
Agent-Based Logics in
Dependent Type Theory

Colm Baston

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy, September 2024

ii

iii

Abstract

This thesis is on the formalisation of mathematics in Martin-Löf type theory.
This is a class of dependently-typed functional programming languages whose
rules form a language suitable for the statement and proof of mathematical the-
orems. Programs in type theory can be mechanically checked to be well-typed,
which corresponds to proofs being checked to be valid. In particular, we explore
the semantics of certain agent-based logics, and seek to give them appropriate
representations using the concepts of type theory.

We embed the syntax of epistemic modal logic in type theory as predicates
over a type of possible worlds. Knowledge operators are defined in this setting by
stating a set of properties they must satisfy. We prove this knowledge operator
semantics equivalent to the traditional relational semantics of epistemic logic.
Common knowledge is then defined in the embedding as a coinductive predicate,
whose proofs are infinite data structures. We prove this representation is equiv-
alent to the intuitive definition as iterated universal knowledge, and prove it is
equivalent to the relational interpretation. In coalition logic, we represent game
forms and playable effectivity functions in type theory, and outline a proof of
their equivalence.

iv

v

Acknowledgements

Foremost, I would like to thank Venanzio Capretta, who agreed to supervise
this project and whose knowledge and research expertise have been indispensible
ever since. I am also very appreciative of Graham Hutton, who has been very
encouraging from the start, but took on the role of my second supervisor midway
through, and was of great assistance towards the end of my studies.

More broadly, I am grateful to the past and present members of the Func-
tional Programming Lab, and others from the School of Computer Science, for
many insightful discussions over the years. In addition, I greatly enjoyed the un-
dergraduate teaching opportunities offered by the school, which gave a welcome
break from research.

Thanks to Nicolai Kraus and Roy Crole for their constructive comments and
suggestions in finalising this thesis. Finally, without the support of my parents,
Peter and Noëlle, completion would not have been possible.

vi

vii

Contents

Abstract iii

Acknowledgements v

I Introduction 1
1.1 Thesis Structure and Contributions 2

II Dependent Type Theory 5
2.1 Background . 5
2.2 Simple Types . 6
2.3 Type Theory as a Logic . 13
2.4 Dependent Types . 16
2.5 Equality and Equivalence . 21
2.6 Inductive Types . 28
2.7 Coinductive Types . 33

III Epistemic Modal Logic 41
3.1 Background . 41
3.2 Epistemic Logic and Relational Semantics 43
3.3 Type-Theoretic Embedding . 45
3.4 Knowledge Operator Semantics . 49
3.5 Correspondence with Relational Semantics 51

IV Coinductive Common Knowledge 57
4.1 Background . 57
4.2 Coinductive Definition . 62
4.3 Relational Definition . 65
4.4 Coinductive and Relational Equivalence 67

V Coalition Logic 71
5.1 Background . 71
5.2 Game Form Construction . 73

viii CONTENTS

5.3 Decidable Subsets . 75
5.4 Partial Functions . 78
5.5 Future Work . 80

VI Concluding Remarks 83

A Agda Formalisations 85
A.1 Dependent Type Theory . 85
A.2 Epistemic Modal Logic . 95
A.3 Coinductive Common Knowledge 98

Bibliography 103

1

Chapter I

Introduction

Martin-Löf type theories are a class of functional programming languages which
give strict rules for the construction and use of different types of data. For ex-
ample, a function defined to take a Boolean value as argument cannot be applied
to a natural number, and vice versa. While languages with strong type systems
are common throughout computer science and software engineering, these most
often treat data types and their values as completely separate entities that cannot
be mixed. In type theories, however, types are themselves first-class values, able
to be stored in data structures, returned by functions, and so on, giving rise to
dependent types — types which depend on values.

Dependent types have applications in common programming tasks. A type
for matrices may depend on natural number values which state their dimensions.
A matrix multiplication function can then be defined which only multiplies a× b

and b × c matrices, with a matching dimension b, and the type of the output
matrix is also labelled with its size, a× c. The type system ensures statically, at
the time the program is compiled, that all matrix multiplications are applied to
appropriately-sized matrices, with no runtime checks necessary.

Simultaneously, through the phenomenon of the Curry-Howard correspon-
dence, Martin-Löf type theory serves as a foundation for mathematics. Types
can be seen as mathematical statements, their values as proofs for the statement,
with the specific type giving the valid ways of constructing a valid proof of the
statement. Dependent types are predicates whose truth depends on the values
to which they are applied, and type theory has connectives analogous to the
universal and existential quantifiers of a predicate calculus.

There are many implementations of dependently-typed languages, some of
which are specifically designed as proof assistants, with features that assist in
the construction of mathematical proofs. The type-checking apparatus of their
compilers double as proof checkers — if a program compiles without error, the
corresponding mathematical proofs are validated to be correct.

2 CHAPTER I. INTRODUCTION

Even within computer science, mathematics has traditionally been done on
pen and paper, new theorems communicated in the literature through prose.
While care is taken to ensure constructions are compatible with a mathematical
foundation, most often a system of set theory, rarely are proofs rigorously checked
by a mechanical process, and mistakes sometimes slip through. In recent years,
even pure mathematicians with no previous connection to computer science have
turned to type theory as a potential solution to this problem [8, 11].

This thesis is on formalising mathematical results in the language of type
theory, with the objective that they can be rigorously verified by a proof assistant.
In particular, it explores the semantics of certain agent-based logics, epistemic
modal logic and coalition logic, and their representation within type theory.

In epistemic modal logic, an embedding of the logic is defined in the language
of type theory, with proof that the embedding corresponds to the traditional
semantics. This allows features of the type theory to be used in epistemic logic,
for example, the notion of common knowledge is be defined using the feature
of coinductive types. In coalition logic, we focus on the formalisation of an
equivalence proof between two semantic interpretations of the logic.

1.1 Thesis Structure and Contributions
The thesis aims to be accessible to those with a mathematical background, but
with no prior exposure to Martin-Löf type theory, so Chapter II begins with a
brief exposition. This is established material which can be pieced together from
other sources, but the chapter provides a consistent syntax and an introduction
to concepts that will be essential in later chapters. This chapter has a corre-
sponding formalisation in the Agda proof assistant, provided in Appendix A.1,
whose definitions are then used as a basis for later formalisations.

The content of Chapters III and IV is based on the following publication [5].

• The Coinductive Formulation of Common Knowledge
Joint work with Venanzio Capretta
Published in the Proceedings of the 9th International Conference on Inter-
active Theorem Proving, Oxford 2018

In Chapter III, we consider epistemic modal logic, which adds operators to
the syntax of a propositional logic which model the knowledge of agents. The
chapter begins with an introduction to the syntax of the logic and its traditional
semantics, based on equivalence relations, and goes on to develop a representation
for them in type theory.

This contributions of this chapter are as follows.

1.1. THESIS STRUCTURE AND CONTRIBUTIONS 3

• An embedding for the syntax of the logic is defined in type theory, based
on predicates over a type of possible worlds, Definitions 3.3.2 and 3.3.3.

• A semantic specification for knowledge operators within this embedding,
Definition 3.4.2. In particular, this knowledge operator semantics intro-
duces a new, infinitary deduction rule, preservation of semantic entailment,
Definition 3.4.1, which is proved to subsume two axioms of epistemic logic,
Theorems 3.4.3 and 3.4.4.

• Transformation functions between the knowledge operator semantics and
the relational semantics, Definitions 3.5.2 and 3.5.4, with proof that the
transformations yield the opposite semantics, Theorems 3.5.3 and 3.5.9.

• Proof that these transformations are inverse, forming an isomorphism up
to propositional equivalence, Theorems 3.5.10 and 3.5.11.

• A formalisation of these results in the Agda proof assistant, Appendix A.2.

Chapter IV continues the focus on epistemic modal logic, extending it with
multiple agents, each with their own knowledge operator. The concept of common
knowledge is introduced, which exists among groups of agents when a fact is known
universally, the fact of universal knowledge is itself known universally, and so on
ad infinitum. The semantics of the common knowledge operator is explored in the
context of a famous logic puzzle, which involves common knowledge in a subtle
way, before going on to define common knowledge in type theory.

The contributions of this chapter are as follows.

• In the setting of the embedding of Chapter III, an operator for common
knowledge is defined as a coinductive type, Definition 4.2.5, and is shown
to satisfy the knowledge operator properties, Theorem 4.4.7.

• The coinductive common knowledge operator is shown to correspond to the
intuitive idea of iterated universal knowledge, Theorems 4.2.10 and 4.2.11.

• The relational interpretation of common knowledge is transformed, using
the isomorphism of the previous chapter, into a common knowledge opera-
tor, Definition 4.3.2.

• The coinductive and relational versions of the common knowledge operator
are proven to coincide, Theorem 4.4.2.

• A formalisation of these results in the Agda proof assistant, Appendix A.3.

4 CHAPTER I. INTRODUCTION

The content of Chapter V is based on the following publication [6].

• Game Forms for Coalition Effectivity Functions
Joint work with Venanzio Capretta
Published in the Proceedings of the 25th International Conference on Types
for Proofs and Programs, Oslo 2019

In Chapter V, we turn our attention to coalition logic, in which agents can
act together towards a common set of goals. Coalition logic has two equivalent
semantics based on game forms and playable effectivity functions, and an outline
of the equivalence proof is given, with the objective of a formalisation of the proof
in type theory.

The proof is involved and heavily set-theoretic, posing significant challenges
for formalisation in type theory. This was an ambitious aim late into the research
period, and the formalisation is not complete enough to be fully-verified by proof
assistant. However the chapter proposes solutions to some of these challenges.
These include representation of subsets with decidable membership as Boolean
functions, Definition 5.3.1, and the use of partial functions to define type families
over only a subset of a type at a time, Definition 5.4.2.

5

Chapter II

Dependent Type Theory

This chapter introduces a formal system of dependent type theory which will be
used for the developments in later chapters. The coverage aims to be sufficient
to gain an intuition, but not completely comprehensive — it won’t be possible to
implement a type-theoretic proof assistant based on this chapter alone.

The basic rules of type formation, introduction, and elimination are discussed
in the context of a simply-typed λ-calculus. We then go on to say how this system
forms a mathematical foundation via the Curry-Howard correspondence and how
it differs from systems based on set theory. Dependent types and propositional
equality are introduced, giving rise to a system of intuitionistic higher-order logic.
Eventually, we will cover inductive types, which allow for the definition of well-
founded tree-like structures in the type theory, and coinductive types, which are
non-wellfounded trees with potentially infinite depth.

2.1 Background
In the late 19th and into the early 20th century, significant effort was being made
to base the previous discoveries of mathematics in a unified foundation of mathe-
matical logic. Foremost among the proposed systems was a theory of sets, where
all mathematical structures could be built up from sets, with formal rules for set
formation and to determine set membership. However, it was discovered that any
such system which includes an unrestricted comprehension principle is inconsis-
tent, a result today known as Russell’s paradox — does the set of all sets that
are not members of themselves contain itself?

Bertrand Russell proposed his theory of types to avoid the paradox [53]. There
is a hierarchy of types, with each set being assigned to unique type. Instead of
adopting an unrestricted comprehension principle, sets may only be composed
of elements of a strictly lower type in the hierarchy. This stratification of types
renders the problematic Russell set inexpressable.

6 CHAPTER II. DEPENDENT TYPE THEORY

The primary system of concern to this thesis is the type theory due to Per
Martin-Löf [43, 44]. While it may bear little resemblance to Russell’s theory, the
idea of types remains an essential concept. Each object is assigned a unique type,
and operations may only be performed on objects of appropriate types. While
this may seem restrictive when compared to more free-form set theories, a well-
designed type system ultimately provides a great amount of utility, as well as
desirable computational properties.

Based on Alonzo Church’s typed λ-calculus [16] and its later extensions, such
as System F [29,50], Martin-Löf type theory serves as both a dependently-typed
functional programming language and a foundation for mathematics. It may be
used to implement algorithms, but also to state and prove mathematical state-
ments, all within the same language. Throughout this thesis, “dependent type
theory”, or simply “type theory”, will refer specifically to a system of Martin-Löf
type theory.

2.2 Simple Types
The constructions of type theory, called terms, are assigned to a unique type from
the moment they are introduced and only exist in the context of their type. The
language of type theory is defined by judgements, the most fundamental of which
is the typing relation.

Γ ` t : T “in context Γ, term t has type T”

The context Γ is included here so that typing judgements may follow from
prior assumptions. For the purposes of this introduction, a context may be con-
sidered a mapping of variable names to their types: v1 : T1, . . ., vn : Tn. When a
judgement is asserted unconditionally, with an empty context of assumptions, it
is common to omit the context in the notation. For example, when we introduce
the type of natural numbers, we may simply write zero : ℕ.

Before defining other types, we fix a type universe Type — a type whose terms
are themselves types. The judgement T : Type is understood to mean that T is
a type as well as a term, and it may in turn have its own terms. If we derive
Γ ` t : T without having first established Γ ` T : Type, this is considered to be
an implicit premise.

We define the valid judgements of a type theory using inference rules in the
style of natural deduction. Our first types, the empty type 𝟘, and the unit type
𝟙 containing exactly one term, are defined axiomatically.

𝟘-Form 𝟘 : Type
𝟙-Form 𝟙 : Type

𝟙-Intro
⋆ : 𝟙

2.2. SIMPLE TYPES 7

Rules for creating new types are called formation rules, while rules for creating
new terms of a type are called introduction rules. We give a formation rule for
each of the new types, but only 𝟙 has an introduction rule to define its term ⋆,
as 𝟘 is empty, uninhabited by terms.

At this point, we could go on to define the Boolean type 𝟚, containing two
terms in a similar way, with one formation rule and two introduction rules, but it
is more convenient to define it in terms of a compound type. We define a binary
sum operator on types that forms a new type combining both types’ terms, tagged
with which of the summed types the term originated.

Γ ` A : Type Γ ` B : Type
+-Form

Γ ` A+B : Type

Γ ` a : A+-Introinl Γ ` inl a : A+B
Γ ` b : B+-Introinr Γ ` inr b : A+B

With this type formation rule, without considering nesting, we can form four
new types with each combination of 𝟘 and 𝟙. Since neither side of 𝟘+ 𝟘 has any
way of constructing a term, this type is uninhabited, but the other types have
the following terms.

inl ⋆ : 𝟙+ 𝟘 inr ⋆ : 𝟘+ 𝟙 inl ⋆ : 𝟙+ 𝟙 inr ⋆ : 𝟙+ 𝟙

We will use the type 𝟙 + 𝟙 as our Boolean type, with the two terms listed
above representing true and false. We introduce a new judgement to state when
two terms are definitionally equal.

Γ ` a = b : T “in context Γ, a and b are equal terms of type T”

To be useful as a notion of equality, we need basic rules to endow some
standard properties on this relation: reflexivity, symmetry, transitivity, and con-
gruence rules, omitted here. These rules ensure that the type theory makes no
distinction between the two terms — one can always be used in place of the other.

For convenience, we can add rules to assert 𝟚 = 𝟙 + 𝟙, true = inl ⋆, and
false = inr ⋆. It is important to note that there is no intrinsic value in these
names, they are just syntactic identifiers — we could just as easily define true

and false the other way around.
The choice of 𝟙+𝟙 to represent the Boolean type is appropriate because it has

exactly two terms. That is, it can be shown that any term of the type constructed
in an empty context will be judgementally equal to either inl ⋆ or inr ⋆, and these
terms are distinct from one another. This is unsurprising at the moment, as the
only way of constructing terms for 𝟙+𝟙 is by using the introduction rules directly,
but will remain to be the case as new rules are added to the system. We will later

8 CHAPTER II. DEPENDENT TYPE THEORY

be able to observe this fact from within the type theory, proving it as a theorem
using an internal notion of propositional equality introduced in Section 2.5.

A second compound type is the product type. It is defined as another binary
operator on types which results in the type of pairs formed by terms of the
corresponding types.

Γ ` A : Type Γ ` B : Type×-Form
Γ ` A× B : Type

Γ ` a : A Γ ` b : B×-Intro
Γ ` 〈a, b〉 : A× B

As an example, the type 𝟚×𝟙 consists of pairs where the first component is a
Boolean and the second is ⋆ — it has only two terms 〈true, ⋆〉 and 〈false, ⋆〉 that
can be distinguished by judgemental equality. Similarly, 𝟚 × 𝟚 has four terms
〈true, true〉, 〈false, true〉, 〈true, false〉, and 〈false, false〉, while any product of 𝟘
is uninhabited since no terms may be constructed to occupy the corresponding
position in the pair.

As the notation suggests, the sum and product types parallel sums and prod-
ucts of arithmetic, and we can form types with any desired, finite number of
terms by nesting them. For example, 𝟙+(𝟙+𝟙) is a type of exactly three terms,
up to judgemental equality. This analogy holds when considering the properties
of associativity, commutativity, and distributivity — the type (𝟙 + 𝟙) + 𝟙 also
has three terms. When including sums of 𝟘, there are infinitely many ways to
form equivalent versions of each finite type.

These different constructions, though equivalent, are considered distinct types
with distinct terms — the judgement 𝟙+(𝟙+𝟙) = (𝟙+𝟙)+𝟙 cannot be derived,
the term inr (inl ⋆) has the left type but not the right, and so on. For this reason,
the type theory presented here is called intensional, as opposed to extensional.
This distinction will be revisited, and a precise definition of type equivalence
given, alongside the introduction of propositional equality in Section 2.5.

We’ve seen how to construct some basic types, but we can do little else with
them at present. The function type is at the core of how we introduce computation
into the system. Like sums and products, it is a binary operator on types.

Γ ` A : Type Γ ` B : Type
→-Form

Γ ` A→ B : Type

Γ, v : A ` b : B
→-Intro

Γ ` λ(v : A). b : A→ B

The premise of the introduction rule shows the first non-trivial usage of con-
texts — Γ, v : A denotes the context formed by extending Γ with an additional

2.2. SIMPLE TYPES 9

assumption. Term b is allowed to have occurrences of variable v within its sub-
structure, so the judgement b : B is conditional on the assumption of v : A. In
the conclusion of the rule, the assumption is discharged and term λ(v : A). b is
now a function of variable v, resulting in term b. For notational convenience, we
may sometimes drop the type of the bound variable where it can be inferred and
would provide no additional clarity, simply writing λv. b.

Strictly speaking, all functions in type theory are unary, taking exactly one
input and producing exactly one output. Functions of higher arity may be sim-
ulated using products or, as is more common in functional programming, by
Currying [21] — returning another function which is responsible for handling the
next argument. For example, the types A × B → C and A → (B → C) both
represent binary functions, the latter being a Curried version of the former.

To apply a function to an argument, we add an elimination rule to the type
theory. Elimination rules specify how terms of a particular type may be used in
computation, complementing the introduction rules for that type.

Γ ` f : A→ B Γ ` a : A
→-Elim

Γ ` f a : B

Application of the function f to argument a is denoted here by juxtaposition
in the tradition of the λ-calculus and functional programming. The actual result
of the function application is specified as a judgemental equality, the β-reduction
rule.

Γ ` (λ(v : A). b) : A→ B Γ ` a : A
β-Reduce

Γ ` (λ(v : A). b) a = b[v/a] : B

In the rule’s conclusion, b[v/a] denotes syntactic substitution of all free oc-
currences of the variable v by term a inside the substructure of b. We shall omit
the full intricacies of α-conversion and variable capture here. It is sufficient to
say that the choice of variable name is arbitrary, and we identify λ-terms which
only differ by the names of their bound variables. If free variables in a would be
captured by naïve substitution of b[v/a], we first perform α-conversion — all free
occurrences of v in b are renamed such that they are not free in a.

An η-reduction rule is also defined. This states that a λ-term which only
passes its argument through to another function may be identified with that
function.

Γ ` f : A→ B
η-Reduce

Γ ` (λ(v : A). f v) = f : A→ B

Furthering the arithmetic analogy, function types are exponentials. Interpret-
ing types A and B as cardinal numbers, the function type A → B is inhabited

10 CHAPTER II. DEPENDENT TYPE THEORY

by BA functions that can be distinguished pointwise. For example, there are no
functions 𝟙 → 𝟘, one function 𝟘 → 𝟙, four functions 𝟚 → 𝟚 — the identity, a
constant function for each of true and false, and Boolean negation — and so on.
The rules given so far allow us to define some of these Boolean functions.

id𝟚 = λb. b : 𝟚 → 𝟚

consttrue = λb. true : 𝟚 → 𝟚

constfalse = λb. false : 𝟚 → 𝟚

We cannot yet define Boolean negation as we can only interact with the func-
tion argument generically — we cannot do one thing when the argument is true

and a different thing when it is false. To remedy this, we add elimination and
reduction rules to our basic types. First, we give elimination rules for 𝟘 and 𝟙.

Γ ` e : 𝟘𝟘-Elim
Γ ` elim𝟘 e : T

Γ ` t : T Γ ` u : 𝟙𝟙-Elim
Γ ` elim𝟙 t u : T

In each case, these say how to transform an element of the type into a term
of an arbitrary type T . For 𝟙, we must first be given a t : T , but for 𝟘 we allow
this without restriction as it should not be possible to construct an e : 𝟘 in an
empty context. If we are able to derive e : 𝟘, it is only because it is implied by
Γ, such as in the case of a function whose domain is 𝟘. To illustrate this, we give
a derivation for the function λe. elim𝟘 e : 𝟘 → 𝟙 which uses this rule.

𝟙-Form 𝟙 : Type

e : 𝟘 ` 𝟙 : Type e : 𝟘 ` e : 𝟘
𝟘-Elim

e : 𝟘 ` elim𝟘 e : 𝟙→-Intro
λe. elim𝟘 e : 𝟘 → 𝟙

This derivation uses two unlabelled rules which haven’t been discussed. One
is context weakening, the other an identity axiom for when a concluded typing
judgement is already assumed in the context.

For the reasons outlined above, there is no reduction rule for 𝟘. We need to
give one rule for for 𝟙 as it has only one term, simply reducing to the provided
value t : T when applied ⋆. The rule therefore does no meaningful work, simply
acting as a constant function returning t.

Γ ` t : T𝟙-Reduce
Γ ` elim𝟙 t ⋆ = t : T

The sum type A + B has two cases, one when the term is of the form inl a,
carrying term a : A, and the other for inr b, where b : B. The elimination and
reduction rules describe how we can compute a value of type T in either case.

2.2. SIMPLE TYPES 11

Γ ` f : A→ T Γ ` g : B → T Γ ` s : A+B
+-Elim

Γ ` elim+ f g s : T

Γ ` f : A→ T Γ ` g : B → T Γ ` a : A
+-Reduceinl

Γ ` elim+ f g (inl a) = f a : T

Γ ` f : A→ T Γ ` g : B → T Γ ` b : B
+-Reduceinr

Γ ` elim+ f g (inr b) = g b : T

To compute a value of type T from A+B, we provide a function f to handle
the inl case and a function g to handle inr. One reduction rule is specified for
each case, applying the appropriate function to the carried term.

Recall that we defined 𝟚 = 𝟙 + 𝟙, true = inl ⋆, and false = inr ⋆. We
can therefore use elim+ and elim𝟙 to define functions which can discriminate the
Boolean value passed to them, such as Boolean negation.

not𝟚 = elim+ (elim𝟙 (inr ⋆)) (elim𝟙 (inl ⋆)) : 𝟚 → 𝟚

The first function will handle the true case, converting inl into inr, and vice
versa for the second function which handles false. Note that using the η-reduction
rule, elim+ is treated here as a Curried function, being partially-applied to only
two of its arguments, leaving the final Boolean argument implicit.

The terms of the product type A × B may only be of the form 〈a, b〉, where
a : A and b : B. We therefore provide the eliminator elim× with a single Curried
function to handle both a and b at once.

Γ ` f : A→ B → T Γ ` p : A× B×-Elim
Γ ` elim× f p : T

Γ ` f : A→ B → T Γ ` a : A Γ ` b : B×-Reduce
Γ ` elim× f 〈a, b〉 = f a b : T

For example, we can now define projection functions to extract just one part
of the pair, or a function to swap the components of a pair. These examples
assume a context Γ including A : Type and B : Type.

Γ ` π1 = elim× (λa. λb. a) : A× B → A

Γ ` π2 = elim× (λa. λb. b) : A× B → B

Γ ` swap = elim× (λa. λb. 〈b, a〉) : A× B → B × A

The rules introduced up to now constitute a simply-typed λ-calculus extended
with sums and products. We will now observe some important computational
properties exhibited by the system.

12 CHAPTER II. DEPENDENT TYPE THEORY

The judgemental equality relation presented here is symmetric — it can be
applied in either direction. However, it is useful to consider a one-way reduction
relation which simplifies the term at each step in order to compute a final result.
We can form such a relation by taking the reduction rules of the system and
substituting = by ;. In each rule, the equation has been arranged so the left-
to-right direction represents a simplification step.

We don’t imbue ; with the equivalence relation properties of equality but
do allow congruence rules, so subterms may be reduced without affecting outer
parts of an expression. We also define ;∗ as the reflexive, transitive closure,
representing a sequence containing any number of individual reduction steps. A
term with no possible reductions is called a normal form, and the process of
applying reductions to reach a normal form is called normalisation.

For example, take the example expression swap 〈not𝟚 true, ⋆〉 : 𝟙 × 𝟚 which
uses some of our previous definitions. Here are two reductions for this term, one
first reducing swap, the other first reducing not𝟚.

swap 〈not𝟚 true, ⋆〉

;∗ 〈⋆, not𝟚 true〉

;∗ 〈⋆, false〉

= 〈⋆, inr ⋆〉

swap 〈not𝟚 true, ⋆〉

;∗ swap 〈false, ⋆〉

;∗ 〈⋆, false〉

= 〈⋆, inr ⋆〉

This illustrates the property of confluence — when two different reduction
steps are possible from the same expression, there will always be subsequent
reductions which lead both forks back together. The choice of which reduction to
use gives rise to reduction strategies such as normal-order and applicative-order
reduction, and the concept of lazy evaluation as is implemented in the functional
programming language Haskell [42].

