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Abstract 

The health and welfare of the transition cow impacts the economic, 
environmental and social sustainability of the dairy industry. Despite 
significant improvements in our understanding of the physiological 
challenges this period poses, limited improvement in the morbidity and 
mortality rates associated with transition have been reported in the 
previous two decades. Transition cow monitoring programs (TMPs) are 
a commonly advocated means of reducing the impact of poor transition 
health. To date, such programs have been largely diagnostic in nature, 
focusing on the detection of specific disease states utilising labour-
intensive monitoring techniques. Automatic milking systems (AMS) offer 
an opportunity to develop fully automated monitoring systems which 
may be applied using a prognostic rather than diagnostic approach. 
Prognostic TMPs provide dairy producers with predictions relating to 
long-term performance outcomes which may be used to facilitate pre-
emptive management practices aimed at preventing or mitigating the 
losses associated with poor transition health. The aim of this thesis was 
to investigate the relationship between production and behaviour data 
as collected by AMS in the early post-partum period, and subsequent 
performance assessed using milk production relative to expected, 
reproductive performance and the risk of removal from the herd in early 
lactation. An emphasis was placed on the predictive power of this data 
and its potential utility within a prognostic transition cow monitoring 
program. 

A convenience sample of 46 herds was recruited on a voluntary basis 
from the UK and Republic of Ireland. Criteria for inclusion was the use 
of a Lely Astronaut milking robot under free-flow traffic conditions in 
conjunction with rumination and physical activity monitoring technology. 
Production variables analysed relating to milk quantity and quality 
included milk yield, milk yield acceleration, fat and protein content as 
well as conductivity. Behaviour parameters available via AMS included 
the number and nature of cow-robot interactions. In addition to this, 
auxiliary data sources including daily rumination and activity 
parameters, recorded using a neck mounted accelerometer and, 
historical cow-level production data as recorded by farm management 
software were also available. Within this thesis four outcomes were 
investigated. Chapters 3 and 4 explore the relationship between AMS 
data collected over days 1-3 post-partum and Yield Deviation, defined 
as the disparity between recorded milk production and expected milk 
production over the first 30 days post-partum. Chapters 5 and 6 
examine the relationship between data collected from 1-21 days in milk 
(DIM) and two reproductive outcomes, Expression of Oestrus or 
Insemination (EOI); The recording of an oestrus or insemination event 
between DIM 22 and 65, and Conception to First Insemination (CFI), 
the conception rate to a first insemination between DIM 22 and 80. 
Finally, Chapter 7 examines data collected over days 1-3 post-partum 
and subsequent survival using removal from the herd by 100 DIM.  
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Mixed-effect multivariable models reported in Chapters 3, 5, and 7 
serve to quantify the statistically significant associations between AMS 
production and behaviour data, and their respective outcomes while 
accounting for the random effect of herd and confounding variables. 
The development, and external validation of machine learning models 
for the prediction of production and fertility outcomes, described in 
Chapters 4 and 6 respectively, assess the degree to which AMS data, 
in combination with auxiliary data sources, may be leveraged into 
meaningful improvements in animal health through predictive TMPs. 
Chapter 6 also examines the marginal effects of auxiliary data sources 
on model performance by assessing the accuracy with which AMS data 
can predict reproductive performance with and without rumination, 
activity and historical production data. Chapter 7 provides a direct 
comparison of mixed-effect inferential modelling and machine learning 
predictive models for the odds of removal from the herd by DIM 100 
using AMS production and behaviour data in isolation.  

In Chapters 3 and 7 we demonstrate that AMS production and 
behaviour data collected overs days 1-3 post-partum has significant 
association with Yield Deviation at 30 DIM, and the risk of removal from 
the herd by 100 DIM. Likewise, in Chapter 5, data collected prior to day 
22 post-partum demonstrated significant association with reproductive 
outcomes up to 80 DIM. Across all outcomes, variables relating to milk 
yield, rate of milk yield acceleration and fat-to-protein ratio were found 
to be statistically significant. These associations highlight the transition 
period, and in particular days 1-3 post-partum as a critical inflection 
point within the lactation cycle. Furthermore, it demonstrates the 
potential for AMS sensor data collected during this time to be 
incorporated into a prognostic TMP. However, the coefficient of 
determination attributed to the fixed effects within the final models for 
both reproductive and survival outcomes were found to be low, 
indicating that the explanatory power of these variables is limited.  

Assessed in Chapters 4, 6, and 7, transition cow data demonstrated 
moderate group level-predictive power for Yield Deviation at 30 DIM, 
and reproductive outcomes EOI and CFI, but failed to demonstrate 
predictive power for the risk of removal by 100 DIM. The predictive 
power of AMS and auxiliary data sources examined in Chapters 4 and 6 
represents a critically important finding in support of the premise of 
prognostic TMPs. While predictive performance is moderate, these 
findings highlight the potential utility of this data to identify animals likely 
to experience poor production or fertility performance in the early stages 
of lactation and should encourage further investigation of how this data 
may be applied within TMPs. However, the absence of predictive power 
for the risk of removal in early lactation, reported in Chapter 7, 
highlights a potential limitation of this approach to transition cow 
monitoring, particularly where the lag between observations and 
outcomes is prolonged. These results also serve to demonstrate the 
risks in the use of inferential models to imply predictive power and the 
need for externally validated predictive models to be incorporated into 
the assessment of the potential utility of novel data sources. The failure 
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to demonstrate a statistically significant increase in model performance 
following the incorporation of auxiliary data sources, as reported in 
Chapter 6, highlights the challenges of balancing model accuracy with 
generalisability and ease of deployment in an environment of rapidly 
increasing data complexity. 

The work presented within this thesis examines a novel means of 
transition cow monitoring, one which seeks to assess transition health 
using subsequent production, fertility and survival outcomes. The 
inferential models reported demonstrate significant statistical 
association between AMS data and each outcome of interest. However, 
the predictive power of this data remains limited when applied at the 
level of the individual, particularly as it relates to the risk of removal 
within the first 100 days post-partum. Despite this, group level 
classification of milk production and fertility outcomes demonstrated 
potential for incorporation into prognostic TMPs. This represents a 
critical advancement in the field of transition cow monitoring and may 
offer an effective means to improve the health of transition cows and 
hence, the sustainability of the dairy industry. 
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Chapter 1 Introduction 

1.1 Background 

In 1988 the World Commission on Environment and Development 
published a report describing the environmental challenges facing the 
global community and their long-term strategies for achieving 
sustainable global development. This was defined as, development that 
meets the needs of the present without compromising the ability of 
future generations to meet their own needs (Keeble, 1988). This idea 
continues to form the basis for agricultural development today as 
described by the United Nations Sustainable Development Goals (The 
United Nations, 2016). In line with these goals, the dairy industry is 
seeking to increase the efficiency of production without compromising 
the health of the animals which produce our food, the humans who 
consume it or the environment which sustains us.   

The health and welfare of animals within the dairy industry impacts all 
three dimensions of its’ sustainability, these being, economic, 
environmental, and social (Segerkvist et al., 2020). In this regard there 
is perhaps no time with greater influence on sustainability than the 
transition period. Commonly defined as the 3 weeks pre- and post-
partum, the transition period is pivotal in the production cycle of the 
dairy cow. To meet the challenges associated with calving and initiation 
of lactation, a carefully coordinated response across metabolic, 
inflammatory, and immune pathways is required (Pascottini et al., 
2020). Where an animal fails to adequately regulate this response, a 
range of interrelated clinical and sub-clinical disease states results 
(Mulligan et al., 2006a). The most commonly diagnosed transition 
diseases are briefly described in Table 1-1, including ketosis, 
hypocalcaemia, retained foetal membranes and metritis. The 
segregation of the transition cow’s physiological status into discrete 
disease states as presented in Table 1-1 serves to ease diagnosis and 
disease recording. However, this fails to adequately capture the 
complexity of transition cow physiology, specifically the 
interdependency between metabolic pathways and the often-blurred 
line between physiology and pathophysiology. This topic has been 
reviewed in depth by Sundrum, (2015), however, a brief example is 
provided here.  

The challenge posed by the onset of lactation often commences with an 
increase in demand for energy in the days prior to calving. This 
elevation of energy requirements, in support of both a full-term calf and 
colostrum synthesis, is accompanied by a reduction in feed intake and 
results in a near ubiquitous incidence of negative energy balance 
among dairy cows in the peri-parturient period  (LeBlanc, 2010). 
Concurrently, the metabolic pathways associated with calcium 
homeostasis are challenged through the abrupt increase in milk 
synthesis (Caixeta & Omontese, 2021). In response to these 
challenges, fat stores are mobilised, and Non-Esterified Fatty Acids 
(NEFA) moved to the liver to generate energy via oxidation. Likewise, 
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bone resorption of calcium is upregulated while absorption via the gut 
and kidneys is increased. Where these homeorhetic responses are 
sufficient to meet demand for their respective metabolites, they can be 
down regulated appropriately, and transition health maintained. 
However, where these processes are insufficient to meet demand and 
continue uncontrolled, they begin to move from a physiological to a 
pathophysiological response (Ingvartsen et al., 2003). Where calcium 
demands cannot be met, clinical or sub-clinical milk fever occurs. This 
in turn leads to decreased food intake and exacerbation of negative 
energy balance. Furthermore, the efficiency of immune cells, in 
particular neutrophils, is markedly reduced (Sordillo et. al., 2013). In 
response to a continued state of negative energy balance, a greater 
number of fat cells are mobilised (Bradford et al., 2009). Excessive 
NEFA serum concentration alters the function of immune cells, 
enhancing pro-inflammatory pathways and initiating a positive feedback 
loop, further increasing fat mobilisation. The capacity of the liver to 
process these fat cells is overwhelmed resulting in partial oxidation and 
the generation of ketone bodies. These processes, combined with the 
inherent exposure to infectious pathogens via the reproductive tract 
during calving, results in an immune compromised, and energy deficient 
animal being required to launch a significant immune response (Sordillo 
et. al., 2009). 

Any animal experiencing the physiological dysregulation described here 
may be diagnosed with none or all of the transition diseases presented 
in Table 1-1. This will depend on the resilience of the individual animal 
and the thoroughness of the transition cow monitoring program 
implemented on farm. However, to view these as unrelated, binary 
diagnoses, or the process which led to their development as wholly 
pathological, is not in keeping with our current understanding of 
transition cow physiology. A more appropriate framing may be that each 
transition cow’s physiological status lies somewhere on a spectrum 
between that which leads to complete fulfilment of her genetically 
determined production potential, and that leading to complete loss of 
this potential through death or cull. Between these two extremes a 
broad range of physiological states may be experienced with a wide 
range of consequences for animal health, welfare and production. 
Utilising this framing of transition performance may prove to be of 
greater value to producers as it facilitates a more objective, long-term 
assessment of transition success. 

Transition disease has been shown to exert a negative effect on animal 
performance including milk production (Carvalho et al., 2019), fertility 
(Pascottini et al., 2020), and survival (Probo et al., 2018), long beyond 
the course of the disease itself. This was demonstrated by Carvalho et 
al., 2019, in their analysis of the long-term outcomes for milk yield, 
reproduction and cull risk in animals diagnosed with clinical disease 
within the first 21 days in milk. Individual 305-day milk yield was 
reduced by 4%, pregnancy rate reduced by 19%, and culling risk by 305 
DIM increased by 95% in cows diagnosed with at least one postpartum 
clinical disease. When these losses were apportioned to those 
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occurring within the first 21 days (broadly within the time during which 
clinical disease was detected) only 24% of milk losses, 36% of cull 
difference and 0% of reproductive difference were realised within this 
period. This, demonstrates how the success with which an animal 
navigates the transition period will in large part, determine the success 
of the entire lactation.  

The impact of poor transition health on the dairy industry is difficult to 
overstate. It has been estimated that approximately 30-50 percent of 
dairy cow will experience some form of metabolic or infectious disease 
during this period (LeBlanc, 2010). Furthermore, removal of early 
lactation animals from the herd are reported as 7% annually (Hanks et. 
al., 2023). The detrimental effects on economic sustainability through 
the direct and indirect costs associated with disease (Galligan, 2006), 
involuntary culling (Orpin & Esslemont, 2010), as well as reproductive 
failure (Cabrera, 2014) are well documented. However, beyond 
economics, the morbidity and mortality associated with the transition 
period represents one of the most serious welfare issues affecting 
modern dairy farming (von Keyserlingk et. al., 2009). This impacts both 
the social and environmental sustainability of the industry. As such, the 
development of strategies aimed at improving the management of 
transition cows has been an industry priority for over two decades. 
Described as the “final frontier” in 1999 (Drackley, 1999), our 
understanding of the physiology of transition has grown exponentially in 
the intervening years. This has facilitated developments in transition 
cow nutrition (Cardoso et al., 2020), housing (Cook & Nordlund, 2004), 
and health management (Mulligan et al., 2006b). The impact of these 
developments on transition health, however, remains unclear. While a 
lack of large-scale studies hampers our ability to assess changes in 
transition cow health and welfare definitively, it is generally accepted 
that current disease incidence remains unacceptably high (Mulligan et 
al., 2006a; Daros et al., 2022). It would appear therefore, that we have 
failed to translate our understanding of transition cow physiology into 
meaningful improvements in transition cow health. The extent to which 
this can be addressed going forward will be a key determinant of the 
future sustainability of the dairy industry.  
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Table 1-1 Commonly Diagnosed Transition Cow Diseases 

Ketosis 

An increase in concentration of ketone bodies (Acetone, Acetoacetate, B-
Hydroxybutyrate (BHB) in body fluids 

Incidence: Subclinical:40-60%, Clinical: 2-15% (McArt et al., 2012) 

Pathophysiology: Non-Esterified Fatty Acids (NEFAs) mobilised in response to a state of 
negative energy balance undergo partial oxidisation in the liver resulting in the generation 
of ketone bodies.  

Diagnosis: Evaluation of ketone concentration (most commonly Beta Hydroxy Butyrate) in 
serum, urine or milk 

Impact: Animals diagnosed with sub-clinical ketosis demonstrate reduced milk yield, 
increased incidence of displaced abomasum, increased risk of culling (Duffield et al., 
2009), reduced fertility (Walsh et al., 2007). Clinical ketosis can be fatal. 

Hypocalcaemia 

Reduced concentrations of serum calcium 

Incidence: Clinical 5%, Subclinical 40% (Multiparous dairy cows) (Seifi & Kia, 2017) 

Pathophysiology: Failure of homeorhetic processes designed to increase available 
calcium, including bone resorption, renal and gut absorption capacity to maintain calcium 
level in the face of a large increase in calcium demand concurrent with the initiation of 
lactation.  

Diagnosis: Total calcium concentration assessed on serum   

Impact: The occurrence of milk fever has been associated with reduced feed intake 
(Hansen et al., 2003) , immunosuppression (Kimura et al., 2006) , dystocia and 
decreased reproductive performance (Correa et al., 1993, Caixeta et al., 2017) Clinical 
milk fever can be fatal. 

Retained Foetal Membranes 

Failure to expel the foetal membranes within 24 hours post-partum 

Incidence: 4-16% (Sheldon et al., 2008) 

Pathophysiology: Normal explosion occurs within 3-8 hours. Failure of placental 
detachment has been linked with the premature delivery, twinning, traumatic calving and 
hypocalcaemia.    

Diagnosis: Observed presence of foetal members 24 hours post-partum 

Impact: Retained foetal membranes has been associated with increased risk of metritis, 
displaced abomasum, increased risk of culling (Tucho & Ahmed, 2017)  

Metritis 

Inflammation and infection of the uterine wall 

Incidence: 25-40% (Sheldon et al., 2008)  

Pathophysiology: Bacterial invasion of the deep lining of the uterus following calving may 
be facilitated by poor hygiene at the point of calving, trauma to the uterine wall or 
retention of foetal membranes.  

Diagnosis: Enlarged uterus, fetid watery red-brown vaginal discharge with or without 
signs of systemic illness within 21 DIM. 

Impact: Reduced milk production, reduce reproductive performance, increased risk of 
culling (Giuliodori et al., 2013) 

  



 

22 

1.2 Transition Monitoring Programs 

A corner stone of modern transition cow management has been the 
development of transition cow monitoring programs (TMP). Applied at 
the level of the individual, these aim to provide early detection of poor 
transition health and thereby, an opportunity to limit the costs and 
consequences of disease, reduced animal performance, or welfare 
(LeBlanc, 2010).  

At their inception TMP served to detect animals experiencing overt clinical disease 
and facilitate prompt initiation of treatment. They achieved this utilising manual 
assessment of variables related to clinical health, such as general demeanour, 
interest in food, rumen fill, udder tautness, and faecal consistency (Guterbock, 2004). 
This approach to transition monitoring has proven to be popular and the practice 
continues to play a large role in transition monitoring today. Espadamala et al., 
(2016) reported the transition cow monitoring protocols in place across 45 herds in 
the United States ranging in size from 450 to 9,500 lactating cows. Non-specific, 
subjective measures were the most commonly deployed techniques within TMPs on 
these herds. This included the assessment of variables such as demeanour, appetite 
and vaginal discharge. While qualitative scales for parameters such as demeanour, 
and vaginal discharge have been developed to reduce the subjectivity of their 
assessment, these were not found to be in use. Indeed, standard operating 
procedures of any kind for transition cow monitoring were reported as available in 
only 4 dairies surveyed. These results are mirrored by a survey conducted across 
429 farms in Germany which reported that the majority of fresh cow assessments 
were subjective in nature with only 33% utilising objective measures such as rectal 
temperature (König et al., 2023).  

Applied on commercial dairy farms, the manual observation of animals 
offers simplicity and flexibility as a broad transition cow monitoring 
program. It is, however, highly labour-intensive, a key limitation in an 
industry where lack of skilled labour is apparent. Furthermore, their 
subjective, non-specific nature leads to inherent issues relating to the 
reliability and repeatability of measurements between observers and 
across farms. An alternative means of assessment commonly available 
on modern dairy farms is monthly test-day milk recording. While this 
approach has inherent limitations relating to the timing and frequency of 
data collection, it offers value to producers as an objective means of 
monitoring performance in early lactation.  

1.3 Monthly Test-Day Milk Recording 

The advent of monthly milk testing regimes provided a means to 
standardise the monitoring of production metrics for transition cows. 
Their initial application was as an objective but non-specific assessment 
of transition health. This took the form of an assessment of milk 
production at a single time point, generally first-test day yield or peak 
yield (Caixeta & Omontese, 2021). The success or failure of transition 
management was judged at the herd level by the comparison of 
observed yields with producers’ expectations, examination of variation 
among herd mates and the inspection of outliers. An example of such 
analysis is presented in Figure 1-1. The premise of such analysis is 
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simple, optimal transition management is expected to lead to early 
lactation milk yield in line with the producers’ expectations and low 
variance in production between herd mates. Where this is not achieved, 
an investigation of transition management is advocated. The objective 
nature and low labour costs associated with this form of monitoring has 
led to it becoming a well-established assessment of transition health 
(Eicker et al., 2002) with several variations of this analysis being made 
available through commercial farm software (e.g., Week Four Milk via 
Dairy Comp®, Summit Milk via Dairy Herd Information).  

 

 

Figure 1-1 Example scatter plot analysis of early lactation milk production for 
the identification of outliers within a herd. Image description as per source, 
Caixeta & Omontese, (2021): Milk production (kg; vertical axis) by days in milk 

(DIM; horizontal axis) for different parity groups. The upper blue square 
highlights peak milk production between 60 and 120 DIM. The lower red 
rectangle highlights problem cows (outliers characterized by low milk 
production, compared with the rest of the herd between 50 and 120 
DIM). Parity 1 (lactation = 1; blue dots), Parity 2 (lactation = 2; red dots), Parity 
3 (lactation > 3; green dots). Continuous lines represent the average milk 
production for each parity group by days in milk.  

The analysis of milk constituents attempted to refine this approach 
further by utilising monthly test-day data to provide more objective 
information relating to the risk of transition diseases, specifically ketosis. 
Through the assessment of milk fat and protein percentages assessed 
on test-day milk samples, herd-level risk for this disease was derived 
with moderate success. A study by Duffield et al., (2002) found that 
herds with elevated levels of ketosis within the first 2 weeks post calving 
(defined as >20% prevalence), could be identified with a sensitivity of 
69% and specificity of 83% using fat-to-protein ratio. As with the 
analysis of early lactation milk yield, examining fat-to-protein ratio in this 
manner is designed to prompt a more detailed investigation of transition 
health within the herd. Their use is advocated as a means of assessing 
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compliance with management protocols or the effect of substantial herd 
level changes (e.g., a change in transition cow ration).  

While the utility of monthly test-day data for the assessment of transition 
health at the herd-level is clear, its application within TMPs for the early 
detection of individuals expected to suffer poor transition health remains 
limited. The nature of monthly sampling regimes leads to large variance 
in days in milk at first sampling with individuals often sampled outside of 
the high-risk period of days 1-21 post-partum. In addition to this, the 
data generated is inherently retrospective in nature and offers little 
opportunity for the proactive management of individual animals (Eicker 
et al., 2002). 

1.4 Biomarkers for Health Status 

The analysis of biomarkers as part of TMPs represented a significant 
development in our ability to objectively monitor individual transition 
cows. While recognition that both clinical and sub-clinical disease was 
accompanied by measurable chemical changes in blood, milk and urine 
is not recent, the large-scale investigation of these changes has been 
limited to the past 25 years (Overton et al., 2017). The ability to quantify 
the changes in concentration of key metabolites such as calcium, 
ketone bodies and NEFAs during transition demonstrated potential for 
the early and accurate identification of transition disease (Ceciliani et 
al., 2018). Within a TMP, this offered the potential to move away from 
the subjective assessment of clinical disease and towards a more 
objective approach to monitoring.  

1.4.1 Hypocalcaemia 

The analysis of serum calcium level in the periparturient period for the 
identification of sub-clinical hypocalcaemia can be achieved through 
laboratory analysis of blood samples, ideally obtained between 12- and 
24-hours post-partum (Goff, 2008). Hypocalcaemia is the quintessential 
“gateway” transition disease. Animals experiencing the disease in early 
lactation have increased risk of developing ketosis, abomasal 
displacement, retained foetal membranes, metritis and mastitis (Seifi & 
Kia, 2018). Despite the availability of laboratory-based diagnostics for 
its identification, assessment of serum calcium at the level of the 
individual within TMPs is effectively null. The limited uptake of this 
monitoring approach can likely be attributed to the labour-intensive 
nature of serum sampling and the lack of cow-side tests. Instead, 
calcium assessment has been largely limited to herd-level analysis. For 
example, intermittent sampling where a total of 12 animals within 48 
hours of calving are selected. An alert level of over 5 animals recording 
calcium levels below 2mmol/l indicates the need for further investigation 
(Seifi & Kia, 2018). The limited extent to which individual sampling has 
been incorporated into TMPs demonstrates the reluctance of dairy 
producers to employ labour-intensive monitoring techniques, even when 
the broad range of negative health outcomes stemming from 
hypocalcaemia are extremely well documented. 
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1.4.2 Negative energy Balance 

Both NEFA and Ketone bodies (acetone, acetoacetate, Beta Hydroxy 
Butyrate) have been established as indicators of negative energy 
balance in the transition cow. However, by far the most commonly 
utilised indicator as part of a TMP is the analysis of serum for Beta 
Hydroxy Butyrate (BHB). This ketone body is regarded as the gold 
standard for diagnosis of ketosis (Oetzel, 2015) and a widely accepted 
measure of the cow’s adaption to NEB (LeBlanc, 2014). Its use on farm 
has been facilitated by the availability of a range of cow-side tests 
utilising serum, urine or milk as a substrate (Geishauser et al., 2001, 
Jansen et al., 2021).  A range of handheld meters have been validated 
for the analysis of BHB levels in serum with sensitivity and specificity 
above 90% observed (Geishauser et al., 2001, Sailer et al., 2018). The 
accuracy of serum tests for the detection of sub-clinical ketosis 
generally exceeds that of cow-side tests utilising milk, which report 
sensitivity of 7 – 91% and specificity of 56-100% across a range of 
commercially available tests (Geishauser et al., 2001). Despite this, the 
use of milk remains an attractive option due to the ease with which the 
substrate can be obtained.  

The Incorporation of cow-side metabolic testing into a TMP allows for 
the prompt diagnosis of sub-clinical NEB, and thus earlier initiation of 
treatment. Monitoring programs call for the testing of transition cows in 
both the first- and second-week post-partum, an approach reported to 
detect between 79% and 95% of all animals which will experience sub-
clinical ketosis within the first two months post-partum. This percentage 
drops to between 69% to 86% when cows were tested in the second 
week only, and 30% to 56% when cows were tested in the first week 
only (Geishauser et al., 2001).  

Given the ubiquitous nature of negative energy balance in the early 
post-partum period and the central role this process plays in the 
development of transition cow disease, assessment of BHBs represents 
a powerful tool in transition cow monitoring. Despite this however, its 
uptake on farm remains low. Across 45 herds surveyed in California, 
none utilised routine ketone monitoring within their TMP and only 7% 
evaluated ketone levels in fresh cows displaying signs of ill health 
(Espadamala et al., 2016). A survey in Germany returned similar results 
with only 3% of the 429 surveyed herds reporting the use of cow side 
ketones testing, though no distinction was made in this study as to the 
manner of its use (i.e., proactive or reactive) (König et al., 2023).  

As our understanding of the relationship between key physiological 
variables and transition health has developed, the potential for the 
application of metabolic health indicators within TMPs has grown. The 
strengths and limitations of its use are somewhat exemplified by the 
development and adoption BHB analysis as an objective assessment of 
energy balance. Through large scale studies, the detrimental effect of 
subclinical ketosis on transition health has been widely demonstrated 
(Dohoo & Martin, 1984) and monitoring programs, using a range of 
cow-side tests have been described (Geishauser et al., 2001). 
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However, the degree to which this has been incorporated within TMPs 
remains disappointing.  

In Europe, recent trends within the dairy industry have seen a reduction 
in the number of dairy farms, coupled with an increasing farm size and 
number of cows managed per unit of labour (Jongeneel. et al., 2023). 
The limited labour market which predominates within the UK, is likely a 
barrier in the uptake of labour-intensive sampling protocols such as 
those advocated for BHB monitoring. However, as labour shortages 
provide motivation for the adoption of new technology, this challenge 
also brings opportunity (White et al., 2005). The exponential growth in 
the adoption of sensor technology on dairy farms in recent years has 
increased the research attention directed at the automation of transition 
cow monitoring. The application of precision farming techniques in this 
regard represents another significant development for the future of 
TMPs, one which has the potential to allow the objective monitoring of 
transition cow health with minimal labour input.  

1.5 Precision Dairy Farming 

Precision dairy farming is the use of technologies to measure 
physiological, behavioural, and production indicators of individual 
animals in order to improve management strategies and farm 
performance (Bewley, 2010). Its utilisation on farm can be broken into 
four stages (Rutten et al., 2013).  

• Measurement: techniques that record a variable (e.g., activity)  

• Interpretation: changes in the sensor data (e.g., increase in 

activity) are used to classify the cow’s status (e.g., oestrus)  

• Integration: where sensor data is supplemented with other 

information (e.g., cull cow value) to produce advice (e.g., 

whether to inseminate a cow or not)  

• Action: the farmer makes a decision, or the sensor system 

makes the decision autonomously (e.g., the AI technician is 

called). 

Key amongst what precision dairy farming aims to deliver for the 
industry is to help producers make objective, informed management 
decisions based on automatically collected data. With this comes the 
potential for improved efficiency of production, health, and welfare of 
farmed animals and in particular transition cows (Bewley, 2010). The 
application of precision dairy farming has been facilitated by a large and 
expanding range of precision dairy technology (PDT). Over the past two 
decades we have seen an exponential increase in the availability of low 
cost, multifunctional sensor technology on dairy farms (Rutten et al., 
2013). These range from wearable technology including 
accelerometers, thermometers, and microphones to parlour technology 
including milk meters and milk conductivity and constituent sensors.  

This increase in the commercial availability of PDT has created greater 
opportunity for the application of precision farming techniques. 
However, concerns have been raised as to the driving forces behind 
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PDT development (Hogeveen & Ouweltjes, 2003). The opportunity to 
quickly develop and market animal sensor technology provides an 
attractive commercial proposition. Indeed, their sale in recent years has 
been subsidised in the UK through government grants (Rural Payment 
Agency, 2020). However, the availability of sensor technology 
represents only the first step in the realisation of the potential benefits of 
precision farming. When not accompanied by validated tools to facilitate 
data interpretation and integration, the adoption of PDT may fail to 
deliver a positive impact for the industry. This was highlighted by 
Neethirajanet al., (2017) who noted a lack of commercial impact despite 
widespread adoption of sensor technology, a phenomenon the authors 
attribute to a failure of the manufacturers’ ability to deliver commercially 
relevant tools. Though large quantities of data can now be economically 
and reliably collected on farm, its interpretation, integration, and 
translation into action – the end goal of precision farming, remains 
difficult (Stone, 2020).  

1.5.1 Automatic Milking Systems  

Within the realm of precision dairy technology, automatic milking 
systems (AMS) are perhaps best positioned to deliver on the promise of 
precision dairy farming. Since their introduction to the marketplace in 
1992 their use has grown rapidly with operating units estimated at 
50,000 worldwide in 2020 (Filho et al., 2020). Adoption of AMS has 
been largely driven by their decreased labour requirement when 
compared with conventional milking systems (Koning & Rodenburg, 
2004). Robotic milking, however, has the potential to provide solutions 
for the dairy sector far beyond a reduction in required labour.  

Modern AMS incorporate a wide array of sensor technology, capable of 
collecting production and behaviour data in real time. Of perhaps 
greater value still, is the opportunity provided by AMS for the 
interpretation and integration of this data. Through purpose built on-
farm software, AMS offer a platform to amalgamate these data sources, 
centralise integration and provide decision support. In an environment 
of increasingly fragmented data sources, the value provided by a single 
comprehensive system such as offered by AMS cannot be overstated.  

The collection of production and behaviour data on modern AMS offers 
an opportunity for the automated, objective assessment of transition 
cow health. Applied within a TMP, such data may have utility in the 
early identification  of animals likely to suffer the cost and consequence 
of poor transition health. The following section reviews the literature 
surrounding selected production and behaviour variables commonly 
recorded on commercial AMS in the UK, their ability to reflect 
physiological status, and potential for incorporation into an automated 
transition cow monitoring program. 
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1.6 Production and Behaviour Data 

1.6.1 Production Data 

Milk Yield 

Milk production rate, evaluated subjectively through udder tautness, or 
objectively via monthly test-day milk records have formed a part of 
transition monitoring programs since their inception. The advent of AMS 
offers not only real time assessment of milk quantity through integrated 
milk meters, but also the assessment of quality, specifically relating to 
milk fat and protein percentage as well as milk conductivity.  

Within AMS, daily milk volume provides an easily measured objective 
assessment of milk synthesis rate. This metric is well established as a 
marker of health in the dairy cow (Mansell, 2003). The response of milk 
production in the face of disease, however, is complex. This may be in 
part due to the biological prioritisation of milk synthesis, particularly 
during early lactation (Martens, 2020) leading to the continued 
production of milk in the face of disease and negative energy balance 
(Rajala & Gröhn, 1998). Despite this, the investigation of milk 
production in response to disease has by and large found a reduction in 
milk yield days and in some cases weeks, prior to diagnosis of clinical 
disease. Edwards & Tozer, (2004) reported an average of a 15kg/day 
reduction in milk yield for animals diagnosed with transition disease vs 
healthy herd mates. For those diagnosed with an LDA, this reduction 
was detected 6 days prior to clinical diagnosis. These results align with 
those of Lukas et al., (2009) who reported a reduction in yield for all 
digestive disorders and pneumonia 4-9 days prior to diagnosis as well 
as Stangaferro et al., (2016) who reported a significant reduction in 
yield in response to a range of metabolic and digestive conditions 
including LDA, clinical hypocalcaemia and metritis. 

Conflicting reports exist as to the association between milk yield and 
metabolic indicators of negative energy balance such as BHB and 
NEFA (Gross & Bruckmaier, 2019; King, et al., 2018). Across a large 
prospective cohort study involving 91 herds and 2,290 lactations, 
Ospina et al., (2010)  reported a decrease in 305-day milk production in 
multiparous animals with elevated NEFA and BHB post-partum. 
However, milk yields in primiparous animals recorded a positive 
association with both metabolites. Controlling for BCS and calving 
season, while dichotomising BHB values (> 10ml/DL), NEFA values 
were returned as the sole significant parameter affecting milk yield 
(NEFA dichotomised ≥0.57 mEq/L associated with +488kg for 305 D 
Yield, P =0.02) within this group. Replication of this analysis in 
multiparous animals, again returned NEFA concentration as the single 
significant predictor (NEFA ≥0.72 mEq/L associated with a 647kg 
decrease in 305 D yield, P = 0.001). The difference in physiological 
status of primiparous animals, when compared with older animals, 
which are not required to support the same level of growth, may to 
some extent explain this finding. However, while the balance of 
evidence points towards a negative association between indicators of 
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negative energy balance and milk production, sufficient contrary 
evidence exists to substantiate the likelihood of true variance in this 
association between individual animals. This is an area reviewed in 
greater detail by Duffield, (2000) and Horst et al., (2021). However, in 
brief, a logical premise for this phenomenon is that high yielding 
animals may mobilise large fat reserves to meet their energy needs. 
Individual animals may be capable of mobilising these large quantities 
within the parameters of an appropriate physiological response, (though 
concentrations of NEFA or BHBs may exceed accepted reference 
ranges) and thus avoid compromising their milk production potential. 
The conflicting findings as regards the association of metabolic 
indication for NEB and milk yield likely reflect the inherent inaccuracies 
associated with the use of strict diagnosis of disease states. Despite 
this, milk volume remains a crucial means of assessing physiological 
status in early lactation, particularly if this can be conducted early 
enough in lactation to enable pro-active disease management.  

Milk Constituents  

Due to the variance in production of milk constituents such as lactose, 
fat and protein, volume alone does not provide a complete account of 
the physiological costs of milk production. While lactose is the primary 
carbohydrate of milk and the main driver of volume, fat significantly 
affects the energy and nutrient cost of milk synthesis. The application of 
milk constituent data at the herd level where it has been more widely 
applied, has been described in Section 1.3. However, the advent of in-
line fat and protein sensors has led to an increased interest in the utility 
of milk constituents to reflect physiological status at the individual level.   

In response to negative energy balance, early lactation dairy cows 
mobilise fat reserves leading to increased circulation of fat cells and the 
elevation of milk fat percentage. Similarly, as demands for energy 
increase, protein is broken down at an increased rate, reducing the 
quantity available for incorporation into milk. The outcome of these 
physiological responses is the elevation of the milk fat-to-protein ratio. 

Evaluating the association between milk production traits and energy 
status, Mäntysaari et al., (2019) utilised concurrent sample of serum 
analysis of NEFA concentration with milk sampling at weeks 2,3 and 20 
post-partum. Following assessment of energy status using serum 
samples, a forward stepwise regression was built using milk traits to 
explain individual animal energy status. Fat-to-Protein ratio (FPR) and 
milk yield variables formed the final model (R2 = 0.47), with FPR being 
the most informative trait. Given the establishment of fat and protein as 
a marker of energy balance (Friggens et al., 2007, Gross & Bruckmaier, 
2019), these associations are unsurprising. However, the use of 
laboratory grade spectrometers to quantify milk constituents as used in 
these studies cannot be overlooked. In-line fat and protein sensors, as 
used in AMS have received far less research attention. Across 484 
cows from 9 AMS herds, (King et al., 2019) assessed in-line milk fat 
and protein monitors for the detection of ketosis as diagnosed by serum 
samples taken over the first 3 weeks post-partum. Statistically 
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significant association between FPR and serum BHB was observed (p < 
0.001). However, large variation was also observed with low R2 
returned across the various FPR metrics analysed (R2 = 0.04 to 0.09), a 
result the authors attribute to sensor calibration (See section 2.3.1 for 
further discussion). In-line fat and protein sensors are a novel 
technology. While peer reviewed analysis documenting their utility is 
lacking, it stands to reason that where close correlation with gold 
standard spectrometer values can be achieved, they can provide a 
useful assessment of energy balance in transition cows.  

