within the design model is developed (Figure 8.2,

“assembly on the right”). The ground settlement profile is defined with coordinates,

and a smooth surface is formed by joining the points of coordinates to provide a

clearer visual appearance. Then, the surfaces are associated with colours that indi-

cate the ground settlement value (see Figure 8.1b). Likewise, the building damage

category is visualised using the colour code shown in Table 8.2, using the case of

εh,max global metric for this example.

Figure 8.3 shows the flowchart of the overall implemented procedure for model gen-

eration in BIM, including the calculation of settlements from Section 2.1.1, SSI

using the EBBEF2p model from Section 2.3.1, and prediction of damage category
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Table 8.2: Classification of building damage with the colour code for visualisation using
the LTSM damage classification system of (Burland et al. (1977)).

Damage category Degree of severity εh,max (%) Colour code
0 negligible 0 – 0.05
1 very slight 0.05 – 0.075
2 slight 0.075 – 0.15
3 moderate 0.15 – 0.3
4 severe ≥ 0.3

VLM COM

Figure 8.2: User interface for input of design parameters (left) and tunnel model with
visualised settlements and damage category (right).

from Section 6 using simulation-based meta-models in Section 7. The BIM model

begins generation when settlements are calculated based on the selected empiri-

cal model (in this case, the VL model, as per the trained data). The SSI, which

depends on soil, tunnel, and building parameters, is internally evaluated as previ-

ously incorporated into the FEM models and is used solely for the analysis phase.

Hence, model visualisation is restricted to GF settlements, but actual soil deforma-

tion beneath the building is computed with SSI effects considered during damage

evaluation. Finally, the building damage category is predicted based on the trained

meta-models and visualised as outlined in Figure 8.3.
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Elements initialisation blocks
(e.g., Soil, tunnel, and building)

Building list:
X1, .., Xn

Tunnel list:
Xi, .., Xn

Soil list: X1, .., Xn

Tunnel design
model (i.e.,
assembling

model geometry)

Families insertion
(e.g., tunnel
and building)

Creation of
soil geometry

Integrating ML model and
connecting the input lists

from the initialisation blocks

Selection of input pa-
rameters from user

Analysing (predicting
damage) through custom
coding of the ML code

Output: Coloured building
(damage identification),

and settlement visualisation

Engaging damage
visualisations node

Developing dam-
age visualisations
node (Table 8.2)

Figure 8.3: Algorithm for model generation and visualisation of settlements and damage
category.
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8.2 Prediction of Damage Risk in Building Infor-

mation Modelling Using Meta-Models

As the training of ML models to predict damage based on the input space of Ta-

ble 5.6, a custom node is implemented using the Dynamo API. The node reads the

trained synaptic weights and ANN architecture and performs forward calculations

to predict the damage risk based on the model input parameters required by the

user.

(a) Structures with values of L < 20 m

(b) Structures with values of 20 m > L < 40 m

(c) Structures with high values of L > 40 m

Figure 8.4: Prediction of tunnelling-induced damage category based on meta-model for
different values of e (these are 0 D, 1.5 D, 2.25 D, 3 D, respectively). “left to right
in figures” and same for a), b), and c). D is the µ value obtained from the sampling
procedure after the iterative procedure and given as 6.6 m.

Figure 8.4 illustrates examples of meta-model predictions of building damage, il-

lustrated in the colour coding defined in Table 8.2. In this example, structures

of different L values are illustrated against various locations away from the tun-

nel centreline. Figure 8.4a illustrates structures with L values smaller than 20 m

(anywhere between 8 m and 20 m), Figure 8.4b illustrates structures with L values

between 20 m and 40 m, and Figure 8.4c illustrates structures with L values above

40 m (anywhere between 40 m and 60 m, which is the longest building used). It is
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observed how damage increases with increased values of L between the three figures.

This is also in good agreement with damage distribution plots for both the corre-

lation between parameter L and the global metric εh,max of the original dataset

in Figure 6.18c, and the combined dataset in Figure 6.24c. A similar pattern is

observed for parameter e, where increasing its values generally leads to reduced

damage levels (as evidenced by the reduced range in smaller values in Table 6.10

of the iterative procedure). However, this is less evident due to a carefully selected

localised range of values for this parameter.

In these visualisations, the values of all input parameters other than L and e are

fixed at their final mean values obtained from the iterative sampling procedure. For

instance, the VL parameter is held constant at its converged mean µ value of around

the 2.25%. This approach allows for the isolated examination of the influence of L

and e on the predicted damage outcomes.

These predictions, which accurately capture output variables similarly achieved

through FEM simulation, demonstrate the BIM model’s capability to represent

the complex deformation mechanisms of non-linear structural behaviour caused by

tunnelling. Hence, with a fully parametric model for tunnelling (including the soil,

tunnel, and building) and an automatic workflow for assessing damage risk based on

the developed meta-model, it is possible to generate design models, assess multiple

buildings simultaneously, and visualise the results in the design environment, as

shown in Figure 8.5.

8.3 Summary

This chapter fulfils the seventh and final objective of the thesis (Objective 7 in

Section 1.5). The procedure presented in this chapter is executed in near real-time

(within seconds), while accounting for complex interactions and the non-linear re-

sponse of masonry structures to settlements using FEM. This demonstrates how the
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Figure 8.5: Real-time prediction of tunnelling-induced damage risk for multiple buildings
in the design environment.

combination of empirical, analytical, and numerical models within the meta-model

training stage and its implementation into BIM, along with parametric modelling

through Dynamo, is a powerful tool for the quick and efficient investigation of

tunnelling design alternatives directly within the design tools. The user-friendly

environment further enables designers to easily investigate, evaluate, and optimise

a design without needing expert knowledge of the underlying methodology. The

visualisation of settlements and the associated risk category is intuitive, making it

effective for presenting results to non-experts and supporting the decision-making

process.
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Chapter 9

Conclusion, Study Limitations,

and Future Work

In conclusion, this thesis proposes a comprehensive framework for BIM-based de-

sign that seamlessly integrates advanced empirical, analytical, numerical, digital

modelling, and ML techniques. This integration enables the prediction of building

damage due to tunnelling in near-real time (within seconds) using ML algorithms

trained on several non-linear FEM-based numerical simulations.

The benefits of such a method are numerous, particularly during the design stage of

tunnelling projects, where fast, accurate, and highly reliable predictions of building

damage are essential for assessing the overall impact and design economics of various

tunnel design alternatives. This framework not only provides rapid and robust

predictions, but also offers a user-friendly interface that simplifies the application of

its complex underlying methodologies. As a result, it becomes a widely accessible

tool that can be effectively utilised by a broad range of individuals from diverse

professional backgrounds, regardless of their expertise in ML, BIM, or programming,

which are the core tools employed in its development.

In addition to these contributions, the following key observations were made:

– Several methods are used in the literature to estimate tunnelling-induced set-
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tlements, address SSI effects, and evaluate building damage in both its local

and global forms. Additionally, various methods exist for modelling build-

ing material, as well as several SA and ML algorithms which can be used

and adopted within this framework, each with its benefits and limitations.

Therefore, the results obtained from the analysis performed using the pro-

posed framework are directly tied, in terms of accuracy and reliability, to the

strengths and weaknesses of the aforementioned methods. For example, this

framework uses a semi-coupled approach that integrates empirical, analyti-

cal, and numerical methods. This approach enables the execution of a large

number of numerical simulations. In contrast, a fully coupled method, while

offering more direct results, significantly increases the required computational

effort, which can become prohibitive for large-scale simulations. This would

result in fewer data points available for training and analysis, thereby under-

mining one of the primary objectives of this thesis: generating a sufficiently

large and diverse simulation dataset. Similarly, regarding the selected mod-

elling strategy, a macro-modelling approach is used here due to its favourable

trade-off between computational cost and accuracy. However, this comes at

the expense of reduced precision in evaluating building damage, particularly

with respect to local damage indicators. Depending on the scope and ob-

jective of a given study, the selection of methods and modelling strategies

must carefully weigh such trade-offs. This framework prioritises the ability

to evaluate both global and local metrics efficiently. Therefore, high-fidelity

methods like micro-modelling, although more accurate, were not considered

optimal due to their computational intensity and difficulty in integration. A

semi-coupled and macro-modelling strategy was ultimately adopted to ensure

computational feasibility while still capturing the necessary behaviours for the

large-scale parametric study.