Furthermore, the system is strongly normalising — the reduction relation
is wellfounded, so a normal form will always be reached in a finite number of
steps. This is a consequence of only allowing well-typed terms, which prohibits
divergent terms that are possible in the untyped λ-calculus, such as the term
(λω. ω ω) (λω. ω ω), which reduces to itself in a single step. In a typed setting,
however, the self-application ω ω is forbidden as it cannot be assigned a type.

Additionally, normal forms exhibit canonicity — for each type former exclud-
ing functions, closed normal forms are of canonical form. That is, when a term
can be constructed in an empty context, its normal form will have one of the
syntactic patterns defined by the introduction rules for its type, called its con-
structors. Since 𝟘 has no introduction rules, and therefore no constructors, it also
has no canonical forms, while 𝟙 has a single constructor and canonical form ⋆. A

2.3. TYPE THEORY AS A LOGIC 13

sum’s normal forms will always be constructed by one of inl or inr, and a product’s
by the pairing constructor 〈_,_〉 — the subterms carried by the constructors will
themselves be of canonical form with respect to their own types.

Finally, the typing and equality judgements are decidable — whether a judge-
ment is derivable can be definitively determined by a mechanical process. This
is essential for practical implementations of type theories as programming lan-
guages, where a type-checking algorithm needs to be able to decide whether a
given program is valid.

2.3 Type Theory as a Logic

The Curry-Howard correspondence is the observation of the intersection between
formal systems of computation and logic. Indeed, the computational calculus of
the previous section was defined using inference rules in the style of natural de-
duction, a proof calculus. More than just an analogy, the correspondence implies
that certain computational systems may themselves serve as proof systems.

Our simply-typed λ-calculus coincides with a system of intuitionistic propo-
sitional logic. Logical formulae are interpreted as types, with their proofs being
the terms of the corresponding types. When a type is inhabited by terms, the
corresponding formula may be seen as true, or provable, while uninhabited types
correspond to false, or unprovable, formulae. The following table summarises the
type-theoretic interpretations for each of the logical constants and connectives of
propositional logic.

Logical Syntax Type Theory Syntax
False Constant ⊥ 𝟘
True Constant > 𝟙

Disjunction P ∨Q P +Q

Conjunction P ∧Q P ×Q

Implication P ⇒ Q P → Q

Negation ¬P P → 𝟘
Equivalence P ⇔ Q (P → Q)× (Q→ P)

The type 𝟘 is uninhabited, by definition, corresponding to the fact that no
proofs of ⊥ exist. The 𝟘-eliminator doubles as the logical principle of explosion,
“ex falso quodlibet”. Conversely, 𝟙 has the constructor ⋆, valid in any context,
indicating that a proof of > may be trivially given at any time. The 𝟙-eliminator
corresponds to the fact that assuming > as a premise gives a logical argument no
additional strength.

14 CHAPTER II. DEPENDENT TYPE THEORY

Disjunctions are interpreted as sum types — to prove P ∨ Q, it suffices to
prove either P , using the inl constructor, or Q, using inr. For a conjunction
P ∧Q, proofs for both P and Q must be given, collected into a pair. Implications
P ⇒ Q are functions, transforming a proof of P into a proof of Q — the function
elimination rule is the logical modus ponens rule.

Let us demonstrate some of the laws of propositional logic and their proofs in
type theory. We assume a context with arbitrary types P : Type, Q : Type, and
R : Type for the rest of this section.

First, some basic properties of implication, the law of identity, P ⇒ P , states
that implication is a reflexive relation. In addition, implication transitivity is the
fact that implications P ⇒ Q and Q⇒ R may be chained to conclude P ⇒ R.

Theorem 2.3.1. Reflexivity, P → P .

Proof. λ(p : P). p
We are proving an implication by defining a function — we use a λ-term

to bind the premise of the implication to a variable, p : P , assuming it as a
hypothetical. As the conclusion of the implication is also P , we can simply return
the assumption p as the result of the function. The term is both a proof that
implication is reflexive, but also the identity function specialised to type P .

Theorem 2.3.2. Transitivity, (P → Q) → (Q→ R) → P → R.

Proof. λ(f : P → Q). λ(g : Q→ R). λ(p : P). g (f p)

Assume hypotheses f : P → Q, g : Q → R, and p : P , applying the two
functions in turn to conclude g (f p) : R. This proof term corresponds to a
higher-order function which composes two argument functions, g ◦ f .

Next, the law of non-contradiction asserts a formula cannot be both true and
false simultaneously, ¬(P ∧ ¬P), a principle essential for any consistent proof
system.

Theorem 2.3.3. Non-contradiction, (P × (P → 𝟘)) → 𝟘.

Proof. elim× (λ(p : P). λ(np : P → 𝟘). np p)
We are defining a function whose domain is a product, P × (P → 𝟘), so we

apply elim× to decompose it, providing a function to handle the two components
of the pair. We bind the those components using λ-terms, so now the context
includes p : P and np : P → 𝟘 with the goal of concluding 𝟘. This is achieved by
applying the function np to p.

DeMorgan’s laws are good examples which use both product and sum types
to represent conjunctions and disjunctions, respectively.

2.3. TYPE THEORY AS A LOGIC 15

Theorem 2.3.4. DeMorgan Law, (P +Q→ 𝟘) → (P → 𝟘)× (Q→ 𝟘).

Proof. λ(h : P +Q→ 𝟘). 〈λ(p : P). h (inl p), λ(q : Q). h (inr q)〉
Assume h : P+Q→ 𝟘, and set out to prove both P → 𝟘 andQ→ 𝟘, collecting

the proofs into a pair. In each case, we bind the hypothesis to a variable with a
λ-term and are then to prove 𝟘. This is the conclusion of h, so we can apply it
to a value of type P +Q to obtain the desired result — we have p : P in the first
case and q : Q in the second, so we use terms inl p and inr q, respectively.

Two of the remaining three DeMorgan laws are provable. We give their proof
terms here for completeness, but without full explanation.

Theorem 2.3.5. DeMorgan Law, (P → 𝟘)× (Q→ 𝟘) → P +Q→ 𝟘.

Proof. elim× (λ(np : P → 𝟘). λ(nq : Q→ 𝟘). elim+ np nq)

Theorem 2.3.6. DeMorgan Law, (P → 𝟘) + (Q→ 𝟘) → P ×Q→ 𝟘.

Proof. elim+ (λ(np : P → 𝟘). elim× (λ(p : P). λ(q : Q). np p))

(λ(nq : Q→ 𝟘). elim× (λ(p : P). λ(q : Q). nq q))

However, the final DeMorgan law, (P×Q→ 𝟘) → (P → 𝟘)+(Q→ 𝟘), cannot
be proven in our system. The reason is that the system defined so far represents an
intuitionistic propositional logic whose proofs are constructive. When we come
to prove the conclusion (P → 𝟘) + (Q → 𝟘), we must choose to either prove
the left side with inl or the right side with inr. However, the types P and Q

are arbitrary variables which can represent any concrete type — we don’t have
sufficient information about them to be able to choose a side.

Similarly, the classical law of excluded middle, P ∨ ¬P , and the equivalent
double-negation elimination principle, ¬¬P ⇒ P , are not intuitionistically valid.
If excluded middle held in general, the properties of strong normalisation and
canonicity guarantee that such a proof would ultimately reduce to inl carrying
a proof of P , or inr carrying a proof of ¬P . In cases where P + (P → 𝟘) can
be proven for some type P , we call P decidable, however it is well-known due to
Gödel’s incompleteness theorems that there will be undecidable propositions in
any sufficiently-powerful proof system. If classical reasoning is desired, excluded
middle may be postulated by including a term exMid : P + (P → 𝟙) in the
context without any defining equations, but the system will lose canonicity as
exMid cannot be reduced into its constructors.

Strong normalisation is also important to ensure logical consistency. For
example, if we allow general recursive definitions as exist in many practical func-
tional programming languages, we lose strong normalisation. This would enable

16 CHAPTER II. DEPENDENT TYPE THEORY

construction of a looping term to inhabit any type, Ω = Ω : 𝟘, thereby proving
any statement. In Section 2.6, we shall introduce a restricted form of recursion
which preserves the wellfoundedness of the reduction relation.

The decidability of the typing and equality judgements allow type theories
which correspond to logical systems to be implemented programmatically. This
gives rise to type-theoretic proof assistants — software systems which provide
a language for stating and proving theorems, as well as guiding the user while
constructing proofs by showing the current proof goal, the assumptions available
in the context, and so on. When the type-checking apparatus of the software
decides the constructions of the program to be well-typed, this corresponds to
the proofs being checked to be valid.

Some proof assistants, such as Coq [7] and Lean [22], provide a language of
tactics, whose terms resemble intuitive proof steps, for example, “assume the
premise as hypothesis h” and “split h into its possible cases”. Internally, these
tactics are transformed into terms of the λ-calculus they are based on, and then
type checking proceeds as normal. In other proof assistants, such as Agda [48],
proofs are written directly in the primary language, but they implement language
servers to provide interactive feedback during proof construction. Idris [9] is
another implementation of type theory which may function as a proof assistant,
but is more suited for leveraging the type system in practical programming tasks
rather than proving mathematical theorems. Many of the results in this thesis
have been formalised in Agda, with source code listings available in Appendix A.

2.4 Dependent Types

The simply-typed λ-calculus presented up to now isn’t truly a Martin-Löf type
theory as it lacks dependent types, allowing types to depend on values. Types
aren’t currently first-class entities, the rules defining the system enforcing a strict
demarcation between types and their values — they cannot be stored in pairs,
or returned from functions, and so on. This is because the type universe Type

hasn’t itself been given a type.
It is tempting give a rule stating Type : Type, but this leads to a logical

inconsistency known as Girard’s paradox [30,36], analogous to Russell’s paradox
in set theory. To solve this, the idea of stratification is borrowed from Russell’s
theory of types [44] — there is an infinite, enumerable hierarchy of type universes,
each assigned the type of the next.

Type0 : Type1 : Type2 : Type3 : Type4 : . . .

2.4. DEPENDENT TYPES 17

When multiple universe levels are used in the formation of a type, the result is
at the universe level that is their least upper bound. We won’t always be explicit
about the levels of type universes in future constructions. That is, T : Type,
without specifying an index, is taken to be universe polymorphic, valid at any
universe level. Most often in this thesis, the lowest universe Type0 will suffice,
but it will be highlighted when a higher level is required.

A function whose codomain is a type universe is called a type family. Given
A : Type and B : A → Type, the result when applying type family B to a term
a : A is a type which may depend on the precise value of a. For example, we can
create a type family isTrue : 𝟚 → Type which is inhabited when applied to true,
but uninhabited for false.

isTrue = elim+ (elim𝟙 𝟙) (elim𝟙 𝟘) : 𝟚 → Type

The logical interpretation of type families is that they correspond to predicates
and relations. In the above case, isTrue true reduces to 𝟙 and so may be trivially
proven by ⋆, while isTrue false reduces to 𝟘 and cannot be proven in an empty
context.

We now introduce Π-types and Σ-types, utilising type families to define type-
level connectives which bind terms. The Π-type can be seen as a dependent
version of the function type, where the type of the output may depend on the
value of the input. The following rules subsume those given for non-dependent
functions.

Γ ` A : Type Γ, a : A ` B a : Type
Π-Form

Γ ` Π(a:A) B a : Type

Γ, a : A ` b : B a
Π-Intro

Γ ` λ(a : A). b : Π(a:A) B a

Γ ` f : Π(a:A) B a Γ ` a : A
Π-Elim

Γ ` f a : B a

Γ ` (λ(v : A). b) : Π(a:A) B a Γ ` a : A
β-Reduce

Γ ` (λ(v : A). b) a = b[v/a] : B a

Γ ` f : Π(a:A) B a
η-Reduce

Γ ` (λ(v : A). f v) = f : Π(a:A) B a

The non-dependent function type can be recovered using a constant type
family which does not depend on the input value. We may denote this by not
using the variable bound by the Π-type former, A→ B = Π(a:A) B : Type.

18 CHAPTER II. DEPENDENT TYPE THEORY

Intuitively, the type Π(a:A) B a represents the product of B indexed by all
terms a : A. For example, Π(b:𝟚) B b is equivalent to B true × B false. In the
Curry-Howard correspondence, this is the interpretation of set-theoretic universal
quantification, ∀(a∈A) B(a) — for any term of a : A, the function will provide a
corresponding proof of B a specialised to the input value.

One practical use of Π-types is defining parametrically polymorphic functions,
that is, functions which operate uniformly on any type. For example, we’ve
previously seen identity functions specialised to individual types, such as id𝟚.
Similarly, we defined projection functions π1 and π2 for product types, however a
context including types A and B was assumed. We can now define these functions
universally, in an empty context — the argument types are parametrised by
dependent functions.

id = λ(A : Type). λa. a : Π(A:Type) A→ A

π1 = λ(A : Type). λ(B : Type). elim× (λa. λb. a) : Π(A:Type) Π(B:Type) A× B → A

π2 = λ(A : Type). λ(B : Type). elim× (λa. λb. b) : Π(A:Type) Π(B:Type) A× B → B

It is common to leave some of the parameters implicit in cases where they
provide no extra clarity. In addition, we may place a function’s parameters at the
left side of a definition with the function being applied to them, writing f = λv. b

as f v = b. For example, function composition can be defined generically without
explicitly writing the Π-types or λ-terms that bind A : Type, B : Type, and
C : Type.

f ◦ g = λa. f (g a) : (B → C) → (A→ B) → A→ C

The Σ-type is a dependent version of the product type, where the type of
second element of the pair is allowed to depend on the value of the first. These
rules subsume those previously given for products.

Γ ` A : Type Γ, a : A ` B : A→ Type
Σ-Form

Γ ` Σ(a:A) B a : Type

Γ ` a : A Γ ` b : B a
Σ-Intro

Γ ` 〈a, b〉 : Σ(a:A) B a

Instead of the Σ-eliminator describing how to compute a value of some arbi-
trary T : Type, we allow the resulting type to depend on the value of the pair
using a type family T : (Σ(a:A) B a) → Type. The function f provided to operate
on the pair’s elements therefore needs to have a Π-type.

Γ ` f : Π(a:A) Π(b:B a) T 〈a, b〉 Γ ` p : Σ(a:A) B a
Σ-Elim

Γ ` elimΣ f p : T p

2.4. DEPENDENT TYPES 19

Γ ` f : Π(a:A) Π(b:B a) T 〈a, b〉 Γ ` a : A Γ ` b : B a
Σ-Reduce

Γ ` elimΣ f 〈a, b〉 = f a b : T 〈a, b〉

As with Π-types, a non-dependent product type may be recovered using a
constant type family, A × B = Σ(a:A) B : Type. As Π-types represent indexed
products, Σ-types represent indexed sums. This is the interpretation of set-
theoretic existential quantification, ∃(a∈A) B(a), though note that these existence
proofs must be constructive.

Due to canonicity, a proof of Σ(a:A) B a reduces to a pair 〈a, b〉 where a : A

is a witness to the existential. For example, 〈true, ⋆〉 is a proof for Σ(b:𝟚) isTrue b,
with true witnessing the proof of ⋆ : isTrue true. This rules out existence proofs by
contradiction as they are an instance of the classical double-negation elimination
principle, ¬¬(∃a∈A B(a)) ⇒ ∃a∈A B(a), which doesn’t hold constructively.

There can be some confusion caused by the name “dependent product”. It is
most often used to refer to the indexed products that are Π-types, but sometimes
mistaken to mean the dependent generalisation of product types that are Σ-types.
Throughout this thesis, this label isn’t used, instead opting for “dependent func-
tion” for Π-types and “dependent pair” for Σ-types. The type of non-dependent
pairs will remain the “product type”.

We replace the non-dependent elimination and reduction rules of the other
basic types with dependent versions which output in a type family indexed by
their terms. As with the other rule upgrades, the originals can be reconstructed
by instantiating T with constant type families.

Γ ` e : 𝟘𝟘-Elim
Γ ` elim𝟘 e : T e

Γ ` t : T ⋆ Γ ` u : 𝟙𝟙-Elim
Γ ` elim𝟙 t u : T u

Γ ` t : T ⋆𝟙-Reduce
Γ ` elim𝟙 t ⋆ = t : T ⋆

Γ ` f : Π(a:A) T (inl a)

Γ ` g : Π(b:B) T (inr b) Γ ` s : A+B
+-Elim

Γ ` elim+f g s : T σ

Γ ` f : Π(c:A) T (inl c)

Γ ` g : Π(b:B) T (inr b) Γ ` a : A
+-Reduceinl

Γ ` elim+ f g (inl a) = f a : T (inl a)

Γ ` f : Π(a:A) T (inl a)

Γ ` g : Π(c:B) T (inr c) Γ ` b : B
+-Reduceinr

Γ ` elim+ f g (inr b) = g b : T (inr b)

The dependent eliminators are more powerful reasoning principles than their
non-dependent counterparts. Rather than just allowing for computation with the

20 CHAPTER II. DEPENDENT TYPE THEORY

types, these eliminators facilitate proving predicates over them by case analysis.
Like the non-dependent case, the 𝟘-eliminator proves any proposition from an
inconsistent assumption. To prove a property over 𝟙, it suffices to consider the ⋆
case, while a sum has the cases of inl and inr to consider. The reduction rules are
as before, with updated types.

With dependent types providing connectives for universal and existential
quantification, our system now corresponds to a system of intuitionistic higher-
order logic. Let us review how the concepts introduced align with those of a set
theory with an associated predicate calculus, such as the widely-used Zermelo-
Fraenkel system. While there are many points of analogy between the two foun-
dations, there are also significant differences.

In set theory, objects are collected into sets, while type theory collects objects
into types. An object in set theory may simultaneously be an element of many
sets, with set membership a ∈ A being a provable proposition within the logic.
Each object in type theory, however, is only assigned to a unique type, known from
the moment of the object’s creation, a : A being a judgement in the metatheory
with no way to express this as a proposition within the type theory itself.

In set theory, the only fundamental construction is the set, with everything
else encoded by combining sets. For example, functions are often encoded as sets
of pairs which relate the input of the function to the output. In type theory,
while encodings may be used, it is also possible to define new type primitives
which more clearly express their intent. For example, the natural numbers may
be encoded as Church numerals, ℕ = Π(A:Type) (A → A) → A → A : Type, using
the dependent function primitive, but we will see their direct definition using an
inductive type in Section 2.6.

Typically, set-theoretic logics are classical, admitting the excluded middle
and double-negation elimination reasoning principles, allowing proofs by contra-
diction. Type theory, however, is a computational calculus as well as a logic, with
canonicity providing a strong guarantee about the result of reducing a term. This
makes the logic inherently constructive, where disjunction proofs must reduce a
proof for one of the two sides, and existence proofs must be accompanied by an
algorithm for constructing a witness.

In set theory, there is a separation between the language of the logic and the
language of the objects the logic describes. In type theory, propositions are types,
with no distinction made between types inhabited by data structures and types
inhabited by proofs — data and proofs are the same class of object, built from
the same syntax. A term of type Π(n:ℕ) Σ(p:ℕ) isPrime p× (p > n) is both a proof
that there are infinitely many primes as well as as a function that computes a
prime larger than any given input.

2.5. EQUALITY AND EQUIVALENCE 21

2.5 Equality and Equivalence
There is currently no way to state or prove the proposition that two terms are
equal within the system of type theory we have defined. The only notion of
equality seen so far is judgemental, part of the external metatheory used to define
the rules of the type theory. We introduce propositional equality, also called the
identity type, as a binary relation internal to the type theory.

Γ ` a : A Γ ` b : A≡-Form
Γ ` a ≡ b : Type

Γ ` a : A≡-Intro
Γ ` refl≡ a : a ≡ a

Here, a ≡ b is the type of proofs for the proposition that terms a and b are
equal. The type has just one constructor, refl≡, which proves the reflexive case
a ≡ a.

Judgemental equality implies propositional equality — judgementally-equal
terms can always be reduced to their identical canonical forms, the equality then
witnessed by refl≡. As an example illustrating this, we can show that function
composition is associative.

Theorem 2.5.1. Associativity, (f ◦ (g ◦ h)) a ≡ ((f ◦ g) ◦ h) a.

Proof. assoc◦ = refl≡ (f (g (h a)))

By applying the definition of function composition, both sides of the equation
reduce to f (g (h a)) by judgemental equalities, so it can be proved directly by
the refl≡ constructor.

Propositional equality is more powerful than judgemental equality, allowing
us to prove terms equal which are not necessarily judgementally equal, however
propositional equality is not decidable in general. We can see an application of
the dependent 𝟙-eliminator in combination with propositional equality by proving
that ⋆ is the only canonical term for 𝟙. Similarly, every Boolean value is either
equal to true or false, whose proof also uses the dependent eliminator for sums.

Theorem 2.5.2. Uniqueness, Π(u:𝟙) u ≡ ⋆.

Proof. elim𝟙 (refl≡ ⋆)

Applying the eliminator, we are only required to prove the case where u is ⋆.
The conclusion becomes ⋆ ≡ ⋆, proved by refl≡ ⋆.

Lemma 2.5.3. Π(b:𝟚) (b ≡ true) + (b ≡ false)

Proof. elim+ (elim𝟙 (inl (refl≡ true))) (elim𝟙 (inr (refl≡ false)))

Since 𝟚 is defined as 𝟙+𝟙, the sum-eliminator splits the proof into the inl case
and the inr case. In either case, the 𝟙-eliminator has us consider ⋆ the only possible

22 CHAPTER II. DEPENDENT TYPE THEORY

term being carried by each constructor. Considering the judgemental equality
defining true = inl ⋆, in the first case the conclusion is (true ≡ true)+(true ≡ false),
so we decide to prove the left side of the sum with inl (refl≡ true). In the second
case, we are to prove (false ≡ true) + (false ≡ false), so we elect for the right side
this time.

Lemma 2.5.3 validates there are no Boolean terms beside those equal to true

or false, but it doesn’t establish that these are actually distinct. For that, we
need to prove true ≡ false → 𝟘, that true and false being equal leads to absurdity.

To prove statements with a propositional equality as a hypothesis, we need
an elimination rule. Since the equality type former is a binary type family, the
output predicate needs to be a dependent function which takes the parameters
of the family, T : Π(a,b:A) a ≡ b→ Type.

Γ ` f : Π(c:A) T c c (refl≡ c)

Γ ` a : A
Γ ` b : A

Γ ` p : a ≡ b
≡-Elim (J)

Γ ` elim≡ f a b p : T a b p

Γ ` f : Π(c:A) T c c (refl≡ c)
Γ ` a : A

Γ ` refl≡ a : a ≡ a
≡-Reduce

Γ ` elim≡ f a a (refl≡ a) = f a : T a a (refl≡ a)

The elimination rule, known as the J-rule, states that to prove a predicate
on a equality proof a ≡ b, it suffices to prove the predicate in the reflexive case
refl≡ c : c ≡ c, for an arbitrary c of the type.

We need some basic properties of equality before we can prove that true and
false are distinct, however. Let us start with symmetry, which instantiates the
J-rule with predicate T a b p = b ≡ a.

Theorem 2.5.4. Symmetry, a ≡ b→ b ≡ a.

Proof. sym≡ = elim≡ (λ(c : A). refl≡ c)

We assume a ≡ b as a hypothesis, and are to prove b ≡ a. Applying the
eliminator to the hypothesis, we need to provide a function of variable c which
proves T c c (refl≡ c). Reducing this expression using the definition of T , this
is simply the statement c ≡ c, which can be easily discharged using the refl≡

constructor. In essence, since we started from an assumption of a ≡ b, the J-rule
allowed us to substitute all of the instances of a and b by a new variable c in the
conclusion we wanted to reach.

Similarly, transitivity can be proved by fixing c : A and taking the predicate
to be T a b p = b ≡ c→ a ≡ c.

2.5. EQUALITY AND EQUIVALENCE 23

Theorem 2.5.5. Transitivity, a ≡ b→ b ≡ c→ a ≡ c.

Proof. trans≡ = elim≡ (λ(d : A). id(d≡c))

Assume a ≡ b as a hypothesis, but leave b ≡ c unassumed — we must prove
the implication b ≡ c→ a ≡ c. Apply the eliminator and instantiate the predicate
with new variable d, leaving us to prove d ≡ c→ d ≡ c. This can be proven with
an identity function id specialised to type d ≡ c

A common pattern in functional programming, and in mathematics more
broadly, is theorem proving by equational reasoning, for example, sequencing
equality proofs a ≡ b ≡ . . . ≡ y ≡ z to prove a ≡ z. This is justified in our type
theory by chaining applications of trans≡.

As a final basic property we would expect an equality to exhibit, propositional
equality forms a congruence relation. Sometimes called a substitution or trans-
portation principle, this ensures that if we know a ≡ b, we may substitute b for
a while preserving the proof of any predicate, P a→ P b. Taken in combination
with symmetry, the direction of the implication is unimportant and the two terms
become interchangeable.

Theorem 2.5.6. Congruence, P a→ a ≡ b→ P b.

Proof. cong (P : A→ Type) = λ(p : P a). λ(q : a ≡ b). elim≡ (λ(c : A). id(P c)) q p

Resembling the proof of transitivity, after applying the eliminator the conclu-
sion becomes P c→ P c, proved by an identity function.

A useful special case of congruence is that functions respect equality. That is,
when proving an equality where both sides are applications of the same function,
the function may be stripped away, simplifying the equation to be proved.