Milk Temperature  

Body temperature, generally assessed as rectal temperature, is 
reported as one of the most commonly applied objective assessment of 
transition cow health within TMPs (Espadamala et al., 2016,König et al., 
2023). While it has demonstrated some utility as a means of monitoring 
physiological status, its use, particularly in the days immediately post-
partum, does appear to be limited (Kristula et al., 2001). Grouping 
animals based on disease diagnosis within the first ten days post 
calving (Infectious Disease, Metabolic Disease or None), Wenz et al., 
(2011) reported a significant elevation in temperature within both 
diseased groups (P =<0.001). The highest temperatures and largest 
variations in temperature were observed in animals suffering infectious 
disease followed by those diagnosed with metabolic disease. While a 
febrile response to infectious disease could be expected and has been 
demonstrated to precede diagnoses such as metritis (Benzaquen et al., 
2007). The change in temperature in response to metabolic disease is 
of interest as it may indicate the utility of temperature to reflect subtle 
change in physiological status, however, no further substantive 
evidence to support this is apparent. A single herd study (n= 217), in 
which vaginal temperature loggers were implanted for days 2-10 post-
partum reported a significant elevation of body temperature in response 
to hyperketonaemia in primiparous cows. However, the number of cows 
was extremely small (n= 12), and this effect was not observed in 
multiparous animals (Burfeind et al., 2014). The variance in core body 
temperature during the early post-partum period means that any 
assessment of temperature must be interpreted with caution. This was 
demonstrated by Kristula et al., (2001), who found that over the first 10 
days post-partum, 48% of clinically normal animals recorded at least 
one elevated temperature. The interpretation of temperature is 
complicated further within modern AMS, as milk temperature is 
measured as a proxy for body temperature. Reports of its utility for the 
assessment of physiological status are limited, however, a reduction in 
milk temperature has been associated with the diagnosis of disease 
such as LDA, lameness and, in contrast to (Burfeind et al., 2014), sub-
clinical ketosis (King, et al., 2018). It has also been incorporated into 
statistical models designed for the detection of mastitis (Naqvi et al., 
2022).   
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1.6.2 Behaviour Data 

Behavioural changes in response to a change in physiological status 
may be profound and easily recognisable on a single inspection of the 
animal (e.g. Recumbency due to hypocalcaemia). However, more 
subtle changes such as motivated sickness behaviours, which 
represent an adaptive response to physiological stress can also be 
evaluated over repeated observations (Weary et al., 2009). Continuous 
monitoring of behaviour, as facilitated by PDT offers the opportunity to 
utilise changes in the intensity or frequency of observed behaviour as a 
marker of physiological status. Four metrics of dairy cow behaviour are 
commonly available on commercial AMS in the UK. These are the 
frequency and nature of cow-robot interactions, and quantity of 
concentrate dispensed, recorded by the milking robot itself, as well as 
rumination and activity data, recorded via wearable sensors.  

Rumination 

Rumination is a vital process for the maintenance of rumen health and 
efficiency of digestion (Krause & Oetzel, 2006). It is also regarded as an 
expression of natural behaviour and thus, an indicator of dairy cow 
welfare (Wang et al., 2016). The trajectory of rumination activity over 
the transition period in a healthy animal reaches its nadir on the day of 
calving. Pahl et al., (2014) reported a progressive decline in the week 
before calving, followed by complete cessation of rumination on 
average 123 minutes before calving until 355 minutes after. This sharp 
decline appears highly reliable and has been utilised in the automatic 
prediction of calving (Borchers et al., 2017). From here, a sharp 
increase is observed over the first week of lactation (Soriani et al., 
2012). Peak rumination has been reported from day 9 (Stevenson et al., 
2020) to 50 post-partum (Paudyal et al., 2018) before a plateau is 
reached. Reported average rumination times for Holsteins generally 
agree with those reported by Stevenson et al., (2020), approximately 
400-450 minutes spent ruminating per day during the two weeks pre-
calving, reaching a plateau of approximately 500 – 550 minutes per day 
post-partum. 

A reduction in absolute rumination time has been reported in response 
to a range of clinical transition diseases. Comparing 403 animals 
diagnosed with transition disease between days 5-12 post-partum, with 
300 healthy herd mates, a significant difference in total rumination times 
was detected between groups (Steensels et al., 2017). This difference 
peaked at 3 days prior to diagnosis of ketosis or metritis, with sick 
animals ruminating on average 90 mins less per day than their healthy 
herd mates. Adding weight to this association is the observation within 
this study of a recovery in rumination time following diagnosis and 
treatment. These results have been replicated across a number of 
studies (Stangaferro et al., 2016, King, et al., 2017, Paudyal et al., 
2018). While these have in general, been composed of a small number 
of lactations from single herd studies, the reproducibility of the response 
of rumination to clinical disease in the transition cow adds weight to this 
association.  
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The effect of sub-clinical transition disease such as sub-clinical ketosis 
(SCK) and sub-clinical hypocalcaemia (SCH) on rumination time and 
has also been reported. Similar to the studies investigating the effect of 
clinical transition disease, participant numbers within these analyses 
tend to be limited in scale with interpretation clouded further by variation 
in the timing of sampling and cut offs used for diagnosis of disease. 
However, some through lines can be identified. Goff et al., (2020) 
reported a strong correlation (r=0.75) between rumination rates on days 
1 post-partum and calcium concentration 12 hours after calving across 
a twenty-six-cow dataset. Across a larger dataset (n= 286) Liboreiro et 
al., (2015) found only a weak correlation (r= 0.15) between calcium 
concentration and rumination time. Though this finding which may be 
attributed to calcium sampling in this study taking place at any point 
within 72 hours of calving. Nevertheless, a significant reduction in 
rumination was evident from day 1-3 for animals suffering sub-clinical 
hypocalcaemia.  

In the same study a weak correlation (r=0.08) between BHB and 
rumination time was detected, with a significant reduction in rumination 
time associated with the diagnosis of sub-clinical ketosis over the first 8 
days of lactation. Across 4 commercial dairy farms this effect was 
substantiated by Kaufman et al., (2016). Assessing rumination time on 
a weekly basis, multiparous animals suffering sub-clinical ketosis 
demonstrated significant (P <0.10) reductions in rumination time 
compared with healthy animals though this trend was not observed in 
primiparous animals except where SCK was accompanied by a second 
disease diagnosis. This variability in association between SCK and 
rumination in the post-partum period was demonstrated further by 
Schirmann et al., (2016), who reported no association between the 
diagnosis of SCK and rumination time despite serum BHB 
measurements being taken 3 times per week for the first 2 weeks post-
partum. However, the small sample size (n =80) and low incidence of 
SCK (n=9) means these results should be interpreted with care.   

The reduction in rumination in response to clinical transition disease 
appears to be a well-established and repeatable one. Larger studies 
examine the response of rumination to various levels of subclinical 
disease states would be of benefit; however, it appears that rumination 
time has some level of sensitivity to the calcium and ketone body 
concentration in the transition cow.  

Activity 

At its most basic, an animal’s locomotor activity portrays its ability or 
willingness to move, a measure which can reflect the animal’s response 
to changes in physiological status (Broom, 2006). These effects can be 
additive, for instance, a severe case of mastitis may lead to discomfort 
while walking, thereby reducing activity. The resulting fever and 
upregulation of inflammatory cytokines may reduce appetite and thus 
the drive to actively seek food, decreasing activity further (Broom, 
2006,Tizard, 2008). Activity levels generally increase in the hours prior 
to calving, thereafter, a decrease from peak is observed with activity 
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levels generally stabilising early in lactation (Jensen, 2012). Decreased 
activity levels have been associated with the diagnosis of clinical 
transition diseases such as LDA, pneumonia, and metritis (King, et al., 
2017). The extent of this decrease varies by condition, with animals 
suffering LDA demonstrating a 45% reduction in activity per-day from 
12 days prior to diagnosis (King, et al., 2017). For comparison, animals 
diagnosed with pneumonia recorded a 34% daily decrease for the 5 
days prior to diagnosis. Steensels et al., (2017) reported a general 
reduction in activity between healthy and diseased animals over the first 
21 days post-partum, unlike King, et al., (2017) however, no significant 
difference between individual clinical diseases was observed. These 
results are bolstered by a relatively large study examining the response 
of activity to clinical disease. Analysing approximately 1,500 records 
across 3 farms Edwards & Tozer, (2004) demonstrated reduced activity 
in clinically ill cows (ketosis, retained placenta, and milk fever, LDA, 
indigestion, reduced feed intake, traumatic gastritis, acidosis, and 
bloating) when compared with healthy herd mates. This change in 
activity level was found to be significant (all P-values <0.002) for days -
2 to +1 relative to diagnosis.  

The precision with which activity reflects more subtle changes in 
physiological status was explored by Najm et al., (2020). Across a small 
sample set (n = 75) a statistically significant reduction in animals 
diagnosed with subclinical ketosis (SCK+) (n=6) compared with healthy 
herd mates was observed on day 6-12 post-partum (P < 0.001) with 
SCK+ animals recording lower than the group average activity level 
over these days. Liboreiro et al., (2015) also reported a weak but 
significant (P <0.01) negative correlation between BHB concentration 
and activity level (r = -0.14). Interestingly, this study found no significant 
correlation between calcium concentration and activity, though it did 
tend towards significance (r = 0.09, P-value 0.17). This is in keeping 
with the observed activity of sub-clinically hypocalcaemic (SCH) 
animals reported by Barraclough et al., (2020), (SCH+ = 30, SCH- = 6) 
who reported significant reduction in the case of clinical hypocalcaemia 
but not sub-clinical hypocalcaemia.  

The association of activity with physiological status broadly follows that 
of rumination in that significant disturbances in health are accompanied 
by a reliable response in activity levels. Disturbance at the sub-clinical 
level is clearly less reliable, with the absence of significant reduction in 
sub-clinical hypocalcaemia of particular note given this disease’s direct 
effect on muscle tissue.  

Visit Behaviour 

Under free flow AMS conditions dairy cows may approach the milking 
robot throughout the day. Cow-robot interactions are recorded as 
Milking Visits; where a complete milking is carried out and concentrate 
feed provided, Refusals; where milking is refused due to an animal re-
presenting for milking too quickly following a previous milking visit, and 
Failure; Where milking is not successfully completed (see Section 2.3.1 
for further details). As access to the concentrate feed provided by the 
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robot is the primary motivation for robot visits, the number and nature of 
each cow’s interaction with the robot serves as an indicator of the 
animal’s appetite and ability to access the robot and thus may provide 
information on the animal’s physiological status (Bach et al., 2007, King 
et al., 2018). 

Similar to that observed in studies examining the response of 
rumination and activity to changes in physiological status in transition 
cows, the literature describing the changes in visit behaviour is 
composed of small scale, often single herd studies. Within these, the 
response of visit behaviour seen to cases of lameness predominates, 
demonstrating its associated reduction in robot visits (Miguel-Pacheco 
et al., 2014, Steensels et al., 2016). Milking visits have been 
demonstrated to reduce in response to mastitis, a response 
hypothesised to be a protective action due to increased pain during 
milking (King et al., 2018). Within the same population, animals 
diagnosed with an LDA recorded 0.062 fewer milkings/d (P = 0.009), 
while those diagnosed with sub-clinical ketosis also tended to record a 
reduction in visits when compared with their healthy herd mates, though 
this difference was not statistically significant. The unique nature of 
robot visit metrics, not only to herds utilising AMS but to those operating 
a free-flow housing system means large scale studies investigating their 
association with transition disease are limited. However, considering the 
relevance of the factors which drive voluntary robot visits they remain 
an intriguing prospect for incorporation into a TMP. 

1.6.3 Conclusions 

The data generated by precision dairy technology as applied in AMS 
represents a significant opportunity for the development of transition 
cow monitoring programs. Production and behaviour data has a 
demonstrated ability to reflect both profound and subtle changes in 
physiological status during transition. In contrast to the previously 
applied monitoring techniques, such as the use of manual observation 
or metabolic indicators, this approach offers an objective, early and 
crucially, automated assessment of transition health. However, the 
potential this technology holds to facilitate improved transition cow 
management has yet to be fully explored. As demonstrated above, the 
majority of research within this field has focused on the association of 
production and behaviour data with the occurrence of transition disease 
in its clinical or sub-clinical form. There remains an opportunity to apply 
transition cow monitoring programs in a more holistic sense, focused on 
the broad cost and consequence of poor transition health in place of the 
diagnosis of specific disease states. 

1.7 The Future of Transition Monitoring Programs 

1.7.1 Defining the Cost and Consequences of Poor 
Transition Health 

Transition disease, in its clinical or subclinical form, has invariably been 
the target of transition monitoring programs, initially using manual 
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observation of clinical health and laterally via precision dairy 
technology. However, the cost and consequence of transition failure are 
broad and far reaching. Screening programs focused on the 
identification of specific disease states have an inherently narrow 
scope. This approach may therefore be ill-suited to the assessment of a 
complex physiological process such as that which takes place during 
the transition period.  

An alternative approach may be one which utilises a more holistic 
assessment of the outcomes related to transition success or failure. 
One which is reflective of, as defined by LeBlanc, (2010), the cost and 
consequence of transition disease, compromised production and 
welfare. An approach focused on these broader outcomes may allow for 
greater flexibility in the assessment of transition health, accounting for 
both the complex nature of the challenges faced as well as the 
resilience of each individual cow.  

Beyond the increased incidence in disease, the cost and consequence 
of poor transition health may be broadly viewed through its deleterious 
effects on dairy cow survival, milk production, and fertility. Assessed in 
early lactation, performance in these areas is reflective of the success 
with which the transition cow has adapted to the challenge of the 
initiation of lactation (Probo et al., 2018, Stevenson et al., 2020, 
Pascottini et al., 2022). Their incorporation into TMPs may more fully 
encompass the complete spectrum of transition cow health, allowing 
producers to monitor performance based on broad outcomes with 
demonstrated economic, welfare and social impacts within their industry 
(De Vries & Marcondes, 2020).  

Of further value to producers is the potential for the development of 
TMPs, which can predict these long-term performance metrics, 
facilitating intervention to prevent or mitigate losses. A prognostic 
approach to TMPs would stand in contrast to the retrospective, 
diagnostic approach which has been predominant within this field to 
date. The following sections reviews the existing literature relating to the 
use of transition cow data in the inferential and predictive modelling of 
removals in early lactation, milk production, and reproductive 
performance. The following sections review these three metrics of 
transition success. 

1.7.2 Removals in Early lactation 

Herd removals can be classed as voluntary or involuntary. Voluntary 
removal represents the planned culling of animals which the producer 
deems to have reached the end of their productive life or, the sale of 
animals for continued milk production elsewhere. Involuntary removals 
are those which occur through unplanned culls or on farm mortality. The 
financial impact of involuntary removals and its effect on the economic 
sustainability of the dairy industry is well documented (Kerslake et al., 
2018). However, they also affect the social sustainability of dairy 
farming and are widely used as a welfare assessment within the UK 
(RSPCA Welfare Standards, 2023). The ability to identify animals at risk 
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of early lactation removal may provide producers with an opportunity to 
intervene and reduce the risk of loss.  

Early lactation is a high-risk period for dairy cow mortality. In a large 
survey of dairy cow mortality in Denmark from 1990 to 2001, 30% and 
41% of mortality was recorded within 30 days of calving for parities < 3 
and 3+ respectively (Thomsen et al., 2004). While the association 
between clinical transition disease and increased cull risk has been well 
described (Table 1-1), metabolic indicators, specifically BHB, NEFA and 
calcium in peri-parturient cows also have a well-established association 
with cull risk in early lactation. Through an amalgamation of data 
collected from four clinical trials, Roberts et al.,(2012) constructed a 
dataset of 5,979 lactations from 69 farms. BHB concentration of 
>1.2mmol/L in the first week post-partum, returned an odds ratio of 1.8 
for culling within 60 DIM (p= <0.001). Calcium concentration (<2.2 
mmol/L) and NEFAs (>0.8 mmol/L) also returned significant association, 
with odds ratios of 1.5 and 2.0 respectively. These results are 
corroborated widely across a range of studies. Seifi et al., (2011) found 
significant associations between serum calcium and NEFA 
concentration in the first two weeks post-partum and cull risk by 60 DIM. 
More recently, reports by Venjakob et al., (2018) and Menta et al., 
(2021) has strengthened this association with the authors reporting 
significant association between early lactation cull risk and 
periparturient calcium and BHB respectively. These studies 
demonstrate the relationship between physiological status in early 
lactation, as assessed by clinical diagnosis and metabolic indicators, 
and the subsequent risk of removal from the herd. However, there has 
been no investigation of the association between early lactation 
production and behaviour parameters with early lactation cull risk.  

The prediction of cull risk using transition cow data has received limited 
attention within the literature. Lukas et al., (2015) investigated the utility 
of daily milk yield in the first week post-partum for the prediction of cull 
risk by 100 days in milk. The analysis of 807 lactations over 3 herds 
evaluated daily milk yield, rate of increase in milk yield and the 
difference between recorded and expected milk yield – termed 
Transition Success Measure (TSM). TSM was found to be the strongest 
and most reliable predictor of cull risk across all herds. Following 
development of 3 farm specific predictive models using TSM, the Area 
Under the Receiver Operator Curve (AUC ROC) for the predicted risk of 
cull when assessed using a withheld test dataset was 0.82, 0.86 and 
0.73 for herds 1, 2 and 3 respectively. As the authors did not report the 
performance of these models when applied on a previously unseen 
herd, their generalisability remains unknown. However, this study does 
demonstrate the potential of production data for the prediction of cull 
risk. To date no investigation of the predictive power of sensor data 
such as rumination or activity, for the likelihood of cull has been carried 
out.  
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1.7.3 Milk Production 

Reduced milk yield is one of the most common and economically 
consequential effects of poor transition health (Liang et al., 2017). Its 
use in the monitoring of transition cows as part of a monthly test-day 
milk recording schemes and the inherent disadvantages of this 
approach have been descried in Section 1.3. A more appropriate 
alternative may be the use of yield deviation. An animal’s yield deviation 
represents the difference between observed and expected yield over a 
given time. Its calculation involves the generation of an expected yield 
for each individual animal based on their prior production levels. 
Observed yield is then compared with expected and the difference 
regarded as a deviation. In contrast to the reliance on comparison with 
producers’ expectations, or the production of herd mates as described 
in Section 1.3 and displayed in Figure 1-1, the use of yield deviation 
aims to utilise the cow as her own control. This approach aims to 
provide a more accurate reflection the animal’s physiological status and 
thus, a more useful assessment of transition health.  

Deviation from expected yield has been investigated as both a marker 
of resilience in dairy cows (Elgersma et al., 2018) and a tool for the 
retrospective monitoring of transition cow health (Nordlund, 2006). The 
assessment of deviation form expect first test-day yield was developed 
as a commercial transition monitoring tool, the Transition Cow Index 
(TCI) (Nordlund, 2006). As part of the validation process the 
relationship between deviations identified by the TCI and clinical 
disease within 7 days of the first test day record was examined. Across 
18,814 lactations from 30 herds animals recording cases of metritis, 
ketosis, lameness or left displaced abomasum demonstrated a negative 
deviation when compared with healthy animals. Similarly, Salamone et 
al., (2024) found early lactation health and metabolic status to be 
associated with yield deviation, with deviations observed to be 
significantly more negative in diseased vs non-diseased animals (Figure 
1-2). Within a multivariable model using the same dataset a significant 
negative association between serum NEFA concentration and yield 
deviation was also observed (P = <0.001). Yield deviation therefore, 
represents a viable method for the assessment of physiological status 
in the transition cows. As applied within the TCI the use of yield 
deviation offers a valuable, but retrospective method of transition health 
assessment. To date no investigation of the accuracy with which yield 
deviation in early lactation might be predicted has been carried out . 
Where this could be achieved and incorporated into a TMP, it may 
provide valuable information to producers and offer an opportunity to 
mitigate or prevent production losses.  
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Figure 1-2 Graphical demonstration of the relationship between Yield deviation 
from expected yield and the diagnosis of clinical disease.  Description from 
source (Salamone et al., 2024). (The terms Yield Deviations and Yield 
Residual are equivalent.) Panels A and B show the milk yield residuals in the 
transition period (MRT) for test-day (MRTTD) and milk meter (MRTMM) 
distribution. The colours distinguish between non clinically diseased (green) 
and diseased (orange). Both colours are stacked on top of each other. The bin 
widths in panels A and B are 2.5. In panel C, the relation between the 
MRTTD and MRTMM is plotted. A distinction is made between the clinically 
diseased (•) and non-clinically diseased (▴). The axes are located on the 
median of each MRT. Distribution bands were also plotted to represent the 
interquartile ranges.  

1.7.4 Reproduction  

As our understanding of the physiological processes influencing 
reproduction in the dairy cow has grown, the importance of transition 
health has become increasingly apparent. The negative effects of 
clinical transition disease, particularly those associated with the 
reproductive tract, on subsequent fertility have been well described 
(Table 1-1) (Gilbert, 2019). The association between early lactation 
subclinical disease, as assessed by a wide range of metabolic 
indicators, and subsequent reproductive performance has also been 
investigated (Butler, 2013, Nigussie, 2018). The interpretation of 
associations between these metabolic indicators and fertility are 
complicated by the variance in sample timing and cut off selection, as 
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well as the varied application of hormonal protocols across studies. 
However, some broad conclusions on this relationship can be drawn.  

Across the majority of the available literature, negative energy balance 
in the transition period has been demonstrated to exert a detrimental 
effect on subsequent fertility. A meta- analysis carried out by Raboisson 
et al., (2014) on the effect of subclinical ketosis (BHB > 1.4mMol/L, 
NEFA >0.4mMol/L pre- or >1.0 post- partum) on subsequent 
reproductive performance found an odds ratio of 0.67 for conception to 
first service. A longer calving to first service and calving to conception 
interval were also observed. As regards the effect of NEB on cyclicity, 
the odds ratio of experiencing early ovulation (< 33 DIM) were found to 
be 5.72 for healthy animals when compared with those diagnosed with 
ketosis within the first 60 days (Stevenson et al., 2020). In the case of 
hypocalcaemia, the association of calcium status with reproduction is 
not consistent across the literature (Couto Serrenho et al., 2021). 
However, two large multi-herd studies demonstrated reduced odds of 
conception to first AI for animals diagnosed with hypocalcaemia within 
the first 3 weeks post-partum (Chapinal et al., 2012, Venjakob et al., 
2018).  

The association of production parameters and fertility performance was 
assessed over 312 UK herds by Hudson & Green, (2018). Protein 
percentage and milk yield at first test-day returned significant positive 
associations with the risk of conception, (OR= 1.05 and 1.16 
respectively) between days 20 and 150 in milk. Butter fat returned a 
slight but significant negative association (OR= 0.98). However, these 
factors, in combination with production parameters from test day 2 
failed to account for a substantial portion of the variance in conception 
risk observed within this dataset (R2= 0.22). These results broadly 
agree with those of (Madouasse et al., 2010), which observed the effect 
of first test-day protein percentage and fat on the probability of 
conception (DIM 20-145) across 2,128 UK herds. Though milk yield at 
first test-day was not found to be significant within this dataset. The 
association of milk constituents in early lactation on fertility within an 
Irish spring calving system was assessed over 87,227 cow lactations by 
Carty et al., (2020). Within the first 30 days post-partum milk protein 
and milk yield were associated with increased hazard of pregnancy for 
animals submitted to service, a single unit increase in each yielding a 
12% and 1% increase in pregnancy hazard. A quadratic relationship 
between milk fat and pregnancy hazard was observed over this period, 
with a positive association reported up to 4.6%. Overall, however, milk 
constituents in this study were found to exert only a modest effect on 
the hazard of pregnancy. These three large studies highlight a 
statistically significant but generally small effect which milk production 
parameters in early lactation exert on subsequent fertility performance.  

In comparison to reports investigating the relationship between, 
metabolic or production parameters and subsequent fertility, those 
exploring transition cow behaviour parameters are limited and small in 
sample size. A single cohort study which analysed the effect of milking 
frequency on reproductive performance within a herd utilising AMS 
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found no significant association between visit frequence within the first 
100 days and probability of submission or conception-based metrics 
(Talukder et al., 2015). Another single herd study reported a positive 
association between rumination time in the 21 days pre-calving and 
subsequent time to pregnancy, though this was not replicated for 
rumination in the post-partum period. The association of activity levels 
in early lactation has received greater research attention, largely 
focused on the recording of oestrus via wearable activity sensors. 
Bretzinger et al., (2023) demonstrated that the expression of oestrus in 
DIM 7-60 was associated with subsequent intensity of heat at AI and 
risk of becoming pregnant within DIM 200. A finding which was echoed 
by Borchardt et al., (2021) investigating the recording of automatically 
detected oestrus from days 7- 40 post-partum. Those which failed to 
record an oestrus had significantly reduced reproductive performance 
as measured by hazard of insemination within 100 DIM, and time to 
pregnancy. These studies provide some insight into the relationship 
between transition cow behaviour and reproductive performance; 
however, this remains an area in need of further research. Of particular 
benefit would be the examination of behaviour based solely within the 
transition period evaluated on a multi-herd basis.  

Similarly, the prediction of reproductive performance using transition 
cow behaviour data remains largely unexplored. To date predictive 
models have focused on data from later in lactation, often within the 
voluntary waiting period or in close proximity to the time of insemination. 
For example, the intensity and duration of increased activity at the time 
of insemination has been used to predict the likelihood of conception 
(Marques et al., 2024). While this is an understandable approach, the 
demonstrated association between transition performance and fertility 
(Roche et al., 2018), suggests the predictive power of behaviour 
parameters during this time is worthy of further investigation. Where this 
could be established, the ability to identify animals likely to experience 
reduced reproductive performance may be incorporated into TMPs to 
facilitate pre-emptive action.   

The ability to predict reproductive performance in early lactation offers 
great potential for the implementation of targeted reproductive 
management (TRM). This field of research seeks to categorise animals 
by their expected reproductive performance and thus facilitate bespoke 
management strategies to maximise reproductive efficiency (Giordano 
et al., 2022). This approach has been applied in the selective use of 
sexed semen (Berry, 2021). as well as a targeted administration of 
exogenous hormones (Gonzalez et al., 2023). However, this remains a 
novel field of study in which the applications of data derived from AMS 
has yet to be investigated.  

 

1.8 Conclusions and Objectives 

Transition cow monitoring programs have seen several significant 
developmental shifts since first implemented. The first was the 
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progression from the manual, subjective assessment of physiological 
status, to the use of objective markers such as monthly test-day milk 
records, and metabolic health indicators. Buoyed by rapid progression 
in the field of metabolic analysis, and an ability to examine large 
number of markers from a single sample, the investigation of 
metabolomics for the assessment of the physiological status of the 
transition cow under research conditions expanded rapidly. Despite this 
however, its application on farm remained limited due to the labour-
intensive nature of sampling and the limited availability of cow-side 
tests. Therefore, despite a large volume of published work documenting 
the association of various metabolic indicators with physiological status, 
their integration into TMPs has been limited. 

The slow pace with which metabolic analysis was adopted on farm 
stands in contrast to that of precision dairy technology. Sensors capable 
of monitoring dairy cow production and behaviour have recorded rapid 
uptake across the dairy industry in the past decade. In further contrast 
to metabolic analysis, this adoption of PDT was arguably achieved 
without sufficient publication of validation studies or development of the 
tools necessary for data interpretation (Stone, 2020). The rapid 
increase in the availability of this data does mean however, that where 
progress in the interpretation and integration of this data can be made, 
on farm impact may be possible in a shortened time frame as the mean 
of data collection are already widely in use.  

A much slower development in the field of TMPs has been the shift in 
the outcomes of interest from diagnosis of transition disease to the 
prediction of long-term outcomes following transition. The pace of 
development in this regard is understandable. Transition disease, 
particularly its clinical form, presents a clear and obvious welfare 
concern to all stakeholders within the dairy industry. Their negative 
effect on the social, economic, and environmental sustainability of the 
industry ensures that their prompt diagnosis and treatment will remain a 
vital aspect to transition cow management. It remains the fact however, 
that despite the development seen in our ability to monitor transition 
cows, the incidence of transition disease has remained static for the 
past two decades. Therefore, further consideration of alternative 
approaches to TMPs, those which focuses on early identification of 
animals expected to experience the cost and consequence of poor 
transition health would appear warranted.  

In the use of long-term outcomes reflective of transition failure, 
predictive models provide an opportunity to employ management 
strategies in early lactation which may reduce potential losses. To 
achieve this requires the development of models which accurately 
predicted each animal’s expected performance. The potential value in 
such programs, developed using production and behaviour data as 
collected by AMS, lies not only in the volume and variety of 
automatically collected data, but in the infrastructure already in place to 
facilitate interpretation, integration and crucially, action at the farm level. 

The aim of this thesis was to investigate the relationship between 
production and behaviour data as collected by AMS in the early post-
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partum period and, subsequent performance assessed using risk of 
removal, milk production and reproductive performance in early 
lactation. An emphasis was placed on the predictive power of this data 
and its potential utility within a prognostic transition cow monitoring 
program. This study was conducted following ethical approval from the 
School of Veterinary Medicine and Science, University of Nottingham, 
Committee for Animal Research and Ethics (Reference No. 3404 
210708). 

 

Chapter 2 General Introduction to 
Material and Methods. 

2.1 Introduction to the Study Data 

The data analysed throughout this thesis was collected from herds 
utilising Lely AMS in the UK and Republic of Ireland between January 
2016 and June 2023. It is comprised of a combination of automatically 
collected sensor data and manually entered farm records. These were 
remotely accessed and extracted from Lely’s on farm software Time 4 
Cows ® (T4C), via Lely’s third-party application programming interface 
(API) (https://api-integration.lely.com/index.html). Data was collected 
from participating herds at regular intervals over the lifetime of the 
project and as such, no single “master dataset” was utilised for analysis. 
Rather, each individual piece of analysis used the most current dataset 
available at its initiation. This chapter aims to describe the herd 
recruitment and data extraction process. Data handling procedures 
specific to each individual analysis are described in their respective 
chapters. 

2.1.1 Farm Recruitment 

Lely International headquarters are based in Masluaus, the 
Netherlands. From here, regional management is disseminated to areas 
termed “Clusters”. Farms within the UK and Republic of Ireland are 
managed under the Atlantic Cluster, based in Birmingham UK. 
Operating within each cluster are individual Lely Centres. These serve 
as direct points of contact for producers utilising Lely AMS. Each centre 
employs Farm Management Support (FMS) advisors who are 
responsible for customer care. Throughout this project all contact with 
Lely clients was carried out by FMS advisors exclusively.  

Prior to the commencement of recruitment, criteria for herd eligibility 
were established. Herds were deemed eligible for inclusion if they were 
based in the U.K. or Republic of Ireland, have been utilising at least 2 
Lely Astronaut Milking Robots ® exclusively for at least two years, 
under a “free flow” traffic system (Munksgaard et al., 2011) and were 
utilising SCR® collar rumination and activity monitoring technology (Re-
branded by Lely as Lely Qwes-HR collars, Lely International N.V.). 
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These criteria were applied to maximise the volume and consistency of 
data available from recruited herds. The requirement that each herd 
have two robots, operating over two years was put in place to ensure an 
adequate number of animal records. The requirement for SCR animal 
monitoring technology was to standardise monitoring technology across 
the dataset (see Section 2.3.2 for further discussion).  

Facilitated by both Lely Head Quarters and the Atlantic Cluster, all Lely 
centres in the U.K. and ROI were approached to request assistance in 
the recruitment of farms for participation in this study. At this time, 8 
Lely centres were operational within the Atlantic cluster. All, with the 
exclusion of Lely Centre Ayre, agreed to participate in the study. Of the 
seven participating centres two were in the Republic of Ireland; 
Mitchelstown and Mullingar, one in Scotland; Kilmarnock, one in 
Northern Ireland; Eglish, and the remaining 3 in England; Birmingham, 
Holsworty and Yeovil. A map detailing the geographical location of each 
participating Lely centre is presented in Figure 2-1.  Details relating to 
the numbers of herds recruited by each centre are presented in Table 
2-1. 

 

Figure 2-1 Location of participating Lely Centres in the UK and Republic of 
Ireland.  
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Table 2-1 Number of recruited by each participating Lely centre 

Region Lely Centre No. of herds 
recruited 

Republic of Ireland   
 Mullingar 9 
 Mitchelstown 3 
Norther Ireland    
 Eglish 6 
England   
 Birmingham 6 
 Holsworty 6 
 Yeovil 12 
Scotland   
 Kilmarnock 4 

 

The process of herd recruitment was carried out over approximately 6 
months from January 2021 to July 2021 and proceeded as follows. A 
brief overview of the project including all criteria for eligibility was 
disseminated to FMS advisors. FMS advisors were asked to identify 
farms which satisfied all the eligibility criteria and approach eligible 
herds to assess their willingness to participate. A consent form, 
authorising the use of their data in the study was distributed to all herds 
which agreed to participate (Appendix 10.1).  

In total, consent forms for 46 herds were returned. The herd recruitment 
procedure utilised represents a non-probabilistic convenience sample. 
The eligibility criteria set out above is biased against those within the 
first two years of operation and those utilising a single robot. A further 
source of bias is the voluntary nature of participation. As all data 
generated on farm remains property of the producer, the data utilised in 
this study could not be accessed unilaterally thus, the need for 
volunteers was unavoidable. However, as participation in this study did 
not require extensive input from the producers (for example, the 
requirements to complete an interview or survey) the cost of 
participation was low. This may have reduced the effect of volunteer 
bias in this study. A third source of selection bias is the role of FMS in 
the selection of farms for participation. As the researcher had no direct 
contact with producers, the choice of those invited to participate was at 
the discretion of FMS; which may have been subject to some selection 
biases based on working relationships.  An alternative approach to 
recruitment considered at the outset of the project was the random 
selection of herds fulfilling the selection criteria. An ordered list of farms 
for recruitment would then be passed to FMS advisors with the request 
to approach each farm in turn until a set number were successfully 
recruited. Following consultation with management at Lely Atlantic 
Cluster this approach was not pursued due to the extra workload placed 
on FMS advisors volunteering their time to recruit farms. By simplifying 
the recruitment process it was possible to increase the number of farms 
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recruited within the study period, however these biases need to be 
considered in the interpretation of results.  

2.1.2 Data Extraction 

Following recruitment to the study, data retrieval was initiated. This was 
carried out on an individual herd basis as and when herds were 
recruited. The researcher established a sharing licence within Lely’s 
third-party API. This licence defined the type of data available from 
recruited herds and the time span for which access would be granted.  

Upon agreement to participate and the return of a signed consent form, 
a herd identifier was provided by the FMS advisor to Lely International 
and the herd added to the sharing licence. This enabled an option to 
activate an API link on each farm’s T4C software. FMS advisors were 
then asked to access T4C for each recruited farm in person, or via 
TeamViewer® to activate this link. Once activated a farm key was 
generated. This was provided to the research team and served to allow 
herd access via Lely’s API. 

Data retrieval was carried out using R statistical software (R Core Team 
2021). The “POST” function within the JSONlite package (Ooms, 2014). 
was used to offer licence security information in addition to the farm key 
to Lely’s API. This provided access to each farm’s data individually. 
Thereafter, the “GET” function was used to request specified API data. 
For each data scrape a total of 14 separate requests were made per 
herd (Table 2-2).  

2.1.3 Data Handling 

Following completion of each herd scrape, the data retrieved was 
converted from JavaScript object notation (JSON) to a vector. 
Thereafter, the herd was assigned a random numerical identifier, all 
animals were assigned a numerical identifier within their respective herd 
and all cow-lactation assigned an identifier comprised of the cow 
identifier, herd identifier and lactation number. All data which might be 
used to identify the herd (e.g., Government ear tags numbers, Lely herd 
identifier) was then deleted. An animal lactation and herd identifier as 
well as a date and a Days in Milk (DIM) indicator was associated with 
each individual observation across all data frames. With each 
successive data scrape, new data was amalgamated with prior scrapes 
on a herd basis. When a dataset was required for analysis the most up 
to date herd datasets were merged into a multi-herd dataset. This was 
then brought forward for data assessment, manipulation and analysis.  
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Table 2-2 API requests used for data extraction 

Lely API Address General Description 

/api/animals Animal identifiers, Date of birth, 
Gender, Herd identifier 

/api/milkvisitrobotdata Data relating to milking time, Dead 
time, Milking speed and teat 
position, reported on a per visit 
basis 

/api/milkvisits Milk weight and animal weight on 
a per visit basis 

/api/milkdayproductionsquality Daily total of milk production, Fat & 
protein indications, Successful 
milking visits, Refusals and 
Failures 

/api/milkvisitsquality Conductivity and milk temperature 
on a per visit basis 

/api/feedvisits Concentrate dispensed per robot 
visit 

/api/calvings Calving Dates 

/api/dryoffs Dry off Dates 

/api/heats Date of heats as detected by 
activity monitoring 

/api/inseminations All insemination records 

/api/pregnancies Date and result of last pregnancy 
check, Date of last insemination 

/api/currentreprostatus General reproductive data on a 
cow basis including calving date, 
current status, date of last 
insemination, number of 
inseminations, date of last heat 

/api/activities Activity data reported on a two 
hourly basis 

/api/ruminations Rumination data reported on two-
hourly basis 

 

2.2 Data Quality  

2.2.1 Data Access Limitations 

Technical issues relating to the generation of a farm key prevented one 
Scottish herd from being added to the project’s sharing licence. An API 
connection could not be established for two herds in the Republic of 
Ireland and two in England. This was assumed to be the results of poor 
internet connectivity with the on-farm computer. Finally, API data was 
absent for two herds, one in the Republic of Ireland and one in England. 
The cause of this was not established and the herds were excluded 
from analysis. Of the 46 herds for which a signed consent forms 
received; data was available for thirty-nine.  
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Lely’s third-party API places a restriction on access to rumination data. 
In general, historical herd data is retained within Lely T4C for several 
years following recording. However, rumination data is retained for the 
past 365 days only, thereafter records are deleted. This restricted 
access to rumination data to one year prior to the day on which the first 
data scrape was carried out and created a large disparity in data 
volume between rumination data and all other data. 