– A thorough investigation of several FEM-based simulations across different
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testing scales is deemed necessary, primarily to address the various aspects

of numerical inconsistencies. This includes the process of model validation,

which involves comparing the numerical results against real-world structural

performance obtained from laboratory experiments conducted under controlled

conditions and/or well-documented field data from similar materials and ap-

plication contexts. In addition to validation, numerical verification is essential

to ensure that the implementation of the model is accurate and that the code

produces results consistent with known benchmarks, analytical solutions, or

previously validated numerical models. Verification confirms that the com-

putational methods used are functioning correctly, regardless of the specific

modelling strategies. Depending on the simulation approach, such as implicit

(“general”) or explicit (“dynamic”) schemes, each method must be indepen-

dently verified to ensure the robustness and reliability of the underlying algo-

rithms. It is also critical to maintain consistency within the chosen modelling

strategies. For instance, switching from one numerical scheme to another while

retaining other modelling assumptions may introduce significant inconsisten-

cies. If not handled carefully, such changes can lead to contradictory outcomes

and dangerous misinterpretations. Another key aspect requiring careful con-

sideration is the issue of mesh sensitivity. This inherent limitation must be

addressed through proper mesh convergence studies to ensure the stability and

accuracy of the solution, regardless of mesh resolution. This becomes particu-

larly important in non-linear modelling scenarios involving strain softening and

damage degradation behaviours, where mesh refinement can strongly influence

the outcome.

– Creating such a comprehensive framework for the functional evaluation of

building damage, considering a wide range of input parameters and the in-

tegration of complex tunnel-soil-building interactions, undoubtedly involves

a vast list of model variables. These parameters and their boundary values
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were identified through a comprehensive literature review, and further analy-

ses were conducted to establish dependencies among them. Some parameters

are interdependent to varying degrees, and in certain configurations, assigning

specific values to one parameter can render others incompatible, preventing

their simultaneous inclusion within a valid model. Therefore, employing a

traditional OAAT (One-At-A-Time) sampling approach becomes impractical.

Instead, conditional sampling becomes a fundamental necessity to properly

capture these complex interrelationships. Advanced sampling strategies, such

as the MLH (Maximin Latin Hypercube) modelling technique presented in

this thesis, are essential to ensure thorough coverage of the input domain.

This prevents the omission of critical but less frequent model scenarios, while

maintaining full adherence to the physical realism and constraints of the mod-

elling framework. Additionally, due to the high volume of samples required

to sufficiently train ML algorithms, automating both the model assembly and

execution procedures is not merely a convenience but a necessity. In this con-

text, code-friendly platforms such as ABAQUS are highly recommended, as

they allow direct model manipulation via scripting. This stands in contrast to

other software packages that lack such programmability, making automation

tedious or infeasible. Lastly, high-performance computing (HPC) resources

are crucial for executing the large number of FEM simulations. The outputs

of these simulations, typically stored and processed through automated scripts

parsing ‘.txt’ files, form the datasets used to train and evaluate the predictive

ML models.

– The evaluation of building damage, whether categorised as “local” or “global,”

is rarely explicitly defined in the literature. Moreover, a comprehensive ap-

plication of a significant range of these methods within a single study is still

missing. Although an attempt to develop a damage-risk framework has previ-

ously been made Giardina (2013), it still lacks complete adoption across vari-
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ous modelling approaches and scenarios. While a unified framework describing

damage holistically through both local and global aspects was not pursued in

this thesis, as it lies beyond its defined scope, a thorough examination of a

wide range of damage assessment methodologies was conducted through sim-

ulations. Insightful and broad conclusions regarding damage assessments were

presented, highlighting how results differ depending on the chosen method.

Furthermore, the method-based distribution of damage outcomes across all

simulated samples was monitored. This comprehensive exploration proved

particularly useful in identifying which damage criteria are more representa-

tive of the dataset as a whole. Moreover, these data-rich distributions revealed

a gap in the existing literature, which led to the development of a novel iter-

ative procedure for data rebalancing. By back-analysing the simulation data,

strategies were identified to improve the reliability of model outputs by in-

creasingly populating previously underrepresented areas in the output space.

This yielded more informative outputs that, in turn, were used to better train

ML algorithms. As demonstrated, model accuracy improves not only with the

total number of sample points but also with the uniformity of their distribution

across the spectrum of potential outputs.

– From the analysis presented in this thesis, the application of multiple SA and

ML algorithms on the same dataset is recommended. These should be com-

pared and evaluated based on the accuracy of their predictions relative to

the given input-output relationships. The best-performing models are then

selected for further analysis, SA for the iterative procedure and ML for inte-

gration into the BIM framework. Furthermore, in addition to using basic ML

algorithms (i.e., those with fixed structure and no additional tuning), which

can be applied for either regression (predicting a continuous value, as done in

this thesis) or classification (predicting an output class/category, outside the

scope of this thesis), optimisation techniques, data transformation, and cross-
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validation are all essential for improving model reliability and performance.

It is therefore strongly advised to incorporate at least a few of these tech-

niques when conducting any form of ML training, especially in cases involving

highly non-linear input-output relationships, such as those examined in this

work. These techniques assist in identifying hidden inconsistencies, such as

data overfitting and output biases, which are common in advanced statisti-

cal models. Additionally, they help to enhance model accuracy by allowing

flexibility in determining the most suitable structure for the dataset under

consideration.

– The implementation of the developed ML model (best performing) into the

BIM platform simplifies its complex, code-based nature, which is typically

challenging to operate directly from the source. Additionally, the integration

of a parametric modelling framework, allowing users to select input values,

within the platform, along with colour-coded visualisation of damage levels,

effectively transforms the process from a monotonic, expert-exclusive tool into

a rich, informative, colour-driven, and user-friendly framework. This makes

it accessible to a broad audience, including individuals with little to no un-

derstanding of ML techniques or advanced code-based tools such as FEM or

Python.

9.1 Study Limitations

Some notable limitations of this work include:

– The current state of the framework integrates rather traditional methods, in-

cluding the VL and EBBEF2p methods for calculating settlements and SSI,

respectively. Integrating additional methods such as the COM or a non-linear

or elastic perfectly plastic SSI allows for a more versatile and rich tool that

can be used with various input elements. However, this is reflected in an
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exponential increase in numerical samples, added complexity of modelling, ad-

ditional parameters that are not straightforward to determine, and increased

computational demand, which can still be a challenging task to date.

– Although using a semi-coupled approach (due to the EBBEF2p SSI model)

has proven to be computationally effective, and sufficiently accurate based on

the validated models, it still involves trade-offs in precision compared to fully

coupled methods. The accuracy of SSI predictions can be limited due to the

potential negligence of a more severe non-linear behaviour between the soil

and the building interface. This plays an important role in identifying the

accurate damage induced to the building without restrictions caused by the

foundation’s constraints.

– As mentioned before, the iterative procedure, although effective in providing

a rebalanced dataset, lacks a rigorous optimisation procedure for parameters

such as θ, σXi
, the number of samples, and the total number of iterations,

which directly impacts the effective increase in the accuracy of both SA and ML

training. Especially when increasing the number of samples or changing values

of θ or σXi
could potentially present valuable insights that might diverge the

ultimate solution towards a different direction; however, this was not further

investigated and could be the scope of future work.

– The prediction accuracy of ML is still considered to be notably high, particu-

larly in the case of highly non-linear output variables such as Maximum Crack

Width and εh,max. This is a direct result of two factors: the total number of

samples used for testing and training the ML model, and the quality of output

distribution along the sample points. This can be addressed by increasing the

total number of samples while closely observing the output distributions and

adjusting accordingly using methods such as the iterative procedure in the

case of highly skewed data output.

– Lastly, the current modelling strategy lacks the integration of 3D modelling
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aspects of buildings, as well as considerations for other types of buildings such

as concrete-filled framed structures and steel structures. In addition, different

types of foundations, such as isolated footing or pile foundations, were not

addressed, which can alter the overall impact of tunnelling due to the different

horizontal resistance to ground subsidence. Lastly, different tunnel configura-

tions (such as curvature, twin tunnelling, incline and decline tunnelling) were

not considered, nor were long-term settlements due to consolidation effects or

time-dependent tunnelling activities such as when tunnels are actively passing

underneath a building, during which the building might experience tension

release phenomena during excavation operations.

9.2 Generalizability and Computational Implica-

tions

Another notable limitation relates to the generalizability of this study’s findings

when applied to different geotechnical and structural scenarios. Extending the cur-

rent framework to accommodate alternative foundation types, such as pile founda-

tions instead of the currently modelled shallow foundations, introduces significant

implications. Specifically, this would require adjustments to the FEM input space,

incorporating additional parameters such as pile number, length, diameter, spacing,

and stiffness characteristics. The integration of these parameters would exponen-

tially increase the number of simulations needed, proportional to the number of

additional inputs multiplied by the required numerical samples. Moreover, if a fully

coupled SSI approach is adopted, explicit modelling of piles within the surrounding

soil strata would be mandatory, substantially increasing computational complex-

ity, runtime, and memory usage. Conversely, employing a decoupled SSI approach

similar to that presented in this study would mitigate some computational over-

head by integrating only settlement outputs from SSI analyses directly onto building

219



9.3. FUTURE WORK

façades, thereby avoiding explicit pile modelling. Nevertheless, changing foundation

type inherently demands a full rerun of FEM simulations and subsequent retrain-

ing and revalidation of ML models. The associated computational costs, modelling

complexity, and required analysis time would significantly increase, potentially lim-

iting the broader and immediate applicability of the current results to these more

complex or fundamentally different geotechnical scenarios.