Theorem 2.5.7. Functions respect equality, a ≡ b→ f a ≡ f b.

Proof. resp (f : A→ B) = elim≡ (λ(c : A). refl≡ (f c))

Using the congruence property with the previously-defined isTrue predicate
which maps true 7→ 𝟙 and false 7→ 𝟘, we can prove that 𝟚 is truly a Boolean type.

Lemma 2.5.8. true ≡ false → 𝟘

Proof. cong isTrue ⋆

Assume as a hypothesis that true ≡ false and set out to prove 𝟘, which is
judgementally equal to isTrue false. Since we have true ≡ false by assumption,
congruence tells us that we may substitute within the conclusion, instead proving
isTrue true, which is judgementally equal to 𝟙. This is achieved with the trivial
proof ⋆.

24 CHAPTER II. DEPENDENT TYPE THEORY

Theorem 2.5.9. Boolean, (Π(b:𝟚) (b ≡ true) + (b ≡ false))× (true ≡ false → 𝟘).

Proof. This is a straightforward pairing of the proof terms for Lemmas 2.5.3
and 2.5.8.

As types are first-class values, it is also natural to ask when two types are
equal. For types A and B, the type A ≡ B contains proofs of their identification.
Of course, judgementally-equal types can be proved propositionally equal by re-
flexivity, for example, refl≡ 𝟚 : 𝟚 ≡ 𝟚. However, in intensional type theories, such
as the one defined in this chapter, we cannot go beyond judgemental equality of
types and must instead talk of their equivalence.

The idea of equivalence has been used informally up until now, actually re-
ferring to three distinct notions. The first is propositional equivalence, corre-
sponding to logical equivalence, A ↔ B = (A → B)× (B → A), indicating that
the types are coinhabited — either they are both empty or they each have at
least one term. However, this says nothing about the number of distinct terms
inhabiting non-empty types, for example, 𝟙 ↔ 𝟚 is itself inhabited.

Second, it has previously been noted that some types, such as 𝟙 + (𝟙 + 𝟙)
and (𝟙 + 𝟙) + 𝟙, are equivalent in the sense that they have the same number of
canonical terms despite being structurally distinct. Let us now be more precise
about what this form of type equivalence entails.

Definition 2.5.10. Two types A : Type and B : Type are equivalent when there
is a bijective mapping between their terms — there are functions f : A→ B and
g : B → A which are inverse.

A ' B = Σ(f :A→B) Σ(g:B→A) (Π(a:A) a ≡ (g ◦ f) a))

× (Π(b:B) b ≡ (f ◦ g) b))

A proof of type equivalence is therefore a term whose canonical form consists
of nested pairs, 〈f, 〈g, 〈p, q〉〉〉, containing two functions and two equality proofs.
For notational convenience, we shall write this as a quadruple, 〈f, g, p, q〉.

While we cannot prove 𝟙 + (𝟙 + 𝟙) and (𝟙 + 𝟙) + 𝟙 equal in an intensional
type theory, we can prove them equivalent.

Theorem 2.5.11. 𝟙+ (𝟙+ 𝟙) ' (𝟙+ 𝟙) + 𝟙

Proof. 〈f, g, p, q〉
Where f maps inl ⋆ 7→ inr ⋆, inr (inl ⋆) 7→ inl (inr ⋆), inr (inr ⋆) 7→ inl (inl ⋆),

and g is its inverse. To be fully-formal, the terms for the function definitions,
as well as proof terms p and q, would be be defined by case analysis, using the
eliminator elim+.

2.5. EQUALITY AND EQUIVALENCE 25

This is one possible equivalence proof out of a total of six for this type. The
others may be produced by permuting the terms in the output of the map.

Of course, like propositional equality, type equivalence forms an equivalence
relation.

Theorem 2.5.12. Reflexivity, A ' A.

Proof. refl≃ = 〈idA, idA, refl≡, refl≡〉
The identity function idA is used to instantiate both functions, so the final

two elements must be of type Π(a:A) a ≡ idA (idA a). Since idA (idA a) reduces to
a, this is judgementally equal to the type of the refl≡ constructor.

Theorem 2.5.13. Symmetry, A ' B → B ' A.

Proof. sym≃ = elimΣ (λf. elimΣ (λg. elimΣ (λp. λq. 〈g, f, q, p〉)))
Assume the equivalence 〈f, g, p, q〉 and simply swap the functions and swap

the proofs, resulting in 〈g, f, q, p〉.

Theorem 2.5.14. Transitivity, A ' B → B ' C → A ' C.

Proof. trans≃ (d : A ' B) (e : B ' C) = . . .

Assume the two equivalences 〈f, g, p, q〉 and 〈f ′, g′, p′, q′〉. To construct the
two functions for the output equivalence, we compose the corresponding functions
from the hypotheses, f ′◦f and g◦g′. For the proofs, we need to show, for arbitrary
a and c, that a ≡ ((g ◦ g′) ◦ (f ′ ◦ f)) a and c ≡ ((f ′ ◦ f) ◦ (g ◦ g′)) c.

With the associative property, we can group the compositions such that our
equality proofs p, q, p′, and q′ can eliminate them.

((g ◦ g′) ◦ (f ′ ◦ f)) a

(assoc◦) ≡ (g ◦ (g′ ◦ f ′) ◦ f) a

(p′) ≡ (g ◦ f) a

(p) ≡ a

((f ′ ◦ f) ◦ (g ◦ g′)) c

(assoc◦) ≡ (f ′ ◦ (f ◦ g) ◦ g′) c

(q) ≡ (f ′ ◦ g′) c

(q′) ≡ c

The full proof term is omitted here to avoid the tedious decomposition of
the two equivalences into their eight components using six applications of elimΣ.
Proof assistants provide pattern matching for cases like this, as seen in the version
of this proof included in Appendix A.

The third notion of equivalence is equivalence of functions. For example,
bubble-sort and merge-sort can be considered equivalent functions in the sense
they produce the same outputs when given the same inputs. However, since their
implementations differ vastly, they cannot be proven propositionally equal.

26 CHAPTER II. DEPENDENT TYPE THEORY

Definition 2.5.15. Two functions f : Π(a:A) B a and g : Π(a:A) B a are equivalent
when they are pointwise equal.

f ∼ g = Π(a:A) f a ≡ g a

Naturally, this also forms an equivalence relation. The proofs are immediate
from the reflexivity, symmetry, and transitivity of the underlying propositional
equality relation.

Theorem 2.5.16. Reflexivity, f ∼ f .

Proof. refl∼ (a : A) = refl≡ (f a)

Theorem 2.5.17. Symmetry, f ∼ g → g ∼ f .

Proof. sym∼ (e : f ∼ g) (a : A) = sym≡ (e a)

Theorem 2.5.18. Transitivity, f ∼ g → g ∼ h→ f ∼ h.

Proof. trans∼ (d : f ∼ g) (e : g ∼ h) (a : A) = trans≡ (d a) (e a)

As corollaries from their reflexivity, both type equivalence and function equiv-
alence can be shown to be implied by propositional equality. Simply use congru-
ence to substitute one of the sides of the conclusion so it becomes an instance of
reflexivity.

Corollary 2.5.19. Type equality implies equivalence, A ≡ B → A ' B.

Proof. cong (λ(C : Type). A ' C) (refl≃ A)

Corollary 2.5.20. Function equality implies equivalence, f ≡ g → f ∼ g.

Proof. cong (λ(h : Π(a:A) B a). f ∼ h) (refl∼ f)

Equality and equivalence are very active topics of research in the field of type
theory. It is often desirable to eschew intentional type theories, where certain
equality proofs may be difficult or impossible, and only focus on the extensional
properties of the objects in question — if two distinct types or functions behave
identically, why shouldn’t they be considered equal?

For ease of reasoning about functions, the axiom of function extensionality
may be assumed. This states the inverse of the above, that function equivalence
implies equality, funExt : f ∼ g → f ≡ g, allowing us to ignore their internal
details and consider only their external behaviour. The axiom is independent
of the intensional type theory we’ve defined — it cannot be proved directly,
but its assumption is consistent with the existing rules [54]. However, as with

2.5. EQUALITY AND EQUIVALENCE 27

adding classical reasoning principles as additional axioms, the funExt term has
no reduction rules associated with it and so canonicity is lost.

The development of homotopy type theory [55] takes extensionality to its limit
with the univalence axiom, due to Vladimir Voevodsky. Types are interpreted
as topological spaces, with proofs of equality being paths between their points,
and function equivalences regarded as homotopies deforming one function into
the other. Notably, univalence implies, in addition to function extensionality,
that type equivalence implies equality, A ' B → A ≡ B — equivalent types
are truly equal, their implementation details irrelevant. There has been a recent
effort to give computational content to univalence, one result being the system
of cubical type theory [17], where univalence is a theorem rather than an axiom,
and canonicity is preserved [35].

Since extensionality is not the focus of this thesis, only a very basic overview
has been given. For the most part, we will operate within an intentional type
theory, although function extensionality is assumed for Chapter V.

Finally in this section, we summarise the various equality and equivalence
relations of type theory, the syntax used for them throughout this thesis, and
compare their relative logical strength.

• Judgemental Equality, a = b: a statement in the defining metatheory,
used to add new definitions to the type theory and to specify how terms are
evaluated to their canonical forms. It is the strongest notion of equality,
implying every relation on this list. However, it cannot be expressed as
a type in the syntax of the type theory itself, so we cannot reason about
judgemental equalities from within the system.

• Propositional Equality, a ≡ b: the notion of equality internal to the
system of type theory, able to be stated as a type and reasoned about
from within the system. Propositional equality is weaker than judgemental
equality, but still implies all of the equivalences lower down on this list.

• Type Equivalence, A ' B: a bijective mapping between the terms of
two types, establishing that the types have the same size. Type equiva-
lence is weaker than propositional equality, but stronger than propositional
equivalence.

• Propositional Equivalence, A ↔ B: a mapping between the terms
of two types, implied by type equivalence since there is no requirement for
injectivity or surjectivity. This establishes that the types are coinhabited,
both empty or each inhabited by at least one term. This is the Curry-
Howard interpretation of two propositions being logically equivalent.

28 CHAPTER II. DEPENDENT TYPE THEORY

• Function Equivalence, f ∼ g: a statement that two functions are
pointwise equal, with equal inputs to the functions yielding equal outputs.
Weaker than propositional equality in intensional type theories, but of the
same strength as propositional equality in extensional type theories where
function extensionality is adopted.

2.6 Inductive Types

Combining sum and product types with the basic types 𝟘 and 𝟙, we are able
to form any finite type, but is also possible to encode more complex structures
using functions, as Church did in his λ-calculus [14,15]. For example, the Church
numerals are an encoding of the natural numbers as parametrically polymorphic
functions, ℕ = Π(A:Type) (A → A) → A → A. The numeral representing natural
number n takes a function as an argument and iterates it n times over a second
argument.

0 = λA. λf. λx. x

1 = λA. λf. λx. f x

2 = λA. λf. λx. f (f x)

3 = λA. λf. λx. f (f (f x))

. . .

It can be shown by parametricity [52, 57] that the only closed terms of this
type are extensionally equal to the Church numerals. However, in a setting
without function extensionality, it is more convenient to define the natural num-
bers, and other tree-like structures, as dedicated types with new syntax. In
addition, our strictly-enforced type system prevents the definition of recursive
functions using fixed-point combinators, such as Haskell Curry’s Y combinator,
λf. (λx. f (x x)) (λx. f (x x)) — the self-application x x is invalid as it cannot
be assigned a type.

We define Peano-style natural numbers in the same way as our other types,
with formation, introduction, elimination, and reduction rules.

ℕ-Form ℕ : Type
ℕ-Introzero zero : ℕ

Γ ` n : ℕℕ-Introsucc Γ ` succ n : ℕ

Γ ` z : T zero Γ ` s : Π(n:ℕ) T n→ T (succ n) Γ ` n : ℕ
ℕ-Elim

Γ ` elimℕ z s n : T n

Γ ` z : T zero Γ ` s : Π(n:ℕ) T n→ T (succ n)
ℕ-Reducezero Γ ` elimℕ z s zero = z : T zero

2.6. INDUCTIVE TYPES 29

Γ ` z : T zero Γ ` s : Π(n:ℕ) T n→ T (succ n) Γ ` n : ℕ
ℕ-Reducesucc

Γ ` elimℕ z s (succ n) = s n (elimℕ z s n) : T (succ n)

The constructors for the natural numbers, defined by the two introduction
rules, are zero and succ. Unlike previous introduction rules, the succ rule is recur-
sive, requiring a natural number n to be constructed before the succ constructor
may be applied to yield a new natural number. The canonicity principle spe-
cialised to natural numbers states that any closed term of type ℕ is either the
numeral zero, or the succ constructor applied to a numeral.

0 = zero

1 = succ zero

2 = succ (succ zero)

3 = succ (succ (succ zero))

. . .

Seen as a computation principle, the eliminator gives a mechanism for defining
functions by primitive recursion, saying how to compute from zero and how to
compute from succ n, with the reduction rules specifying the recursion scheme.
Seen as a proof principle, the elimination rule allows proofs by induction over
natural numbers — to prove a predicate T for all natural numbers, it suffices to
prove the base case, T zero, and the inductive case, Π(n:ℕ) T n→ T (succ n).

To be convinced that this type faithfully represents the natural numbers, we
would also expect the succ constructor to be injective, which is explicitly stated
as one of Peano’s axioms. We may prove this as a theorem rather than adding an
axiom, requiring the definition of a type family indexed by the natural numbers.

Theorem 2.6.1. succ m ≡ succ n→ m ≡ n

Proof. cong (elimℕ 𝟘 (λo. λr. m ≡ o)) (refl≡ m)

Using the natural number eliminator, define the type family P : ℕ → Type

which maps succ o 7→ m ≡ o. The type zero maps to is of no consequence and is
chosen arbitrarily.

Specialising cong P to the case where both numbers are successors, its type
is P (succ m) → succ m ≡ succ n→ P (succ n). Reducing the applications of P
yields m ≡ m→ succ m ≡ succ n→ m ≡ n. After giving a proof of m ≡ m, this
is exactly the statement that succ is injective.

A basic operator that doesn’t require recursion is the predecessor function,
which removes an application of succ from positive natural numbers.

pred = elimℕ zero (λn. λr. n) : ℕ → ℕ

30 CHAPTER II. DEPENDENT TYPE THEORY

More complex arithmetic operators may be defined by primitive recursion.
For example, an intuitive definition of addition of two natural numbers can be
defined by pattern matching on the second argument. In the base case, the first
argument is returned, while the recursive case moves the application of succ away
from the second argument.

add : ℕ → ℕ → ℕ
add m zero = m

add m (succ n) = succ (add m n)

This definition is realised by applying the eliminator non-dependently, instan-
tiated at constant type family T n = ℕ.

add = λm. elimℕ m (λn. λr. succ r) : ℕ → ℕ → ℕ

The first argument to to elimℕ represents the base case, while the second
argument is the recursive case, with the result of the recursive call being bound
to variable r. Applying the reduction rule for succ, this can be seen to reduce to
the expected expression.

add m (succ n) = elimℕ m (λn. λr. succ r) (succ n)

; (λn. λr. succ r) n (elimℕ m (λn. λr. succ r) n)

;∗ succ (elimℕ m (λn. λr. succ r) n)

= succ (add m n)

As addition was defined by recursion on the second argument, the fact that
zero is the right identity for addition is a judgemental equality — the proof of
add n zero ≡ n is simply refl≡ n. However, for the left identity, add zero n

cannot be reduced without knowing whether n is constructed by zero or succ. To
show this, we use the eliminator dependently, instantiating the predicate with
T n = add zero n ≡ n, as a proof by induction.

Theorem 2.6.2. Π(n:ℕ) add zero n ≡ n

Proof. elimℕ (refl≡ zero) (λn. λr. resp succ r)

Proceed by induction on n. The base case is add zero zero ≡ zero. By definition
of add, this reduces to zero ≡ zero, which is proved by refl≡ zero. This therefore
becomes the first argument to elimℕ.

In the inductive case, we have inductive hypothesis add zero n ≡ n and must
show add zero (succ n) ≡ succ n, which reduces to succ (add zero n) ≡ succ n.
Since succ respects equality, by Theorem 2.5.7, it can be stripped from both
sides of the conclusion, with the remaining term being identical to the inductive

2.6. INDUCTIVE TYPES 31

hypothesis. In the proof term, it can be seen that the inductive case is a dependent
function where variable r binds the inductive hypothesis.

Generalising from the definition of natural numbers, we can define an entire
class of types called inductive types whose terms are wellfounded trees. However,
instead of explicitly specifying the rules for all these types, we use a more concise
notation which specifies the type of the former, and the types of all constructors.

inductive ℕ : Type

zero : ℕ
succ : ℕ → ℕ

This definition of natural numbers is understood to be shorthand for all of its
rules. That is, a type formation rule, an introduction rule for each constructor,
an elimination rule, and a reduction rule for each constructor.

We can define inductive type families of arbitrary arity by setting the type
former to be a function type. Each constructor may also be of arbitrary arity,
and may depend recursively on other elements of the type, forming new branches
in the tree. These types may be given as instances of W -types [45], but we will
opt to allow the direct definition of recursive functions by pattern matching [23].

Natural numbers are unary trees whose nodes are applications of the succ

constructor and whose leaves are zero. The tree carries no additional data at
the nodes aside from subtrees, the only information represented being the tree’s
depth. If we instead define the inductive type of unary trees where the nodes
additionally carry a term of type A, we obtain the List data structure.

inductive List : Type → Type

[] : Π(A:Type) List A

:: : Π(A:Type) A→ List A → List A

List is defined as a type family, giving dependent function types for its con-
structors to allow for parametric polymorphism, but dependent types may also
be used to impose constraints on when the use of a constructor is valid. We can
define the Fin inductive family of finite types, indexed by natural numbers, where
Fin n has exactly n canonical terms, representing those natural numbers strictly
less than n.

inductive Fin : ℕ → Type

zeroFin : Π(n:ℕ) Fin (succ n)

succFin : Π(n:ℕ) Fin n→ Fin (succ n)

Since both constructors result in Fin (succ n), there is no way of constructing
a term of type Fin 0. The only way of constructing a term of type Fin 1 is using

32 CHAPTER II. DEPENDENT TYPE THEORY

zeroFin, as succFin would have be applied to a term of type Fin 0. The succFin

constructor may be used for Fin 2 onwards, but only a limited number of times
before zeroFin is forced.

Inductive families representing predicates and relations may also be defined.
For example, the ordering of natural numbers can be established with an inductive
binary relation.

inductive ≤ : ℕ → ℕ → Type

zero≤ : Π(n:ℕ) zero ≤ n

succ≤ : Π(m,n:ℕ) m ≤ n→ succ m ≤ succ n

The strength of inductive types is that, in lieu of an elimination rule, we allow
direct definitions by structural recursion, pattern matching on the possible ways
of constructing a type. To be certain of normalisation, recursive calls must be on
a structurally smaller term than the original argument, that is a subexpression
with strictly fewer constructors.

This is more general than the primitive recursion allowed by elimℕ, allowing
multiple constructors to be stripped at once. For example, we can define the
function which computes n 7→ bn/2c by pattern matching two constructors deep.

half : ℕ → ℕ
half zero = zero

half (succ zero) = zero

half (succ (succ n)) = succ (half n)

Seen as universally-quantified proofs, dependent functions defined by struc-
tural recursion correspond to proofs by structural induction. For example, the
reflexivity of ≤ can be established by induction using the eliminator elimℕ, but
we demonstrate the proof as a structurally-recursive function.

Theorem 2.6.3. Reflexivity, n ≤ n.

Proof.
refl≤ : Π(n:ℕ) n ≤ n

refl≤ zero = zero≤

refl≤ (succ n) = succ≤ (refl≤ n)

Proceed by induction on n. In the base case, we have to show zero ≤ zero,
established by the zero≤ constructor which states that zero is less than or equal
any other natural number.

In the inductive case, we have inductive hypothesis n ≤ n and need to prove
succ n ≤ succ n. The succ≤ constructor states that the relation respects succ,

2.7. COINDUCTIVE TYPES 33

so we are just left to prove a statement equal to the inductive hypothesis. To
access the inductive hypothesis in the proof term we call refl≤ recursively, at a
structurally-smaller index.

In the presence of inductive families with dependently-typed constructors,
structural recursion becomes a powerful reasoning tool, allows patterns to be
refined according to the type of the constructor [18,31]. We demonstrate this by
proving the transitivity of ≤ by performing structural recursion on a proof of the
relation rather than a natural number.

Theorem 2.6.4. Transitivity, m ≤ n→ n ≤ o→ m ≤ o.

Proof.
trans≤ : Π(m,n,o:ℕ) m ≤ n→ n ≤ o→ m ≤ o

trans≤ zero≤ q = zero≤

trans≤ (succ≤ p) (succ≤ q) = succ≤ (trans≤ p q)

Assume m ≤ n and n ≤ o, towards a proof of m ≤ o. Proceed by structural
induction on the proof of m ≤ n.

In the base case, it is constructed by zero≤ : zero ≤ n, so the only possibility
is when m is zero. The conclusion is therefore refined to zero ≤ o, which is
established by zero≤.

In the inductive case, the proof is constructed by succ≤ p : succ m ≤ succ n,
the only possible pattern is when both sides of the relation are successors. The
type of our second assumption is refined to succ n ≤ o, which forces it to be
constructed by succ≤ q : succ n ≤ succ o, the third number must also be a
successor. In light of these refinements, the conclusion is succ m ≤ succ o, so
we can apply the succ≤ constructor and then prove m ≤ o by recursion on the
structurally smaller terms p and q.

2.7 Coinductive Types
Inductive types represent wellfounded trees, structural recursion restricting them
to finite depth, however infinite structures are often objects of study. In functional
programming languages featuring general recursion and lazy evaluation, such as
Haskell [42], no distinction is made between inductive types with finite objects
and those with infinite objects [34]. For example, a definition like the following
would be valid, defining the infinite list nats = 0 :: 1 :: 2 :: . . . of all natural
numbers — in fact, this is so common in Haskell that the shorthand [0 ..] is
provided

nats : List ℕ
nats = from zero

from : ℕ → List ℕ
from n = n :: from (succ n)

34 CHAPTER II. DEPENDENT TYPE THEORY

However, in our setting, strong normalisation must be preserved to ensure
logical consistency. The definition of from cannot be accepted as it performs a
recursive call on a term which is not structurally smaller than the argument.

We would still like to represent such objects, but care must be taken to con-
struct them in a coherent way. The class of coinductive types [13,19] is introduced
to this end. For example, the Stream coinductive family collects the types of in-
finite sequences.

coinductive Stream : Type → Type

▷ : Π(A:Type) A→ Stream A→ Stream A

The definition is very similar to that of the List inductive family. We omit
an empty constructor here, so these streams are necessarily infinite, though an
alternative definition of lists which are potentially infinite is also possible, which
more closely aligns with lazy lists as they exist in Haskell.

Crucially, declaring the type coinductive lifts the requirement that terms of
this type must be wellfounded. If we had instead declared the type inductive, it
could be shown that Stream A ' 𝟘, as we could never construct a base value
for the constructor’s second argument. In particular, we don’t require functions
constructing streams to be structurally recursive, so the above definitions can be
ported to result in Stream ℕ.

nats : Stream ℕ
nats = from zero

from : ℕ → Stream ℕ
from n = n ▷ from (succ n)

However, not all recursive definitions are allowed. We must ensure canonicity,
so that a term of type Stream A is actually constructed by ▷ applied to the
appropriate arguments. This will justify being able define functions by pattern
matching on the type, such as head and tail projection functions.

head : Π(A:Type) Stream A→ A

head (h ▷ t) = h

tail : Π(A:Type) Stream A→ Stream A

tail (h ▷ t) = t

Strong normalisation is preserved if we only reduce recursive calls lazily [25,
32]. That is, only when the result of reducing the term is needed in order to
reduce a pattern-matching function.

In general, recursive calls must be guarded by a constructor of the coinductive
type [28, 47], that is, occurring within a subexpression of a constructor. This
guarantees the function must make some progress at each recursive step. In the
definition of from, we can see that guardedness is satisfied, the recursive call
appearing as the second argument of the ▷ constructor.

2.7. COINDUCTIVE TYPES 35

An example that is ruled out by the guardedness condition is the function
which filters a stream according to a decidable predicate, keeping only those
elements which satisfy the predicate. For lists, this has a valid definition by
structural recursion.

filter : Π(A:Type) (A→ 𝟚) → List A→ List A

filter f [] = []

filter f (h :: t) = elim+ (elim𝟙 (h :: filter f t)) (elim𝟙 (filter f t)) (f h)

This definition has two recursive calls on the tail of the list. The first is when
f h is true, so h will be kept in the resulting list, h :: filter f t, while f h is false

in the second, dropping h from the result, filter f t.
When attempting to define a similar function for type Stream A, the second

recursive call would be problematic as it makes no progress in constructing a new
h ▷ t node. In general, there is no guarantee that the predicate will ever return
true — given a stream s : Stream A, the term head (filter (λ(a : A). false) s) would
loop forever, never producing a head for the new stream.