As outlined in section 2.1.1, eligibility for inclusion in this study required 
the use of SCR monitoring of rumination and activity. Over the course of 
this project rumination and activity data for a total of 10 farms became 
unavailable for analysis. The cause was, in the majority of cases 
established as the adoption of new NEDAP® monitoring technology in 
place of SCR. This resulted in subsequent data being unusable as no 
comparison between monitoring devices could be established. Where 
this occurred rumination and activity data prior to the change in 
monitoring technology was retained and utilised.  

2.2.2 Data Overview 

Data handling and missingness for the variables utilised in each 
analysis are discussed within their respective chapters. However, as a 
general introduction to the data utilised in this thesis, a brief overview is 
supplied here.  

Following a data scrape completed across all available herds on 6/8/23 
production records for 33,813 lactations from 12,736 cows across 39 
herds were available for analysis. The percentage of those herds 
located in the England, Scotland, Wales, Republic of Ireland and 
Northern Ireland were 36%,3%,8%, 38%, and 15% respectively (Table 
2-3). Thirty eight percent were spring block calving with the remainder 
calving all year round. AMS milking events were recorded from 2016 to 
2023 with the majority recorded in 2021 (Figure 2-2) The average herd-
level 305-day milk yield ranged from 5,759 to 14,762 kg (Figure 2-3). 
Parity demographics of the dataset are presented in (Figure 2-4). Thirty 
percent of the dataset related to records from primiparous animals, 24% 
to second lactation animals and 46% to animals in third lactation or 
greater. Rumination records for 12,477 lactations from 7,554 cows 
across 39 herds were available. Recording dates ranged from 2020 to 
2023 with the majority recorded in 2022 (Figure 2-5). Activity records for 
19,632 lactations from 7,986 cows across 39 herds ranging from 2018 
to 2023 were available (Figure 2-6).  
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Table 2-3 Descriptive statistics for the 39 herds with accessible data 

Variable No. [range] 

No. of Farm 39 
Mean No. of Milking cows per farm 148 
Mean No. of AMS units per farm 3 
Mean Milk Production/Cow/Year (Kg) 10,184 [5,759–14,762] 
  
Calving Pattern % of Dataset (Herd Level) 

All Year Round 62 
Seasonal 38 

Geographical Region   

England 36 
Scotland 3 
Republic of Ireland 38 
Northern Ireland  15 
Wales 8 

 

 

Figure 2-2 No. of successful milking events recorded by year across all herds 



 

49 

 

Figure 2-3 Mean Herd-Level 305-day milk yield across all 39 herds. Calculated 
as an average of cumulative 305-day yields recorded in 2020 and 2021 
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Figure 2-4 Parity demographics for all available lactations across all herds 
from 2016-2023 

 

Figure 2-5 Cow-Lactations recording rumination events by year across all 
herds 
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Figure 2-6 Cow-lactations recording activity events by year across all herds 

2.3 Production and Behaviour Data 

Production and behaviour data available for analysis within our dataset 
can be broken down into 2 broad categories; data generated through 
cow-robot interactions and data generated via wearable technology - in 
this case - neck mounted accelerometers. Production and behaviour 
parameters extracted from Lely’s API during this project are detailed 
below. An overview of the API requests utilised is available in Table 2-2. 
Graphical representation of production and behaviour data from days 1-
21 for all available lactations are presented in Figure 2-7 to Figure 2-15.   

2.3.1 Cow-Robot Data   

Data generated from cow-robot interactions is comprised of those 
relating to milk quantity, milk quality, feed dispensed, robot visit 
frequency as well as milk fat and protein indications. These are 
recorded via their respective sensor, stored in T4C before being made 
accessible via Lely’s API. 

Robot visits are recorded when the transponder on the cow’s collar is 
identified within the robot. Lely’s API presents robot visits as; 
Successful, Failed, Incomplete, or Refused. Each are recorded via T4C 
as totals per cow per day. A successful milking is defined as one in 
which over 80% of the expected yield is harvested. A failure is a visit 
where milking was attempted but not initiated (for example due to a 
failure to attach all four milking cups). Incomplete milking visits occur 
where less than 80% of expect yield is harvested (for example where 
clusters are kicked off prior to completion). Finally, a refusal is recorded 
where an animal is denied a milking permission due to their re-
presenting at the robot too quickly following a previous successful 
milking visit.  
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Some variation may exist between farms in relation to the definition of 
these visits. For instance, Lely offer standard definitions within their 
software for when an animal should be refused a milking. General 
recommendations are that animals not expected to yield at least 8kg of 
milk at presentation should be refused in order to improve the robot 
availability. However, producers have the ability to change this setting 
and therefore, the definition of refusal for their herd in comparison to 
others. Field experience suggests that this rarely occurs.  

Farms recruited to this project operated what is known as a “free flow” 
traffic system which allow cows constant access to the milking robot 
throughout the day. All milking visits recorded within our dataset were 
treated as voluntary visits. In practice however, a proportion of these 
are likely to be involuntary visits for which the cow was manually 
brought to the robot or “fetched”. Fetching cows is commonly required 
in the early post-partum period, particularly in first lactation animals 
(Drach et al., 2017). While the ability to differentiate between visit types 
would be of interest, at present no differentiation between voluntary or 
fetch visit can be made using Lely’s software.  

 

 

Figure 2-7 Distribution of successful milking visits recorded from days in milk 
1-21 across all herds from 2016-2023 
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Figure 2-8 Distribution of refusals recorded from days in milk 1-21 across all 
herds from 2016-2023 

Milk yield is measured on a quarter level via electronic milk meters and 
reported in kilograms (Kg) at the cow-level from midnight to midnight on 
a daily basis. This data is accessible via Lely’s 
“/api/milkdayproductionsquality” API request. The distribution of daily 
milk yield record overs days 1-21 in milk for all available lactation is 
presented in Figure 2-9 . 

 

Figure 2-9 Distribution of daily milk yields recorded from days in milk 1-21 
across all herds from 2016-2023 
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Conductivity is measured on a quarter level at intervals of 5 seconds 
across the milking process. A single quarter is then recorded as an 
arbitrary unit representing a mean of all readings across the milking 
event. This is reported at the quarter level on a per-visit basis and 
available via the “/api/milkvisitsquality” API request. Any quarter 
exceeding 80 (AU) across a milking event is flagged as a possible case 
of mastitis. Data relating to milk temperature is retrieved under the 
same API request as conductivity and is reported on a per visit basis in 
Degrees Celsius. Temperature is measured by in-line sensor. As milk 
must travel through approximately 1 meter of milk line prior to reaching 
these sensors, measurements are likely to vary with the volume of milk 
produced and environmental temperature at the time of milking. Prior 
investigation of the correlation between milk temperature as measured 
by Lely AMS and vaginal temperature reported only moderate 
correlation (r= 0.52) (Pohl et al., 2014). The distribution of temperatures 
available for analysis are presented in Figure 2-10 

 

Figure 2-10 Distribution of milk temperature recorded from days in milk 1-21 
across all herds from 2016-2023 

Fat and protein indications are provided by in-line sensors based on 
analysis of milk fat globule size and are available via Lely’s “/api
/milkdayproductionsquality” API request. When compared with monthly 
test-day regimes this analysis has demonstrated moderate correlation 
(Fadul-Pacheco et al., 2018). However, sensor calibration is required to 
optimise the accuracy of indications. No information was available on 
the frequency with which farms in this study calibrated their sensors. 
Milk fat and protein indications for all available lactations is presented in 
Figure 2-11 and Figure 2-12 respectively. 
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Figure 2-11 Distribution of milk fat indications recorded from days in milk 1-21 
across all herds from 2016-2023 

 

 

 

Figure 2-12 Distribution of milk protein indications recorded from days in milk 
1-21 across all herds from 2016-2023 

The weight of concentrate dispensed by the AMS is retrieved via the 
“/api/feedvisits” API request and is reported on a per cow per day basis. 
The level of concentrate dispensed is at the discretion of the producers, 
though Lely provide recommended feed tables which are automatically 
adopted by T4C. No information relating to the feed tables in use on 
any participating herd was available. While the weight of concentrate 
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dispensed is recorded, no indication of the proportion consumed by the 
cow is available. The distribution of concentrate dispensed per cow per 
day over days 1-21 is displayed in Figure 2-13. 

 

Figure 2-13 Distribution of concentrate feed dispensed recorded from days in 
milk 1-21 across all herds from 2016-2023 

2.3.2 Activity and Rumination 

Wearable technology, incorporated into Lely T4C software is necessary 
to allow cow identification upon entering the robot. However, an 
increasing number of farms are opting to pair this technology with 
rumination and activity sensors. Lely customers wishing to employ 
rumination and activity monitoring have a choice of two suppliers, SCR 
and NEDAP. These are distinct pieces of technology utilising 
proprietary hardware and software. To standardise the wearable 
technology used across the dataset, only farms using SCR collars were 
eligible for inclusion in this project. This decision was based solely on 
the larger proportion of farms within the Atlantic Cluster employing SCR 
when compared with NEDAP. 

Activity and Rumination were detected using a previously validated 
neck mounted accelerometer (Elischer et al., 2013). Under Lely’s API, 
rumination is reported in 12 two-hour blocks per day. This represents 
the sum of rumination over the past 24 hours. No indication relating to 
eating time was available. Activity readings are collected using a tri-
axial accelerator capable of detecting motion in the orthogonal planes 
and reported as an arbitrary unit. Acceleration associated with upward 
movement of the cow’s head, such as when it bobs during walking is 
translated using proprietary algorithm into activity with higher readings 
reflective of higher activity levels. No specification of activity type is 
available. For example, no distinction was made between walking, 
standing or lying. 
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For both metrics, data is summarised in two-hour intervals and stored 
for a maximum of 22 hours in a data logger housed within the collar. A 
reader placed within the robot allows the data logger to upload this data 
and reset memory availability during milking visits. Where a connection 
between the collar and stationary reader is not established for over 22 
hours the first 2 hours reading within the data logger is overwritten. This 
overwriting procedure will continue iteratively until a connection is 
made. Rumination and activity data were accessed via Lely’s 
“/api/ruminations” and “/api/ activities” API requests respectively. The 
distribution of 2-hour activity and rumination records are presented in 
Figure 2-14 and Figure 2-15 respectively. 

 

Figure 2-14 Distribution of 2-hour activity records for days in milk 1-21 across 
all herds from 2020-2023 
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Figure 2-15 Distribution of 2-hour rumination records for days in milk 1-21 
across all herds from 2020-2023 

2.4 Introduction to Methods 

This project explores the utility of production and behaviour data as 
recorded by AMS for inclusion in automated transition monitoring 
programs. This was achieved using two distinct approaches to 
statistical analysis. The goal of the first was inferential, to gain an 
understanding of the association between these relatively novel data 
sources and subsequent transition cow performance. The second was 
predictive, to establish the accuracy with which this data could be used 
to predict performance and pre-emptively identify animals likely to suffer 
from poor transition health.   

Each of these approaches carried a differing set of priorities. In the case 
of the inferential studies model simplicity and ease of interpretation for 
stakeholders, both within the project and without, was of importance. In 
the development of predictive model, accuracy of prediction and 
potential for generalisation across a broad range of herds was 
considered key.  

2.4.1 Inferential Analysis 

The investigation of the relationship between production and behaviour 
data as collected via AMS, and transition performance within a large, 
multi-herd study has not been previously undertaken. Our goal was to 
quantify the association between these variables and long-term 
indicators of transition success. To achieve this, we conducted a series 
of observational, retrospective cohort studies. The structure of the data 
analysed within this study is hierarchical. Observations may be 
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clustered at several points, geographically by country or region, by 
cows within herds, or lactations within individual cows. Mixed-effects 
models are an extension of traditional regression models which provide 
a means though which non-independence within clusters such as these 
can be controlled (Brown, Prescott, 1999). It achieves this by allowing 
the incorporation of random effects (for example that attributable to the 
herd of origin) alongside the fixed effects. Furthermore, it allows for the 
variance observed within the model attributed to each of the random 
and fixed effects to be quantified, easing interpretation. Our interest lay 
in deciphering the influence of physiologic status of the transition cow, 
as captured by production and behaviour data during transition on 
subsequent performance. The clustering of data may be safely ignored 
where this is likely to have little or no effect on the outcomes of interest. 
However, the outcomes by which performance was judged in this thesis 
(for example, cull risk in early lactation) are likely to be influenced by 
on-farm management factors. As such, an ability to account for the 
influence of herd of origin was necessary. Mixed-effect models provide 
a well-established means to achieve this (Duffield et al., 2002). 
Assessment of model fit was carried out using pseudo-R2 as calculated 
by the MuMIn package (Bartoń K, 2024).  This statistic is reported as 
marginal pseudo-R2, representing the variance attributable to the fixed 
effects, and conditions pseudo-R2 which denotes the variance 
attributable to the combined fixed and random effects. 

2.4.2 Predictive Modelling 

The goal of the predictive modelling presented in this thesis was the 
development of an accurate, generalisable model capable of predicting 
an animal’s production, fertility and survival. As such, interpretation of 
the model itself was of little importance. Machine learning has 
demonstrated an ability to outperform traditional statistics in predictive 
modelling (Eicker et al., 2002) and we apply a range of machine 
learning algorithms in Chapters 4, 6, and 7. The application of a variety 
of algorithms in the development stage is advocated by the No Free 
Lunch Theorem (Ausiello et. al., 2012). The premise of this theorem is 
that in the search for an optimised algorithm no one approach will 
outperform any other when applied across a wide range of problems. 
This encourages the examination of a range of algorithms for each 
individual problems to assess their performance. Within this thesis the 
utility of mars models, neural networks and support vector machines are 
investigated (Kuhn and Johnson, 2013). However, random forest and 
decision tree algorithms, which consistently outperformed these 
approaches, form all final models reported.  

2.4.3 Decision Trees and Random Forests 

Decision trees are a widely used supervised learning algorithm which 
have been applied for both regression, survival and classification 
problems (James et. al., 2013). The basic premise of this approach is to 
iteratively partition data from the initial root node until a stopping 
criterion is reached at which point decision the tree is complete. In the 
case of binary classification (for example predicting success or failure of 
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conception to first insemination), splitting is carried out with the goal of 
increasing homogeneity within each sub-node. Thus, splitting will lead 
to each subsequent node containing an increasing proportion of a 
specific class than the node that preceded it. This is formalised using 
the Gini Index, defined for a two-class problem as: 

2(𝑃1 𝑥 𝑃2)  𝑓 

Where 𝑃1 and 𝑃2 are the class probabilities for each respective class. 
The goal when splitting any node is to minimise the Gini index within 
each sub node, which can be achieved by minimise any one of the 
class probabilities. Tree based approaches are simple and easily 
interpretable however, they have a number of limitations. Of these, two 
primary examples are their tendency to create highly complex models 
and their sensitivity to changes in the data used for construction (James 
et. al., 2013). Models which tend toward complexity are prone to 
overfitting. This term is used to describe a model which performs very 
well on training data but cannot replicate these results when applied to 
previously unseen data (James et. al., 2013). Overly complex models 
are particularly prone to this. Techniques which reduce the complexity 
of trees are therefore an important factor in their construction. 
Designation of a stopping criteria based for example on tree depth, or 
minimum reduction in the Gini Index can be used to limit tree 
complexity. In addition to this a process of “pruning” can be applied. 
This serves as a form of regularization in which a complexity 
penalisation value is added to the Gini Index. The weight of this penalty 
can be adjusted to control the trade-off between a decrease in Gini 
index and tree complexity allowing the best sized tree for a particular 
problem to be identified. 

The second issue surrounding the use of decision tress is related to 
their sensitivity to changes in the data used in their construction. Slight 
changes to data used to build decision tress can lead to significant 
changes in final decision tress size and structure. This has been 
addressed using decision trees as an ensemble learner as set out by 
(Breiman, 2001). This approach involves the construction of a large 
number of decision trees before utilising a majority vote across all trees 
to classify each observation. Each decision tree is built using a random 
selection of the original data to a designated stopping criteria as 
detailed above. This ensemble approach leverages a weakness of 
decision tress, their unstable nature leading to large variance in 
construction under different datasets, into one of the key strengths of 
Random Forest.  

Random forests have been an extremely successful algorithm (Biau & 
Scornet, 2016) and have been applied across a wide range of 
industries. Within the dairy industry their utility in the predictions of 
outcomes such as milk yield and fertility has been previously 
demonstrated. The nextMILK model developed by Salamone et al., 
(2024) aims to predict first test-day milk yield exclusively using data 
generated in the animals’ prior lactation and achieved this with a MAPE 
of 13%. This approach compared favourably when compared 
benchmarking models built using traditional lactation curve methods 
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such as the MilkBot model (Salamone et al., 2022). A similar method of 
prediction was adopted by Dallago et al., (2019) applied to predict the 
first test day yield in maiden heifers. Once again Random Forest 
performed well with no statistically significant difference between 
predicted and observed values when assessed using a cross validated 
test set. Though in this case the performance of the Random Forest 
model was inferior to that achieved by a neural network algorithm.  

Random Forest algorithms have also been applied in the prediction of 
fertility outcomes, most notably by Shahinfar et al., (2014). Utilising 
individual animal health and production data in conjunction with herd 
data for over 100,000 breeding events, insemination outcomes were 
predicted with an AUC-ROC of 75.6 and 73.6, in primiparous and 
multiparous animals respectively. This represented a significant 
improvement in predictive performance compared with achieved by 
naïve bayes, bayesian networks and bootstrap aggregation. In the case 
of predicting the occurrence of a culling event in early lactations the use 
of random forest is limited, however this is likely reflective of the relative 
lack of reported models of any kind for this particular outcome. Random 
forests have however, been applied for the prediction of mortality risk in 
feedlot animals over the six weeks post- arrival on farm. The reported 
accuracy from these models was poor and no comparison with 
alternative model types was made within the analysis (Wisnieski et al., 
2022). This limits our ability to assess the relative merits of this 
analytical approach for the prediction of culling events.  

2.5 Model Generalisability and Deployment 

Historically, the geographical distribution of AMS usage has been 
centred in northern Europe. This is reflective of the high cost of labour, 
small farm size and indoor housing systems common to this region - 
conditions which lends themselves to the adoption of robotic milking. 
However, over the past decade there has been a sustained effort by 
companies such a Lely to expand the use of AMS. This has seen the 
development of Lely’s grazing system and introduction of Lely 
Grazeway ®, to increase uptake of AMS in areas where the 
maximisation of grazed grass is a priority. Likewise, the Lely XL® 
initiative has developed housing and management solutions to increase 
the efficiency of robotic milking in large herds which traditionally 
favoured conventional milking systems using large rotary parlours. This 
global expansion of AMS poses two challenges in the development of 
decision support models.  

The first is the development of models which can be deployed on as 
broad a range of Lely farms as possible. Key to achieving this is limiting 
the number of data sources required by the model to deliver an 
accurate prediction. A wide range of sensors capable of monitoring 
dairy cow production and behaviour are available to Lely customers, 
however, their uptake is not universal. As a result of economic 
constraints or producer preference, auxiliary sensors such a neck 
mounted accelerometer, or novel monitoring technology may not be in 
use across all holdings. The development of models which rely on such 
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sensors will therefore limit the range of holdings on which they can be 
deployed and should where possible be avoided. 

The second challenge is the development of generalisable models 
which, once deployed, perform effectively across a range of 
management, geographical and environmental conditions. The term 
generalisability is applied in machine learning to describe a model’s 
ability to perform adequately when presented with a previously unseen 
dataset (Yang et al., 2022). Assessment of generalisability can be 
performed by examining performance when the model is applied to a 
dataset other than that used for model training. This serves to give 
some indication of how this model may perform when deployed in the 
real world and is a key indicator of the potential value a model can 
provide. As a rule of thumb, the generalisability of a simple model will 
exceed that of more complex model and should be pursued. Three 
techniques employed to improve the generalisability of the predictive 
models reported in this thesis are described below. 

2.5.1 Feature Selection 

The reduction in the number of variables incorporated with a model 
serves to increase the generalisability and boarded potential 
application. As the volume of data generated by AMS continues to 
increase, this is becoming a vital aspect of model development. Feature 
selection can be carried out using a wide range of approaches broadly 
categorised into filter or wrapper methods (Kuhn and Johnson ,2013). 
Wrapper methods assess variables concurrently, with the aim of finding 
the combination of predictors which maximise model performance. By 
comparison filter methods assess each variable individually. Only after 
fulfilling specific criteria are variables then added to the final model.  

Within this thesis a wrapper approach, specifically recursive feature 
elimination is utilised in feature selection for predictive models. 
Recursive feature elimination is a modified backward step elimination 
procedure (Kuhn and Johnson ,2013). The model is first fitted using all 
available variables and performance assessed using a pre-specified 
metric (E.g. Area Under the Receiver Operator Curve). Ranking of 
variable importance is then carried out and the model is iteratively 
refitted without the least important variables. Model performance over 
the range of subsets analysed can then be assessed and that achieving 
the highest level of performance used in the final model. This serves to 
allow the development of a parsimonious model which increases the 
range of farms over which it can be deployed by reducing the number of 
sensors required. 

2.5.2 K-fold Cross Validation 

K-fold Cross Validation is a commonly applied resampling technique 
designed to reduce overfitting and increase generalisability (James et. 
al., 2013). In this approach, K represents the number of folds or 
partitions used to segregate the data. In the case where K is set to 10, 
the data is randomly broken into ten subgroups. The first is withheld 
while the model is built using folds 2-10 and evaluated on fold 1. 



 

63 

Thereafter fold 2 is withheld and the model built using groups 1 and 3-
10 and evaluated on fold two. This is repeated iteratively, and the final 
error estimated attained by averaging the error across each fold. K-fold 
cross validation can be applied within the feature selection, model 
tuning, and model evaluation phases as required to provide an 
indication of expected model performance when applied to novel data. 

2.5.3 External Validation 

The evaluation of model performance on training data, with or without 
cross validation is not likely to be truly indicative of model performance 
when deployed in the real world. This is particularly true in the case of 
the predictive models investigated here, which are not only required to 
perform when applied to previously unseen animals but to previously 
unseen animals from previously unseen herds. Therefore, for the 
assessment of all predictive models a train and test split was applied on 
a herd basis to all data. The objective of this is to allow the model to be 
built using a random selection of herds while a small subset of herds is 
withheld. The model is built and assessed using cross validation before 
being tested on previously unseen herds. It is the performance in this 
test dataset by which the model’s utility is then judged. This has the 
disadvantage of reducing the training set available for model 
development but the distinct advantage of providing a more realistic 
assessment of model performance under real world conditions (Fenlon 
et al., 2018). 

2.6 Measuring Predictive Performance 

2.6.1 Classification Models 

The metrics used in the assessment of any classification model can be 
broadly grouped into those defining its capability for discrimination and 
calibration. Discrimination is based on the model’s ability to correctly 
separate observations into their respective class, (e.g., alive at 100 
days in milk vs culled by 100 days in milk). Metrics such as, accuracy, 
sensitivity, specificity are often used in this regard. Discriminatory 
metrics offers a simple assessment of model performance and are of 
great use in a diagnostic setting, where the outcome of the individual is 
paramount. However, they provide no information regards the bias of 
the model (Fenlon et al., 2018). Calibration metrics allow us to define 
the individual predicted probability of belonging to a specific class (e.g., 
each individual animals’ probability of being culled by 100 DIM). This 
offers an assessment of model fit and which can be assessed visually 
using a calibration plots.  

2.6.2 Graphical Assessment 

The receiver operator curve plots a model’s true positive rate against its 
false positive rate across all possible classification thresholds. 
Assessment on the curve allows us to quickly assess how the models 
balance the trade-off between detection of true positives while avoiding 
false positive. A related metric – the area under the receiver operator 



 

64 

curve (AUC-ROC) provides us with a single figure describing the 
performance of the model over all classification thresholds and allows 
rapid comparison of models. The AUC-ROC represents the probability 
that the model will rank a randomly chosen positive outcomes higher 
than a random chosen negative outcome. This ranges from 0-1, where 
a value of 1 represents perfect, and a random guess will yield an AUC-
ROC of 0.5.  

As the receiver operator curve offers a means of visual assessment for 
model discrimination, calibration plots offer an efficient visual 
assessment of calibration performance. This is often carried out 
following binning of observations into groups by predicted probability 
(e.g., Deciles). The mean predicted probability of the event within each 
group is then plotted against the proportion of actual events observed 
within the group. For instance, for observations binned with the 0/9-1.0 
probability, we would expect a perfect model to have predicted 
probability of 0.95. Where this perfect calibration is repeated across all 
bins, a straight 45-degree line is returned. 

2.7 Discussion 

Within the study design for this project a number of decisions were 
made which prioritised data quantity and accessibility over data quality. 
As an industry partnered project, these decisions were motivated in 
large part by our focus on the development of generalisable TMP which 
could be broadly deployed across Lely’s customers in the UK and ROI. 
To this end, our goals were to maximise the number of recruited herds 
in order to develop a dataset which represented a diverse range of farm 
management systems within this region. And second, to exclusively 
utilise data which was readily available for integration through Lely’s 
current software. When applied to this project’s inferential and 
predictive aims, this approach offered a number of advantages but also 
some limitations.   

A defining feature of this project is the exclusive use of data available 
via Lely’s third-party API. Data accessible by this API is, for the most 
part, automatically collected sensor data, available in real time and 
presented in a uniform format across all Lely herds. These traits lend 
themselves exceptionally well to integration of API data within 
automated transition cow monitoring programs. However, the scope of 
data available is limited. Of particular note is the absence of farm-
specific environmental and management factors many of which have 
previously demonstrated significant association with the outcomes 
examined within this thesis. It stands to reason therefore, that their 
inclusion within this dataset has the potential to improve the 
performance of any models investigated. However, in line with our 
prioritisation of data quantity and availability, the acquisition of such 
information was not pursued within this project but is an area for future 
development and research to consider.  

Information relating to environmental and management factors are not 
readily available on commercial herds utilising Lely AMS. Their 
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inclusion, therefore, would serve only to reduce the generalisability of 
our models within Lely’s client base. In addition to this, acquiring this 
data was considered likely to reduce the quantity of data available for 
analysis. The addition of an extra barrier to participation, such as a 
survey relating to selected management practices, may have reduced 
the willingness of both FMS advisors and producers to engage with this 
project. Hence, similar to our decision to allow FMS advisors free 
choice in the farms approached for participation (Section 2.1.1), we 
chose to simplify the recruitment process by relying solely on API data 
with the goal of maximising the quantity of data available for analysis.  

Despite these decisions however, the number of farms recruited was 
below the target of 10 herds per participating Lely Centre. This is likely 
reflective of the time commitment required of FMS advisors to complete 
the recruitment process. While every effort was made to streamline this 
procedure, it remained a time-consuming task requiring multiple 
interactions with both the producer and the research team. The 
limitations this placed on recruitment and hence data quantity was 
compounded by data access issues which became apparent within the 
data extraction phase, particularly those relating to the data generated 
by the neck mounted accelerometers.  

In the pursuit of generalisable and widely deployable models, our study 
design placed a focus on the use of data generated by the milking 
robot. In contrast to the wearable technology utilised on Lely farms, 
which are manufactured by a third-party and can be replaced at any 
time, sensors within the robot offer greater consistency and uniformity 
of data. The loss of data relating to wearable technology which occurred 
over the course of this project vindicated our prioritisation of data 
generated by the robot. However, the utility of rumination and activity 
data for the assessment of physiological status cannot be overlooked 
and represents an intriguing point of investigation. Therefore, while its 
inclusion within selected models resulted in a reduction in the volume of 
data available for analysis, this was considered a worthy compromise.  

Despite the barriers encountered in herd recruitment and data 
extraction, the results remain the assembly of a large, multi-herd 
dataset comprised of a wide range of cutting-edge sensor data from 
farms in 5 different countries. While any results must be viewed in light 
of the sample size and biases, it provides a great opportunity for the 
investigation of AMS data and its application within a TMP. Crucially, it 
is reflective of the data readily available within commercial Lely farms 
and therefore provides insight into the potential this data holds to make 
meaningful improvements to transition cow health.   
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Chapter 3 The Association of 
Production and Behaviour Data with 
Yield Deviation in Transition Cows on 
Automatic Milking Systems. 

3.1 Introduction 

The three-weeks pre- and post-partum (commonly referred to as the 
transition period) represents a hugely influential time for the health and 
production of the modern dairy cow. The physiological challenges 
associated with the initiation of lactation require significant adaptive 
responses by the metabolic, endocrine and immune systems 
(Ingvartsen et al., 2003). Failure to respond to these challenges 
appropriately is a major cause of dairy cow morbidity with approximately 
75% of all disease occurring in the first month post-partum (LeBlanc et 
al., 2006) 

Within the transition period, calving is a critical inflection point. In the 
days immediately post-partum the modern dairy cow experiences more 
significant endocrine changes than at any point during the lactation 
cycle (Grummer et al., 2004). In addition to this, cows experience a 
four-fold increase in calcium demand on the day of calving (Horst et al., 
1997), while glucose requirements triple by day 4 post-partum 
(Grummer et al., 2004). Under modern management conditions, these 
physiological changes generally coincide with a change in housing, 
social group and diet, further increasing the adaptive responses 
required. The transition period represents a challenging time in the 
cow’s production cycle, however, at no point is this more extreme than 
in the days immediately after calving.  

Despite this, objective means of monitoring transition cows during this 
time have seen limited uptake within the commercial diary industry. 
Research aimed at increasing our ability to identify animals likely to 
experience poor transition has investigated a range of metabolic 
indicators and described their association with subsequent health and 
production. Several have been incorporated into transition cow 
monitoring programs designed to assess physiological status in the 
immediate post-partum period including the assessment of serum Beta-
Hydroxy-Butyrate (BHB), non-Esterified-Fatty-Acids (NEFA), and 
Calcium concentration (LeBlanc et.al., 2006; Goff et.al., 2008; McArt et 
al., 2012). These programs seek to provide information relating to 
transition cow health while facilitating targeted intervention at the level 
of the individual. However, their application on commercial dairies 
remains limited (Espadamala et al., 2016; König et al., 2023). The 
labour-intensive nature of such monitoring programs is a likely barrier to 
their adoption particularly in areas when skilled agricultural labour is in 
short supply, such as the UK and Republic of Ireland (RADBF, 2017; 
Kelly et al., 2020). An alternative means of monitoring the physiological 
status of transition cows in the day immediately post-partum is therefore 
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required, ideally one which can be applied with minimal labour input. 
The proliferation of automatic milk systems (AMS) within the dairy 
industry may offer means to achieve this through the collection of high 
frequency, cow-level production and behaviour data. 

Automatic milking systems offers a wide range of benefits to producers. 
Key amongst these is the ability to automatically and objectively monitor 
the physiological status of animals within the milking herd using modern 
sensor technology. Production and behaviour data, harvested by the 
milking robot from the day of calving provides information relating to 
milk quality, quantity, as well the nature and frequency of cow-robot 
interactions. This data may provide a viable alternative to traditional 
transition cow monitoring programs and facilitate the automated 
monitoring of transition health in the immediate post-partum period.   

One of the most common and economically consequential effects of 
disease during the transition period is a reduction in early lactation milk 
production (Liang et al., 2017). This has led to its utilisation as a proxy 
measure for transition health (Nordlund, 2006; Lukas et al., 2015; 
Caixeta, 2021). Commercially, this has been implemented as the 
Transition Cow Index® (TCI), (https://agsource.com/fresh-cow-
summary/) which aims to utilise the disparity between expected and 
observed first test-day milk yield to assess the effectiveness of a given 
transition cow program and improve long-term profitability. Deviation 
from expected yield in early lactation has a demonstrated association 
with transition cow disease and metabolic status. (Nordlund, 2006; 
Salamone et al., 2024). While this has been proven to be a useful 
metric for the assessment of transition cow health, its association with 
AMS metrics assessed in the days immediately post-partum has not 
been investigated.  

The objective of this study was to test the hypothesis that AMS 
production and behaviour data from days 1-3 post-partum is 
significantly associated with subsequent transition cow health assessed 
using yield deviation over the first 30 days in milk. This investigation 
serves to further our understanding of the relationship between AMS 
data collected in the immediate post-partum period and animal 
performance over the ensuing month of lactation. Furthermore, it may 
provide direction as to the utility of these variables for incorporation into 
an automated transition cow monitoring program.  

3.2 Materials and Methods 

3.2.1 Study Population 

A convenience sample of 46 herds was recruited on a voluntary basis 
from the UK and Republic of Ireland as described in Chapter 2. Criteria 
for inclusion was the use of Lely Astronaut milking robots (Lely 
International, N.V.) under free flow traffic conditions (Munksgaard et al., 
2011), in conjunction with rumination and physical activity monitoring 
technology (Lely Qwes-HR collars, Lely International N.V.). Year-round 
and seasonal calving patterns were represented within the dataset. At 

https://agsource.com/fresh-cow-summary/
https://agsource.com/fresh-cow-summary/
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the time of analysis complete or partial production records from 33,813 
lactation across 39 herds spanning the years 2016 to 2023 were 
available. 

Data Analysis 

All data analysis was conducted using R statistical software (R Core 
Team, 2021). A three-step data analysis procedure was undertaken. In 
Step 1 the expected cumulative yield for days 1-30 DIM (ECY) for each 
cow-lactation was established using a mixed-effects model. In Step 2, 
ECY was compared with the observed yield and a Yield Deviation 
established. This served to capture each animal’s cumulative yield 
performance over the first 30 days relative to expected. In Step 3, a 
multivariable mixed-effect model was built using production and 
behaviour data recorded over the first 3 days post-partum. Our aim was 
to assess the relationships between data collected in the immediate 
post-partum period and subsequent Yield Deviation.  

3.2.2 Step 1: Modelling of Expected Yield  

To quantify YD, it was necessary to establish an expected 30-day 
cumulative milk yield. For each multiparous lactation six independent 
variables were utilised to model ECY: Herd ID, parity, year of calving, 
season of calving, previous production, and herd production. 
Categorical variables were created for Herd ID, parity; (2 and 3+), year 
of calving and season of calving; winter (December, January, 
February), spring (March, April, May), summer (June, July, August), 
autumn (September, October, November). Milk yield utilised in the 
previous production and herd production variables were assessed over 
1-30 DIM where the day of calving was designated day zero. Animals 
for which complete production records for days 1- 30 in milk could not 
be established were removed. Previous production, which sought to 
quantify each animal’s level of production prior to the lactation under 
analysis was then calculated using the animals’ mean 30-day 
cumulative yield from all available lactations prior to the lactation in 
question. Lactations for which prior production could not be calculated 
were removed. The Herd Production variable, which sought to quantify 
the within-herd production level at the time of calving was calculated as 
the mean 30-day cumulative yield for all cows calved within the same 
herd, year, and season as the lactation in question. Following data 
cleaning and feature engineering an approach similar to that utilised by 
Nordlund (2006) and Lukas (2015), was used to model ECY. This 
approach models expected yield on a per cow-lactation basis utilising 
herd and animal-level data and is detailed below. 

The outcome of interest in Step 1, ECY, represented the total expected 
milk production over the first 30 days of lactation under a given set of 
individuals, herd and environmental conditions.  

A mixed-effects linear regression model was built within the lme4 
package (Bates et al., 2015) and took the form; 

Yij =  μ + β1X1ij + β2X2ij  +  β3X3ij + β4X4ij  +  β5X5j  + vj +  ϵij, 
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[vj ]~ N(0, Ωv) 

[ϵij ]~ N(0, Ωe) 

Where subscript i and j denote the ith cow-lactation in the jth herd; Y 
represents the response variable of Expected Cumulative 30-day Yield 
(Kilograms); μ represents the intercept value; β1 to β4 represent the 
coefficients for cow-lactation fixed effects X1ij to X4ij, these being Year 

of Calving, Season of Calving, Parity, and  Previous Production; β5 

represents the coefficient for the herd-level fixed effects X5j of Herd 

Production; vj represents a random effect for Herd (assumed to have a 

normal distribution of mean = 0, and variance = Ωv) and ϵij  represents 

the residual model error (assumed to have a normal distribution of 
mean = 0, and variance = Ωe). Residuals were examined graphically to 
assess their distribution.  