9.3 Future Work

To address these limitations, the following tasks are recommended as future work

of this thesis.

– Creating a new set of data using a fully coupled tunnel-soil-structure inter-

action model, using a 2-step approach such as the case of Yu et al. (2025),

or even by modelling the tunnel while adopting a non-linear material model

for the soil, and, if possible, the non-linear tunnel-soil interface interaction.

Although this might still be a challenging task to date, even by adopting a lin-

ear model for the soil and tunnel-soil interfaces, this would still provide useful

insights into the soil-building interaction, as well as building damage, which

can be directly compared to the current set of available data. This would

provide better quality data (due to coupling) for the training of ML models

and SA studies and provide definitive answers about the extent to which the

EBBEF2p no longer (if so) presents accurate predictions of building damage

and becomes ultimately unreliable for increased non-linearities.

– A rigorous optimisation strategy (e.g., gradient-based, variationally consistent,

or AL) for the iterative procedure must be devised to determine the most

effective values of the method parameters (e.g., θ and σXi
values), as well as

the total number of iterations and samples for each iteration needed. This

ensures the iterative procedure is maximised for effectiveness without risking
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missing important insights drawn from individual iterations, which directly

impact the results of the SA studies and dictate the direction of resampling

for individual parameters in subsequent iterations.

– As mentioned before, in addition to using a fully coupled modelling approach to

model interaction, increasing the number of samples will provide a larger set of

data from which better prediction performance of different ML algorithms can

be achieved. Furthermore, in relation to ML algorithms, further improvements

can be made, such as increasing the search space of model hyperparameters,

attempting dropout techniques, or applying early stopping criteria, etc.

– The current implementation of the framework in BIM is limited to a set of only

a handful of parameters (precisely, the L, e, O, and Sv,max which further com-

prises D, VL, and ix) with only one damage output variable to be predicted

per building (that is, εh,max). This can further be improved by incorporat-

ing the additional parameters already presented in this thesis, as well as any

additional parameters from further development of the model as previously

discussed. Furthermore, the output layer of the ML can be increased to more

than one node (output), accounting for the various local and global damage

output values, providing a more informative and flexible framework depending

on the level of detail required or design use.

221



Bibliography

S Acikgoz, A Franza, M J DeJong, and R Mair. Cracked equivalent beam mod-

els for assessing tunneling-induced damage in masonry buildings. Journal of

Geotechnical and Geoenvironmental Engineering, 147(2):04020167, 2021. doi:

10.1061/(ASCE)GT.1943-5606.0002443.

D Addessi, S Marfia, and E Sacco. A plastic nonlocal damage model.

Computer Methods in Applied Mechanics and Engineering, 191(13):1291–

1310, 2002. ISSN 0045-7825. doi: https://doi.org/10.1016/S0045-7825(01)

00325-5. URL https://www.sciencedirect.com/science/article/pii/

S0045782501003255.

A Alsahly, F Hegemann, M König, and G Meschke. Integrated bim-to-fem approach

in mechanised tunnelling. Geomechanics and Tunnelling, 13(2):212–220, 2020.

doi: 10.1002/geot.202000002.

A Antoniadis, S Lambert-Lacroix, and J M Poggi. Random forests for global sen-

sitivity analysis: A selective review. Reliability Engineering System Safety,

206:107–312, 2021. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.

2020.107312. URL https://www.sciencedirect.com/science/article/

pii/S0951832020308073.

P B Attewell and J P Woodman. Predicting the dynamics of ground settlement

and its derivatives caused by tunnelling in soil. Ground Engineering, 15:13,

1982.

222

https://www.sciencedirect.com/science/article/pii/S0045782501003255
https://www.sciencedirect.com/science/article/pii/S0045782501003255
https://www.sciencedirect.com/science/article/pii/S0951832020308073
https://www.sciencedirect.com/science/article/pii/S0951832020308073


P B Attewell, J Yeates, and A R Selby. Soil movements induced by tunnelling and

their effects on pipelines and structures. Blackie, 1986.

Autodesk. Autodesk Revit, 2019. URL http://www.autodesk.co.uk/products/

revit-family/.

H X H Bao, J P Larsson, and V Wong. Light at the end of the tunnel:the

impacts of expected major transport improvements on residential property

prices. Urban Studies, 58:2971–2990, 11 2021. ISSN 1360063X. doi:

10.1177/0042098020967308.

G Baptiste, M Bertrand, and S P Philippe. Correlation and variable impor-

tance in random forests. Statistics and Computing, 27, 05 2017. doi:

10.1007/s11222-016-9646-1.

K J Bathe, E Ramm, and E L Wilson. Finite element formulations

for large deformation dynamic analysis. International Journal for

Numerical Methods in Engineering, 9(2):353 – 386, 1975. doi:

10.1002/nme.1620090207. URL https://www.scopus.com/inward/

record.uri?eid=2-s2.0-0016451238&doi=10.1002%2fnme.1620090207&

partnerID=40&md5=8ae6e76bc961a249b4f804b254f6a792.

Z P Bazant and B H Oh. Crack band theory for fracture of concrete. Materials

and Structures, 93(16):155–177, 1983.

H Behnam, J S Kuang, and B Samali. Parametric finite element analysis of rc wide

beam-column connections. Computers Structures, 205:28–44, 2018. ISSN 0045-

7949. doi: https://doi.org/10.1016/j.compstruc.2018.04.004. URL https://

www.sciencedirect.com/science/article/pii/S004579491830004X.

D Boldini, N Losacco, S Bertolin, and A Amorosi. Finite element modelling

of tunnelling-induced displacements on framed structures. Tunnelling and

Underground Space Technology, 80:222 – 231, 2018. ISSN 0886-7798. doi:

https://doi.org/10.1016/j.tust.2018.06.019.

223

http://www.autodesk.co.uk/products/revit-family/
http://www.autodesk.co.uk/products/revit-family/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016451238&doi=10.1002%2fnme.1620090207&partnerID=40&md5=8ae6e76bc961a249b4f804b254f6a792
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016451238&doi=10.1002%2fnme.1620090207&partnerID=40&md5=8ae6e76bc961a249b4f804b254f6a792
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016451238&doi=10.1002%2fnme.1620090207&partnerID=40&md5=8ae6e76bc961a249b4f804b254f6a792
https://www.sciencedirect.com/science/article/pii/S004579491830004X
https://www.sciencedirect.com/science/article/pii/S004579491830004X


M D Boscardin and E J Cording. Building response to excavation-induced settle-

ment. Journal of Geotechnical Engineering, 115(1):1–21, 3 1989. ISSN 0733-

9410. doi: 10.1061/(ASCE)0733-9410(1989)115:1(1).

J E Bowles. Foundation analysis and design. McGraw-Hill, fifth edition edition,

1996. ISBN 0079122477.

B Broms and H Bennermark. Stability of clay at vertical openings. Journal of Soil

Mechanics & Foundations Div, 93:71–94, 1967.

H-G Bui and G Meschke. A parallelization strategy for hydro-mechanically coupled

mechanized tunneling simulations. Computers and Geotechnics, 120:103378,

2020. ISSN 0266-352X. doi: https://doi.org/10.1016/j.compgeo.2019.103378.

J Burland and C Wroth. Settlement of buildings and associated damage. In Con-

ference on Settlement of Structures. Proc. of the Conference on Settlement of

Structures, 1975.

J B Burland. Assessment of risk of damage to buildings due to tunnelling and

excavation, 1997.

J B Burland and C P Wroth. Settlement of buildings and associated damage. pages

611–654. Pentech Press, 1974.

J B Burland, B B Broms, and V F B de Mello. Behaviour of foundations and

structures. pages 495–546, 3 1977.

J B Burland, J Standing, and F M Jardine. Building response to tunnelling : case

studies from construction of the Jubilee Line Extension, London. V1, volume 2.

T. Telford, 2001a. ISBN 0727730177.

J B Burland, J Standing, and F M Jardine. Building response to tunnelling : case

studies from construction of the Jubilee Line Extension, London V2. T. Telford,

2001b. ISBN 0727730177.

J B Burland, J R Standing, and F M Jardine. Assessing the risk of building

damage due to tunnelling - lessons from the jubilee line extension, london. In

224



Proceedings of the 2nd International Conference on Soil Structure Interaction

in Civil Engineering, pages 11–38, Zurich, 2002.
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I Izonin, A Gamra, O Boychuk, J Ninić, R Tkachenko, and S Mitoulis. PCA-NuSVR

Framework for Predicting Local and Global Indicators of Tunnelling-induced

Building Damage. In 1st International Conference on Smart Automation &

Robotics for Future Industry (SMARTINDUSTRY 2024), pages 32–46. CEUR-

WS.org, 2024.