Other familiar list functions may have corresponding definitions for streams
as long as they are productive. For example, a function may be mapped pointwise
over an stream to yield a new stream, and two streams may be zipped to form a
stream of pairs.

map : Π(A,B:Type) (A→ B) → Stream A→ Stream B

map f (h ▷ t) = f h ▷ map f t

zip : Π(A,B:Type) Stream A→ Stream B → Stream (A× B)

zip (h1 ▷ t1) (h2 ▷ t2) = 〈h1, h2〉 ▷ zip t1 t2

Coinductive types may also represent propositions whose proofs are infinite
structures. For example, the Always P predicate on streams asserts that when
predicate P holds at the head of a stream and, recursively, Always P holds on the
tail, then it holds at every element.

coinductive Always : Π(A:Type) (A→ Type) → Stream A→ Type

always : Π(P :A→Type) Π(s:Stream A)

P (head s) → Always P (tail s) → Always P s

A proof of Always P s can itself be seen as an infinite stream of proofs,
albeit each element having a different type, the first being P (head s), the second
P (head (tail s)), then P (head (tail (tail s))), and so on.

Two streams are extensionally equal when they are pointwise equal. Even if

36 CHAPTER II. DEPENDENT TYPE THEORY

their definitions may radically differ, they are considered equivalent if they pro-
duce the same sequence of values. This form of equivalence is called bisimulation,
and can be defined in terms of the Always type.

Bisim : Π(A:Type) Stream A→ Stream A→ Type

Bisim r s = Always (λ(p : A× A). π1 p ≡ π2 p) (zip r s)

Or, equivalently, as a dedicated coinductive type, a binary type family indexed
by streams.

coinductive Bisim : Π(A:Type) Stream A→ Stream A→ Type

bisim : Π(a,b:Stream A) head a ≡ head b→ Bisim (tail a) (tail b) → Bisim a b

For example, we can show that mapping succ onto stream from n is the same as
applying tail. These are two streams that can be proved bisimilar by coinduction.

Theorem 2.7.1. Π(n:ℕ) Bisim (map succ (from n)) (tail (from n))

Proof. First, use the bisim constructor to form a term of the coinductive Bisim

type. We now need to provide two proofs, one showing the equality of the streams’
heads, the other showing that their tails are bisimilar.

For the first proof, observe that the heads of both streams reduce to succ n,
so they may be proven equal by refl≡ (succ n).

head (map succ (from n)) = succ (head (from n)) (definition of map)
= succ n (definition of from)

head (tail (from n)) = head (from (succ n)) (definition of from)
= succ n (definition of from)

For the bisimilarity of the tails, the relaxed limits of recursion allow us to
assume the statement we are proving as a coinductive hypothesis. Since we are
guarded by an application of constructor bisim, we may now use the hypothesis
without further restriction.

Instantiating the coinductive hypothesis at index succ n gives the statement
Bisim (map succ (from (succ n))) (tail (from (succ n))). It can be seen that that
this is judgementally equal to the statement we want to prove.

map succ (from (succ n)) = map succ (tail (from n)) (definition of from)
= tail (map succ (from n)) (definition of map)

2.7. COINDUCTIVE TYPES 37

tail (from (succ n)) = tail (tail (from n)) (definition of from)

So we have Bisim (tail (map succ (from n))) (tail (tail (from n))) by coinductive
hypothesis, which is precisely the statement that the tails of the two streams are
bisimilar.

Formally, the proof can be written as a function defined by the following
recursive equation, where the recursive call is guarded by the bisim constructor.

f : Π(n:ℕ) Bisim (map succ (from n)) (tail (from n))

f n = bisim (refl≡ (succ n)) (f (succ n))

Applying the function to 0 gives a proof that map succ nats and tail nats are
bisimilar. Unravelling the recursive calls in the proof term, we see that it actually
an infinite sequence of refl≡ proofs, a new one generated at each recursive step.

f 0 = bisim (refl≡ 1) (f 1)

= bisim (refl≡ 1) (bisim (refl≡ 2) (f 2))

= bisim (refl≡ 1) (bisim (refl≡ 2) (bisim (refl≡ 3) (f 3)))

= bisim (refl≡ 1) (bisim (refl≡ 2) (bisim (refl≡ 3) (. . .)))

Bisimilarity is an equivalence relation. The properties of reflexivity, symmetry,
and transitivity may each be shown by coinductive proof. We demonstrate these
by giving a recursive function for each.

Theorem 2.7.2. Reflexivity, Bisim a a.

Proof.
reflBisim : Π(A:Type) Π(a:Stream A) Bisim a a

reflBisim (h ▷ t) = bisim (refl≡ h) (reflBisim t)

We define the function by pattern matching on the stream, then use the bisim

constructor to form the resulting proof. We must therefore prove h ≡ h and
Bisim t t.

Using the reflexivity constructor of propositional equality, the head is equal
to itself, refl≡ h. To prove the tail bisimilar to itself, since we are guarded by an
application of bisim, we may recursively call the function at the tail, proving the
statement by coinductive hypothesis.

Theorem 2.7.3. Symmetry, Bisim a b→ Bisim b a.

38 CHAPTER II. DEPENDENT TYPE THEORY

Proof.
symBisim : Π(A:Type) Π(a,b:Stream A) Bisim a b→ Bisim b a

symBisim (bisim h t) = bisim (sym≡ h) (symBisim t)

Here, we pattern match on the proof of Bisim a b, which is formed by proofs
h : head a ≡ head b and t : Bisim (tail a) (tail b). After using the bisim constructor,
we must prove the symmetric forms of these assumptions.

The first, head b ≡ head a, is clear from the symmetry of equality, sym≡ h. The
second, Bisim (tail b) (tail a), can be shown by coinductive hypothesis, recursively
calling the function on t.

Theorem 2.7.4. Transitivity, Bisim a b→ Bisim b c→ Bisim a c.

Proof.

transBisim : Π(A:Type) Π(a,b,c:Stream A) Bisim a b→ Bisim b c→ Bisim a c

transBisim (bisim h1 t1) (bisim h2 t2) = bisim (trans≡ h1 h2) (transBisim t1 t2)

The structure of this proof is the same as that of symmetry, pattern matching
on the proofs of bisimilarity. We use the transitive property of equality for the
head, and the coinductive hypothesis for the tail.

As a final note for this introduction, we have focused on infinite linear se-
quences as these are most relevant for Chapter IV, but coinductive types for
other kinds of non-wellfounded tree may also be defined. A type of infinitely-deep
binary trees is produced with a constructor that takes two recursive arguments
instead of one.

coinductive Tree : Type → Type

node : Π(A:Type) A→ Tree A→ Tree A→ Tree A

The requirement for guarded recursion remains the same. For example, the
binary tree with whose nodes state their index in a breadth-first traversal can be
defined by the following equation whose recursive calls are guarded by the node

constructor.

bft : ℕ → Tree ℕ
bft n = node n (bft (add 1 (add n n))) (bft (add 2 (add n n)))

Applying the bft function to argument 0 gives the actual tree.

bft 0 = node 0 (node 1 (node 3 (. . .) (. . .)) (node 4 (. . .) (. . .)))

(node 2 (node 5 (. . .) (. . .)) (node 6 (. . .) (. . .)))

2.7. COINDUCTIVE TYPES 39

0

1

3

... ...

4

... ...

2

5

... ...

6

... ...

If val, left, and right are the projection functions for the node constructor, tree
bisimulation may then be defined as a coinductive family indexed by trees.

coinductive BisimTree : Π(A:Type) Tree A→ Tree A→ Type

bisimTree : Π(a,b:Tree A) val a ≡ val b→ BisimTree (left a) (left b) →
BisimTree (right a) (right b) → BisimTree a b

Its status as an equivalence relation can be proved analogously to bisimilarity
of streams, by coinduction. For each property, the defining recursive function will
have two recursive calls, instantiated separately for the left and right subtrees.

40

41

Chapter III

Epistemic Modal Logic

In this chapter, we will introduce the axiomatic system of epistemic modal logic
and its standard relational semantics. Initially, this will be presented in isolation
from the system of type theory defined Chapter II, but we will later go on to
define a shallow embedding of the logic into our type theory.

The embedding constitutes a novel semantics for epistemic logic based on
knowledge operators, which will be shown to correspond to the relational seman-
tics. An Agda formalisation of the embedding and the semantics correspondence
results are included in Appendix A.2.

3.1 Background
Modal logics are a rich field of study throughout mathematics and philosophy,
as well as computer science. They were created in their modern form to study
the linguistic modality “necessarily”, which qualifies the truth of a statement
[20, 27, 40]. For example, the statements “it is raining” and “it is necessarily
raining” have different denotations,

Formally, the syntax of a propositional logic is extended with a new unary
operator □ on formulae, with □ϕ interpreted as the statement “ϕ is necessary”.
There are a number of axiomatisations for the new operator, the weakest of
which is a logic called System K, which introduces two new rules. The rules use
the judgement ϕ1, . . . , ϕn ` ψ which asserts that the propositional formula ψ is
derivable under hypotheses ϕ1 through ϕn. When ψ can be derived axiomatically,
we may write ` ψ. Note that while the notation is similar, these rules are defining
a distinct logical system from the type theory defined in Chapter II.

` ϕ
Necessitation ` □ϕ

Axiom K ` □ (ϕ⇒ ψ) ⇒ □ϕ⇒ □ψ

The necessitation rule states that when ϕ is a tautology of the underlying
propositional logic, then so is □ϕ. That is, tautologies of the logic are necessary.

42 CHAPTER III. EPISTEMIC MODAL LOGIC

Axiom K asserts necessity distributes over implication. It is a version of the
modus ponens rule that can be applied to necessary formulae — if both a formula
and an implication with that formula as the premise are necessary, then the
conclusion must also be necessary.

To strengthen the logic, several more axioms may be added depending on the
intended use. We will skip straight to the modal logic System 5 (S5) including
the necessitation rule, Axiom K, and three additional axioms.

Axiom T ` □ϕ⇒ ϕ
Axiom 4 ` □ϕ⇒ □□ϕ

Axiom 5 ` ¬□ϕ⇒ □¬□ϕ

These axioms dictate what can be derived from the assumption that ϕ is
necessary or unnecessary. From Axioms T and 4, if a formula is necessary, then
it must actually be true, and its necessity is necessary.

In some presentations of modal logic, Axiom 5 is written ♢ϕ ⇒ □♢ϕ. This
uses a new modal operator ♢, with ♢ϕ meaning “ϕ is possible”, with the axiom
reading that if a formula is possible, it is necessarily possible. Possibility may be
defined in terms of necessity, ♢ϕ = ¬□¬ϕ, that is, a formula is possible when
it’s not necessarily false. The above version of the axiom, with a single modal
operator, is classically equivalent and more suited for use in epistemic modal
logic.

If tautological formulae are necessary, and necessary formulae are true, it
might not be clear what we gain by adding the □ modality — what is the differ-
ence between the propositions □ϕ and ϕ? The answer is that modal logics are
used to model scenarios containing unknowns, where we may be in any one of
a number of possible worlds, where some formulae might be true, but cannot be
derived tautologically.

For example, our earlier statement “it is raining” is true on some days, but
false on others. In a mathematical game with hidden information, such as card
games or a prisoner dilemma, the state of the play may not be known by a
particular player — the truth of the statement “my opponent holds the Q♥
card” is contingent on the state. We add primitive formulae, called events, to the
logic depending on the scenario, whose truth value is a function of the precise
state of the world.

The traditional reading of □ϕ as “ϕ is necessary” can be modified, with dif-
ferent axioms selected, according to the scenario. In philosophy, moral obligation
may be studied with a deontic modal logic, where □ϕ is read “ϕ is obligatory”,
with ♢ϕ therefore meaning “ϕ is permitted”, and which lacks Axiom T — even
if an action is obligatory, it may not actually occur. In a temporal modal logic,

3.2. EPISTEMIC LOGIC AND RELATIONAL SEMANTICS 43

the modal operator refers to tense, one possible reading of □ϕ being “ϕ is true
at all times”, and ♢ϕ meaning “ϕ is true some of the time”. In this chapter, we
are concerned with epistemic modal logic [24, 33], where the modal operator is
written K ϕ with the interpretation “ϕ is known”.

3.2 Epistemic Logic and Relational Semantics

In this section, we will see how the S5 modal logic forms an epistemic logic,
appropriate for the modelling of knowledge. We will also discuss the traditional
semantics of modal logic, based on binary relations, and how these relations are
interpreted in epistemic logic.

We have a modal operator which can be applied to logical formulae, K ϕ

interpreted as “ϕ is known”, but known by whom? It could be a player in a
mathematical game, a computer on a network, or a Byzantine general planning
a coordinated attack on an enemy city [38]. We will not presume any particular
scenario, leaving the subject as an abstract agent. A natural extension is postu-
lating many such agents, each agent a having their own modal operator Ka, but
for now we will only consider a logic with one K operator.

The S5 modal logic introduced in Section 3.1 can be utilised to give an account
of an agent’s knowledge. Let us consider each rule, giving a brief justification for
how it is interpreted in epistemic logic.

• Knowledge Generalisation, if ` ϕ , then ` K ϕ

This is the necessitation rule of System K, called knowledge generali-
sation in the context of epistemic logic. It states that if ϕ is derivable,
then so is K ϕ. In other words, the agent is capable of using logic to derive
theorems.

This may seem an overly-strong assumption, tantamount to the agent
being a perfect logician. However, consider that in order for us to derive
K ϕ by knowledge generalisation, we must actually have a proof of ϕ. If
formula ψ is the statement of an unsolved problem in mathematics, such
as the Collatz conjecture, at present we can show neither K ψ nor K ¬ψ.

• Axiom K, K (ϕ⇒ ψ) ⇒ K ϕ⇒ K ψ

If both an implication and its premise are known, then so is its conclu-
sion. That is, the agent is capable of using modus ponens with their own
knowledge.

In cases where both ϕ and ϕ ⇒ ψ are theorems, then so is ψ, and
knowledge generalisation is sufficient to conclude K ψ. However, this rule

44 CHAPTER III. EPISTEMIC MODAL LOGIC

allows for the agent to apply logic to known events which are not derivable
tautologically.

• Axiom T, K ϕ⇒ ϕ

If a formula is known, it must actually be true in the present state of the
world. This is another strong assumption, but this is what distinguishes
knowledge from mere belief or opinion.

Belief can itself be expressed in doxastic modal logic, which might adopt
a weaker axiom of belief non-contradiction, that an agent cannot simulta-
neously believe a statement and its negation, ¬(B ϕ ∧ B ¬ϕ).

• Axiom 4, K ϕ⇒ K (K ϕ)

If a formula is known, then this knowledge is itself known. This is a
principle of self-reflection, that our agent is aware of their own knowledge.

• Axiom 5, ¬K ϕ⇒ K (¬K ϕ)

If a formula isn’t known, then this lack of knowledge is itself known. This
is a negative version of Axiom 4, when the agent doesn’t know something,
they at least know they do not know it.

When these two axioms are taken together, the agent is perfectly intro-
spective, aware of both what they know and what they don’t. This could
be called a Socratic principle — “I know that I know nothing”.

The relational semantics of modal logic, and therefore epistemic logic, was
originally devised by Saul Kripke, who proved it sound and complete with respect
to the axiomatic system [37]. The semantics operates on a set of possible worlds,
relating them according to the knowledge of the agent.

Formally, a Kripke frame is a pair 〈S, R〉 where S is a set of world states and
R is a binary relation on states. A Kripke frame with an arbitrary relation R is
sufficient to model the modal logic System K, but additional properties can be
imposed on the relation which correspond to additional axioms. The following
the properties are required of R to model the modal logic S5.

• Knowledge Generalisation, if ` ϕ , then ` K ϕ

Modelled by any relation R.

• Axiom K, K (ϕ⇒ ψ) ⇒ K ϕ⇒ K ψ

Modelled by any relation R.

• Axiom T, K ϕ⇒ ϕ

Modelled when R is reflexive, w R w.

• Axiom 4, K ϕ⇒ K (K ϕ)

Modelled when R is transitive, w R v ⇒ v R u⇒ w R u.

3.3. TYPE-THEORETIC EMBEDDING 45

• Axiom 5, ¬K ϕ⇒ K (¬K ϕ)

Modelled when R is Euclidean, w R v ⇒ w R u⇒ u R v.

A reflexive, Euclidean relation must also be symmetric, and a symmetric,
transitive relation is Euclidean, so S5 is modelled precisely when R is an equiv-
alence relation. We omit the full details of the correspondence here as a version
of it, embedded in type theory, is formally proven in Section 3.5.

Intuitively, the relation, called an accessibility relation or knowledge relation
in the context of epistemic logic, relates the states of the world that agent’s
knowledge cannot distinguish. That is, two states w and v are related, w R v,
when they differ only by the truth of those formulae ϕ for which ¬K ϕ.

If ∀(w∈S)∃(v∈S) w R v ⇒ w = v, that is, each state is disconnected from all
others, beside itself reflexively, the agent modelled by R is omniscient, able to pre-
cisely determine the state of the world. If the agent were then to forget an event ϕ,
the relation would expand to form equivalence classes relating those states which
only differ by the truth of ϕ. In the extreme case, when ∀(w∈S)∀(v∈S) w R v,
when R is strongly connected, the agent is solipsistic, completely ignorant of the
world around them, only knowing tautologies through knowledge generalisation
and the state of their own knowledge though Axioms 4 and 5.

3.3 Type-Theoretic Embedding

We now return to a type-theoretic setting to define an embedding of epistemic
modal logic into the logic of type theory. Broadly, there are two methods to
embed one logic into another [51], serving different purposes depending on the
desired application.

In a deep embedding, the syntax of the object logic is defined directly in the
metalogic. For example, a deep embedding of epistemic modal logic in type theory
could utilise an inductive type to define its syntax trees.

inductive Syntax : Type

⊥ : Syntax

¬ : Syntax → Syntax

∨ : Syntax → Syntax → Syntax

K : Syntax → Syntax

To keep the eliminator for the inductive type as simple as possible, only the
essential connectives are defined as its constructors. The others may be defined

46 CHAPTER III. EPISTEMIC MODAL LOGIC

in terms of these using standard classical equivalences.

> : Syntax

> = ¬⊥
∧ : Syntax → Syntax → Syntax

ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)

⇒ : Syntax → Syntax → Syntax

ϕ⇒ ψ = ¬ϕ ∨ ψ
⇔ : Syntax → Syntax → Syntax

ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

An axiomatic system is specified over the syntax by defining a relation to
establish the valid derivations of the logic. Here, an inductive type family indexed
by both Syntax and List Syntax is used, the list representing prior assumptions.

inductive Derives : List Syntax → Syntax → Type

K-gen : Π(ϕ:Syntax) Derives [] ϕ→ Derives [] (K ϕ)

axiomT : Π(ϕ:Syntax) Derives [] (K ϕ⇒ ϕ)

axiomK : Π(ϕ,ψ:Syntax) Derives [] (K (ϕ⇒ ψ) ⇒ K ϕ⇒ K ψ)

axiom4 : Π(ϕ:Syntax) Derives [] (K ϕ⇒ K (K ϕ))

axiom5 : Π(ϕ:Syntax) Derives [] (¬K ϕ⇒ K (¬K ϕ))

. . .

A closed term of type Derives ∆ ϕ is a proof tree for the derivation of ∆ ` ϕ
in epistemic logic. Only the additional rules of epistemic logic are shown above,
but all of the rules for the base propositional logic will also need be included in
the relation.

This style of embedding is appropriate for studying the metatheoretic prop-
erties of the logic [39]. An interpretation function may be defined, mapping from
Syntax to a semantic model, with soundness and completeness results able to
be stated and proved in the metalogic of type theory by structural induction.
However, proving theorems of the object logic using a deep embedding can be
cumbersome — the rules for both the object logic and the metalogic must be
observed.

Alternatively, a shallow embedding may be used if the objective is theorem
proving in the object logic. The metalogic is used as a semantic model of the
object logic — rather than confining syntax trees to a single type, the connectives
of the metalogic are used to encode them. This allows for the full feature set of
the metalogic to be brought to bear in embedded proofs [12].

The rest of this chapter is concerned with a shallow embedding of epistemic
logic in type theory. We will see how type-theoretic features such as type families
and, in Chapter IV, coinduction may be used to define the rules of epistemic logic
at a higher level than is possible with a deep embedding.

The embedding is based on the concept of possible worlds, so we fix a type

3.3. TYPE-THEORETIC EMBEDDING 47

to represent these worlds, State : Type. A formula in the syntax of epistemic
logic may be interpreted as true in some worlds but false in others, so embedded
formulae are events, predicates on states, encoded as type families indexed by
State.

Definition 3.3.1. An event is a type family indexed by the type of possible
worlds.

Event : Type

Event = State → Type

As a reminder, to ensure consistency, since both State and Type are used in its
definition, there are constraints on which type universe Event itself inhabits. Its
level must be at least as high as the universe of State and strictly higher than the
universe that is the codomain of the type family, with the actual level being the
least value which satisfies both constraints. With this noted, we shall continue
being implicit about levels in future definitions — the Agda formalisation in
Appendix A details them in full.

The syntax of a propositional logic is built atop the constructs of type theory.
The constants are constant type families, while the connectives are functions
combining type families using the type formers introduced in Chapter II.

Definition 3.3.2. Event constants and connectives.

⊥ : Event

⊥ = λ(w : State). 𝟘
> : Event

> = λ(w : State). 𝟙
¬ : Event → Event

¬ϕ = λ(w : State). ϕ w → 𝟘

∨ : Event → Event → Event

ϕ ∨ ψ = λ(w : State). ϕ w + ψ w

∧ : Event → Event → Event

ϕ ∧ ψ = λ(w : State). ϕ w × ψ w

⇒: Event → Event → Event

ϕ⇒ ψ = λ(w : State). ϕ w → ψ w

⇔: Event → Event → Event

ϕ⇔ ψ = λ(w : State). ϕ w ↔ ψ w

An event may be seen set-theoretically as the subset of states where the event
occurs. With this view, applying an event to a state, ϕ w, is obtaining the truth
assignment of w ∈ ϕ. The constants ⊥ and > are the empty and universal sets, ¬
is the complement, with ∨, ∧, and ⇒ being the union, intersection, and exponent,
respectively.

We can also define predicates and relations over events. Rather than repre-
senting connectives in the syntax of the object logic, these correspond to metathe-
oretic statements — a shallow embedding allows these to coexist in the same
language.

48 CHAPTER III. EPISTEMIC MODAL LOGIC

Definition 3.3.3. Event predicates and relations.

∀∀ : Event → Type

∀∀ϕ = Π(w:State) ϕ w

⊆ : Event → Event → Type

ϕ ⊆ ψ = ∀∀(ϕ⇒ ψ)

≈ : Event → Event → Type

ϕ ≈ ψ = ∀∀(ϕ⇔ ψ)

The statement ∀∀ϕ states that ϕ is a tautology in the object logic, true in
every possible world. Continuing the set theory analogy, it means that ϕ is the
universal set, with w ∈ ϕ for any state w. The tautological implication, ϕ ⊆ ψ, is
the subset relation, whenever w ∈ ϕ, then w ∈ ψ. Two events are propositionally
equivalent, ϕ ≈ ψ, when this holds bidirectionally, being equal sets.

One advantage of the shallow embedding style is immediately apparent. As
we have defined the connectives of the embedded propositional logic using those
of type theory, their properties follow straightforwardly with little extra effort.
For example, unwrapping the definitions in ϕ ∧ ψ ⊆ ψ ∧ ϕ, it can be seen to be
nothing more than the type-theoretic theorem that products are commutative,
specialised to type families ϕ and ψ.

Π(w:State) ϕ w × ψ w → ψ w × ϕ w

This embedding is enough to begin modelling some basic scenarios in epistemic
logic. For example, imagine that a coin has been tossed and a six-sided die rolled.
Our chosen type of states should at least distinguish these primitive events.

CH “the coin landed heads-side up”
CT “the coin landed tails-side up”

D1 “the die rolled a 1”
...

D6 “the die rolled a 6”

Then, for example, D2 ∨ D4 ∨ D6 is the event that occurred in those states
where the die rolled an even number. We would also expect certain statements
like ∀∀¬(CH ∧CT) to hold, so there cannot be inconsistent states where the coin
or die give multiple outcomes. One possible choice of states for this scenario is
State = Fin 2 × Fin 6, using finite types to represent the outcomes for the coin
and die independently.

Notably absent, however, are any knowledge modalities. Being unary opera-
tors in the syntax of the embedded epistemic logic, it is clear that they should
have type Event → Event. Their semantics will be defined formally in Section 3.4,
but for now assume we do have a function Ka representing the knowledge of some
agent a. In our example, we now have additional events to model, Ka D1, Ka D2,
and so on, but also more complex events like ¬(Ka CH ∨Ka CT), “agent a doesn’t

3.4. KNOWLEDGE OPERATOR SEMANTICS 49

know on which side the coin landed”. The state type Fin 2 × Fin 6 is no longer
rich enough to encode this detail.

If we then include another agent b with associated knowledge operator Kb,
we also have events about one agents knowledge of the other’s knowledge to
contend with. For example, the event Ka (Kb D3) ∧ ¬Kb (Ka (Kb D3)) states
“agent a knows that agent b knows the die rolled a 3, but b doesn’t know that a
knows this”. Due to this added complexity, it is simpler to only talk abstractly
about states, postulating properties such as the coin consistency principle stated
above, rather than giving State a concrete definition which must distinguish the
knowledge of agents.

3.4 Knowledge Operator Semantics

We now come to defining what it means to be a knowledge operator in our
embedding. Instead of defining a function K : Event → Event directly as we
have with the other syntactic constructs of epistemic logic, we shall define them
semantically, stating a set of properties a function must satisfy in order to be
appropriate to represent the knowledge of an agent. The semantics will be based
on the rules of the S5 system of modal logic introduced in Sections 3.1 and 3.2,
defined in the syntax of our embedded epistemic logic.

∀∀ϕ→ ∀∀K ϕ (Knowledge Generalisation)
K (ϕ⇒ ψ) ⊆ K ϕ⇒ K ψ (Axiom K)

K ϕ ⊆ ϕ (Axiom T)
K ϕ ⊆ K (K ϕ) (Axiom 4)

¬K ϕ ⊆ K (¬K ϕ) (Axiom 5)

We are not limited to the finitary syntax of the object logic, however. We are
able to make stronger semantic statements which may involve entailments to and
from potentially infinite sets of formulae.