3.2.3 Step 2. Assessment of 30-Day Yield Deviation 

Expected 30-Day Cumulative Yield, estimated in Step 1, was used in 
Step 2 to quantify YD for each multiparous cow-lactation. This was 
calculated as the difference between the observed 30-day cumulative 
yield and ECY and expressed as a percentage of ECY. Therefore, 
similar to the TCI, YD represents the degree to which each animal 
under or over-produced relative to expected. However, in contrast to the 
use of a single monthly test-day yield, we chose to account for each 
animal’s cumulative milk yield over the first 30 days of lactation and 
thus reduce the inaccuracies associated with a single measurement.  

3.2.4 Step 3: Inferential modelling of Yield Deviation and 
Early Post-partum Variables  

For each cow-lactation analysed the day of calving was designated day 
zero and data from days 1-3 used to engineer independent variables. 
Milk quantity was assessed as Mean Milk Yield (kg); the mean of daily 
milk yields over days 1-3, and Mean Yield Acceleration; the mean of the 
change in daily milk yield from days 1–2, and 2–3. Milk quality was 
assessed using milk conductivity and constituent data. Conductivity was 
assessed as Mean Conductivity; the mean udder-level conductivity of 
milk recorded over days 1-3 and, Conductivity Alert; the total number of 
instances where quarter-level conductivity exceeded 80 units. Maximum 
Temperature (Degree Celsius); the maximum mean daily milk 
temperature as averaged across all successful milking visits within a 
given day. Milk Fat and Protein indications, as recorded once daily by 
Lely’s MQC-C ® (Fadul-Pacheco et al., 2018) were utilised as Mean Fat 
and Mean Protein; the mean of recorded values across days 1-3 for 
their respective constituents. A Mean Fat-to-Protein ratio (FPR) was 
subsequently calculated. Mean Concentrate Dispensed; the mean 
grams of concentrate feed dispensed by the robot to each cow per day. 
Visit behaviour was assessed using milking visits and milking refusals 
(where milking permission is denied due to an animal re-presenting a 
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short time after a previous milking visit). These were averaged over 
days 1-3 and reported as Mean Milkings and Mean Refusals. From 
amongst the variables a selection of interaction terms were investigated 
based on biological plausibility to influence Yield Deviation including 
Mean Milk Yield with Mean Concentrate Dispensed, Yield Acceleration, 
Protein, Milkings and Refusals. The interaction between Mean Milkings 
and Mean Yield Acceleration was also examined. Animals which failed 
to record milk quantity and quality data for at least one robot visit for 
each of the days 1-3 post-partum were removed. Finally, herds with 
less than 100 lactations were removed. Retained cow lactations which 
had a corresponding Yield Deviation from Step 2 formed the final 
dataset brought forward for analysis.   

To explore the relationship between early lactation AMS data and Yield 
Deviation, a mixed-effect linear model was constructed with herd as a 
random effect using the lme4 package (Bates et al., 2015). Prior to 
modelling, non-linearity was assessed using multivariable regressive 
splines (Friedman, 1991). Correlation between independent variables 
was assessed using a Pearson’s correlation matrix. Decisions relating 
to deletion or retention of highly correlated variables made based on the 
theoretical importance of each variable. Both Mean Fat, which 
demonstrated a high correlation (r >0.75) with Mean FPR, and Mean 
Conductivity, which demonstrated high correlation with Conductivity 
Alert were removed to avoid collinearity (Dohoo et al., 2003). Mean 
FPR was retained as it provides a built in assessment of milk fat in 
addition to milk protein, while conductivity alert was chosen over mean 
conductivity as this represents a more practical and widely utilised 
indicator of udder health on farms utilising Lely robots. Mean Refusals, 
and Conductivity Alert which demonstrated a highly right-skewed 
distribution was transformed using a cubic transformation. All variables 
excluding Parity were centred by subtracting the column means of each 
variable from their corresponding columns and scaled by dividing each 
variable by their standard deviations (van den Berg et al., 2006).  

A multivariable mixed-effect model was constructed using a manual 
backward step procedure (Dohoo et al., 2003). All candidate variables 
were screened using univariable analysis and brought forward for 
inclusion in a multivariable model where a P-value of ≤ 0.20 was 
observed. A random intercept to account for the clustering of data at 
herd-level was included (Dohoo et al., 2003). Variables were retained in 
the final model where a P-value of ≤0.05 was observed. Variables 
which formed a significant interaction term were forced into the final 
model. On completion of the backward step, all independent variables 
removed were re-entered into the final model to test for significance. 
The inclusion of Cow as a random effect nested within Herd was also 
evaluated, as was the possible confounding factor of Calving Season 
(Year-Round or Seasonal). As their inclusion led to a negligible change 
in coefficient estimates (<5%) and resulted in no change in parameter 
significance, these were excluded for model parsimony. Parity (2, 3+) 
was evaluated and retained as a confounder within the final 
multivariable model. Goodness-of-fit was evaluated by the graphical 
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assessment of residuals and the assessment of marginal and 
conditional R2 values (Nakagawa et al., 2017).  

 

3.3 Results 

Step 1 

Complete or partial production records from 33,813 lactation across 39 
herds were available for analysis. Due to the sparsity of data in the 
years prior to 2018 all cow-lactations starting prior to this point or, for 
which production records were found to be incomplete were removed (n 
=9,712). All those for which prior production could not be established 
were removed (n= 11,507) including all first lactations animals (n 
=6,799). Thereafter, herds with less than 100 lactations available for 
analysis were removed (8 herds containing 427 lactations). In total, 
12,295 lactations from 30 herds remained for analysis. Coefficients of 
the final linear mixed model used to estimate ECY are presented in 
Table 3-1. Residuals were examined graphically and found to be 
normally distributed (Figure 3-1). The mean absolute error and mean 
absolute percentage error were 138 kilograms and 12% respectively. 
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Table 3-1 Linear mixed model for Expected Cumulative 30-day Yield for 
12,295 cow-lactations from 30 herds between 2017 and 2023 as described in 
Step 1 

Fixed Effects Estimate 95% CI 

Intercept 1118   1005 ̶̶ 1127 
Herd Production1 96.9 90 ̶̶ 104 
Previous Production2 97.7 92.7 ̶̶ 103 
Autumn Reference - 
Winter 4.6 -6 ̶̶ 15 
Spring 8.6 -2 ̶̶ 20 
Summer  2.6 -9 ̶̶ 14 
2017 Reference - 
2018 -23.0 -77 ̶̶ 32 
2019 32.9 -16 ̶̶ 82 
2020 34.5 -14 ̶̶ 83 
2021 41.6 -7 ̶̶ 90 
2022 45.1 -3 ̶̶ 94 
2023 38.0 -11 ̶̶ 88 
Parity 2 Reference - 
Parity 3+  -42.0 -52 ̶̶ -32 

Random Effects Variance Std. Dev 

Herd ID (Intercept) 3775 61.4 
Residual 36129            190 
1The mean 30-day cumulative yield for all animals 
within the herd of origin, in the year and season for a 
given lactation.  2 The mean 30-day cumulative yield 
for all available lactations prior to the lactation in 
question. CI = confidence interval 

 

 

Figure 3-1 Scatter Plot of residuals plotted against fitted values for modelling 
of expected yield for Expected Yield Model in Step 1 
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Figure 3-2 Histogram of Yield Deviation, the difference between cumulative 
expected and observed yield at DIM 30, as calculated in Step 2. 

 

STEP 2: 

Across the entire dataset the range of YD was −91% to 146% with a 
mean of 0.0% and median of 1.2% (Figure 3-2). Mean YD ranged from 
−1.0% to 0.4% on a herd basis.  

Step 3 

Incomplete milk quantity and quality records led to the removal of 
12,029 cow-lactations. Following data cleaning AMS data relating to 
15,532 cow-lactations remained, of which 7,417 from 27 herds had a 
corresponding Yield Deviation available from Step 1. These were 
brought forward for inferential modelling. The mean Yield Deviation for 
the final dataset was 0.1% ranging from -81 to 108% on a cow-lactation 
basis. Descriptive statistics for the herds included in the final model are 
presented in Table 3-2. The average number of cow-lactations per herd 
was 277 ranging from 80 to 794. Thirty-one percentage of all cow-
lactations were classed as parity 2 with those remaining classed as 
parity 3+. The median and interquartile range for all independent 
variables examined are presented in Table 3-3 

Following determination of the final model, residuals were examined 
and found to follow an approximately normal distribution. Yield 
Deviation was modelled with a mean absolute error of 8.13 and root 
mean square error of 11.10. Coefficient of determination was 
established as a marginal R2 of 47% and condition R2 of 60%. Results 
of the final multivariable model are presented in Table 3-4, Figure 3-3 
and Figure 3-4. Having accounted for clustering of data at the herd-level 
and the confounding effect of parity, significant (P- value <0.5) positive 
association with Yield Deviations were observed for the variables Mean 
Milk Yield, Yield Acceleration, Refusal and Milk Protein Percentage with 
co-efficient of 13.3, 4.44, 1.2, and 1.29 respectively. Mean Milking and 
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Fat-to-protein Ration had a negative association with coefficients of -
0.63 and -0.70 respectively.  

Table 3-2 Descriptive statistics for herds included in the final multivariable 
model in Step 3 

Variable No. [range] 

No. of Farms 27 
Mean No. of Cow-Lactations/Herd 274 [80–794] 
Mean Cow-Lactation Yield Deviation  0.10 [-81–108] 
Mean Herd Yield Deviation 0.15 [-2.8–2.5] 
Mean Milk Production/Cow/Year (Kg)1 10,280 [6,668–15,202] 
  
Calving Pattern  % Of Dataset (Herd Level) 

All Year Round 70 
Seasonal 30 

1 Calculated using mean figures from the years 2020 and 2021.  

 

 

Table 3-3  Descriptive statistics for independent variables examined in Step 3. 

Variable Median IQR 

Mean Milk Yield (kg) 23 9 

Mean Yield Acceleration (%) 16 13 

Mean Concentrate Dispensed (g) 3343 893 

Mean Refusals 1.7 1.3 

Mean Milkings 2.6 1 

Mean Protein 4.84 0.55 

Mean Fat 4.87 1.34 

Mean Fat-to-Protein Ratio 1.02 .3 

Mean Conductivity 73.25 4.5 

Conductivity Alert 0 2 

Milk Temperature (Degrees C) 38.2 1.1 

 Percentage of Dataset 

Temp >40 1% 
Parity 2 31% 

Parity 3+ 69% 
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Table 3-4 Linear mixed model for 30-day Yield Deviation for 7,417 cow-
lactations from 30 herds between 2017 and 2023 as described in Step 3 

Variable Estimate 95% CI P-value 

Intercept  3.58 0.9 ̶̶ 6.18  < 0.001 

Mean Milk Yield 13.3 12.9 ̶̶ 13.7 < 0.001 

Mean Yield Acceleration   4.44 4.1 ̶̶ 4.7 < 0.001 

Mean Refusals 1.20 0.8 ̶̶ 1.5 < 0.001 

Mean Milkings -0.63 -1.0 ̶̶ -0.2 < 0.001 

Mean Protein 1.29 0.9 ̶̶ 1.6 < 0.001 

Mean Fat-to-Protein Ratio -0.70 -1.0 ̶̶ -0.4 < 0.001 

Parity 2 Reference - - 

Parity 3+ -3.26 -3.8 ̶̶ -2.6 < 0.001 
Mean Yield X Mean Yield 
Acceleration  1.23 0.9 ̶̶ 1.4 < 0.001 

Mean Yield X Mean Milkings -1.10 -1.4 ̶̶ -0.8 < 0.001 

Mean Yield X Mean Refusals 1.04 0.7 ̶̶ 1.3 < 0.001 

 

The interaction term Mean Milk Yield X Mean Yield Acceleration had a 
positive association with YD. Within this term an initial negative 
association between Mean Milk Yield and YD was apparent when 
recorded in conjunction with highly negative Yield Acceleration. This 
relationship became increasingly positive as yield acceleration 
increased (Figure 3-3). Mean Milk Yield X Mean Refusals record a 
positive association and demonstrated a consistent relationship with YD 
throughout their ranges. Finally, Mean Milk Yield X Mean Milkings 
demonstrated a negative association with YD. Within this term a 
strongly positive relationship between Mean Milk Yield and YD was 
observed for lower values of Mean Milkings, becoming progressively 
weaker as the number of milkings increased (Figure 3-4) 
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Figure 3-3 Effects plot for the interaction term Mean Milk Yield X Yield 
Acceleration assessed overs days 1-3 post-partum as retained in the final 
multivariable model for Yield Deviation at DIM 30. 

 

 

Figure 3-4 Effects plot for interaction term Mean Milk Yield X Mean Milkings  
assessed overs days 1-3 post-partum as retained in the final multivariable 
model for Yield Deviation at DIM 30. 
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Figure 3-5 Effects plot for interaction term Mean Milk Yield X Mean Refusals  
assessed overs days 1-3 post-partum as retained in the final multivariable 
model for Yield Deviation at DIM 30. 

3.4 Discussion 

Production and behaviour data collected by AMS in days 1-3 post-
partum demonstrated statistically significant association with transition 
cow health as assessed by Yield Deviation over the first 30 days in milk. 
The significant statistical associations and substantial coefficient of 
determination observed within our final multivariable model emphasise 
the critical nature of the immediate post-partum period for transition 
success. Furthermore, it highlights the potential this data may hold for 
the development of an automated transition cow monitoring program. 

The positive association between yield parameters retained in the final 
model and subsequent YD highlight the importance of the transition 
cow’s ability to successfully initiate and accelerate milk production in the 
days immediately post-partum. While dairy cows at this point in lactation 
are not producing milk at levels near their peak potential, they are, in 
relative terms, increasing their production level at an extremely high 
rate (Ingvartsen et al., 2003). Prior research examining the 
characteristics of yield acceleration post-partum has highlighted the 
physiological stress which this rapid rate of acceleration places on the 
transition cow, with several authors proposing a potential link between 
increased milk yield acceleration and increased risk of transition 
disease (Ingvartsen et al., 2003; Hansen et al., 2006). This hypothesis 
is based on the physiological challenges posed by milk production as 
well as the correlation between the increased rate of production and 
incidence of clinical disease seen in the post-partum period. However, it 
has yet to be adequately investigated (Ingvartsen et al., 2003). While 
clinical disease was not directly assessed within our study, a larger milk 
yield and a higher yield acceleration were associated with a positive 
yield deviation in early lactation, an outcome indicative of good health 
(Nordlund, 2006). Rather than being at increased risk of poor transition 
health, our results may indicate that animals capable of producing 
higher levels of milk and supporting higher rates of acceleration 
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represent a group which have adapted well to the stressors of calving 
and thus are positioned to fulfil their production potential over the first 
month of lactation.  

The variance in relationship between Mean Milk Yield and YD, 
demonstrated within the Mean Milk Yield X Yield Acceleration 
interaction term is notable (Figure 3-3). The negative relationship 
between Mean Milk Yield and YD when observed in conjunction with 
highly negative Yield Acceleration may be due to animals registering a 
large volume of milk on the first day post-partum, followed by a 
precipitous decline. Such yield patterns would be in keeping with the 
development of disease and may explain the tendency for these 
animals to under-perform relative to expected over the first month of 
lactation despite recording a relatively high yield over the first 3 days.  

Examination of the relationship between milk production and health in 
early lactation is complicated by the biological prioritisation of milk 
production to provide nutrition for the calf (Bruckmaier & Gross, 2017). 
This can lead to the continued production of milk in the face of disease 
and negative energy balance (Rajala & Gröhn, 1998). Considering this, 
further validation of these results while incorporating clinical disease 
data would certainly be worthwhile. However, our findings do indicate 
that both yield and yield acceleration parameters, assessed over days 
1-3 post-partum, have potential as a means of monitoring transition cow 
health in the immediate post-partum period.  
 

Milk constituents have been previously demonstrated to reflect the 
energy balance of early lactation dairy cows (Friggens et al., 2007; 
Gross & Bruckmaier, 2019). Furthermore, indications of negative 
energy balance, such as elevated FPR and reduced milk protein 
percentage have been associated with reduced milk yield and the 
occurrence of transition disease (Heuer et al., 1999; Kaufman et al., 
2018). However, these studies have typically been carried out using 
monthly test-day milk sampling in weeks 2-3 post-partum. While the 
utility of milk constituent sampling at day 7 in milk for the assessment of 
energy status has been previously demonstrated (Toni et al., 2011), the 
degree to which this association translates to the days 1-3 post-partum 
remains unclear.  

Within our study, both increased protein percentage and decreased fat-
to-protein ratio, traits generally linked with a more positive energy 
balance (de Vries & Veerkamp, 2000), resulted in an increase in Yield 
Deviation, patterns which broadly agree with those previously 
demonstrated using monthly test-day milk samples. This consistency of 
relationship between milk constituents and early lactation performance 
demonstrates the potential value for AMS milk quality data to provide to 
transition cow monitoring programs in the day immediately following 
calving.   

The use of in-line sensors to monitoring fat and protein indications 
within AMS remains a relatively novel application. When compared with 
monthly test-day regimes this analysis has demonstrated only moderate 
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correlation (Fadul-Pacheco et al., 2018). Though this may not affect the 
utility of these sensors, the requirement for producers to calibrate their 
sensors limits their interpretability. Within our study no information 
relating to the frequency or accuracy with which sensors were 
calibrated was available. Hence, while our results are encouraging for 
the potential use of in-line fat and protein indications, extrapolation of 
these results beyond the dataset investigated here should be done with 
caution. 

Interestingly, a negative association between Mean Milkings and YD 
was observed within this dataset. This is an unexpected, and counter 
intuitive finding. Reduced milking visits have been reported in 
association with the diagnosis of lameness (Bach et al., 2007), mastitis, 
and left displaced abomasum (King et al., 2018). We would therefore 
expect those animals recording a higher number of milking visits to 
represent a healthier cohort and thus deliver a more positive YD, 
compared with those recording a lower number of visits. In addition to 
this, the positive effect of increased milking frequency in early lactation 
on subsequent yield has been well described (McNamara et al., 2008). 
The interaction between Mean Milk Yield and Mean Milkings add further 
detail to this association as the positive effect of increased yield on YD 
weakens as the number of milk visits increases (Figure 3-4). A clear 
explanation for these findings is not apparent. However, it is worth 
considering the confounding effect of management on robot visits. 
Within the first 3 days post-partum the practice of manually fetching 
fresh cows to the robot is common and may artificially alter the number 
of robot visits recorded per cow. Within our dataset, no information was 
available as to the frequency of manual fetching practiced at farm level 
and so this finding should be interpreted with caution.  

Prior investigation of the herd-level relationship between refusals and 
milk production have reported a negative association (Tremblay et al., 
2016; Siewert et al., 2018). However, as these were assessed using 
cows from all stages of their lactation these are likely skewed by the 
prevalence of late lactations animals. As highlighted by Beck, (2014), 
refusals are not created equally. Those recorded by animals in the initial 
and peak phases of lactation may demonstrate a positive association 
with production parameters. The opposite may be observed for animals 
in late lactation. Within free-flow AMS systems refusals are, in 
moderation, desirable as they demonstrate the cow’s appetite for the 
concentrate supplied by the robot, her ability to access the robot area 
and the availability of the robot itself. As our study investigated refusals 
in days 1-3 in milk exclusively, the positive associations reported here is 
in keeping with expectations. Notably, within the interaction term Mean 
Milk Yield X Mean Refusals (Figure 3-5), is the positive association of 
increasing yield was held across all levels of Refusals. This finding 
should be interpreted in light of the relatively low number of refusals 
recorded within this dataset, a median of 1.7 and IQR of 1.3 (Table 
3-3.). While refusals in early lactation animals are desirable, excessive 
refusal may be expected to result in reduced cow performance 
(Tremblay et al., 2016), though this level of elevated refusal does not 
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appear to have been reached within this dataset. In contrast to milking 
visits, refusals represent truly voluntary visits and serve to provide an 
indication of an animal’s desire to access the robot which is less 
vulnerable to the effects of management practices. As a single metric, 
reflective of physiological, environmental and management conditions, 
the significant associations with Yield Deviation demonstrated here 
highlight its potential for use in transition cow monitoring.  

Within the conditional R2 of 60% reported for the final model, the fixed 
effects explained 47% of the observed variance while the random effect 
of herd explained a further 13%. This suggests that our model 
encompassed a substantial proportion of the variance seen within this 
dataset. The relatively small effect of herd suggests that herd specific 
environmental and management factors play an important but limited 
role in determining Yield Deviation when compared with the fixed 
effects investigated.  

Considering the narrow window over which AMS data was assessed 
(DIM 1-3), the degree to which it can explain subsequent Yield 
Deviation is noteworthy. This emphasises the critical importance of 
transition cow health in the immediate post-partum period and highlights 
the value data collected during this time may provide to transition cow 
monitoring programs. The success with which each cow navigates the 
challenges associated with the initiation of lactation will largely 
determine the success of the ensuing lactation (Drackley, 1999).  
Where the extent of this success or failure can be established by day 3 
post-partum there exists an opportunity to implement management 
strategies aimed at mitigating potential losses. Such a system would 
represent a valuable tool for the management of transition health. The 
production and behaviour data investigated here, have demonstrated 
their potential utility within TMPs, not only though the strength of its 
relationship with Yield Deviation, but the means by which this data is 
collected and made available  

This is the first study to report the association between data collected 
by AMS and subsequent yield deviation. In contrast to previously 
reported, labour intensive methods of transition cow monitoring all 
variables assessed in this study are collected automatically from the 
day of calving and available for integration into a TMP in real time. This 
represents an intriguing prospect the development and deployment of 
automated transition cow monitoring programs within the Lely client 
base.  

 

An inherent limitation of the analysis described within this study is the 
use of an expected cumulative yield as a benchmark of animal 
performance. The advantages of Yield Deviation as employed here are 
clear (ref) however, it remains reliant on the accuracy of expected 
cumulative production as initially modelled though the ECY model. 
Deviation from expected yield may therefore represent true deviations 
from expected performance, inaccurate initial modelling of expected 
performance or a combination of both.  Caution must therefore be 
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applied to the interpretation of the biological variables demonstrating 
statistical association with Yield Deviation as differentiation between 
these sources of variation is not possible within our analysis.  

A further limitation of our analysis is the reliance on prior production 
data for the calculation of an expected cumulative 30-day yield and 
subsequent Yield Deviation. This forced the exclusion of primiparous 
animals from our analysis. The challenges of transition in primiparous 
animals are somewhat unique when compared with multiparous. Having 
not yet reached mature weight, heifers experience additional energy 
requirements associated with growth and carry an increased risk of 
dystocia (Duffield et al., 2009). However, they also suffer important 
clinical diseases such as hypocalcaemia at a significantly lower rate 
than older animals. A range of physiological assessments have 
demonstrated conflicting associations with subsequent performance in 
primiparous and multiparous animals (Ospina et al., 2010; Burfeind et 
al., 2014; Goff et al., 2020). The investigation of the association 
between AMS data and subsequent yield deviation within primiparous 
animals would therefore be of great interest. Modelling expected first 
test-day yield in maiden heifers has been investigated using a range of 
herd and cow level parameters available at calving such as body weight 
and the occurrence of twinning (Dallago et al., 2019). This approach 
may allow the establishment of YD in primiparous animals and allow 
examination of its association with AMS data in the future.  

3.5 Conclusions 

Our results indicate that production and behaviour data collected by 
AMS over DIM 1-3 have significant association with Yield Deviations 
over the first month of lactation. The production parameters, Mean Milk 
Yield and Mean Yield Acceleration both recorded a positive association 
with YD as did Milk Protein Percentage and Mean Refusals. Both Milk 
fat-to-protein ratio and Mean Milkings recorded a negative association 
with a Yield Deviation. The final multivariable model accounted for a 
substantial proportion of the variance in observed Yield Deviation, with 
the fixed effects accounting for 47% and the random effect of herds a 
further 13%. This highlights the importance of the calving period in 
successful transition and the potential utility of data collected during this 
time for the assessment of transition health. The demonstrated 
relationship between automatically collected sensor data and Yield 
Deviation may offer a means by which dairy producers utilising AMS 
can pre-emptively identify animals likely to experience poor transition 
health. Of particular interest, where the development of an automated 
TMP is concerned, is the investigation of the predictive power which 
AMS data may hold for Yield Deviation. 
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Chapter 4 Predictive Modelling of 
Deviation from Expected Milk Yield in 
Transition Cows on Automatic Milking 
Systems 

4.1 Introduction 

The transition period is a pivotal time in the production cycle of the dairy 
cow. It is estimated that between 30 to 50% of all cows experience 
metabolic or infectious disease during this time (LeBlanc, 2010). 
Moreover, those affected by disease often demonstrate reduced 
production, fertility, and survival for the remainder of the lactation when 
compared with healthy herd mates (Carvalho et al., 2019). Despite 
recent advances in the field of transition cow management (Mezzetti et 
al., 2021), preserving the health and production potential of dairy cows 
during this period remains one of the largest challenges facing the 
industry (Redfern et al., 2021). 

The assessment of yield deviation, generally defined as the disparity 
between expected and observed yield, is an objective means of 
assessing transition success. To date, its most notable application has 
been in the development of the Transition Cow Index® 
(https://agsource.com/fresh-cow-summary/). This transition cow 
monitoring tool utilises the disparity between expected and observed 
first test-day milk yield to assess transition performance (Nordlund, 
2006; Schultz et al., 2016). A key advantage of this approach is the 
range of clinical and sub-clinical disease which may be reflected in yield 
deviation (Nordlund, 2006). However, the TCI is limited by its 
retrospective nature. While it provides an objective assessment of 
transition cow health, it fails to provide an opportunity to manage 
animals likely to suffer a negative deviation in a proactive manner. 

A model capable of predicting deviation from expected production may 
allow producers to prevent or mitigate the impact of poor transition 
through early intervention (LeBlanc, 2010). Applied as part of a 
prognostic transition cow monitoring program (TMP) such a model may 
allow for the classification of animals into groups based on their 
predicted yield deviation. Resources such as increased monitoring or 
diagnostic testing could then be preferentially allocated to those groups 
predicted to suffer negative deviations (Guterbock, 2004; Jensen et al., 
2018).  

Data routinely collected by automatic milking systems (AMS) present a 
unique opportunity to develop such a model. A range of production 
metrics recorded by AMS are increasingly available in conjunction with 
behavioural data recorded by wearable sensors. This represents a 
powerful combination of data capable of providing detailed physiological 
information at the cow level. The ability of AMS software to integrate 
this data and provide producers with decision support tools relating to 
cow management has been previously demonstrated (Wetering, 2019). 

https://agsource.com/fresh-cow-summary/
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To date however, the utility of these metrics for the prediction of 
deviation in early lactation milk yield has not been reported.  

The objective of this study was first, to explore the accuracy with which 
production and behaviour data collected on AMS from 1–3 days in milk 
(DIM) can predict deviation from expected 30-day cumulative milk yield 
in multiparous cows. And second, to assess the accuracy with which 
predicted Yield Deviations could be used to classify cows into groups 
which may facilitate improved transition management.  

4.2 Materials and Methods 

4.2.1 Study Population 

A convenience sample of 46 commercial dairy farms was recruited on a 
voluntary basis from the United Kingdom and Republic of Ireland, as 
described in Chapter 2. Briefly, criteria for inclusion was the use of Lely 
Astronaut milking robots (Lely International, N.V.) under free flow traffic 
conditions (Munksgaard et al., 2011), in conjunction with rumination and 
physical activity monitoring technology (Lely Qwes-HR collars, Lely 
International N.V.). Year-round and seasonal calving patterns were 
represented within the dataset (Table 4-1). 

Following the provision of written consent by participating herd owners, 
AMS data were accessed via Lely’s third-party application programming 
interface. Records describing the frequency of robot visits as well as the 
weight, conductivity, and temperature of milk harvested were available 
from January 2016 to January 2022 for a total of 22,301 lactations. This 
data formed the Production Dataset (PDS). Due to a shorter duration of 
data retention applied to rumination and physical activity records, these 
were available from October 2020 to January 2022 and formed the 
Behaviour Dataset (BDS). This represents a subset of the PDS and 
totalled 5,961 lactations.  
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Table 4-1 Descriptive statistics for recruited herds 

Variable No. [range] 

No. of Farm 31 
Mean No. of Milking cows per farm1 148 [31–335] 
Mean No. of AMS units per farm1 3 [2–8] 
Mean Milk Production/Cow/Year (Kg)1 10,280 [6,668–15,202] 
  
Calving Pattern  % of Dataset (Herd Level) 

All Year Round 58 
Seasonal 42 

Geographical Region   
England 52 
Republic of Ireland 22 
Northern Ireland  16 
Wales 10 

1 Calculated using mean figures from the years 2020 and 2021.  

 

4.2.2 Data Analysis 

To assess the accuracy with which deviation from expected cumulative 
30-day yield could be predicted at day 3 of lactation a three-step 
analytic procedure was conducted. In Step 1, a mixed-effect linear 
regression model was used to calculate an expected 30-day cumulative 
yield (ECY) for each multiparous cow-lactation in the PDS. In Step 2, 
30-Day Yield Deviation (YD) was calculated as the difference between 
the observed and expected 30-day cumulative yield. In Step 3, 
production, rumination, and physical activity data from 1–3 DIM was 
used to predict YD using machine learning models. These steps are 
described in detail below. All analysis was conducted using R statistical 
software (R Core Team, 2021).  

Step 1: Modelling Expected 30-Day Cumulative Yield 

To quantify YD, it was necessary to establish an expected 30-day 
cumulative milk yield. For each multiparous lactation six independent 
variables were utilised to model ECY: Herd ID, parity, year of calving, 
season of calving, previous production, and herd production. 
Categorical variables were created for Herd ID, parity; (2 and 3+), year 
of calving and season of calving; winter (December, January, 
February), spring (March, April, May), summer (June, July, August), 
autumn (September, October, November). Milk yield utilised in the 
previous production and herd production variables was assessed over 
1 ̶ 30 DIM where the day of calving was designated day 0. Where over 
10% (3 days) of daily milk records were absent, the entire lactation was 
removed (n= 5,054) Where under 10% of yield data was absent, daily 
yield was imputed using the Predicted Mean Matching method of the 
MICE package (van Buuren & Groothuis-Oudshoorn, 2011). A 30-day 
cumulative yield was calculated by summing daily yield over 1-30 DIM. 
Previous production, which sought to quantify each animal’s level of 
production prior to the lactation under analysis was then calculated 
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using the animals’ mean 30-day cumulative yield from all available 
lactations prior to the lactation in question. Lactations for which prior 
production could not be calculated, including all first lactation animals, 
were removed (n = 8,646). The herd production variable, which sought 
to quantify the within herd production level at the time of calving was 
calculated as the mean 30-day cumulative yield for all cows calved 
within the same herd, year, and season as the lactation in question.  

Following data cleaning and feature engineering a modelling approach 
similar to that utilised in Section 3.2 was used to model ECY. This 
approach models expected yield on a per cow-lactation basis utilising 
herd and animal-level data and is detailed below. The outcome of 
interest in Step 1, ECY, represented the total expected milk production 
over the first 30 days of lactation under a given set of individual, herd, 
and environmental circumstances.  

A mixed-effects linear regression model was built within the lme4 
package (Bates et al., 2015) and took the form;  

Yij =  μ + β1X1ij + β2X2ij  +  β3X3ij + β4X4ij  +  β5X5j  + vj +  ϵij, 

[vj ]~ N(0, Ωv) 

[ϵij ]~ N(0, Ωe) 

Where subscript i and j denote the ith cow-lactation in the jth herd; Y 
represents the response variable of Expected Cumulative 30-day Yield 
(Kilograms); μ represents the intercept value; β1 to β4 represent the 
coefficients for cow-lactation fixed effects X1ij to X4ij, these being Year 

of Calving, Season of Calving, Parity, and  Previous Production; β5 
represents the coefficient for the herd-level fixed effects X5j of Herd 

Production; vj represents a random effect for Herd (assumed to have a 

normal distribution of mean = 0, and variance = Ωv) and ϵij  represents 

the residual model error (assumed to have a normal distribution of 
mean = 0, and variance = Ωe).  

Step 2: Assessment of 30-Day Yield Deviation 

For each cow- lactation the difference between the observed 30-day 
cumulative yield and ECY calculated is Step 1 was expressed as a 
percentage of ECY and labelled Yield Deviations (YD). Therefore, YD 
represents the degree to which each animal under or over-produced 
relative to expected cumulative milk yield over the first 30 days of 
lactation.  

Following assignment of YD, its distribution was examined and two cut 
points for group classification selected. These cut points were selected 
on a biological basis while also considering the practical application of 
the predictive model. The first cut point was placed at 0% deviation from 
expected to separate animals expressing positive and negative yield 
deviation. Animals suffering negative deviations were further subdivided 
to allow differentiation of animals suffering large or moderate negative 
deviations. Within this dataset a standard deviation of 16% YD was 
observed. A negative 15% deviation was selected as the second cut 
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point representing approximately a single standard deviation below 
expected. This resulted in the formation of three groups. Cow-lactations 
with a negative YD of at least 15% were classified RED, cow-lactations 
with a YD between -14% and 0% were classified AMBER, those with a 
positive YD were classified GREEN. 

Step 3: Predicting 30-Day Yield Deviation 

In Step 3, machine learning models were constructed to predict YD 
using production, rumination, and physical activity data from 1–3 DIM. 
Our aim was to investigate the accuracy with which deviation from 
expected 30-day cumulative yield could be predicted within three days 
post-partum.  

Data Preparation and Feature Engineering 

Production and behaviour data from days 1–3 in lactation were utilised 
for model construction. For all animals assigned a YD in Step 2 milking 
visit frequency, the weight, conductivity, and temperature of milk 
harvested from the first 3 days in lactation was accessed from the PDS. 
For the same time period daily rumination and physical activity data 
were collated from within the BDS. Animals which failed to record a milk 
yield, conductivity or temperature reading for days 1–3 of lactation were 
removed (n = 293). Milk harvested at each visit was summed to create 
a daily yield for each cow. Daily rumination and activity levels were 
available as an arbitrary unit (AU) in 12 two-hour blocks (Elischer et al., 
2013). Where between 1 and 3 blocks were missing, the mean value for 
all available blocks for the day in question were used to impute missing 
blocks. Where over 3 blocks in a single day were missing, the entire 
lactation was removed (n = 785). Following data preparation, 4 herds 
for which less than 20 lactations were available were removed. 
Thereafter 2,462 multiparous lactations from 27 herds remained for 
analysis. 

Using this data, ten features were selected based on their biological 
plausibility to reflect the production potential of early lactation cows. 
These were: Maximum Yield (Kilograms); the highest daily yield, 
Minimum Activity (AU); the lowest daily activity, Maximum Rumination 
(AU); the maximum daily rumination, Maximum Temperature (Degree 
Celsius); the maximum mean daily milk temperature as averaged 
across all successful milking visits within a given day, Maximum 
Conductivity (AU); the maximum mean daily milk conductivity, as 
averaged across all successful milking visits for a given day, Total 
Refusals; the sum of refusals (where milking is refused due to an 
animal re-presenting a short time after a previous milking visit), Total 
Milkings; the sum of successful milking visits. To assess the change in 
yield, rumination, and physical activity levels over days 1–3, Yield 
Acceleration, Delta Rumination and Delta Activity were calculated. 
These represented the summed daily rate of change for their respective 
metrics from days 1–2 and 2–3 in lactation. For example, Yield 
Acceleration for any cow-lactation was calculated as the change in yield 
from days 1–2, expressed as a percentage of day 1 yield, summed with, 
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the change in yield from days 2 –3, expressed as a percentage of day 2 
yield. 

Model construction 

Data were randomly split on a herd basis into a training dataset (21 
herds) and test dataset (6 herds) comprising 74% and 26% of available 
lactations respectively. The mean number of lactations per farm was 91 
with no single herd contributing more than 13% of total lactations. 
Random forest regression (Breiman, 2001), elastic net regression (Zou 
& Hastie, 2005), and multivariate adaptive regression splines 
(Friedman, 1991) were used to create predictive models for ECY. All 10 
features were offered to each model. Model performance was evaluated 
using the minimisation of mean absolute error (MAE) from 5-fold cross 
validation repeated 10 times on the training dataset (Hastie et al., 2009) 
Random forest regression achieved the lowest MAE of all models and 
was used for construction of the final predictive model. 

