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ABSTRACT

Markov processes describe a plethora of physical systems in nature, in-
cluding the mechanics of molecular motors, chemical reactions, and even
financial markets. In the framework of continuous-time Markov processes,
there are many important quantities of interest. One example are dynam-
ical observables: time-integrated functionals of stochastic trajectories. An-
other are first passage times (FPTs), which are the time taken for an observ-
able to reach a fixed threshold. The fluctuations of these two quantities are
bounded from below by the thermodynamic uncertainty relations (TURs), a
fundamental result which captures the tradeoff between their precision, and
physical parameters such as entropy production or activity. Whilst these
lower bounds are well-known, less attention has been given to finding up-
per bounds on fluctuations.

We first prove the existence of general upper bounds, at any time, on
the variance of any linear combination of fluxes for classical, continuous-
time Markov processes. These are derived by considering perturbed dy-
namics and applying techniques in concentration theory, in particular the
Cramér-Chernoff method. We call these bounds “inverse thermodynamic
uncertainty relations”. Spectral methods allow us to express the bounds in
terms of parameters of the dynamics which include the symmetrised spec-
tral gap of the generator and max/min escape rates, alongside observable-
dependent quantities. Afterwards we provide a concentration inequality for
dynamical observables, which upper bounds the probability distribution for
finite time. We then extend these results to FPTs for the dynamical activity, as
well as a tail bound for general counting observables. Finally we generalise
our FPT results to the quantum framework for general quantum Markov
processes and reset processes, including a tail bound for FPTs of general
counts, i.e. counts of a subset of emissions. We also prove a large deviation
principle for FPTs of classical and quantum counting processes.

Our results have several consequences and applications. By providing
upper bounds on the relative uncertainty, the range of estimation errors
is bounded from both sides. These findings suggest that spectral quantities
limit the range of fluctuations. The observable-dependent parameters in the
bounds offer an advantage over the traditional TURs for precision estimation.
Inverse TURs provide bounds on the accuracy of classical or quantum clocks
or the efficiency of heat engines. The concentration inequalities can be used
in finite-regime parameter estimation of classical and quantum processes,
with open quantum dynamics being particularly relevant in experimental
situations.
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Freedom is the freedom to say that two plus two make four.
If that is granted, all else follows.

— George Orwell, 1984



INTRODUCTION

At equilibrium, macroscopic systems exhibit small and predictable fluctu-
ations of observable quantities around their expected value, a feature fun-
damental to statistical physics [1-3]. These fluctuations, along with quanti-
ties like thermodynamic averages can be quantitatively described using the
Boltzmann distribution and standard ensemble methods used in statistical
mechanics.

The introduction of a dissipative environment exchanging heat, work or
matter etc. in an irreversible manner, disturbs equilibrium. The resulting
complexity leads to stronger fluctuations than those experienced in con-
tact with an equilibrium environment [4-6]. Alternatively, a small system
even at equilibrium can experience large fluctuations of observed quanti-
ties. When a system experiences time-independent driving (e.g. a constant
supply of particles) it will eventually approach a non-equilibrium station-
ary state (NESS) [7—10]. Non-equilibrium systems are commonplace [11], ap-
pearing in contexts such as stock markets [12, 13], chemical reactions [14—
16], protein folding [17, 18], virus delivery [19, 20] and population dynamics
[21—23].

The interaction of a system with the environment can be characterised
by observing fluctuations of only the system. In non-equilibrium it is the
systems dynamics as opposed to static observations which play a crucial
role in studying its behaviour [7, 10]. Analysing the dynamics of a process
gives insight into dynamic quantities and phenomena such as self-assembly
[24] and dynamical heterogeneity in glasses [25—28].

A large class of these systems can, via a coarse-grained approach, be
mapped to continuous-time Markov dynamics over a discrete state space
[9]. In the Markovian description an initial probability measure vy of the
system evolves according to a Markov semigroup with generator L, such
that v; = vpe'l is the distribution at time ¢. Under irreducibility assumptions
this converges to a unique and strictly positive NESS 7. Outcomes of the pro-
cess are stochastic trajectories, which are histories of all configurations and
transition times. When studying stochastic dynamics it is common to do
so using ensemble methods analogous to that in equilibrium. This thermo-
dynamics of trajectories approach [29—32] quantifies the statistics of observ-
ables which are time-integrated functionals of trajectories. These dynamical
observables include currents — which characterise the net flow and degree
of reversibility [30, 33—35], and activities — which relate to the relaxation
of the system [25, 27]. It is the fluctuations of these dynamical observables
about their asymptotic average which are of interest in characterising non-
equilibrium. Quantifying the degree of fluctuations has consequences in
classifying the dynamics, biological motor efficiency [9, 36, 37], clock per-
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formance [38—40] and the estimation of physical quantities [41] (for example,
entropy production).

The thermodynamics of trajectories approach formulates stochastic dy-
namics in the language of large deviations. Dynamical observables obey a
large deviation principle (LDP) [42—44]. This quantifies the exponential de-
cay — in the long time limit — of the probability of fluctuations, with rate
determined by a rate function. The rate function describes the Gaussian fluc-
tuations about their expected value, as well as non-Gaussian fluctuations
seen in the tails of these distributions. Rate functions are generally difficult
to compute, even when using numerical methods [45—47].

One of the most well-known results in non-equilibrium statistical me-
chanics are the thermodynamic uncertainty relations (TURs) [34, 37]. These
are a class of lower bounds on the relative uncertainty (variance over mean
squared) of dynamical observables and correspond to an upper bound on
the large deviation rate function. Their significance lies in that the several
versions of the TURs are formulated in terms of the quantities which charac-
terise the dynamics, such as entropy production [34], dynamical activity (to-
tal number of configuration changes per unit time) [48] or persistence time
[38]. General bounds of this type, which are independent of the observable
in question, provide a link between the precision of observed quantities and
the reversibility or activity of the process.

Dynamical ensembles can alternatively be described in terms of first pas-
sage times (FPTs). These are the time it takes an observable to reach a fixed
threshold. The statistical properties in this “fixed-observable ensemble” are
connected to that of the “fixed-time ensemble” [32, 49] and TURs have been
formulated for FPTs [48, 50]. First passage time statistics are widely used
[51-56], and in many cases more practical [50].

Some of the notions for classical dynamics can be generalised to the non-
commutative framework. Quantum Markov semigroups can describe the
evolution of a quantum system interacting with an environment. This evo-
lution is characterised by a GKLS generator £, and it is described by the
semigroup Ti. = ett, a completely positive trace preserving map acting on
quantum states. The state p at time 0 is mapped onto the state 7;.(p) at time
t. In the Markovian description the system undergoes a series of continuous
evolutions with intermittent instantaneous jumps. These jumps correspond
to a detection in the environment (say a photon) [57-60]. The sequence of
emission types and corresponding jump times describe a quantum trajectory,
for which a trajectory ensemble method and TURs have been established
[61-64].

Until recently, the problem of finding bounds has only been considered
from one side. An explicit class of bounds instead limiting the size of fluctu-
ations has not yet been found. This would restrict the range of the precision
of observables, which currently can be arbitrarily large. In the large devia-
tion formalism this type of bound corresponds to a lower bound on the rate
function. For quantum Markov processes, in [65, 66] concentration inequal-
ities were found for simple counting measurements. These are bounds on
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the whole distribution and correspond to the upper bound on fluctuations
we are interested in. It would be useful to obtain results for more general
statistics (such as linear combinations of currents or activities) in the classi-
cal case, and ideally formulated in terms of simpler quantities. Indeed, in
the fixed-observable ensemble, there lack similar bounds for either classical
and quantum processes.

In this thesis we tackle the inverse problem of finding upper bounds
on fluctuations. Particularly this includes the derivation of general upper
bounds on the relative uncertainty of dynamical observables which comple-
ment the original formulation of the TURs. We refer to these upper bounds
on the uncertainty as “inverse thermodynamic uncertainty relations”. They
are valid for all currents, activities and any linear combination of fluxes.
These bounds are not derived via large deviations and hold for finite time
in the stationary state. In addition to bounds on the relative uncertainty
we also provide a concentration inequality which upper bounds the whole
probability distribution and is valid for any initial state.

We extend these results to first passage times and derive inverse TURs and
concentration inequalities for FPTs of counting observables. These bounds
we then generalise to the non-commutative setting. Although these results
hold for a finite number of jumps k, we also prove a LDP for first passage
times in the classical and quantum regimes.

Our results were obtained via well-established methods in concentration
theory, namely the Cramér-Chernoff approach. These methods were used
in [67-69] to derive concentration inequalities for empirical measures for
discrete and continuous-time Markov processes.

Although our investigations are motivated by problems in statistical me-
chanics, we aim to present our results in a more mathematical framework.
The content in Chapter 6 has appeared in [70] whilst the results presented
in Chapters 7 and 8 are contained in [71]. These results have been derived
in collaboration with Federico Girotti, Madalin Guta and Juan P. Garrahan.

We begin in Chapter 2 by giving a description of classical continuous-
time Markov processes, including how trajectories can be separated into a
jump trajectory governed by a discrete-time transition matrix, and a collec-
tion of holding times (exponentially distributed conditional on the jump
process). Then we introduce dynamical observables and first passage times,
the quantities of interest in the fixed-time and fixed-observable ensembles
respectively.

Dynamical observables and FPTs in the asymptotic regime of large t or
large k both satisfy a LDP. We provide an overview of large deviations the-
ory in Chapter 3, working our way from the basic definition, to the i.i.d.
case and Cramér’s theorem, to weakly dependent processes and Gértner-
Ellis theorem. This leads us to large deviations in the context of dynamical
observables and lower bounds on the fluctuations of these observables in
the form of the celebrated TURs.
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In the finite regime, concentration inequalities can be a useful tool in
bounding fluctuations. In Chapter 4 we state basic notions in concentration
theory, e.g. the Cramér-Chernoff method, operator perturbation theory and
how these are applied to Markov processes.

In Chapter 5 we describe the classical concepts in the more general non-
commutative framework. In particular, we outline how we think of trajecto-
ries in quantum processes and the statistics of counting measurements.

Chapter 6 focuses on the fixed-time ensemble. We consider trajectories
of fixed length t and derive upper bounds on fluctuations of dynamical
observables for classical Markov processes in the form of inverse TURs and
concentration inequalities. This complements the TURs and are valid for any
linear combination of fluxes and for all times.

The latter part of this thesis considers FPT fluctuations in the ensemble
conditioned on a fixed number of jumps k. This can either be the total
dynamical activity, or the activity within a subset of some allowed tran-
sitions. In Chapter 7, for classical processes, we prove the LDP holds for
FPTs. The main results of this chapter are concentration inequalities and in-
verse TURs for FPTs. Building on these classical results, Chapter 8 generalises
the analysis to the non-commutative setting, including a LDP and a concen-
tration inequality for FPTs of counting measurements in general quantum
Markov processes. We also provide similar bounds for quantum reset pro-
cesses, which are a type of semi-Markov process. Owing to the fact they
can be thought of as a classical process, just with a different distribution
for holding times, our results for quantum reset processes require fewer
assumptions on the dynamics.



CLASSICAL MARKOV PROCESSES

This chapter concerns the classical theory of one of the most well-known
classes of stochastic process: Markov processes. Informally speaking, they
refer to so called “memoryless” dynamics in that the history of the pro-
cess has no effect on the future distribution. There are two distinct types
of Markov process: discrete-time and continuous-time. We begin by intro-
ducing discrete-time, before moving on to continuous-time. The object of
interest in this thesis are all continuous-time Markov processes; however,
we will see in Section 2.3 that these can be decomposed into a discrete-time
jump process and a sequence of conditional holding times. We then out-
line the mathematical formalism of our approach, in the context of linear
algebra. Finally, we discuss how Markov processes are studied in statistical
mechanics in the form of dynamical observables and first passage times.

2.1 DISCRETE-TIME

A discrete-time Markov process is a sequence of random variables X :=
(Xt)teN, taking values in a finite state space E and satisfying the Markov

property:

]PV (Xt+1 = X|X0 = X0,- - .,Xt = xt) = IPV (Xt—H = X‘Xt = xt)
where P, denotes the law of the process with initial measure v := vy. The
process jumps from configuration x — y, with transition probability Py,

for x,y € E. The n-step evolution of a probability measure v; on E, i.e.
Vi 1n = Py, is given by the Chapman-Kolmogorov equation

P = Y P,..P, neclNg
il,...,in,ijEE
or more compactly P") = P". We adopt the convention used in mathe-

matics that the transition matrix P acts on probability measures from the
right. If the Markov process is irreducible, there exists a unique and fully
supported stationary measure 7t which satisfies 7P = 7, corresponding to
the eigenvalue 1 (with multiplicity 1). Furthermore, if the process is aperi-
odic, any initial measure will converge to 7 and all other eigenvalues will
have magnitude |A| < 1. Discrete-time Markov processes themselves have
wide application in statistics, machine learning, random walk theory and
economics [67-69, 72, 73]. In the next section we will introduce continuous-
time Markov processes, the principal stochastic process we consider in this
thesis.



2.2 CONTINUOUS-TIME

2.2 CONTINUOUS-TIME

Let X := (X})t>0 be a continuous-time Markov process taking values in a
finite configuration space E. For an initial distribution v := vy over config-
urations we denote by P, the corresponding law of the process X and E,
its integral. In continuous-time instead of transition probabilities it is tran-
sition rates wy, as the rate of transitions from configuration x — y which
characterise the process (note that the rate wyy = 0, Vx € E). The dynamics
evolves according to the Kolmogorov forward equation

d
%Vt(x) = Z Vi(Y)wyx — vi(X)wyy
yeE

for some probability measure v;. In matrix form this reads

—Vy = UtL.

dt

The matrix L is the stochastic generator of X and can be decomposed as
L=W-R,

where the off-diagonal part, W = } .., wyy|x) (y|, encodes the rates of
jumps and the diagonal part, R = Y, Ry |x) (x|, the escape rates (with
Ry = ), wyy the escape rate from configuration x). The generator L acts
on complex valued functions f : E — C via right multiplication, i.e.,

Fx) = (L)) = ¥ Luf(y) = S, [F(X0)],

yeE

which is similar to the “Heisenberg picture” in quantum mechanics. The
natural norm to consider in this setting is the co-norm, i.e.

00 = 7 L c0—s00 +— L 00

[ flleo :=max|f(x)l, [ILlleoseo := max [ILf]

By duality, L acts also on complex valued measures on E (which can be iden-
tified with their density v : E — C) via left multiplication (cf. Schrodinger
picture in quantum mechanics):

v(x) — (L) (x) := (vL)(x) = Z]:Ev(y)Lyx = ;t]PV(Xt = Xx).
ye

Here the natural norm is the dual norm with respect to the co-norm, which
is the 1-norm:

iy =} v(x)l,  [Lallisr == max Loyl = [[L]|eosoo.
xcE I[vlli=

We will often use the notation (v, f) to denote the integral of f with respect

to v, i.e. Y cpv(x)f(x). Next we state our main assumption for classical

dynamics.
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Hypothesis 2.1 (Irreducibility of L). There exists a unique fully supported mea-
sure 7t satisfying AL = 0.

This unique measure we refer to as the stationary distribution or station-
ary measure of the classical continuous-time generator L. Irreducibility is
equivalent to the statement that there is only one communicating class of
the Markov process. In simpler terms, in an irreducible process any state
can be reached in finite time from any other state.

2.3 JUMPS AND HOLDING TIMES

The process X can be equivalently described in terms of the corresponding
discrete-time jump process and holding times in each configuration: indeed
any trajectory with k jumps takes the form of a sequence

w = {(xo, to), (x1,t1), (x2,t2), -, (X, tx), (tks1) }

where x; is the state of the system after the i-th jump and ¢; is the time
between the (i — 1)-th and the i-th jump (we set ty = 0). In other words, the
system is in state x; at time ' with Zle t <t < Z;g t;. The final holding
time f;,1 refers to the time between arriving in the final state x;, and the
finish time ¢, so that Y¥_; t; < t. For the purpose of these works we can
omit this final holding time when writing out a trajectory, in fact when we
consider first passage times at the end of this chapter t;; = 0. The process
describing the different states of the system along time (jump process) is a
discrete time Markov process with transition matrix given by

P=R'W (2.1)

(notice that due to irreducibility, Ry > 0 for every x € E). If L is irreducible,
then P is irreducible too. Indeed

AL=0«& AW = IR & ARP = AR

and 7 — 7R is a positive linear bijection. Therefore the unique invari-
ant measure of P (denoted ) is related to the invariant measure of the
continuous-time generator by
IR
T = 2.2

where 1 stands for the function identically equal to 1. Irreducibility of the
dynamics means that 7t has full support. Conditional to the jump process,
the holding times f; are independent and t; ~ Exp(Ry, ,) for 1 <i <k.

2.4 HILBERT SPACE

We introduce here some Hilbert space notions which will be needed in
formulating our classical results and will be used in their proofs. The space
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of complex functions on E can be turned into a Hilbert space L2 (E) using
the inner product (-, ) with respect to the invariant measure 7t defined in
Equation (2.2)
(f8)m =} (%) f(x)g(x).
x€E

We use the notation ||f|| for the corresponding norm. In Chapter 6 we
make use of L(E), a similar Hilbert space but instead with respect to the
invariant state 7t of L. The adjoint A" of an operator A on L% (E) has matrix
elements

AT .— n(y)

YT g ( x) Ayx
with the same expression replaced with 7 for the adjoint of an operator A
on LZ(E). From the above it follows that P’ is a transition operator in its
own right. An important quantity in this work is the absolute spectral gap
of P, which we denote by ¢ and is defined as the spectral gap of P'P (the
multiplicative symmetrisation of P)

e:=1—max{||Pfllz: (7, f) =0, [ fll= =1} (23)
We note that the absolute spectral gap is different to the additive spectral
gap used in Chapter 6.

Using the above we introduce the Ledn-Perron operator P associated to P
([69, Definition 3]).

Definition 2.2 (Leén-Perron operator). A Markov operator P, on L% (E) is said
to be Ledn-Perron if it is a convex combination of operators 1 and 11, with some
coefficient A € [0, 1], that is

Py = A1+ (1— M),
where T is the map Tl : f — (f, 1)1

P, is a self-adjoint transition operator which is simple to handle and will
allow us to derive upper bounds for the fluctuations of first passage times
of P. In the proofs where we make use of the Le6n-Perron operator, we set
A =1 —¢, and denote as

P:=(1—-¢)1+ell,. (2.4)
2.5 DYNAMICAL OBSERVABLES

Consider the stochastic process K;(x,y), the time-integrated process which
counts the number of transitions x — y up to time t. A second quantity
defined on the process is M; € IR‘iO, the total residence time. Each element
M;(x) is the total time spent in state x until time ¢. Linear combinations of
counting processes and residence times are called dynamical observables
which we define formally.
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Definition 2.3 (Dynamical observable). A dynamical observable (also known in
literature as trajectory observable) has the general form

A(t) =Y ayKi(x,y) + Y beMi(x), ayy, by € R
x#y€E x€E

The a,, are arbitrary transition weights with ) |ay,| > 0, whilst the
by are weights associated with the time between transitions. In statistical
mechanics, K(x,y) is referred to as the flux of the transition x — y and
the observable A(t) the generalised flux. The scaled version of M;, denoted
m = M;/t € M;(E) is the empirical measure belonging to the space M; (E) of
probability measures on E. We are interested in functions of the trajectory
of the above form with b, = 0, Vx € E, so dynamical observables of only
the jumps. Observables of the form in Definition 2.3 with b, = 0 satisfy the
following [44]:

* strong law of large numbers (SLLN)

SA() —— (a)z = Y A(X)wxyany,  as.

t t—+
= xAy

where (a)  is the asymptotic average of A(t). The convergence is almost
sure convergence (denoted a.s.). This means that

P, ( lim AW _ <a>ﬁ> =1.

f—+4oo t

e central limit theorem (CLT)

\}E(A(t) ~ (@)at) —— N(0, Vo) inlaw.

In other words, the probability distribution of %(A(t) — (a)»t) con-

verges to a normal distribution with mean 0 and variance Vi, 4.

The asymptotic variance Ve 4 is

Veoonr := lim VV’A(t)
’ t—+oo t

and V;, 4(t) is the variance of A(t) if v is the initial distribution (notice, how-
ever, that the limit does not depend on v). When we talk about fluctuations
of A(t), we mean a deviation of the process A(t)/t from (a) 7. There are a
few common observables depending on the properties of the a,,, which we
will discuss in this section.

2.5.1  Counting observables

In practical applications one may wish to count only certain jumps of the
trajectory. More formally, given a non-empty subset 2 of the set of possible
jumps € := {(x,y) : x,y € E : wy, > 0}, we denote

Kot = Z Ki(x,y) (2.5)
(x,y)ed
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the stochastic process that counts the number of jumps in 2 up to time ¢,
i.e. the observable where a,, = 1, V(x,y) € 2. Observables of this form
are known as counting observables. The dynamical activity, or total number
of jumps, is the observable corresponding to 2 = &. Counting observables,
in particular the dynamical activity, characterise the system’s liveliness. An
example of a counting observable could be the number of steps a molecular
motor takes in a certain region [36]. Dynamical activity is strongly linked
to the relaxation of a system [11, 31, 48] and is used in the study of kineti-
cally constrained models to explain the glass transition [25-28]. The average
dynamical activity is denoted (k)# and is defined as follows

(kK)z =Y, A(X)wx, =) A(x)Rs. (2.6)

x#yeE xeE

We will see in Section 7.5.2 that activity can be used to study models with
metastable phases, and how these can give rise to large fluctuations.