Recall that a type family indexed by type T is a function T → Type which
may be thought of as a set of types. In the same way, we define event families
as functions T → Event, which are sets of formulae in epistemic logic. In full, an
event family is a function T → State → Type, a binary type family indexed by T
and State.

Definition 3.4.1. An event family Φ semantically entails an event family Ψ

when, in every state, if Φ holds universally, at all of its indices, then Ψ must also

50 CHAPTER III. EPISTEMIC MODAL LOGIC

hold universally.

⊨ : (A→ Event) → (B → Event) → Type

Φ ⊨ Ψ = Π(w:State) (Π(a:A) Φ a w) → (Π(b:B) Ψ b w)

By composing an event family Φ with a function K : Event → Event, we form a
new event family, indexed by the same type, where K is mapped onto the family.
When Φ ⊨ Ψ implies K ◦Φ ⊨ K ◦Ψ, we say that K preserves semantic entailment.
We require that knowledge operators preserve semantic entailment in place of the
knowledge generalisation and the Axiom K property.

In what follows, we are most often concerned about entailments from an event
family into a single event, instantiating Ψ with a constant event family, λb. ψ.
We shall write this without the extraneous λ-term, Φ ⊨ ψ.

Definition 3.4.2. A knowledge operator is any function K : Event → Event

satisfying preservation of semantic entailment in addition to the S5 properties
Axiom T, Axiom 4, and Axiom 5. That is, the type of knowledge operators is
defined as the following dependent tuple type.

KOp : Type

KOp = Σ(K:Event→Event) Π(Φ:Event→Type) Π(ψ:Event) Φ ⊨ ψ → K ◦ Φ ⊨ K ψ

× Π(ϕ:Event) K ϕ ⊆ ϕ

× Π(ϕ:Event) K ϕ ⊆ K (K ϕ)

× Π(ϕ:Event) ¬K ϕ ⊆ K (¬K ϕ)

Though not explicitly included in their definition, it can be shown that knowl-
edge operators retain knowledge generalisation and the Axiom K property. In
each case, this follows from the preservation of semantic entailment by choosing
an appropriate event family.

Theorem 3.4.3. Knowledge operators satisfy knowledge generalisation, ∀∀ϕ →
∀∀K ϕ.

Proof. Unfolding ∀∀ϕ→ ∀∀K ϕ according to Definition 3.3.3, we are to prove the
statement (Π(w:State) ϕ w) → (Π(v:State) K ϕ v). We therefore proceed by assuming
that ϕ holds in any state, and continue to show K ϕ v for an arbitrary state v.

This is equivalent to the nullary entailment K ◦ elim𝟘 ⊨ K ϕ, from an event
family indexed by the empty type, 𝟘 → Event. Applying preservation of semantic
entailment, we have to show that elim𝟘 ⊨ ϕ, whose conclusion is proved by our
original assumption that ϕ holds universally.

Theorem 3.4.4. Knowledge operators satisfy Axiom K, K (ϕ ⇒ ψ) ⇒ K ϕ ⇒
K ψ.

3.5. CORRESPONDENCE WITH RELATIONAL SEMANTICS 51

Proof. The theorem statement K (ϕ⇒ ψ) ⊆ K ϕ⇒ K ψ is judgementally equal to
Π(w:State) K (ϕ⇒ ψ) w → K ϕ w → K ψ w. We assume hypotheses K (ϕ⇒ ψ) w

and K ϕ w towards the goal K ψ w.
Define the event family B = elim+ (elim𝟙 (ϕ ⇒ ψ)) (elim𝟙 ϕ) : 𝟚 → Event,

indexed by the Booleans. Applying preservation of semantic entailment with B,
it suffices to show B ⊨ ψ and Π(b:𝟚) K (B b) w, the latter of which is simply a
pairing of our hypotheses.

To prove B ⊨ ψ, we may assume a dependent function of type Π(b:𝟚) B b w

and use it to obtain a value of type ψ w. Applying the function to true and false,
we have ϕ w → ψ w and ϕ w, respectively, yielding ψ w by modus ponens.

3.5 Correspondence with Relational Semantics

To prove the knowledge operator semantics correspond to the relational Kripke
semantics of epistemic logic, we define transformation functions between their
types. First, the type of Kripke frames is defined in a similar way to the knowledge
operator semantics, as a dependent tuple type collecting an equivalence relation
and its properties.

Definition 3.5.1. An equivalence relation over some type A is a binary type
family R : A→ A→ Type satisfying the properties of reflexivity, symmetry, and
transitivity.

EquivRel : Type → Type

EquivRel A = Σ(R:A→A→Type) Π(a:A) a R a

× Π(a,b:A) a R b→ b R a

× Π(a,b,c:A) a R b→ b R c→ a R c

A Kripke frame is an equivalence relation over the type of possible worlds,
Kripke = EquivRel State.

We will define the transformation from a function K : Event → Event to
a relation State → State → Type without considering the knowledge operator
and equivalence relation properties. Separately, we will demonstrate that if K

is a knowledge operator, then the transformation must endow the equivalence
relation properties on its output.

Definition 3.5.2. Transforming an event operator K, define the binary relation
which holds between states whose events are not distinguished by K. That is,
w R v when, K ϕ w and K ϕ v are propositionally equivalent for all ϕ.

52 CHAPTER III. EPISTEMIC MODAL LOGIC

If classical reasoning is admitted, only one direction of the equivalence is
sufficient, the other being derivable. For simplicity, this is the version of the
transformation which will be used going forward.

R[_] : (Event → Event) → State → State → Type

w R[K] v = Π(ϕ:Event) K ϕ w → K ϕ v

Note that, since this transformation is quantified over events, the resulting
type universe must be at a higher level than the one Event itself resides in.

Theorem 3.5.3. If K is a knowledge operator, then R[K] is an equivalence relation.

Proof. Reflexivity and transitivity are immediate from fact that the underlying
implication relation is a preorder — see Theorems 2.3.1 and 2.3.2.

To show symmetry, assume w R[K] v, which is Π(ϕ:Event) K ϕ w → K ϕ v accord-
ing to Definition 3.5.2. We are to prove the opposite direction for this implication,
so also assume K ϕ v and aim to show K ϕ w. Using the classical principle of
double-negation elimination, assume K ϕ w → 𝟘, towards a contradiction.

By Definition 3.3.2, this assumption is equal to (¬K ϕ) w. Since K is a
knowledge operator, using the Axiom 5 property we can derive K (¬K ϕ) w, from
which we can conclude K (¬K ϕ) v by instantiating our first hypothesis at index
¬K ϕ. By Axiom T, this implies (¬K ϕ) v, which can be written K ϕ v → 𝟘,
but this contradicts our assumption of K ϕ v. Therefore, K ϕ w is proved by
contradiction.

We now come to defining the opposite transformation, from a binary relation
R : State → State → Type into an operator Event → Event.

Definition 3.5.4. Transforming a binary relation R, define the event operator
whose knowledge is preserved by R. That is, K ϕ holds in state w when ϕ holds
in all states that are related to w.

K[_] : (State → State → Type) → Event → Event

K[R] ϕ w = Π(v:State) w R v → ϕ v

We demonstrate each knowledge operator property of K[R] only assuming the
relevant equivalence relation properties in each case.

Lemma 3.5.5. Without any constraints on the relation, K[R] preserves semantic
entailment.

Proof. Assume for some event family Φ : A→ Event and event ψ that Φ ⊨ ψ. We
want to reach the conclusion K[R] ◦ Φ ⊨ K[R] ψ, which, applying Definitions 3.4.1

3.5. CORRESPONDENCE WITH RELATIONAL SEMANTICS 53

and 3.5.4, is the following statement.

Π(w:State) (Π(a:A) Π(v:State) w R v → Φ a v) → Π(v:State) w R v → ψ v

With additional hypotheses (Π(a:A) Π(v:State) w R v → Φ a v) and w R v, we
need to show ψ v. This follows from the original assumption of Φ ⊨ ψ if we can
show Φ a v. But this is proved by our first additional hypothesis, instantiated at
indices a and v, as we have already assumed w R v.

Lemma 3.5.6. When R is reflexive, K[R] satisfies Axiom T.

Proof. Assume K[R] ϕ w with the goal of proving ϕ w. By Definition 3.5.4, the
assumption expands to Π(v:State) w R v → ϕ v, so instantiate it at w to obtain
w R w → ϕ w. Our desired ϕ w therefore follows from the reflexivity of R.

Lemma 3.5.7. When R is transitive, K[R] satisfies Axiom 4.

Proof. Assume K[R] ϕ w, which, as above, is Π(v:State) w R v → ϕ v. We want to
reach the conclusion K[R] (K[R] ϕ) w, which is judgementally equal to the following.

Π(v:State) w R v → Π(u:State) v R u→ ϕ u

Assume w R v and v R u and use transitivity to obtain w R u. The result
ϕ u is then proved by applying the original assumption at index u.

Lemma 3.5.8. When R is symmetric and transitive, K[R] satisfies Axiom 5.

Proof. Assume ¬K[R] ϕ w. After unfolding K[R] (¬K[R] ϕ) w, we are to derive a
contradiction.

Π(v:State) w R v → (Π(u:State) v R u→ ϕ u) → 𝟘

If we can prove K[R] ϕ w, which is judgementally equal to Π(t:State) w R t→ ϕ t,
this will contradict our assumption. To this end, assume additional hypotheses
w R v, w R t, and Π(u:State) v R u→ ϕ u, setting out to prove ϕ t.

Using symmetry and transitivity with the first two of these, we derive v R t.
Then, applying the third hypothesis at index t reaches the desired result.

Theorem 3.5.9. When R is an equivalence relation, K[R] is a knowledge operator.

Proof. Aggregating Lemmas 3.5.5 to 3.5.8 gives the full theorem.

Theorems 3.5.3 and 3.5.9 show that transforming knowledge operators and
equivalence relations always yields equivalence relations and knowledge opera-
tors, respectively. For a complete correspondence between the two semantics, we

54 CHAPTER III. EPISTEMIC MODAL LOGIC

furthermore want to show that the transformations are inverse, that knowledge
operators and equivalence relations are isomorphic.

The isomorphism will be established up to propositional equivalence. For
example, we won’t show K ≡ K[R[K]], using propositional equality to state they
are actually identical objects. Rather, we will show that the types K ϕ w and
K[R[K]] ϕ w are coinhabited — if either can be proved, then so can the other.

Theorem 3.5.10. When R[_] is applied to a knowledge operator, K[_] is its
inverse, up to propositional equivalence. That is, K ϕ ≈ K[R[K]] ϕ.

Proof. The left-to-right direction is K ϕ ⊆ K[R[K]] ψ, so assume K ϕ w. The
conclusion is judgementally equal to the following statement.

Π(v:State) (Π(ψ:Event) K ψ w → K ψ v) → ϕ v

With the additional assumption of Π(ψ:Event) K ψ w → K ψ v instantiated at
ϕ, we can derive K ϕ v, and then ϕ v follows from the Axiom T property.

For the right-to-left direction, assume K[R[K]] ϕ w — this is the same as the
conclusion for the left-to-right direction, so its full definition is above. To show
K ϕ w, we will use preservation of semantic entailment using as event family
all those events which are known in w. Formally, we define the event family
Φ = λ(p : Σ(ψ:Event) K ψ w). K (elimΣ (λψ. λk. ψ)). It is indexed by dependent
pairs, 〈ψ, k〉, where k is a proof of K ψ w, with the output being the event K ψ.

To see that our premise K[R[K]] ϕ w implies the entailment Φ ⊨ ϕ, assume
Π(p:Σ(ψ:Event) K ψw) Φ p v. Then, given a proof k : K ψ w, we can instantiate the
assumption at index 〈ψ, k〉, yielding Φ k v, which is K ψ v. Applying the premise
at event ϕ therefore proves ϕ v.

Finally, we must show Π(p:Σ(ψ:Event) K ψw) (K◦Φ) p w. Given an arbitrary index
〈ψ, k〉 where k : K ψ w, this is K (K ψ) w, so we apply the Axiom 4 property to
the second element of the pair.

Theorem 3.5.11. When K[_] is applied to an equivalence relation, R[_] is its
inverse, up to propositional equivalence. That is, w R v ↔ w R[K[R]] v.

Proof. In the left-to-right direction, expanding only the outer transformation, we
want to demonstrate that the knowledge information of K[R] can be transported
between states related by R.

w R v → Π(ϕ:Event) K[R] ϕ w → K[R] ϕ v

But, in fact, this is an instance the Axiom 4 property specialised to K[R],
whose use is justified by Theorem 3.5.9. This can be seen by selectively expanding

3.5. CORRESPONDENCE WITH RELATIONAL SEMANTICS 55

definitions in the statement K[R] ϕ ⊆ K[R] (K[R] ϕ).

Π(w:State) K[R] ϕ w → Π(v:State) w R v → K[R] ϕ v

For the right-to-left direction, assume w R[K[R]] v. After fully-unfolding, this
is judgementally equal to the following statement.

Π(ϕ:Event) (Π(u:State) w R u→ ϕ u) → Π(u:State) v R u→ ϕ u

Instantiating with event ϕ = λt. w R t and state v, its conclusion becomes
our desired w R v.

(Π(u:State) w R u→ w R u) → v R v → w R v

We need only provide the identity function id(wRu) and a proof of the reflexive
property, v R v.

This isomorphism justifies working with either representation of knowledge
equivalently, whichever is more convenient at each point. Given a knowledge op-
erator or an equivalence relation over states, we can leverage our transformations
to obtain the other, complete with all of its expected properties, and preserving
the truth value when transforming back.

In Chapter IV, we shall work with the shallow embedding defined in this chap-
ter to define the concept of common knowledge. A type of agents will be assumed,
with an equivalence relation postulated for each. The agents’ knowledge opera-
tors are defined directly using the K[_] transformation, and the correspondence
between the two semantics will be essential.

56

57

Chapter IV

Coinductive Common Knowledge

In this chapter, we introduce the concept of common knowledge in epistemic modal
logic with multiple agents, and show how the relational semantics is extended to
support the new operator. We will then use the embedding defined in Chapter III
to define a common knowledge operator directly, using the feature of coinductive
types in type theory.

This coinductive common knowledge operator will be shown to correspond to
the intuitive notion of iterated universal knowledge. Furthermore, the common
knowledge operator induced by the relation semantics will also be defined in the
embedding, and proved equivalent to the coinductive definition.

An Agda formalisation of both definitions for common knowledge and their
equivalence is included in Appendix A.3

4.1 Background

Common knowledge is a concept in epistemic logic when it is extended to more
than one agent. If a fact ϕ is common knowledge among the agents, it not only
implies that it is known universally, but also that the agents can reason about
each others’ knowledge of ϕ to an arbitrary degree. While common knowledge
was first given a mathematical definition by Robert Aumann [2], the notion was
discussed much earlier in the philosophical literature [41].

Assumptions of common knowledge permeate society. For example, it can be
assumed that it is common knowledge among UK drivers that they are to drive
on the left side of the road. Not only do drivers assume that all other drivers
know this, they also assume that all drivers assume this of all other drivers, and
so on. If it were announced that the nation would suddenly switch to driving
on the right, common knowledge of this fact would have to be established before
drivers could feel reasonably safe on the road again.

58 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

Formally, in the syntax of epistemic logic, given a set of agents A, there is
a modal operator Ka for each agent a ∈ A, and we have new modal operators
for universal knowledge, EK read “everyone knows”, and for common knowledge,
CK. Universal knowledge of ϕ is defined as the conjunction of the knowledge for
all agents, EK ϕ =

∧
a∈A Ka ϕ, while common knowledge of ϕ is understood as an

infinite conjunction, CK ϕ =
∧
n∈ℕ EK

n ϕ, combining all finite iterations of EK [4].
That is, from an assumption of CK ϕ, we can derive EK ϕ, and therefore Ka ϕ for
any agent a, as well as EK (EK ϕ), EK (EK (EK ϕ)), and so on ad infinitum.

Let us explore the semantics of common knowledge in the context of a famous
logic puzzle, known as the Blue Eyes Puzzle or the Muddy Children Puzzle, among
other variants. The following is a rephrasing of the first version I heard, from
Randall Munroe’s XKCD website [46], but the puzzle was widely shared as at
least as early as the 1950s [10, 26].

A group of logicians are performing an experiment on a remote island.
Every night, a ferry arrives which will allow them to leave, but only
those who can accurately determine the colour of their eyes are be
allowed to board. While every logician does want to leave, they are
committed to the experiment and will never guess their eye colour,
only leaving when they can be certain by logical deduction. Due to
the experimental parameters, the logicians cannot communicate in
any way, but each is able to see the others, and each trusts in the
deduction ability of the others.

One day, impatient after no logician has made an attempt to leave,
the experiment organiser makes an announcement, “at least one of
you has blue eyes”. In fact, there are three total blue-eyed logicians,
and everyone already knows the fact that was announced — those
without blue eyes can see the three with blue eyes, and each of those
three can see two others. Nevertheless, all three blue-eyed logicians
leave on the third ferry after the announcement. Why?

The puzzle involves common knowledge in two ways. First, we may assume
that the setup of the puzzle is common knowledge among all the logicians. For
example, each will leave the island when deducing their own eye colour, but they
also assume this of the others, and assume that this is common knowledge. This
is similar to Aumann’s assumption of common knowledge of rationality in game
theory [3] — each player will maximise their own payoff, assumes the other players
will do the same, and that this is common knowledge.

Second, when the announcement is made, it might initially seem that no ad-
ditional information is given since the statement was already known universally.

4.1. BACKGROUND 59

However, assuming the announcement is trusted, and the trust is itself common
knowledge, what was universal knowledge before the announcement becomes com-
mon knowledge after the announcement.

Let ϕ be the statement of the announcement, that there is at least one blue-
eyed logician. Since each logician can see at least two others with blue eyes, and
the rationality of the logicians is common knowledge, they are all able to deduce
EK ϕ before the announcement. However, after the announcement, CK ϕ holds
and only then are they able to make the crucial deduction, EK (EK ϕ). This can
be generalised by the following inductive argument.

Theorem 4.1.1. When there are n ≥ 1 blue-eyed logicians, they will all leave on
the nth ferry after the announcement.

Proof. If there is only one blue-eyed logician, before the announcement he doesn’t
know ϕ. After the announcement, EK ϕ holds, so the blue-eyed logician can
deduce ϕ. Seeing no one else with blue eyes, the statement must refer to him, so
he leaves on the first ferry.

If there are two blue-eyed logicians, they each know ϕ before the announce-
ment, but not EK ϕ — not knowing they have blue eyes themselves, they each
reason that they could be in a possible world corresponding to one blue-eyed
case. After the announcement, EK (EK ϕ) holds, so each can deduce EK ϕ. In
particular, they each now know that ϕ is known by the other. The next day,
upon seeing the other still present, they rule out that possible world, leaving only
the one where they both have blue eyes, so they both leave on the second ferry.

In general, when there are n ≥ 2 blue-eyed logicians, each of them knows
EKn−2 ϕ from their own observations, but EKn−1 ϕ isn’t universally known. After
the announcement, EKn ϕ holds, so they can now deduce EKn−1 ϕ. Given this,
all blue-eyed logicians reason by inductive hypothesis that if there are only n− 1

of them, they will all leave on night n − 1. However, n − 1 nights pass without
anyone leaving, falsifying the premise of the hypothesis — there must actually be
at least n blue-eyed logicians. Only seeing n− 1, they each conclude there must
be exactly n, which must include them, therefore all n leave the next night, on
the nth ferry.

Recall that in the semantics of epistemic logic, the knowledge of an agent
may be modelled by an equivalence relation over possible worlds, called a Kripke
frame. In multi-agent scenarios, each agent has their own relation independent
of the others. We can describe the knowledge content of the puzzle scenario by
giving a knowledge relation for each logician.

The relevant information about the state of the world is whether each logician
has blue eyes or not. We can represent this information as a tuple of Booleans,

60 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

for example 〈>,>,>〉 for three total logicians, each of whom have blue eyes. In
this state, since the first logician doesn’t know his own eye colour, he could be in
state 〈⊥,>,>〉 as far as he is aware, so these states are related in the model, but
he can distinguish states which differ by the other components, so these are not
related.

In general, each logician’s knowledge relation corresponds to an axis of an
n-dimensional cube [24]. For the three-logician case, this is can be shown by the
following three graphs, leaving the reflexive connections implicit.

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

Common knowledge is itself interpreted with its own knowledge relation. An
event which is common knowledge must be known universally, so states must be
related by the common knowledge relation when they are related by any one of
the individual agents’ knowledge relations. Set-theoretically, this is the union
of all agents’ relations, intuitively taking the union of their ignorance about the
world. For the above three-logician example, this operation completes the cube.

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

This is the relational interpretation of the universal knowledge operator, EK.
Observe that states with two or more blue-eyed logicians are not directly con-
nected to 〈⊥, ⊥, ⊥〉, which corresponds to the fact that everyone already knows
there is at least one blue-eyed logician in these states, as is stated in the puzzle
text. The relation is reflexive and symmetric, but not transitive, which implies
that the corresponding operator lacks the introspective properties corresponding
to Axioms 4 and 5 of the S5 modal logic. From only an assumption of EK ϕ, we
cannot in general conclude EK (EK ϕ).

To get a full accounting of common knowledge, which includes the Axiom
4 and 5 properties, we further take the transitive closure. In the example, the

4.1. BACKGROUND 61

relation will be strongly connected, all states in a single equivalence class. It is as
if there is a hypothetical, maximally-ignorant agent whose knowledge relation is
the common knowledge relation, unable to observe a difference between any pair
of states.

However, following the announcement which makes state 〈⊥,⊥,⊥〉 impossible,
the connections from this state in the logicians’ individual relations are severed.
In states where there is a single blue-eyed logician, that logician is now able to
precisely determine the state, while the other two logicians still consider another
state possible.

Constructing the updated common knowledge relation by union and transitive
closure, state 〈⊥,⊥,⊥〉 now forms its own equivalence class. This indicates that
it has become common knowledge that there is at least one blue-eyed logician
in the other states. Even our hypothetical agent can now distinguish this state
from the others. In the following graph for this relation, both the reflexive and
transitive connections are left implicit.

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

The first night after the announcement, world states with only one blue-eyed
logician become impossible from the perspective of logicians in states with at least
two. In these states, it has therefore become common knowledge that there are at
least two blue-eyed logicians. The common knowledge relation now has singleton
equivalence classes for all states with fewer than two blue-eyed logicians.

〈⊥,⊥,⊥〉

〈⊥,⊥,>〉

〈⊥,>,⊥〉

〈⊥,>,>〉

〈>,⊥,⊥〉

〈>,⊥,>〉

〈>,>,⊥〉

〈>,>,>〉

This pattern continues after the second night, with the entire world state
becoming common knowledge in the three-logician case, each state in its own

62 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

singleton equivalence class. In the general case with arbitrarily many logicians, n
of which have blue eyes, common knowledge of the value of n is established n− 1

nights after the announcement.

4.2 Coinductive Definition
We now return to the embedding of epistemic logic into type theory defined
in Chapter III. To define a common knowledge operator in the embedding, we
need to add type of agents. We postulate this type abstractly, making only the
assumption that it is non-empty. That is, we assume an element 〈Agent, agent〉
of type Σ(Agent:Type) Agent. We therefore have a type, Agent, which has at least
one concrete element, agent : Agent.

The isomorphism between the knowledge operator semantics and the rela-
tional semantics was established, so we may equivalently work with either rep-
resentation. Here we assume equivalence relations as primitive, each agent a
equipped with ∝a : EquivRel State.

Definition 4.2.1. The agents’ knowledge operators are defined by the isomor-
phism, with Theorem 3.5.9 validating they have the appropriate properties.

K : Agent → Event → Event

Ka = K[∝a]

With a type of agents now equipped with knowledge operators, universal
knowledge among them has an obvious definition.

Definition 4.2.2. An event ϕ is universal knowledge when “everyone knows” ϕ.
That is, each agent knows ϕ individually.

EK : Event → Event

EK ϕ w = Π(a:Agent) Ka ϕ w

The EK operator is not a full knowledge operator. It preserves semantic
entailments and satisfies the Axiom T property, but not the two introspective
properties corresponding to Axioms 4 and 5. Intuitively, the relational repre-
sentation of the operator is the union of all agents’ individual relations — it is
reflexive and symmetric, but not necessarily transitive.

Lemma 4.2.3. EK preserves semantic entailment, Φ ⊨ ψ → EK ◦ Φ ⊨ EK ψ.

Proof. Assume an event family Φ : T → Event such that Φ ⊨ ψ. Given hypothesis
Π(t:T) EK (Φ t) w, we need to show EK ψ w. By Definitions 4.2.1 and 4.2.2, this

4.2. COINDUCTIVE DEFINITION 63

is the following statement.

Π(a:Agent) Π(v:State) w ∝a v → ψ v

So we assume w ∝a v and apply the entailment Φ ⊨ ψ at index v, the goal
becoming Φ t v. From our earlier hypothesis, we know EK (Φ t) w, so can derive
Ka (Φ t) w by instantiating universal knowledge specialised to agent a.

Using Axiom 4 as a transportation principle as in Theorem 3.5.11, we can
transport this knowledge to state v as these states are bridged by w ∝a v. Since
Ka (Φ t) v, Axiom T validates Φ t v — if a knows Φ t at state v, the event must
actually occur there.

Lemma 4.2.4. EK satisfies Axiom T, EK ϕ ⊆ ϕ.