Final Model Training 

Recursive feature elimination within the CARET package (Kuhn, 2008) 
was used to identify an optimal sub-set of variables for inclusion in the 
final model. Following feature selection, final hyperparameter tuning 
was carried out using a grid search (Kuhn, 2008). MAE was minimised 
with hyperparameters of 1000 and 2, representing the number of trees 
used and number of variables considered at each split point 
respectively.  

Final Model Assessment 

Final model performance and validity was assessed using the test 
dataset. Predictions from the test dataset were compared with observed 
outcomes and MAE calculated as a measure of model performance. 
The accuracy with which cow-lactations were assigned to their 
appropriate category, RED, AMBER or GREEN, was assessed by 
calculating sensitivity, specificity as well as positive predictive values 
(PPV) and negative predictive values (NPV). Due to the imbalanced 
distribution of lactations between groups, balanced accuracy, which 
accounts for class imbalance was utilised over the traditional metric of 
accuracy (Jiao & Du, 2016).   

4.3 Results 

4.3.1 Modelling Expected 30-Day Cumulative Yield 

Model residuals were examined graphically and found to be normally 
distributed (Figure 4-1). Coefficients of the final linear mixed model 
used to estimate ECY are presented in Table 4-2. The mean absolute 
error and mean absolute percentage error were 140 kilograms and 15% 
respectively.  
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Table 4-2 Linear mixed model for Expected Cumulative 30-day Yield for 8659 
cow-lactations from 31 herds between January 2017 and January 2022 

Fixed Effects Estimate 95% CI 

Intercept 1089.1   1005 ̶̶ 1127 
Herd Production1 93.4 84 ̶̶ 103 
Previous Production2 85.5 79 ̶̶ 92 
Autumn Baseline - 
Winter 6.3 -5 ̶̶ 18 
Spring 24.3 11 ̶̶ 37 
Summer  10.9 -2 ̶̶ 23 
2017 Baseline - 
2018 47.7 11 ̶̶ 83 
2019 34.2 3 ̶̶ 65 
2020 62.8 8 ̶̶ 70 
2021 42.5 11 ̶̶ 73 
2022 62.8 28 ̶̶ 98 
Parity 2 Baseline - 
Parity 3+  -37.9 -50 ̶̶ -26 

Random Effects Variance Std. Dev 

Herd ID (Intercept) 3775 61.4 
Residual 36129              190 
1The mean 30-day cumulative yield for all animals 
within the herd of origin, in the year and season for 
a given lactation.  2 The mean 30-day cumulative 
yield for all available lactations prior to the lactation 
in question. CI = confidence interval 
 

 

 

Figure 4-1 Scatter Plot of residuals plotted against fitted values for modelling 
of expected yield for Expected Yield Model in Step 1 

4.3.2 Assessment of Yield Deviation 

Across the entire dataset the range of YD was -91 to 84% with a mean 
of -0.02% and median of 1.6%. Mean YD per herd ranged from -6.0 to 
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4.9%. RED, AMBER, and GREEN groups comprised 15, 30 and 55 
percent of all lactations respectively Figure 4-2.  

 

 

Figure 4-2  Distribution of 30-Day Yield Deviation (YD) - the difference 
between actual and expected 30-day cumulative yield expressed as a 
percentage of expected, for 8659 cow-lactations from 31 herds between 
January 2017 and January 2022. RED Group (< /= −15% YD), AMBER Group 
(−14%–0% YD), GREEN Group (> 0 YD). 

Descriptive statistics for independent variables examined in Step 3 are 
presented in Table 4-3. Results of the initial random forest regression, 
elastic net regression and multivariate adaptive regression splines 
analyses are presented in Table 4-4. Random forest regression 
achieved an MAE of 8.5%, the lowest among models considered and 
was selected for further training. 
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Table 4-3 Descriptive statistics for independent variables examined in Step 3. 

Variable Median IQR 

Peak Yield 29 10 

Maximum Rumination 6253 1410 

Yield Acceleration 36 25 

Minimum Activity 471 171 

Delta Rumination 19 29 

Delta Activity -6 20 

Maximum Temperature 38.4 1.1 

Maximum Conductivity 76 6 

Total Refusals 12 23 

Total Milkings 9 3 

 

Table 4-4 Regression Performance for Elastic Net, Random Forest 
Regression and 1Multivariable Adaptive Regression Splines 

 Mean Absolute Error 

Model Min. Median Mean Max. 

Elastic Net Regression 8.4 9.1 9.2 10.2 

Random Forest Regression 7.9 8.5 8.5 9.5 

MARS1 8.2 9.0 9.0 10.0 

 

 

Feature Selection and Model Tuning 

Variable importance scores for the final random forest regression 
model, as calculated by recursive feature elimination, are presented in 
Table 4-5. The top six features, representing a compromise between 
model parsimony and performance were chosen for inclusion in the final 
model. These were, in descending order: Maximum Yield, Maximum 
Rumination, Yield Acceleration, Minimum Activity, Delta Rumination, 
and Delta Activity.  
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Table 4-5 Variable importance following recursive feature elimination of the 
final random forest model as selected for the minimisation of MAE in the 
model training process 

Variable 

Variable 
Importance 
Score1 

Peak Yield 132063 

Maximum Rumination 30366 

Yield Acceleration 24651 

Minimum Activity 23271 

Delta Rumination 22711 

Delta Activity 18591 

Maximum Temperature 17804 

Maximum Conductivity 17363 

Total Refusals 17188 

Total Milkings 11474 
1Variable importance score as calculated by 
the VarImp function of the CARET package 

 

Final Model Assessment 

Assessment of the final model was carried out using the test dataset 
comprised of 628 cow-lactations from 6 herds. Across all cow-lactations 
within the test dataset, observed YD averaged 1.5%, ranging from -65.2 
to 59.3%. Our model predicted YD with an MAE of 9%. At the herd-
level, MAE ranged from 3% in Herd 45 to 14% in Herd 14 Table 4-6.  

Table 4-6 .  Regression performance for the prediction of Yield Deviation 
within the test dataset as achieved by the final random forest model, selected 
for minimisation of MAE in the model training process 

Herd ID 1 14 18 20 40 45 

 Regression Performance 

MAE (%) 8 14 13 9 6 3 

MAE = Mean absolute error 

 

Classification performance across the entire test dataset is presented in 
Table 4-7. Within the test dataset, RED, AMBER, and GREEN 
categories accounted for 13, 30 and 57% of the population respectively. 
Calibration plots in which group classification, assigned using predicted 
YD, are plotted against observed YD for the entire test dataset and 
individual herds are presented in Figure 4-3 and  Figure 4-4 
respectively. Animals with a negative YD (RED and AMBER Groups) 
were classified with a sensitivity of 81%, NPV of 73%, specificity of 67% 
and a PPV of 76%. Animals with a positive and negative YD were 
differentiated with a balanced accuracy of 74% across the test dataset. 
This ranged from 93% in Herd 45, to 65% in Herd 14 (Table 4-8). 
Classification of animals within the RED group was achieved with a 
balanced accuracy of 67%, specificity of 99%, a PPV of 91%, sensitivity 
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of 35%, and a NPV of 90%. At the herd-level, PPV ranged from 83% in 
Herds 20 and 40, to 100% in Herds 45,14 and 18. Sensitivity ranged 
from 23% in Herd 1 to 100% in Herd 14. Of RED animals incorrectly 
classified, 76% were misclassified as AMBER and 24% misclassified as 
GREEN. 

Table 4-7 Classification Performance for the final random forest model as 
selected for the minimisation of MAE in the model training process, of RED, 
RED + AMBER, and GREEN groups within the test dataset 

 RED              RED + 
AMBER 

GREEN 

Prevalence (%) 13 43 57 

Sensitivity 35 67 81 
Specificity 99 81 67 
PPV 91 73 76 
NPV 90 76 73 
Balanced 
Accuracy 

67 74 74 

PPV = Positive predictive value, NPV = 
negative predictive value. RED Group (< /= -
15% Yield Deviation), AMBER Group (-14%–
0% Yield Deviation), GREEN Group (> 0 
Yield Deviation) 
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Table 4-8 Classification performance of the final random forest model as 
selected for the minimisation of MAE in the model training process, for the 
RED, RED + AMBER and GREEN Groups within the test dataset 

 Herd ID 1 14 18 20 40 45 

 Classification Performance: RED Group 

Prevalence (%) 13 5 32 19 10 8 
Sensitivity 23 100 43 28 63 67 
Specificity 99 100 100 99 99 100 
PPV 90 100 100 83 83 100 
NPV 89 100 79 85 96 97 
Balanced Accuracy 61 100 71 63 81 83 

 Classification Performance: RED + AMBER 
Groups 

Prevalence (%) 40 29 45 46 56 50 
Sensitivity 46 83 70 70 93 95 
Specificity 92 47 83 80 42 92 
PPV 80 38 78 75 67 92 
NPV 72 88 77 76 83 94 
Balanced Accuracy 69 65 77 75 68 93 

 Classification Performance: GREEN Group 

Prevalence (%) 60 71 55 54 44 50 
Sensitivity 92 47 83 80 41 92 
Specificity 46 83 70 70 93 95 
PPV 72 88 77 76 83 94 
NPV 80 38 78 75 67 92 
Balanced Accuracy 69 65 77 75 68 93 

RED Group (< /= -15% Yield Deviation), AMBER Group (-14%–
0% Yield Deviation), GREEN Group (> 0% Yield Deviation) 
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Figure 4-3 Calibration plot for class membership of the test dataset comprised 
of 628 lactations from 6 herds.  Cow-lactations were classified using Predicted 
30-day Yield Deviation (YD) into three groups: RED Group (</= -15% YD), 
AMBER Group (-14%–0% YD), GREEN Group (> 0% Yield Deviation). 

 

 Figure 4-4 Calibration plots for the prediction of group membership for all 6 
herds within the test dataset. Cow-lactations were classified using Predicted 
30-day Yield Deviation into three groups: RED Group (< /= -15% YD), AMBER 
Group (-14%–0% YD) or GREEN Group (> 0% Yield Deviation) 
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4.4 Discussion 

These results suggest that milk yield, rumination and physical activity 
patterns expressed by dairy cows in the first 3 days post-partum have 
utility in the prediction of deviation from expected 30-day cumulative 
yield. However, these predictions currently lack the accuracy required to 
classify cows reliably and completely into groups which may facilitate 
improved transition cow management. 

Our final model predicted YD with an MAE of 9% which suggests good 
accuracy across individual animals and generalisability across herds. 
To assess the practical application of this model, the accuracy with 
which predicted YD could classify animals into three pre-defined 
management groups was examined. Where accurate classification 
could be achieved this may facilitate the allocation of resources, such 
as veterinary examination or disease screening, towards those 
predicted to underperform and away from those expected to meet 
expectations (Guterbock, 2004).  

Of particular interest was the accuracy with which animals recording a 
large negative deviation (RED group) could be classified. The PPV and 
specificity for the classification of the RED group was excellent across 
the entire test dataset. However, on average across the test dataset the 
sensitivity for classification of animals within the group was poor. A 
large variation in sensitivity across herds was also recorded, ranging 
from 100% in Herd 14 to 23% in Herd 1. This has practical implications 
for the utility of our model, in particular where poor sensitivity is the 
result of the misclassification of RED animals as GREEN. Where 
resources are to be allocated based on group classification, 
misclassification of this type is undesirable. Interestingly, only half the 
herds within the test dataset (Herds 1,18 and 20), misclassified any 
RED animals as GREEN. Of those three herds, Herd 1 accounted for 
80% of all those misclassified. The number of RED animals 
misclassified limits the potential benefit of this model at present. Further 
research is therefore required to understand the reasons for the 
observed between-herd variance in the classification accuracy within 
the RED group.  

Despite the diverse composition of our test dataset, MAE showed very 
little variance at the herd level. This highlights the consistency with 
which yield, rumination and physical activity data can predict YD. This 
may be attributed to the inclusion of relative metrics such as Yield 
Acceleration, Delta Rumination and Delta Activity in our model. As 
opposed to metrics utilising absolute terms, these relative metrics use 
the cow’s prior performance as a benchmark. The inclusion of such 
metrics has previously demonstrated importance in the development of 
generalisable models when utilising animal sensor data (Stangaferro et 
al., 2016). 

The six parameters retained in our final model were comprised of three 
absolute and three relative metrics stemming from three sources: milk 
yield, rumination, and physical activity. Our findings are in agreement 
with prior work demonstrating the utility of early lactation milk yield as a 
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predictor of production in the remainder of the lactation (Grzesiak et al., 
2006; Njubi et al., 2010). While rumination in the early lactation period 
has been associated with subsequent milk production its predictive 
values has not been previously reported (Peiter et al., 2021). Our 
results also highlight the utility of features stemming from physical 
activity. In the immediate post-partum period physical activity has not 
been previously reported to carry any direct association with 
subsequent milk yield, though its association with transition cow health 
has been cited (Kaufman et al., 2016). An investigation of the 
association between physical activity in the days immediately post 
calving and subsequent yield performance may be therefore warranted, 
in particular as it relates to production in free flow AMS herds. 

This study is the first to report the development of a predictive model for 
yield deviation in early lactation dairy cows. While we believe this model 
has demonstrated potential utility for the improvement of transition cow 
management, there are several limitations associated with our 
modelling approach. For instance, we were unable to assign a predicted 
yield deviation to primiparous animals in our study. This stems from the 
reliance on performance in prior lactations for the calculation of 
expected yield and subsequently, yield deviation. The practical 
consequences of this may be mitigated by the lower risk for poor 
transition health which first lactation animals represent when compared 
with their multiparous herd mates (Lee Ji-Yeon Kim Ill-Hwa, 2006). 
However, it may be possible for future analysis to incorporate the 
prediction of first lactation yield in order to investigate the accuracy of 
YD predictions in primiparous animals (Dallago et al., 2019). A further 
limitation of this study relates to the method by which YD was 
calculated. As this was measured by cumulative 30-day yield, animals 
which were removed from the herd prior to 30 DIM were not included in 
this study. Therefore, additional research to include the utility of early 
lactation data for the prediction of cull risk in early lactation would be 
beneficial as these animals form a group which would likely benefit from 
early management intervention.   

4.5 Conclusions 

The application of predictive modelling in transition management 
programs a relatively novel concept. Our results advance this field by 
demonstrating the utility of yield, rumination, and physical activity 
metrics from 1-3 DIM for the prediction of deviation from expected milk 
yield over the first month of lactation. When used to differentiate animal 
groups based on Yield Deviation, our model classified those suffering 
large negative deviations with excellent specificity but poor sensitivity. 
This lack of sensitivity limits the current utility of this model to inform 
transition management on farm. However, these results highlight the 
potential in automatically collected AMS data for the prediction of 
deviation in early lactation milk yield. 
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Chapter 5 The Association of 
Production and Behaviour Data with 
Fertility Performance 

5.1 Introduction 

The efficiency of reproductive management has a significant impact on 
the economic sustainability of the dairy herd. When managed 
appropriately, the direct costs associated with generating pregnancies 
can be minimised, while indirect benefits such as increased milk 
production and reduced involuntary culls can generate substantial 
economic gains (Cabrera et. al., 2014; Shalloo et al., 2014). The 
reproductive performance of the UK dairy herd has improved over the 
past decade. Since 2010 the median conception rate has increased by 
3% to 35%. Over the same period the median submission rate has 
increased from 27% to 40% (Hanks, 2021). Positive trends have also 
been reported within the Irish dairy industry with a 9% increase in six-
week calving rate reported between 2012 and 2020 (NDC, 2021) 
However, inefficiencies remain within the UK and Irish industries as 
reflected by their median calving intervals of 400 and 388 days 
respectively (NDC, 2021; Hanks, 2021). Moving forward, continued 
advancements in reproductive performance will play a key role in both 
industry’s pursuit of increased economic sustainability (Diavão et al., 
2023). 

The chain of events which comprise a successful fertility cycle is 
complex (Roche et al., 2018). Common to a large proportion of these 
however, is that they occur during the transition period. For many cows, 
resumption of cyclicity, uterine involution, as well as the maturation and 
selection of the follicle which will ultimately be fertilised will all occur 
during this time. Reproductive success is therefore linked with the 
health of the cow during transition (Roche et al., 2018; Stevenson et al., 
2020; Consentini et al., 2021; Pascottini et al., 2022). Adaptation to the 
challenges of transition requires an acute homeorhetic response across 
three broad pathways, these being energy metabolism, mineral 
metabolism and immune function. Insufficient or inappropriate 
responses to these challenges has a detrimental effect on subsequent 
fertility (Pascottini et al., 2022). In the case of energy metabolism, the 
severity and duration of negative energy balance experienced directly 
influences the resumption of cyclicity by modulating the concentration of 
both luteinising hormone and follicle stimulating hormone (Roche et al., 
2018). Follicles which mature and ovulate under states of negative 
energy balance tend to be larger, more aged and consequently less 
fertile, yielding lower conception rates (Roche et al., 2018). A direct 
effect of insufficient immune function on reproductive performance is 
seen in the occurrence of metritis, which has demonstrated significant 
association with delayed resumption of cyclicity (Vercouteren et al., 
2015), and reduced conception to first insemination (Elkjær et al., 
2013). For the transition cow, challenges relating to mineral metabolism 
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are dominated by the risk of hypocalcaemia. By suppressing the 
function of both smooth muscle and immune cells, hypocalcaemia is 
associated with reduced uterine involution and the retention of foetal 
membranes. This has also been demonstrated to lead to delays in 
resumption of cyclicity, as well as reduction in conception rate to first 
service (Caixeta et al., 2017).   

The means by which commercial dairy producers can monitor the 
health of transition cows as they adapt to these challenges has grown 
exponentially in the past two decades. The assessment of energy and 
mineral metabolism using commercially available serum tests 
(Geishauser et al., 2001; Townsend, 2011; Seifi & Kia, 2017) as well as 
their association with subsequent reproductive performance (Walsh et 
al., 2007; Seifi & Kia, 2017) have been well described. These 
investigations demonstrate the association between transition health 
indicators and subsequent fertility. Furthermore, they highlight the 
potential such indicators may have for the identification of animals likely 
to suffer poor reproductive performance. By facilitating the pro-active 
management of sub-fertile animals, transition cow health monitoring 
programs may represent a powerful tool for the improvement of 
reproductive efficiency. However, the uptake of such monitoring 
approaches remains limited due to the labour-intensive nature of 
sampling required (König et al., 2023).  

Modern automatic milking systems (AMS) offer an alternative means to 
monitoring transition cow health. In contrast to the traditional means of 
transition cow monitoring, they provide an automated assessment of 
production and behaviour data, available in real time from the point of 
calving. To date the association of this data with subsequent 
reproductive performance has not been investigated. An improved 
understanding of this relationship may inform future work directed 
towards the use of AMS data within an automated transition cow 
monitoring program. The objective of this study was to test the 
hypothesis that production and behaviour data collected by AMS over 
day 1-21 post-partum would demonstrate significant association with 
subsequent detection of oestrus and conception to first insemination.  

5.2 Materials and Methods 

5.2.1 Study Population 

A convivence sample of 46 herds was recruited from the UK and 
Republic of Ireland as described in Chapter 2. Briefly, the criteria for 
inclusion were the use of Lely Astronaut milking robots (Lely 
International, N.V.) under free flow traffic conditions (Munksgaard et al., 
2011), in conjunction with rumination and physical activity monitoring 
technology (Lely Qwes-HR collars, Lely International N.V.). Year-round 
and seasonal calving patterns were represented within the dataset. 
Data relating to milk quantity, milk quality and the frequency of cow-
robot interactions, as well as reproductive management records were 
accessed. No information pertaining to the use of fixed time 
insemination was available. To assess the degree to which such 
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practices may have been applied within our dataset, insemination 
records were examined as previously described by Barden et al. (2024). 
In brief, for each herd, the proportion of inseminations on each day, of 
each week were calculated. Thereafter, the binomial standard deviation 
for a uniformly distributed proportion for all inseminations within each 
week was calculated. Any day for which the proportion of inseminations 
reported was in excess of 2 standard deviations for the week was 
identified and all inseminations on that day marked as potentially fixed 
time (PFT) inseminations. Within the final conception to first 
insemination (CFI) dataset,10% of inseminations were identified as 
potential fixed time inseminations.  

5.2.2 Data Preparation 

Two outcomes of interest were selected for investigation. The first was 
Expression of Oestrus or Insemination (EOI). An animal was classed as 
EOI+ where an oestrus or insemination event was recorded between 
days 22 and 65 post-partum. This time frame was selected in order to 
encompass an oestrus cycle before and after the start of breeding 
where a traditional 42-day waiting period is applied. An oestrus event 
was defined as three consecutive 2-hour periods of increased activity 
compared with each animal’s pre-determined baseline as detected by a 
neck mounted activity monitor. Insemination records were assessed via 
the on-farm management system, Lely T4C. The second outcome of 
interest was Conception to First Insemination (CFI). Animals were 
classed as CFI+ where they received their first and only insemination 
between days 22 and 80 post-partum and were subsequently recorded 
as pregnant on the farm management system. This time frame was 
selected to examine the relationship between transition cow data and 
fertility in the initial stages of the breeding period. 

Independent variables were engineered using data from the first 21 
days post-partum. Milk quantity was assessed as Mean Milk Yield (kg); 
the mean of daily milk yields over days 1-21. Yield Acceleration (%); 
was defined as the change in daily milk yield over consecutive days 
expressed as a percentage of the first. For example, Yield Acceleration 
for each cow-lactation was calculated as the change in yield from days 
1–2, expressed as a percentage of day 1 and so on for days 1-21. This 
was utilised as Mean, Minimum and Maximum Yield Acceleration, 
where Mean Yield Acceleration was the mean of Days 1-21 and 
Minimum and Maximum the highest and lowest daily FPR recorded 
over days 1-21. Milk Quality was assessed using milk temperature, 
conductivity and constituent data. Two measures of milk temperature 
were employed, Maximum Temperature; the maximum quarter-level 
temperature recorded and, Temperature > 40; a binary indicator for 
animals recording a milk temperature of over 40 Degree Celsius. 
Conductivity was assessed as Mean Conductivity (AU); the mean 
udder-level conductivity recorded over days 1-21 and Max Conductivity; 
the highest mean udder-level conductivity recorded over days 1-21. Milk 
fat and protein indications, as recorded once daily by Lely’s MQC 
(Fadul-Pacheco et al. 2018) were utilised as Mean Fat and Mean 
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Protein; the mean of recorded values across days 1-21 for their 
respective constituent. For each day a fat-to-protein ratio was 
subsequently calculated. This was utilised as Mean Fat-to-Protein ratio 
(FPR); the mean daily fat-to-protein ratio achieved across days 1-21, 
and a Maximum FPR; the highest daily FPR recorded across days 1-21. 
Mean Concentrate Dispensed (g) was calculated as the mean grams of 
concentrate dispensed by the robot to each animal per day. Robot visit 
behaviour parameters consisted of milking visits and milking refusals 
(where milking permission is denied due to an animal re-presenting a 
short time after a previous milking visit). These were averaged over 
days 1-21 and reported as Mean Milkings and Mean Refusals. To be 
retained in the final dataset, measurements for each of these 
parameters were required for at least 16 of the first 21 days post-
partum. Where these were not available the entire cow-lactation was 
removed.  Parity was assessed as 1 and 2+. Within the CFI dataset two 
additional variables were assessed. Potential Fixed Time Insemination 
as a binary variable, and Days in Milk at First Service. A selection of 
interaction terms were investigated based on their biological plausibility 
to influence reproductive performance. The interaction between Mean 
Milk Yield and Yield Acceleration, Mean Concentrate Dispensed, Mean 
Protein, Mean Milkings and Mean Refusals was assessed, as was the 
interaction between Mean Milkings and Mean Yield Acceleration. Prior 
to modelling, independent variables for each outcome of interest were 
screened for correlation using a Pearsons correlation matrix (Kirch, 
2008). Variable distributions were assessed, and transformations 
applied as necessary. All numeric variables were centred by subtracting 
the column means of each variable from their corresponding columns 
and scaled by dividing each variable by their standard deviations (van 
den Berg et al., 2006).  

5.2.3 Model Construction 

For each outcome of interest, a multivariable mixed-effect logistic model 
was constructed within the lme4 package (Bates et al., 2015) using a 
manual backward step procedure as described in Section 3.2. All 
candidate variables were screened using univariable analysis and 
brought forward for inclusion in a multivariable model where a P-value 
of ≤ 0.20 was observed. Multivariable models were constructed using 
the logit link function and included a random intercept to account for the 
clustering of data at herd level (Dohoo et. al., 2003). Variables were 
retained in the final model where a P-value of ≤.05 was observed. Any 
variables which formed a significant interaction term were forced into 
the final model. On completion of the backward step, all main effects 
which were removed were re-entered and tested for significance in the 
final model. The effect of nesting cow-lactations within Cow and Year, 
as well as cows within herd was assessed. The inclusion of Calving 
Pattern as a random effect within the final model were also evaluated. 
Parity was retained as a confounder within the final EOI and CFI 
models. Model residuals were assessed for normality of distribution and 
goodness-of-fit was evaluated using marginal and conditional R2 values 
(Nakagawa et al., 2017). Model performance was assessed following 
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internal validation using the area under the receiver operator curve 
(AUC-ROC), sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV).  

The final multivariable mixed-effect logistical models took the general 

form: 

𝑙𝑜𝑔 (
𝑃𝑖𝑗

1 − 𝑃𝑖𝑗
)   =   β0 + β1X1ij+. . . + β𝑚X𝑚ij + vj + ϵij   

[vj ]~ N(0, Ωv) 

[ϵij ]~ N(0, Ωe) 

where the subscript i refers to the ith cow and the subscript j refers to 
the jth herd. Each β represents a fixed effect for EOI and CFI models, vj 

represents a random effect for Herd (assumed to have a normal 
distribution of mean = 0, and variance = Ωv) and ϵij  represents the 

residual model error (assumed to have a normal distribution of mean = 
0, and variance = Ωe). Parameter Pij represents the probability of EO or 
CFI for the ith cow in the jth herd. 

5.3 Results 

Complete or partial production records from 33,592 cow-lactations 
across 39 herds spanning the years 2016 to 2023 were available for 
analysis. Records describing oestrus expression between days 22 and 
65 post-partum were available for 18,652 cow-lactations, 46% of which 
expressed oestrus. Of the 26,293 first services recorded between days 
21-80 for which an outcome could be established, 40% resulted in 
conception. Following the removal of lactations with incomplete AMS 
data, 16,486 cow-lactations remained for pairing with a corresponding 
EOI and CFI outcome. A total of 9,638 lactations from 25 herds 
remained in the final EOI dataset, 48% of which were classed as EOI+. 
Of these, 96% were classed EOI+ following an automatically detected 
heat event and 4% following an insemination event. In the final CFI 
dataset 8,635 cow-lactations from 23 herds remained, of which 41% 
conceived and 10% were listed as PFT inseminations. Descriptive 
statistics for the herds within EOI and CFI datasets are presented in 
Table 5-1 and Table 5-2 respectively. Frequency distribution for EOI 
and CFI events are presented in Figure 5-1 and Figure 5-2 respectively. 
The voluntary waiting period for each herd was estimated using the 5th 
percentile of days in milk at first services. On a herd basis the mean 
DIM at first services for the earliest 5% of services ranged from 27 to 56 
DIM. The herd level distribution for this metrics is presented in Figure 5-
3 
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Median values and interquartile ranges for all independent variables are 
provided for the EOI and CFI datasets in Table 5-3 and Table 5-4 
respectively. To normalise their distribution, a log transformation (van 
den Berg et al., 2006) was applied to Mean Refusals, Conductivity Alert, 
Max Yield Acceleration, and Mean Yield Acceleration. Mean Fat 
Percentage, Min Yield Acceleration and Max Conductivity were 
removed due to correlation of over 0.75, with Mean FPR (r = 0.89), 
Mean Yield Acceleration (r = 0.87) and Mean Conductivity (r= 0.78) 
respectively. Coefficients for the final EOI and CFI multivariable models 
are presented in Table 5-5 and Table 5-7 respectively. The odds ratios 
reported reflect the change in the odds of an animal being classed as 
positive (i.e., EOI+ or CFI+) in response to an increase of one standard 
deviation within their respective independent variable. To aid 
interpretability, model outputs are described using the value of one 
standard deviation within each variable’s original unit of measurement. 

 

Table 5-1 Descriptive statistics for herds included in the final EOI multivariable 
model 

Variable No. [range] 

No. of Cow- Lactations 9,638 
No. of Farms 25 
Calving Pattern  

All Year Round 16 
Seasonal 9 

Mean No. of Cow-Lactations/Herd 385 [152–952] 
Mean Peak Yield1 – Herd Level 46kg [32–63kg] 
Oestrus Expression  

Total  48% 
Parity 1 56% 
Parity 2+ 44% 

Percentage EOI+ – Herd Level 47% [24–76%] 
Mean DIM at EOI+ event – Herd Level 50 [45-53] 
1Calculated using maximum single day yield recorded in 
the first 100 days in milk.  
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Table 5-2 Descriptive statistics for herds included in the final CFI multivariable 
model 

Variable No. [range] 

No. of Cow- Lactations 8,635 
No. of Farms 23 
Calving Pattern  

All Year Round 16 
Seasonal 7 

Mean No. of Cow-Lactations/Herd 375 [174–869] 
Mean Peak Yield1 – Herd Level 47kg [32–62kg] 
Conception Rate to First Insemination   

Total 41% 
Parity 1 45% 
Parity 2+ 39% 

Mean Conception Rate – Herd Level 42% [23–61%] 
Percentage of first services recorded 
within 22-80 DIM – Herd Level 

65% [45-90%] 

Median DIM at First Service – Herd Level 60 [53-70] 
1Calculated using maximum single day yield recorded in the 
first 100 days in milk.  

 

 

 

Figure 5-1 Frequency distribution for the timing of oestrus or insemination 
events across the 9,638 lactations in the EOI dataset.  
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Figure 5-2 Frequency distribution for the timing of first insemination events 
across the 8,635 lactations in the CFI dataset. 

 

Figure 5-3 Frequency distribution for the estimated VWP adopted on each 
herd as calculated by the mean DIM at first service for the earliest 5% of 
services.  
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Table 5-3 Descriptive statistics for independent variables in final EOI dataset. 

Variable Median IQR 

Mean Milk Yield (kg) 30 14 

Mean Yield Acceleration (%) 3.6 2.1 

Min Yield Acceleration (%) 28 19 

Max Yield Acceleration (%) -10 20 

Mean Concentrate Dispensed (g) 5168 1416 

Mean Refusals 2.4 4.3 

Mean Milkings 2.9 1.4 

Mean Protein 3.74 0.37 

Mean Fat 4.43 0.84 

Mean Fat-to-Protein Ratio 1.18 0.23 

Max Fat-to-Protein Ratio 1.4 0.32 

Mean Conductivity (AU) 69.4 3.9 

Max Conductivity (AU) 75.8 5.3 

Conductivity Alert (AU) 0 3 

Milk Temperature (Degrees C) 38.0 1.2 

 
Percentage of 
Dataset 

Temp >40 1% 
Parity 1 33% 

Parity 2+ 67% 

Seasonal Calving Pattern 36% 

All Year-Round Calving Pattern 64% 

IQR = Interquartile range   
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Table 5-4 Descriptive statistics for independent variables in final CFI dataset. 

Variable Median IQR 

Mean Milk Yield (kg) 30 14 

Mean Yield Acceleration (%) 3.6 2.2 

Min Yield Acceleration (%) -10 20 

Max Yield Acceleration (%) 28 20 

Mean Concentrate Dispensed (g) 5262 1391 

Mean Refusals 2.0 3.7 

Mean Milkings 2.9 1.2 

Mean Protein 3.73 0.35 

Mean Fat 4.87 0.83 

Mean Fat-to-Protein Ratio 1.17 0.22 

Max Fat-to-Protein Ratio 1.4 0.31 

Mean Conductivity (AU) 69.4 3.9 

Max Conductivity (AU) 75.8 5.5 

Conductivity Alert 0 3 

Milk Temperature (Degrees C) 38.1 1.1 

DIM at First Service 60 18 

   

 
Percentage of 
Dataset 

PFT Insemination 10% 

Temp >40 1% 
Parity 1 34% 

Parity 2+ 66% 

Seasonal Calving Pattern 30% 

All Year-Round Calving Pattern 70% 

IQR = Interquartile range, DIM= Days in milk, PFT= 
Potential fixed time 

 

5.3.1 EOI Model 

The output of the final multivariable EOI logistic regression model is 
presented in Table 5-5. Mean Milk Yield, Mean FPR, Mean 
Conductivity, Conductivity Alert and Parity were all negatively 
associated with the odds of EOI. Each 8kg increase in Mean Milk Yield 
was associated with a 37% decrease in the odds of EOI (OR: 0.63, CI: 
0.58-0.69). An increase of 0.2 in Mean FPR returned a 14% decrease in 
the odds of EOI (OR: 0.86, CI: 0.81-0.90). Mean Conductivity and 
Conductivity Alert both returned a 6% decrease in the odds of EOI in 
response to a 5.0 and 5.2 increase respectively (OR: 0.94, CI: 0.90-
0.99). Multiparous animals demonstrated a 22% decrease (OR: 0.78, 
CI: 0.67-0.90) in the odds of EOI compared with primiparous animals. 
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Two variables recorded a positive association with the odds of EOI. An 
increase of 0.29 in Mean Protein (OR: 1.07, CI: 1.02-1.14) and 0.8 
increase in Mean Milkings (OR: 1.26, CI: 1.18-1.36) was associated 
with an 8% and 26% increase in the odds of EOI respectively.  

Classification performance for the final multivariable mixed-effect 
logistic model is presented in Table 5-6. Following internal validation, 
sensitivity and specificity of the final model was 67% and 66% 
respectively. A PPV 65%, NPV 68% and AUC-ROC of 0.72 was 
achieved. The final model explained 15% (conditional R2) of the 
variation in the expression of oestrus observed with 6% (marginal R2) 
attributable to the fixed effects. 

 

Table 5-5 Fixed effects retained in multivariable mixed logistic regression 
model assessing the association between early lactation AMS production and 
behaviour data and the risk of expression of oestrus or insemination (EOI). SD 
= Standard deviation for respective variable.  

Variable Coefficient 
Odds 
Ratio 95% CI P-value 

 
SD 

Intercept  0.04 1.05 0.89 -1.37   0.7 - 

Mean FPR -0.14 0.86 0.81-0.90 <0.001 0.20 

Mean Protein 0.07 1.07 1.02-1.14 0.007 0.29 

Mean Milkings 0.23 1.26 1.18-1.36 <0.001 0.8 

Mean Conductivity -0.06 0.94 0.90-0.99 0.012 5.0 

Mean Milk Yield -0.45 0.63 0.58-0.69 <0.001 8 

Conductivity Alert -0.06 0.94 0.90-99 0.014 5.2 

Parity 1 Reference - - - - 

Parity 2+ -0.25 0.78 0.0.67-0.90 <0.001  

 

Table 5-6 Performance metrics for EOI and CFI Mixed-effect Multivariable 
Logistic Models assessed through internal validation 

 EOI 
Model 

CFI 
Model 

  AUC-ROC 0.72 0.62 
Sensitivity 67 59 
Specificity 66 58 
PPV 65 49 
NPV 68 67 

AUC-ROC= Area under the 
receiver operator curve, PPV = 
positive predictive value, NPV = 
negative predictive value  
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5.3.2 CFI Model 

The output for the final CFI model is presented in Table 5-7 and Figure 
5-4. Accounting for parity and DIM at first service, all statistically 
significant effects retained in the final model demonstrated a negative 
association with the odds of conception to first insemination. An 8Kg 
increase in Mean Milk Yield was associated with an 11% decrease in 
the odds of conception (OR: 0.89, CI: 0.82-0.96). A 0.2 increase in 
Mean FPR results in a 7% decrease (OR: 0.93, CI: 0.88-0.98). 
Multiparous animals returned a 10% decrease in the odd of conception 
verse primiparous animals (OR: 0.90, CI: 0.78-1.04) and finally, the 
interaction term Mean Milk Yield X Mean Concentrate Dispensed 
returned an odds ratio of 0.95. Within this interaction term, the 
association between Mean Milk Yield and the odds of conception 
became increasingly negative as Mean Concentrate Dispensed 
increased (Figure 5-4). Classification performance of the final CFI 
model is presented in Table 5-6. A sensitivity of 59% and specificity of 
58%, PPV of 49%, NPV 67% and AUC-ROC of 0.62 were achieved. A 
conditional R2 of 5% with a marginal R2 of 1% was returned. 

 

Table 5-7 Fixed effects retained in multivariable mixed logistic regression 
model assessing the association between early lactation AMS production and 
behaviour data and the risk of conception to first insemination (CFI). SD 
=Standard deviation for each respective variable.  