2.5.2 Currents

Currents are another widely used class of observables, that are antisym-
metric under time reversal, i.e. ay, = —a,,. We denote generalised currents
by

Ji = Z]t(x/y)' (2.7)

X<y

The individual currents J;(x,y) = ax,(Ki(x,y) — Ki(y, x)) describe the net
accumulation of the observable from the contributing (x,y) pair. Typically
currents are used to describe physical systems interacting with some envi-
ronment [74] which drives transitions between states. One example is the
electrical current in a quantum dot [75] where the weights correspond to the
electron charge. Currents are also used in biochemistry, particularly in the
description of cell energy metabolism [76]. In contrast with counting observ-
ables which relate to the relaxation of stochastic systems, currents charac-
terise the reversibility [30, 33]. This link between driving transitions and re-
versibility takes the form of the thermodynamic uncertainty relations (TURs)
which we will discuss in Chapter 3.

We demonstrate the behaviour of dynamical observables by consider-
ing the following process. Consider a four-site random walk with periodic
boundary conditions. The system jumps clockwise with rate ¢ and anti-
clockwise with rate w. Define the current such that a,, = 1 for clockwise
transitions and ay, = —1 for anticlockwise transitions, this type of current
is often known as the particle current. The particle current will converge
to (a)r = Lyey(A(x)y — A(y)w). In the cases where v = w the system
is an unbiased random walk and the net average accumulation will be 0.
Figure 2.1 shows the particle current and for comparison the dynamical ac-
tivity, which is non-decreasing and has a positive asymptotic average (cf.
Equation (2.6)).

10
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A(t)/t

Figure 2.1: Trajectories of an unbiased random walk in a four-state system: in the
case where v = w = 6 the dynamical activity (full/blue) converges

to its asymptotic average (dashed/black), whilst the particle current
(full/red) converges to its average value of zero (dotted /black).
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Figure 2.2: Trajectories of a biased random walk in a four-state system: in the case
where v = 6 > w = 2 the dynamical activity (full/blue) and the par-

ticle current (full/red) converge to their respective non-zero averages

(dashed /black) and (dotted /black).
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Note also that contrary to counting observables, currents can accumulate
negative values. To observe a non-zero current, we introduce a bias such
that there is a tendency for the system to favour clockwise jumps, i.e. v >
w. As we see in Figure 2.2 in addition to the dynamical activity having a
positive average, so does the particle current, which reflects the bias in the
system.

2.6 FIRST PASSAGE TIMES

So far we have only focused on the fixed-time ensemble, that is we con-
sider the process of accumulating some observable as trajectories of length
t evolve. There is another. Instead we can consider trajectories with a fixed
threshold value of the observable in question and study the process of
the time taken to first pass this threshold. This “first passage time” fluc-
tuates about some average and has much of the same behaviour as the
fixed-time ensemble. In fact, the fixed-time and “fixed-observable” ensem-
bles are equivalent [32, 49] in the sense that the statistics of one ensemble
can be obtained from the other. Naturally, given a choice of multiple ap-
proaches it is logical to choose that most suitable to the problem in hand.
In many cases it is more practical to time some process until the threshold
is reached than the other way round (computing some observable level for
trajectories of fixed t). One example is the enzyme-mediated reaction de-
scribed in [50] where measuring the first passage time (FPT) for the reaction
to reach some desired fluorescence bypasses a more complicated scheme
of measuring reaction product concentration levels for a range of trajecto-
ries. First passage problems feature in other fields such as economics [51]
— computing the likelihood of an investment being lost; search processes
[52, 77]; epidemiology [53, 78]; and in various physical systems [54-56, 79].
It is therefore important to study first passage times in the same way we
do in the fixed-time ensemble. The study of FPTs is more involved than
of time-integrated observables due to the fact that for more complicated
observables like currents, each transition can contribute negatively to the
accumulated value. For that reason we consider FPTs for the subset of all
trajectory functions known as counting observables (which include funda-
mental quantities such as the dynamical activity), defined in Equation (2.5).

Definition 2.4 (First passage time (counting observable)). The first passage
time (FPT), denoted Ty (k) for a counting observable Ky ; corresponding to the value
k € IN is defined as

Tm(k) = %];15{1’ . KQ[,t = k}

In particular, the first passage time for the total activity corresponding to
the level k is given by the sum of the first k holding times

12
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We have seen some of the notions used when working with classical Markov
processes in both discrete-time and continuous-time. Furthermore, we have
defined the stochastic quantities of interest in this thesis: dynamical observ-
ables and first passage times. In the next chapter we will describe how one
would begin to study these using large deviations theory.



LARGE DEVIATIONS

Anyone who has entered The National Lottery or who lives in proximity
to a fault line may be concerned with the probability of rare events. Fortu-
nately there is an entire branch of mathematics, large deviations theory, dedi-
cated to addressing these concerns. These tools allow us to make statements
about how the probability of events which are atypical decays with respect
to some parameter (e.g. system size). This is particularly useful when — by
definition of events being “rare” — sample sizes of the events may be very
small and usual statistical techniques such as Monte Carlo methods, maxi-
mum likelihood estimation and Bayesian inference are no longer effective.
The more familiar strong law of large numbers (SLLN) gives us the limiting
statement for partial sums S, = X; + --- + X, of i.i.d. random variables

with mean y and variance o

Let Z be the standard normal distribution. The central limit theorem (CLT)

(T\l/ﬁ(Sn — un) — Z inlaw

captures the fact that the empirical average concentrates around y with stan-
dard deviation of order 1/+/n. Large deviations are any event which differs
from this average by at least an amount of order n. The SLLN guarantees
that the probability of this deviation will vanish and large deviations the-
ory provides us with the rate at which this vanishing occurs. This rate is
given to us in the form of the large deviation rate function, which describes
both rare and typical statistics of the distribution. Large deviations theory is
applicable to other objects than the empirical average, such as the empirical
and pair empirical measures, and goes beyond i.i.d. with results for Markov
processes and other dependent sequences.

There are many books, reviews and other works comprehensively for-
malising large deviations theory. This chapter aims to present the main
ideas used in this thesis. Mathematically formalised over the course of the
20t century, large deviations theory constitutes the large deviation princi-
ple (LDP) followed by a plethora of results calculating rate functions and
proving LDPs in specific situations. We proceed in a similar fashion. We be-
gin in Section 3.1 with the definition of the LDP. In Section 3.2 we state
one of the original results, Cramér’s theorem, for i.i.d. random variables
and demonstrate with an example. Cramér’s theorem can be generalised to
weakly dependent sequences in R? via the Gartner-Ellis theorem (Section

3.3)

14
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Large deviations is the mathematical basis of much of statistical mechan-
ics [44] in both equilibrium and non-equilibrium physics. In Section 3.4 we
go down the non-equilibrium route where the tools and methods used to
compute rate functions in the case of dynamical observables of Markov
processes is stated. We then finish by introducing the thermodynamic un-
certainty relations (TURs) which are key results in this field and were first
proven using large deviations.

3.1 LARGE DEVIATION PRINCIPLE

The large deviation principle uses upper and lower bounds to characterise
the exponential decay of a sequence of probability measures with respect to
their index n. We use the definition in [42, p. 5].

Definition 3.1 (Large Deviation Principle). Let X' be a Polish space and let
[: X — [0,00] be a lower semicontinuous mapping. A sequence of probability
measures (i, ) on X satisfies a large deviation principle (LDP) with rate function I
if for any Borel measurable set I’ C X

—inf I(x) < lim inf1 log uy (T') < limsup % log py (T) < —inf I(x),

xel e n—00 xel

o —_
where I' denotes interior and I the closure of I'. Furthermore, I is called good if it
has compact level sets.

Qualitatively, Definition 3.1 outlines that the decay of the measure y,, on
the event I' occurs with rate according to the least unlikely outcome in I

[42].

Remark 3.2. If for some I' the rate function I is continuous Vx € I, the upper
and lower bound in the definition coincide and reduce to

lim llogyn (T') = — inf I(x).

n—+4oo 1 xel
Note that this is only in general the case for such continuity sets of I.

Remark 3.3. The parameter n need not be a member of IN, the sequence
can be replaced with a a probability measure i, indexed with a continuous-
time parameter ¢ > 0 and the limits replaced by a limit with respect to t.

Remark 3.4. Rate functions are unique, and a good rate function implies
that there is at least one point x € X’ such that I(x) = 0. Furthermore, if the
rate function is strictly convex, the zero of the rate function is also unique.
Throughout this thesis, and in many other cases this zero corresponds to
the expected value obtained from the SLLN. However, this is not always the
case; we refer to [44, 80] for details.

Definition 3.1 is rarely used directly; generally, large deviation statements
rely on other results which tell us whether a LDP holds and the form of
the corresponding rate function. The first of these we discuss is Cramér’s
theorem.

15
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3.2 CRAMER’S THEOREM

Originally derived in [81], we state the formulation in den Hollander [43,
Theorem I.4].

Theorem 3.5 (Cramér). Let (X;) be i.i.d. random variables taking values in R,
with law P and expectation E with respect to P satisfying

E[e"%1] < 00, Vu € R.

Let P, denote the law of S, = Y_;' 1 X;. Then the sequence (IP,,) satisfies the LDP
and for all a > E[X;]

lim 1logan (Sp > an) = —I(a)

n—+oo0 1

where
I(x) = sup {xu — log]E[e”Xl]} .
u€R
Consider the following example. Take (X;) to be i.i.d. Bernoulli random
variables withlaw P(X; =0) = pand P(X; =1) =1—p.Let S, = Y/"; X;.
The moment generating function of Xj is

E[e"*] = p+ (1 - p)e"

which is finite Vu € IR. The SLLN ensures that the sample mean Sn—” converges
to E[X;1] = 1 — p. Cramér’s theorem then tells us that

lim logP, <Sn" > a) = —1I(a)

n——+00

where the rate function I(x) is

+o00 otherwise.

I(x) = {xlogpx+(1X)log(1p)(1x) —logp(1—p) ifxel01]

A real-world application is a bag with 100 coloured marbles, 70 of which are
red and 30 blue. Marbles are drawn at random and replaced. We seek the
probability after 100 draws of at least 60% being blue. We have E[X;] = 0.3
so after 100 draws we expect this probability to be very small. The above
rate function gives

5100 —100197(0.6)
> 06| ~ 07(06) .
]Pn(loo _06> e (3.1)

This gives a probability of approximately 4.6 x 107 of drawing at least
60% blue. As expected, this event is extraordinarily rare. It would not be
practical to calculate this via Monte Carlo sampling and the power of large
deviations lies in being able to quantify these events despite them being
extremely unlikely.

16
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Figure 3.1 shows the whole rate function for the marble setup. Note that
in the region outside the dashed lines the rate function exists and is equal
to oo. Recall that Cramér’s theorem is valid for a > E[X;] and gives us
the rate function for P, (S, > an). The left deviations, i.e. P,(S, < an) in
the figure are also calculated from Equation (3.1) because of the symmetry
of the problem, since I,(x) = I;_,(1 — x). The “typical” behaviour of S,
corresponds to the minimum of [ at x = 0.3.

15

Figure 3.1: Rate function for sum of i.i.d. Bernoulli random variables

3.3 GARTNER-ELLIS THEOREM

If we wish to apply large deviation results to Markov processes we require
more powerful results than for i.i.d. sequences. The Gartner-Ellis theorem
[82, 83] extends Cramér’s theorem to dependent sequences requiring some

assumptions on the limiting properties of the moment generating function.

Denote by Dy the set Dy = {u € R? : A(u) < oo} and its interior by Dj.

To state the theorem we first require the following [42, Definition 2.3]:

Definition 3.6 (Essentially smooth convex function). A convex function A :
R? — (—o00, 00| is essentially smooth if

a) ZODA is non-empty
b) A(-) is differentiable throughout D A

c) A(-) is steep, namely limy,_, o |V A(uy,)| wherever (1,)yen is a sequence

in D converging to a boundary point in Dx.

17
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Using Definition 3.6 we state [42, Theorem 2.3.6].

Theorem 3.7 (Gértner-Ellis). Let Z, € R? be a sequence of random vectors with
probability law w,. Assume the limiting logarithmic moment generating function

A(u) = T loglE [o“%)]

n—-+4oo 1N

exists and whose origin is contained in D A. Furthermore, if A is an essentially
smooth, lower semicontinuous function, then u, satisfies a LDP with good rate
function
I(z) = sup {(u,z) — A(u)}.
ueRf

Theorem 3.7 allows us to prove a LDP for dependent sequences from prop-
erties of the limiting logarithmic moment generating function, which we do
in Theorems 7.4 and 8.5. Furthermore it does not demand that the limit-
ing logarithmic moment generating function is finite everywhere, just that
it converges in a neighbourhood of the origin. We also note that there are
cases where the Gértner-Ellis theorem does not hold, but a large deviation
principle does; however, such cases are not considered here.

3.4 RATE FUNCTIONS FOR DYNAMICAL OBSERVABLES

There are two ways of studying the large deviations of observables on
Markov processes. The first, a more dynamical approach, is the “level 2.5”
of large deviations [44, 84]. The other is closer to the thermodynamic for-
malism for equilibrium physics [26, 31] and uses a “tilted” (also known as
perturbed) generator. Recall from Section 3.4 a dynamical observable has
the form
A(t) =) axKi(x,y)
x#y

where K;(x,y) counts the number of x — y transitions up to time ¢, and
each transition contributes weight a,, € R. We seek to calculate the rate
function of the time-averaged quantity a = A(t)/t.

3.4.1 via level 2.5 of large deviations

The next theorem allows us to derive the LDP from transformations of the
state space via a contraction [42, Theorem 4.2.1].

Theorem 3.8 (Contraction Principle). Let X' and Y be Hausdorff topological
spaces and f : X — Y a continuous function. Consider a good rate function
I:X — [0,00]. For each y € Y define

I'(y) = inf{I(x) : x € X,y = f(x)}

where the infimum of the empty set is taken to be co.

18
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1. Then I' is a good rate function on Y.

2. If the family of probability measures (U, )neN on X satisfy a LDP with rate
function I, then the family of probability measures (yn o f 1) on Y satisfy a
LDP with rate function I'.

Theorem 3.8 can be used to compute the rate function for the observables
in Section 2.5. Large deviations in the context of Markov processes can be
categorised into three “levels” [44, 85]. Level 3 is that of trajectories w, with
rate function I(w), the LDP of which was proven in [86-89]. Level 2 is that of
the empirical measure m = M;/t, and can be obtained via the contraction

I(m) = igf{[(w) DMy = m}

where m,, denotes empirical measure of the trajectory w. Level 1 is the level
of time-extensive observables. To study observables which are functions of
fluxes, level 2 is not sufficient [9o]. There is an intermediary level between 2
and 3 known as “level 2.5” which has an explicit form and contains enough
information to contract down to functions of jumps of the process. Define
the empirical rate k be

k(x,y) = Ij\t/l(tx('xy))

The joint rate function for m and k is [84, 91]

18 = ¥ (o) [kt 10g (S2) —kta) +].

x,yeE wxy

The tuple (m, k) belong to the space

B = {Ml(a x REFITV Y (m(y)k(y, x) - m<x>k<x,y)>}

y€EE

where Y, (m(y)k(y, x) — m(x)k(x,y)) is the stationary condition, which
ensures m, k are such that there is no net flow to any particular state. Once
we have the level 2.5 rate function, we can contract to level 1. Using Theorem
3.8, the rate function of a dynamical observable of the form in Definition
2.3 is obtained variationally

I(a) = inf {I(m,k) :(mk)eB,a=") axym(x)k(x,y)} .

x,yeE

3.4.2 wvia tilted generator

This is the typical method for studying large deviations of dynamical sys-
tems. The moment generating function of a dynamical observable is of the
form [31, 44, 48]

E, [e“A(t)} = (v, e™1) (3.2)
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where L, is the tilted generator

L, = ) (" — Dwyy |x) (y| + L. (3:3)
X7y

The e"*v terms introduces a bias on the jumps which contribute to the ob-
servables. For example, if the observable of interest is the dynamical activity
(the case where ay, =1, Vx,y € E), the generator reads

L.ec =¢“W—R

where we recall that the set of all possible jumps is denoted &. Using Perron-
Frobenius theorem (cf. Theorem 5.5), the limiting logarithmic moment gen-
erating function for a general observable is then

A(u) = max {R(z) : z € Sp(Ly) }.

The rate function for the dynamical observable can then be found by per-
forming the Fenchel-Legendre transform (Theorem 3.7).

As we can see, there are many theorems involved in the calculation of
rate functions; but, the problem for our situation still reduces to either an
optimisation or an eigenvalue problem. The tilted generator can only be
exactly diagonalised for small system sizes; however, in many-body physics
there are numerical techniques designed to find extremal eigenvalues of
such objects, such as density matrix renormalisation group (DMRG) [45, 47,
92] and projected entangled pair states (PEPS) [46, 93]. These techniques can
reveal phase transitions for different stochastic models [7, 28].

Although we have considered dynamical observables here, large devia-
tions can be applied to other functionals as well, in particular, to first pas-
sage times (FPTs). The rate function of a FPT for a given observable can be
computed from the rate function I(a) of the observable itself, and trans-
formed via an equivalence of ensembles relation [48-50]. The large devi-
ations of first passage times is the subject of chapters 7 and 8 where we
prove a large deviation principle for FPTs of counting observables (cf. Equa-
tion (2.5)) and provide an explicit form of the rate function without having
to compute that of the observable. Naturally, this approach still has the
same scaling drawbacks as for dynamical observables.

Since it is rarely possible to find an analytical expression for a rate func-
tion — at least one which is not in some variational form — one may wish
to find bounds which provide an analytical expression whilst still capturing
the physics of the system. In the next section we will discuss upper bounds
on rate functions and their consequences.

3.5 THERMODYNAMIC UNCERTAINTY RELATIONS

Dynamical Observables of the form in Definition 2.3 obey a large devia-
tion principle with a continuous rate function. Definition 3.1 shows that the
probability of rare fluctuations decays exponentially with time ¢ at rate I(a).
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3.5 THERMODYNAMIC UNCERTAINTY RELATIONS

An upper bound I such that Va, I(a) > I(a) implies that the probability of
fluctuations decays slower than that given by I(a).

. 1 A(t) -
nlirfw—ﬁlogPﬁ (t > a) =I(a) > I(a).
Let I(a) have some of the properties that the rate function I(a) has, i.e. that
they share the same root at (a) » and have a first derivative of 0 (which is the
case for rate functions when they are obtained via Gartner-Ellis [44]). The
upper bound I then gives a lower bound on the variance of the observable.
This is more often expressed as relative error or relative uncertainty — the
variance divided by the mean squared. We define the relative error €% of A
as the ratio between the variance of A and its average squared multiplied
by t:

& = t%gﬂ - th?;)g”. (3.4

7T s

Postulated in the context of biomolecular processes [37] and proven via
level 2.5 [34], the TUR provides a lower bound on the relative error

2
2

< €

SN

where L7 = Y, t(x)wsy log(7(x)wyy /7 (y)wyx) is the average entropy
production rate in the non-equilibrium stationary state (NESS) and e% is the
relative error specific to currents.

What is notable about the TUR is that the variance bound (and the rate
function bound from which it is derived) are formulated in terms of X5,
which is easier to compute than the methods for calculating rate functions
explicitly. Secondly, the relationship between the average entropy produc-
tion and size of fluctuations has a physical meaning: better precision re-
quires more dissipation. For example, in living cells, the maintenance of
the concentration of adenosine triphosphate (ATP) is a non-equilibrium sys-
tem [76] where ATP is both produced and removed. The TUR states that the
entropy production of the system must be large enough to ensure the con-
centration level stays within the required range. The entropy production of
a process can be used to estimate the value of the observable’s precision [37].
An alternative setup is that dissipation can be inferred from observations of
accessible currents [9]; furthermore, observations of such systems as molec-
ular motors [9, 36] can provide bounds on the thermodynamic efficiency of
the process.

This formulation in terms of entropy production is a bound only for cur-
rents. There are TURs for more general dynamical observables. The activity
TUR demonstrates the tradeoff between fluctuations and the average dy-
namical activity (k)# (cf. Equation (2.6)). Because of this, it is sometimes
referred to as the kinetic uncertainty relation (KUR) [48]. The recently dis-
covered persistence-time TUR [38] is expressed in terms of the average per-

sistence time (T)» = Y ¢k % This is also known as the clock uncertainty
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3.5 THERMODYNAMIC UNCERTAINTY RELATIONS

relation (CUR) and was formulated via the Cramér-Rao bound. It can alter-
natively be derived by large deviations methods [40]. The CUR was shown
to always be at least as tight as the KUR:

1
(k)

Furthermore, the CUR is saturated by the observable a,, = R,/ L

These lower bounds on fluctuations are often collectively referred to as
TURs or TUR-type bounds as they are all one-sided lower bounds on the
same object — the relative error. There is now a large literature on the TUR
[33, 74, 94—99] and they have been extended to finite time [100, 101], discrete
time [102] and for quantum Markov processes [61, 63, 64, 103]. The TURs can
also be derived for FPTs [48, 50]. Note that the quantities used in the TURs
do not depend on the observable in question. Whilst this has an interesting
physical and useful meaning, it is not possible to infer solely from the TUR
how the observable in question affects fluctuations. Moreover, since they
are lower bounds, they do not limit the size of fluctuations, which could be
arbitrarily worse, so by themselves are not informative when estimating the
size of the relative error. We will provide in Chapter 6 “inverse thermody-
namic uncertainty relations” which are upper bounds on the relative error,
and are formulated in terms of quantities which do depend on the observ-
able. In chapters 7 and 8 we extend this work to inverse TUR-type bounds
for FPTs for classical and quantum Markov processes respectively.