O Jenck and D Dias. Analyse tridimensionnelle en différences finies de l’interaction
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J Ninić, A Gamra, and B Ghiassi. Real-time assessment of tunnelling-induced

damage to structures within the building information modelling framework.

Underground Space (China), 14:99–117, 3 2024. ISSN 24679674. doi: 10.1016/

j.undsp.2023.05.010.

M Obel, M A Ahrens, and P Mark. Metamodel-based prediction of structural

damages due to tunneling-induced settlements. ASCE-ASME Journal of Risk

and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6, 3 2020.

ISSN 23767642. doi: 10.1061/ajrua6.0001092.

M P O’Reilly and B M New. Settlements above tunnels in the united kingdom -

their magnitude and prediction. pages 55–64. The Institution of Mining and

Metallurgy, 1982.

R B Peck. Deep excavations and tunnelling in soft ground. Geotextiles and Geomem-

branes, 1:311 – 375, 1969. ISSN 02661144. doi: 10.1016/0266-1144(84)90012-8.

F Pinto and A J Whittle. Ground movements due to shallow tunnels in soft ground.

i: Analytical solutions. Journal of Geotechnical and Geoenvironmental Engi-

neering, 140(4):04013040, 2014. doi: 10.1061/(ASCE)GT.1943-5606.0000948.

R V D Pluijm. Material properties of masonry and its components under tension

and shear. In Proceedings 6th Canadian Masonry Symposium, pages 675–686,

Saskatoon, Canada, 15–17 June 1992. University of Saskatchewan.

D M Potts and T I Addenbrooke. A structure’s influence on tunnellinginduced

234



ground movements. Proceedings of the Institution of Civil Engineers: Geotech-

nical Engineering, 125(2):109–125, 1997. doi: 10.1680/igeng.1997.29233.
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an elastic half plane. Géotechnique, 46:753–756, 1996. doi: 10.1680/geot.1996.

46.4.753. Cited by: 543.

V Z Vlasov and N N Leont’ev. Beams, plates and shells on elastic foundations.

Israel Program for Scientific Translations, 1966.

E Winkler. Theory of elasticity and strength. H. Dominicus, 1867.

J Yacila, G Camata, J Salsavilca, and N Tarque. Pushover analysis of confined

masonry walls using a 3d macro-modelling approach. Engineering Struc-

tures, 201:109731, 2019. ISSN 0141-0296. doi: https://doi.org/10.1016/

j.engstruct.2019.109731. URL https://www.sciencedirect.com/science/

article/pii/S0141029619314385.

W N Yiu, H J Burd, and C M Martin. Finite-element modelling for the assessment

of tunnel-induced damage to a masonry building. Géotechnique, 67:780–794,
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Appendix A

Code Listings and Implementation

Details

problem = {’num_vars’: <param count>, # Integers

’names’: [<param names>], # Strings

’bounds’: [[<param 1 range>], # Floats, format: [min,max]

..., [<param n range>]],}

Listing A.1: Definition of the problem dictionary used in the SA.

def parameter_corr_1(ind. param (\minor{e.g.,} F_c)):

value = np.random.uniform(<low>, <high>) #Random values

dep. param = value * ind. param

return dep. param

Listing A.2: Example function showing the correlation between an independent

and a dependent parameter.
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def condition_1(vars):

value = compute_value_1(vars[index_1], ..., vars[index_n]) # Compute

value from list

return value < threshold (S_v, max) # Check threshold

def compute_value_1(param_1, ..., param_n):

const_1 = np.pi / 2

derived_constant = np.sqrt(const_1)

value = 1000 * derived_constant * (VL / 100) * (D ** 2) / (4 * i_x)

return value

Listing A.3: Python functions for evaluating conditions (e.g., condition 1

presented) and computing the corresponding value based on input variables.

param_samples_LH = latin.sample(problem, N)

i = 0

while i < N:

parameters = param_samples[i, :] # Extracting values

if (condition_1(param) and ... and condition_n(param)):

i += 1

else:

new_row = latin.sample(problem, 1)

dep_par_1 = param_correlation_1(ind_param_n)

dep_par_1_arr[i] = dep_par_1 # Update arrays

new_row[0, index_dep_par_1] = dep_par_1

# ... repeated for each parameter

param_samples[i, :] = new_param # Update list with new values

np.savetxt(’MLH_samples.csv’, param_samples, delimiter=’,’) # Store

Listing A.4: Python implementation of MLH sampling with conditional checks

and parameter correlation adjustments.
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from abaqus import *

from abaqusConstants import *

from caeModules import *

Listing A.5: Python imports required for running Abaqus CAE scripting and

modules.

num_rows = [1, 2, 3, 4, 5] # Floors number

Listing A.6: Python code snippet defining the number of building floors.

col = int(round((L * H * O) / ((width - 2 * flange) * w_depth)))

Listing A.7: Python code calculating the number of required columns based on

geometric parameters.

s1.rectangle(point1=(-L/2, 0), point2=(L/2, H)) # Foundation

p.BaseSolidExtrude(sketch=s1, depth=thickness)

y1 = L/2 + 2000 # Soil extent

s.rectangle(point1=(y1, 0), point2=(-y1, 3*thickness))

s.Line(point1=(-y1, -thickness/2), point2=(y1, -thickness/2)) # Partition

s.rectangle(point1=(-L/2, 0), point2=(L/2, H)) # Wall

Listing A.8: Python code for creating the geometry of the foundation, soil,

partition line, and wall in Abaqus.

a.translate(instanceList=(’Wall’, ), vector=(D0, 0.0 , 0.0))

a.translate(instanceList=(’Foundation’, ), vector=(D0, 0.0 , 0.0))

a.translate(instanceList=(’SOil Layer’, ), vector=(D0, 0.0 , 0.0))

Listing A.9: Python code translating the wall, foundation, and soil layer

instances in the Abaqus assembly.
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comp = np.loadtxt("Path/Compression_" + str(i) + ".txt", float)

comp_d = np.loadtxt("Path/Compression_damage_" + str(i) + ".txt", float)

tens = np.loadtxt("Path/Tension_" + str(i) + ".txt", float)

tens_d = np.loadtxt("Path/Tension_damage_" + str(i) + ".txt", float)

mdb.models[’M_’ + str(i)].Material(name=’CDP’)

mdb.models[’M_’ + str(i)].Material(name=’Soil’)

Listing A.10: Python code for loading material data from text files and creating

material definitions in Abaqus for each model iteration.

Displacement = np.loadtxt("Path/analytical_fields_"+str(i)+".txt",str) #

String value

mdb.models[’M’+’_’+str(i)].analyticalFields[’vertical_

displacements’].setValues(expression= str(Displacement))

Listing A.11: Python code for loading displacement data and assigning it to an

analytical field in Abaqus.

mdb.models[’M’+’_’+str(i)].interactionProperties[’IntProp-1’]

.tangentialBehavior.setValues(formulation=PENALTY, directionality=

ISOTROPIC, table=((friction, ), ), maximumElasticSlip=FRACTION,

fraction=0.005)

Listing A.12: Python code for setting the tangential behavior properties of the

interaction in Abaqus using a penalty formulation.
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#!/bin/bash (The first 5 SBATCH lines must be within given limits)

#SBATCH --partition=defq

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=4

#SBATCH --mem=64g

#SBATCH --time=108:00:00

#SBATCH --mail-user=ali.gamra@nottingham.ac.uk

#SBATCH --mail-type=FAIL,TIME_LIMIT

unset SLURM_GTIDS

cd ${{SLURM_SUBMIT_DIR}}

module load abaqus-uoneasy/2022

for i in $(seq {start} {end});

do

abq2022 job=Job_$i input=Job_$i.inp cpus=4 scratch=${{TMDIR}}

interactive

done

Listing A.13: SLURM batch script for submitting multiple Abaqus jobs with

resource specifications and email notifications.

# Example logic: loop through .odb files and extract nodal displacements

for file in odb_files:

session.openOdb(name=file)

odb = session.odbs[file]

step = odb.steps[’Step-1’]

frame = step.frames[-1]

displacement = frame.fieldOutputs[’U’]

strain = frame.fieldOutputs[’LE’]

...