Variable Coefficient 
Odds 
Ratio 95% CI P-value 

 
SD 

Intercept  -0.26 0.77 0.63 -0.93   0.006 - 

Mean FPR  -0.07 0.93 0.88-0.98 0.002 0.20 

Mean Milk Yield -0.11 0.89 0.82-0.96 0.002 9.7 

Mean Milk Yield X 
Mean Conc. Dispensed -0.05 0.95 .90-.99 0.043 

- 

Mean Conc. Dispensed 0.01 1.01 0.95-1.08 0.69 1340 

Parity 1 Reference - - - - 

Parity 2+ -0.10 0.90 0.78-1.04 0.15 - 

DIM at Service 0.10 1.11 1.06 – 1.16 < 0.001 12 

FPR = Fat-to-protein ratio, Conc. = Concentrate feed, DIM = Days 
in milk, CI = Confidence interval 
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Figure 5-4 Effects plot for the interaction term Mean Milk Yield X Mean 
Concentrate Dispensed  assessed overs days 1-21 post-partum as retained in 
the final multivariable model for Conception to First Insemination (CFI). 

5.4 Discussion 

Expression of oestrus in early lactation and conception to first 
insemination represent economically important aspects of reproductive 
management. Here, we report significant association between data 
collected by AMS over days 1-21 post-partum and both these 
outcomes. Of note, is the consistency with which the associations 
between AMS data and reproductive success reflects those previously 
demonstrated using traditional means of transition cow monitoring. 
These results emphasise the importance of transition cow health for the 
management of reproductive efficiency and demonstrate the potential 
utility of AMS production and behaviour data within transition cow 
monitoring programs.  

The association between traditional indicators of energy metabolism 
and subsequent reproductive performance is clearly defined within the 
current literature. Energy balance, as assessed through body condition 
score in early lactation has demonstrated a consistent association with 
both conception to first insemination (Patton et al., 2007; Santos et al., 
2009; Bedere et al., 2018) and resumption of cyclicity (Santos et al., 
2009; Monteiro et al., 2021). Similarly, the relationship between 
metabolic indicators of NEB such as beta-hydroxy-butyrate and non-
esterified-fatty acids with the resumption of cyclicity (Miqueo et al., 
2019; Chin et al., 2024) and conception to first insemination (Garverick 
et al., 2013) have also been well established. Within our dataset, 
assessment of energy balance was carried out using milk fat and 
protein indications automatically collected via in-line sensors. 
Indications of a negative energy balance (i.e., increased Mean FPR and 
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decreased Mean Milk Protein (Toni et al., 2011)) were associated with 
reduced odds of oestrus expression within the final EOI model. This is 
in keeping with previous studies which reported significant positive 
association between milk protein percentage assessed over the first 
100 days post-partum and the odds of resumption of cyclicity (Opsomer 
et al., 1999), while increase FPR had been associated with an 
increased risk of ovarian cysts (Heuer et al., 1999). The effect of FPR 
within the CFI model is also in keeping with prior reports with both 
Loeffler et al., (1999) and Heuer et al., (1999) reporting a negative 
association between test-day FPR in early lactation and the risk of 
conception to first insemination. This is the first study to report the 
relationship between milk fat and protein indications as measured via 
in-line sensors and subsequent reproductive performance. Our results 
indicate this may be a viable alternative to traditionally employed, 
labour-intensive assessments of energy balance such as body condition 
scoring and analysis of serum samples. 

Two conductivity-based variables were retained within the final EOI 
model, both demonstrated a reduced odds of oestrus expression with 
deteriorating udder health. Susceptibility to mastitis is highest in the 
periparturient period, in part due to the compromised immune function 
commonly experienced during this time (Sordillo, 2005). Animals with 
SCC >500,000 in the first month post-partum demonstrated significantly 
higher incidence of delayed resumption of cyclicity when compared with 
animals recording an SCC of <500,000 (Isobe et al., 2014).  A similar 
effect of clinical mastitis was demonstrated by (Rial et al., 2022) with 
mastitis diagnosed in the two weeks post-partum leading to a delay in 
both the resumption of cyclicity and detection of first oestrus. While 
there has been no prior investigation of the relationship between milk 
conductivity and subsequent fertility, our findings substantiate the 
previously describe relationship between indicators of udder health and 
reproduction.  

Mean Milkings returned the largest positive effect size within the final 
EOI model highlighting an interesting relationship between this AMS 
metric and the odds of oestrus expression. Milking visits have been 
reported to decrease in response to disease, including ketosis and 
mastitis (King et al., 2018), and so to some extent may reflect the status 
of both the immune and metabolic systems.  A more direct effect may 
relate to the demonstrated negative impact of lameness on milking 
visits (Borderas et al., 2008). Given the negative effect of lameness on 
the intensity of oestrus expression (Morris et al., 2011), this may 
account for the associations demonstrated here. However, the sparsity 
of reports detailing the association between metrics unique to AMS, 
such as milking visits, with reproductive performance means validation 
of these findings would be beneficial.  

Across both EOI and CFI models, an increase in Mean Milk Yield was 
associated with a reduction in the odds of reproductive success. The 
relationship between milk yield and fertility is complex with conflicting 
results commonly reported. Bedere et al., (2018) demonstrated a 
significant association between the time to first observed oestrus and 
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milk yield with each extra kilogram of milk produced at peak associated 
with a delay in oestrus detection of 1.1 days. In contrast, Santos et al., 
(2009) demonstrated a positive association between milk yield over the 
first 90 DIM, and cyclicity at 65 DIM, while other studies have failed to 
demonstrate any association between these variables (Bulman & 
Lamming, 1978; Opsomer et al., 1999, Gümen et al., 2003). The 
relationship between milk yield and the probability of conception to first 
insemination is similarly equivocal with conflicting reports of a positive 
(Domecq et al., 1997), negative (Grimard et al., 2006; Bedere et al., 
2018), or complete lack of association (Santos et al., 2009) between 
milk yield and conception. 

The lack of consistency seen across these investigations may be 
somewhat explained by the variance in both the dependant and 
independent variables used across these studies (e.g. peak yield vs 
305-day yield, resumption of cyclicity as defined by blood progesterone 
vs detection of oestrus). Larger, standardised studies are therefore 
required to more clearly define this relationship. Within this study we 
have demonstrated a significant negative association between milk 
production over the first 21-days and both expression of oestrus and 
conception to first insemination. While these results should be 
interpreted with caution considering the variance seen within the 
literature, it remains that across this large multi-herd dataset Mean Milk 
Yield exerted the largest effect of all variables examined. This highlights 
the importance of this variable and its potential utility within a transition 
monitoring program.  

For both final models the coefficients of determination demonstrate that 
the fixed effects assessed in this analysis account for a very small 
proportion of the variance in outcome observed. This indicates that 
factors outside of those considered in this analysis are responsible for 
the vast majority of variance in reproductive performance seen in this 
dataset. Given the restricted period over which independent variables 
were analysed this was not an unexpected result. By limiting our 
analysis to variables from days 1-21 we excluded data relating to the 
animal’s physiological status likely to be highly influential on 
reproductive performance. For example, indicators of udder health 
(Santos et al., 2004) and the level milk production (Rutten et al., 2016) 
in the days surrounding an animals’ first insemination have a 
demonstrated association with the risk of conception. Inclusion of 
factors such as these would likely increase the degree to which any 
model may explain reproductive performance. However, the purpose of 
this study was to examine the association between data generated 
during the transition period and subsequent fertility. While our results 
must be interpreted in light of the low coefficients of determination 
observed, this does not negate the potential benefits an improved 
understanding of these associations may deliver. 

We have demonstrated that variables recorded by AMS overs days 1-
21 post-partum have a statistically significant association with fertility. 
As the first study of its type, our results advance this field by assessing 
the relationship between metrics unique to AMS (e.g., Milking Visits and 
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Refusals), and subsequent fertility. Furthermore, we report the 
association of AMS data relating to milk production, energy balance and 
udder health as important factors in reproductive performance. These 
findings agree with much of the prior literature demonstrating that data 
automatically collected by AMS has potential as an alternative means of 
transition of cow monitoring. While the low coefficient of determination, 
small effect sizes and moderate AUC-ROC observed must temper the 
potential this data holds for the prediction of reproductive outcomes 
within a TMP, this does warrant further investigation due to the benefits 
of automated collection of data by AMS and the opportunity to predict 
performance outcomes in a timely manner for intervention. The advent 
of targeted reproductive management programs, designed to allow 
bespoke management of fertility in line with expected performance 
(Giordano et al., 2022), offers a means to prevent or mitigate expected 
reproductive losses. Where a TMP could be developed to work in 
tandem with targeted reproductive management, there exists great 
potential to limit the effects of poor transition health on reproductive 
efficiency.  

A major limitation of our study is the absence of data relating to herd-
level reproductive management practices. Within the herds analysed a 
large variance in the percentage of first services occurring between 
days 22 and 80 was evident between herds. Mean herd level 
percentage was 65% but ranged from 45 to 90%. Similar when 
analysed by calving pattern, a large variance in proportion of animals 
served over this time was seen with 55% and 70% of first service being 
recorded within this time for seasonal and all year-round calving herds 
respectively. This highlights the difference in approach to fertility 
management which exists between these systems and the difficulty 
associated with the interpretation of data collected across multiple 
production systems. In addition to this, there exists the potential for the 
use of exogenous hormones to influence both outcomes of interest 
analysed. While the use of fixed time insemination with our dataset 
appears to be limited, this remains a major limitation of our study. 
Similarly, our reliance on farm records relating to insemination and 
pregnancy diagnosis event must be considered in the interpretation of 
our findings. Finally, as an assessment of reproductive performance, 
the detection of oestrus is reliant on both the resumption of cyclicity, 
and the expression of heat with sufficient intensity and duration to allow 
detection. As opposed to the use of serum progesterone or ovarian 
ultrasound examination for the assessment of cyclicity, our approach 
may overestimate the prevalence of anoestrus due to its failure to 
detect animals expressing silent oestrus (Gautam, 2023). 

5.5 Conclusion 

This is the first study to assess the relationship between data collected 
by AMS in days 1-21 post-partum and subsequent reproductive 
performance. Production and behaviour data collected over this time 
demonstrated significant association with expression of oestrus in days 
22-65 and conception to first insemination over days 22-80. Our 
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findings relating to milk production, energy balance and udder health 
agree with reports utilising traditional means of transition cow 
monitoring. This demonstrates the potential AMS data holds as an 
alternative means of assessing transition success. Further research is 
required to assess the accuracy with which this data may predict 
reproductive performance within a TMP and the value this may provide 
when used in tandem with a targeted reproductive management 
strategy. 
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Chapter 6 Predictive Models for the 
Implementation of Targeted 
Reproductive Management in 
Multiparous Cows on Automatic Milking 
Systems 

6.1 Introduction 

Targeted reproductive management (TRM) aims to improve the fertility 
efficiency of the dairy herd by applying bespoke group-level 
management strategies based on expected reproductive performance 
(Giordano et al., 2022). This is achieved through a three-step process. 
First, the development of models for the prediction of reproductive 
performance, second the classification of animals into groups based on 
these predictions and finally, the implementation of targeted 
management strategies designed to optimise reproduction. Examples of 
its application include the targeted use of reproductive hormones in 
animals at reduced risk of oestrus expression in early lactation (Rial et 
al. 2022; Gonzalez et al. 2023) and the preferential use of sexed semen 
in animals deemed highly likely to conceive to artificial insemination 
(Berry, 2021). Models capable of predicting performance in these areas 
would be of value in the implementation of TRM.  

The influence of the transition period on the subsequent fertility of the 
dairy cow is well documented (Walsh et al., 2011, Chapinal et al. 
2012).The success with which the cow adapts to the stressors of early 
lactation has a demonstrated effect on expression of oestrus 
(Vercouteren et al. 2015; Banuelos and Stevenson 2021) and risk of 
conception (Elkjær et al. 2013; Caixeta et al. 2017; Mohtashamipour et 
al. 2020). As the adoption of sensor technology on commercial dairy 
farms continues to increase, so too does the opportunity to harvest data 
reflective of the cow’s physiological status during transition. These data 
may prove to have utility for the development of the predictive models 
which form the basis of TRM. 

Dairy farms employing automatic milking systems (AMS) offer a unique 
opportunity to collate transition cow data for use in such models. A wide 
range of variables relating to milk quantity, quality, concentrate 
dispensed and robot visit behaviour are automatically generated from 
sensors incorporated into the milking robot. In addition to this, auxiliary 
data sources such as neck mounted accelerometers as well as 
historical cow-level data are often readily available. The integration of a 
wide range of data sources in model development has the potential to 
improve the accuracy of predictions by providing a more detailed 
representation of each animal, however, an increased quantity of data 
does not guarantee improved model performance (Berisha et al., 2021). 
Furthermore, as the number of data sources utilised increases, the 
ease with which the model can be deployed in a commercial setting is 



 

115 

reduced (Leff et al., 2021). The development of predictive models 
should therefore aim to balance model accuracy with parsimony by 
minimising the number of data sources used. 

The objective of this study was first, to assess the accuracy with which 
the likelihood of expression of oestrus and conception to first 
insemination could be predicted using data collected by AMS from days 
1-21 in milk. A second objective was to assess the change in model 
performance following the addition of two auxiliary data sources. 

6.2 Materials and Methods 

Forty-six commercial AMS herds from the United Kingdom and 
Republic of Ireland were enrolled as described in Chapter 2. Criteria for 
inclusion was the use of a Lely Astronaut Milking Robot (Lely 
International N.V.) under free flow traffic conditions (Munksgaard et al., 
2011), in conjunction with rumination and activity monitoring technology 
(Lely Qwes-HR collars, Lely International N.V.). Participating herd data 
from January 2016 to August 2023 was available via Lely’s third-party 
application programming interface. Data relating to milk quantity and 
quality, the frequency of cow-robot interactions, rumination and activity, 
as well as reproductive management records were accessed. No 
information pertaining to the use of oestrus synchronisation or fixed 
time insemination was available for animals within this dataset. All 
analysis was carried out using R statistical software (R Core Team 
2021). 

6.2.1 Data Preparation 

Two outcomes of interest were selected for investigation. The first was 
an Expression of Oestrus or Insemination Event (EOI). An animal was 
classed as EOI+ where an oestrus event or an insemination event was 
recorded between days 22 and 65 post-partum. An oestrus event was 
defined as three consecutive 2-hour periods of increased activity 
compared with each animal’s pre-determined baseline as detected by a 
neck mounted activity monitor. Records relating to insemination events 
were obtained from the on-farm management system. The second 
outcome of interest was Conception to First Insemination (CFI). Animals 
were classed as CFI+ where they received their first and only 
insemination between days 22 and 80 post-partum and were 
subsequently recorded as pregnant on the farm management system.  

For each outcome of interest, two datasets were constructed. The first 
was comprised solely of data provided by the AMS and named the RBT 
dataset. The second was comprised of AMS data in conjunction with 
two auxiliary data sources: RBT+ dataset. The aim of this study was to 
compare the accuracy with which EOI and CFI could be predicted using 
their respective RBT and RBT+ datasets. To allow the comparison of 
RBT and RBT+ using identical subjects, cow-lactations were assessed 
for missingness of data across all three data sources. Only cow-
lactations with sufficient data across all three were retained. Following 
feature engineering, fertility data for all retained cow-lactations were 
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assessed and an outcome for EOI and CFI assigned. Those without 
sufficient data to allow determination of their fertility performance were 
removed. For each of the outcomes EOI and CFI, an RBT and RBT+ 
dataset were brought forward for model development. This data 
preparation process is described in detail below and displayed in Figure 
6-1. 

 

 

Figure 6-1 Workflow for data cleaning, feature engineering and preparation of 
the final datasets used for model construction and external validation. 

 

6.2.2 Feature Engineering: AMS Data 

The day of calving was designated day zero, data collected by the AMS 
from days 1-21 was used to engineer 10 features for inclusion in the 
RBT dataset. Milk quantity was assessed as Mean Milk Yield (kg); the 
mean of daily milk yields over days 1-21, and Mean Yield Acceleration 
(%); the mean change in daily milk yield from consecutive days 
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expressed as a percentage of the first. For example, Mean Yield 
Acceleration for each cow-lactation was calculated as the change in 
yield from days 1–2, expressed as a percentage of day 1, averaged 
with, the change in yield from days 2–3, expressed as a percentage of 
day 2 yield and so on. Milk Quality was assessed using milk 
conductivity and constituent data. Two measures of milk conductivity 
were employed, Mean Conductivity (AU); the mean udder-level 
conductivity recorded over days 1-21 and Conductivity Alert; the total 
number of instances where quarter-level conductivity exceeded 80 
units. Milk fat and protein indications, as recorded once daily by Lely’s 
MQC (Fadul-Pacheco et al. 2018) were utilised as Mean Fat and Mean 
Protein; the mean of recorded values across days 1-21 for their 
respective constituent. A Mean Fat-to-Protein ratio (FPR) was 
subsequently calculated. Mean Concentrate Dispensed (g) was 
calculated as the mean grams of concentrate dispensed to each animal 
by the robot per day. Robot visit behaviour parameters consisted of 
milking visits and milking refusals (where milking permission is denied 
due to an animal re-presenting a short time after a previous milking 
visit). These were averaged over days 1-21 and reported as Mean 
Milkings and Mean Refusals. To be retained in the final dataset, 
measurements for each of these ten parameters were required for least 
16 of the first 21 days post-partum. Where these were not available the 
entire cow-lactation was removed.   

6.2.3 Feature Engineering: Auxiliary Data Sources 

Rumination and activity data derived from neck mounted 
accelerometers were used to engineer 7 variables (Schirmann et al., 
2009). Animals which failed to record complete rumination and activity 
values for at least 16 of the 21 days analysed were removed from the 
analysis. Engineered variables were Mean Rumination (Arbitrary Unit, 
AU); the mean daily rumination recorded, Mean Delta Rumination; the 
mean change in daily rumination, and Mean Variation Rumination; the 
variance in Mean Rumination across the 21-day period. These three 
metrics were also calculated for data relating to daily activity. In 
addition, the sum of heats recorded by the neck mounted 
accelerometers over days 1-21 post-partum was assessed as the 
Transition Heat Count.  

Cow-level historical data as recorded by the on-farm management 
system were used to engineer 7 variables. For each cow-lactation, 
records describing milk quantity, quality and fertility performance for the 
prior lactation were assessed. Milk yield in the prior lactation was 
assessed as PV-Mean Milk Yield; Daily milk yield as averaged across 
the entire lactation, PV-Transition Yield; mean milk yield for the first 30 
days of the previous lactation and PV-Yield at Dry; mean milk yield for 
the last 10 days prior to drying off. PV-Dry Conductivity represented the 
conductivity of milk in the 10 days before dry-off. The days in milk at 
dry-off and the number of days dry were assessed as PV-DO and PV-
DD respectively. Finally, days in milk at conception in the prior lactation 
as well as age at first calving were assessed as PV-DC and AFC 
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respectively. The necessity of a prior lactation for the assessment of 
these variables resulted in the removal of all primiparous animals from 
the dataset. Prior to modelling all numeric variables were centred by 
subtracting the column means of each variable from their corresponding 
columns and scaled by dividing each variable by their standard 
deviations (van den Berg et al., 2006).  

Following feature engineering, an EOI and CFI status was assigned to 
retained cow-lactations. For each outcome of interest, animals for which 
no definitive status could be established (i.e., EOI+ or EOI- and CFI+ or 
CFI-) were removed. In the case of EOI, animals without an oestrus or 
insemination event which also failed to log complete activity records for 
days 22-65 were removed. For example, an animal for which no oestrus 
or insemination event was recorded but, for whom a complete activity 
record was not available was removed from analysis as we could not 
rule out the occurrence of oestrus on the days for which activity records 
were absent. In the case of CFI, animals which did not receive a first 
insemination between 22 and 80 DIM and those inseminated after the 
end of our observation window were removed. Following assignment of 
EOI and CFI status, herds with less than 50 cow-lactations available for 
each outcome were removed. Thereafter, the datasets for both EOI and 
CFI were split into RBT and RBT+, comprised of 10 and 25 variables 
respectively. The former was comprised solely of data provided by the 
AMS, the latter comprised of AMS data in conjunction with both 
auxiliary data sources. These four datasets were brought forward for 
model construction. The EOI and CFI datasets contained 1,708 
multiparous lactations from 16 herds, and 1,130 multiparous lactations 
from 13 herds respectively. 

6.2.4 Model Construction and Evaluation 

To assess the accuracy with which the RBT dataset could predict the 
likelihood of both EOI and CFI, predictive models for each outcome of 
interest were constructed and externally validated using the procedure 
described below. The dataset was split randomly by herd into a train 
and test dataset. All features within the training dataset were offered to 
a random forest, neural network and support vector machine models 
and classification accuracy assessed over five-fold cross validation 
repeated 10 times. Random forest, which achieved the highest AUC-
ROC of all evaluated models was brought forward for further 
investigation. A random forest recursive feature elimination (RFE) 
model (Section 2.5.1) was used in feature selection. The optimal subset 
of variables was assessed by the effect of their inclusion on the area 
under the receiver operator curve (AUC-ROC) (Kuhn, 2018). Retained 
variables were selected based on examination of recursive feature 
elimination plots generated by the VarImp function in the CARET 
package (Kuhn, 2008) with the goal of balancing parsimony and 
accuracy. Those retained were brought forward to a final random forest 
model (Breiman, 2001) trained to maximise AUC-ROC over 5-fold cross 
validation repeated 10 times. The scaled variable importance for 
features retained in the final model was assessed using the VarImp 
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function. This model building procedure was repeated using the RBT+ 
dataset.  

The final predictive models EOI-RBT, EOI-RBT+, CFI-RBT and CFI-
RBT+ were evaluated by their predictive performance using the test 
dataset. Model performance was assessed using classification 
accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and AUC-ROC. Within each outcome 
of interest, the classification accuracy for the RBT and RBT+ models 
were compared using McNemar’s test (Dietterich, 1997). The null 
hypothesis was that no difference in classification accuracy exists 
between the RBT and RBT+ models, a significance level of 0.1 was 
employed. To investigate the accuracy with which these models might 
be applied on farm, test dataset predictions were ranked by probability 
within their respective farms and segregated into quartiles (Q). Those in 
Q1 represented animals least likely within their respective herds to 
record a positive outcome (an oestrus or insemination event in the case 
of EOI, conception to first insemination in the case of CFI). Those in Q4 
represented the most likely. Of particular interest in our study were Q1 
and Q4 as they represented key groups which may be selected for 
targeted reproductive management. For example, animals classified as 
Q1 for EOI may receive blanket hormone treatment while those in Q4 
may be observed for natural oestrus without hormonal intervention. 
Similarly, those in Q4 for CFI may be selected for insemination with 
sexed semen while those in Q1 may receive beef semen. Model 
calibration was assessed via calibration plots following the binning of 
model-predicted probabilities into 10 equidistant bins. Furthermore, to 
allow direct comparison between models expected calibration error 
(ECE) (Guo et al., 2017) was calculated.  

6.3 Results 

Complete or partial records relating to 9,524 lactations from 36 recruited 
herds were assessed. Initial data cleaning involved the removal of 
primiparous lactations, those which failed to reach 21 days post-partum 
and those which failed to record any corresponding milk quality, 
rumination, or activity data. A total of 4,039 multiparous lactations from 
34 herds were brought forward for feature engineering. Incomplete milk 
quality, rumination, or activity data led to the removal of 2,131 
lactations. From the remaining 1,908 lactations, those without 
corresponding fertility records and those originating from herds with less 
than 50 cow-lactations available for analysis were removed (Figure 
6-1). Descriptive statistics for herds retained in the final datasets are 
presented in Table 6-1.  
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Table 6-1 General descriptive statistics for herds which contributed cow-
lactations to EOI and CFI datasets. 

Variable No. [range] 

Total No. of Herds 16 
Calving Pattern  

All Year-Round Calving,  13 
Spring Calving 3 

Geographical Region  
England 9 
Republic of Ireland 3 
Northern Ireland 3 
Wales 1 

Mean No. of Milking Cows/Herd 215 [57 - 419] 
Mean No. of AMS Units/Herd 3 [2-7] 
Mean 305 Day Yield – Herd Level 8438kg [5216–12825kg] 
Mean % of animals inseminated by 80 
DIM – Herd Level 

74% [46–95%] 

 

A total of 1,708 cow-lactations from 16 herds formed the final EOI 
dataset of which 40% were classed as EOI+. The herd-level mean DIM 
at which an EOI event was recorded was 51, ranging from 45-55 DIM. 
The final CFI dataset was comprised of 1,130 cow-lactations from 13 
herds of which 42% were classed as CFI+. The herd-level mean DIM at 
first insemination was 61, ranging from 54 to 70 DIM. Descriptive 
statistics for the cow-lactations retained in the final EOI and CFI 
datasets are presented in Table 6-2 and Table 6-3 respectively. 
Frequency distributions for EOI and CFI events are presented in Figure 
6-2 and Figure 6-3 respectively. Descriptive statistics for variables 
included in the RBT and RBT+ datasets are presented in Table 6-4 and 

Table 6-5 respectively. 
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Table 6-2 Descriptive statistics for cow-lactations retained in the final EOI and 
EOI+ random forest models for the prediction of expression of oestrus 
between DIM 22 and 65. 

Variable No. [range] 

No. of Cow- Lactations 1,708 
No. of Farms 16 
Calving Pattern  

All Year-Round Calving 13 
Spring Calving 3 

Mean No. of Cow – Lactations/Herd 106 [52–352] 
Mean Peak Yield1 – Herd Level 54kg [38-69kg] 
Expression of Oestrus (EOI+)  

Total 40% 
Parity 2 45% 
Parity 3+ 36% 

Mean % of EOI +Animals – Herd Level 42% [20–73%] 
Mean DIM at EOI+ event – Herd Level 51 [45-55] 

1 Calculated using maximum single day yield recorded in the 
first 100 days in milk. DIM = Days in milk 

 

Table 6-3 Descriptive statistics for cow-lactations retained in the final CFI and 
CFI+ random forest models for the prediction of conception to first 
insemination between DIM 22 and 80. 

Variable No. [range] 

No. of Cow- Lactations 1,130 
No. of Farms 13 
Calving Pattern  

All Year-Round Calving 10 
Spring Calving 3 

Mean No. of Cow-Lactations/Herd 87 [30–219] 
Mean Peak Yield1 – Herd Level 54kg [39–

69kg] 
Conception Rate to First Insemination   

Total 42% 
Parity 2 43% 
Parity 3+ 41% 

Mean Conception Rate to first insemination 
– Herd Level 

46% [21–69%] 

Mean DIM at first insemination – Herd 
Level  

61 [54-70] 

1 Calculated using maximum single day yield recorded in the 
first 100 days in milk. DIM = Days in milk 
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Figure 6-2 Frequency distribution for days in milk at EOI event (oestrus 
detection or insemination) within the final EOI dataset. 

 

Figure 6-3 Frequency distribution for days in milk at first insemination within 
the final CFI dataset. 
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Table 6-4 Variables analysed within the RBT datasets 

 

 

Table 6-5 Additional variables analysed within the RBT+ Datasets 

 EOI Dataset CFI Dataset 

Variable Median IQR Median IQR 

Mean Rumination (AU) 559.23 88.7 554.33 90.4 

Mean Delta Rumination (%) 0.5 1.7 -0.05 1.6 

Mean Variation Rumination 2968 4024 2801 4032 

Mean Activity (AU) 40 8.4 39.7 8.2 

Mean Delta Activity (%) -0.92 1.5 -0.93 1.4 

Mean Variation Activity 14.95 28.2 13.2 25.0 

Transition Heat Count 0 1.0 0 1.0 

PV-Mean Milk Yield (kg) 34.16 13.1 32.9 12.9 

PV-Transition Yield (kg) 33.12 15.3 33.1 14.7 

PV-Yield at Dry Off (kg) 21.79 10.5 19.4 11.9 

PV-DO1 365 55.0 368 60.0 

PV-DD2 54 14.0 54 16.0 

PV-DC3 0 0.1 0 0.1 

AFC4 1427 715 1460 757 

IQR= Inter Quartile Range, PV= Previous Lactation, DIM = 
Days in Milk. 1DIM at dry-off in prior lactation. 2Days dry in prior 
lactation,3 Milk conductivity at dry-off in prior lactation, 4 Age at 
first calving. 

 

6.3.1 Expression of Oestrus and Insemination Events 

The EOI dataset was divided into a training and test dataset of 1,284 
lactations from 11 herds and 424 lactations from 5 herds respectively. 
Following assessment of the recursive feature elimination plot, five 

 EOI Dataset CFI Dataset  

Variable Median IQR Median IQR 

Mean Milk Yield (kg) 38.8 10.8 38.0 11.7 

Mean Yield Acceleration (%) 3.9 1.8 3.8 1.8 

Mean Conductivity (AU) 69.6 3.9 69.7 4.0 

Conductivity Alert 0 2.0 0 2.0 

Mean Milk Fat-to-Protein Ratio 1.17 0.2 1.23 0.25 

Mean Protein (AU) 3.72 0.32 3.71 0.36 

Mean Fat (AU) 4.87 0.8 4.56 0.84 

Mean Concentrate Dispensed (g)  5392 817 5301 1073 

Mean Refusals 2.9 4.2 3.0 4.5 

Mean Milkings 3.57 0.9 3.5 0.9 

IQR= Inter Quartile Range     
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variables, the combination of which resulted in the highest AUC-ROC 
were retained in the final EOI-RBT model. These were, Mean Milk 
Yield, Mean Concentrate Dispensed, Mean Protein, Mean Refusals and 
Mean Conductivity. The scaled variable importance for each is 
presented in Table 6-6. Animals were classified with an AUC-ROC of 
0.6 (Figure 6-4) sensitivity of 38%, specificity of 79%, PPV, NPV, and 
accuracy of 60% (Table 6-7). An expected calibration error of 0.10 was 
observed.  

 

Table 6-6 Scaled Variable importance for the EOI-RBT Model, a random forest 
model for the prediction of Expression of Oestrus from DIM 22-65 (EOI) 
utilising AMS data exclusively 

Variable 

Variable 
Importance 
Score1 

Mean Concentrate Dispensed 100 

Mean Milk Yield 90 

Mean Conductivity 51 

Mean Refusals 26 

Mean Protein 0 
1Variable importance score as calculated 
by the VarImp function of the CARET 
package. 
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Figure 6-4 ROC for EOI-RBT and EOI-RBT+ random forest models for the 
predictions of expression of oestrus between days 22 and 65 post-partum as 
evaluated on the test dataset 

 

Figure 6-5 Calibration plot for EOI-RBT and EOI-RBT+ random forest models 
for the predicted probability of expression of oestrus or insemination (EOI) 
between DIM 22-60 DIM as evaluated on the test dataset 

. 
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Table 6-7 Classification performance of all random forest models built utilising 
AMS data exclusively (RBT) and AMS data in conjunction with auxiliary data 
(RBT+) for the prediction of Expression of Oestrus or Insemination from DIM 
22-65 (EOI) and Conception to First Insemination from DIM 22-80 (CFI) 

 

In the final EOI-RBT+ model, 8 variables including at least one from 
each of the 3 data sources were retained following RFE; Mean 
Concentrate Dispensed, Mean Variation Activity, PV-Mean Milk Yield, 
Mean Activity, Mean Milk Yield, AFC, Mean Protein, and PV-DC. Scaled 
importance for all variables retained in the final model is presented in 
Table 6-8. Animals were classified with an AUC-ROC of 0.65, sensitivity 
of 15%, specificity of 91%, PPV of 59%, NPV and accuracy of 57%. An 
ECE of 0.056 was observed. 

Table 6-8 Scaled variable importance for the EOI-RBT+ Model, a random 
forest model for the prediction of Expression of Oestrus from DIM 22-65 (EOI) 
utilising AMS and Auxiliary data. 

Variable 

Variable 
Importance 
Score1 

Mean Concentrate 
Dispensed 100 

Variation Activity 93 

PV-Mean Milk Yield 84 

Mean Activity 82 

Mean Milk Yield 70 

AFC 60 

Mean Protein 3 

PV-DC2 0 

1Variable importance score as 
calculated by the VarImp function 
of the CARET package. 2 DIM at 
conception in prior lactation. 

 

                                                                  Model 

 EOI- RBT EOI- RBT+ CFI- RBT CFI- RBT+ 

AUC-ROC 0.60 0.65 0.56 0.62 
Accuracy 60 57 62 59 
Sensitivity 38 15 25 25 
Specificity 79 91 88 80 
PPV 60 59 53 44 
NPV 60 57 64 63 
McNemar P-value            0.9           0.5  

DIM= Days in Milk, AUC-ROC= Area under the receiver operator 
curve, PPV = Positive predictive value, NPV = negative predictive 
value. 
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Table 6-9 Classification Accuracy (%) per quartile of all random forest models 
for the prediction of Expression of Oestrus from DIM 22-65 (EOI) and 
Conception to First Insemination from DIM 22-80 (CFI) as assessed on the 
test dataset. 

Model Q1 Q2 Q3 Q4 

EOI- RBT 61 55 53 60 

EOI- RBT+ 72 62 45 48 

CFI- RBT 63 60 70 54 

CFI- RBT+ 70 72 49 42 

1Quartiles based on the within 
farm predicted likelihood of a 
positive outcome. Q1 
representing the least Q4 the 
most likely. DIM = Days in milk. 

 

6.3.2 Conception to First Insemination 

The CFI dataset was divided into a training set of 813 lactations from 10 
herds and test set of 317 lactations from 3 herds. Seven variables were 
retained in the CFI-RBT model following RFE: Mean Delta Yield, Mean 
Concentrate Dispensed, Mean Conductivity, Mean Milk Yield, Mean 
Fat-to-Protein Ratio, Mean Protein and Mean Milkings. Scaled variable 
importance for each is presented in Table 6-10. Animals which 
conceived to first insemination were classified with an AUC-ROC of 
0.56 (Figure 6-6), sensitivity of 25%, specificity of 86%, a PPV of 53%, 
NPV of 64% and accuracy of 62% (Table 6-7). An ECE of 0.095 was 
observed. 
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Table 6-10 Scaled variable importance for the CFI-RBT Model, a random 
forest model predicting conception to first insemination from DIM 22-80 
utilising AMS data exclusively (CFI-RBT) 

Variable 

Variable 
importance 
score1 

Mean Delta Yield 100 
Mean Concentrate 
Dispensed 94 

Mean Conductivity 69 

Mean Milk Yield 57 

Mean Milk FPR 43 

Mean Protein 11 

Mean Milkings 0 
1Variable importance score as 
calculated by the VarImp function of the 
CARET package. 

 

 

 

Figure 6-6 ROC for CFI-RBT and CFI-RBT+ random forest models for the 
prediction of conception to first insemination (CFI),  between days 22 and 80 
post-partum as evaluated on the test dataset 
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Figure 6-7 Calibration plot for the predicted probability of conception to first 
insemination (CFI), between days 22 and 80 post-partum as evaluated on the 
test dataset.  

Eleven variables were retained in the final CFI-RBT+ model: Mean 
Conductivity, Mean Concentrate Dispensed, Mean Delta Yield, Mean 
Milkings, Mean Fat-to-Protein Ratio, Mean Protein, Mean Rumination, 
Mean Delta Rumination, PV-DO, PV-Dry Yield and PV-Mean Milk Yield. 
Scaled variable importance for each is presented in Table 6-11 Animals 
were classified with an AUC-ROC of 0.62 Figure 6-6, sensitivity of 25%, 
specificity of 80%, PPV of 44%, NPV of 63% and accuracy of 59% 
(Table 6-7). When the accuracy of RBT and RBT+ models were 
compared using McNemar’s test, a P-value of 0.5 was obtained and the 
null hypothesis accepted. The accuracy with which RBT and RBT+ 
models predicted animals within Q1 was 63% and 70% respectively. 
Those in Q4 were classified with an accuracy of 42% by RBT and 54% 
by RBT+ (Table 6-9). An ECE of 0.10 was observed. 
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Table 6-11 Scaled variable importance for the CFI-RBT+ Model, a random 
forest model predicting conception to first insemination from DIM 22-80 
utilising AMS and auxiliary data. 

Variable 

Variable 
importance 
score1 

Mean Concentrate Dispensed 100 

Mean Delta Yield 75 

PV-Mean Milk Yield 67 

Mean Rumination 63 

Mean Conductivity 37 

Mean Milk FPR 37 

Mean Delta Rumination 37 

PV-Yield at Dry 25 

PV-DO2 19 

Mean Protein 2 

Mean Milkings 0 
1Variable importance score as calculated 
by the VarImp function of the CARET 
package. 2 DIM at dry-off in prior lactation.  