< (1) < €5

>
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CONCENTRATION INEQUALITIES

Concentration inequalities are upper bounds on the probability of a ran-
dom variable deviating from a certain value (e.g. its average). They offer
finite-regime guarantees on deviation probabilities and are typically used
in situations with no analytical result available. In these cases, we wish our
upper bound to contain simpler quantities than the distribution. These are
usually quantities such as the expectation or variance of the random vari-
able itself. Whilst the law of large numbers gives guarantees of convergence
for sums of random variables, concentration inequalities quantify the rate
of this convergence for finite sample averages. Concentration inequalities
have broad application in statistics, machine learning, economics and risk
management [68, 69, 104].

In this chapter we will outline some of the common techniques used in
literature and this thesis for deriving such bounds. Sections 4.1 and 4.2 are
an accelerated view of chapter 2 in [104] which contains many more details,
examples and other results. Concentration inequalities have their roots in
the Markov inequality, and we will see by imposing various restrictions a
range of bounds can be derived. We will build up to the Cramér-Chernoff
method (Section 4.1.3) which forms part of all the concentration results in
this thesis. By applying the Cramér-Chernoff method to sums of random
variables, in Section 4.2 we will state famous results in these cases, notably
the Bernstein bound, since the bounds we derive in chapters 6-8 are of
Bernstein-type.

Although valid for finite samples, in the large deviation regime concen-
tration inequalities provide lower bounds on the rate function (Section 4.3).
In deriving these lower bounds we use operator perturbation theory and
give an overview of this in Section 4.4. To highlight the main ideas, we will
introduce concentration inequalities for random variables with the assump-
tions they were originally derived for: independent random variables, but
in Section 4.5 we lift this independence assumption, specifically for the case
of Markov processes.

We begin by stating that a concentration inequality denotes an upper
bound with respect to a random variable Z of the form

P(Z-E[Z] >7), VYv>0,

which we refer to as right deviations. We assume that the expectation E[Z]
exists. Bounds on left deviations are upper bounds on

P(E[Z]-Z>1), Yy>0.

Although our later results also provide bounds for left deviations, for sim-
plicity we will consider only right deviations in this chapter.
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4.1 ROADMAP TO THE CRAMER-CHERNOFF METHOD

4.1 ROADMAP TO THE CRAMER-CHERNOFF METHOD
4.1.1  Markov’s inequality

As mentioned above, the first step in understanding concentration theory
begins with the Markov inequality. Let Y € R>¢ be a non-negative random
variable. Then, Vy > 0, Markov’s inequality states that

Note that by applying to Y = |Z — [E[Z]| we obtain our first concentration
inequality. However, the upper bound in the above only contains the expec-
tation of Y, so will miss influences from the tails of the distribution. As such,
the basic Markov inequality is pessimistic. We can improve the situation by
instead considering functions of Y. Let Y € X C Rand ¢ : X — R>( be a
non-negative, non-decreasing function, then Vy € X with ¢(y) > 0

Elp(Y)]

¢(r)
In practice, we then choose a ¢ which is convenient to the problem in hand.
for example, if we now take ¢(y) = 77 where g > 0 and Y = |Z — E[Z]|,
then Vv > 0

P (Y >7) <P(¢(Y) = ¢(7)) <

E[|Z — E[Z]]]
Y1

and we arrive at the generalised Markov inequality. By considering higher

order moments of Y, we can control the bound by choosing an optimal

q, if E[|Z|7] < oo, Vg > 0 . This results in an upper bound containing

quantities which better represent the shape of the distribution of Z. We

state the specific case of ¢ = 2 in the section below.

P(|Z-E[Z]| =z 7) < (4.1)

4.1.2  Chebyshev’s inequality

If in Equation (4.1) we take ¢ = 2 we arrive at the special case of Cheby-
shev’s inequality
v(z)

7
We note Chebyshev’s inequality as the bound is in terms of the variance
V(-) of the random variable, which is often known or of interest. Indeed, if
Z is the sum of independent random variables the variance of Z is just the
sum of the individual variances.

P(|Z-E[Z]| =) <

4.1.3  Cramér-Chernoff method

One can consider different functions instead. Conveniently if we choose ¢
to be of the form ¢(x) = ¥, this gives for real valued Z, for all u > 0

P(Z > x) < ¢ "E[e"] = exp (—(ux — 92 (u))) (4.2)
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4.2 SUMS OF INDEPENDENT RANDOM VARIABLES

where ¢ (1) = logE[e"?]. Let

¥z(x) = sup {ux —¢z(u)}, (4.3)

u>0

then Equation (4.2) can be optimised in u by

P(Z > x) < exp (—9z(x)).

As is remarked in [104], if E[Z] exists then the supremum in Equation (4.3)
can be taken over all # € R. The Cramér-Chernoff approach is central to
many results in this thesis. In the concentration inequalities we derive, we
introduce an extra step: we upper bound the moment generating function
(MGF) with another function of exponential form. By doing this we obtain
an exponentially decaying upper bound in terms of the parameter 1 which
we then optimise to obtain the final concentration inequality. We detail this
specific approach more in the proofs of our results in chapters 6-8.

4.2 SUMS OF INDEPENDENT RANDOM VARIABLES

The above Cramér-Chernoff method was invented for the study of sums of
independent random variables. It takes advantage of the product rule for
the MGF: if Xj,..., X, are independent random variables with E[X;] < oo
and E[e*Xi] < co for some non-empty interval I, for i < n and u € I, then

Ps, (1) = iloglE [e”(xi*]E[Xf])] , Yuel
i=1

this allows questions about the sum S, = 1y | (X; — E[X;]) to be turned
into questions about the individual X;. We state the first example of these
in the next section.

4.2.1  Hoeffding’s inequality

For the simple assumption that the X; are bounded, the Cramér-Chernoff
method is used to derive Hoeffding’s inequality [104, Theorem 2.8].

Theorem 4.1 (Hoeffding’s inequality). Let X, ..., X, be independent random
variables where X; takes values in [a;, b;] almost surely. Let

M:

Sp = % . (Xi —IE[XZ'])

I
—_

and denote the law of S, as IP,,. Then for every v > 0,

292 )
P, (S, > <exp|-n*——>""1 .
(Sn27) < o (g G
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Note that the exponent decays O(n), this bound quantifies how fast de-
viation probability decays as the sample size increases, with few other as-
sumptions. Whilst widely applicable, the distribution may be concentrated
in a region much smaller than Y/ ;(b; — a;). Other concentration inequal-
ities improve on this (for more bounds see [104]). We will look at one of
these: Bernstein’s inequality.

4.2.2 Bernstein’s inequality

For simplicity we will consider the i.i.d. and centred case, although Bern-
stein’s inequality is valid for independent and not necessarily identically
distributed random variables. This is a generalisation of Hoeffding’s in-
equality to unbounded random variables, but instead requires the moments
to be bounded. We state the theorem below ([104, Theorem 2.10]).

Theorem 4.2 (Bernstein’s inequality). Let Xy, ..., X, be i.i.d. random variables
with B[X4] = 0, E[X?] < b? and |X4| < c almost surely. Furthermore, let

with law IP,,. Then for every v > 0,

2p2 ([ 29c
P, (Sp > 7) <exp <—n7CZh <l;y2>> ,

where h(x) := (V1+x+35+1)"L

Quantities in concentration theory such as b? are sometimes referred to
in literature as the variance proxy [68, 69] in that they contain information on
the shape of the distribution, and are used in upper bounding the variance.
Throughout these works we will see similar quantities in their respective sit-
uations. The function / is a result of the Fenchel-Legendre transform done
to optimise the bound in the Cramér-Chernoff method (see Equation (4.2)).
In cases where the distribution has a wide maximal range but heavy con-
centration about its mean, the Bernstein inequality will likely outperform
Hoeftding’s inequality.

4.3 CONNECTION TO LARGE DEVIATIONS

It should be clear that the exponential upper bound in Theorems 4.1 and 4.2
appears to have a similar form to what one would expect from the definition
of the large deviation principle (Definition 3.1). Furthermore, the use of the
logarithmic moment generating function in the Fenchel-Legendre transform
in Equation (4.3) suggest a strong link between the two. This should not be
a surprise since in both large deviations and concentration theory we are
talking about the same objects: the deviations of some random process from
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4.4 PERTURBATION THEORY IN FINITE-DIMENSIONAL SPACES 27

its average. The difference is with a large deviation result we have equality
only in the limit, whereas concentration inequalities provide a bound in the
finite regime. We can however obtain a lower bound on the large deviation
rate function directly from concentration inequalities. Consider the devia-
tions of a random variable Z, which is a function of n random variables
and obeys a strong law of large numbers (SLLN) so that lim, 4 % = .
Denote the law of Z, by IP,, and its expectation [E,. We consider right devi-
ations although similar arguments can be made for left deviations. In this
case we are interested in the values z = y + <, where v > 0. The Chernoff
bound for Z,, is, Vu > 0

Z
P, (%22 comp o) ”

If the sequence of measures on Z, satisfy the condition needed for Gértner-
Ellis theorem (Theorem 3.7) then a large deviation principle (LDP) holds

) 1 Zy
el on - _ - _ _
nngrrloo . log P, ( P z) I(z) igﬁ{zu Au)}
where I(z) is the rate function of a value z and A(u) the corresponding
limiting logarithmic moment generating function (cf. Theorem 3.7). Taking
the same limit of the R.H.S. in (4.4) gives

.1 _
ngrfoo . loge "ZE,[e"4] = — (zu — A(u)).
The Chernoff bound in (4.4) is optimised by taking the following supremum
(recall from Section 4.1.3 that the supremum can be taken over all u € R)

—sup{zu — A(u)} < — (zu — A(u)).
ueR
The Fenchel-Legendre transform in the above inequality is equal to I(z), the
rate function obtained from Gartner-Ellis.
The above shows that if a large deviation principle holds, then the opti-
mised bound from the Cramér-Chernoff method coincides with the large

deviation result. If A(u) is inaccessible, but we can obtain a function A (u)
such that A(u) > A(u), Vu, then

I(z) = sup{zu — A(u)} > sup{zu — A(u)} := I(2).
u€eR u€eR

and the function I(z) is a lower bound on I(z), Vz.

4.4 PERTURBATION THEORY IN FINITE-DIMENSIONAL SPACES

Perturbation theory as a general term concerns the treatment of systems
near to some known and exactly solved system. Problems tackled with per-
turbation theory are found ubiquitously in physics and mathematics. In
our context, this form of perturbation theory involves the computation of
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eigenvalues of a linear operator which deviates slightly from a simpler one.
For more details on the background of this theory and more general cases
see [105]. Here we provide some of the ideas relevant to Markov processes;
in particular, where the convergence requirements of the perturbation ex-
pansion come from. We are interested in the case for a linear operator T
on a finite-dimensional vector space X with spectrum Sp(T). Consider a
perturbed operator T(x) of the form

T(x) = T+ xTD 4+ 22T7@ 4

and an eigenvalue A € Sp(T) of the unperturbed operator T = T(0), with
multiplicity m, = 1. We can ask whether the eigenvalues A(x) of T(x) have
a similar form, i.e. that they can be written as

=A+ Y A (4.5)
n=1

and if so, when the series converges. Let R(&,x) := (T(x) — ¢)~! be the
resolvent of T(x), with R(¢,0) := R(¢), which is analytic on C \ Sp(T(x)).
Therefore we can write

R(Ex) = +2fm 0, CEC\Sp(T(x))  (46)

for some coefficients R(")(&). The ability to write (4.5) depends on the series
in Equation (4.6) being uniformly convergent for all |x| < ry for some ro,
and for all ¢ in a disc I', containing only one eigenvalue A. The projection
P(x) corresponding to the eigenvalues of T(x) inside I' can be written as

ZNZ/RCX

and it can be shown that dim P(x) = m, = 1, so the only eigenvalue of
T(x) inside T is A(x). The difference between this perturbed eigenvalue
and A can be written as

Ax) = A = tr ((T(x) = A)P(x)). (47)

The series (4.6) is uniformly convergent in x if
Y "
n=1

with || - || the norm associated with the vector space X. We can construct the
required disc by denoting (&) the radius of convergence of the power series
in the above condition (4.8), for some ¢ € I'. Then to guarantee uniform
convergence for all ¢ € I' we take the minimum

TOIR(E)|| <1 4.8)

< 1o = mi .
x| < 7o Ié{lelpr(é)

This theory is very general, but there are some simplifications. In our case,
the vector space X is a Hilbert space, and the operator T is normal (in fact
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4.5 EXTENSIONS TO MARKOV PROCESSES

it is self-adjoint). This means we can apply perturbation theory for x in a
disc of radius rg which is calculated as [67]

ro=(2ad ' +¢)7!

where a = ||TW)|, ¢ is such that ||[T®"| can be bounded by a term in a
geometric series in the form | T"|| < ac"' and d = min, cgp 1)\ (A} {A — H}-
Once we have ry, Equations (4.7), (4.5) and (4.6) can be combined and with
further calculations [105] the terms in Equation (4.5) can be written as

n

RO,y (=P

p=1 P vt tvp=Lv;>1
ptepp=p—1, ;20

tr (TVls(ﬂl)’. -, TVVS(VP)) .

where SO = —P,5(" = 8", § = (T — I+ P)~! — P and I is the identity.

4.5 EXTENSIONS TO MARKOV PROCESSES

So far we have only looked at concentration inequalities for independent
random variables; however, there are numerous examples in statistics where
Markov dependence is required. These include Markov chain Monte Carlo
(MCMC), a numerical technique used to sample from complex distributions
[68, 106]. Another case is in epidemic modelling, where finite regime analy-
sis is used to determine the required sample size for success of “respondent-
driven sampling” [107] to sample from a hidden population. Markov pro-
cesses form the basis of some stock market forecasting models [108]; clearly,
guarantees in finite time are of interest here. There have been numerous
works extending Hoeffding and Bernstein’s inequalities to Markov pro-
cesses. Notably Glynn [109] and Lezaud [67] have concentration inequalities
on functions of states, whilst Bernstein-type [69] and Hoeffding-type [68]
further extend these to general state space Markov chains. These bounds
are mostly for irreducible, discrete-time Markov processes, with the excep-
tion of [67, Theorem 3.4] which is a bound for irreducible continuous-time
Markov processes.

Although we are interested in the continuous-time case, and in bounds
for functions of transitions as opposed to states, we will see that techniques
used in the above literature can be extended to our situation as well. With
the exception of the Hoeffding inequality in [109] — which was derived in
a different way — the bounds in [67-69] were derived via operator pertur-
bation theory, a background for which can be found in Section 4.4. Below
we summarise the method used in [67] to derive a concentration inequality
for functions of the empirical measure of reversible discrete-time Markov
processes. Recall a Markov process has finite state space E and expectation
E, with respect to some initial state v. Let f : E — R, with ||f]jec < 1. It
can be taken that the asymptotic average of f, 7(f) = Y .cp 7(x)f(x) = 0.
As we discussed in Section 4.1.3, finding an upper bound on the MGF is
enough to derive simple bounds via the Cramér-Chernoff method. Lemma
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4.5 EXTENSIONS TO MARKOV PROCESSES

3.1 in [67] states that the moment generating function in this case can be
written as the inner product

exp <Z _f(f(x»))

The perturbed transition operator P(u) = PE, where E,, is the diagonal ma-
trix with entries E,(x) = ¢*/(*). This inner product can be upper bounded
using Cauchy-Schwarz inequality

_1 1 1\" 1
(v, P(u)"1) = <1/, E,> <E5PE5) E5,1>

<cw) |E,?

E, = (v, P(u)"1).

1 n

1

1
2
E;

T

< C(v)e'r(u)".

In the above steps we switch to the L% (E) inner product wh1ch glves

C(v) := maxyeg {v(x)/m(x)}. Furthermore, the matrix EZPEE, in the re-
versible, finite state space case is self-adjoint, therefore its spectral radius
r(u) coincides with its norm. It is also similar to the original perturbed tran-
sition operator P(u) so r(u) is the spectral radius of P(u), and because of
Perron-Frobenius theorem is also an eigenvalue of P(u). The spectral radius
can be expanded in u (cf. Section 4.4 for details) where each coefficient of
u! is denoted (%),

T T

ru) =1+ ulr®,

In the derivation of Lemma 3.2 in [67] it is found that () = 0 (this cor-
responds to 77(f) which we took to be zero). Each coefficient r) is upper
bounded by some () such that r) < a(!).

r(u) <1+ Zu’rx(l)

=2
<exp (A(u)).

The function A(u) := Y5°, u'al!) is as an upper bound on the limiting log-
arithmic moment generating function. The final inequality was obtained
using that 1 + x < exp(x) and collapsing the bounded power series where
we are left with an exponential bound on the spectral radius, and therefore
also the moment generating function. When we combine the above with
Equation (4.9) we are able to derive a concentration inequality, and optimis-
ing in u completes the Cramér-Chernoff method.

For non-reversible Markov processes, P and therefore P(u) is not self-
adjoint in L2 (E), which is a requirement of the proof. This can be solved
by the introduction of symmetrised transition operators as in [67], or by the
usage of the Léon-Perron operator (Lemma 7.6) which is used to further
upper bound the Cauchy-Schwarz inequality with a self-adjoint operator
and allows the perturbative method to be applied. We also make use of the
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Léon-Perron version of transition operators in the classical and quantum
chapters (Definitions 2.2 and 5.7 respectively). The approach outlined in
this section can be applied to continuous-time Markov processes, and the
majority of our results consist of extending this further to derive concentra-
tion inequalities for both dynamical observables and first passage times.
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QUANTUM MARKOV PROCESSES

In this chapter we introduce the basic concepts and tools related to quan-
tum Markov processes, in particular, quantum counting processes. Quan-
tum counting processes are used to model detector clicks when an open
quantum system is continuously monitored via the environment [110]. Ex-
amples of such systems are optomechanical devices in magnetic field sens-
ing [111, 112], gravitational wave detectors [113] and atomic clocks [114].
In these examples the sensitivity of the quantum devices are exploited to
obtain extremely precise measurements.

Quantum Markov processes differ to classical Markov processes in that
whilst the system state undergoes an evolution, what is observed are the
emissions into the environment Throughout this thesis, the quantum sys-
tem will be finite-dimensional and its state space will be the Hilbert space
C?. Quantum states are represented by positive semi-definite matrices with
unit trace, that is p € My(C) such that p > 0 and tr(p) = 1. Observables
correspond to self-adjoint operators on the state space, i.e. x € M;(C) such
that x = x*. As in the classical case, there is a duality between states and
observables expressed by the fact that the expectation of an observable x
in the state p is tr(px). We can endow M,;(C) with the operator and trace
norms which provide natural distances between observables and states, re-
spectively:

4]

weci\{o} |lull

1 = tr(fx]).

[l =

We will state the formal definition of a quantum channel in Section 5.1,
which describes how states evolve in open quantum dynamics. In Section
5.2 we will describe quantum Markov semigroups and their unravelling
by counting measurements. Sections 5.3, 5.4 and 5.5 refer to mathematical
notions used in these works, including the non-commuting version of the
Perron-Frobenius theorem. Finally, Section 5.6 formalises counting observ-
ables in an analogous way to the classical setting.

51 QUANTUM CHANNELS

For any linear map & on M;(C) describing the evolution of observables
(Heisenberg picture), the unique corresponding evolution @, on states
(Schrodinger picture) is characterised by

tr(x®(y)) = tr(Px(x)y)

where @, denotes the predual of the map ®. As in the previous section, we
denote by ||P|lcw—se the operator norm on @ induced by || - || and analo-
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5.2 QUANTUM MARKOV SEMIGROUPS

gously for the trace norm. Every physical evolution of a quantum system is
given by a quantum channel.

Definition 5.1 (Quantum channel). A linear map ® : My(C) — My(C) is a
quantum channel if the following conditions are satisfied:

1. ®(1) = 1 (unitality),
2. @1y, () is positive for every n € IN (complete positivity)

where 1 is the identity matrix and Iy, (c) is the identity map on M, (C).
These conditions are equivalent in the Schrodinger picture to @, being trace
preserving and completely positive. These conditions mirror those satisfied
by classical channels/transition operators, but in the quantum setting com-
plete positivity is a stronger requirement that usual positivity, and we refer
to [115] for more details on the theory of quantum channels and the physi-
cal interpretation.

5.2 QUANTUM MARKOV SEMIGROUPS
5.2.1  GKLS generator

A quantum Markov semigroup is a family of channels (7;),-, acting on
M, (C) such that 7y = Iy, Teo Ts = Tiys for all s, t > Oand t — T;
is continuous. Such a semigroup describes (in the Heisenberg picture) the
dissipative evolution of a d-dimensional open quantum system, in physical
situations where certain Markov approximations pertaining to the interac-
tion with the environment apply. A fundamental result [116, 117] shows
that the generator £ : M;(C) — M;(C) (known as GKLS generator) of such
a semigroup takes the form

L:xv— —i[Hx]+) LixLi — %Z(LZ‘Lix +xL7L;), (5.1)
i€l i€l

where H € M;(C) is self-adjoint and L; € M;(C) with indices belonging to
a finite set I. Physically, H is interpreted as being the system hamiltonian
while L; describe the coupling to separate “emission channels” in the envi-
ronment. If the system is prepared in a state p and evolves together with the
environment for a time period ¢, then its reduced state is given by T (p).
On the other hand, if the environment is probed by performing continuous-
time counting measurements in each of the emission channels, then one
observes stochastic trajectories w = {(i1,t1), (i, t2), - - - } which record the
labels of the jumps together with the times between jumps.