# Save output

write_to_txt(displacement, strain)

generate_png(DAMAGET)

Listing A.14: Python script for automating post-processing of ABAQUS output

databases, extracting nodal displacements and element strains for each .odb file.
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Appendix B

Dynamo Script for the Evaluation

of Building Damage due to

Tunnelling, Snapshots
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Figure B.1: Nodes describing the input parameters (identified from the pink background
in Dynamo) for the tunnel, soil and building including the additional geometry-related
parameters.
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Figure B.2: Nodes describing the actions (identified from the greenish cyan background
in Dynamo) for the geometry of the former input elements. Including a view command
and a transparency percentage allowing the effective visualisation of tunnel geometry, soil
and building (including position).
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Figure B.3: Nodes describing the outputs (identified from the orange background in
Dynamo) to calculate settlements, and building damage evaluation using the ML and
damage level visualisation using colour code and colour range which is visualised directly
on the building geometry.
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Appendix C

Source Code for Model Sampling

Using the Modified Latin

Hypercube Method

import os

directory = "F:/Paper - first author/Pre_Process/1.Sampling"

folder_name = "Iteration_5_dataset"

folder_path = os.path.join(directory, folder_name)

if not os.path.exists(folder_path):

os.makedirs(folder_path)

else:

print("Folder already exists")

print(f"Folder ’{folder_name}’ created in ’{directory}’")

from SALib.sample import morris, latin

import numpy as np

import csv
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import pandas as pd

problem = {

’num_vars’: 15,

’names’: [’E’, ’Ft’, ’Gf’, ’Height’, ’Length’, ’OpeningRate’,

’e’, ’E_Soil’, ’Poissons’, ’ix’, ’Friction’,

’VL’, ’Z’, ’D’, ’Fc’],

’bounds’: [

# original dataset

[666, 9000], # 0 Elastic modulus

[0.05, 1.47], # 1 Tensile Strength

[0.004, 0.03], # 2 Fracture Energy in Tension (upper bound selected

to avoid linear behaviour)

[3.2, 20], # 3 Height of Building (starting at 1-floor height)

[8, 60], # 4 Length of Building

[0, 30], # 5 Opening rate

[0, 45], # 6 Eccentricity (skewed literature available)

[2, 250], # 7 Soil Stiffness

[0.1, 0.49], # 8 Soil’s Poisson’s

[3.6, 45], # 9 Trough width (poor literature available; distance 0

to 4X avg diameter, i.e., 0 to 45m)

[0.0001, 0.6], # 10 Friction Coefficient

[0.2, 5], # 11 Volume Loss

[7.3, 90], # 12 Tunnel depth (poor literature available, starting at

1.5 min D, i.e., 7.275)

[4.9, 17.6], # 13 Tunnel diameter

[0.5, 48.2] # 14 Compressive Strength

],

}

# fracture energy selected upper bound because i dont want linear behaviour.

# height started at 3.2 because i want to start rom 1 floor height.

# distance starting from 0 to 4X avg diameter (i.e., 0 to 45m).

# inflection point k = 0.5 between zmin and zmax (i.e., 3.638 and 45).
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# tunnel depth (z) starts at 1.5 min D (i.e., 7.275)

n = 500

param_samples_latin = latin.sample(problem, N=n) #Initial trial

np.savetxt("param_samples_latin.txt", param_samples_latin)

mesh = 175

gfm = 0

h = 0

kp = 0

Fc_arr = np.zeros(n)

elastic_modulus_arr = np.zeros(n)

tensile_fracture_energy_arr = np.zeros(n)

e_arr = np.zeros(n)

trough_width_arr = np.zeros(n)

# ===========CORRELATIONS===========

# Corre1

# Define the correlation between elastic_modulus and Ft

def elastic_modulus_correlation(Fc):

n = np.random.uniform(300, 700) # 500

elastic_modulus = n * Fc

return elastic_modulus

# Corre2

# Define the correlation between tensile_fracture_energy and Ft

def tensile_fracture_energy_correlation(Ft):

n = np.random.uniform(0.005, 0.05) # 0.0275

tensile_fracture_energy = n * Ft

return tensile_fracture_energy

# Corre3
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# Define the correlation between e and D

def e_correlation(D):

n = np.random.uniform(0, 3) # 1.5

e = n * D

return e

# Corre4

# Define the correlation between ix and Z

def trough_width_correlation(Z):

m = np.random.uniform(0.25, 0.63) # 0.44

trough_width = m * Z

return trough_width

# ===========CONDITIONS===========

# Cond1 (max settlement)

def condition1(vars):

value = compute_value1(vars[9], vars[11], vars[13])

return value < 150 # 150 max settlement

def compute_value1(var10, var12, var14):

pi_half = np.pi/2

sqrt_pi_half = np.sqrt(pi_half)

value = 1000 * sqrt_pi_half * (var12 / 100) * (var14 ** 2) / (4 * var10)

return value

# Cond2(tens. snap-back)

def condition2(vars):

value2 = compute_value2(vars[0], vars[1], vars[2])

return value2 > mesh

def compute_value2(var1, var2, var3):

value2 = var1 * var3 / (var2 ** 2) # all this * 2 if linear decay is

chosen.
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return value2

# Cond3(comp. snap-back)

def condition3(vars, gfm, h, kp):

cj = 0.27 / (15.2 ** 0.25)

em = cj * vars[14] / (vars[0] ** 0.7)

kp = em - vars[14] / vars[0]

gfm = 15 + 0.43 * vars[14] - 0.0036 * vars[14] ** 2

h = mesh

value3 = compute_value3(vars[0], vars[14], kp)

return value3 < 75 / 67 * gfm / (h * vars[14]) + kp

def compute_value3(var1, var15, kp):

value3 = var15 / var1 + kp

return value3

# Cond4 (overburden height)

def condition4(vars):

value4 = compute_value4(vars[12], vars[13])

return value4

def compute_value4(var13, var14):

value4 = var13

return value4 >= 1.5 * var14

# Cond5 (Ft should not be less than E/10000)

def condition5(vars):

return vars[1] >= vars[0]/10000

def condition_a(vars):

return (vars[0] >= 666 and vars[0] <= 9000) and \

(vars[1] >= 0.05 and vars[1] <= 1.47) and \

(vars[2] >= 0.004 and vars[2] <= 0.03) and \

(vars[3] >= 3.2 and vars[3] <= 20) and \
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(vars[4] >= 8 and vars[4] <= 60) and \

(vars[5] >= 0 and vars[5] <= 30) and \

(vars[6] >= 0 and vars[6] <= 45) and \

(vars[7] >= 2 and vars[7] <= 250) and \

(vars[8] >= 0.1 and vars[8] <= 0.49) and \

(vars[9] >= 3.6 and vars[9] <= 45) and \

(vars[10] >= 0.0001 and vars[10] <= 0.6) and \

(vars[11] >= 0.2 and vars[11] <= 5) and \

(vars[12] >= 7.3 and vars[12] <= 90) and \

(vars[13] >= 4.9 and vars[13] <= 17.6) and \

(vars[14] >= 0.5 and vars[14] <= 48.2)

# ===========GENERATING SAMPLES===========

param_samples_mod_latin = latin.sample(problem, n)

np.savetxt(’F:/Paper - first

author/Pre_Process/1.Sampling/’+folder_name+’/Samples.csv’,

param_samples_mod_latin, delimiter=’,’)

# Apply the correlation between elastic_modulus and Ft

for i in range(n):

Fc = param_samples_mod_latin[i, 14]

elastic_modulus = elastic_modulus_correlation(Fc)

param_samples_mod_latin[i, 0] = elastic_modulus

# Apply the correlation between tensile_fracture_energy and Ft

for i in range(n):

Ft = param_samples_mod_latin[i, 1]

tensile_fracture_energy = tensile_fracture_energy_correlation(Ft)

param_samples_mod_latin[i, 2] = tensile_fracture_energy

# Apply the correlation between e and D

for i in range(n):

D = param_samples_mod_latin[i, 13]
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e = e_correlation(D)

param_samples_mod_latin[i, 6] = e

# Apply the correlation between i and Z

for i in range(n):

Z = param_samples_mod_latin[i, 12]

trough_width = trough_width_correlation(Z)

param_samples_mod_latin[i, 9] = trough_width

# Check if the condition is violated and resample if necessary

i = 0

while i < n:

vars = param_samples_mod_latin[i, :]

if (condition1(vars) and condition2(vars) and condition3(vars, gfm, h,

kp) and

condition4(vars) and condition5(vars) and condition_a(vars)):

i += 1

else:

new_row = latin.sample(problem, 1)

# Generate new values for e, D, i and Z

Fc = new_row[0, 14]

elastic_modulus = elastic_modulus_correlation(Fc)

Ft = new_row[0, 1]

tensile_fracture_energy = tensile_fracture_energy_correlation(Ft)

D = new_row[0, 13]

e = e_correlation(D)

Z = new_row[0, 12]

trough_width = trough_width_correlation(Z)