Proof. Given EK ϕ w, instantiate this at the agent constant to derive Kagent ϕ w.
The conclusion ϕ w then follows from the Axiom T property of agent’s knowledge
operator.

With universal knowledge defined, we can give common knowledge a definition
as an operator on events. The intuitive idea of common knowledge as the infinite
conjunction EK ϕ ∧ EK (EK ϕ) ∧ . . . can be realised directly using a coinductive
type.

Definition 4.2.5. Common knowledge of an event ϕ implies that it is universal
knowledge and, corecursively, common knowledge of the universal knowledge.

coinductive CK : Event → Event

introCK : Π(ϕ:Event) EK ϕ ∧ CK (EK ϕ) ⊆ CK ϕ

Expanding the type of the constructor using Definitions 3.3.2 and 3.3.3, it can
be seen that the canonical way to prove CK ϕ w is to provide proofs of EK ϕ w

and CK (EK ϕ) w collected as a pair.

introCK : Π(ϕ:Event) Π(w:State) EK ϕ w × CK (EK ϕ) w → CK ϕ w

This coinductive definition resembles that of infinite streams. They each have
only one constructor with a single recursive branch, carrying some additional
data at each node. However, the type of the data carried by streams is the same
at every node, where the common knowledge constructor is a dependent function
which changes the type at each node, each step having one more application of
EK than the previous.

Since a proof of CK ϕ is constructed from a conjunction, it is immediate that
either conjunct may be projected from the underlying product type.

64 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

Corollary 4.2.6. CK ϕ ⊆ EK ϕ

Corollary 4.2.7. CK ϕ ⊆ CK (EK ϕ)

A similar property to Corollary 4.2.7, swapping the operators in the conclu-
sion, states common knowledge of an event implies that it’s universally known
to be common knowledge. However, this is not immediate from the definition,
requiring a coinductive proof.

Lemma 4.2.8. CK ϕ ⊆ EK (CK ϕ)

Proof. In a coinductive proof of common knowledge, we may recursively use the
statement we are proving as long as its use is guarded by an application of con-
structor introCK to prevent circularity. We therefore have the coinductive hy-
pothesis Π(ϕ:Event) CK ϕ ⊆ EK (CK ϕ).

We assume CK ϕ w and, from Definitions 4.2.1 and 4.2.2, w ∝a v. From the
first assumption and Corollary 4.2.7, we obtain CK (EK ϕ) w. The conclusion is
the statement CK ϕ v, so apply introCK, thus requiring proofs for EK ϕ v and
CK (EK ϕ) v.

To show EK ϕ v from CK (EK ϕ) w, use Corollary 4.2.6 to reach EK (EK ϕ) w

and therefore its specialisation, Ka (EK ϕ) w. By the assumption of w ∝a v, we
use Axiom 4 to transport the knowledge of EK ϕ from state w to v.

To show CK (EK ϕ) v from CK (EK ϕ) w, guardedness is satisfied, so we may
use the coinductive hypothesis at index EK ϕ to obtain EK (CK (EK ϕ)) w and
its specialisation, Ka (CK (EK ϕ)) w. By the same reasoning as above, the known
event may then be transported to state v.

By repeatedly applying Corollary 4.2.7 followed by an application of Corol-
lary 4.2.6, we can show that EK can be iterated on ϕ any number of times
from an assumption of CK ϕ, which matches the intuition of common knowl-
edge as iterated universal knowledge. To demonstrate this formally, we define
the event family recCK ϕ, indexed by the natural numbers, which contains all
those events defined by iterating EK — recCK ϕ 0 = ϕ, recCK ϕ 1 = EK ϕ,
recCK ϕ 2 = EK (EK ϕ), and so on.

Definition 4.2.9. The event recCK ϕ n is defined by recursively iterating the
function EK n times over ϕ.

recCK : Event → ℕ → Event

recCK ϕ zero = ϕ

recCK ϕ (succ n) = recCK (EK ϕ) n

4.3. RELATIONAL DEFINITION 65

Theorem 4.2.10. The event CK ϕ semantically entails event family recCK ϕ.

Proof. Proceed by induction on the indices of event family recCK ϕ. The base
case is Π(ϕ:Event) CK ϕ ⊆ recCK ϕ 0, whose conclusion reduces to ϕ. Assume CK ϕ,
applying Corollary 4.2.6 to obtain EK ϕ, followed by the Axiom T property of
EK, Lemma 4.2.4, to conclude ϕ.

We have inductive hypothesis Π(ϕ:Event) CK ϕ ⊆ recCK ϕ n for the inductive
case. Assume CK ϕ and apply Corollary 4.2.7 to obtain CK (EK ϕ). Use the
inductive hypothesis at event EK ϕ to conclude recCK (EK ϕ) n, which is equal
to recCK ϕ (succ n).

We can also show the reverse entailment as another example of a coinductive
proof for common knowledge. Therefore the equivalence of event CK ϕ and event
family recCK ϕ is established.

Theorem 4.2.11. The event family recCK ϕ semantically entails event CK ϕ.

Proof. Assume, as the coinductive hypothesis, Π(ϕ:Event) recCK ϕ ⊨ CK ϕ. Then
assume Π(n:ℕ) recCK ϕ n and use introCK to construct a term of coinductive type
CK ϕ.

We need to provide a pair of proofs, the first of which, EK ϕ, is established by
applying our assumption at index 1. For the second, CK (EK ϕ), guardedness is
satisfied, so we apply the coinductive hypothesis at event EK ϕ. We then need to
show Π(n:ℕ) recCK (EK ϕ) n, which is the same as Π(n:ℕ) recCK ϕ (succ n), yielded
by applying the assumption at index succ n

Unlike the universal knowledge operator it’s based on, the coinductive com-
mon knowledge operator is a true knowledge operator, satisfying all required
properties. While each property may be proved directly, it is more convenient
to leverage the equivalence with the relational definition of common knowledge.
The knowledge operator proof will be shown with this equivalence in Section 4.4.

4.3 Relational Definition

The relational semantics of epistemic logic interprets common knowledge among
a group of agents as the equivalence relation that is the transitive closure of
the union of the individual agents’ relations. This notion can be defined in our
embedding directly as an inductive relation, denoted by ∝Agent. The knowledge
operator semantics then follows from Theorem 3.5.9 provided we show ∝Agent is
an equivalence relation.

66 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

Definition 4.3.1. The statement w ∝Agent v may be derived when there is an
agent a such that w ∝a v. Alternatively, it may be derived transitively.

inductive ∝Agent : State → State → Type

union∝Agent
: Π(a:Agent) Π(w,v:State) w ∝a v → w ∝Agent v

trans∝Agent
: Π(w,v,u:State) w ∝Agent v → v ∝Agent u→ w ∝Agent u

Definition 4.3.2. The relational common knowledge operator, rCK, is yielded
when the K[_] transformation is applied to relation ∝Agent.

rCK : Event → Event

rCK = K[∝Agent]

For rCK to be a knowledge operator, we must establish that ∝Agent is indeed
an equivalence relation. Transitivity is trivial, while reflexivity and symmetry
remain to be proved.

Lemma 4.3.3. Reflexivity, w ∝Agent w.

Proof. Since there is at least one agent, witnessed by agent, whose knowledge
relation is reflexive, we have w ∝agent w. Applying the union∝Agent

constructor lifts
this to w ∝Agent w, as desired.

Lemma 4.3.4. Symmetry, w ∝Agent v → v ∝Agent w.

Proof. Proceed by structural induction on the assumption of w ∝Agent v. We
have two cases to consider, the base case when the assumption is constructed by
union∝Agent

, and the inductive case when it is constructed by trans∝Agent
.

In the base case, there must be an agent a such that w ∝a v, and whose
knowledge relation is symmetric, so v ∝a w. Applying union∝Agent

shows v ∝Agent

w.
In the inductive case, we have assumptions w ∝Agent u and u ∝Agent v, each

with an inductive hypothesis, u ∝Agent w and v ∝Agent u, respectively. Recombin-
ing the inductive hypotheses in the opposite order with the trans∝Agent

constructor
therefore gives v ∝Agent w.

Theorem 4.3.5. ∝Agent is an equivalence relation.

Proof. Transitivity is by definition of trans∝Agent
, while reflexivity and symmetry

are shown in Lemmas 4.3.3 and 4.3.4.

Corollary 4.3.6. rCK is a knowledge operator.

4.4. COINDUCTIVE AND RELATIONAL EQUIVALENCE 67

In addition to the knowledge operator properties, rCK satisfies the additional
properties expected of an interpretation for common knowledge. These are useful
lemmas, corresponding to properties already shown for CK, which describe how
assumptions of rCK interact with EK.

Lemma 4.3.7. rCK ϕ ⊆ EK ϕ

Proof. Assume rCK ϕ w and w ∝a v, setting out to prove ϕ v. Using constructor
union∝Agent

with the second assumption, we obtain w ∝Agent v. By Definition 4.3.2,
the first assumption is equal to Π(v:State) w ∝Agent v → ϕ v, so applying this at
index v reaches the desired conclusion.

Lemma 4.3.8. rCK ϕ ⊆ rCK (EK ϕ)

Proof. Assume rCK ϕ w, w ∝Agent v, and v ∝a u. Using constructor union∝Agent

with the last assumption, we obtain v ∝Agent u, and then, by trans∝Agent
with this

and the second assumption, w ∝Agent u. Applying the first assumption, gives the
desired result, ϕ u.

Lemma 4.3.9. rCK ϕ ⊆ EK (rCK ϕ)

Proof. Assume rCK ϕ w, w ∝a v, and v ∝Agent u. As above, use the ∝Agent con-
structors with the second and third assumptions, then apply the first assumption
to conclude ϕ u.

4.4 Coinductive and Relational Equivalence
We now come to proving the equivalence of the two operators we have defined
for common knowledge, CK ϕ ≈ rCK ϕ. There is one final lemma we need which
provides a bridge between these two interpretations.

From Corollary 4.3.6, we know that the relational definition is a knowledge
operator, in particular satisfying Axiom 4, rCK ϕ ⊆ rCK (rCK ϕ). Recall that
this property, for the Ka operator, implied a principle which allowed the agent’s
knowledge in one state to be transported to another, provided that these states
were bridged by the agent’s knowledge relation. Since the relational common
knowledge operator is defined in the same way, using the K[_] transformation on
an equivalence relation, we have a corresponding transportation principle for it.

rCK ϕ w → w ∝Agent v → rCK ϕ v

If we can show that coinductive common knowledge can also be transported
across this relation, we have all we need to show the equivalence of the two
operators.

68 CHAPTER IV. COINDUCTIVE COMMON KNOWLEDGE

Lemma 4.4.1. Coinductive common knowledge can be transported across ∝Agent.
That is, CK ϕ w → w ∝Agent v → CK ϕ v.

Proof. Proceed by structural induction on w ∝Agent v. In the base case, w ∝Agent v

is constructed by union∝Agent
, so we need to show CK ϕ w → w ∝a v → CK ϕ v.

Assume CK ϕ w and w ∝a v, then we will utilise Lemma 4.2.8 rather than
directly proving CK ϕ v by coinduction. This tells us EK (CK ϕ) w, which can be
specialised Ka (CK ϕ) w. Using Axiom 4 to transport this knowledge to state v,
followed by Axiom T, we can conclude CK ϕ v.

In the inductive case, w ∝Agent v is constructed by trans∝Agent
, so we have

assumptions CK ϕ w, w ∝Agent u, and u ∝Agent v. The corresponding inductive
hypotheses are CK ϕ w → CK ϕ u and CK ϕ u→ CK ϕ v. We chain the inductive
hypotheses to conclude CK ϕ v.

Theorem 4.4.2. Coinductive and relational common knowledge are equivalent,
CK ϕ ≈ rCK ϕ.

Proof. For the left-to-right direction, assume CK ϕ w and w ∝Agent v, towards
the conclusion ϕ v. By Lemma 4.4.1, we derive CK ϕ v. Since we have not yet
proved CK is a knowledge operator, we cannot apply Axiom T directly. Instead,
we apply Corollary 4.2.6, to derive EK ϕ v, which has its own Axiom T principle,
shown in Lemma 4.2.4.

For the right-to-left direction, assume rCK ϕ w with the goal of showing
CK ϕ w. This direction is by coinduction, so apply the constructor introCK.

For the first field of the coinductive type, since we know rCK ϕ w, Lemma 4.3.7
tells us EK ϕ w. For the second field, use Lemma 4.3.8 to derive rCK (EK ϕ) w.
We can then use the coinductive hypothesis indexed with event EK ϕ to reach
CK (EK ϕ) w, as desired.

We will finally show that CK is itself a knowledge operator. This follows from
Theorem 4.4.2 and the status of rCK as a knowledge operator, Corollary 4.3.6.

Unfolding CK ϕ ≈ rCK ϕ according to Definitions 3.3.2 and 3.3.3, we can see
that it is a statement of propositional equivalence, Π(w:State) CK ϕ w ↔ rCK ϕ w.
If this were the stronger statement of propositional equality, we could appeal
to Theorem 2.5.6 to substitute CK by rCK and the proof would be immediate,
however propositional equivalence will only allow substitution between CK and
rCK when one of these is the top-level connective of a hypothesis or the conclusion
to be reached.

For example, to prove the Axiom 4 property, CK ϕ ⊆ CK (CK ϕ), after assum-
ing the premise, we may substitute the conclusion CK (CK ϕ) w by rCK (CK ϕ) w

using Theorem 4.4.2, but it will not allow direct substitution of the inner instance

4.4. COINDUCTIVE AND RELATIONAL EQUIVALENCE 69

of CK. To make further progress with the proof, we must make use of the defini-
tion and properties of rCK. We proceed in this fashion for each of the knowledge
operator properties, making liberal use of Theorem 4.4.2 to be able to utilise the
properties of rCK.

Lemma 4.4.3. CK preserves semantic entailment, Φ ⊨ ψ → CK ◦ Φ ⊨ CK ψ.

Proof. For an arbitrary event family Φ : T → Event, assume hypotheses Φ ⊨ ψ

and Π(t:T) CK (Φ t) w. We are to prove CK ψ w, but due to Theorem 4.4.2 we
can equivalently prove rCK ψ w. We may therefore assume w ∝Agent v with the
goal becoming ψ v.

Applying the first hypothesis, it is sufficient to prove Φ t v for some index t : T .
We know CK (Φ t) w, which can be transported to state v using Lemma 4.4.1.
Then, using the equivalence again, in the other direction, we have rCK (Φ t) v,
and we may use Axiom T to reach the conclusion.

Lemma 4.4.4. CK satisfies Axiom T, CK ϕ ⊆ ϕ.

Proof. Assume CK ϕ w and use Theorem 4.4.2 to derive rCK ϕ w. The conclusion
ϕ w then follows from the Axiom T property of rCK.

Lemma 4.4.5. CK satisfies Axiom 4, CK ϕ ⊆ CK (CK ϕ).

Proof. Assume CK ϕ w and, using Theorem 4.4.2 with the conclusion as needed,
w ∝Agent v and v ∝Agent u. To conclude ϕ u, we chain Lemma 4.4.1 twice
with our assumptions to reach CK ϕ u, and use the Axiom T property from
Lemma 4.4.4.

Lemma 4.4.6. CK satisfies Axiom 5, ¬CK ϕ ⊆ CK (¬CK ϕ).

Proof. Assume (¬CK ϕ) w and, with Theorem 4.4.2, w ∝Agent v. To prove the
negation (¬CK ϕ) v, which means CK ϕ v → 𝟘, we may assume CK ϕ v to reach
a contradiction. By symmetry, we have v ∝Agent w, then Lemma 4.4.1 allows us
to derive CK ϕ w, which contradicts the first assumption.

Theorem 4.4.7. CK is a knowledge operator.

Proof. The full theorem is formed by combining Lemmas 4.4.3 to 4.4.6.

70

71

Chapter V

Coalition Logic

In this chapter, we introduce coalition logic and its semantics based on game
forms and playable effectivity functions. As in previous chapters, this will at
first be in isolation from type theory, using traditional set-theoretic notions to
define the concepts of the logic. We will go on to describe a formulation of these
concepts appropriate for use in type theory, and sketch an equivalence proof for
game forms and playable effectivity functions.

The content of this chapter is based on work in progress, without a corre-
sponding Agda formalisation in Appendix A. It would take significant future
effort to develop the following outline so it can be fully formalised in a proof
assistant.

5.1 Background
Coalition logic is a modal logic introduced by Marc Pauly [49]. Like epistemic
logic, it is an agent-based logic, the fundamental concept being the coalition, a
subset of agents. Rather than considering each agents in isolation, coalition logic
explores what agents can achieve when they act in unison.

In the syntax of the logic, each coalition C has a modal operator, [C]ϕ,
with the reading that the agents of C, if they so are inclined to work together,
could force ϕ to hold after their collective action, regardless of any other agents’
actions. The base logic has no concept of knowledge, essentially modelling perfect-
information strategic games, but it can be extended with modal operators for
knowledge to model epistemic scenarios [1, 56].

The semantics of coalition logic is given by game forms. These are descriptions
of a step in some strategic game where players may act simultaneously. A game
form consists of a finite, non-empty set of agents, N , a set of actions, Ai for each
i ∈ N , a set of outcomes, O, and a function which maps a choice of action for
each agent to an outcome, o : (Π(i∈N) Ai) → O.

72 CHAPTER V. COALITION LOGIC

We can derive an effectivity function for each game form G. An effectivity
function EG : P(N) → P(P(O)) describes, for each coalition of agents, those
subsets of outcomes for which they are effective. That is, if X ∈ EG(C), coalition
C has a joint strategy which guarantees the actual outcome must come from X,
regardless of the strategies chosen by the other agents not in C. To define the
function precisely, some additional notation is introduced.

Let C range over coalitions, subsets of agents, C ∈ P(N), and X range over
subsets of outcomes, X ∈ P(O). By C and X, we refer to the complements
of C and X relative to their full sets, C = N \ C, X = O \ X. A strategy
profile, σC , is a tuple containing the choice of action for each agent in a coalition,
σC : Π(i∈C) Ai. A global strategy profile, σ : Π(i∈N) Ai, can be constructed
by combining strategy profiles of complementary coalitions, σ = σC ⊕ σC . The
effectivity function for game form G may then be defined.

EG(C) = {X | ∃σC∀σC o(σC ⊕ σC) ∈ X}

Is is convenient to work abstractly with effectivity functions rather than game
form definitions. Pauly shows that there is a set of properties for effectivity
functions, playability, which characterises when an arbitrary effectivity function
E is the effectivity function EG for some game form G.

• Safety, ∅ 6∈ E(C)

• Liveness, O ∈ E(C)

• N-Maximality, X 6∈ E(∅) ⇒ X ∈ E(N)

• Outcome Monotonicity, X1 ⊆ X2 ⇒ X1 ∈ E(C) ⇒ X2 ∈ E(C)

• Superadditivity, C1 ∩ C2 = ∅ ⇒ X1 ∈ E(C1) ⇒ X2 ∈ E(C2) ⇒
X1 ∩X2 ∈ E(C1 ∪ C2)

Two further properties can be shown to follow from those listed above.

• Regularity, X ∈ E(C) ⇒ X 6∈ E(C)

• Coalition Monotonicity, C1 ⊆ C2 ⇒ X ∈ E(C1) ⇒ X ∈ E(C2)

Given a game form G, the playability of EG is a routine question of checking
each of the properties. The inverse direction, starting from a playable effectivity
function E, requires construction of a game form G such that E and EG are
equivalent. For the rest of this chapter, we work towards giving a type-theoretic
formulation for this direction of the correspondence.

5.2. GAME FORM CONSTRUCTION 73

5.2 Game Form Construction

Our construction of the game form is based on the idea of Pauly’s original con-
struction [49]. However, this is heavily set-theoretic and poses significant tech-
nical challenges to formulation in type theory. This section will first give an
outline of the construction, and we will discuss some of the technical details in
later sections.

Given a playable effectivity function E : P(N) → P(P(O)). The constructed
game form will use the same agent and outcome sets, so we just need to define
the actions available to each agent and the outcome function.

An action for agent i consists of a choice of coalition C such that i ∈ C, a set
of outcome states X ∈ E(C), a specific outcome x ∈ X, and a natural number.
Formally, Ai is defined as the following set.

Ai = {〈C, X, x, t〉 | C ∈ P(N), i ∈ C, X ∈ E(C), x ∈ X, t ∈ ℕ}

Intuitively, if an agent chooses action 〈C, X, x, t〉, it means they want to be
part of coalition C, cooperating to achieve an outcome in X, and they have a
personal preference for specific outcome x if the choice were up to them. The
natural number t will be used in the outcome function to determine which agent
gets to make the final decision.

Given a strategy profile σ : Π(i∈N) Ai, we have a choice of action for each agent,
〈Ci, Xi, xi, ti〉. We call C a σ-cooperative coalition when, for every agent i ∈ C,
C = Ci, and for every pair of agents i, j ∈ C, Xi = Xj. That is, a σ-cooperative
coalition C agrees to work together towards a common set of outcomes XC .

Let [C1, . . . , Cm] be the list of all the non-empty σ-cooperative coalitions.
There must be finitely many since N is itself finite. Let C0 be the coalition
of agents not in a σ-cooperative coalition, partitioning the full set of agents
[C0, C1, . . . , Cm]. Since C0 has no agreed set of outcomes to aim for, define
XC0 = O, and define Xσ as the intersection of all chosen outcome sets XCk .

Xσ =
m∩
k=0

XCk =
m∩
k=1

XCk

It cannot be the case that Xσ = ∅. Since [C0, C1, . . . , Cm] is a partition, and
all XCk ∈ E(Ck) by definition of A, the superadditivity property of E implies
that Xσ ∈ E(N), and safety tells us ∅ 6∈ E(N).

The outcome function will be defined to choose an outcome x ∈ Xσ. Recall
that the number of agents is finite, and let n be their number, n = |N |. Labelling
the set of agents by natural numbers {0, . . . , n−1}, we sum modulo n the choice

74 CHAPTER V. COALITION LOGIC

of ti for each agent, d = t0 + · · · + tn−1 mod n, to define the agent who decides
the outcome.

It must be the case that xd ∈ XCd , but it is not guaranteed that xd ∈ Xσ. If
xd 6∈ Xσ, we revert to an arbitrary choice function H : Π(X∈E(N)) X, which exists
constructively due to the safety property, ∅ 6∈ E(N). Since Xσ ∈ E(N) from the
above superadditivity argument, we can define the outcome function.

o(σ) =

{
xd if xd ∈ Xσ

H(Xσ) otherwise

Thus we have constructed the game form G. To show the correspondence
between game forms and playable effectivity functions, we need to demonstrate
that E is equivalent to the derived effectivity function EG.

Lemma 5.2.1. If X ∈ E(C), then X ∈ EG(C).

Proof. Assume X ∈ E(C), then we have to show ∃σC∀σC o(σC ⊕ σC) ∈ X. We
define σC by giving an action 〈Ci, Xi, xi, ti〉 for every i ∈ C. Set Ci = C and
Xi = X, choosing xi and ti arbitrarily — our assumption that X ∈ E(C) together
with the safety property, ∅ 6∈ E(C), ensure an x ∈ X can be chosen.

Given any counter strategy σC , we have strategy profile σ = σC ⊕ σC , where
C is σ-cooperative by definition. C is therefore one of the partition classes whose
chosen outcome set X is used to define Xσ by intersection, so Xσ ⊆ X. Since
o(σ) ∈ Xσ, this subset relation implies o(σ) ∈ X, as desired.

Lemma 5.2.2. If X ∈ EG(C), then X ∈ E(C).

Proof. We assume that coalition membership is decidable, so we distinguish two
cases, when C = N and when there is at least one i ∈ N where i ∈ C.

In the first case, we assume X ∈ EG(N). By regularity of EG, this implies
X 6∈ EG(∅). Using the contrapositive of Lemma 5.2.1, we can derive X 6∈ E(∅).
Then, N -maximality of E reaches the desired conclusion X ∈ E(N).

Now consider the case with at least one i ∈ C. Assume X ∈ EG(C), whose
definition means that C has a strategy profile σC such that ∀σC o(σC ⊕ σC) ∈ X.
Instantiating this with a strategy profile σC where Ci = N and Xi = O for every
i ∈ C makes Xσ depend only on σC .

Xσ =
∩

{XC′ | C ′ ⊆ C, C ′ is σ-cooperative}

Since, by definition of A, all XC′ ∈ E(C ′), superadditivity and coalition
monotonicity imply Xσ ∈ E(C). If we can give appropriate values for xi and ti

for each i ∈ C so that Xσ ⊆ X, this will show the desired X ∈ E(C) by outcome
monotonicity.

5.3. DECIDABLE SUBSETS 75

For each x ∈ Xσ, since we have at least one i ∈ C, we can set xi = x, and
tweak the values of ti so that d = t0 + · · · + tn−1 mod n ends up as one of i.
This ensures o(σC ⊕ σC) = x, and so x ∈ X by our earlier assumption, therefore
Xσ ⊆ X.

Theorem 5.2.3. E and EG are equivalent, E(C) ⊆ EG(C) and E(C) ⊇ EG(C).

Proof. The left-to-right direction is Lemma 5.2.1, while the right-to-left direction
is Lemma 5.2.2.

5.3 Decidable Subsets
Back in the setting of type theory, we seek to represent the concepts of coalition
logic. We begin by assuming appropriate types for agents and outcomes.

Unlike in Chapter IV, we impose the restriction that the agent type is finite, as
well as non-empty. We fix a non-zero natural number n as the number of agents,
Σ(n:ℕ) n 6≡ zero, and define Agent = Fin n : Type. Our agents therefore correspond
to the natural numbers {0, . . . , n− 1}, and since n must be a successor, we can
always construct the agent zeroFin : Agent. We assume Outcome : Type without
any restrictions.