Remark 5.2. A classical Markov chain can be embedded into a quantum
Markov process, by setting H = 0, I = €, and the jump operators L;; =
/@i |xj) (x;] for an orthonormal basis {|x]->};7:1.
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5.2 QUANTUM MARKOV SEMIGROUPS

5.2.2  Counting measurements

In this case one would like to know the probability of observing such a
trajectory and the conditional state of the system given this observation.
This is the subject of quantum filtering theory which plays an important
role in quantum technology and quantum control theory [57-60]. While a
full account of the system-environment unitary evolution and subsequent
counting measurement goes beyond the scope of this thesis, we employ
the Dyson series to convey an intuitive answer to the questions formulated
above. For this we decompose the generator as

L=Lo+T=Lo+) T (5.2)
i€l
where ,
Lo(x) =G'x+xG with G:=iH— 5 ;LfLi,
and

J(x) =) Ji(x) with Ji(x) = LxL;.
i€l
Note that J; is completely positive and L is the generator of the com-
pletely positive semigroup e“0(x) = e *xe®!. The Dyson expansion of Ty
(Schrodinger picture) corresponding to the split (5.2) is

+o0 k
T;, = etfor ¢ Z /Zk > e(t—Zizl i) Lo jik*etkﬁo* . jl,l*etlﬁo*dtl e diy.
k=1"7Li=1 s

By applying both sides to the initial state p we find that the evolved system
state p; = Tut(p) is a mixture of states corresponding to different counting
trajectories. Indeed, let us denote

Qt:{@}UUIkX {(tl,...,tk) € [O,t]k:iti gt}
i=1

k=1

the space of counting trajectories up to time ¢, and let us endow ) with the
natural o-field and denote by du the unique measure such that u({?}) =1
and u({(i1,...,ix) x B) is the Lebesgue measure of B for every (iy,..., i) €
1%, BC {(ty,...,ty) €[0,8): Y5 t; < t}. Then we can write

Tle) = [ el = [ Etw)a(w)n(dw)

where for each counting trajectory w = {(i1,t1),... (ix, tx)} € Q. The un-
normalised system state conditional on observing w is given by

3i(w) = (- ti)LO*jik*etlﬁo* o JiyeeC0 () (5.3)

while

(5-4)
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5.2 QUANTUM MARKOV SEMIGROUPS

represent the probability density, and the normalised conditional state, re-
spectively.

With this interpretation, the Dyson expansion expresses the fact that by
averaging over all the conditional states o;(w) one obtains the reduced sys-
tem state p;. Note that in order to avoid confusion, we use different symbols
for the conditional and reduced system states.

Based on Equations (5.3) and (5.4) we deduce that during time periods
with no jumps the conditional state evolves continuously as

e (01)
tr[esfo- (01)]”
and at the time of a count with index i the state has an instantaneous jump
T (1)
T
REACY)
In addition, the probability density for the time of the first jump after ¢ is

w(s) = tr[T.e” (0r)] = —tr[Lowe™ (o))

where we use the fact that 7 (1) + L£o(1) = £(1) = 0. We will now show
how to generate the count trajectories in a recursive manner which is remi-
niscent of the generation of trajectories of classical Markov processes. Given
a trajectory w = {(i1, t1), (i2, t2), . . . }, we denote by g the state immediately
after the k'™ count, with gy = p denoting the initial state.

0t =2 Qt4s :=

5.2.3 Generating quantum trajectories

The interarrival times and quantum trajectories can be generated recursively
with respect to k = 0,1,...: given ¢y we draw (01, ix+1, tk+1) as follows:

1. the (k + 1)th interarrival time f; 1 is drawn from the density
w(t) = —tr(Loe ™ (0r))

2. given t;1, the label iy is sampled from the following distribution:

()= = (P Lo (gy))
PUI= (@ Loveten B (gp))

- —1 —
@ = —Ly\T, ©:= Zl;cbj
j€

3. we define

C Tieae (et (o))
Qk+1 - t L .
tr(~7ik+1*(e k1 0*(Qk)))

The map @ := ) ;c;P; = —L; 17 appearing in step 2. is the analogue
of P in Chapter 2 and will play a central role in the following. Lemma 8.2
in Chapter 8 shows that £, is well defined and is equal to — [, ef“odt,
hence ® is a completely positive map. Moreover, using that £(1) = 0, one
has

O(1) =L, T(1) =L, Lo(1) =1,

hence @ is a quantum channel.

35



5.3 ERGODICITY

5.3 ERGODICITY

As in the classical case, establishing results on law of large numbers, large
deviations, or concentration bounds, requires some type of assumption on
the ergodicity of the dynamics. We now introduce two irreducibility as-
sumptions which will later be invoked in separate occasions in our results.

Hypothesis 5.3 (Irreducibility of £). The generator L is irreducible. This means
that there is no non-trivial projection P such that L(P) > 0 or equivalently, there
exists a unique strictly positive state ¢ satisfying L. () = 0.

Hypothesis 5.4 (Irreducibility of ®). The channel ® is irreducible. This means
that there is no non-trivial projection P such that ®(P) > P or equivalently, there
exists a unique strictly positive state o satisfying @, (o) = 0.

As in the classical case, there is a close connection between the generator
L and the channel ®. We will clarify this connection in Lemma 8.1, Chapter
8.

54 NON-COMMUTATIVE PERRON-FROBENIUS THEOREM

We refer to [42, Theorem 3.1.1] for the commutative case and to [118] for the
general case of C*-algebras (which includes the cases of our interest). Let A
be either L¥(E) or M;(C) and let ¥ be a positivity preserving map acting
on A. Note that in the quantum case (in our case A = M;(C)), A is not a
commuting algebra hence Theorem 5.5 is referred to as “non-commutative”.
In the classical case, @ acts on an algebra of functions, whose pointwise
product is commutative. ¥ is said to be irreducible if there exists no non-
trivial projection p € A such that

Y(p) <ap (5.5)

for some positive constant «.

Theorem 5.5 (Perron-Frobenius). Let r be the spectral radius of Y. The following
statements hold true.

1. v € Sp(Y) and there exists x € A, x > 0 such that ¥ (x) = rx.
If Y is irreducible, then one has some further results.

1. ris a geometrically simple eigenvalue;

2. x is strictly positive and is the unique positive eigenvector.

Another important result is the Russo-Dye theorem.

Theorem 5.6 (Russo-Dye). ¥ attains its norm at the identity of A, i.e.
[Flloose0 = 1T (€)oo
where e is the identity element (1 or 1 for L (E) and My(C) respectively).
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5.5 KUBO-MARTIN-SCHWINGER INNER PRODUCT

There are infinitely many inner products induced by the stationary state ¢
of ®; the choice we adopt is known as the Kubo-Martin-Schwinger (KMS)
inner product. We endow the following inner product to the Hilbert space
structure of M;(C):

(X, y)o = tr(ff%x*a%y), x,y € My(C)

and we denote it by L2. The norm with respect to this inner product will be
denoted by ||x||s. The KMS inner product allows us to define the trace of a
map & : My(C) — M,;(C) by

d2

TR(E) = Y (xi, E(x:)) o

i=1

for an orthonormal basis {x;} of M;(C). The adjoint of an operator £ with
respect to this inner product can be expressed in terms of the predual map
&, as

Efx) =T 20&,0 T%(x) (5.6)

where I'¥(x) = 0?xc” for every a € R.

Given a quantum channel ® with invariant state ¢, its absolute spectral
gap ¢ is defined as 1 minus the square root of the second largest eigenvalue
of the multiplicative symmetrisation of ®, namely Pt P. As with its equiva-
lent in the classical case, the proof of the concentration bound in Theorem
8.6 will make use of the following quantum version of Definition 2.2.

Definition 5.7 (Quantum Leén-Perron operator). A quantum channel &, on
L2 is said to be Leén-Perron if it is a convex combination of operators I, J(c) and
I, with coefficient A € [0,1], that is

D) = A0y + (1= M),

where 1y, (c) is the identity map, and I, is the map Tlyx +— tr(ox)1 for x €
M;(C).

&, is a quantum channel with unique invariant state ¢ and which is self-
adjoint with respect to the KMS inner product induced by ¢. As with the
classical Leén-Perron operator we set A = 1 — ¢ and denote as follows

qAD = (1 — E)IMd(C) + ell,.
5.6 QUANTUM COUNTING OBSERVABLES
We can define analogous processes to the counting observables in the classi-

cal case (Section 2.5.1 Chapter 2). Consider the counting process described
in Section 5.2 and let N;(i) be the stochastic process given by the number of
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56 QUANTUM COUNTING OBSERVABLES

counts with label i € I up to time ¢ in the measurement trajectory w. More
generally, for any subset 2 C I we define the counting observable

Nar = ) Ni(i).
i
When 2 = I, Ny, is referred to as the total number of counts. The corre-
sponding first passage times (FPTs) are defined in the same way as in the
classical case (Definition 2.4):

Tu(k) := inf{t : Noys =k} (5.7)

Quantum counting observables also obey a large deviation principle (LDP)
[61-64] and for finite time concentration inequalities (cf. Chapter 4) have
been derived for empirical measures [66] and emission counts [65]. In Chap-
ter 8 we extend these and derive concentration inequalities for FPTs of emis-
sion counts.
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GENERAL UPPER BOUNDS ON FLUCTUATIONS OF
TRAJECTORY OBSERVABLES

Recall that the thermodynamic uncertainty relations (TURs) are limited to
providing lower bounds on the size of fluctuations: except in the few cases
where they are tight, inference on the observable of interest is hindered by
the absence of a corresponding upper bound. In this chapter we correct this
issue by introducing a class of general upper bounds for fluctuations of trajec-
tory observables consisting of linear combination of fluxes of a continuous-
time Markov chain, which includes all currents and activities. For lack of a
better name, we call these “inverse thermodynamic uncertainty relations”.
The inverse TURs are valid for all times and bound fluctuations at all levels.
Figure 6.1 illustrates our results: the large deviation rate function I(A/t) for
a current A is upper bounded by the TUR, as known, and lower bounded by
our inverse TUR.

In this chapter we prove these general relations using spectral and per-
turbation techniques that are widely applied in the field of quantum and
classical Markov processes (see Section 4.4, or [65-69, 109] and references
therein). First we provide an analytical expression (Lemma 6.1) for the vari-
ance of generalised fluxes, valid for all times. We then derive our main re-
sults: an upper bound on this variance (Theorem 6.3), and a concentration
inequality for generalised fluxes. Theorem 6.3 can be used in upper bound-
ing precision estimation of time-averaged currents (Section 6.4). We analyse
in Section 6.5 the behaviour of the additive spectral gap ¢, the spectral gap
of R(L) = (L + L")/2, which appears in the upper bounds. In Section 6.5
we show that ¢ — 0 as the system approaches a phase transition, causing the
inverse TUR to diverge and suggesting an increase in fluctuations. By con-
sidering some examples, in Section 6.6, we compare the inverse TURs with
the TURs and discuss another model, illustrating these fluctuation patterns
near a phase transition.

6.1 EXPLICIT FORM OF THE VARIANCE

Although the main results in this chapter concern bounding the size of
fluctuations in the form of variance upper bounds, it is possible to compute
the variance analytically. The expression can be derived directly from the
moment generating function (MGF). We first define the static variance:

<a2>7% = Z ﬁ(x)wxyaiy
X7y

(corresponding to the variance of }., ., ayK(x,y), where K, are indepen-
dent Poisson variables with intensity 7(x)wy,). It is important to note that
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6.1 EXPLICIT FORM OF THE VARIANCE

~ 2 . .
the static variance <ﬂ2>ﬁ— # limy_, o ]E”[‘?(t) | and so the asymptotic variance

Veo,a (cf. Section 2.5) is not simply (a%)z — (a)3. In fact, the correct limit to
compute Vi, 4 is

v i EAlA] - Eel AP
e -5 +oo t

which we will use in Lemma 6.1. Recall from Equation (3.2) Chapter 3 that
the moment generating function of any dynamical observable (cf. Definition
2.3) is

E, |:euA(t)} _ <1/,€tL”l>

where the the tilted generator is defined as

L, = Z(EWW — Dwyy |x) (y| + L.
X7y

We denote L/, the derivative of L, with respect to the parameter u and
L~! the pseudoinverse L™! := (L + I1;)~! — I14. This pseudoinverse has
the property that L"'Lf = f if (f,1)s = 0. The operator I1; is the map
[z f = (f, )4l

Lemma 6.1. The variance V; 4 (t) of any time-integrated current or flux observ-
able A(t) in the stationary state has the explicit form, for all t > 0

Vaa(t) = Ha?) 5 +2 <7r L)((e™ — 1)L ! - tl)L‘1L61> ,

with the asymptotic variance given by

Voo,A: lim Vﬁ’A(t)
t—+o0

= (a%)7 =2 (7, LiL 'Ll ).

Proof. Applying the equation for the derivative of a matrix exponential to
tL
e u

tLy t
d; = / eIl psluds,
u 0

We obtain the first moment of A(t)

dE [euA(t)}
du
u=0
The second moment can be broken into three parts by applying Leibniz rule
when taking the second derivative. The first part comes from the L) in the
product

t
Z//(l)(o) _ / <ﬁ,g(t*S)LL,0/eSLl> ds = t<a2>ﬁ.
0

it

t=s)Lu and the e’L* are in fact equal,

The remaining two terms from the el
giving

220y = [ [ (Lt drd
2r (0) = o) (7, Loe""Lol) drds.
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6.2 UPPER BOUND ON THE VARIANCE 41

We write Ljl = (a)z1 + (Ljl — (a)#1) (recall that (7, Ljl) = (a)z) and
break the integral into two parts, the first of which is

bt A 1/ ,L tz 2
<ﬂ>ﬁ_—/0 /0 (7, Loe™ 1) drds = E<a>ﬁ.

The second part is then obtained from evaluating the integral on the sub-
space orthogonal to 1, and we can bring in the pseudoinverse L~!

£ opt—s
/O /0 (7, Loe’™ f) drds = <7r Lo((e™ = 1)(L71)* - tL‘l)L61> ,
where f = L{1 — (a)#1. Combining all parts gives

d2]Eﬁ- [euA(t)}
(1) 1(2)
—az | z3) + 273
u=0
= a4+ 2(a)2 +2 <7‘[ L)((e™ — 1)L — tl)L’1L61> .

Therefore we can write Vz 4(t) as

Via(t) = Eq [A(1)?] —Ex [A(H)]?
= t{a?) 4 +2 <n L)((e™ — 1)L - t1)L‘1L61> .

We remark that the asymptotic variance is then obtained by taking the limit

Va alt
Ve r = lim 7”'14( )
! t—+o0 t

= ()5 —2 <7r L6L’1L61>

which agrees with that obtained from the central limit theorem.

We can also recover the static variance by taking the zero time limit

o Vaalt
tim 20 ()

Lemma 6.1 is used to compare the TURs and the inverse TURs in Section 6.4;
however, large system sizes render it impractical for direct computation.
This justifies the need for both upper and lower bounds in terms of simpler
quantities of the system.

6.2 UPPER BOUND ON THE VARIANCE

In this section we provide our first main result for this chapter: the inverse
TUR. It is inverse in the sense that whilst the TURs correspond to lower
bounds on fluctuations and upper bounds on the large deviation rate func-
tion, the “inverse” TURs correspond to upper bounds on fluctuations and
lower bounds on the rate function. To state the remaining results in this
chapter we need the following quantities.
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1. Maximum escape rate:
g := max{R,}; (6.1)
x€E

2. Maximum amplitude of observable coefficients:

c:nx;?yx\axy\;

3. Additive spectral gap: ¢ the spectral gap of the symmetrisation
R(L) = (L + L") /2, where the adjoint is taken with respect to #. The
additive spectral gap is a measure of how fast the equilibrium process
with generator R (L) reaches 7.

The following lemma is required for the next theorem. Let us introduce
the notation J., = wy, |x) (y|, we write

DK .= Z a’;y?}%(]xy).
X7y

First we state a lemma required for the proof.

Lemma 6.2. The following estimates hold true for k > 1:

1. [[DW |z < gck,
2. DO (1)]15 < @)}/,
3. 2q/e > 1.

Proof. Notice that

+ A
(Z a%) = ¥ 2Bl 1) 0]

X7y x#y
Since D) = Yty a’;y?R(ny), we have that
1.
ID®: < ||} | = (Z ”fcylxy>
X7y A x#y N

and

Z [’Z]J((y.]xyl 7

XAy Vis

Y a Il
X7y

IDW1], < max{

1. Let f : E — R be a function. Then

2 2
=) #Ax) ( ) wxyalfcyfy>

xcE YiyF#Ex
<) ﬁ(x)Rxwxyu?;f;
X7y

<qg*y 7AT(x)wxyfy2
X7y

=g Y A(y)Ryf}
yeE

Z “I;y]xy (f)
X7y

k
< 7| f1%
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In the first inequality we applied Jensen’s inequality, while in the last equal-
ity we made use of the fact that 7 is invariant for L.

2. With analogous tricks, one obtains the following;:

2 2
- £ oo I
4  X€E Y yF#Ex
<) ﬁ(x)Rxwxyail;
X7y
< qCZ(k—1)<a2>ﬁ

JIN P
XAy

and

2
Y d g
XAy 1

2
_ & (x ﬁ(y)w s
= Z 71'( ) (y:%x ﬁ(x) yx yx)
< Z ﬁ(y)Rxwyxa%

7T

3. For notation convenience, let us identify E with the ordered set
{1,...,|E|}. Let us consider the diagonalisation of (L) = U*AU, where
U is the matrix having as rows the coordinates of a orthonormal basis
of eigenvectors (we can pick U having real entries) and A is the diago-
nal matrix of real eigenvalues Ay = 0 > Ay = —¢ > -+ > /\‘E‘ in de-
creasing order. Notice that R(L)xx = —Ry and w1, = /7A(x) for every
x € E (1 the unique eigenvector corresponding to the eigenvalue 0 and

Uy = (0x/+/7(x),1)# = \/7t(x)). Therefore we have

|E|
_Rx - %(L)xx - (U*AU)xx - Z )\yujx
y=1

< A2 Y up, = Aa(1— 7(x)),
y#1

hence 1
>1—min7f(x) >1——

x El ~

™S
N =

We now state the theorem.

Theorem 6.3. The variance V 4(t) of any time-integrated current or flux observ-
able A(t) in the stationary state has the general upper bound, for all t

Vaalt) < (%) (1 " 2‘7> ‘.
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6.2 UPPER BOUND ON THE VARIANCE

The proof involves upper bounding the moment generating function in
terms of the spectral radius of R(L). Using operator perturbation theory
(cf. Section 4.4) this can be expanded in a power series, where each term
in the series is subsequently bounded in terms of the quantities defined at
the start of Section 6.2. This power series is then contracted back into an
expression which corresponds to an upper bound on the limiting moment
generating function, which in turn proves Theorem 6.3.

Proof. Using Cauchy-Schwarz inequality, one can write

v 1%
B [e10] = (Goeta), < 5] et et sup fetsla
& TR I£ll=1

Lumer-Phillips theorem ([119, Corollary 3.20, Proposition 3.23]) implies the
following further upper bound

HeﬂmH < JAOQ
where A(u) := max{z: z € Sp(R(L,))}.

In order to upper bound A(u), first we find an alternative expression
for small u using perturbation theory [105] (cf. Section 4.4). Since L is irre-
ducible, so is $(L) and Perron-Frobenius theory implies that A(0) = 0 is
an algebraically simple eigenvalue. Recalling the definition of D) we can
write the real part of the tilted generator as

k
u
R(L,) =R(DL)+ Y FD<’<>, DM = Y~ ok R(Jyy).
k>1 "™ x#y

With R(L,) being an analytic perturbation of (L), perturbation theory (see
[67] and references therein for details) ensures that if we can find «, 8 > 0
such that [|[D®|| < af*~! for k > 1, then for |u| < (2ae~' + B)~! (e is the
spectral gap of (L)) we can write

Au) =Y ukA k) (6.2)
k>1
with )
k
AR =y AW,
p=1
and
1

Loyl
P ety =ky>1 V1 Vp

pit-+pp=p—1, ;>0

where SO = —TI; and 8 = (R(L) +IT;) #* — IT;. Notice that ||S®")||, <
e M
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6.2 UPPER BOUND ON THE VARIANCE

Lemma 6.2 provides the estimates required for bounding the convergence
radius and the coefficients of the series in Equation (6.2). We focus on p = 1:

1 1 .
Agk) = u <L E aiy]xy1> = Z n(x)wxyalaccy,
' X7y P T x#y

hence

) uk)xg,k) = Y A(x)wyy ("™ —1).

k>1 x#Y
Let us consider k > 2 and p > 2, then

tr(D(Vl)S(P‘l) . D(WJ)S(M))
vple- vyl

a%) # 1 -
)
q<a2>ﬁ (£>k—2.