# Update the generated values arrays
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elastic_modulus_arr[i] = elastic_modulus

tensile_fracture_energy_arr[i] = tensile_fracture_energy

e_arr[i] = e

trough_width_arr[i] = trough_width

# Apply the new values to the i-th row

new_row[0, 0] = elastic_modulus

new_row[0, 2] = tensile_fracture_energy

new_row[0, 6] = e

new_row[0, 9] = trough_width

param_samples_mod_latin[i, :] = new_row

np.savetxt(’F:/Paper - first

author/Pre_Process/1.Sampling/’+folder_name+’/Samples.csv’,

param_samples_mod_latin, delimiter=’,’)

input_file = ’F:/Paper - first

author/Pre_Process/1.Sampling/’+folder_name+’/Samples.csv’

output_file = ’F:/Paper - first

author/Pre_Process/1.Sampling/’+folder_name+’/Samples.txt’

with open(input_file, ’r’, newline=’’, encoding=’utf-8’) as csv_file:

reader = csv.reader(csv_file)

with open(output_file, ’w’, encoding=’utf-8’) as txt_file:

for row in reader:

line = ’ ’.join(row) # Customize the delimiter if necessary

txt_file.write(line + ’\n’)

print(f"CSV file ’{input_file}’ has been converted to a TXT file

’{output_file}’.")
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Appendix D

Source Code for Model Assembly

in ABAQUS Using the ABAQUS

Python Development

Environment and Model

Prototype

### -*- coding: mbcs -*-

###

### Abaqus/CAE Release 2019 replay file

### Internal Version: 2018_09_24-19.41.51 157541

### Run by evxag6 on Thu Jul 21 11:24:26 2022

from abaqus import *

from abaqusConstants import *

from caeModules import *

import numpy as np

import time

import multiprocessing as mp
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from multiprocessing import Pool

#from part import BoundingBox

session.journalOptions.setValues(replayGeometry=COORDINATE,

recoverGeometry=COORDINATE)

Mdb()

openMdb(pathName=’D:/ABAQUS_Models/2D_latin_models/FEM.cae’)

import os

os.chdir(r"D:\ABAQUS_Models\2D_latin_models")

seed = 175

thickness = 250 #WALL THICKNESS

f_heigth = 500 #FOUNDATION HEIGHT

width = 1200 #FLANGE WIDTH

flange = 130 #FLANGE OFFSET

height = 150 #FLANGE HEIGHT

w_depth = 1500 #WINDOWS DEPTH

d_depth = 2000 #DOOR DEPTH

m_poisson = 0.2 #MASONRY POISSON’S

m_density = 2.1e-09 #MASONRY DENSITY

floor_heigth = 3200

filename = r"F:/Paper - first

author/Pre_Process/1.Sampling/Original_dataset/Samples.txt"

e_building = np.loadtxt(filename,float)[:,0]

tensile_strength = np.loadtxt(filename,float)[:,1]

tensile_fracture_energy = np.loadtxt(filename,float)[:,2]

floor_height = np.loadtxt(filename,float)[:,3]

building_length = np.loadtxt(filename,float)[:,4]

opening_rate = np.loadtxt(filename,float)[:,5]

building_offset = np.loadtxt(filename,float)[:,6]

e_soil = np.loadtxt(filename,float)[:,7]
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soil_poissons = np.loadtxt(filename,float)[:,8]

trough_width = np.loadtxt(filename,float)[:,9]

friction_coefficient = np.loadtxt(filename,float)[:,10]

volume_loss = np.loadtxt(filename,float)[:,11]

tunnel_depth = np.loadtxt(filename,float)[:,12]

tunnel_diameter = np.loadtxt(filename,float)[:,13]

compressive_strength = np.loadtxt(filename,float)[:,14]

k1 = 3 # door frequency

k2 = 2 # door initial positioning

D0 = 0

D1 = 0

for iii in range(30,35):

e_b = e_building[iii] # as is

ft = tensile_strength[iii] # as is

gft = tensile_fracture_energy[iii] # as is

f_height = 1000 * floor_height[iii]

b_length = 1000 * round(building_length[iii] / 0.175) * 0.175

op_rate = 0.01 * round(opening_rate[iii] / 5.5) * 5.5

b_offset = 1000 * building_offset[iii]

e_s = e_soil[iii] # as is

s_poissons = soil_poissons[iii] # as is

t_width = 1000 * trough_width[iii] # as is

v_loss = 0.01 * volume_loss[iii] # as is

t_depth = 1000 * tunnel_depth[iii] # as is

t_diameter = 1000 * tunnel_diameter[iii] # as is

fc = compressive_strength[iii] # as is

friction = friction_coefficient[iii] # as is

#columns and rows for the openings

#col = int((b_length * floor_heigth * op_rate) / ((width - 2 * flange) *

w_depth))
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#col = int(round((b_length * floor_heigth * op_rate) / ((width - 2 *

flange) * w_depth)))

# Define the height ranges and the number of rows for each range

height_ranges = [(0, 5600), (5600, 8400), (8400, 12600), (11200, 16800),

(14000, 21000)]

num_rows = [1, 2, 3, 4, 5]

# Calculate the row based on the height of the floor

for i, (min_height, max_height) in enumerate(height_ranges):

if min_height <= f_height < max_height:

row = num_rows[i]

break

## columns and rows for the openings

##col = int((b_length * floor_heigth * op_rate) / ((width - 2 * flange)

* w_depth))

col = int(round((b_length * floor_heigth * op_rate) / ((width - 2 *

flange) * w_depth)))

#else:

# If the floor height is outside of all defined ranges, use a

default row value of 1

#row = f_height / floor_height

#row = f_height / floor_heigth

# facade domain and spacing

h_spacing_f = (b_length - col * width) / (col + 1) #MIN. SPACING --

(i.e 100 -col* i.e 20)/(col+1) = i.e 5 to find mnimum number of columns

left = h_spacing_f + width - b_length / 2

right = b_length / 2

v_spacing_f = (f_height - row * (height + w_depth)) / (row + 1)

down= v_spacing_f + 0.5 * height + w_depth
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up = f_height

# foundation geometry

s1 = mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__profile__’,

sheetSize=2000.0)

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.setPrimaryObject(option=STANDALONE)

s1.rectangle(point1=(-b_length/2, 0), point2=(b_length/2, f_heigth))

p = mdb.models[’M’+’_’+str(iii)].Part(name=’Part-2’,

dimensionality=THREE_D,

type=DEFORMABLE_BODY)

p.BaseSolidExtrude(sketch=s1, depth=thickness)

s1.unsetPrimaryObject()

session.viewports[’Viewport: 1’].setValues(displayedObject=p)

del mdb.models[’M’+’_’+str(iii)].sketches[’__profile__’]

# soil layer geometry

s = mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__profile__’,

sheetSize=2000.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

y1 = b_length/2 + 2000

s.rectangle(point1=(y1, 0), point2=(-y1, 3*thickness))

p = mdb.models[’M’+’_’+str(iii)].Part(name=’Part-3’,

dimensionality=THREE_D,

type=DEFORMABLE_BODY)

p.BaseShell(sketch=s)

s.unsetPrimaryObject()

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

session.viewports[’Viewport: 1’].setValues(displayedObject=p)

del mdb.models[’M’+’_’+str(iii)].sketches[’__profile__’]

# partitioning soil layer

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]
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p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

f, e, d = p.faces, p.edges, p.datums

t = p.MakeSketchTransform(sketchPlane=f.findAt(coordinates=(-b_length /

4, f_heigth / 2, 0.0), normal=(0.0, 0.0, 1.0)),

sketchUpEdge=e.findAt(coordinates=(

y1, 1.5 * thickness / 2, 0.0)), sketchPlaneSide=SIDE1, origin=(0.0,

1.5 * thickness, 0.0))

s = mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__profile__’,

sheetSize=88012.78,

gridSpacing=2200.31, transform=t)

g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

p.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)

s.Line(point1=(-y1, -thickness / 2), point2=(y1, -thickness / 2))

s.HorizontalConstraint(entity=g.findAt((0.0, -thickness / 2)),

addUndoState=False)

s.Line(point1=(-y1, thickness / 2), point2=(y1, thickness / 2))

s.HorizontalConstraint(entity=g.findAt((0.0, thickness / 2)),

addUndoState=False)

s.Line(point1=(-y1 + 2000, -thickness / 2), point2=(-y1 + 2000,

thickness / 2))

s.VerticalConstraint(entity=g.findAt((-y1 + 2000, 0.0)),

addUndoState=False)

s.Line(point1=(y1 - 2000, -thickness / 2), point2=(y1 - 2000, thickness

/ 2))

s.VerticalConstraint(entity=g.findAt((y1 - 2000, 0.0)),

addUndoState=False)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

f = p.faces

pickedFaces = f.findAt(((-b_length / 4, f_heigth / 2, 0.0), ))

e1, d2 = p.edges, p.datums

p.PartitionFaceBySketch(sketchUpEdge=e1.findAt(coordinates=(y1, 1.5 *

thickness / 2,
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0.0)), faces=pickedFaces, sketch=s)

s.unsetPrimaryObject()

del mdb.models[’M’+’_’+str(iii)].sketches[’__profile__’]