We must develop a library to work with subsets of these types. A type family
T → Type, representing predicates over type T , can be seen as a subset of the
type’s elements — a term t : T is part of the subset if and only if type T t

is inhabited. However, in the constructive setting of type theory, there is no
guarantee that predicates are decidable in general, which will make working with
this representation of subsets difficult to impossible. We instead encode the type
of decidable subsets by functions into the Booleans, T → 𝟚, which correspond to
decidable predicates whose truth values always reduce to true or false.

Definition 5.3.1. A decidable subset of type T is a function mapping from T

into the Booleans.
P : Type → Type

P T = T → 𝟚

Given a decidable subset S : P T and a term t : T , we obtain the truth value
of subset membership by function application, S t : 𝟚. From here, the notation of
set theory can be defined using Boolean algebra, with the true and false constants,
and the basic operators not𝟚, or𝟚, and and𝟚.

Definition 5.3.2. Set-theoretic notation defined for decidable subsets.

full : Π(T :Type) P T

full = λt. true

∅ : Π(T :Type) P T

∅ = λt. false

76 CHAPTER V. COALITION LOGIC

: Π(T :Type) P T → P T

S = λt. not𝟚 (S t)

\ : Π(T :Type) P T → P T → P T

A \ B = λt. and𝟚 (A t) (not𝟚 (B t))

∪ : Π(T :Type) P T → P T → P T

A ∪B = λt. or𝟚 (A t) (B t)

∩ : Π(T :Type) P T → P T → P T

A ∩B = λt. and𝟚 (A t) (B t)

∈ : Π(T :Type) T → P T → Type

t ∈ S = S t ≡ true

⊆ : Π(T :Type) P T → P T → Type

A ⊆ B = Π(t:T) t ∈ A→ t ∈ B

Most of these definitions are standard, needing little explanation. To state
the set membership t ∈ S as a proposition in type theory, that is as a type, we
assert that the truth value resulting from S t is propositionally equal to true. The
statement t 6∈ S can be defined simply as t ∈ S → 𝟘.

Theorem 5.3.3. Set membership is decidable, t ∈ S + t 6∈ S.

Proof. The full statement is S t ≡ true+(S t ≡ true → 𝟘). By case analysis on the
Boolean value S t, using the eliminators elim+ and elim𝟙, we have to demonstrate
the statement when S t is true and when it is false.

In the true case, we choose inl, proving the left equality, refl≡ true. In the false

case, we choose inr, showing that false ≡ true leads to absurdity, which is implied
by Theorem 2.5.9.

By pattern matching on the result of Theorem 5.3.3, it is possible to derive a
function which decides the statement t ∈ S, giving the result as a Boolean value,
inl l 7→ true, inr r 7→ false. This result of this function will coincide with the value
of S t.

We do not define equality of decidable subsets with a dedicated relation. It
could be stated (A ⊆ B) × (B ⊆ A), as is usual in set theory. However, as
decidable subsets are functions, it is more convenient to postulate the principle
of function extensionality, funExt : (Π(t:T) A t ≡ B t) → A ≡ B. We consider two
decidable subsets propositionally equal when they are pointwise equal, giving the
same truth values for set membership at all indices.

For example, to show that full ≡ ∅, by appealing to function extensionality
we can instead show Π(t:T) full t ≡ ∅ t. This reduces the question of subset
equality into a Boolean equality, not𝟚 true ≡ false, which can be shown with the
usual proof methods of type theory, funExt (λt. refl≡ false).

Lemma 5.3.4. Complementary subsets are disjoint, S ∩ S ≡ ∅.

Proof. funExt (λt. elim+ (elim𝟙 (refl≡ false)) (elim𝟙 (refl≡ false)) (S t))

Using function extensionality, this can be proved as an instance of the Boolean
theorem Π(b:𝟚) and𝟚 b (not𝟚 b) ≡ false, where b is instantiated with the set mem-
bership truth value S t. The proof of the Boolean theorem is given by two cases,
when b is true and when b is false, both of which reduce to proving false ≡ false.

5.3. DECIDABLE SUBSETS 77

Lemma 5.3.5. Dual to the above, S ∪ S ≡ full.

Proof. funExt (λt. elim+ (elim𝟙 (refl≡ true)) (elim𝟙 (refl≡ true)) (S t))

The only difference from the proof of Lemma 5.3.4 is that the two cases reduce
to true ≡ true rather than false ≡ false.

Using propositional equality for subsets gives us access to the full suite of tools
for equality proofs, including the powerful congruence substitution principle. We
will need many more properties of set equality, which can be proved first as
Boolean equalities and then elevated to set equalities by function extensionality.

Given this representation of subsets, we are able to state the type of effectivity
functions for our type of agents and outcomes, P Agent → P (P Outcome). We
can further define the type of playable effectivity functions.

Definition 5.3.6. A playable effectivity function is an effectivity function satis-
fying the playability properties.

Playable : Type

Playable =Σ(E:P Agent→P (P Outcome))

Π(C:P Agent) ∅ 6∈ E C

×Π(C:P Agent) full ∈ E C

×Π(X:P Outcome) X 6∈ E ∅ → X ∈ E full

×Π(C:P Agent) Π(X1,X2:P Outcome) X1 ⊆ X2 → X1 ∈ E C → X2 ∈ E C

×Π(C1,C2:P Agent) Π(X1,X2:P Outcome) C1 ∩ C2 ≡ ∅ →

X1 ∈ E C1 → X2 ∈ E C2 → X1 ∩X2 ∈ E (C1 ∪ C2)

The additional properties of regularity and coalition monotonicity can be
shown to follow from playability.

Theorem 5.3.7. Playable effectivity functions are regular, X ∈ E C → X 6∈
E C.

Proof. Assume X ∈ E C and, towards a contradiction, X ∈ E C. Since C

and C can be shown to be disjoint, superadditivity can be used to conclude
X ∩ X ∈ E (C ∪ C). By using congruence to substitute with proofs of the
equalities X ∩ X ≡ ∅ and C ∪ C ≡ full, we have ∅ ∈ E full, contradicting the
safety property of playability.

Theorem 5.3.8. Playable effectivity functions are coalition monotonic, C1 ⊆
C2 → E C1 ⊆ E C2.

Proof. Assume C1 ⊆ C2 and X ∈ E C1, with the goal of proving X ∈ E C2.
Define C3 = C2 \ C1, which gives equalities C1 ∪ C3 ≡ C2 and C1 ∩ C3 ≡ ∅.

78 CHAPTER V. COALITION LOGIC

By the liveness property of playability, full ∈ E C3, so superadditivity implies
X∩full ∈ E (C1∪C3). Substituting, using congruence with proofs of X∩full ≡ X

and C1 ∪ C3 ≡ C2, gives the desired conclusion X ∈ E C2.

These proofs show just some of the standard set-theoretic properties that are
needed. As described earlier, these follow from function extensionality and basic
Boolean properties. Most of these properties will not be proved explicitly, but we
will give one final example which was used in Theorem 5.3.8.

Lemma 5.3.9. A ⊆ B → A ∪ (B \ A) ≡ B

Proof. Assume A ⊆ B. By function extensionality, we can reduce the conclusion
to the Boolean statement or𝟚 (A t) (and𝟚 (B t) (not𝟚 (A t))) ≡ B t. By case
analysis, this can be checked to hold except when A t ≡ true and B t ≡ false.

However, instantiating the assumption of A ⊆ B at element t, it is the Boolean
statement A t ≡ true → B t ≡ true. Therefore, by congruence, we can construct
true ≡ false in the problematic case, ruling it absurd by Theorem 2.5.9, completing
the proof using elim𝟘.

5.4 Partial Functions
We can define a type for game forms using our existing Agent and Outcome types.

Definition 5.4.1. A game form is a dependent pair 〈A, o〉 where A is a type
family indexed by agents, and o is a function assigning an outcome to a choice of
action for each agent.

GameForm : Type

GameForm = Σ(A:Agent→Type) (Π(i:Agent) Ai) → Outcome

The outcome function o is total, only assigning outcomes to strategy profiles
for the full set of agents, σ : Π(i:Agent) Ai. However, the definition of effectivity
function EG relies on having strategy profiles for coalitions of agents, σC , σC . We
use partial functions to bridge this gap.

Definition 5.4.2. A partial function mapping from A : Type to an element of
type family B : A→ Type is a dependent function Π(a:A) B a+ 𝟙.

⇀ : Π(A:Type) (A→ Type) → Type

A ⇀ B = Π(a:A) B a+ 𝟙

Of course, strictly speaking, A ⇀ B is not a partial function, but a total
function into a codomain with exactly one additional element. The intuition is

5.4. PARTIAL FUNCTIONS 79

that if a partial function maps a 7→ b, this is represented by mapping a 7→ inl b.
When the partial function does not provide a mapping from a, we represent this
by mapping to the dummy element, a 7→ inr ⋆.

It can also be the case by this definition that a so-called partial function is
actually total, mapping to a 7→ inl b for all a : A. We can characterise elements
of A for which there are mappings, the domain of the partial function, using our
decidable subset type.

Definition 5.4.3. The domain of a partial function A ⇀ B is the subset of A
for which the function has mappings.

Domain : Π(A:Type) Π(B:A→Type) (A ⇀ B) → P A

Domain f = λa. elim+ (λb. true) (elim𝟙 false) (f a)

For example, the partial function with no mappings has an empty domain,
Domain (λ(a : A). inr ⋆) ≡ ∅. Given a total function f : Π(a:A) B a, we can
construct a corresponding partial function, Domain (λ(a : A). inl (f a)) ≡ full.

We can join the domains of two partial functions f, g : A ⇀ B produce another
partial function f ⊕g : A ⇀ B. The resulting function only maps a 7→ inr ⋆ when
neither joined function has a mapping from a.

(f ⊕ g) a =


inl b if f a ≡ inl b

inl b if g a ≡ inl b

inr ⋆ otherwise

While ⊕ is always associative, it is only commutative under the assumption
that the domains of f and g are disjoint. This is because we default to the
mapping provided by f in the case where both f and g provide mappings. The
join produces a function whose domain is the union of the two original functions,
Domain (f ⊕ g) ≡ Domain f ∪ Domain g.

Given a game form G = 〈A, o〉, a strategy profile for a coalition C is a partial
function σC : Agent ⇀ A, mapping to an action in Ai if and only if i ∈ C. That
is, Domain σC ≡ C. Since Lemma 5.3.5 tells us that C ∪ C ≡ full, given strategy
profiles σC and σC with these domains, we can show Domain (σC ⊕ σC) ≡ full.
From this, we are able to construct a total strategy profile σ : Π(i:Agent) Ai.

Lemma 5.4.4. Given a partial function f : A ⇀ B and an a : A such that
a ∈ Domain f , then we can construct an element of type B a.

Proof. Assume that a ∈ Domain f , which means Domain f a ≡ true. Apply f a,
which gives an element of type B a + 𝟙. Pattern matching on the result, this
must be of the form inl b where b : B a, or inr ⋆.

80 CHAPTER V. COALITION LOGIC

In the first case, we can simply return b. In the second case, we cannot
construct an element of type B a, but Domain f a must have been false, refining
our assumption to false ≡ true. By Theorem 2.5.9 and elim𝟘, this case can be
dismissed as absurd.

Theorem 5.4.5. When the domain of a partial function is the full set, a total
function can be constructed, Π(f :A⇀B) Domain f ≡ full → Π(a:A) B a.

Proof. Assume that Domain f ≡ full. Given an a : A, it must be the case that
a ∈ full by definition. By congruence using our assumed equality, it must also be
the case that a ∈ Domain f . Our element of type B a can then be constructed
through Lemma 5.4.4.

5.5 Future Work
We have given suitable constructions in type theory to represent game forms and
playable effectivity functions. However, a full formalisation of the construction
outlined in Section 5.2 is incomplete, and is left as future work. This section
discusses some of the remaining challenges of the formalisation.

First, when defining the transformation from playable effectivity function E

to game form, the definition A is clear, as a type family indexed by Agent.

Definition 5.5.1. An action for agent i is a choice of coalition that i is part of,
a set of outcomes that coalition is effective for, a specific outcome from that set,
and a natural number.

A : Agent → Type

Ai =Σ(C:P Agent) i ∈ C

×Σ(X:P Outcome) X ∈ E C

×Σ(x:Outcome) x ∈ X

×ℕ

With projection functions AC and AX , we can then define the σ-cooperative
predicate for coalitions relative to a specific strategy profile σ.

Definition 5.5.2. Given a strategy profile σ, a coalition C is σ-cooperative when
all of its members choose actions in σ which agree on C and X.

coop : (Π(i:Agent) Ai) → P Agent → Type

coop σ C = Π(i:Agent) i ∈ C → C ≡ AC (σ i)

× Π(j:Agent) j ∈ C → AX (σ i) ≡ AX (σ j)

5.5. FUTURE WORK 81

The partitioning process will require a proof that this predicate is decidable,
coop σ C + (coop σ C → 𝟘). One possibility for a data structure to describe the
partition would be an inductive list.

Starting from a list of all agents, we can map a function pointwise which pairs
the 〈Ci, Xi〉 choices for each agent, then filter out those elements whose Ci is not
σ-cooperative. This gives a list of all non-empty, σ-cooperative coalitions and
their choice of XC , and we must prove each pair of coalitions disjoint so we may
later use superadditivity. To define Xσ, we can use a recursive function which
intersects the Xi choices of the partition from a base case of full.

intersect : List (P Agent× P Outcome) → P Outcome

intersect [] = full

intersect (〈Ci, Xi〉 :: t) = Xi ∩ intersect t

However, this must be done in such a way that the proof terms which verify
that Xi ∈ E Ci for each i, which are included the structure of action σ i : Ai,
are retained throughout the process. At each recursive step, we need to use
superadditivity with this proof to produce a proof of Xσ ∈ E full along with
Xσ. This will justify Xσ 6≡ ∅ by safety, and allow for the definition of outcome
function o.

With a game form G = 〈A, o〉, we have shown in Theorem 5.4.5 that two
complementary strategy profiles can be joined to give a complete strategy profile
σ : Π(i:Agent) Ai. Using this, we can formulate a version of the following set-
theoretic statement in type theory, to be used in the definition of effectivity
function EG.

∃σC∀σC o(σC ⊕ σC) ∈ X

To actually define the function, GameForm → P Agent → P (P Outcome), the
result is a decidable subset. When applied to a coalition C : P Agent and a set of
outcomes X : P Outcome, this means the result must be Boolean, EG C X : 𝟚.
However, the obvious translation into type theory, using a Σ-type and a Π-type
to express the quantifiers, and omitting details establishing the domains of the
partial functions, is a statement residing in a type universe.

Σ(σC :Agent⇀A) Π(σC :Agent⇀A) o(σC ⊕ σC) ∈ X : Type

To define the effectivity function with the type given above, it must be shown
that this statement is decidable. Alternatively, the type of EG could be reformu-
lated as a non-decidable predicate, P Agent → P Outcome → Type, but then the
notion of playability in Definition 5.3.6 must also be reformulated.

82

83

Chapter VI

Concluding Remarks

In Chapter III of this thesis, we developed an embedding for epistemic modal
logic within type theory. At first, this was without a type of agents, and we
defined what it means to be a knowledge operator in this setting, giving a set
of properties such an operator must satisfy. This included the preservation of
semantic entailment property, which is an infinitary deduction rule that subsumes
two axioms of the finitary axiomatic system of epistemic logic. We proved this
knowledge operator semantics, including the additional rule, coincides with the
traditional semantics based on equivalence relations, establishing an isomorphism
between the two.

In Chapter IV, we extended the embedding with a type of agents, giving each a
knowledge relation, and therefore a knowledge operator by using the isomorphism
of Chapter III. We introduced a universal knowledge operator to the embedding,
and used it to define a common knowledge operator as a coinductive predicate,
whose proofs are infinite data structures. We proved that coinductive common
knowledge is equivalent to a type family which iterates universal knowledge, and
also to the relational interpretation of common knowledge, by taking the union
and transitive closure of the individual agents’ relations. Formalisations of all
results from Chapters III and IV are available in Appendix A, verified by the
Agda proof assistant.

In Chapter V, we turned our attention to coalition logic, and its seman-
tics based on game forms and playable effectivity functions. We outlined an
equivalence proof for these with the intention of formalisation in type theory.
Type-theoretic representations are given, using a type of decidable subsets to de-
fine playable effectivity functions, and partial functions used to solve a technical
problem when defining an effectivity function from a given game form. However,
the formalisation is not currently in a state that can be verified by proof assis-
tant, and completion of the formalisation is left as future work. We sketched the
remaining challenges which need to be overcome for the full formalisation.

84

85

Appendix A

Agda Formalisations

Formalisations based on the content of Chapter II, Chapter III, and Chapter IV,
developed in the Agda proof assistant [48].

A.1 Dependent Type Theory

{-
AGENT-BASED LOGICS IN DEPENDENT TYPE THEORY
- by Colm Baston

CHAPTER II: DEPENDENT TYPE THEORY
- checked with Agda version 2.7.0.1

-}

module TypeTheory where

-- levels for universe polymorphism
open import Agda.Primitive
variable α β γ : Level

{- BASIC TYPE DEFINITIONS -}

data 𝟘 : Set where
-- no constructors

elim-𝟘 : {T : 𝟘 → Set α} (e : 𝟘) → T e
elim-𝟘 ()

86 APPENDIX A. AGDA FORMALISATIONS

data 𝟙 : Set where
⋆ : 𝟙

elim-𝟙 : {T : 𝟙 → Set α} → T ⋆ → (u : 𝟙) → T u
elim-𝟙 t ⋆ = t

data _+_ (A : Set α) (B : Set β) : Set (α t β) where
inl : A → A + B
inr : B → A + B

elim-+ : {A : Set α} {B : Set β} {T : A + B → Set γ} →
((a : A) → T (inl a)) →
((b : B) → T (inr b)) →
(s : A + B) → T s

elim-+ f _ (inl a) = f a
elim-+ _ g (inr b) = g b

𝟚 : Set
𝟚 = 𝟙 + 𝟙

true : 𝟚
true = inl ⋆

false : 𝟚
false = inr ⋆

data Σ (A : Set α) (B : A → Set β) : Set (α t β) where
, : (a : A) → B a → Σ A B

× : Set α → Set β → Set (α t β)
A × B = Σ A (λ _ → B)

elim-Σ : {A : Set α} {B : A → Set β} {T : Σ A B → Set γ} →
((a : A) (b : B a) → T (a , b)) →
(p : Σ A B) → T p

elim-Σ f (a , b) = f a b

A.1. DEPENDENT TYPE THEORY 87

record EquivRel (A : Set α) : Set (α t lsuc β) where
field

R : A → A → Set β
refl : {a : A} → a R a
sym : {a b : A} → a R b → b R a
trans : {a b c : A} → a R b → b R c → a R c

{- PROPOSITIONAL LOGIC EXAMPLES -}

module Propositional (P Q R : Set) where
refl-→ : P → P
refl-→ p = p

trans-→ : (P → Q) → (Q → R) → P → R
trans-→ f g p = g (f p)

non-cont : (P × (P → 𝟘)) → 𝟘
non-cont = elim-Σ (λ p np → np p)

DeMorgan1 : (P → 𝟘) + (Q → 𝟘) → P × Q → 𝟘
DeMorgan1 = elim-+ (λ np → elim-Σ (λ p _ → np p))

(λ nq → elim-Σ (λ _ q → nq q))

DeMorgan2 : (P → 𝟘) × (Q → 𝟘) → P + Q → 𝟘
DeMorgan2 = elim-Σ (λ np nq → elim-+ np nq)

DeMorgan3 : (P + Q → 𝟘) → (P → 𝟘) × (Q → 𝟘)
DeMorgan3 h = (λ p → h (inl p))

, (λ q → h (inr q))

-- the final DeMorgan law cannot be proven constructively
module Classical (excluded-middle : (S : Set) → S + (S → 𝟘)) where

DeMorgan4 : (P × Q → 𝟘) → (P → 𝟘) + (Q → 𝟘)
DeMorgan4 h = elim-+ (λ p → elim-+ (λ q → elim-𝟘 (h (p , q)))

(λ nq → inr nq)
(excluded-middle Q))

(λ np → inl np)
(excluded-middle P)

88 APPENDIX A. AGDA FORMALISATIONS

{- PARAMETRICALLY-POLYMORPHIC FUNCTIONS -}

id : {A : Set α} → A → A
id a = a

$: {A : Set α} {B : A → Set β} → ((a : A) → B a) → (a : A) → B a
$ = id

const : {A : Set α} {B : Set β} → A → B → A
const a _ = a

if_then_else_ : {A : Set α} → 𝟚 → A → A → A
if b then t else f = elim-+ (const t) (const f) b

flip : {A : Set α} {B : Set β} {C : A → B → Set γ} →
((a : A) → (b : B) → C a b) → (b : B) → (a : A) → C a b

flip f b a = f a b

◦ : {A : Set α} {B : A → Set β} {C : {a : A} → B a → Set γ} →
({a : A} → (b : B a) → C b) →
(g : (a : A) → B a) →
(a : A) → C (g a)

f ◦ g = λ a → f (g a)

π1 : {A : Set α} {B : A → Set β} → Σ A B → A
π1 = elim-Σ (λ a _ → a)

π2 : {A : Set α} {B : A → Set β} → (p : Σ A B) → B (π1 p)
π2 = elim-Σ (λ _ b → b)

{- PROPOSITIONAL EQUALITY -}

data _≡_ {A : Set α} : A → A → Set α where
refl-≡ : (a : A) → a ≡ a

A.1. DEPENDENT TYPE THEORY 89

elim-≡ : {A : Set α} {T : (a b : A) → a ≡ b → Set β} {a b : A} →
((c : A) → T c c (refl-≡ c)) → (p : a ≡ b) → T a b p

elim-≡ f (refl-≡ a) = f a

sym-≡ : {A : Set α} {a b : A} → a ≡ b → b ≡ a
sym-≡ = elim-≡ (λ c → refl-≡ c)

trans-≡ : {A : Set α} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
trans-≡ {c = c} = elim-≡ (λ d → id {A = d ≡ c})

cong : {A : Set α} (P : A → Set β) {a b : A} → P a → a ≡ b → P b
cong P = flip (elim-≡ (λ c → id {A = P c}))

resp : {A : Set α} {B : Set β} {a b : A} →
(f : A → B) → a ≡ b → f a ≡ f b

resp f = elim-≡ (λ c → refl-≡ (f c))

uniqueness : (u : 𝟙) → u ≡ ⋆

uniqueness = elim-𝟙 (refl-≡ ⋆)

Boolean : ((b : 𝟚) → (b ≡ true) + (b ≡ false)) × (true ≡ false → 𝟘)
Boolean = true-or-false , absurd

where
true-or-false : (b : 𝟚) → (b ≡ true) + (b ≡ false)
true-or-false = elim-+ (elim-𝟙 (inl (refl-≡ true)))

(elim-𝟙 (inr (refl-≡ false)))

absurd : true ≡ false → 𝟘
absurd = cong (if_then 𝟙 else 𝟘) ⋆

{- PROPOSITIONAL EQUIVALENCE -}

↔ : Set α → Set β → Set (α t β)
A ↔ B = (A → B) × (B → A)

refl-↔ : (A : Set α) → A ↔ A
refl-↔ A = id , id

90 APPENDIX A. AGDA FORMALISATIONS

sym-↔ : {A : Set α} {B : Set β} → A ↔ B → B ↔ A
sym-↔ = elim-Σ (λ f g → g , f)

trans-↔ : {A : Set α} {B : Set β} {C : Set γ} →
A ↔ B → B ↔ C → A ↔ C

trans-↔ = elim-Σ (λ f g → elim-Σ (λ f’ g’ → f’ ◦ f , g ◦ g’))

{- TYPE EQUIVALENCE -}

' : Set α → Set β → Set (α t β)
A ' B = Σ (A → B) (λ f →

Σ (B → A) (λ g → ((a : A) → a ≡ (g ◦ f) a)
× ((b : B) → b ≡ (f ◦ g) b)))

equiv-3-3 : 𝟙 + (𝟙 + 𝟙) ' (𝟙 + 𝟙) + 𝟙
equiv-3-3 = f , g , p , q

where
f : 𝟙 + (𝟙 + 𝟙) → (𝟙 + 𝟙) + 𝟙
f = elim-+ (const (inr ⋆))

(elim-+ (const (inl (inr ⋆)))
(const (inl (inl ⋆))))

g : (𝟙 + 𝟙) + 𝟙 → 𝟙 + (𝟙 + 𝟙)
g = elim-+ (elim-+ (const (inr (inr ⋆)))

(const (inr (inl ⋆))))
(const (inl ⋆))

p : (a : 𝟙 + (𝟙 + 𝟙)) → a ≡ (g ◦ f) a
p = elim-+ (elim-𝟙 (refl-≡ (inl ⋆)))

(elim-+ (elim-𝟙 (refl-≡ (inr (inl ⋆))))
(elim-𝟙 (refl-≡ (inr (inr ⋆)))))

q : (b : (𝟙 + 𝟙) + 𝟙) → b ≡ (f ◦ g) b
q = elim-+ (elim-+ (elim-𝟙 (refl-≡ (inl (inl ⋆))))

(elim-𝟙 (refl-≡ (inl (inr ⋆)))))
(elim-𝟙 (refl-≡ (inr ⋆)))

refl-' : (A : Set α) → A ' A
refl-' A = id , id , refl-≡ , refl-≡

A.1. DEPENDENT TYPE THEORY 91

sym-' : {A : Set α} {B : Set β} → A ' B → B ' A
sym-' = elim-Σ (λ f → elim-Σ (λ g → elim-Σ (λ p q → g , f , q , p)))

trans-' : {A : Set α} {B : Set β} {C : Set γ} →
A ' B → B ' C → A ' C

trans-' (f , g , p , q) (f’ , g’ , p’ , q’)
= f’ ◦ f , g ◦ g’ , (λ a → cong (λ b → a ≡ g b) (p a) (p’ (f a)))