£ £

IN

Above we used that at least one of the y;’s is equal to 0, so that the product
under the trace contains a factor S(¥) = —II; and applied the bounds in
Lemma 6.2. We further used the fact that v¢!---v,! > 2k=P_ One can show
([67, Section 3]) that for k > 3,
k
Y < 52 (6.3)
p=1

1
v+ A=k, v;>1 P
pit et pp=p—1,4;>0

and we obtain that for k > 2
k

IEYY

p=2

_ 9(%)n (5676>H'

£ &

Therefore for every u > 0 such that the R.H.S. of the following inequality is
finite, we have

A Uiy _ q(a*) a1? 5qcu k
AMu) < 2;yn(x)wxy(e 1) + : k;( ; )
= Y A(x)wy, (e — q(a®)zu? (. 5qc -
-5 (x) Wy ( 1)+ 1 < S)
= A(u).

Notice that the upper bound of |A(u)| diverges before u exits from the
convergence radius of the expression in (6.2): indeed,

1 1 50 _ 2q 2qg _ 2
< e | a2
5cq/e_c(2q/s+1)® e € e e 3
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So far we have showed that for every u > 0 for which the R.H.S. is finite,
we have

Ev[euA(t)] <

A

_exp <t (Z 7 (X) Wiy (€ — 1)
" x#y

+q<a2>ﬁu2 (1 B 5cqu> 1)) (6.4)
3 €

We can extend the bound to every non-negative u putting the R.H.S. equal
to +-oo after it blows up. For getting a bound also for negative u, we can re-
peat the same reasoning for A(t) := —A(t) and we arrive at the expression

7T

w0 < 5] (1 (5 om0
x#y

+6/<az€>ﬁu2 (1 _ Sl ) ‘1>>

for every u € R (again we extend the R.H.S. beyond the blow up putting it
equal to +00).
Theorem 6.3 is proved by observing that since A(0) = 0and A’(0) = (a)»

log(E[e"A®)]) = (ahstu + %Vﬁ,A(t)uz o)

1-
< (a)stu + EAN(O)I.‘MZ + o(u?).

Hence Va(t) < A(0)¢ = (a%)z (1+ 4 )t
OJ

Theorem 6.3 is an upper bound on the size of fluctuations in the form of
an upper bound on the variance of A(t). It shows that the variance grows
slower than (%) (14 2g/¢) and that this limit is controlled by both dynam-
ical quantities such as the maximum escape rate g as well as the additive
spectral gap e. This implies that systems where #(L) reaches its steady state
faster will have a smaller limit on the size of fluctuations. The upper bound
on the moment generating function in Equation (6.4) can be used to upper
bound the entire distribution, for finite time, which we will discuss in the
next section.

63 CONCENTRATION INEQUALITY

Recall that we are interested in the finite-time fluctuations of the process
A(t)/t about (a)#. By upper bounding the moment generating function V
u € R with the bound finite V |u| < 5—;, we can prove a concentration result
with a non trivial rate function.
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6.3 CONCENTRATION INEQUALITY

Theorem 6.4. The distribution of A(t)/t starting from an initial measure v obeys
a concentration bound

P, (AEt) > (a) +'y> < C(v)e @+ >0,

where vy > 0 is the fluctuation of A away from the stationary average, and C(v) :
(X, v(x)2/#(x))Y? accounts for the difference between v and the stationary
with C(7t) = 1. The bounding rate function can be written explicitly as

N 7
[({a)x+7y) = 5 <<k>f(c2+ () 5cq7>

The proof of Theorem 6.4 begins by weakening slightly the upper bound
on the limiting moment generating function in Equation (6.4). This allows
the Fenchel-Legendre transform of this upper bound to be performed which
optimises the bound in terms of u and completes the Chernoff method (cf.
Section 4.1.3).

E])

Proof. With a further elementary estimate for the moment generating func-
tion, we derive an explicit concentration bound. Notice that, using that
A(x)wyy > 0, u > 0 and ¢ = max,, |ax,|, one of the terms appearing
in the upper bound A (u) can be upper bounded in the following way:

MIZ
Y AWy (" —uay, —1) = Y A(x)wyy Y xy
xX#Yy x#£y k>2
< Z 7 (X)Way Z
x#£y k>2 k' (65)
(Z 7-[ w;xy> cu _Cu_l).
X7y
=(k)#

Hence for every u > 0 we can write

E, [ (A—Ha)4)] < ‘ v
=z

_exp <t <<k>ﬁ(e“” —cu—1)

e (s ")

Recall that the Fenchel-Legendre transform of a function
h:R+— RU{—o00,+00} is given by

W () = sup {wy — h(u)}. (6.6)

uelR

Using Chernoff’s bound, we obtain that for every v > 0

P (4 2 e t) < 5] ew | —tsupton— i) ~a(a) |,

ueR

=:(hy+h2)*(v)
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6.3 CONCENTRATION INEQUALITY

where
0 0
Iy (u) = s
(k)a(e" —cu—1) u>0
and
0 ifu<0
. 2y .2 5 -1
hy(u) = W(1—$> if 0 <u< g -
—+o00 O.W.

In order to simplify notation, we derive the result for the general function

0 ifu<0
ho(u) = A% if0<u<{/¢

—+o0 0.W.

for {,¢ > 0. From the definition of the Fenchel-Legendre transform (Equa-
tion (6.6)) it is easy to see that

+o00 ify<0
hi(y) = { ,
(k) 2g1 ((k%c) 0.W.

7

X +o00 if y <0
hs () = {g )
T82(8y) ow.

where g1(7) = (1+7)log(1+7) —7 > v*/2(1+7/3) and g2(7) = (1 +
Y/24+ 7+ 1) > (2+9)"L. We can use Moreau-Rockafellar formula
([120, Theorem 16.4]) to obtain

(h +h2)*(y) = inf{hi(v1) + h3(72) 1+ 712 =7 71,72 € R}

> inf f),% = + 6 mMm+r2=7772=>0,.
2((k)ac2+ <) 22+ 8&72)

We can use the fact that v /a +3/d > (71 +72)?/ (a+ d) for non-negative
Y1, v2 and positive a,d to obtain

2

. v
(h1+h2)" () = inf
2((k)ac + B +2+5m)

ME"T2=7 7,72 >0}

,),2

2 ((k)ﬁcz%—%%—max{%,%}’y).
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64 INVERSE THERMODYNAMIC UNCERTAINTY RELATIONS

Hence we obtain the following:

Py <A§t) > <ﬂ>ﬁ+7> <

A

Let us introduce the notation

= (x — <a> A)Z
1(:‘) — t
2 <<k> Via C2 —+ 2 <‘l >7'1A + 5Cq(x <a>ﬁ))

where x := (a)x + . It is easy to see that the bound in Equation (6.7)
implies that
I(x)<I(x), Vx> {(a)s

(we recall that I is the rate function of A(t)/t): indeed, together with the
definition of large deviation principle, it allows us to write

inf I (x/) > liminf — %logva <A§t) > x)

x'>x t—-+o0

> 1 (x). (6.8)

The inequality holds for x’ > x due to the continuity of I and
infy>, I (x') = I (x) because I is non-decreasing for x > (a) 7.
O

We remark the upper bound on the moment generating function was
made weaker in Equation (6.5) by replacing the weights a,, with their max-
imal value ¢, so we could perform the optimisation. If one wishes to numer-
ically Fenchel-Legendre transform rather than obtain an explicit concentra-
tion inequality this step can be skipped for a tighter bound.

Theorem 6.4 bounds the distribution of A(f) for finite f in terms of the
simpler quantities g, ¢, average dynamical activity (k) and maximum am-
plitude of observable coefficients c. These would ideally be known or easier
to estimate than a computation of the probability distribution itself.

64 INVERSE THERMODYNAMIC UNCERTAINTY RELATIONS

The most direct use of TURs is in bounding the precision for estimating a
current from its time-average over a trajectory in a non-equilibrium station-
ary state (NESS) 7t. From the standard application of the TUR together with
the “inverse TUR” Theorem 6.3 we can bound the relative error (Equation
(3-4)) from below and above

2 2

2 # 2
5= < (107 ©o

with an equivalent statement for the activity TUR upper bounding the rela-
tive error €3 of observables which are not necessarily currents. An example
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6.5 CLOSURE OF SPECTRAL GAP

where the relation in Equation (6.9) could be exploited are the molecular
motors described in [8, 36, 37]. If one is interested in estimating the entropy
production of such a system, the inverse TUR could be used to compute a
lower bound for X4, which would be useful if the currents used to measure
the relative error directly are inaccessible. The physical meaning of our new
upper bound can be understood from its two factors. In contrast to the TUR,
the first factor in the R.H.S. of Equation (6.9) contains information about the
current A of interest via the static variance, (a?) 7. This is measurable, being
the stationary mean of S4(t) = ., a3,K:(x,y): given a (time-asymmetric)
current A, there is an associated symmetric flux S, whose stationary average
encodes the interplay between the localisation properties of the dynamics
(which jumps x <> y have larger rates 71(x)wy, and 7 (y)w,x, and how these
are spread among all possible transitions), and the transitions relevant for
A (which x « y have a larger |a,,| giving rise to larger variations in A).
The first factor therefore quantifies the intuition that if larger variations of
A are produced by the most (resp. least) active jumps, we can expect A to
have large (resp. small) fluctuations.

The second factor in the R.H.S. of Equation (6.9) encodes overall prop-
erties of the dynamics via the ratio g/e. The symmetrised generator cor-
responds to the unique equilibrium dynamics that shares key relevant fea-
tures (steady state and dynamical activity) with the original dynamics [121],
and its spectral structure is able to upper bound fluctuations at all times.
A relevant case is that of dynamics with several mesostates (phases) with
frequent jumps within and rare jumps between, implying metastable be-
haviour with large fluctuations for empirical fluxes. This is captured by q/¢,
with g large due to the speed of the intra-state dynamics, and ¢ small (and
vanishing at a first-order phase transition as shown in Section 6.6.2). Thus
the second factor in the R.H.S. of Equation (6.9) quantifies the fact that fluc-
tuations in a time-integrated current are limited by the degree of separation
of timescales in the dynamics.

65 CLOSURE OF SPECTRAL GAP

Since the upper bound in Theorem 6.3 requires the spectral gap of R(L),
when studying the behaviour of the process near a phase transition, we
need to check that ¢ — 0 when the gap of the original process described
by L closes. Physically, if the gap of L vanishes, i.e. the process becomes
reducible, this section shows that the equivalent equilibrium process with
generator (L) also becomes reducible.

Let A, (A;) be the eigenvalue of L (resp. f(L)) which is non-zero and has
the biggest real part; we recall that ¢ = —A,. If one shows that

e < —R(A2) & Ay > R(A2), (6.10)

then if L undergoes a first-order phase transition, i.e. Ay — 0, one has that
e — 0 too. Let us show Equation (6.10): it is easy to see that the linear space
of centred functions on the state space, i.e. V = {1}* = {f : E — C}, is
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invariant for both L and L', hence also for (L). With an abuse of notation,
all the operators appearing in the following equation will be considered as
operators acting on V: one has

eR(A2) — ‘eiz| < Jlet|| 5 < elRMlr = ot (6.11)

The first inequality follows from the fact that the spectral radius is less or
equal than the norm of an operator and the second inequality follows from
Lumer-Phillips theorem. Equations (6.10) and (6.11) are equivalent.

6.6 EXAMPLES
6.6.1  Comparison to thermodynamic uncertainty relations

As an illustration of Theorems 6.3 and 6.4 we consider the fluctuations of
currents in the 4-state model of Ref. [34]. This allows us to compare our
upper bound with the known TUR.

The network of elementary transitions is shown in the inset of Figure 6.1.
The rates are as in Ref. [34], wi» = 3, w13 = 10, w14 = 9, wy; = 10, w3z =1,
Wy = 2, w31 = 6, W3y = 4, W34 = 1, Wy = 7, Wy = 9 and Wz = 5 A
current is defined by the values of the six coefficients a,-,, which we take in
the range a,, € [—1,1]. To perform the analysis, we construct a mesh across
the space of current observables T = [—1,1]® discretised with spacing 107},
with each point corresponding to a different current.

Figure 6.1 shows the bounds for the long-time limit rate function I(A/t)
for one such current A € T. The (full /black) curve is the exact rate function.
It is calculated from the “tilted” generator L, (cf. Equation (3.3)) as follows
(cf. Section 3.4.2):

1. the MGF of A is
IEﬁ [euA(t)i| - <7%/ etLu/l>/

where 1 is the “flat state” vector with each entry 1;

uA(t) tA(u)

2. at long times E» [e =e

, where the limiting logarithmic mo-

ment generating function A(u) is the largest eigenvalue of L,;

3. the rate function is obtained via Legendre transform

I(a) = sup{ua — A(u)}.
uclR

The (dotted /blue) curve in Figure 6.1 is the usual TUR using the entropy
production [34]. The (dot-dashed/pink) curve is the alternative TUR (also
known as the KUR) which instead of X# uses the average dynamical activity,
(k)2 = Yy 7t(x)wyy [48, 122]. Both these curves are above the true rate
function, thus providing the usual lower bounds on the size of the fluctua-
tions of A. The (dashed/red) curve represents an inverse TUR which upper
bounds the size of fluctuations of A at all orders, cf. Theorem 6.4.
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6.6 EXAMPLES

Figure 6.2 shows the bounds (6.9) on the precision error Equation (3.4),
for all currents in T, both at finite and infinite t. The (full/black) curves
are the exact error €2, obtained from Lemma 6.1. The errors are plotted
rank ordered by their value at t = co. The (dotted /blue) lines are the lower
bounds from the TUR at either finite [100] or infinite [37] times. The (dot-
dashed/pink) lines are the activity TUR, where in the L.H.S. of (6.9) X4 is
replaced by 2(k)#. As the TURs do not depend on the details of the current
that they bound, these curves are constant. Figure 6.2 also shows the inverse
TUR from the R.H.S. of (6.9) as (full/red) curves. This gives an upper bound
to the error. The inverse TUR contains information about the specific current
through its static average and second moment and it tracks the change in
shape of the exact error: in many instances the ratio of the relative value of
the upper bound to the error is smaller than that of the error to the lower
bound.

®

-
ITUR
! activity

- ;
\ @ Wiz
1)
) W21
\
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Figure 6.1: Upper bound on current fluctuations: the (full/black) curve shows
the exact rate function I(A/t) for the current defined by a;; = 0.9,
a3 = —0.9, a14 = —0.9, a3 = 0.9, apy = —0.9, azy = 0.9. The rate func-
tion is upper bounded by the TURs: the (dotted/blue) curve is the stan-
dard TUR using the entropy production, while the (dot-dashed/pink) is
the TUR with the dynamical activity. The (dashed/red) curve is the in-
verse TUR: it lower bounds the rate function, corresponding to an upper
bound on fluctuations at all orders. [We plot the iTUR from a parametric
Legendre transform of A(u) in Equation (6.4) to avoid the approxima-
tion used to obtain Theorem 6.4; however, the explicit expression for the
rate function given in the Theorem gives a near-identical bound.] Inset:
sketch of the 4-state model.

6.6.2  Analysis of model with phases

As explained above, the inverse TUR captures the increase of fluctuations
close to a dynamical phase transition via its dependence on q/¢, see Equa-
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(a)

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
A rank (x103) A rank (x103) A rank (x103) A rank (x10°3)

Figure 6.2: Lower and upper bounds on the estimation error: (a) Relative error
€% for estimating a current A from a trajectory of length t = 1072 in
the NESS of the model of Figure 6.1. We show results for 20° different
currents A € T. The (full/black) curve is the exact error. The standard
TUR, (dotted/blue) line, and the activity TUR, (dot-dashed/pink) line,
provide lower bounds to the error which are independent of A. The
inverse TUR, (dashed/red) curve, gives an upper bound to the error
which varies with A. (b-d) Same for times t = 1,102, oo, respectively. The
data in all panels is ranked according to decreasing values of the error
at t = oo. For comparison, the A corresponding to entropy production
is shown according to the same ranking: TUR bound (green circle), exact
(white triangle), TUR (blue cross), activity TUR (yellow square).

tion (6.9). Figure 6.3 illustrates this in a six-state model with two competing
meso-states: as the spectral gap closes with decreasing w, the system gets
trapped for longer times in each metastable phase, giving rise to larger fluc-
tuations of currents with different mean values at stationarity in the two
phases. The inverse TUR tracks this growth in the estimation error, while
the TURs do not.

In the second example of this chapter, the set of states can be split into
two subsets corresponding to the two phases at the phase transition: E; =
{1,2,3} and E; = {4,5,6}. Such a splitting, induces the following block
decomposition of the generator:

L:L9+w L ,
0 L 1, —13

—(A+x) K A
L= A —(A+x) K
K A —(A+x)

13 denotes the 3 x 3 identity matrix, while L is the generator corresponding
to the dynamic in the two phases at the phase transition. By the symmetry
of the model one can easily see that L has the uniform distribution on
three states as unique invariant measure. Notice that the perturbation in
w annihilates every measure which is the same on E; and E; (with the
correspondence 1 <+ 4, 2 <+ 5 and 3 <> 6), hence the uniform distribution
on six states is the unique invariant measure, independent from w. As a
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consequence, (a)7 and (a?); for the current we decided to study (A(t) =
K;(4,5) — K¢(5,4)) do not depend on w as well:

(a)z = (k—A)/6, (@) 7 = (k+A)/6.

This simplifies the analysis, reducing the study of the upper bound to the
description of the behaviour of g/e. Furthermore, notice that the expected
value per unit of time at stationarity of the restriction of the current to E;
is equal to 0, while restricted to E; is equal to (x — A)/6: this is the reason
why its fluctuations are going to increase approaching the phase transition
(w —0).

The maximum escape rate is equal to 4 = A 4k + w. In order to compute
the additive spectral gap ¢, first we need to find the symmetrised generator,

which reads
R(L) — (&E(E) 0 ) o (—13 15 > |
0 R(L) 1; —1;

Using Schur determinant lemma [123, p. 4], one obtains that

det(R(L) — t14) = det((R(L) — (t + w)13)* — w?13)
= det(R(L) — (t +2w)13) det(R(L) — t13),
which means that the spectrum of (L) is equal to the union of the spec-

trum of R(L) and its translation of —2w. Therefore, if w is small enough, ¢
is equal to 2w. Hence g/¢ ~ (A +«)/w for w < 1.

Figure 6.3: Inverse TUR near metastability: (a) Markov network of 6-state model.
The dashed circles indicate the two competing metastable phases at
small w. We consider A = 5,k = 1 while varying w. (b) Estimation error
€? for the current between states 4 and 5, A(t) = K¢(4,5) — K;(5,4), as a
function of w. The (full/black) curve is the exact value, upper bounded
by the inverse TUR (dashed/red), and lower bounded by the standard
TUR (dotted /blue) and the activity TUR (dot-dashed/pink). Fluctuations
increase with increasing metastability, which is tracked by the inverse
TUR but not by the standard TUR.
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We have proven a general class of upper bounds on the size of fluctua-
tions of dynamical observables which complement the lower bounds pro-
vided by TURs. Lemma 6.1 and Theorems 6.3 and 6.4 apply to fluctuations
of all orders at all times. In contrast to the standard TUR, our bounds en-
code details of the current of interest. Having both upper and lower bounds
is necessary to limit the range of estimation errors.

There are many possible extensions and refinements. We focused on
continuous-time Markov chains, but analogous bounds should be obtain-
able for discrete time dynamics. Our bounds have as input the spectral
gap of the (symmetrised) generator, which for many-body systems can be
estimated from time correlations [124, 125]. Further approximations may
also allow to formulate the inverse TURs in terms of operationally accessible
quantities. The classical results here will have a corresponding generalisa-
tion for open quantum dynamics by exploiting generalisations of concentra-
tion bounds to the quantum case, see e.g. [65].
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CLASSICAL UPPER BOUNDS ON FLUCTUATIONS OF
FIRST PASSAGE TIMES

The Cramér-Chernoff approach discussed in Chapter 4 can be used not just
in the fixed-time ensemble as we did in Chapter 6 but also in the fixed-
observable ensemble to obtain bounds for first passage times. We refer the
reader to Section 2.6 Chapter 2 for background on this dual ensemble when
one is instead interested in first passage times (FPTs). Many of the results
in this chapter have a counterpart for quantum Markov processes which
will be discussed in Chapter 8. In particular, we consider FPTs correspond-
ing to counting observables, which we recall from Section 2.5.1, are time-
additive observables of trajectories which are non-decreasing (in contrast to
currents), cf. [48].

We begin in Section 7.1 by by computing the form of the moment generat-
ing function. Here we state Lemma 7.2 which gives us the analytical form of
the variance of FPTs for counting observables. After that, in Section 7.2, we
prove that the sequence of FPTs satisfies a large deviation principle [44] and
we provide an expression for the rate function. Then, we derive in Section
7.3 a concentration inequality of the FPT for the dynamical activity [11, 27],
and a tail bound for FPTs for generic counting observables (Section 7.4). As
subsequent propositions, with each concentration inequality we also pro-
vide an upper bound on the variance of the FPT. These complement the
thermodynamic uncertainty relations (TURs) for first passage times [48, 50]
and are the fixed-observable equivalent of our inverse TURs (cf. Chapter 6).
We illustrate our results with simple models in Section 7.5; in particular,
we discuss the behaviour of the bound for the FPT corresponding to the dy-
namical activity when the system is at conditions of metastability, i.e., near
a first-order phase crossover.