6.4 Discussion 

This is the first study to report the utility of transition cow data collected 
by AMS for the prediction of reproductive performance. By comparing 
these models with those utilising two additional data sources, we also 
report the marginal utility provided by rumination and activity data as 
well as historical cow-level data. Though the performance described is 
comparable with previously reported models, their current utility for the 
implementation of TRM is limited by poor classification accuracy within 
key groups. Of note within this study is the failure of the addition of 
auxiliary data sources to increase the accuracy of prediction over 
models built using AMS data alone.  

The early resumption of cyclicity post-partum is key to subsequent 
reproductive performance. Approximately 25% of cows are reported to 
be acyclic by day 50-60 post-partum (Walsh et al. 2007; Santos et al. 
2009; Pinedo et al. 2020). Animals suffering this delayed resumption of 
cyclicity experience decreased rates of insemination (Borchardt et al. 
2021) and conception (Galvão et al. 2010) in early lactation. 

The detection of oestrus during the voluntary waiting period is a 
commonly used proxy for the assessment of ovarian cyclicity (Fricke et 
al. 2014; Rial et al. 2022). We chose to assess cyclicity using oestrus or 
insemination events between days 22 and 65 post-partum. Within a 
TRM strategy, the ability to predict the likelihood of EOI may be used to 
minimise the number of acyclic animals at the start of their breeding 
period through targeted pre-breeding screening or hormone treatment 
(Rhodes et al., 2003). EOI-RBT and EOI-RBT+ models classified 
animals with an accuracy of 60% and 57% respectively, demonstrating 
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poor model discrimination. When assessed by quartile, the accuracy 
with which the RBT+ model classified animals least likely to record an 
oestrus event (Q1) was moderate at 72%. However, this model failed to 
classify those in Q3 or Q4 with an accuracy above 50%, limiting its 
ability to reliably inform management decisions. Assessment of model 
calibration (Figure 6-5) revealed moderate calibration across the range 
of range of observed frequencies within the EOI-RBT+ model. This 
stands in contrast to the large calibration error seen in the EOI model, 
particularly in sub-groups with an observed frequence of oestrus or 
insemination below 50%. This is reflected in the ECE returned for both 
models with the EOI- RBT model recording an expected error twice that 
of the EOI-RBT+ model. 

The ability to predict the likelihood of conception to first insemination 
may facilitate the selective breeding of animals, such as the targeted 
use of sexed semen in animals with a high probability of conception. 
We investigated the likelihood of conception to first insemination within 
the first 80 days post-partum. This incorporates the first 6 weeks of the 
breeding season assuming a 42-day voluntary waiting period, a time 
where the targeted use of sexed semen is commonly advocated (Butler 
et al., 2014). CFI models demonstrated poor discriminative power, 
though the accuracy of classification for Q1 and Q2 within the CFI-
RBT+ model was moderate, 70 and 72% respectively. However, both 
CFI models demonstrated a lack of predictive power for Q4, limiting the 
confidence with which this highly fertile sub-group could be targeted 
with sexed semen. Examination of model calibration demonstrated 
similar shortcoming. As presented in Figure 6-7, calibration was found 
to be poor across the sub-groups investigated for both the CFI-RBT and 
CFI- RBT+ models. This was further demonstrated  by both models 
returned very similar ECE.  

The utility of transition cow data for the prediction of subsequent fertility 
within our dataset is limited, though the accuracy of CFI models is 
comparable with models previously reported (Hempstalk et al., 2015; 
Shahinfar et al., 2014, Barden et al. 2024 ). While the potential value 
which TRM strategies may provide cannot be measured solely in the 
accuracy of their predictive models (Harris, 2017), they do serve as the 
foundation of their utility. For the on-farm implementation of TRM 
relating to EOI and CFI, the accuracy of classification within the groups 
at both extremes of reproductive performance is key. None of the four 
models investigated here demonstrated satisfactory accuracy across 
both Q1 and Q4 (Table 6-9). While we believe these models have 
demonstrated potential for the prediction of fertility, improved 
classification performance will be required prior to their implementation 
within a targeted reproductive management strategy. 

Developing a more detailed representation of each animal through the 
integration of additional data sources is often cited as a potential means 
of improving model performance (Shahinfar et al., 2014; Dallago et al., 
2019; Ha et al., 2022). We investigated the change in performance 
following the addition of two auxiliary sources chosen based on their 
demonstrated ability to reflect transition health and influence fertility 
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(Eastham et al., 2018; Stevenson et al., 2020; Borchardt et al., 2021). In 
the final EOI-RBT+ model, data from auxiliary sources comprised 5 of 
the 8 variables retained following recursive feature elimination (Table 
6-8). Similarly, in the final CFI+ model, data from auxiliary sources 
accounted for 5 of the 11 variables retained (Table 6-11). Despite this, 
no statistically significant difference was detected in the classification 
accuracy of the RBT and RBT+ models. The retention of these 
variables within the RBT+ models highlight the care which must be 
applied to feature selection and preserve model parsimony as the 
number of available data sources continues to expand.  

While the increasing adoption of technology on commercial dairy farms 
has the potential to improve the accuracy of predictive models, this 
must be balanced with the limitations it imposes on model development 
and deployment. For example, rumination and activity monitoring, while 
commonly employed by farms utilising AMS, is not ubiquitous. 
Furthermore, as this technology is supplied by third parties, issues 
relating to the uniformity of sensors and software across farms can 
complicate data integration and increase data missingness. As seen 
within our study, incorporating such data sources may reduce the 
volume of data available for model development. Furthermore, it 
introduces additional data requirements for farms wishing to employ 
such models, limiting its deployment. The integration of additional data 
sources must therefore be justified by substantial improvement in model 
performance. 

All data utilised within this study was accessed via Lely’s third-party 
API. The use of data which is widely collected and remotely accessible 
across Lely AMS significantly increases the ease with which predictive 
models may be deployed commercially. However, the nature of this 
dataset imposed several limitations on this study. One such limitation is 
the absence of data relating to individual herd management practices, 
in particular the use of exogenous hormones and fixed time artificial 
insemination. In the case of the CFI models, the use of such treatments 
has the potential to influence the probability of conception (Fricke et al., 
2022) and hence bias our predictions. The use of fixed time artificial 
insemination is not commonly practiced in the UK or Republic of 
Ireland, particularly in the first 80 days post calving. However, to assess 
the degree to which such practices may have been applied within our 
dataset, insemination records were examined as previously described 
by Barden et al. (2024). In brief, for each herd, the proportion of 
inseminations on each day, of each week were calculated. Thereafter, 
the binomial standard deviation for a uniformly distributed proportion 
(i.e.,1/7) for all inseminations within each week was calculated. Any day 
for which the proportion of inseminations reported was in excess of 2 
standard deviations for the week was identified and all inseminations on 
that day marked as potentially fixed time inseminations. Within the final 
CFI dataset 8% of inseminations were identified as potential fixed time 
inseminations. This indicates that the practice of herd-level fixed time 
insemination is unlikely to have been used extensively within this 
dataset. However, we cannot conclusively state that insemination 
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events analysed were not influenced by such treatments and our results 
must be interpreted in-light of this limitation. A further limitation is our 
reliance on farm-level recording of insemination events and pregnancy 
diagnosis. It was not possible for the research team to assess the 
means and consistency by which these events were recorded across 
farms, or the effect between-farm variance may have had on our 
results. As these events form key aspects of our analysis, this 
represents a major limitation within our study. This study is the first to 
demonstrate the potential utility of AMS data collected during transition 
to develop a generalisable predictive model for subsequent 
reproductive performance. However, due to the small number of herds 
utilised and the limited number of lactations assessed within each herd, 
these results must be interpreted with caution. While we sought to 
incorporate a range of farming systems commonly found on AMS within 
the UK and Republic of Ireland, validation of these results utilising a 
larger and more diverse dataset is required to more confidently assess 
the generalisability of these models. 

For the implementation of TRM, parsimonious predictive models which 
reliably deliver good to excellent classification accuracy in a wide range 
of commercial settings are required. As the range of novel data sources 
expands, the investigation of their ability to improve model performance 
will be key to progress within this field. Recent studies have 
demonstrated the potential of data sources such as genomics (Rial et 
al., 2024) and the in-line assessment of progesterone (Blavy et al. 
2018) for the prediction of reproduction. Where such data sources were 
readily available for integration with AMS data, they may hold greater 
potential for predictive performance than the auxiliary data sources 
investigated here. However, future studies should not neglect the 
exploration of alternative methods for the improvement of model 
performance. For example, the clustering of farms based on 
environmental and management conditions may provide an opportunity 
to increase performance by tailoring models to each farm’s specific 
circumstance (Ng et al., 2015). This approach has been employed on 
farms utilising AMS to facilitate targeted management 
recommendations (Tremblay et al., 2016). However, its utility for the 
development of predictive models remains unexplored. Such methods 
may reduce the need for the integration of a large number of data 
sources and facilitate the implementation of TRM on a broader scale 
across automatic milking systems. 

6.5 Conclusions 

These results demonstrate the limited accuracy with which AMS data 
collected over days 1-21 post-partum can predict subsequent 
reproductive performance. Within a transition monitoring program, the 
models investigated failed to accurately classify animals within key 
performance groups thus limiting the confidence with which TRM 
strategies could be employed. The failure of the addition of auxiliary 
data sources to significantly improve model accuracy highlights the care 
with which feature selection should be undertaken to ensure the 
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development of parsimonious models. Future studies should focus on 
the incorporation of both novel data sources and novel analytical 
techniques in the pursuit of TMPs with improved predictive power while 
maintaining parsimony and ease of on farm deployment.  
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Chapter 7 Factors Associated with the 
Risk of Removal in Early Lactation for 
Dairy Cows in Automatic Milking 
Systems 

7.1 Introduction 

The involuntary removal of early lactation dairy cows negatively affects 
the economic and social sustainability of the dairy industry. Substantial 
direct and indirect costs are associated with such removals, including 
animal disposal, replacement, and loss of milk sales (Orpin et al., 
2010). Furthermore, as removals during this period are largely the result 
of transition cow disease (Dechow et al., 2008; De Vries et al., 2010), 
they represent a welfare concern for dairy producers and consumers 
alike (Alonso et al., 2020). In the United Kingdom, the incidence of 
removals in early lactation has been adopted as a key indicator of dairy 
cow health and welfare by the Royal Society for Prevention of Cruelty to 
Animals (RSPCA, 2023). Across 500 UK dairy herds surveyed in 2022, 
the median herd reported the removal of 5% of milking cows by 100 
days in milk (DIM) (Hanks et al., 2023). This rate of removal remains 
largely unchanged from that reported 10 years ago (Hanks et al., 2012), 
indicating that despite advancements in transition cow management 
(Mezzetti et al., 2021), little progress has been made towards reducing 
the rate of removals in the first 100 days post-partum.  

The initiation of lactation poses a range of challenges to the modern 
dairy cow. In the days immediately surrounding calving, the cow 
experiences more significant endocrine changes than at any other point 
in lactation (Grummer et al., 2004). In addition to this, the demands of 
milk production leads to a four-fold increase in calcium requirements on 
the day of calving (Caixeta et al., 2021), while glucose requirements 
triple by day-4 post-partum (Eicker et al., 2002.). Under modern 
management conditions, these physiological changes are often 
compounded by changes in housing, social group and diet. The 
significance of these challenges is reflected in 30-50% of cows suffering 
some form of metabolic or infectious disease around the time of calving 
(Leblanc, 2006), and an increase in the incidence of removals by 100 
DIM which peaks in the first 30 days. (Dechow et al., 2008; De Vries et 
al., 2010; Pinedo et al., 2014). 

Investigation of the relationship between physiological status in the 
days immediately post-partum and the subsequent risk of removal has 
been undertaken to better understand these losses. When sampled 
within days 1-3 in milk, serum metabolic markers have demonstrated an 
association with the subsequent risk of removal. Venjakob, (2018), 
found the hazard of removal by 60 DIM to be 1.69 times greater in cows 
suffering sub-clinical hypocalcaemia when compared with 
normocalcaemic cows. A similar effect of calcium concentration was 
demonstrated by Menta (2021), who reported a relative risk of culling by 
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60 DIM of 2.93 for animals diagnosed with sub-clinical hypocalcaemia 
within 3 DIM. In the same study, an association between the risk of 
removal and metabolic indicators of negative energy balance was also 
reported. Beta-hydroxybutyrate and free fatty acid concentration 
returned a positive association with risk of cull which tended toward 
significance (P-values of 0.05 & 0.08 respectively). These reports 
demonstrate an association between the success with which dairy cows 
respond to the metabolic challenges of calving and their subsequent 
risk of removal in early lactation. Monitoring of physiological status 
during early lactation may therefore allow for the early identification of 
cows at high risk of removal, potentially facilitating early intervention 
and loss prevention (Seifi et al., 2011; Roberts et al., 2012). 

The monitoring capabilities of automatic milking systems (AMS) may 
offer the means to achieve this through an automated transition cow 
monitoring program (TMP). Variables recorded by AMS, such as milk 
quantity (Mansell, 2003), quality (Gross et al., 2019), as well as robot 
visit behaviour (King et al., 2017)  have been previously demonstrated 
to reflect the physiological status of the dairy cow. In contrast to the 
labour-intensive analysis of serum metabolic indicators, these variables 
are collected automatically from the point of calving and represent a 
more convenient method of monitoring. However, their association with 
the subsequent risk of removal in early lactation has not been 
investigated. Such analysis would provide insight into the production 
and behaviour traits of cows at high risk of removal within the first 100 
days. Furthermore, if these parameters demonstrate utility for the 
prediction of removals, they represent an opportunity to reduce the 
impact of early removal through pro-active management of high-risk 
animals.  

The primary objective of this study was to test the hypothesis that AMS 
data from 1-3 DIM is statistically associated with the risk of removal 
from the herd by 100 DIM. A secondary objective was to assess the 
utility of this data for the prediction of removal using an externally 
validated machine learning model. 

7.2 Materials and Methods 

7.2.1 Study Population 

Forty-six commercial dairy farms from the United Kingdom and 
Republic of Ireland were recruited as described in Chapter 2. Criteria for 
inclusion was the use of Lely Astronaut milking robots (Lely 
International N.V.) under free-flow traffic conditions (Munksgaard et al., 
2011). Data describing milk quantity and quality as well as robot visit 
behaviour from 2016 to 2023 were accessed via Lely’s third-party 
application programming interface.  

7.2.2 Data Analysis 

All analysis was conducted using R statistical software (R Core Team, 
2021). Prior to feature engineering the initial percentage of the herd 
removed by DIM 100 (RD100) was assessed. Cows were classed as 
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RD100 where the final milking visit of the cow’s final lactation occurred 
within the first 100 days post-partum. No information pertaining to the 
reason for removal was available.  

Preparation of the final dataset is displayed in Figure 7-1 and described 
below. The day of calving was designated day zero. Data from days 1-3 
was used to engineer 10 independent variables for use in both 
inferential and predictive models. Milk quantity was assessed as Mean 
Milk Yield (kg); the mean of daily milk yields over days 1-3, and Mean 
Yield Acceleration; the mean of the change in daily milk yield from days 
1–2, and 2–3. Milk quality was assessed using milk conductivity and 
constituent data. Conductivity was assessed as Mean Conductivity; the 
mean udder-level conductivity of milk recorded over days 1-3 and, 
Conductivity Alert; the total number of instances where quarter-level 
conductivity exceeded 80 units. Milk fat and protein indications, as 
recorded once daily by Lely’s MQC (Fadul-Pacheco et al., 2018) were 
utilised as Mean Fat and Mean Protein; the mean of recorded values 
across days 1-3 for their respective constituents. A Mean Fat-to-Protein 
Ratio (FPR) was subsequently calculated. Mean Concentrate 
Dispensed; the mean grams of concentrate feed dispensed by the robot 
to each cow per day. Visit behaviour was assessed using milkings and 
refusals (where milking permission is denied due to a cow re-presenting 
a short time after a previous milking visit). These were averaged over 
days 1-3 and reported as Mean Milkings and Mean Refusals. Finally, 
Parity (1 or 2+) and Calving Pattern (Seasonal or All-Year-Round) were 
assigned. Following feature engineering, records were assessed for 
missingness. Cows which failed to record milk quantity and quality data 
for at least one robot visit for each of the days 1-3 post-partum were 
removed. Thereafter, herds with less than 50 cow-lactations per parity 
group were removed. Following establishment of the final dataset the 
percentage of animals classed as RD100 within each herd was re-
assessed and compared with the initial incidence of removal in the first 
100 DIM.  
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Figure 7-1 Data preparation for inferential and predictive modelling 

7.2.3 Inferential Modelling 

To explore the relationship between early lactation AMS data and 
RD100, a mixed-effect logistic model was constructed with herd as a 
random effect using the lme4 package (Bates et al., 2015). In addition 
to the 10 main independent variables described above, seven 
interaction terms were selected for investigation based on their 
biological plausibility to influence the risk of removal from the herd. The 
interaction effect for Mean Milk Yield with FPR, Mean Yield 
Acceleration, Mean Milkings, Mean Refusals, Mean Concentrate 
Dispensed and Parity were assessed as well as the interaction between 
Parity and Mean Yield Acceleration. Prior to modelling, non-linearity 
was assessed using multivariable regressive splines (Friedman, 1991). 
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Thereafter, Conductivity Alert which demonstrated a highly right-skewed 
distribution was transformed using a cubic transformation. All numeric 
variables were centred by subtracting the column means of each 
variable from their corresponding columns and scaled by dividing each 
variable by their standard deviations (van den Berg et al., 2006).  

A multivariable mixed-effect model was constructed using a manual 
backward step procedure (Dohoo et al., 2009). All candidate variables 
were screened using univariable analysis and brought forward for 
inclusion in a multivariable model where a P-value of ≤ 0.20 was 
observed. Models were constructed using the logit link function and 
included a random intercept to account for the clustering of data at 
herd-level. Variables were retained in the final model where a P-value 
of ≤0.05 was observed. Parity, and any variables which formed a 
significant interaction term were forced into the final model. On 
completion of the backward step, all main effects which were removed 
were re-entered to test for significance in the final model. The inclusion 
of Calving Pattern was investigated as a possible confounding variable. 
Its inclusion led to a 12% change in coefficient estimate for Mean 
Protein and was retained. Goodness-of-fit was evaluated by graphical 
assessment of residuals and marginal and conditional R2 values 
(Nakagawa et al., 2017). Model performance was assessed following 
internal validation using the area under the receiver operator curve 
(AUC-ROC), sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV) with and without the random effect of 
Herd. 

The final multivariable mixed-effects logistical model took the general 
form: 

 

𝑙𝑜𝑔 (
𝑃𝑖𝑗

1 − 𝑃𝑖𝑗
)   =   β0 +  β1X1ij+. . . + β𝑛X𝑛ij + vj +  ϵij   

[vj ]~ N(0, Ωv) 

[ϵij ]~ N(0, Ωe) 

where the subscript i refers to the ith cow and the subscript j refers to 
the jth herd;  β0 represents the intercept; β1 −  βn represent fixed 
effects; vj represents a random effect for Herd (assumed to have a 

normal distribution of mean = 0, and variance = Ωv) and ϵij  represents 

the residual model error (assumed to have a normal distribution of 
mean = 0, and variance = Ωe). Parameter Pij represents the probability 
of removal by 100 days in milk for the ith cow in the jth herd. 

7.2.4 Predictive Modelling  

The second objective of our study was to train and externally validate a 
predictive model for removal from the herd within 100 DIM. Our aim was 
to assess the utility of AMS data from 1-3 DIM for the prediction of 
RD100. 
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To facilitate external validation, the dataset was split randomly by herd 
into train and test datasets. Herds were first ranked by RD100 
percentage and segregated into 3 groups designed to mirror the 
quartiles reported by Hanks et al. (2023). Herds in Q1 reported a 
RD100 of <4% and Q4 a RD100 of >7%, the remaining herds were 
grouped as Q2/3. To ensure balanced representation, two herds from 
each of these 3 groups were selected randomly to form the test dataset. 
All remaining herds were allocated to the training dataset. To address 
class imbalance in the training dataset, up sampling of the minority 
class was carried out using the ROSE package (Lunardon et al., 2014). 
All 10 independent variables, in addition to Parity were offered to an 
extreme gradient boosting model (Chen et al., 2016). This model was 
trained to maximise AUC-ROC over 5-fold cross validation repeated 10 
times. Model hyperparameters were optimised using a random grid 
search (Kuhn, 2008). Final model evaluation was carried out on the test 
dataset using AUC-ROC, sensitivity, specificity, PPV and NPV. Model 
calibration was also assessed via calibration plots and expected 
calibration error (ECE). 

7.3 Results 

In total, records relating to 19,690 complete or partial lactations from 36 
herds were available for analysis. Incomplete production records led to 
the removal of 8,895 lactations. A further 1,656 lactations from herds 
with insufficient lactations per-parity group were removed. The final 
dataset consisted of 9,139 lactations from twenty-one herds (Figure 7-1, 
Table 7-1). Within the retained herds, the initial incidence of RD100 
(prior to adjustment for missingness), ranged from 1.5% to 13% with a 
median of 6% on a herd basis. After the removal of cow-lactations with 
incomplete production and behaviour records, a herd-level minimum, 
maximum and median RD100 of 2% ,12% and 7% respectively was 
observed (Table 7-2, Figure 7-2). Herd-level changes in RD100 ranged 
from -3.5 to 2.2% with a mean of -0.47%. For all twenty-one retained 
herds, the initial incidence of RD100 and the incidence observed within 
the final dataset is displayed in Figure 7-3. Within the final dataset the 
incidence of RD100 was 7% across all lactations with a mean DIM at 
removal of 43. Descriptive statistics for the independent variables within 
the final dataset are presented in Table 7-3. To aid interpretability, 
model outputs are described using the value of one standard deviation 
within each variable’s original unit of measurement. 
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Table 7-1 Descriptive statistics for herds contributing cow-lactations to the final 
dataset 

Variable No. [range] 

Total No. of Herds 21 
Calving Pattern  

All Year-Round Calving 16 
Spring Calving 5 

Geographical Region  
England 10 
Republic of Ireland 5 
Northern Ireland 4 
Wales 1 
Scotland 1 

Mean No. of Milking Cows/Herd 217 [57 - 438] 
Mean No. of AMS Units/Herd 3 [2-7] 
Mean 305 Day Yield – Herd Level 8431kg [4081–12,825kg] 
Median Initial RD100 – Herd Level 1 6% [1-13%] 
1 Median percentage of cow-lactations removed by 100DIM, 
calculated prior to adjustment for missingness.  

 

Table 7-2 Descriptive statistics for cow-lactations retained in the final mixed-
effect logistic and XGBoost model. 

Variable No. [range] 

No. of Cow- Lactations 9,139 
No. of Farms 21 
Mean No. of Cow-Lactations/Herd 435 [160–1021] 
Demographics  

Parity 1 28% 
Parity 2+ 72% 

Calving Pattern  
All Year-Round Calving 76% 
Spring Calving 24% 

Percentage Removed by 100 DIM   
Total 7% 
Parity 1 2% 
Parity 2+ 4% 

Percentage Removed by 100 DIM – Herd Level 7% [2-12%] 
Median DIM at Removal– Herd Level 43 [19-75] 

1 Calculated using maximum single day yield recorded in the first 
100 days in milk. DIM = Days in milk 
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Figure 7-2 Days in Milk at removal for all 9,139 cow-lactations from 21 herds 
retained in the final dataset 

 

 

Figure 7-3 Percentage of the milking herd removed in the first 100 days of 
lactation (RD100) for the 21 herds retained in the final dataset. Initial RD100 
(Yellow) represents the percentage removed assessed over all available 
lactations, Retained RD100 (Blue) represents the percentage removed from 
all lactations retained in the final dataset following adjustment for missingness 
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Table 7-3 Descriptive statistics for independent variables assessed in the 
mixed-effect logistic and XGBoost model. 

Variable Median IQR 

Mean Milk Yield 20 11 

Mean Delta Yield 16 14 

Mean Conductivity 73.25 4.5 

Conductivity Alert 0 2.0 

Mean Fat-to-Protein Ratio 1.07 0.33 

Mean Protein  4.74 0.56 

Mean Fat  5.04 1.46 

Mean Concentrate Dispensed 3135 977 

Mean Refusals 2.0 6 

Mean Milkings 2.0 1 

IQR = Interquartile Range   

 

7.3.1 Inferential Modelling 

The output of the final multivariable logistic regression model is 
presented in Table 7-4 and Figure 7-4. Accounting for difference in 
Parity and Calving Pattern, Mean Milk Yield, Mean Yield Acceleration 
and Mean Refusals were all negatively associated with the odds of 
RD100. Each 7kg increase in Mean Milk Yield was associated with a 
18% decrease in the odds of removal. An 18% increase in Mean Yield 
Acceleration returned a 10% decrease in the odds of removal. Mean 
Refusals returned a 30% decrease in the odds of removal for each 
additional 0.40 in Mean Refusals recorded.  

Three variables were associated with an increased risk of removal. A 
0.4% increase in Mean Protein and 0.3% increase in Mean FPR was 
associated with a 19% and 16% increase in the odds of RD100 
respectively. Finally, multiparous cows demonstrated a 75% increase in 
the odds of removal compared with primiparous cows and animals in 
seasonal calving systems demonstrated a 48% decrease in the odds of 
removal compared with those in all-year-round calving systems.  

Classification performance for the final multivariable mixed logistic 
model, with and without the random effect of Herd are presented i 

 

Table 7-5. Following internal validation assessed with the random effect 
of Herd, the sensitivity and specificity of the final model was 65% and 
64% respectively. Without the random effect of Herd, the sensitivity and 
specificity of the model was reduced to 56% and 57% respectively. The 
final model explained 13% (conditional R2) of the variation in risk of 
removal observed with 7% (marginal R2) attributable to the fixed effects.  
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Table 7-4 Results of the multivariable mixed logistic regression model 
assessing the association between early lactation AMS production data and 
the risk of removal from the herd by 100 days in milk. SD= Standard Deviation 

Variable Coefficient 
Odds 
Ratio 95% CI P-value 

  
SD 

Intercept  -3.1 0.04 
0.03-
0.06  < 0.001 

  

Mean FPR 0.15 1.16 
1.06-
1.27 0.001 

  
0.27 

Mean Protein 0.17 1.19 
1.06-
1.34 0.003 

  
0.41 

Mean Refusals -0.36 0.70 
0.62-
0.78 < 0.001 

  
8.3 

Mean Milk Yield -0.20 0.82 
0.73-
0.93 0.001 

  
7.5 

Mean Yield 
Acceleration   -0.11 0.90 

0.84-
0.96 0.002 

  
17.5 

Parity 1 Ref. - - -  - 

Parity 2+ 0.55 1.73 
1.32-
2.30 < 0.001 

 - 

Calving Season 
- AYR Ref. - - - 

 - 

Calving Season 
– SE -0.65 0.52 

0.30-
0.90 0.02 

 - 

CI= Confidence interval, FPR = Fat-to-protein ratio, Ref = 
Reference Level, AYR= All-Year-Round, Se= Seasonal 
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Figure 7-4 The probability of removal by 100-day post-partum (RD100) plotted 
against AMS production and behaviour variables retained in the final mixed-
effects multivariable logistic. 

 

 

Table 7-5 Performance metrics for mixed-effect multivariable logistic model 
assessing the association between early lactation AMS production data and 
the risk of removal from the herd by 100 days in milk, with and without the 
random effect of Herd 

  With Herd Without Herd 

  AUC-ROC 0.70 0.61 
Sensitivity 65 56 
Specificity 64 57 
PPV 11 8 
NPV 96 95 

AUC-ROC= Area under the receiver 
operator curve, PPV = Positive predictive 
value, NPV = negative predictive value  

 

7.3.2 Predictive Modelling  

The training and test datasets were comprised of 6,416 and 2,723 
lactations from 15 and 6 herds respectively. The prevalence of RD100 
within the training dataset was increased from 7% to 50% following up 
sampling (Figure 7-1). Within the test dataset, the prevalence of RD100 
was 5.4%. Removal by 100 DIM was predicted across the test set with 
an AUC-ROC of 0.52, sensitivity of 38%, specificity of 70%, PPV of 7% 
and NPV of 95% (Table 7-6). Herd specific prediction for each herd 
within the test set is presented in Table 7-7. Scaled variable importance 
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for independent variables in the predictive model is presented in Table 
7-8. Model calibration is presented in Figure 7-5. An ECE of 0.35 was 
observed.  

 

Figure 7-5  Calibration plot for the predicted probability of the risk of removal 
from the herd by 100 days in milk as evaluated on the test dataset.  

 

Table 7-6 Performance Metrics for XGBoost model for the prediction of 
removal by 100 days post-partum as assessed on the test dataset 

AUC-ROC 0.52 
  Sensitivity 38 
Specificity 70 
PPV 7 
NPV 95 

AUC-ROC= Area 
under the receiver 
operator curve, PPV = 
Positive predictive 
value, NPV = negative 
predictive value.  

 

 

Table 7-7 Herd-level performance metrics for the XGBoost model for the 
prediction of removal by 100 days post-partum as assessed on the test 
dataset 
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Herd  9 12 25 40 44 45 

Sensitivity 42 25 17 50 64 86 

Specificity 79 86 82 74 50 77 

PPV 18 9 11 6 4 6 

NPV 93 96 88 98 98 99 

PPV = Positive predictive value, NPV = Negative predictive value  

 

Table 7-8 Scaled variable importance for independent variables in the 
XGBoost model for the prediction of removal from herd with the first 100 days 
post-partum 

Variable 

Variable 
Importance 
Score1 

Mean Fat-to-Protein Ratio 100 

Mean Yield Acceleration  89 

Mean Conductivity 76 

Conductivity Alert  40 

Mean Concentrate Dispensed 29 

Mean Refusals 28 

Mean Fat  25 

Mean Milkings 19 

Mean Milk Yield 18 

Mean Protein  14 

Parity 0 
1Variable importance score as calculated 
by the VarImp function of the CARET 
package 

 

7.4 Discussion 

Early lactation AMS production and behaviour data collected over 1-3 
DIM has demonstrated significant association with the risk of RD100. 
Cows recording higher Mean Milk Yield, Mean Yield Acceleration and 
Mean Refusals had reduced odds of removal by 100 days. Those with 
increased Mean Protein and Mean FPR over days 1-3 had increased 
odds of removal. Within the final multivariable model, these variables 
accounted for a relatively small proportion of the variance in risk 
observed. This suggests that while production and behaviour data were 
significant factors, variables outside of those assessed in this study 
have a substantial influence on the risk of removal. When applied in a 
predictive model, AMS data proved to have limited utility for the 
prediction of RD100 in previously unseen herds.    

Increased Mean Milk Yield and Mean Yield Acceleration over days 1-3 
in milk was associated with a reduced risk of removal within the first 100 
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days. Milk yield in the days immediately following calving has a 
demonstrated association with peri-partum metabolic health (Westhoff 
et al., 2024). The rate of increase in yield over this time is higher than at 
any other point during lactation and represents a substantial metabolic 
challenge (Hansen et al., 2006). Within our study, those capable of 
supporting higher levels of milk production and a more rapid yield 
acceleration may represent a group which have adapted well to the 
stressors of calving and hence, have a reduced risk of RD100. These 
findings agree broadly with those of Lukas et al. (2015), who 
demonstrated that cows with reduced milk production relative to 
expected over DIM 1-7 have an increased risk of removal by DIM 100.  

Within free flow AMS, cows may present for milking as often as they 
wish. This offers a unique opportunity to assess physiological status 
through voluntary robot visit behaviour. Where a cow re-presents at the 
robot shortly after a successful milking visit, she is directed through the 
robot without being milked. This is known as a refusal. Within our study, 
those recording a higher number of refusals over days 1-3 were found 
to have reduced odds of removal. Robot visits are driven by the desire 
for the concentrate feed supplied during milking (Prescott et al., 1998). 
Cows registering increased refusals are therefore likely demonstrating a 
strong appetite. Furthermore, as this feed is a high value resource and 
the robot is subject to competition between herd-mates (Rodenburg, 
2017), it is likely that cows recording a greater number of refusals 
represent a healthier and more robust cohort capable of exerting 
dominance within the herd. This is evidenced further by the reduced 
level of refusals associated with the incidence of both lameness and low 
body condition score (BCS) (King et al., 2017).  

Increased FPR was associated with an increased risk of RD100. Milk 
fat-to-protein ratio is well established as a marker of physiological status 
in the transition cow (Friggens et al., 2007). In early lactation, its 
increase is reflective of fat mobilization in response to a state of 
negative energy balance (NEB). While NEB is common in the post-
partum period, its severity is a key determinant of transition cow health 
(Macrae et al., 2019). When assessed at herd level using monthly milk 
test-day constituent data, Dechow et al. (2008) reported a positive 
association between increased FPR and the risk of cull by day 60 post-
partum. Our results demonstrate that this association holds at the level 
of the individual in the days immediately post-partum. A reduction in 
early lactation milk protein percentage is generally reported in response 
to a state of NEB and has been associated with several transition cow 
diseases (Toni et al., 2011). As such, the positive correlation between 
protein percentage and RD100 reported here is unexpected. The 
analysis of milk protein in the immediate post-partum period is 
complicated by the variance in protein content seen as colostrum gives 
way to mature milk (Westhoff et al., 2024). However, increased milk 
protein percentage in the immediate post-partum period has been 
associated with cows in higher BCS as well as those experiencing 
extended dry periods (Pires et al., 2013; Ahmann et al., 2021). Both of 
these conditions are conducive to unfavourable metabolic status post-
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partum and have themselves been associated with an increased risk of 
removal in early lactation (Pattamanont et al., 2021). This offers a 
potential explanation for our findings; however, further research will be 
necessary to substantiate this association.  

 

Overall, our final multivariable model explained a small proportion of the 
variance in risk of removal, returning a conditional R2 of 13%. This 
indicates that a substantial portion of the variance observed in our 
dataset remains unexplained. The fixed effects investigated account for 
7% of observed variance. Previous studies investigating the association 
between physiological status in the first three days post-partum and 
subsequent risk of removal fail to report a coefficient of determination 
(Neves et al., 2018; Venjakob et al., 2018; Menta et al.,2021). However, 
given the short timeframe over which animals were assessed (DIM 1-3), 
the low marginal R2 reported here is unsurprising. While this approach 
allows us to specifically assess the impact of physiological status at 
calving, this represents a narrow timeframe when compared with the 
risk period analysed (DIM 4-100). Our model, therefore, likely fails to 
account for the development of disease leading to death or cull for 
which no physiological indicators were apparent within the first three 
days post-partum.  

Just under half of the variance captured by the model was attributable 
to the random effect of Herd. This effect was further demonstrated by 
the classification performance of the model following internal validation. 
Moderate classification performance was achieved when the random 
effect of Herd was included, this decreased to poor when the effect of 
Herd was nullified (Table 7-5). The effect of group-level factors 
including the farm system and management practices on the risk of 
removal in early lactation have been previously demonstrated 
(Thomsen et al., 2006; Raboisson et al., 2011). Our study reinforces 
these findings, highlighting the potential for the incorporation of herd-
level data to improve model accuracy. 

This study furthers our understanding of removals in early lactation by 
demonstrating the relationship between production and behaviour traits 
assessed in the first 3 days post-partum and the risk of removal in the 
first 100 days. This highlights the detrimental effect of poor metabolic 
health at the point of calving and emphasises the importance of dry 
period management in herds reporting an elevated rate of removal. The 
variables retained within our final model may provide valuable 
information for such herds. In contrast to previous studies which have 
demonstrated this relationship, we investigated automatically collected 
variables which are available in real time via AMS. This may allow 
producers to efficiently incorporate this data into their assessment of 
transition cow health. Furthermore, where these variables demonstrate 
predictive power for the risk of removal, they may facilitate the 
development of predictive models capable of identifying cows at high 
risk of removal. 
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Although commonly misconstrued in the literature, statistically 
significant association does not infer predictive power (Lo et al., 2015). 
Associations identified by inferential models further our understanding 
of the biological processes under investigation and may provide 
direction in the search for predictive variables. However, it is through 
the performance of predictive models validated on previously unseen 
herds, that the predictive power of candidate variables should be 
assessed (Poldrack et al., 2020). A number of inferential studies have 
identified significant association between markers of physiological 
status in early lactation and the subsequent risk of removal (Seifi et al., 
2011; Roberts et al., 2012; Venjakob et al., 2018; Menta et al.,2021). 
However, the predictive power of these variables was not investigated.  