, (λ c → cong (λ b → c ≡ f’ b) (q’ c) (q (g’ c)))

{- FUNCTION EQUIVALENCE -}

∼ : {A : Set α} {B : A → Set β} →
(f g : (a : A) → B a) →
Set (α t β)

f ∼ g = (a : _) → f a ≡ g a

refl-∼ : {A : Set α} {B : A → Set β} →
(f : (a : A) → B a) →
f ∼ f

refl-∼ f a = refl-≡ (f a)

sym-∼ : {A : Set α} {B : A → Set β} →
{f g : (a : A) → B a} →
f ∼ g → g ∼ f

sym-∼ e a = sym-≡ (e a)

trans-∼ : {A : Set α} {B : A → Set β} →
{f g h : (a : A) → B a} →
f ∼ g → g ∼ h → f ∼ h

trans-∼ d e a = trans-≡ (d a) (e a)

FunExt : {A : Set α} {B : A → Set β} →
(f g : (a : A) → B a) →
Set (α t β)

FunExt f g = f ∼ g → f ≡ g

92 APPENDIX A. AGDA FORMALISATIONS

{- INDUCTIVE TYPES -}

data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ

elim-ℕ : {T : ℕ → Set α} → T 0 →
((n : ℕ) → T n → T (succ n)) →
(n : ℕ) → T n

elim-ℕ z _ 0 = z
elim-ℕ z s (succ n) = s n (elim-ℕ z s n)

inj-succ : {m n : ℕ} → succ m ≡ succ n → m ≡ n
inj-succ {m} = cong (elim-ℕ 𝟘 (λ o _ → m ≡ o)) (refl-≡ m)

pred : ℕ → ℕ
pred = elim-ℕ zero (λ n _ → n)

add : ℕ → ℕ → ℕ
add n = elim-ℕ n (λ _ → succ)

add-id-r : flip add 0 ∼ id
add-id-r = refl-≡

add-id-l : add 0 ∼ id
add-id-l = elim-ℕ (refl-≡ 0) (λ _ → resp succ)

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

data Fin : ℕ → Set where
Fin-zero : {n : ℕ} → Fin (succ n)
Fin-succ : {n : ℕ} → Fin n → Fin (succ n)

data _≤_ : ℕ → ℕ → Set where
zero-≤ : {n : ℕ} → zero ≤ n
succ-≤ : {m n : ℕ} → m ≤ n → succ m ≤ succ n

A.1. DEPENDENT TYPE THEORY 93

half : ℕ → ℕ
half zero = zero
half (succ zero) = zero
half (succ (succ n)) = succ (half n)

refl-≤ : (n : ℕ) → n ≤ n
refl-≤ zero = zero-≤
refl-≤ (succ n) = succ-≤ (refl-≤ n)

trans-≤ : {m n o : ℕ} → m ≤ n → n ≤ o → m ≤ o
trans-≤ zero-≤ q = zero-≤
trans-≤ (succ-≤ p) (succ-≤ q) = succ-≤ (trans-≤ p q)

{- COINDUCTIVE TYPES -}

record Stream (A : Set) : Set where
coinductive
field

head : A
tail : Stream A

from : ℕ → Stream ℕ
head (from n) = n
tail (from n) = from (succ n)

nats : Stream ℕ
nats = from 0

-- cannot be defined for streams
-- due to the unguarded recursive call
filter : {A : Set} → (A → 𝟚) → List A → List A
filter f [] = []
filter f (h :: t) = if f h then h :: filter f t else filter f t

map : {A B : Set} → (A → B) → Stream A → Stream B
head (map f s) = f (head s)
tail (map f s) = map f (tail s)

94 APPENDIX A. AGDA FORMALISATIONS

zip : {A B : Set} → Stream A → Stream B → Stream (A × B)
head (zip a b) = head a , head b
tail (zip a b) = zip (tail a) (tail b)

record Always {A : Set} (P : A → Set) (s : Stream A) : Set where
coinductive
field

always-head : P (head s)
always-tail : Always P (tail s)

record Bisim {A : Set} (a b : Stream A) : Set where
coinductive
field

bisim-head : head a ≡ head b
bisim-tail : Bisim (tail a) (tail b)

map-succ-from : (n : ℕ) → Bisim (map succ (from n)) (tail (from n))
bisim-head (map-succ-from n) = refl-≡ (succ n)
bisim-tail (map-succ-from n) = map-succ-from (succ n)

refl-Bisim : {A : Set} (a : Stream A) → Bisim a a
bisim-head (refl-Bisim a) = refl-≡ (head a)
bisim-tail (refl-Bisim a) = refl-Bisim (tail a)

sym-Bisim : {A : Set} {a b : Stream A} → Bisim a b → Bisim b a
bisim-head (sym-Bisim p) = sym-≡ (bisim-head p)
bisim-tail (sym-Bisim p) = sym-Bisim (bisim-tail p)

trans-Bisim : {A : Set} {a b c : Stream A} →
Bisim a b → Bisim b c → Bisim a c

bisim-head (trans-Bisim p q) = trans-≡ (bisim-head p)
(bisim-head q)

bisim-tail (trans-Bisim p q) = trans-Bisim (bisim-tail p)
(bisim-tail q)

A.2. EPISTEMIC MODAL LOGIC 95

A.2 Epistemic Modal Logic

{-
CHAPTER III: EPISTEMIC MODAL LOGIC
- checked with Agda version 2.7.0.1

-}

open import Agda.Primitive
open import TypeTheory

module EpistemicLogic (σ : Level) (State : Set σ) where

{- EVENTS AND EPISTEMIC LOGIC CONNECTIVES -}

Event : Set (σ t lsuc α)
Event {α} = State → Set α

⊥ : Event
⊥ = const 𝟘

> : Event
> = const 𝟙

¬_ : Event {α} → Event
¬ ϕ = λ w → ϕ w → 𝟘

∨ : Event {α} → Event {β} → Event
ϕ ∨ ψ = λ w → ϕ w + ψ w

∧ : Event {α} → Event {β} → Event
ϕ ∧ ψ = λ w → ϕ w × ψ w

⇒ : Event {α} → Event {β} → Event
ϕ ⇒ ψ = λ w → ϕ w → ψ w

⇔ : Event {α} → Event {β} → Event
ϕ ⇔ ψ = λ w → ϕ w ↔ ψ w

96 APPENDIX A. AGDA FORMALISATIONS

∀∀_ : Event {α} → Set (σ t α)
∀∀_ ϕ = {w : State} → ϕ w

⊆ : Event {α} → Event {β} → Set (σ t α t β)
ϕ ⊆ ψ = ∀∀ (ϕ ⇒ ψ)

≈ : Event {α} → Event {β} → Set (σ t α t β)
ϕ ≈ ψ = ∀∀ (ϕ ⇔ ψ)

{- KNOWLEDGE OPERATOR SEMANTICS -}

⊨ : {A : Set α} → (A → Event {β}) → Event {γ} → Set (σ t α t β t γ)
Φ ⊨ ψ = {w : State} → ((a : _) → Φ a w) → ψ w

record KOp : Set (σ t lsuc (α t β)) where
field

K : Event {α} → Event {α}
preserves-⊨ : {A : Set β} (Φ : A → Event) →

{ψ : Event} → Φ ⊨ ψ → K ◦ Φ ⊨ K ψ

axiom-T : {ϕ : Event} → K ϕ ⊆ ϕ

axiom-4 : {ϕ : Event} → K ϕ ⊆ K (K ϕ)
axiom-5 : {ϕ : Event} → ¬ K ϕ ⊆ K (¬ K ϕ)

K-gen : {{_ : KOp}} → {ϕ : Event {α}} → ∀∀ ϕ → ∀∀ K ϕ

K-gen h = preserves-⊨ elim-𝟘 (const h) elim-𝟘

axiom-K : {{_ : KOp}} → {ϕ ψ : Event {α}} → K (ϕ ⇒ ψ) ⊆ (K ϕ ⇒ K ψ)
axiom-K {_} {ϕ} {ψ} p q = preserves-⊨ (if_then ϕ ⇒ ψ else ϕ)

(λ f → f true (f false))
(elim-+ (const p) (const q))

{- CORRESPONDENCE WITH RELATIONAL SEMANTICS -}

Kripke : {α : Level} → Set (σ t lsuc α)
Kripke {α} = EquivRel {σ} {α} State

K[_] : (State → State → Set α) → Event {β} → Event {σ t α t β}
K[_R_] ϕ w = {v : State} → w R v → ϕ v

A.2. EPISTEMIC MODAL LOGIC 97

R[]_ : State → (Event {α} → Event {β}) → State → Set (σ t lsuc α t β)
w R[K] v = {ϕ : Event} → K ϕ w → K ϕ v

Kripke-KOp : {{_ : Kripke {α}}} → KOp {σ t α} {β}
Kripke-KOp = record { K = K[_R_] ;

preserves-⊨ = λ Φ h p q → h (λ a → p a q) ;
axiom-T = λ k → k refl ;
axiom-4 = λ k p → k ◦ trans p ;
axiom-5 = λ h p k → h (k ◦ trans (sym p)) }

module Classical (elim-¬¬ : {A : Set α} → ((A → 𝟘) → 𝟘) → A) where
KOp-Kripke : {{_ : KOp {α} {β}}} → Kripke
KOp-Kripke = record { _R_ = _R[K]_ ;

refl = id ;
sym = λ p k → elim-¬¬ (flip axiom-T k

◦ p ◦ axiom-5) ;
trans = λ p q → q ◦ p }

iso-R : {β : Level} {{_ : Kripke {σ t α}}} (w v : State) →
w R v ↔ w R[K[_R_]] v

iso-R {β} w v = ltr , rtl
where

ltr : w R v → w R[K[_R_]] v
ltr p k = axiom-4 {{Kripke-KOp {β = β}}} k p

rtl : w R[K[_R_]] v → w R v
rtl p = p id refl

iso-K : {{_ : KOp}} (ϕ : Event {α}) → K ϕ ≈ K[_R[K]_] ϕ
iso-K ϕ = ltr , rtl

where
ltr : K ϕ ⊆ K[_R[K]_] ϕ
ltr k p = axiom-T (p k)

rtl : K[_R[K]_] ϕ ⊆ K ϕ

rtl k = preserves-⊨ (K ◦ π1)
(λ h → k (λ {ψ} j → h (ψ , j)))
(axiom-4 ◦ π2)

98 APPENDIX A. AGDA FORMALISATIONS

A.3 Coinductive Common Knowledge

{-
CHAPTER IV: COINDUCTIVE COMMON KNOWLEDGE
- checked with Agda version 2.7.0.1

-}

open import Agda.Primitive
open import TypeTheory

module CommonKnowledge
(State : Set)
(Agent : Set)
(agent : Agent)
(K-rel : Agent → EquivRel {β = lzero} State) where

open import EpistemicLogic lzero State

∝[]_ : State → Agent → State → Set
w ∝[a] v = (K-rel a)._R_ w v

K : Agent → Event {α} → Event
K a = K[_∝[a]_]

K-op : Agent → KOp
K-op a = Kripke-KOp {lzero} {lzero} {{K-rel a}}

EK : Event {α} → Event
EK ϕ w = {a : Agent} → K a ϕ w

preserves-⊨-EK : {A : Set α} (Φ : A → Event) {ψ : Event {β}} →
Φ ⊨ ψ → EK ◦ Φ ⊨ EK ψ

preserves-⊨-EK Φ h i {a} p = h (λ t → axiom-T {{K-op a}}
$ axiom-4 {{K-op a}} (i t) p)

axiom-T-EK : {ϕ : Event} → EK ϕ ⊆ ϕ

axiom-T-EK k = axiom-T {{K-op agent}} k

A.3. COINDUCTIVE COMMON KNOWLEDGE 99

{- COINDUCTIVE COMMON KNOWLEDGE DEFINITION -}

record cCK (ϕ : Event) (w : State) : Set where
coinductive
field

cCK-EK : EK ϕ w
cCK-cCKEK : cCK (EK ϕ) w

cCK-EKcCK : {ϕ : Event} → cCK ϕ ⊆ EK (cCK ϕ)
cCK-EK (cCK-EKcCK k p) = cCK-EK (cCK-cCKEK k) p
cCK-cCKEK (cCK-EKcCK k p) = cCK-EKcCK (cCK-cCKEK k) p

recCK : Event {α} → ℕ → Event
recCK ϕ zero = ϕ

recCK ϕ (succ n) = recCK (EK ϕ) n

recCK-cCK : (ϕ : Event) → recCK ϕ ⊨ cCK ϕ

cCK-EK (recCK-cCK ϕ h) = h 1
cCK-cCKEK (recCK-cCK ϕ h) = recCK-cCK (EK ϕ) (h ◦ succ)

cCK-recCK : (ϕ : Event) → (n : ℕ) → cCK ϕ ⊆ recCK ϕ n
cCK-recCK ϕ zero k = axiom-T-EK (cCK-EK k)
cCK-recCK ϕ (succ n) k = cCK-recCK (EK ϕ) n (cCK-cCKEK k)

{- RELATIONAL COMMON KNOWLEDGE DEFINITION -}

data _∝_ : State → State → Set where
union-∝ : {a : Agent} {w v : State} → w ∝[a] v → w ∝ v
trans-∝ : {w v u : State} → w ∝ v → v ∝ u → w ∝ u

rCK : Event {α} → Event
rCK = K[_∝_]

refl-∝ : {w : State} → w ∝ w
refl-∝ = union-∝ ((K-rel agent).refl)

sym-∝ : {w v : State} → w ∝ v → v ∝ w
sym-∝ (union-∝ {a} p) = union-∝ ((K-rel a).sym p)
sym-∝ (trans-∝ p q) = trans-∝ (sym-∝ q) (sym-∝ p)

100 APPENDIX A. AGDA FORMALISATIONS

Kripke-∝ : Kripke
Kripke-∝ = record { _R_ = _∝_ ;

refl = refl-∝ ;
sym = sym-∝ ;
trans = trans-∝ }

rCK-op : KOp
rCK-op = Kripke-KOp {β = lzero} {{Kripke-∝}}

rCK-EK : {ϕ : Event {α}} → rCK ϕ ⊆ EK ϕ

rCK-EK r p = r (union-∝ p)

rCK-rCKEK : {ϕ : Event {α}} → rCK ϕ ⊆ rCK (EK ϕ)
rCK-rCKEK r p q = r (trans-∝ p (union-∝ q))

rCK-EKrCK : {ϕ : Event {α}} → rCK ϕ ⊆ EK (rCK ϕ)
rCK-EKrCK r p q = r (trans-∝ (union-∝ p) q)

{- EQUIVALENCE WITH RELATIONAL DEFINITION -}

cCK-transport : {ϕ : Event} {w v : State} → cCK ϕ w → w ∝ v → cCK ϕ v
cCK-transport k (union-∝ {a} p) = axiom-T {{K-op a}}

$ axiom-4 {{K-op a}} (cCK-EKcCK k) p
cCK-transport k (trans-∝ p q) = cCK-transport (cCK-transport k p) q

cCK-rCK : {ϕ : Event} → cCK ϕ ≈ rCK ϕ

cCK-rCK = ltr , rtl
where

ltr : {ϕ : Event} → cCK ϕ ⊆ rCK ϕ

ltr k p = axiom-T-EK (cCK-EK (cCK-transport k p))

rtl : {ϕ : Event} → rCK ϕ ⊆ cCK ϕ

cCK-EK (rtl k) = rCK-EK k
cCK-cCKEK (rtl k) = rtl (rCK-rCKEK k)

A.3. COINDUCTIVE COMMON KNOWLEDGE 101

{- COINDUCTIVE COMMON KNOWLEDGE IS A KNOWLEDGE OPERATOR -}

preserves-⊨-cCK : {A : Set α} (Φ : A → Event) {ψ : Event} →
Φ ⊨ ψ → cCK ◦ Φ ⊨ cCK ψ

preserves-⊨-cCK Φ h i = π2 cCK-rCK (λ p → h (λ t → axiom-T {{rCK-op}}
◦ π1 cCK-rCK
$ cCK-transport (i t) p))

axiom-T-cCK : {ϕ : Event} → cCK ϕ ⊆ ϕ

axiom-T-cCK k = axiom-T {{rCK-op}} (π1 cCK-rCK k)

axiom-4-cCK : {ϕ : Event} → cCK ϕ ⊆ cCK (cCK ϕ)
axiom-4-cCK k = π2 cCK-rCK (λ p → π2 cCK-rCK

(λ q → axiom-T-cCK
$ cCK-transport (cCK-transport k p) q))

axiom-5-cCK : {ϕ : Event} → ¬ cCK ϕ ⊆ cCK (¬ cCK ϕ)
axiom-5-cCK nk = π2 cCK-rCK (λ p k → nk

◦ cCK-transport k
$ sym-∝ p)

cCK-op : KOp {lzero} {β}
cCK-op = record { K = cCK ;

preserves-⊨ = preserves-⊨-cCK ;
axiom-T = axiom-T-cCK ;
axiom-4 = axiom-4-cCK ;
axiom-5 = axiom-5-cCK }

102

103

Bibliography

[1] Thomas Ågotnes and Natasha Alechina. Coalition logic with individual,
distributed and common knowledge. Journal of Logic and Computation,
29:1041–1069, 2018.

[2] Robert J. Aumann. Agreeing to disagree. Annals of Statistics, 4:1236–1239,
1976.

[3] Robert J. Aumann. Backward induction and common knowledge of ratio-
nality. Games and Economic Behavior, 8(1):6–19, 1995.

[4] Jon Barwise. Three views of common knowledge. In Proceedings of the 2nd
Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific
Grove, CA, March 1988, pages 365–379, 1988.

[5] Colm Baston and Venanzio Capretta. The coinductive formulation of com-
mon knowledge. In International Conference on Interactive Theorem Prov-
ing, 2018.

[6] Colm Baston and Venanzio Capretta. Game forms for coalition effectivity
functions. In International Conference on Types for Proofs and Programs,
2019.

[7] Yves Bertot and Pierre Castran. Interactive theorem proving and program
development: Coq’art the calculus of inductive constructions. 2010.

[8] Mark Bickford, Fedor A. Bogomolov, and Yuri Tschinkel. Vladimir Voevod-
sky – work and destiny. 2017.

[9] Edwin C. Brady. Type-driven development with Idris. Manning, 2017.

[10] John Charles Burkill and John Edensor Littlewood. A mathematician’s mis-
cellany. The Mathematical Gazette, 38:47, 1954.

[11] Kevin Buzzard. What is the Xena project? https://xenaproject.
wordpress.com/what-is-the-xena-project/.

https://xenaproject.wordpress.com/what-is-the-xena-project/
https://xenaproject.wordpress.com/what-is-the-xena-project/

104 BIBLIOGRAPHY

[12] Venanzio Capretta. Common knowledge as a coinductive modality. In Erik
Barendsen, Herman Geuvers, Venanzio Capretta, and Milad Niqui, editors,
Reflections on Type Theory, Lambda Calculus, and the Mind, pages 51–
61. ICIS, Faculty of Science, Radbout University Nijmegen, 2007. Essays
Dedicated to Henk Barendregt on the Occasion of his 60th Birthday.

[13] Venanzio Capretta. Coalgebras in functional programming and type the-
ory. Theoretical Computer Science, 412(38):5006–5024, 2011. CMCS Tenth
Anniversary Meeting.

[14] Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33:346, 1932.

[15] Alonzo Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58:345, 1936.

[16] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56 – 68, 1940.

[17] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical
type theory: a constructive interpretation of the univalence axiom. 2016.

[18] Thierry Coquand. Pattern matching with dependent types. 1992.

[19] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and
Tobias Nipkow, editors, Types for Proofs and Programs. International Work-
shop TYPES’93, volume 806 of Lecture Notes in Computer Science, pages
62–78. Springer-Verlag, 1993.

[20] Paolo Crivelli, Timothy Luke Williamson, Gareth Hughes, and Max J. Cress-
well. A new introduction to modal logic. 1998.

[21] Haskell B. Curry. Some philosophical aspects of combinatory logic. Studies
in logic and the foundations of mathematics, 101:85–101, 1980.

[22] Leonardo Mendonça de Moura and Sebastian Ullrich. The Lean 4 theorem
prover and programming language. In CADE, 2021.

[23] Peter Dybjer. Inductive sets and families in Martin-Lof̈’s type theory and
their set-theoretic semantics. 1991.

[24] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses. Rea-
soning About Knowledge. MIT Press, Cambridge, MA, USA, 1995.

BIBLIOGRAPHY 105

[25] Daniel P. Friedman and David S. Wise. Cons should not evaluate its argu-
ments. In International Colloquium on Automata, Languages and Program-
ming, 1976.

[26] George Gamow and Marvin Stern. Puzzle Math. Viking Press, New York,
1958.

[27] James Garson. Modal Logic. In Edward N. Zalta and Uri Nodelman, edi-
tors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Spring 2024 edition, 2024.

[28] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In
Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs
and Programs. International Workshop TYPES ’94, volume 996 of Lecture
Notes in Computer Science, pages 39–59. Springer, 1994.

[29] Jean-Yves Girard. Une extension de Ľinterpretation de Gödel a Ľanalyse, et
son application a Ľelimination des coupures dans Ľanalyse et la theorie des
types. Studies in logic and the foundations of mathematics, 63:63–92, 1971.

[30] Jean-Yves Girard. Interpretation fonctionelle et elimination des coupures
dans l’aritmetique d’ordre superieur. 1972.

[31] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating de-
pendent pattern matching. In Essays Dedicated to Joseph A. Goguen, 2006.

[32] Peter B. Henderson and James H. Morris. A lazy evaluator. Proceedings of
the 3rd ACM SIGACT-SIGPLAN symposium on Principles on programming
languages, 1976.

[33] Jaakko Hintikka. Knowledge and Belief. Ithaca: Cornell University Press,
1962.

[34] Ralf Hinze. The Bird tree. Journal of Functional Programming, 19:491 –
508, 2009.

[35] Simon Huber. Canonicity for cubical type theory. Journal of Automated
Reasining, pages 173–210, 2019.

[36] Antonius J. C. Hurkens. A simplification of Girard’s paradox. In Interna-
tional Conference on Typed Lambda Calculus and Applications, 1995.

[37] Saul A. Kripke. A completeness theorem in modal logic. Journal of Symbolic
Logic, 24(1):1–14, 03 1959.

106 BIBLIOGRAPHY

[38] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4:382–401, 1982.

[39] Pierre Lescanne. Common knowledge logic in a higher order proof assistant.
In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics
- Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in
Computer Science, pages 271–284. Springer, 2013.

[40] C.I. Lewis and C.H. Langford. Symbolic Logic. Century philosophy series.
Century Company, 1932.

[41] David Lewis. Convention: A philosophical study. 1969.

[42] Simon Marlow. Haskell 2010 language report. 2010.

[43] Per Martin-Löf. An intuitionistic theory of types. 1972.

[44] Per Martin-Löf. An intuitionistic theory of types: Predicative part. Studies
in logic and the foundations of mathematics, 80:73–118, 1975.

[45] Per Martin-Löf. Intuitionistic type theory. In Studies in proof theory, 1984.

[46] Randall Munroe. XKCD: Blue Eyes. https://xkcd.com/blue_eyes.html.

[47] Hiroshi Nakano. A modality for recursion. Proceedings Fifteenth Annual
IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332),
pages 255–266, 2000.

[48] Ulf Norell. Dependently typed programming in Agda. In Lecture Notes from
the Summer School on Advanced Functional Programming, AFP 2008, pages
230–266. Springer Berlin Heidelberg, 2009.

[49] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic
and Computation, 12, 02 2002.

[50] John C. Reynolds. Towards a theory of type structure. In Symposium on
Programming, 1974.

[51] John C. Reynolds. User-Defined Types and Procedural Data Structures as
Complementary Approaches to Data Abstraction, pages 309–317. Springer-
Verlag, New York, NY, 1978.

[52] John C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP Congress, 1983.

https://xkcd.com/blue_eyes.html

BIBLIOGRAPHY 107

[53] Bertrand Russell and Alfred North Whitehead. Principia Mathematica, vol-
ume 1. 1910.

[54] Thomas Streicher. Semantics of type theory - correctness, completeness and
independence results. In Progress in theoretical computer science, 1991.

[55] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

[56] Wiebe van der Hoek and Michael Wooldridge. Cooperation, knowledge, and
time: Alternating-time temporal epistemic logic and its applications. Studia
Logica, 75:125–157, 2003.

[57] Philip Wadler. Theorems for free! In Conference on Functional Programming
Languages and Computer Architecture, 1989.

https://homotopytypetheory.org/book

	Abstract
	Acknowledgements
	Introduction
	Thesis Structure and Contributions

	Dependent Type Theory
	Background
	Simple Types
	Type Theory as a Logic
	Dependent Types
	Equality and Equivalence
	Inductive Types
	Coinductive Types

	Epistemic Modal Logic
	Background
	Epistemic Logic and Relational Semantics
	Type-Theoretic Embedding
	Knowledge Operator Semantics
	Correspondence with Relational Semantics

	Coinductive Common Knowledge
	Background
	Coinductive Definition
	Relational Definition
	Coinductive and Relational Equivalence

	Coalition Logic
	Background
	Game Form Construction
	Decidable Subsets
	Partial Functions
	Future Work

	Concluding Remarks
	Agda Formalisations
	Dependent Type Theory
	Epistemic Modal Logic
	Coinductive Common Knowledge

	Bibliography