7.1 MOMENT GENERATING FUNCTION

Recall from Section 2.6 that we denote T¢ (k) to be the first passage time for
the dynamical activity of the process to reach k jumps. Using the properties
of the holding times described in Section 2.6 Chapter 2, one finds that the
moment generating function (MGF) of T¢(k) is well defined for u < d :=
min, R, and is given by

mle) = (o (55) 1) = (v (&5w) 1) o0
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7.1 MOMENT GENERATING FUNCTION

An analogous formula can be found for every FPT of the type in Defini-
tion (2.4). First of all, it is useful to consider the following splitting of the
evolution generator L [48]

L=W;+W;—-R, (7.2)
L

where W holds the rates of transitions in 2l and W, the rates of transitions
not in 2A. Notice that we can always write the first passage time correspond-
ing to the level k as a sum of times between subsequent jumps in 2:

Zsl, si = Ta(i) = Ta(i = 1).

The process Y = (Yo, ..., Yk, -..) determined by the state of the system at
the sequence of times {Ty(k)}, % is a discrete-time Markov process with
transition matrix given by

1
Q:= —gwl- (73)
The state space of Yis {y € E: 3x € E : (x,y) € A}. Physically, Y is the
process which describes the state of the system after competing a jump in
2(. Indeed, using that L, = W> — R, we can write

k
1 1 1 1
_E_R—wz_l—lez k;( > R (7.4)
and therefore L
1
Q=) ( Wz) —Wi. (7.5)
k>0

Since R"'W; and R™!W, are the sub-Markov operators that encode the
probabilities of jumps which do and do not, respectively, belong to 2, Equa-
tion (7.5) expresses the fact that the probability of the jump x — y for the
process Y is obtained by summing up the probabilities of all possible trajec-
tories of the jump process associated to X that start in x, arrive in a state z
such that (z,y) € 2A by using only jumps in 2¢, and then jump from z to
y. Integrating over all such possible paths, we show in Lemma 7.1 that for
every u < A := —max{R(z) : z € Sp(Lw)}, the MGF of Ty(k) can be written

as
Leo k
E, [euTg[(k)] = <1/, (u T Q) 1> . (7.6)

We remark that for suitable choices of initial distributions and for finite ks,
E, [e*T2 ()] might be well defined even for some values of u bigger or equal
than A; nevertheless we will see in Theorem 7.4 that in the large k limit, the
only values which play a non-trivial role are u < A.
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7.1 MOMENT GENERATING FUNCTION

For the case of dynamical activity, we have already mentioned that Q = P
is irreducible; more generally, Q is only irreducible on the subspace {y €
E:3x € E: (x,y) € A}, the complement of which is transient. Indeed, Q
admits as unique invariant measure

AW,

¢ = 7, Wi}’ (7.7)

which, in general, is not fully supported.

From the expression of the moment generating function, using standard
theory (see Theorem 7.4) one obtains that under P, (for every initial law v)
the following convergence holds true almost surely:

1 1
7 Ta(k) P (ta) == <§0/—Lool> as.. (7.8)
where ty denotes the process Ty (k)/k and (ty) its asymptotic average.
Lemma 7.1 below ensures that the expressions appearing in (7.3), (7.5) and
(7.6) are well defined and that the identities are true. Before stating the
lemma, we need to recall a few notions that will also be useful in the rest of
the chapter. Given a matrix A € M,;(C), the spectral radius of A is defined
as
r(A) := max{|z| : z € Sp(A)}.

The spectral radius is fundamental in studying the convergence of the ge-
ometric series ) ;- Ak since Gelfand’s formula states that for an operator
norm || - ||

lim |AF[|[f = r(A).

k—+o00

Therefore, if r(A) < 1, the series converges.

Lemma 7.1. The following statements hold true:
1. A:= —max{R(z) : z € Sp(Le) } > 0, hence Lo is invertible;
2. 1(R7IWy) < 1, therefore Y~ S is well defined with S = R™W, and one
has A
1 ( 1 1
oy (i)'
Lo /5 \R R

3. for every u < A, one has

(k) L ‘
uTg( — S .
IEV[E ] <V/ <u +Loo Q> 1> 7

¢ Ll <X
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7.1 MOMENT GENERATING FUNCTION

Proof. 1. Note that L, generates a sub-Markov semigroup e'l=

Frobenius theory (cf. Theorem 5.5) we know that

. By Perron-

r(e=) = e o X := —max{R(z) : z € Sp(Leo) }-

We prove this by contradiction. Suppose A = 0. Then there exists a non-zero
non-negative function f : E — [0, +o0) such that Lo f = 0. We then have

Lf = Loof + Wif = Wif > 0.
Therefore one has
0 = (&, Lf) = (A, Wif),
which implies that Lf = W;f = 0 because 7 has full support. Since L is
irreducible, f = al for some non-negative &, however «W;1 = 0 implies
that « and therefore f are 0 (it follows from the positivity of W;). We came

to a contradiction, which proves that A > 0. Therefore Sp(L«) C {z € C :
R(z) < —A < 0} and L is invertible.

2. The proof is similar to that of point 1. Notice that R"'W, is a sub-
Markov transition kernel and let r = 7(R"'W3) such that r € [0,1], and
the corresponding non-zero non-negative eigenvector f : E — [0, +0). Sup-
pose that r = 1, then we can write

(P—1)f =R 'Wif+ (R7IW, —1)f = RTIW, f,

therefore
0= (m,(P—1)f) = (m,R"'Wf),

which implies that R"'W;f = (P —1)f = 0 from which it follows that
f = 0 as before, hence a contradiction. What we have proved so far shows
that the derivation of Equation (7.5) is correct.

3. Using Dyson expansion, one can see that

P, (Ta(k) < t) = / (et Wpetle W 1t - dy.
YK h<t

Therefore, if u < A, then

I SR A TORE o
HLM—/0 L) gy (7.9)

1 k

4. The spectral mapping theorem implies that Sp(Ly!) = {z7!: z €
Sp(Lw)}, therefore one has that

and we get

_>* \

> gl > L H
00—00 A

00— 00
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7.1 MOMENT GENERATING FUNCTION

Loosely speaking, items 1 and 2 hold true because L., and R™'Wj are the
counterparts of R and P, respectively, obtained by considering a restricted
set of jumps in the original irreducible Markov process.

The next lemma gives us the form of the variance of first passage times
for counting observables.

Lemma 7.2. Let ¢ be the invariant measure of Q, cf. Equation (7.7), and let 11,
be the map I, : f — (@, f)1. The variance V,, 1, (k) of the first passage time for
counting observables is, Vk > 0:

V1o (k ) 1
""Tk( ) <(p,L0°11> +2<(p,L g Tps 1>
2 _1Q Qk+1
oG- ).

Proof. We recall the explicit expression for the moment generating function
from Lemma 7.1

k
]E(P[euTm(k)] — <(pl (u_]:(]: Q) 1>, u<A\.

Define

We can write the first moment as

k . .
Eq[e" T2 0] = <<p, Y (F.Q)' (F,Q) (FuQ)k‘11> : (7.10)

i=1

At u = 0 this gives us the form of the asymptotic mean.

Eo[Tu(k)] = —k <(Pz L;oll> : (7.11)

Differentiating Equation (7.10) at u = 0 gives us the second moment

E,[Ta(k)?] =2 (¢, L1) k+2<¢, <i219f‘f+kZiQf> L;11>

j=1 /=1

=2{(p,L 1)k +2 <qo, L Y QfL;o11>

1<j<i<k

k i—1 2
=2(p L) k+2) )" <q0, L;11>

i=2j=1

k i—1
2 <fp, LYY Qi1 —H¢)Lw11>

i=2j=1

where to arrive at the third line, after Q/ we have inserted I, +1—1II,,
where I1,, is the projection onto 1. Using the fact that
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vk, 2;71 1= %(k — 1), and recalling Equation (7.11) for the expression for

the first moment, hence

VQ"/Tm (k) _ -2 “14\? 1 9Q -1

2 _ Ok+1
(o=,

Finally, we can again place I, + 1 — I, in the first term, in between the
two L. Rearranging this gives the final result

V(P/T‘EL (k) . -1 2 1 -1
T - <(P/Loo l> +2 <(P/Loo @(1 - H(P)Loo 1>

2 _1Q _ Qk+1 »
o T a-nyes).

O

As with the equivalent expression in the fixed-time ensemble, Lemma 7.2
is not practical for large system sizes. Nevertheless, it gives us the form of
the variance, which can be upper bounded directly to obtain inverse TUR-
type bounds which we do in Proposition 7.8.1.

7.2 LARGE DEVIATION PRINCIPLE FOR GENERAL COUNTING OBSERV-
ABLES

The large deviations of FPTs for counting observables were studied in [48].
There the equivalency of the fixed-time and fixed-observable ensembles
were used to derive bounds on the limiting logarithmic moment generat-
ing function, rate function and a lower bound on the variance of the FPT in
terms of the average activity. In this section we rigorously prove the large
deviation principle (LDP) for first passage times of not just the dynamical
activity but for general counting observables.

The following lemma is required for the theorem. It establishes an equiva-
lence between the irreducibility of L (Hypothesis 2.1) and the irreducibility
of the tilted generator L, (Equation (3.3)). In the case of a classical Markov
chain, the equivalence of irreducibility and primitivity for a Markov chain
is a consequence of Levy’s theorem [126, Theorem 8]. The lemma requires
the generator L of a classical Markov chain and its perturbations have the
form

L = Z ™MWy, — R, ayy,s €R.
X7y

We can state the following.

Lemma 7.3. If L satisfies Hypothesis 2.1, then L, generates a primitive semigroup.
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7.2 LARGE DEVIATION PRINCIPLE FOR GENERAL COUNTING OBSERVABLES

We omit the proof here, as it follows the same method as the equivalent
lemma in the quantum case, Lemma 8.4 Chapter 8, where the proof is stated

in full. Recall the definition of the large deviation principle (Section 3.1).

We can now prove the LDP for generic counting observables of the form in
Equation (2.5).

Theorem 7.4. Let us consider any non-empty subset A of the set of possible jumps.
The collection of corresponding first passage times {Ty(k)/k} satisfies a LDP with
good rate function given by

Iy(t) == sgg{ut —log(r(u))}

where
o {r(Qu) fu <X

+o0 otherwise

where Q= —(u + Loo) Wy and A :== — max{R(z) : z € Sp(Le) }

Proof. The proof of Lemma 7.1 shows that if u < A := —max{R(z) : z €
Sp(Le)}, then

E, "™ = (v,Q}1 ), (7.12)
where Q, := —(u + Ls) "'Wj. From the expression

—+o0
Q.= [ eltlWid

one sees that Q, is a positivity preserving map for every u < A. From
Perron-Frobenius theorem (see Theorem 5.5 Chapter 5), we know that

r(u) = r(Qy) is an eigenvalue of Q, that admits a positive eigenvector
x(u). With simple algebraic manipulations one can see that

Qux(t) = r(u)x(u) & Ly x(u) = —ux(n)

where L) := L+ (5™ —1)W; and s(u) = — log(r(u)).

The perturbations of L given by L for s € R are irreducible (see Lemma
7.3 Chapter 7), hence they admit a unique positive eigenvector, which is
actually strictly positive and corresponds to the the eigenvalue given by
max{R(z) : z € Sp(Ls)}. Therefore, —u = max{R(z) : z € Sp(Ly(,)} and
x(u) > 0 is the unique eigenvector for Q, corresponding to r(u). One can
also show that r(u) is in fact algebraically simple for Q, as in the proof of
[127, Lemma 5.3].

Summing up, one has that for u < A the function u — r(u) is smooth
(actually analytic in a complex neighbourhood of the values we are consid-
ering) and

1
Jim - 1og (I, [e"T(]) = log(r(u)). (7.13)
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Indeed,

1

1
log(Ey [e"72(]) < ~log([| Q) leos00) —— log(r(u))
k k k—+o0

thanks to Gelfand’s formula. On the other hand, using (7.12) and assuming
that ||x(u)||c < 1, one has

L Log(Ey[eT3(0) > log(r(u)) + 1 log((v, ¥(u)}) ——> log(r(w)),
since x(u) > 0 and (v, x(u)) > 0.
In order to apply Gértner-Ellis theorem (cf. Theorem 3.7), we only need
to show that
lim log(r(u)) = lim log(r(u)) = +oo. (7.14)
u—A u—A
Notice that () and log(r(u1))" = ' (u)/r(u) are both monotone non-decrea-
sing (they are limits of monotone non-decreasing functions cf. Equation
(7.13)): the limits in Equation (7.14) exist and we only need to show that
they cannot be finite.

Let T be the spectral projection of L corresponding to —A; we remark
that L, restricted to the range of T is diagonalisable. To show this, let us
assume that this is not the case. If —A is an eigenvalue of Lo, then 0 is an
eigenvalue of L’ := Lo + A1. The matrix L’ restricted to the range T is also
not diagonalisable. However, this means that the restriction contains a Jor-
dan block, in which case the norm of e’ explodes for large + which contra-
dicts the fact that e’ generates a contraction semigroup by Lumer-Phillips
theorem (see, for instance, Theorem 3.15 and the following corollaries in
[119]).

Let us first show that

lim r(u) = Hoo0.
u—A
Notice that TQ # 0, since TQ(1) = T1 # 0. Therefore

Lo A Lo
Qu— LOO—FL[Q_X—uTQ—’—(l_T)M‘f’Loo

Q

has a norm that explodes for u — A By contradiction, let us assume
that for u — A, r(u) — r(A)~ < +oo. This implies that we can choose
x(u) such that it converges to the unique strictly positive Perron-Frobenius
eigenvector of L ;) and that minSp(x(u)) #» 0. Therefore we have for every
0<u<A

1Qulco—s00 = [1Qu(1) |0
1
< WHQM(X(“))HW

min Sp

o el
=1 )minSp(x(u))'
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Since the right side remains finite as u — A~, this contradicts the fact that
|Qullo—soo diverges. Notice that the first equality in the previous equation
is due to Theorem 5.6 in Chapter 5.

Let I(u) be the left eigenvector of Q,; we can assume that
(I(u),x(u)) = 1, therefore one has

r(u) = (I(u), —(u + Leo) "' Wix(u1))
= (I(u), — (u + Loo) 'TWx (1))
(I
(I(u), = (u+Leo) (1 = T)Wix(u)) .
(I1)

+

Since (1) stays bounded, for u — A~ one has

() = = (1(u), TQx(u)

A—u

with both sides diverging as u — A~. Differentiating the previous expres-
sion for r(u) and dividing for r(u) one gets
r(u) _ (1), (4 + Leo) 2Wax(u))
r(u) r(u)
A (), TQx(u) (), (44 Leo) (1 = T)Wyx(u))
A-w2 ) r(u) '
(1) (I1)

When u — A, (II) — 0, while (I) < (A — u)~! and we are done.
O

The proof highlights some properties of r(u), which imply (as one would
expect) that Iy(t) = +oo for t < 0 and that
X . . . . / Y
fliI(l)’l+ Igl(t) = +o0, tEToo Ig[(t) = +o00, tEl}IOO Igl(t) = A
Moreover, Iy(t) has a unique minimum in (ty), where it is equal to 0. The
strong law of large numbers (SLLN) is a consequence of the smoothness of
r(u) around 0; see for instance [80, Theorem 11.6.3 and Theorem I1.6.4]. We
refer to [32, 48] for a more in depth discussion of the physical meaning of
this result.

7.3 CONCENTRATION BOUND FOR DYNAMICAL ACTIVITY

Although we have derived a large deviation principle which is valid for an
asymptotic number of jumps k, in this section we provide a concentration
inequality for the first passage time for dynamical activity which is valid V
k € IN. Recall that we consider a classical continuous time Markov process
with generator L whose jumps can be described by a discrete-time process

64



7.3 CONCENTRATION BOUND FOR DYNAMICAL ACTIVITY

with transition matrix P, cf. Equation (2.1). The dynamical activity K¢  is the
total number of configuration changes (referred to also as jumps) occurring
in a trajectory up to time t [11, 26, 31]. The corresponding first passage time
Te(k), is the time of the k-th jump, cf. Definition 2.4. The first concentration
inequality of this chapter is an upper bound on the probability that the
average jump time T¢ (k) /k deviates from its asymptotic or stationary mean
(cf. Equation (7.8))
(te) = X 7(x) -
xeE x

We now introduce two quantities which appear in the bounds of Theorem
7.7 below:

1. the second moment at stationarity:

2

2bg =) (%) 25 (7.15)
x€E x
2. the longest expected holding time:
1 1 1
A s o e S

Below we report in our notation two technical lemmas that were proved
in [68] and which are used in the proofs of some of the bounds obtained in
this chapter.

Lemma 7.5 (Lemma 21 (i), [68]). Let My : L2(E) — L% (E) be the multipli-
cation operator associated to a real valued function f, ie. Msg = fg for every
g € L2(E). Let P be the Ledn-Perron operator defined in Equation (2.4). Then the
following statement holds:

1% < [IMPM]|.

The following result is a slight generalisation of [68, Lemma 2.1 (iii)]. This
lemma is also used in the quantum case so we use dual notation for both
chapters. In the following, we will use ¥ to denote either a transition matrix
P or a quantum channel ®, x to indicate their invariant state, i.e. 7r and o,
and we denote by #H the Hilbert space corresponding to their invariant
state, i.e. L2(E) and L2, respectively. Furthermore, denote IT to be map I,
(cf. Definition 2.2) or I, (cf. Definition 5.7) in the appropriate case. We
recall that the notation ¥ stands for the Le6n-Perron version of ¥ (again cf.
Definition 2.2 or Definition 5.7).

Lemma 7.6. For any operators A, B acting on ‘H, the following holds true:

1 1
|A¥B, < HB*‘?B VN INIES

X X

65
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Proof. Let us consider hy,h; € H, then

[(¥h1, ha) x| = [((Tpy(c) — ID(¥ — H)(IMd( o) —IDhy, ha)y + (TThy, ), |
= [{(¥ - H)(IMd DAy, Ty, c) — TDh2)x + (T1ha, ha )|
< K(¥ = 11Ty IDhy, (In,(c) — TDh2) x| + [(TThy, hz) x|
<(1- €)||(1Md(o:) - )hln)(”(IMd(C) —IDha|[x + |(h1, x) (X, h2)
< V81VE2

where

gi = (1= &)l (Iygyc) — IAlIE + [(x i)l
for i € {1,2}. Therefore

. 1 1
|(Yhi, ha) x| = (Yha, h1) 3 (Yha, ho) 3.
We can then proceed to complete the lemma:

|AYB|y = sup  [(AYBhy, ha)yl
I =1

= sup |[(¥Bhy, A'hy),|
hhaz| Byl =1

LN 1
< sup (¥Bhy,Bhy)i(¥Ahy), AThy);
hho: | =1

N 1 o 1
= sup (B'WBhy, )2 sup (AYA'p, hy):
hy:|[h [ =1 ha:|[h2 || =1

X X

O]

The following theorem states the first concentration inequality of this
chapter.

Theorem 7.7. Suppose Hypothesis 2.1 holds (L is irreducible) and let € be the

spectral gap of PP, cf. Equation (2.3). For every v > 0 and k € N the following
holds true:

P (T8 > )+ ) < corew (1250 (7))
and

P, <T€,£k) < (te) — 7) < C(v)exp < kzbih <52ng>> ,

where h(x) := (V1+x+ % +1)7!, C(v) := maxyep {v(x)/7(x)} and b2, c,
are as defined in Equations (7.15) and (7.16) respectively.
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7.3 CONCENTRATION BOUND FOR DYNAMICAL ACTIVITY

The proof of Theorem 7.7 is given below and follows the same line as
in [67, Theorem 3.3]. From the proof, one can see that if P is self-adjoint,
one can derive an upper bound with a slightly different expression which
contains the spectral gap of P instead of its absolute spectral gap.

First, let us make few considerations regarding the quantities appearing
in the bound. C(v) accounts for the difference between the initial measure
and the stationary one, in particular C(71) = 1. The absolute spectral gap ¢
controls the speed at which an arbitrary density v converges to the invariant
measure 77 under iterations of the transition operator P,: indeed, for every

k>1
/2
th [V
e —1>
7T

1— ZV 1/2 1/2
( x€E

This enables one to upper bound the deviation probability of T¢ (k) using
stationary properties of the system. We remark that the use of the spectral
gap of P'P instead of the one of P allows to bound the fluctuations of the
first passage time for every k > 1 and not only asymptotically in k. Small
values of & can correspond in some models to big fluctuations of the first
passage time (cf. Section 7.5.2 below and Chapter 6 Section 6.6.2).

The second moment at stationarity b? encodes the variance of Tg(k) in
the stationary regime. Indeed, the distribution of the interarrival times ¢; at
stationarity is the same as the random variable obtained drawing a state x
from the invariant distribution 7t and then sampling from an independent
exponential random variable with parameter Ry. Such a random variable
has a variance equal to

2) m(x) R2 (Zn(x)i{)

x€E x€E

IPE (v — )|y < \

N\?v

Notice that the following inequalities hold true:

2
b2<2) m(x) (Zn ) < 20,
x€E x x€E

hence the variance of the interarrival times at stationarity and b? (see Equa-
tion (7.15)) differ at most by a factor 2. The bigger b?, the bigger the fluctu-
ations of the first passage time. Finally, as one might reasonably expect, the
dependence of the bound on ¢, is such that the bigger c., the heavier the
right tail. Notice that the ratio between b? and c, that appears in the bound
can be controlled by the average at stationarity:

é < £ =) (¥) o5 < (te)
q x€E R
where we recall that g (resp. d) are the maximum (resp. minimum) escape

rates. On the other hand, ¢ and bg are quite independent from each other.
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For example, if one modifies uniformly the speed of the Markov process X,
ie. L — AL for some positive A, one has that the jump process does not
change and therefore ¢ remains the same, while b2 — A~2b2. Notice that the
bound has the right scaling with respect to this group of transformations:
indeed, the bound becomes

(Ay)%e, [ 5ecAy
C(v) exp <—k 152 h 20 ,

which corresponds to the upper bound for deviations of the order A<y for
the original dynamics.