Our results demonstrate that despite statistically significant association, 
early lactation AMS data has minimal predictive power for RD100. This 
highlights the limitations of inferential models for the identification of 
predictor variables and the dangers in the use of statistical association 
to infer predictive power. Across the entire test dataset, an AUC-ROC of 
0.52 was returned, indicating a non-informative model. On a herd basis, 
variance in model performance was small (Table 7-7). While sensitivity 
ranged from 86% in Herd 45 to 17% in Herd 25, PPV did not exceed 
18% for any herd. Model calibration was poor, particularly within sub-
groups with a low probability of removal. This highlights the limitations 
of this model’s ability to deliver accurate predictions for both individual 
and subgroups of animals. Applied on farm, this model would fail to 
identify the majority of cows suffering RD100 while generating a large 
number of false positives. Thus, while early lactation AMS data 
demonstrated significant association with the risk of RD100, the 
variables investigated had limited utility for the development of 
predictive models. Future inferential studies should incorporate an 
assessment of predictive power for any variables investigated in order 
to provide direction in the development of such models. 

7.5 Conclusions 

This is the first study to report the association between AMS data from 
days 1-3 in milk and the risk of removal in early lactation. By pairing this 
analysis with an externally validated predictive model we also report the 
predictive power of this data. We have demonstrated that cows 
recording increased Mean Milk Yield, Mean Yield Acceleration and 
Mean Refusals have a reduced odds of removal in the first 100 days. 
Conversely those with elevated Mean Protein and Mean FPR 
demonstrated increased odds of removal. When applied in a predictive 
machine learning model, AMS data demonstrated limited utility for the 
prediction of RD100, highlighting the danger in the use of statistical 
association to infer predictive power. We suggest that future analysis 
should increase its focus on the predictive power of early lactation data 
in the pursuit of an accurate, generalisable predictive model for the risk 
of removal in early lactation.  
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Chapter 8 Discussion and Conclusion  

8.1 Introduction 

Since the adoption of the United Nations Sustainable Development 
Goals, almost a decade ago, the dairy industries of the United Kingdom 
and Republic of Ireland have both recorded an increase in the volume 
of milk produced per-annum (Kelly et al., 2020; O’Mara et al., 2021; 
Uberoi, 2021). Concurrent with this expansion, the industry has been 
subjected to increasing scrutiny regarding its environmental and social 
sustainability (Schiano et al., 2020; Bojovic & McGregor, 2023). For the 
dairy industry to thrive over the coming decade, it must respond to this 
scrutiny by adapting its systems of production to reflect the goals of its 
regulators, and values of its consumers. Its future, therefore, is 
contingent on it fulfilling its core purpose of food production, in an 
environmentally, economically and socially sustainable manner. A 
single, but significant component of this will be the success with which 
the health and welfare of animals within the industry can be protected, 
without which true sustainability cannot be achieved.   

The disproportionate influence of the transition period on the health and 
welfare of the dairy cow has been long established (Drackley 1999). 
This has motivated research seeking to further our understanding of the 
physiological challenges associated with transition and explore 
management strategies to reduce their impact. Despite this however, 
the current rate of morbidity and mortality in early lactation remains on-
par with that reported decades previously (Mulligan et al., 2006a; Daros 
et al., 2022). This failure to translate our understanding of transition cow 
physiology into meaningful improvement in health reflects the 
complexity of the problem posed by transition. Under these 
circumstances it is imperative that stakeholders within the dairy industry 
seek to apply the resources at their disposal, not only to further improve 
our understanding of transition failure, but to develop monitoring 
programs which help producers reduce its cost and consequence.  

The aim of this thesis was to assess the relationship between 
production and behaviour data as collected by AMS in the early post-
partum period, and subsequent dairy cow performance. Of particular 
interest was the accuracy with which AMS data could predict 
performance and thus, lend itself to use within an automated transition 
cow monitoring program. Utilising data from 39 herds recruited across 
the UK and Republic of Ireland, mixed-effect models were employed to 
describe, for the first time, the relationship between transition cow 
production and behaviour data collected by AMS and subsequent 
performance. Crucial to the significance of these findings is the time at 
which, and methods by which, this data was collected. In Chapter 3 and 
7 we demonstrate that data collected overs days 1-3 post-partum has 
significant association with Yield Deviation at 30 DIM, and the risk of 
removal from the herd by 100 DIM. Similarly, in Chapter 5, data 
collected prior to day 22 post-partum demonstrated significant 
association with reproductive outcomes up to 58 days later. These 
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findings emphasise the critical nature of the transition period and 
highlights the potential for data collected during this time to be used 
within a transition cow monitoring program.  

Given the barriers to the adoption of labour-intensive transition cow 
monitoring techniques described in Chapter 1, our investigation of 
automatically collected data is a vital aspect of this thesis. In reporting 
the association between behaviour parameters, including milking visits 
and refusals, we advance our understanding of these AMS-specific 
metrics by highlighting their utility, but also their limitations for the 
assessment of transition success under free-flow housing conditions. In 
addition, we demonstrate significant association between production 
parameters collected via in-line sensors, and subsequent performance. 
This represents an important contribution to our understanding of these 
novel data sources and highlights the opportunity for in-line sensor data 
to replace the labour-intensive monitoring approaches traditionally 
employed within TMPs. 

The development, and external validation of machine learning models 
for the prediction of production, fertility and survival, described in 
Chapters 4, 6, and 7, assess the degree to which AMS data may be 
leveraged into meaningful improvements in animal health through 
prognostic TMPs. Transition cow data demonstrated moderate 
predictive power for Yield Deviation at 30 DIM and reproductive 
performance by 80 DIM, but no predictive power for the risk of removal 
by 100 DIM. These findings demonstrate the potential utility of this data 
to identify animals likely to experience poor milk production or fertility 
performance in the early stages of lactation and should encourage 
further investigation of how this data may be applied within TMPs. The 
marginal increase in model performance following the incorporation of 
auxiliary data sources reported in Chapter 6 yielded an important 
finding for the future development of such models. By examining the 
need to balance model accuracy with generalisability and ease of 
deployment, we highlight a significant issue facing developers operating 
in an environment of rapidly increasing data complexity. Finally, 
Chapter 7, describes a direct comparison of inferential and predictive 
modelling of the risk of removal from the herd by 100 DIM. This serves 
to demonstrate the dangers in the use of inferential models to imply 
predictive power and the need for externally validated predictive models 
to be incorporated in the assessment of novel data sources within 
predictive TMPs. By providing an automated means of assessing 
production and behaviour data in the early post-partum period, the 
monitoring capacity of AMS offers great potential for the development of 
transition cow monitoring programs. The investigation of the relationship 
between AMS data and subsequent performance, as well as the 
assessment of its predictive power, represents an important step 
towards realising this potential. There remains however, the need to 
pair the predictive models outlined here with intervention studies to 
quantify the impact of early mitigating actions on the economic, social 
and environmental impacts of poor transition health.  
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8.2 Inferential Modelling 

The aim of the inferential analysis within this thesis was to further our 
understanding of the AMS variables investigated and to provide context 
as to their potential utility within TMPs. As detailed in Chapter 2, the 
outcomes investigated within this thesis may be significantly affected by 
herd-level environmental and management factors (Enevoldsen et al., 
1996; Windig et al., 2005; Haine et al., 2017). An unbiased examination 
of independent variables, therefore, requires a statistical approach 
which accounts for potential correlation in outcome between animals 
within the same herd. The multivariable, mixed-effect modelling 
deployed in Chapters 3, 5, and 7 allowed us to identify variables 
significantly associated with each outcome of interest while accounting 
for the random effect of Herd and relevant confounders. Furthermore, 
within the final models, it allowed for the segregation of the coefficient of 
determination between fixed and random effects. This proved to be of 
particular value in Chapters 5 and 7, which assessed fertility 
performance and cull risk respectively. Across both chapters, a 
substantial proportion of the conditional R2 was attributable to the 
random effect of Herd, indicating that the clustering of outcomes at the 
herd level explained a large proportion of the variance observed. Given 
our focus on understanding the potential utility of these variables within 
a TMP applied across a broad range of herds, this represents a crucial 
point of context within our investigation. Our modelling approach 
allowed us to explore this further by applying backward predictions with 
and without the effect of Herd, demonstrating significant reductions in 
model performance when the effect of Herd was nullified. Despite the 
value this approach provides, it remains underutilised within this field. 
This is exemplified by the literature investigating the association 
between early lactation physiological markers and subsequent risk of 
cull. These investigations utilise mixed-effects models to highlight 
significant association between cull risk and early lactation parameters 
related to calcium and energy status, (Seifi et al., 2011; Neves et al., 
2018; Venjakob et al., 2018). However, no attempt is made to quantify 
the explanatory power of these models or to compare that attributable 
to the fixed effects with that of random effects. This hinders the 
selection of variables with potential utility within TMPs by failing to 
provide a clear assessment of the strength of relationship between 
independent and dependant variables. Furthermore, it does not allow 
for meaningful comparison to be made with novel data sources which 
may be investigated in the future. Our approach aims to provide greater 
context for the variables investigated and allow for a clearer appraisal of 
their utility.  

8.2.1 The transition period – A key inflection point  

As described in Chapter 1, the application of TMPs in the dairy industry 
to date has focused on the diagnosis of specific disease states. This 
approach allows the assessment of independent variables to be 
targeted within a time frame immediately surrounding the outcome of 
interest. For example, to assess the utility of activity and rumination 



 

154 

data to diagnose an LDA, Stangaferro et. al., (2016) retrospectively 
examined neck mounted accelerometer data in the days immediately 
surrounding diagnosis. The time frame over which independent 
variables were assessed in this thesis is reflective of our prognostic 
aims and represents an attempt to strike a balance between the 
temporal relevance of data (i.e., the time between observation and 
outcome of interest), and the lead time required by producers to 
implement pre-emptive measures and mitigate associated losses. Data 
from days 1-3 post-partum were assessed in both Chapters 3 and 7 to 
facilitate intervention prior to the increased rate of morbidity and 
mortality generally seen in the first weeks of lactation (Ingvartsen et al., 
2003; De Vries et al., 2010). Similarly, the investigation of reproductive 
outcomes in Chapter 5 examined data available before the end of the 
VWP to facilitate intervention prior to the breeding period. Of interest 
was the degree to which this data was associated with subsequent 
health and production despite the lag between observation and 
outcome. 

Prior reports have highlighted the association between physiological 
status in the early post-partum period and long-term performance 
outcomes. This includes the demonstration of association between 
serum calcium and free fatty acid concentration during the first three 
days post-partum, and subsequent survival and reproductive 
performance (Venjakob et al., 2018; Menta et. al., 2021), milk 
constituents within the first week post-partum and subsequent 
production (Toni et al., 2011), and energy balance assessed over days 
1-21 and reproductive success (McArt et al., 2012; Civiero et al., 2021). 
The results of Chapters 3, 5, and 7 align with these reports in 
highlighting transition cow variables, reflective of metabolic, 
inflammatory and immune status, which demonstrated significant 
associations with long-term performance outcomes. However, while 
these are encouraging results for the potential utility of transition period 
data within TMPs, the challenges of transition extend beyond the 
observation windows employed within this thesis. An example of such is 
the challenge posed by negative energy balance. We have 
demonstrated a significant negative association between dairy cow 
performance and NEB (as indicated by an increased fat-to-protein ratio) 
over days one to three (Chapters 3 and 7) and one to twenty-one post-
partum (Chapter 5). However, positive energy balance is often not re-
established until day 50 post-partum (Grummer et al., 2010). Thus, the 
use of a condensed observation window cannot quantify the true depth 
and duration of NEB experienced, this is likely a limiting factor in the 
degree to which our observations can explain the outcomes of interest. 
This limitation is highlighted by the pattern in model fit attributed to fixed 
and random effects in Chapters 3, 5, and 7. When assessed via the 
fixed effects, a pattern of decreasing model fit concurrent with 
increasing lag between observation and outcomes was seen across all 
inferential models. The shortest lag was that of Chapter 3 which 
examined the association between AMS data collected overs days 1-3 
and Yield Deviation at DIM 30. This model returned a marginal R2 of 
47%. This stands in contrast to the model reported in Chapter 7 which 
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returned marginal R2 of 7%. It seems likely that these findings, to some 
extent, reflect the fact that as the lag between observation and outcome 
lengthens, an increasing number of physiological, environmental and 
management changes, with the potential to influence subsequent 
performance, will occur outside of the observation window. In contrast 
to the diagnostic TMPs, sufficient lead time to allow pre-emptive action 
is a pre-requisite for predictive monitoring programs, thus necessitating 
lag between observation and outcome. The identification of variables 
which are available for assessment as early as possible in lactation is 
therefore, an important factor in the development of these programs. 
The absence of reported coefficients of determination for previously 
investigated serum and milk-based variables (Toni et al., 2011; McArt et 
al., 2012; Venjakob et al., 2018; Menta et. al., 2021; Civiero et al., 2021) 
prohibit direct comparison with the models reported here. Nevertheless, 
our results advance this field by highlighting the association of variables 
which are readily available on AMS with subsequent performance, 
findings with offer much greater potential utility within TMPs. However, 
despite the critical nature of the transition period, the inherent lag 
between observation and outcome associated with a prognostic 
approach to monitoring, likely limits the extent to which data collected 
during this time can explain long-term performance outcomes. 

8.2.2 AMS Technology – An alternative means of 
transition cow monitoring 

A key barrier to adoption of TMPs has been the labour-intensive nature 
of the monitoring protocols required. The AMS data examined within 
this thesis was collected automatically using cutting edge sensor 
technology and includes both novel means of assessing traditional 
transition cow metrics (e.g., fat-to-protein ratio assessed via in-line 
sensors rather than test-day milk), as well as metrics unique to 
automatic milking systems (e.g., refusals). It was important therefore, 
that the relationship between these metrics and subsequent 
performance be assessed and where possible compared with traditional 
means of assessment to further our understanding of their potential 
utility.  

Assessment of Cow-Robot Interactions  

A unique aspect of data derived from free-flow AMS is the ability to 
monitor the frequency and nature of cow-robot interactions. These 
metrics have been demonstrated to reflect the animal’s drive to access 
the concentrate feed provided by the robot as well as their physical 
ability to reach the robot (Steensels et al., 2016; King et al., 2018). 
Thus, they have the potential to serve as useful indicators of 
physiological status. However, outside of reported association with 
lameness (Bach et al., 2007; Borderas et. al., 2008; King et al., 2016) 
their potential use in the diagnosis of disease is limited to a small 
number of single herd investigations (King, et al., 2017; Steensels et al., 
2016). Excluding the investigations reported within this thesis, their use 
in prognostic models related to long-term performance outcomes 
remains unexplored. 



 

156 

The mean number of milking visits recorded was retained as an 
explanatory variable in the final models for Yield Deviation and 
Expression of Oestrus or Insemination only (Chapters 3 & 5). Within 
these models it demonstrated a negative association with YD and 
positive association with EOI. The negative relationship between Mean 
Milk Visits and Yield Deviation is counterintuitive, given the previously 
demonstrated positive association between increased frequency of 
milking in early lactation and subsequent production (Siewert et al., 
2019). Where YD is utilised as a proxy for health (Nordlund, 2006), 
these results also stand in contrast to those reporting reduced milking 
visits in response to clinical disease (Bach et al., 2007; King et al., 
2018). The potential for manual fetching to bias milking visits means 
validation of these results, ideally under circumstances which facilitate 
the differentiation of voluntary and fetched milking visits, is required. 
However, given the widespread practice of manual fetching on free-flow 
AMS, our findings indicate that the utility of milking visits to reliably 
reflect the physiological status of the transition cow is likely to be 
limited.  

Unlike milking visits, refusals are not influenced by manual fetching 
routines and may represent a more promising behaviour-based 
indicator of physiological status. The mean number of refusals recorded 
over DIM 1-3 demonstrated a statistically significant positive association 
between both Yield Deviation (Chapter 3) and negative association with 
the odds of removal by 100 DIM (Chapter 7). Under the assumption that 
animals recording an increased number of voluntary visits to the robot 
are likely to be a healthier, more robust cohort, these results align with 
our expectations. However, as this is the first report of their association 
with long-term transition outcomes, further validation of these results 
would be beneficial.  

Within the data automatically collected by modern AMS, visit behaviour 
represents an intriguing but complex subset. Given the limited 
investigation of visit metrics as a means of assessing physiological 
status, particularly in the early post-partum period, this thesis 
contributes substantially to the current literature. However, gaps remain 
in our understanding of the relationship between visit behaviour and 
subsequent transition cow performance.  

  

Assessment of Milk Quantity and Milk Quality  

Of the variables used in the assessment of milk quantity and milk 
quality within this thesis, milk yield, milk yield acceleration, and fat-to-
protein ratio consistently demonstrated significant association with the 
outcomes investigated. These metrics are traditionally assessed using 
monthly test-day regimes through which animals will receive, at most, a 
single reading prior to the end of the transition period. The automated 
in-line means of assessing these parameters offers a high frequency 
approach to monitoring milk quantity and quality and is available from 
the day of calving. Their assessment represents an interesting point of 
analysis as their availability is not limited to producers utilising AMS. 
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Modern conventional parlours offer real time assessment of yield while 
a range of in-line fat and protein sensors are commercially available 
(e.g., MSD SenseHub™ Dairy https://ie.sensehub.global/). While their 
uptake in the UK and ROI remains limited to-date, continued growth in 
their use could significantly increase the capacity for conventional dairy 
farmers to utilise in-line milk quality data within transition cow 
management. This broadens the potential applications of our findings 
beyond producers utilising AMS. Due to the novel nature of this 
technology, the number of reports documenting the relationship 
between these metrics and health and production outcomes is limited 
when compared with those utilising test-day milking data. Our findings 
therefore represent a considerable addition to the literature surrounding 
this means of data collection. 

As highlighted in Section 1.6.1, conflicting reports as to the association 
between milk yield and subsequent performance exist, indicating that 
care must be exercised when interpreting the association between 
production parameters and subsequent performance. We have 
demonstrated that milk production and the acceleration in the rate of 
production overs day 1-3 are positively associated with YD at DIM 30 
and negatively associated with the risk of removal by DIM 100, while 
milk production assessed overs days 1-21 was negatively associated 
with both EOI and CFI. When compared with monthly test-day regimes, 
the means to assess milk volume from the point of calving, where the 
rate of change in production is greatest (Ingvartsen et al., 2003), offers 
a more pertinent assessment of physiological status for the transition 
cow. However, the variability of daily milk yield is high in early lactation 
and may be influenced by a wide range of environmental and social 
factors (LeBlanc, 2010). Further to this, a number of management 
practices have the potential to affect recorded yields. The time between 
calving and introduction to the milking herd, as well as level of 
colostrum harvested by the calf, may all contribute to variances in milk 
yield recorded in the days immediately post-partum. While we 
attempted to reduce the effect of this variance by excluding yield from 
the day of calving (Day Zero), variance in daily milk yield is reported to 
persist for the first 10 days of lactation (Constable et al., 2010; Kessler 
et al., 2014). Validation of these results is therefore warranted, 
however, the consistency with which these production parameters 
demonstrate statistical association across all three outcomes 
investigated highlights this means of data collection as a viable 
alternative to test-day regimes traditionally utilised with TMPs.  

Mounting an adequate and appropriate metabolic response to the 
increase in energy requirements experienced at the start of lactation is 
a crucial challenge facing all transition cows. The means to monitor the 
success or failure of this response, and the association with subsequent 
health and performance has been described for the manual assessment 
of body condition score (Manríquez et al., 2021), as well as metabolic 
indicators in serum, urine and milk (Geishauser et al., 2001, Friggens et 
al., 2007; Jansen et al., 2021). Modern AMS offer an alternative means 
of monitoring metabolic status through in-line fat and protein indications. 
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However, the relationship between these parameters and transition 
performance has not been previously examined. In Chapters 3, 5, & 7 
we demonstrated a negative association between fat-to-protein ratio 
and subsequent production, fertility and survival. These findings are 
supported by previously reported association between FPR measured 
via monthly test-day regimes, and subsequent yield (Kaufman et al., 
2018), cull risk (Dechow et al. 2008), and fertility performance (Heuer et 
al., 1999), re-emphasising the negative effects of excessive mobilisation 
of fat in the post-partum period. The consistency demonstrated between 
these results and those reported in this thesis, using in-line milk 
constituent analysis furthers our confidence in the use of this novel 
technology as an indicator of metabolic health post-partum. The 
significance of fat-to-protein ratio across these models should also 
encourage the investigation of additional measure of energy balance 
within automated transition cow monitoring programs. A number of 
automated systems for assessing energy balance have been 
commercially deployed within AMS, including automated body condition 
scoring (O’ Leary et al., 2020) and automated BHB monitoring (Mazeris, 
2010). While these variables were not available for investigation within 
our dataset, our findings suggest their value within TMPs is worthy of 
investigation.  

8.3 Predictive Modelling 

8.3.1 Prognostic TMPs – A viable tool for transition cow 
management  

The Inferential models reported within this thesis further our 
understanding of the relationship between AMS data and subsequent 
dairy cow performance. Translating this understanding into improved 
transition cow health requires predictive models applied within a TMP. 
The goal of prognostic TMPs is to identify animals likely to experience 
the cost and consequence of poor transition health. The accuracy with 
which predictive models can achieve this will largely determine the 
value these programs can deliver on farm. However, an assessment of 
the true value of any prognostic TMP requires analysis of the entire 
program. This must include for instance, the number of animals in 
receipt of treatment as a result of the program as well as the 
effectiveness of these treatments in mitigating losses. While analysis of 
this kind will play a vital role in the future development of prognostic 
TMPs, it is beyond the scope of our research. In its absence, our 
assessment of the utility of AMS data within TMPs is based solely on its 
ability to efficiently identify animals likely to experience reduced 
performance in a time frame which facilitates pre-emptive intervention. 

The predictive power of AMS and neck mounted accelerometer data 
examined in Chapters 4 and 6 represents a critically important finding in 
support of the premise of prognostic TMPs. While the classification 
accuracy reported is moderate and the need for further development of 
these models is clear, the results remain encouraging, particularly 
within groups at the extremes of the performance spectrum. For the 



 

159 

identification of animals experiencing a highly negative yield deviation, 
animals least likely to express oestrus in the VWP or least likely to 
conceive to first insemination, their respective predictive models 
achieved group level classification accuracies ranging from 
approximately 60 to 70%. While the novel nature of yield deviations 
means comparison with prior reports of predictive models is not 
possible, prediction accuracy relating to reproductive performance 
within the current literature is comparable with that reported within this 
thesis (Hempstalk et al., 2015; Shahinfar et al., 2014). Furthermore, 
these results are on-par with diagnostic TMPs currently deployed within 
commercial on-farm software (Lely, personal communication). Applied 
on farm, such models may have sufficient accuracy to improve 
transition health by identifying animal groups for which management 
intervention is likely to be beneficial. However, as this is the first report 
of prognostic models for use within TMPs, the foundation these results 
establish for the continued development of these models may be of 
greater importance than the performance accuracies achieved. By 
demonstrating the predictive power of the variables analysed, these 
findings set a precedent for the continued investigation of transition cow 
data for use within prognostic TMPs. The expanding range of variables 
collected on modern dairy farms offers an opportunity to enhance model 
performance by providing a more comprehensive assessment of 
physiological status during transition. Furthermore, the degree to which 
these results demonstrate the predictive power of data collected in the 
days immediately post-calving should encourage the investigation of 
alternative observation windows. For example, the utility of data 
collected during the dry period remains underexplored. The scarcity of 
automatically collected data during this time means investigations have 
focused on manually collected variables such as serum metabolic 
indicators as well as dry cow management data. The association of dry-
period indicators of negative energy balance, such as serum NEFAs 
concentration, and body condition score, with subsequent performance 
highlight the potential utility such assessments may have within TMPs 
(Ospina et al., 2013; Chebel et al., 2018). More recently, Cook et al., 
(2024) demonstrated significant association between stocking density 
and time spent in the close-up dry pen with subsequent cull risk and 
milk production. While this demonstrates the potential for pre-partum 
data to be incorporated into TMPs, the lack of an automated means of 
data collection remains a challenge. Perhaps more promising, is the 
investigation of rumination and activity monitoring during the dry period. 
Within a small, single herd study, rumination levels in the week prior to 
calving were found to be significantly associated with subsequent 
fertility, production and culling risk (Santos et al., 2024). This is an area 
in need of further research but, incorporating such data may serve to 
improve the predictive power of the models reported here. The 
predictive models reported within this thesis represent an encouraging 
first step in the development of prognostic TMPs. While they directly 
advance this field of research, they serve also to highlight the ample 
opportunity which exists for their performance to be enhanced through 
continued development. 
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While these results serve to demonstrate the potential for the future 
development of prognostic TMPs, challenges are also apparent. The 
absence of predictive power for the removal in early lactation reported 
in Chapter 7 highlights a potential limitation of this approach to 
transition cow monitoring, particularly where the lag between 
observations and outcomes is large. Across Chapters 4, 6, and 7, the 
group levels classification performance of predictive models decreased 
as the time between observation and outcome of interest lengthened. 
While comparison between these models cannot be used to assess the 
effect of lag, our results raise important questions regarding how to 
balance model accuracy with the minimum lead time required for 
predictions in order to instigate pre-emptive action. The degree to which 
the lead time for each individual outcomes can be lengthened while 
maintaining adequate predictive power is an intriguing point of 
development within these models. However, it highlights an inherent 
limitation within this approach, one which is likely to restrict the 
predictive power which can be achieved by models incorporating a 
prolonged lag between observation and outcome. 

The development of accurate predictive models represents a single 
step within a TMP, thus our assessment of the value which these 
models may provide when applied on farm must be interpreted with 
caution. While our results highlight some inherent limitations, the 
predictive power demonstrated in Chapters 4 and 6 remain 
encouraging. These serve to support the premise of using data 
available from AMS at critical time periods in lactation to predict long-
term outcomes. While further development of these models is required, 
these results, coupled with the expanding capacity for the automatic 
assessment of physiological status throughout the lactation cycle, offer 
a positive outlook for the future of prognostic TMPS.  

 

8.3.2 Optimising model development in an environment 
of increasing data complexity  

As the application of sensor technology within the dairy industry has 
continued to expand, the volume of data available for incorporation 
within prognostic models has increased concurrently. This technological 
advancement offers the means to improve the accuracy of predictive 
models, but also poses challenges in their development. As discussed 
in Chapter 2, the ease with which models can be deployed on a global 
scale has increased the diversity of farms on which they must deliver 
accurate predictions. Therefore, key to maximising the improvements in 
transition health these models can provide is the efficient assessment of 
novel data sources while maintaining model generalisability and ease of 
deployment.  

Given the rapid developments in sensor technology, the efficient 
assessment of novel sensor data for utility within predictive models will 
play an important role in the future of TMPs. Mixed effects models offer 
an easily interpretable approach to inferential analysis of such data. 
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However, where the modelling aims are predictive, machine learning 
algorithms offer greater flexibility, and have been demonstrated to 
deliver higher predictive performance (Eicker et al., 2002). While each 
approach has its own advantages and limitations, when used together 
they complement one another by allowing the examination of both the 
statistical and practical significance of the relationships investigated. 
Despite this, the use of predictive modelling in tandem with inferential 
analysis is rarely undertaken within the current literature relating to 
TMPs. More commonly observed is the demonstration of statistically 
significant association without any investigation of predictive power. The 
risk associated with inferring predictive power from such studies has 
been widely reported (Heus et al., 2018). Despite this however, it is 
commonly encountered in research relating to precision medicine, both 
in human (Bzdok et al., 2021; Varga et al., 2020) and veterinary fields 
(Garverick et al., 2013; Neves et al., 2018; Carty et al., 2020). The lack 
of predictive power demonstrated in Chapter 7, despite the presence of 
statistically significant association serves to re-emphasise the 
importance of combining inferential studies with externally validated 
predictive models to more efficiently and appropriately assess the true 
utility of candidate variables. This will serve to further our understanding 
of novel metrics while also expediting the process by which they can be 
selected or rejected for use within a predictive TMPs. The approach 
described within this thesis, represents an efficient means of achieving 
this and will contribute to advancing this field of analysis. 

A key element in the development of generalisable predictive models is 
the pursuit of model parsimony. As a rule, simple models tend to 
generalise to a greater extent than complex ones, though this may 
come at the expense of a more accurate prediction across the training 
set - the so-called Variance-Bias trade off (James et. al., 2013). Within 
this thesis we applied two approaches to feature selection. Our use of 
recursive feature elimination within Chapter 4 represents a commonly 
used “wrapper” approach which aims to identify the subset of variables 
which results in the desired performance output (Kuhn, 2008), in this 
case, minimisation of RMSE. This represents an automated, relatively 
efficient and, when carried out in conjunction with cross validation, 
robust method of feature selection (Kuhn and Johnson, 2013). 
However, this approach fails to differentiate between data sources (e.g., 
variables derived from the robot itself, or from neck-mounted 
accelerometers). In Chapter 6, we chose to pair RFE with a manual 
feature selection process which sought to quantify the marginal effects 
of auxiliary data sources, a technique currently underutilised within this 
field. The value in this approach was highlighted by the retention of 
features from all 3 data sources in the final model, despite it failing to 
demonstrate a statistically significant improvement in predictive 
performance over its more parsimonious counterpart. Minimising the 
number of data sources required serves to broaden the number of 
farms eligible to employ a specific model, while also reducing the risks 
associated with sensor malfunctions and data missingness. Feature 
selection applied at the level of the individual variables has an important 
role in model development and has been applied across all predictive 
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models relating to TMPs. However, our findings demonstrate its 
shortcomings and highlight the importance of a more considered 
approach where deployment on a broad scale is of importance. 
Ultimately, the challenges surrounding model generalisability and 
deployment stem from the unprecedented opportunity the expansion of 
precision dairy technology presents for the development of predictive 
models. Where these can be addressed through appropriate feature 
selection, there exist great potential for these models to contribute 
meaningfully to transition cow management. Our results highlight the 
importance of considering the practicalities associated with model 
deployment and generalisability in order to maximise potential impact. 

To accurately assess expected generalisability, models intended for 
deployment across a wide range of herds must be tested under 
conditions which reflect this. External validation serves as a robust 
method of simulating expected model performance following 
deployment (Rockenschaub et al., 2023). However, attaining a dataset 
with sufficient quantity and diversity of herds to facilitate this is 
challenging. Internal validation, an approach requiring  a much smaller 
dataset, continues to be reported (Madouasse et al., 2010; Shahinfar et 
al., 2014; Rutten et al., 2016;). While the use of cross-validation within 
this approach may somewhat limit the risks of falsely inflating predictive 
performance (James et. al., 2013), this does not represent an 
appropriate means of assessing herd-level generalisability. Variations of 
external validation, designed to accommodate datasets with limited 
herd numbers have been reported. For instance, predictive models for 
cull risk and reproductive performance have been trained and tested 
using the same herds but with data collected from different time periods 
(Hempstalk et al., 2015; Lukas et al., 2015; Ho & Pryce, 2020). This 
approach fulfils the basic tenants of external validation and represents 
an improvement over internal validation. However, given the influence 
of herd-level management factors on the outcomes investigated, the 
risk of falsely inflating predictive performance remains. Of importance 
within this thesis, was the development of models which could perform 
adequately across farms employing a range of environmental and 
management practices. Hence, an approach which split the train and 
test data sets by herd was deemed the most suitable. This approach 
allowed us to assess the predictive power of our models when 
presented with a previously unseen animal from a previously unseen 
herd - a scenario reflective of real-world deployment. The application of 
this approach is limited by the requirement for a large, multi-herd 
dataset, particularly in the investigation of novel sensor technology. 
However, where the goal is the development of predictive models which 
can deliver meaningful improvement in animal health its importance 
cannot be overstated.   

8.4 Future Studies 

A number of areas worthy of further investigation have been highlighted 
within this thesis.  As all recruited farms were located within the UK and 
Republic of Ireland, the extent to which our results can be extrapolated 
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outside of this region is limited. Validation of these results across a 
broader range of farming system would be a worthwhile endeavour and 
provide a more robust indication of the generalisability of our findings. 
This is of particular importance in the case of Chapter 6 relating to 
fertility where the management systems applied vary significantly 
between geographical location. The degree to which lag between 
observations and outcomes affects predictive power for any specific 
outcomes is an intriguing and important area of investigation within 
TMPs, particularly where predictive power is lacking (e.g., the risk of 
removal from herd, Chapter 7).  

Assessing the impact adoption of prognostic TMPs may exert on 
transition cow health, welfare and production requires a large scale, 
multi-herd intervention study. This study should aim to investigate the 
change in outcome for transition cows which receive pre-emptive 
treatment as a result of a TMP when compared with control animals. 
Research of this kind is extremely complex, particularly when carried 
out over multiple herds, a fact demonstrated by their scarcity within the 
literature. When compared with automated prognostic TMPs, as 
described within this thesis, the development of automated diagnostic 
monitoring programmes have received far greater research attention 
(Stangaferro et al., 2016; King, et al., 2017; Steensels et al., 2017; 
Paudyal et al., 2018). Despite this, only 3 reports examining the value 
such programs can deliver when compared with traditional monitoring 
techniques are available, and all are based on single herds (Silva et al., 
2021; Perez et al., 2023; Rial et al., 2024b). Within the field of 
prognostic TMPs this knowledge gap is greater still. While a small 
number of recent publications have examined the relative value of 
targeted reproductive programs, these are limited in scope (Rial et al., 
2022, Gonzalez et al., 2023). A substantial increase in the number of 
intervention studies examining the impact of TMPs is therefore required 
to assess the value such programs can deliver to producers and 
provide direction for future development. 

While the approach to prognostic TMPs hold several advantages when 
compared with diagnostic TMPs, it is not designed to replace diagnostic 
models. Rather, it may serve as a means to improve how such models 
are applied. An example may be the application of the prognostic 
models described in Chapter 4 in conjunction with diagnostic models, 
similar to those described by Stangaferro et al., (2016) which 
demonstrate acceptable sensitivity and specificity for the automated 
diagnosis of transition cow disease. There exists an opportunity to 
develop diagnostic models which may be applied to animals deemed 
high risk (e.g., those predicted to suffer a large, negative yield 
deviation). Likewise in the case of predictions related to conception to 
first service at day 21, animals’ classification at this early point in 
lactation may allow for the application of bespoke models and more 
accurate predictions of conception success at the point of service. This 
is an intriguing next step in TMPs which warrants investigation in the 
future. 
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8.5 Conclusions 

The research presented within this thesis examines a novel means of 
transition cow monitoring, one which seeks to assess transition health 
using long-term performance outcomes. In contrast to traditional 
transition cow monitoring programs, which rely on the diagnosis of 
specific disease states, this approach offers a more holistic means of 
assessing transition health and more closely reflects our understanding 
of transition cow physiology.  

Our inferential models have demonstrated significant statistical 
association between AMS production and behaviour data and 
subsequent yield deviation, fertility and survival. Group level 
classification of animals based on expected yield deviation and fertility 
outcomes using machine learning models demonstrated potential for 
incorporation into prognostic TMPs. In contrast, predictive models for 
the risk of removal by 100 DIM were found to be non-informative. 

The development of generalisable predictive models for deployment in 
an increasingly interconnected agricultural environment is crucial to the 
utility of TMPs.  We have highlighted the challenges increasing data 
complexity can place on model development and demonstrated the 
means by which these may be overcome. We believe this approach will 
maximise the positive impact of predictive models developed and 
accelerate the pace at which they can be confidently deployed 
commercially. 
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Chapter 10 Appendices 

10.1  

Study Title: Use of machine learning to predict transition success in dairy 
cows in an automatic milking system  

Researcher: 
Fergus Hannon MVB, Cert AVP, MRCVS 
fergus.hannon@nottingham.ac.uk 

Purpose of the study: 

I am a PhD student at the University of Nottingham. This project has been 
developed in partnership with the Biotechnology and Biological Sciences 
Research Council and Lely Industries.  

Our research aims to utilise data generated from Lely automatic milking 
systems to predict transition period outcomes for dairy cows. Through this 
analysis we hope to increase the value Lely customers derive from their farm’s 
data by developing tools which assist in transition cow management.  

To this end I would be extremely grateful if you would be willing to contribute 
an anonymised version of your holding’s T4C data to this study.   

Consent: 

This consent form is a formal indication that you agree to participate in this 
study and in so doing:   
 

• Grant one-time access to your T4C software via TeamViewer 

• Consent to the sharing of historical T4C data with the University of 
Nottingham  

• Are aware that any information collected by the researchers: 

• will be anonymised and treated confidentially 

• will be used for research purposes only 

• may be used in a research publication 

• may be presented at research conferences or meetings 

 

If you have any queries regarding this study, please feel free to contact me. 

Participant 
 
Name:.....................................................                    Signature:......................................................... 
 
Farm Address: 
....................................................................................................................................    

 

E-mail Address: 
…………………………………………………………………………………………
………………………………… 

To enable data sharing please provide you Lely Licence Key, TeamViewer ID, 
and Password 

Thank you very much for participating in this study I look forward to 
sharing our researching findings with you in the near future. 