# walls and lintels (had to be last cause next code block operates with

this command)

s = mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__profile__’,

sheetSize=2000.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

s.rectangle(point1=(-b_length / 2, 0), point2=(b_length / 2, f_height))

p = mdb.models[’M’+’_’+str(iii)].Part(name=’Part-1’,

dimensionality=THREE_D,

type=DEFORMABLE_BODY)

p.BaseShell(sketch=s)

s.unsetPrimaryObject()

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

del mdb.models[’M’+’_’+str(iii)].sketches[’__profile__’]

f, e, d1 = p.faces, p.edges, p.datums

t = p.MakeSketchTransform(sketchPlane=f[0], sketchUpEdge=e[2],

sketchPlaneSide=SIDE1, sketchOrientation=TOP, origin=(0,0, 0.0))

s1 = mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__profile__’,

sheetSize=2828.42, gridSpacing=70.71, transform=t)

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)

# initializing assembly stage

if iii == 1:

a = mdb.models[’M’+’_’+str(iii)].rootAssembly

a.translate(instanceList=(’Part-1-1’, ), vector=(D0, 0.0 , 0.0))

a.translate(instanceList=(’Part-2-1’, ), vector=(D0, 0.0 , 0.0))

a.translate(instanceList=(’Part-3-1’, ), vector=(D0, 0.0 , 0.0))
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else:

a = mdb.models[’M’+’_’+str(iii)].rootAssembly

a.translate(instanceList=(’Part-1-1’, ), vector=(D1-D0, 0.0 , 0.0))

a.translate(instanceList=(’Part-2-1’, ), vector=(D1-D0, 0.0 , 0.0))

a.translate(instanceList=(’Part-3-1’, ), vector=(D1-D0, 0.0 , 0.0))

# lintels by partition

if op_rate != 0:

for i in np.arange(left, right, h_spacing_f + width):

for j in np.arange(down, up, v_spacing_f + w_depth + height):

for a, b, c, d, e, f in [(i, j, j + height, i - width, i -

width + flange, i - flange)]:

s1.Line(point1=(e, b), point2=(d, b))

s1.HorizontalConstraint(entity=g[6], addUndoState=False)

s1.Line(point1=(d, b), point2=(d, c))

s1.VerticalConstraint(entity=g[7], addUndoState=False)

s1.PerpendicularConstraint(entity1=g[6], entity2=g[7],

addUndoState=False)

s1.Line(point1=(d, c), point2=(a, c))

s1.HorizontalConstraint(entity=g[8], addUndoState=False)

s1.PerpendicularConstraint(entity1=g[7], entity2=g[8],

addUndoState=False)

s1.Line(point1=(a, c), point2=(a, b))

s1.VerticalConstraint(entity=g[9], addUndoState=False)

s1.PerpendicularConstraint(entity1=g[8], entity2=g[9],

addUndoState=False)

s1.Line(point1=(a, b), point2=(f, b))

s1.VerticalConstraint(entity=g[5], addUndoState=False)

s1.PerpendicularConstraint(entity1=g[4], entity2=g[5],

addUndoState=False)
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p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

f = p.faces

pickedFaces = f.getSequenceFromMask(mask=(’[#1 ]’, ), )

e1, d2 = p.edges, p.datums

p.PartitionFaceBySketch(sketchUpEdge=e1[2], faces=pickedFaces,

sketchOrientation=TOP, sketch=s1)

s1.unsetPrimaryObject()

# windows and doors opening

del mdb.models[’M’+’_’+str(iii)].sketches[’__profile__’]

count2 = k1 #space between doors

place = k2 #starting point 0is the first 1& 2is the seond

place fo a count of 3

for i in np.arange(left, right, h_spacing_f + width):

if place % count2 == 0:

for j in np.arange(down, up, v_spacing_f + w_depth + height):

if j % down == 0:

for e, b, f, g in [(i - width + flange, j, i -

flange, j - d_depth)]:

e1 = float(e)

b1 = float(b)

f1 = float(f)

g1 = float(g)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

s = p.features[’Shell planar-1’].sketch

mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__edit__’,

objectToCopy=s)

s2 =

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

g, v, d, c = s2.geometry, s2.vertices,

s2.dimensions, s2.constraints

s2.setPrimaryObject(option=SUPERIMPOSE)
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p.projectReferencesOntoSketch(sketch=s2,

upToFeature=p.features[’Shell planar-1’],

filter=COPLANAR_EDGES)

s2.rectangle(point1=(e1, b1), point2=(f1, g1))

s2.unsetPrimaryObject()

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.features[’Shell planar-1’].setValues(sketch=s2)

del

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.regenerate()

else:

for e, b, f, g in [(i - width + flange, j, i -

flange, j - w_depth)]:

e1 = float(e)

b1 = float(b)

f1 = float(f)

g1 = float(g)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

s = p.features[’Shell planar-1’].sketch

mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__edit__’,

objectToCopy=s)

s2 =

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

g, v, d, c = s2.geometry, s2.vertices,

s2.dimensions, s2.constraints

s2.setPrimaryObject(option=SUPERIMPOSE)

p.projectReferencesOntoSketch(sketch=s2,

upToFeature=p.features[’Shell planar-1’],

filter=COPLANAR_EDGES)

s2.rectangle(point1=(e1, b1), point2=(f1, g1))

s2.unsetPrimaryObject()

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]
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p.features[’Shell planar-1’].setValues(sketch=s2)

del

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.regenerate()

else:

for j in np.arange(down, up, v_spacing_f + w_depth + height):

for e, b, f, g in [(i - width + flange, j, i -

flange, j - w_depth)]:

e1 = float(e)

b1 = float(b)

f1 = float(f)

g1 = float(g)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

s = p.features[’Shell planar-1’].sketch

mdb.models[’M’+’_’+str(iii)].ConstrainedSketch(name=’__edit__’,

objectToCopy=s)

s2 =

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

g, v, d, c = s2.geometry, s2.vertices,

s2.dimensions, s2.constraints

s2.setPrimaryObject(option=SUPERIMPOSE)

p.projectReferencesOntoSketch(sketch=s2,

upToFeature=p.features[’Shell planar-1’],

filter=COPLANAR_EDGES)

s2.rectangle(point1=(e1, b1), point2=(f1, g1))

s2.unsetPrimaryObject()

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.features[’Shell planar-1’].setValues(sketch=s2)

del

mdb.models[’M’+’_’+str(iii)].sketches[’__edit__’]

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.regenerate()
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place += 1

#===========ASSIGING MATERIAL PROPERTIES===========

# ASSIGING MATERIAL PROPERTIES USING THE FC&FT MATERIAL PROCESSING CODE

(PYTHON)

comp = np.loadtxt("F:/Paper - first

author/Pre_Process/3.Material_CDP/Original_dataset/Compression_"+str(iii)+

".txt",float) #interchangable

comp_d = np.loadtxt("F:/Paper - first

author/Pre_Process/3.Material_CDP/Original_dataset/Compression_damage_"

+str(iii)+".txt",float)

tens = np.loadtxt("F:/Paper - first

author/Pre_Process/3.Material_CDP/Original_dataset/Tension_exp_"

+str(iii)+".txt",float)

tens_d = np.loadtxt("F:/Paper - first

author/Pre_Process/3.Material_CDP/Original_dataset/Tension_damage_exp_"

+str(iii)+".txt",float)

#===========ASSIGING MATERIAL PROPERTIES===========

mdb.models[’M’+’_’+str(iii)].Material(name=’Material’)

mdb.models[’M’+’_’+str(iii)].materials[’Material’].Density(table=((m_density,

), ))

mdb.models[’M’+’_’+str(iii)].materials[’Material’].Elastic(table=((e_b,

m_poisson), ))

mdb.models[’M’+’_’+str(iii)].materials[’Material’].