Proof of Theorem 7.7. We begin by using the Chernoff bound to upper bound
the probability of Te(k)/k right deviating from (t¢) by more than v > 0,
using the moment generating function:

P, (Tézgk) > (te) +7> < e Rl E, [ Te®], u >0 (7ap)

We now focus on upper bounding the moment generating function using
the definition in Equation (7.1). Introducing the notation

R
F, ::R—u' u <d,

one has that for every 0 < u < d the following holds true:

E, [e"Te®)] = <1/, (FuP)k1>

v k
= (2, (F.P)"1)
<7‘C ( ! )7 b
1 11 1
— (Fi 2, (ripRh'EIL)
us s
1y IS (LY
< ||Fi—| |/FiPFz Fill ,
T T 7T 7T
where £ (x) = ;((J;)),Vx € Eand || - || the L% (E) norm defined in Section 2.4.

We use the notation M to denote the multiplication operator correspond-
ing to ~. We can write the following:

1y 1
‘Fﬁ = FﬁM%l
T 7T 7T
1
= |M.F21
8 T
1
< |[My |l |[Fil
v 1
-2,
7T oo p
Note that [[Mv |z = /%[ since we know that M is a diagonal matrix.

1 1
Applying Lemma 7.5 with f = F;1, Lemma 7.6 with A = B = F; and re-
1

membering that F? is self-adjoint one can derive the following inequalities:
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1
1. ‘ Fil

T

1 1
F.PF.

T T

where we recall that P is the Le6n-Perron matrix associated to P, cf. Defini-
tion 2.2. Therefore, we get:

k
, 0<u<d. (7.18)

T

1, 1
sereo) < 2] [rtee

If we set C(v) := || £|
F; PF;

s the problem is now reduced to finding an upper

1,1
bound on . Notice that F;PF; is self-adjoint, therefore its norm

T

coincide with its spectral radius r(u). Moreover, FL%, f’FL%, is similar to PF,,,
hence they share the same spectral radius; finally, Perron-Frobenius theory
ensures that r(u) is an eigenvalue of P(u) := PF,.

We can write P(u) as a power series:

) 1
P(u)=P+ ) u'P <11{> , 0<u<d. (7.19)

For conciseness of notation, we denote D := R~1. Perturbation theory (cf.
[105] or Section 4.4) implies that if we can bound ||PD!||, < 67/~ for some
5, > 0and [ > 1, within the range |u| < (26e~! + ¢)~1, with ¢ the spectral
gap of P (which is equal to the absolute spectral gap of P), then the spectral
radius r(u) can be expressed in the following way:

r(u) =1+ 2 utr®), (7.20)
=1
where
0 (=1)F g . . . g iy)
r = Z E tr (PD 1S‘u1 PD }JS Hp )/ (7'21)

p=1 P vt tvp=1v;>1
ptetpp=p=1,4;=0

with 8© = —11,, S = (P —1411,)! =1, = —¢ (1 —II,) and S
the 1 power of S(). Note that SV is equal to the Moore-Penrose inverse
of —(1—P) and ||S®)|; = e ¥ for u > 1. If we set our estimates § = { =
cc := d~! (recall that c, is the longest expected holding time), we can indeed
bound ||PD/||; by:

IPD' ||~ < e,

which gives a radius of convergence |u| < - o719 < & = d. Using Equation
(7.21), we can explicitly determine that

1
c

r(l) = <t€>/
r® =2 - <D1,s(1>PD1>

T
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7.3 CONCENTRATION BOUND FOR DYNAMICAL ACTIVITY

We then seek to bound r(") for I > 3. For p = 1:
—tr(PD! (= — (D! — il
tr(PD!(~I1,)) = <D Ll>n = ¥ @) o
For the p > 2 cases, we get:

—tr(f’DVls(’“) .. .f)DVpS(Vp)) — <DL pv—1s(m)ppraglka) . ..

... PDY 18- PDY1D1 >

7T

_ -1
< [ID1ZIDI IS5,

where we have taken i, = 0, which is justified since pi; + - +pu, = p — 1,
there is at least one y; = 0, and the trace is cyclic. Again using Cauchy-
Schwarz we can bound the terms as follows: |[SV|; = 1, |D||x =
|D1||% = b2. We also have that ¢ < 1. For p > 2, each term in the inner sum
of Equation (7.21) is then bounded by

(-2

el -1

bZ
From [67] the number of terms N(I) in Equation (7.21) is bounded by
r (11 2<p—1>>1 -
- E (TN e e
) ,;1 p=1/\ p=-1)p

which is valid for I > 3. Combining everything together, the bound on each
") becomes

0| < I 1-2p2C = _ ! c c
P01 (DL1) +57 5 = (D'LL) +2- ( . ) .

Which, through a simple computation is in fact valid for I = 2 as well.
Therefore, the eigenvalue r(u) can be bounded above by

© b2u [ Scou\
<1+ (¢ D'1,1) ul + == [ =<
) 1 s 55 (011) B (50)

°° vu (5cu\
< exp <<t€>u+Z<Dll'1>ﬂul+56cC( Ec ) )
1=2

where we have used the fact that 1 4 x < e¢*. We can further bound this by
focusing on the latter two terms inside the exponential:

1.
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The power series for point 1. again gives a radius of convergence of 0 <

1 ; ; ; € 3 1
u < o Point 2. gives a radius of convergence of 0 < u < 5 < s <o
Combining these terms together and using the upper bound on the Laplace

transform in Equation (7.18), we have, for 0 < u < -

E,[e®Te®)] < C(v) exp <k <<te>u + b2u? < ! + ! ))) :

1—cu €e—5cu
(7-23)

Since 1 — c.u > & — 5ccu, we can relax slightly the bound on the moment
generating function, such that when we apply the Chernoff bound in Equa-
tion (7.17), we get that

P, (T@k(k) > (te) + 7) < C(v)exp (—k (*yu - Zbiuz (1 - 50;”) 1)) .

(7.24)
Consider the more general expression below, with a, 8 > 0
yu—au® (1 —pu) "t
Elementary calculations show that
2
—w(1—pu) V= (BT
sup {’yu au” (1 — Bu) } = 21xh ( " ), (7.25)

1
u<ﬁ

where h(x) := (14 %+ 1+ x)" 1. In our case, a = %, B = >« Therefore
taking the infimum on the right hand side of the bound in (7.24), which is
valid Vu € [0, 55-), yields the final result for right deviations

P, <T@]Ek) > (te) + 7) < C(v)exp (—kzlj;h <52Cl;;)> .

To prove the concentration inequality for left deviations, we write the Cher-
noff bound for this case, this time with u <0

P, (Tezgk) < (te) - v) < e hullte =g, [ Te M),

We can repeat the proof we did for right deviations, due to the fact we are
upper bounding the absolute value of the terms in the expansion of (7.21)
for | > 2. We obtain an upper bound on the moment generating function

E, [eTe)] < C(v) exp <k ((t@u + b2u? ( ! + : >)) ,

1—cclul  e—>5cclul

which is valid for 0 < |u| < 5.~ One obtains a concentration bound in
terms of u of a similar form to Equation (7.24). To optimise this, we set u —
—u and note that the resulting expression has the same form as Equation
(7.25). Using the same values of « and B, this gives the final result for left
deviations and concludes the proof of Theorem 7.7

P (79 < 1) < cremp (50 (27) ).
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We remark that to optimise in #, we relaxed the bound on the moment
generating function, albeit in a different way to the derivation of the con-
centration inequality in Chapter 6.

As a consequence of the proof of Theorem 7.7, we obtain an upper bound
on the variance at stationarity of the FPT corresponding to the dynamical
activity. This upper bound is derived from the perturbation expansion of
the spectral radius r(u), in Equation (7.21). The result complements the
lower bound (or TUR) for the FPT of the activity obtained in [48]:

Proposition 7.7.1. The variance V., (k) of the first passage time for the total
activity at stationarity is bounded from above by:

Vr Te (k) 2 2
et 7K _ .
. <(1+ - bz
Proof. Notice that for u# > 0 small enough, one has

log(IE[¢*Te®)])) = (te)ku + = Vi 1, (K)u? + 0(u?)

where r(u) is given by Equation (7.20). We recall that

7(0) =M = (te) = (D1,1),

P
" (0) = 2r® :2(DLD1)H+2<D1, AD1> ,
1-P /.

therefore

(0) = (r'(0))* = (DL 1)% +2 <D1, 1AD1> < <1 + 2> bz,
1-P - €
where the last inequality was obtained using Cauchy-Schwarz and recalling
that |D1|2 = b2 and from Equation (7.21) that || (1 — P) " ||, = ¢ L. Hence
Vi, 1e (k) < (14 2) b2k.
O

We could have derived an upper bound on the variance simply from
the second derivative of the upper bound on the entire moment generating
function in Equation (7.23). We recall that this upper bound on the moment
generating function was derived by upper bounding every coefficient in the
expansion of the spectral radius (Equation (7.20)). This would have given a
weaker upper bound (by an amount b?) so instead we derived the variance
bound using the method in the above proof: taking the expansion of the
spectral radius and upper bounding only the terms corresponding to the
variance.
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7.4 TAIL BOUND FOR GENERAL COUNTING OBSERVABLES

Our second main result of this chapter is a concentration bound on the tails
of the distribution of the FPT for general counting observables, Ty (k) /k. Sim-
ilarly to the above result, this bounds the probability that Ty (k)/k deviates
from (ty). Recall that L is a sub-Markov generator describing the jumps
in A, cf. Equation (7.2). We introduce the following notation

1
pi= ‘ .

X |[oo—00
In the case of the dynamical activity it is simply given by f = max,1/Rj.
In general, B satisfies B > (ty) by Equation (7.8), and as we show below,
it can be interpreted as the longest timescale of the system. Indeed, since
—L! is a positivity preserving map, Russo-Dye theorem (cf. Theorem 5.6)
gives

L_l co—00 — L_l]- co — L_l ’
L o = T2 = ma B 1Ly
and since
L'l = max — (v, L'1) = max E, [Ty(1)],
v v

we obtain
B= mvaxlEV[Tg((l)],

where v is a probability density on the state space. We can now state our
second main result:

Theorem 7.8. Let L be irreducible and A C €& be non-empty. For every k € IN
and 7y > B — (ta)

R e )

Here we comment briefly on the rather simple idea the proof of Theorem
7.8. Let Z be the sum of k independent exponential random variables with
parameter B!, then by applying the Chernoff bound one obtains that for
every 0 <u < B!

P(Z/k > p+7') < exp (—k (u(B+1) +1log(B) +log(8™ —u)) ).

Optimising in u in the previous equation, one gets

P(Z/k>B+17") <exp (—k (v’ﬁ‘l —log(1+ 7’/3‘1))) : (7.26)

As the interarrival times are distributed according to the matrix-exponential
distribution ([128]) with rate matrix —Le, and B = ||Lgl|/1_s1, the moment
generating function of Ty (k) is bounded from above by that of Z. Equation
(7.26) then provides the bound in Theorem 7.8.
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Proof. The proof begins with the same procedure as Theorems 7.7 and 8.6,
but differs in that we do not use the L% (E) Hilbert space. We again begin
by applying Chernoff bound:

. <ka(k) > (ha) + 7) < e k() +NE, [ Ta 0],y > 0. (7:27)

The next step is to upper bound the Laplace transform: for 0 < u <
LG Lo One has

If we denote B := HLO_Q}k then for u < %

H1—>1’

1
1—Bu
Placing this back into Equation (7.27) we get

k
E, [T < < > = exp (—klog(1l— Bu)).

Py (T 2 (ta) 47 ) < exp (<K (uy + (1)) +log(1 - pu)), (728

for 0 < u < B~1. The minimum of the R.H.S. is achieved at

S 1 y+(ta)— B
B oy+{ta) Bly+(ta))’

We have u* < B!, and u* > 0if 7 > B — (ty). Substituting u* into Equation
(7.28) gives the final result:

(P ) o (422 e (1502)

This concludes the proof of Theorem 7.8.

O

Theorem 7.8 provides a tail bound for a more general class of observables
than Theorem 7.7. Unlike the case of Theorem 7.7, the bound in Theorem
7.8 does not cover small fluctuations and this makes it impossible to use to

derive any bound on the variance of Ty (k) in the spirit of Proposition 7.7.1.
Nevertheless, using the explicit expression of the variance (see Lemma 7.2),

one can derive the following FPT inverse TUR.
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7.4 TAIL BOUND FOR GENERAL COUNTING OBSERVABLES

Proposition 7.8.1. Given any non-empty set of jumps 2, the variance Vi, 1, (k) of
the corresponding first passage time at stationarity is bounded from above by:

where

€:=1—max{[|Qfllw: [Ifllc =1, {9, f) = O}.

We recall that ¢ is the unique invariant law for Q and was defined in
Equation (7.7).

Proof. From the proof of Lemma 7.2 one can see that

V(’)’T,i‘(k) = <¢, L;11>2+2<¢i§ol(1 ~I1,)LJ'1)
122@ (1-T11,) 1>

i=2j=1

(”kiii "))s

2
— &) — (1 — §)k+1
) 2(1-¢) kggl £) )ﬂz

/\

IN

I
N T »‘

mt\l\) mz\l\)

\_/

O]

We remark that Proposition 7.8.1 together with Chebyshev inequality pro-
vides bounds on small deviations as well.

The constant  may be difficult to compute, especially for large systems.
However, it is not hard to check that Theorem 7.8 remains true if we replace
B with any B > B. The following proposition shows it is possible to upper
bound B (and obtain alternative concentration bounds for the FPT) in terms
of the following simpler quantities of the system:

1. maximum escape rate (recall from Equation (6.1)):

= Ry };
7:= max{R}

2. minimum transition rate:

h:= gryuen{wxy Wyy > 0}; (7-29)

3. minimax jump distance k: the minimum k € IN such that for any
initial state i € E there exists a trajectory (ip = i,i1,...,1;) with I <k
such that w; ; , >0 forall j =0,.../ —1 and the trajectory ends with
ajump in 2, ie. (ij_1,7;) € A.
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a) b)

Brerderdend Berdoenten

Figure 7.1: Minimax Jump Distance: configurations of a discrete system are rep-
resented by circles, and allowed transitions between them by arrows.
Jumps in 2 (full/red) contribute to the observable, whilst jumps in
€ (dotted /blue) do not. (a) System where red jumps are distributed
throughout the graph, in this case k = 1. (b) Uneven distribution of
jumps in 2, in this case k = 4.

While g and / can be computed easily in terms of the transition rates,
the minimax jump distance k can be read off the graph of the process, see
Figure 7.1. The fact that it is finite follows from the irreducibility of the
Markov process. The proposition is stated below:

Proposition 7.8.2. For general counting observables, the norm B := ||LJ!|| oo

is bounded from above by:

3 k-1 ~ % 3
B < cck max {Rx} max {Rx}gcck<q> =: 6,
(X,y)é?[ wxy (x,y)GQl wxy h
with c.,q, h defined in Equations (7.16), (6.1) and (7.29) respectively. The concen-

tration bound in Theorem 7.8 holds with B replaced by any of the two upper bounds
above.

Proof. From the expression (7.4) for —LZ! we obtain

12 (1 )k 1

Loy (ilw,) L

Lo &\R R
Let k > 0 be the minimax jump distance as it has been defined before
Proposition 7.8.2, i.e. the maximum over all states of the minimum number

of jumps which suffices to get from that state to a final jump between states
in 2. The previous sum can be written in the following way

£ (i) - K () £ )
1=0 R ? _m:O R 2 n=0 R ? '

w}\ere we break up [ into multiples of k and a remainder term, since Ny =
Uzjl_:lom + kIN. We can upper bound as

n

1 1 k-1 1 m %) 1 k
Sl N 31 N [
LOO 00— 00 R 00— 00 m;O R OO‘)OO]/[EZO R 00—300
Notice that ||[R7!|| o = Cc- As 2 is non-empty, the spectral radius of

R~!Wj is strictly less than 1 (see Lemma 7.1 ii)); therefore, there exists a k
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such that < r < 1. We will now show that k can be taken

-1 k‘
@

equal to k; in this case, we can write the upper bound of B in terms of r as

1

5§cclzl_r.

(7.30)

So we just need to find 7. Note that for any matrix G with positive entries,
one has ||G||coosc = ||Gl||ee = maxyecp(dy, G1). Therefore

k k
H (Il{Wz) _ <5 <11{W2> 1>, (7.31)

where x( is the state which attains the norm. From the structure of the
generator, we know that

00— 00

1 1
EWZl =1- ﬁwll (7-32)
By the definition of the minimax jump distance, we know that there ex-

ists a path xp,...,x; that happens with positive probability and such that
(x;_1,x7) € 2. We can rewrite the right side of (7.31) as

(o () 1) = () 1) -
(o (iow) 1) e ) (o) 1) =

In the first inequality we used the fact that R"'W; is sub-Markovian, while
in the second equality we made use of Equation (7.32). It is easy to see that
g+ < 1. Moreover, we know that

k-1
w w w w
g > 0. UM > min { xy} min { xy}
Rxo Rxl,l (xy) A Ry (xy)ed Ry

k k
) =)
(xy)ee R q

Hence we can take

k—1 2
r=1— min {wxy} min {wxy}gl_(h) ]
(xy)e2 | Ry (xy)exu | Ry q

Applying this to Equation (7.30), we get that

3 R, )1 R 3
ﬁgcckmax{ x} max{ x}gcck<
(x,y)¢2l wxy (X,y)GQ[ wxy

)

=

O]

In the case of total activity, i.e. when 2 = €&, one can easily see that = c..
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7.5 EXAMPLES
7.5.1 Dynamical activity in a three-level system

We illustrate the results of Theorem 7.7 with the model of a simple three-
level system as sketched in Figure 7.2(a): the set of configurations is E =
{0,1,2}, with reversible transitions wg; = wiy = w, we = Wy = v and
wip = wy; = k. Assuming that w is the largest rate, the longest expected
holding time is ¢, = ﬁ, whilst (t¢), b% and ¢ can easily be determined from
the three-dimensional generator L. In addition, we have § = ¢, for 2 = €.
In Figure 7.2(b) we show the exact long time rate function of the activity
(full/black) for a particular set of values of the transitions rates, together

with the lower bound from Theorem 7.7 (dashed /blue),

2
1 _ %, (B
fe(tte) +71) = Tk (57 )
and the general lower bound from Theorem 7.8 (dotted /red),

Le({te) +7) = 7+C<t@> —1-log (7+C<t€>> ,

We see that the bound from Theorem 7.8, [¢({te) + ) is closer to the exact
result than that from Theorem 7.7 for large enough deviations. Indeed, for
9> 1, one has [g((te) +7) = L while I¢((te) +7) < &= < L. For compar-
ison, in Figure 7.2(b) we also show the upper bound to the rate function, the
so-called TUR, from [48] (dot-dashed /magenta): the combination of the TUR
and the “inverse TUR” from Theorems 7.7, 7.8 upper and lower bound the
true rate function thus restricting the range of probabilities of rare events of
the activity.
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Q
~—
S

)

2.5

15;

I(Tg (k)/k)

Te (k) /k

Figure 7.2: Bounds on the rate function of the FPT of the activity in a classical
three-level system: (a) Sketch of the three-level system. (b) Rate func-
tion I(Te(k)/k) of the FPT for the dynamical activity, for the case with
rates wy; = wig = w =1, wyp = wyy = v = 0.5, w1n = wy; =k = 0.2
We show the exact rate function (full/black) and the lower bound spe-
cific to the activity from Theorem 7.7 (dashed/blue). We also show the
the generic tail bound for counting observables from Theorem 7.8 (dot-
ted/red) which is valid in the region Tg(k)/k > B =1/d = 1/(x +v)
(indicated by the arrow). For comparison we include the upper bound
on the rate function (dot-dashed/magenta), known as the TUR [48].

7.5.2 Metastability and the absolute spectral gap

In the following example we show how closing the absolute spectral gap of
the discrete-time generator P leads to an increase of the fluctuations of the
total activity FPT in a simple model, as predicted by the concentration bound
in Theorem 7.7. We consider the six-state system introduced in Section 6.6.2
composed of two three-state subsystems connected by edges controlled by
a rate parameter w, see Figure 7.3. For w — 0 the spectral gap of the real
part of the generator (L) vanishes and the configuration space E breaks
up into two disconnected components, E; = {1,2,3} and E; = {4,5,6}.
When w is non-zero but much smaller than the other rates, the system is
metastable, with E; and E; becoming long-lived metastable “phases”, since
relaxation within E; » will be much faster than relaxation in the whole of E.