ConcreteDamagedPlasticity(table=((

40.0, 0.1, 1.16, 0.67, 0.0001), ))

mdb.models[’M’+’_’+str(iii)].materials[’Material’].

concreteDamagedPlasticity.ConcreteCompressionHardening(

table=(comp))

mdb.models[’M’+’_’+str(iii)].materials[’Material’].

concreteDamagedPlasticity.ConcreteTensionStiffening(

table=(tens), type=DISPLACEMENT)
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mdb.models[’M’+’_’+str(iii)].materials[’Material’].

concreteDamagedPlasticity.ConcreteCompressionDamage(

table=(comp_d))

mdb.models[’M’+’_’+str(iii)].materials[’Material’].

concreteDamagedPlasticity.ConcreteTensionDamage(

table=(tens_d), type=DISPLACEMENT)

# soil elastic properties

mdb.models[’M’+’_’+str(iii)].Material(name=’Soil’)

mdb.models[’M’+’_’+str(iii)].materials[’Soil’].Elastic(table=((e_s,

s_poissons), ))

# masonry wall section

mdb.models[’M’+’_’+str(iii)].HomogeneousShellSection(name=’masonry_sec’,

preIntegrate=OFF,

material=’Material’, thicknessType=UNIFORM, thickness=thickness,

thicknessField=’’, nodalThicknessField=’’, idealization=NO_IDEALIZATION,

poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,

useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)

mdb.models[’M’+’_’+str(iii)].HomogeneousSolidSection(name=’foundation_sec’,

material=’Material’, thickness=None)

#===========ASSIGING SETTLEMENT PROFILE===========

# ASSIGING SETTLEMENT PROFILE USING THE EBBEF2p PROCESSING CODE (PYTHON)

# applying the analytical fields of applied settlements.

apllied_vertical_displacements = np.loadtxt("F:/Paper - first

author/Pre_Process/2.EBBEF2p/Original_dataset/analytical_fields_"+str(iii)

+".txt",str)

mdb.models[’M’+’_’+str(iii)].analyticalFields[’vertical_displacements’].

setValues(

expression= str(apllied_vertical_displacements))

#===========ASSIGING SETTLEMENT PROFILE===========

270



# applying different friction coefficients

mdb.models[’M’+’_’+str(iii)].interactionProperties[’IntProp-1’].

tangentialBehavior.setValues(

formulation=PENALTY, directionality=ISOTROPIC,

slipRateDependency=OFF,

pressureDependency=OFF, temperatureDependency=OFF, dependencies=0,

table=((

friction, ), ), shearStressLimit=None, maximumElasticSlip=FRACTION,

fraction=0.005, elasticSlipStiffness=None)

# applying boundary conditions.

a = mdb.models[’M’+’_’+str(iii)].rootAssembly

e1 = a.instances[’Part-3-1’].edges

edges1 = e1.findAt(((0.0, 0.0, 3 * thickness / 2), ), ((0.0, 0.0, -3 *

thickness / 2), ))

f2 = a.instances[’Part-1-1’].faces

faces2 = f2.findAt(((0.0, f_heigth + 1, 0.0), ))

region = regionToolset.Region(edges=edges1, faces=faces2)

mdb.models[’M’+’_’+str(iii)].boundaryConditions[’z-constraint’].

setValues(region=region)

a = mdb.models[’M’+’_’+str(iii)].rootAssembly

region = a.sets[’bottom’]

mdb.models[’M’+’_’+str(iii)].DisplacementBC(name=’applied_settlements’,

createStepName=’Step-2’, region=region, u1=UNSET, u2=1.0, u3=UNSET,

ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,

distributionType=FIELD, fieldName=’vertical_displacements’,

localCsys=None)

a = mdb.models[’M’+’_’+str(iii)].rootAssembly

region = a.sets[’bottom’]

mdb.models[’M’+’_’+str(iii)].EncastreBC(name=’initial_constraints’,

createStepName=’Initial’, region=region, localCsys=None)

mdb.models[’M’+’_’+str(iii)].boundaryConditions[’initial_constraints’].

deactivate(
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’Step-2’)

# assigning sections walls & lintels

if op_rate != 0:

for i in np.arange(left, right, h_spacing_f + width):

for j in np.arange(down, up, v_spacing_f + w_depth + height):

for a, b, c, d, e, f in [(i, j, j + height, i - width, i -

width + flange, i - flange)]:

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

f = p.faces

faces = f.findAt(((a - width + 1, b + 1, 0.0), ))

region = p.Set(faces=faces,

name=’Lintels’+str(int(a))+str(int(b)))

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.SectionAssignment(region=region,

sectionName=’Lintel_section’, offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# regenerating the mesh

elemType1 = mesh.ElemType(elemCode=S8R,

elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=STRI65,

elemLibrary=STANDARD)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

pickedRegions =(faces, )

p.setElementType(regions=pickedRegions,

elemTypes=(elemType1, elemType2))

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.seedPart(size=seed, deviationFactor=0.1,

minSizeFactor=0.1)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.generateMesh()
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p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

f = p.faces

faces = f.findAt((((-b_length / 2) + 1, 1, 0.0), ))

region = p.Set(faces=faces, name=’Wall’)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.SectionAssignment(region=region, sectionName=’masonry_sec’, offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# regenerating the mesh

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=STRI65, elemLibrary=STANDARD)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

pickedRegions =(faces, )

p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2))

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.seedPart(size=seed, deviationFactor=0.1, minSizeFactor=0.1)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-1’]

p.generateMesh()

# assigning sections foundation

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]

c = p.cells

cells = c.findAt(((b_length / 2, f_heigth / 2, thickness / 2), ),

((-b_length / 2, f_heigth / 2, thickness / 2), ))

region = regionToolset.Region(cells=cells)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]

p.SectionAssignment(region=region, sectionName=’foundation_sec’,

offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# regenerating the mesh

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]
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elemType1 = mesh.ElemType(elemCode=C3D20R, elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=C3D15, elemLibrary=STANDARD)

elemType3 = mesh.ElemType(elemCode=C3D10, elemLibrary=STANDARD)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]

c = p.cells

cells = c.findAt(((b_length / 2, f_heigth / 2, thickness / 2), ))

pickedRegions =(cells, )

p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2,

elemType3))

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]

p.seedPart(size=seed, deviationFactor=0.1, minSizeFactor=0.1)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-2’]

p.generateMesh()

# assigning sections soil layer

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

f = p.faces

faces = f.findAt(((y1 - 1, 583.333333, 0.0), ), ((y1 - 1,

416.666667, 0.0), ), ((y1 - 1, 166.666667, 0.0), ), ((-y1 + 1,

333.333333, 0.0), ), ((0, 333.333333, 0.0), ))

region=regionToolset.Region(faces=faces)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

p.SectionAssignment(region=region, sectionName=’Soil_section’,

offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# regenerating the mesh

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=STRI65, elemLibrary=STANDARD)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

f = p.faces

#faces = f.findAt(((-1.05 * b_length / 2, thickness, 0.0), ))
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faces = f.findAt((((b_length / 2) + 1999, 583, 0.0), ), (((b_length / 2)

+ 1999,

416, 0.0), ), (((b_length / 2) + 1999, 166, 0.0), ), ((-(b_length / 2) -

1999,

333, 0.0), ), ((0.0, 333, 0.0), ))

pickedRegions =(faces, )

p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2))

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

p.seedPart(size=seed, deviationFactor=0.1, minSizeFactor=0.1)

p = mdb.models[’M’+’_’+str(iii)].parts[’Part-3’]

p.generateMesh()

# creating a set using boundingbox - modifying node numbers.

nodes =

mdb.models[’M’+’_’+str(iii)].parts[’Part-2’].nodes.getByBoundingBox(-((b_length

/ 2) + 0.1 * (b_length / 2)), 0.0 - 10, thickness - 10, ((b_length / 2)

+ 0.1 * (b_length / 2)), 0.0 + 10, thickness + 10)

mdb.models[’M’+’_’+str(iii)].parts[’Part-2’].Set(nodes=nodes,

name=’seedsnodes’)

nodes_list = str(list(nodes))

list_of_chars = [’+’, ’[’, ’]’, ’,’, ’ ’]

for character in list_of_chars:

nodes_list = nodes_list.replace(character, ’’)

result =

nodes_list.split("mdb.models’M_"+str(iii)+"’.parts’Part-2’.nodes",

1000)[1::]

"mdb.models’M_30’.parts’Part-2’.nodes"

xt = [int(xt) for xt in result]

final_lists = []

for i in range(int((b_length / seed) + 1)):

final_lists.append(xt[i] + 1)

# creating its history output.
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regionDef=mdb.models[’M’+’_’+str(iii)].rootAssembly.allInstances[’Part-2-1’].

sets[’seedsnodes’]

mdb.models[’M’+’_’+str(iii)].historyOutputRequests[’H-Output-2’].setValues(

region=regionDef)

# creating new models.

mdb.Model(name=’M’+’_’+str(iii+1), objectToCopy=mdb.models[’M_30’])

#del mdb.models[’M’+’_’+str(iii)]

# writing job and submission.

mdb.Job(name=’Job’+’_’+str(iii), model=’M’+’_’+str(iii), description=’’,

type=ANALYSIS, atTime=None,

waitMinutes=0, waitHours=0, queue=None, memory=90,

memoryUnits=PERCENTAGE,

getMemoryFromAnalysis=True, explicitPrecision=SINGLE,

nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF,

contactPrint=OFF, historyPrint=OFF, userSubroutine=’’, scratch=’’,

resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=6,

numDomains=6,

numGPUs=0)

mdb.jobs[’Job’+’_’+str(iii)].writeInput(consistencyChecking=OFF)

# mdb.jobs[’JobM’+’_’+str(iii)].submit(consistencyChecking=OFF)

# mdb.jobs[’JobM’+’_’+str(iii)].waitForCompletion()

iii += 1

# return
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