We now study the statistics of the FPT of the activity in this model. We
consider the case where the internal rates in E; are much larger than those
in E;, while maintaining the metastability condition, Ay, x; > Az, k0 > w.
We call E; and E; the “active phase” and “inactive phase”, respectively, as
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the activity in stationary trajectories is much larger while the system is in
E; than in E,. The rate matrix can be written as,

W:W1~0+w013,
0 W 1; 0

where Wy, are the 3 x 3 rate matrices for internal transitions in Ej, =
{1,2,3}, and the three-dimensional identity is denoted 13. In Theorem 7.7
we require the discrete-time operator P = R™'W and its adjoint P?, to form
the multiplicative symmetrisation

) WMo 2 CR
P'P L Ww'w ws 1
2 2 —_
0 R2 213
0 Wi W,
Rt T R
+C(] W'I' X 7
24 0
RZ Rl

where Rip = Aqp + k12. At w = 0, the spectrum of P'P is equal to the
union of the spectra of PIP; and PIP,, where P = ng is the discrete-time
transition matrix on each E; and P, is that of E; hence, the algebraic mul-
tiplicity of the eigenvalue 1 is 2. By continuity of the spectrum for analytic
perturbation, the absolute spectral gap vanishes as w — 0. Proposition 7.7.1
then implies that the upper bound on the variance of the FPT will explode
as this “phase transition” point is approached. Fluctuations of T¢(k)’s get
bigger as well: since w is much less than either of the escape rates within
each metastable phase, the system gets “stuck” in either phase, resulting in
larger fluctuations of the observed FPT.

The behaviour of the fluctuations of Tg(k) as w — 0 is not immediately
apparent based on the form of the expression for the variance given by
Lemma 7.2. We remark that for finite k the variance remains finite even as
the gap closes. This can be seen by rewriting V1, (k) as

1y pi
V"kae(k) = (7,D1)> +2 <7T,D (1 + 21%]:11’) (1- Hn)D1>

which is uniformly bounded in w. Recall that in the case of total activity
¢ =Ll =R =—-Dand Q = P. In the limit k — 400 the expression
reduces to the first two terms of Lemma 7.2 and the behaviour depends
solely on (1 — P)~! and whether this causes a divergence as w — 0. From
Figure 7.4 one can see that for this model, the asymptotic variance does
diverge and for finite k the fluctuations remain finite as expected. We can
however see fingerprints of the asymptotic behaviour for intermediate k,
which is captured by the upper bound in Proposition 7.7.1.
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Active Inactive

-~ = -~
RN (1) s \\
\

“1 i/ .
\ V \

\

~ -~ - / \ -~ - /
Figure 7.3: Six-state dynamical system: sketch of a six-state system with two
phases, the active phase E; in the left circle and the inactive phase E
in the right circle. The phases are separated by edges controlled by w.
For small w, each phase is metastable, and for w — 0 the size of FPT
fluctuations increases. This increase is captured by e.

6 ‘
-a=k=1
5| Bk =10
a2
2 k=10
~ 4 —-k=10°
~
- - k= oo
~— 3| — Upper Bound
®
B\
B
~

Figure 7.4: Upper bound on the variance of the FPT for activity in a six-state sys-
tem: upper bound (full/black) on the scaled variance of V. r, (k)/k
given by Proposition 7.7.1. This is valid for all k. We compare with
the exact variance (cf. Lemma 7.2) for several values of k: 1 (dashed-
marked/blue), 10! (dotted-marked/orange), 10? (dotted/yellow), 10°
(dot-dashed/purple) and for k = co (dashed/magenta). We compare
these quantities as the controlling parameter w — 0 and the system
approaches a phase transition. The system is the model given in Figure
7.3 with rates Ay = 30, 41y = 10 and A, = 0.3, up = 0.1.
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7.5.3 Three-level system counting subset of jumps

To illustrate the results of Theorem 7.8, we use the same three-level model as
in Section 7.5.1 but we consider the observable that only counts “clockwise”
jumps, that is, the 0 = 1,1 — 2 and 2 — 0 jumps but not their reverses.
With this setup, the minimax jump distance is k = 1 since it is possible to
perform a jump in 2l which begins at any state. The lower bound to the rate
function provided by Theorem 7.8 is illustrated in Figure 7.5.

2.5
—~ 2]
N
~ 157
~2
—/
= 1
B~
~—/

—

o
o

Figure 7.5: Bounds on the rate function of the FPT of a counting observable for a
classical three-level system: exact rate function I(Ty (k)/k) (full/black)
for the FPT of the total count of jumps 0 —+ 1,1 — 2 and 2 — 0 in
the three-level system of Figure 7.2, with rates wy; = wiyp = w = 1,
wop = wy = v = 0.9, wyp = wy; = k = 0.8. The tail bound from
Theorem 7.8 (dotted /red) bounds deviations in the region Ty (k) /k > B
with B < B = (w+v)/[x(x + v)]. The rate function is bounded from
above using the same method as in Figure 7.2 (dot-dashed/magenta)

[48].

We demonstrated in the previous chapter, Chapter 6, complementary
bounds to the large number of works on the thermodynamic uncertainty
relations, often expressed as lower bounds on fluctuations in the fixed-time
ensemble, where instead we limited fluctuations from the upper side. In the
alternative description with fluctuating time it is natural to also consider
bounds from this same side, which has been the contents of this chapter.
Our concentration inequalities in Chapter 7 provide an upper bound on the
probability of seeing fluctuations in FPTs. These inequalities are valid for all
initial distributions and all values of the observable threshold that defines
the FPT, and not only in the large threshold limit where large deviations
theory applies. The bounds are written in terms of relatively simple quanti-
ties which describe the overall properties of the dynamics (and which in an
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ideal setting can be determined by observation), in particular the longest
expected holding time between events, and the spectral gap of the sym-
metrised generator.

So far, we have focused exclusively on classical Markov processes. In the
next chapter, we will extend these first passage time results to the non-
commutative (quantum) setting. In the classical case, where the operators
are represented by matrices — some of which are diagonal — we were
able to obtain tighter and more intuitive bounds compared to those derived
directly in the quantum framework.
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QUANTUM UPPER BOUNDS ON FLUCTUATIONS OF
FIRST PASSAGE TIMES

We now move away from fluctuations of classical processes to fluctuations
of quantum Markov processes. Recall that we consider a quantum trajectory
as the outcomes of continuous-time counting measurements on the envi-
ronment, with this environment consisting of emission channels described
by the jump operators L;. As observables we consider integer numbers of
counts Ny ; from all or a subset 2 of channels. The first passage times (FPTs)
for Ny are defined in the same way as the classical process, cf. Equation
(5.7) and we are interested in the deviations of the FPT away from some
average.

In the quantum case we have less knowledge about the structure of the
operators involved. As we will see, in the concentration inequalities some
quantities are left in terms of operator norms. In the classical case, these
norms can either be calculated analytically, or can be bounded in terms of
simpler quantities. Physically, the quantities used in the bounds for classi-
cal processes could in principle be estimated (e.g. b? used in Theorem 7.7)
whereas it would be non-trivial to estimate the size of the operator norms
used in this chapter without evaluating them numerically.

The quantum setup further differs from the classical one in that the irre-
ducibility of the transition operator ® and generator £ are not in general
equivalent. Recall the ergodicity assumptions we made in Chapter 5 (Hy-
potheses 5.3 and 5.4). The following lemma proves that Hypothesis 5.4 is
strictly stronger than Hypothesis 5.3.

Lemma 8.1. The generator L has a unique invariant state if and only if ® does. If
® is irreducible then L is irreducible, but the converse is generally not true.

Proof. Indeed if L. (v) = 0 for some state v then
P (Ju(v)) = —TLy! (—Low(v)) = Ti(v)

sov' := J.(v)/tr[J.(v)] is a stationary state for ®. Notice that if v is strictly
positive, then this is not necessarily true for v/, depending on the form of
the jump operators. Conversely, if @, (v) = v for some state v then

L.[Lo} ()] = (Low + T)Lo! (V)] = v+ T Ly (v) = v = @u(v) =0

sov' = Ly} (v)/tr[Ly} (v)] is a stationary state for £. Here we used the fact
that —Ly! = [;° "% is completely positive. If @ is irreducible then v > 0
and —Lg!(v) > 0, therefore L is irreducible, and Hypothesis 5.4 implies
Hypothesis 5.3.

O
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8.1 MOMENT GENERATING FUNCTION

First we set up the form of the moment generating function (Section 8.1)
in preparation for the Cramér-Chernoff method. As we have done in chap-
ters 6 and 7, it is possible even for quantum systems to compute an explicit
form of the variance of the first passage times, which we do in Lemma
8.3. Using irreducible properties of the tilted generator we can prove the
large deviation principle (LDP) for first passage time of quantum counting
observables (Section 8.2). Our first concentration inequality for quantum
systems, in Section 8.3, is for the FPT of the total counts of Markov pro-
cesses where the L; are of any rank. Despite the additional restriction im-
posed by Hypothesis 5.4 for cases with these general jump operators, we
derive in Section 8.4 a concentration inequality for FPTs of total counts of
quantum reset processes — processes with L; of rank one — which only re-
quire the weaker assumption Hypothesis 5.3. We then provide a tail bound
for general counting observables in Section 8.5. Alongside each concentra-
tion inequality, propositions in the form of inverse TUR-type bounds on the
variance follow. We demonstrate our results in Section 8.6 by computing
lower bounds of the large deviation rate function of observables on simple
quantum systems.

8.1 MOMENT GENERATING FUNCTION

The following splitting of the generator is relevant in order to study the
properties of the stochastic process Ty (k):

'C:JQ[+£OO/

where Jy(x) = Yjeq L xL; accounts for the change of state after a jump in
20 and L for the average evolution between jumps in 2. We denote as ¥
the transition operator analogous to Q in the classical case:

Y(x) = =L o Fa(x). (8.1)

If Hypothesis 5.3 holds, then ¥ admits a unique invariant state ¢ (which
might have a non-trivial kernel). Note that if A = I then Lo = Ly and
Y =o.

The following lemma shows that all the objects introduced so far are well
defined and allows us to write the Laplace transform for general counting
observables.

Lemma 8.2. Assume that Hypothesis 5.3 (L is irreducible) holds. Then the follow-
ing statements are true:

1. A= —max{R(z) : z € Sp(L)} > 0, hence Lo, is invertible;

2. for every u < A, one has

IEp[e“Tm(k)] = tr <p ((u + Lioo)’l[,oo‘f’)k (1)> ;
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3. 1L ot e < A

Proof. 1. Lo generates a sub-Markov semigroup e!“~. From the spectral
mapping theorem, one has that

Sp(ethe) = eSP(L=) i >0,

Moreover, since e/“~ is completely positive, by Perron-Frobenius theorem

(Theorem 5.5) the spectral radius and largest eigenvalue of e/“~ coincide.

Hence
r(etﬁoo) — e“‘[)\ = maX{?R(Z) VA Sp(ﬁoo)}/

and Jdx € M;(C) withx >0
Loo(x) = Ax.
By contradiction, suppose that A = 0, then
L(x) = Ju(x) + Loo(x) = Tu(x)-

Therefore
tr(6L(x)) =tr(6Ju(x)) =0,

since £,(0) = 0. From the irreducibility assumption (Hypothesis 5.3), we
have that & > 0, and so £(x) = Ja(x) = 0. Moreover, irreducibility also
implies that x = a1 for some a« € R. Therefore Jy(x) = aJy(1) = 0. Since
Ja(1) is the sum of positive operators, we have that « = 0, consequently
x = 0 and we reach a contradiction.

2. Integrating over all trajectories, one can write
i i<t
For u < A, one has

+o00
~(ut L)t = [ eliEay,
0

hence one can write the Laplace transform of Ty (k) as

E,[e" 0] = tr ((—jm*(u + Eoo*)fl)k (P)) ,

and by the definition of ¥ in Equation (8.1), we obtain the statement.

3. The spectral mapping theorem implies that Sp(L3!) = {z7! : z €
Sp(Lw)}, therefore one has that

== <z

-1 -1
o e
00—$00

1
SR A
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For the sake of completeness, and for the interested reader, we point
out that an alternative expression for the probability density of FPTs from
the one we use in the proof of Lemma 8.2 has been recently presented in
[129]. This alternative expression can be written for general time-integrated
observables of continuously indirectly monitored quantum systems, and it
is particularly useful in explicit computations. From the expression of the
moment generating function given in point 2 of the previous lemma, one
can use standard techniques to show that

%Tm(k) —— () = —tr (c£21()  as. (8.2)
where ¢ is the unique invariant state of ¥ defined in Equation (8.1). Our goal
will be to investigate the probability of Ty (k)/k deviating from (ty). Using
the expression of the moment generating function, we can compute the
analytical form of the variance of the FPT for any process counting subsets
of emissions.

Lemma 8.3. Let ¢ be the invariant state of Y, cf. Equation (8.1), and let I1; be
the map I1. : x — tr (gx) 1. The variance of the first passage time for counting
observables Vk > 0 is given by:

Ve _ . (ca)’

I, (c) _
+otr [ et MO (1 o — T L1
(Q Ty, (c) — ‘I’( M,4(C) ¢) (1)

2 1 ¥ _ 1}rk+l n
i (Qﬁoo m(lMd(C) —TI)LS (1) |

Proof. We recall the explicit expression for the moment generating function
from Lemma 8.2

E,[e"T2®)] = tr <g ((u + £oo)’1£oo‘1’>k (1)) , U< A

Define r
Fu = I
We can write the first moment as
MTQ[ z 1 / k—i
Z tr (¢ (FY) (FY) (FRY) ' (1)). (8.3)

At u = 0 this gives us the form of the asymptotic mean.

Be[Ta(k)] = —kir (6£2'(1)) 84)
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Differentiating Equation (8.3) at u = 0 gives us the second moment

E¢[Ta(K)?) = 2tr (£22(1)) k
+ itr <g£;1 (lzl‘l’i_j + ka‘i”) £;1(1)>
=1 j=1

i=1

= 2tr (¢L7(1)) k + 2tr (gﬁool ) ‘I’fﬁool(l)>

1<j<i<k
= 2tr (¢L7(1)) k
k i—1 2
+2)Y ) tr (gﬁ;l(1)>
i=2j=1
k i-1

+ 2tr <g£ool YN ¥ (Tayc) — Hg)/:ool(l)>

i=2j=1

where to arrive at the third line, after ¥/ we have inserted e + I, ) — T,
where I1; is the projection onto 1. Using the fact that Yk, Z;;% 1= %(k —1),
and recalling Equation (8.4) for the expression for the first moment, hence

Ve 1y (k) = 2tr (¢L7(1))

k
e (o)’
Y

g~ Hg)£;1(1)>

+2tr | LGt
IMd(C) o

2 1 Y _ pk+l 1
— (Gﬁoo (IMd(C)——T)Z(IMd(C) —I) L (1) |-

Finally, we can again place Il¢ + Iy, c) — Il in the first term, in between
the two L. Rearranging this gives the final result, Yk > 0

Vors®) _ ¢ (22 ))°

VR VY (s _
+ 2tr £w1+ 1 —1II ,Cool 1
(Q Ty, (c) —‘I’( M,4(C) ¢) (1)
2 Yy _ 1}rk+l
— —tr Eo_ol— I —1II Eo_ol 1) |.
k (Q (IMd(C) — 1};)2( M;(C) G) ( ))
L]

8.2 LARGE DEVIATION PRINCIPLE FOR GENERAL COUNTING OBSERV-
ABLES

The fixed-time and fixed-observable ensembles are equivalent in the quan-
tum framework [49]. In this section we rigorously prove a large deviation
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principle for first passage times of quantum counting observables. This next
lemma will show that when L generates an irreducible quantum Markov
semigroup (Hypothesis 5.3), then the semigroup generated by any pertur-
bation of the form

Lo=Lo+) T, ajseR (8.5)
i€l

generates an irreducible semigroup as well, in the sense that for every t >
0, etfs is irreducible according to the definition in Equation (5.5). In fact,
what we will prove is even stronger: it is well known (see for instance [130,
Proposition 7.5]) that the irreducibility of et for t > 0is equivalent to the
(a priori stronger) property that e“*(p) > 0 for every t > 0 and every initial
state p; we will show that such property, often called primitivity, is owned
by the semigroup generated by L as well.

Lemma 8.4. If L satisfies Hypothesis 5.3, then L generates a primitive semigroup.

Proof. Let us consider a vector v € C? and a state p such that

v € ker(e'“(p)) for some t > 0. Then, using the Dyson series, one can
easily see that (v, e'% (p)v) = 0 implies that (v, e/“* (p)v) = 0 and for every
k> 1andi1,...,ik el

ko
e /Ek t <t<vze<t_2’k':1 tj)co*s7ik T \Zletlﬁo* (p)o)dty - - - dty =0,
j=1"=

L}

which is equivalent (since e =% > 0) to

/Z (v,g(f*21k=1 tf)ﬁo*jik o T e 150 (p)v)dty - - dby = 0.

=1t <t

However, using now the Dyson series for et“-(p), one sees that the equa-
tions above imply that (v, e"“o(p)v) = 0. Since e'* is primitive, this implies
that v = 0 and we are done.

O

Theorem 8.5. Consider a non-empty subset A of the emission channels. The FPT
To (k) / k satisfies a large deviation principle with good rate function given by

Iy(t) := sup{ut —log(r(u))}

uelR

where
() = r(Yy) ifu<A

+o0 0.7.

where ¥y, (x) := —(u+ Loo) 1 Tau(x) and A := — max{R(z) : z € Sp(Lco) }-
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8.2 LARGE DEVIATION PRINCIPLE FOR GENERAL COUNTING OBSERVABLES

Proof. The proof follows the same method as the proof of the classical case,
Theorem 7.4; for completeness we write the quantum proof in full. Lemma
8.4 states that in the domain u < A, then

E,le™ V] = tr (p¥h(1)),
where ¥, (x) := —(u + L&) ' Ja(x). Writing ¥, as the integral
¥, (x) = / PHLw)t 7 () dt
0

which is the composition of two completely positive maps, hence ¥, is
completely positive as well. Therefore, Perron-Frobenius theorem tells us
that r(u) := r(¥,) is an eigenvalue of ¥, with a positive eigenvector x(u).
We can relate this operator with the generator of a quantum dynamical
semigroup:

¥, (x(u)) = r(u)x() & Ly (x(u)) = —ux(u),

where L, := L + (6™ —1)Jy and s(u) := —log(r(u)). Notice that L)
has the form in Equation (8.5). Therefore, by Lemma 8.4 it is irreducible and
x(u) is in fact a unique and strictly positive eigenvector of L, correspond-
ing to the eigenvalue —u.

We first need to show that for u < A

1
lim -

uTy (k)
L log(IE, [e ) < oo, (8.6)

Using Holder’s inequality, we have that tr (0%%(1)) < ||'¥¥||c— e, hence
due to Gelfand’s formula

1 Ta(k 1 K
L log(Ey ™)) < 1 log (I s ) > log(r(u).
Furthermore, we can take ||x(#)|/o—00 < 1 and bound from below:

L Tog(Ey[e!™a(]) > log(r(u)) + ¢ log(tr (px())) —— log(r(w)),
which we can do since x(u) is strictly positive, p is positive semidefinite
so tr(px(u)) > 0. Therefore, we have shown that the limit in Equation (8.6)
converges to log(r(u)) < co in the range u < A.

We now use the same version of the Géartner-Ellis theorem (Theorem 3.7)
as in the proof of Theorem 7.4. All that remains is to show that log(r(u))
is steep, i.e. as u approaches the boundary A, both log(r(u)) and log(r(u))’
diverge to +co. Denote by T the spectral projection of L with respect
to the eigenvalue —A. We can show that LT is diagonalisable, i.e. the
restriction does not feature any Jordan blocks or equivalently, the algebraic
and geometric multiplicity of A coincide. To do this, assume LT is not
diagonalisable. Then the map £'T = (£ + Aly ,(c))T — corresponding to
the eigenvalue 0 — is not diagonalisable. One can then always choose x,y €
M;(C) with £'(y) = 0 and £'(x) = y. Therefore one has
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8.2 LARGE DEVIATION PRINCIPLE FOR GENERAL COUNTING OBSERVABLES

e (x) = x + ty.

The semigroup e~ is in fact a contraction semigroup, which contradicts the
above equation. Therefore, we have

LT = —AT.

Firstly, we show that lim _ +- r(u) = +oco. Note that TY # 0 since

TY¥(1) # 0. The map ¥, can be written as

Lo A Lo

Y =
Y Letu A —

and one can see it has a norm which explodes as u — A . Let us assume by
contradiction that 7(u) — 7(A ) < casu — A . Then the eigenvector x(u)
can be chosen to converge to the Perron-Frobenius eigenvector of £ ;) and
min Sp(x(u)) # 0. We then have for 0 < u < A

[Fullooseo = [IFu(1)loo
1
= min Sp(x(u))
_ 12 () [l o
N 7’(u)minSp(x(u))
< 400

¥ (2 (1)) [l oo

which is a contradiction. Let us show that lim +-log(r(u))" = +oo. For
each u, we can choose the left eigenvector of ¥,, I(u), to be such that
tr(l(u)x(u)) = 1. Then we can write r(u) as

(z(u)(u n ﬁoo)_lﬁoo‘I’(x(u)))
= —tr (l(u)(u + Eoo)’lﬁooT‘I’(x(u)»

r(u) = —tr

(1)
+tr (z(u) (1 + Loo)  Loo(Tyy,c) — T)‘I’(x(u))) .

(11)

The term (II) remains bounded, hence as u — A~

() = = tr () TY () =+,

Since log(r(u)) = rr/((;')), we can differentiate the expression for r(u) to ob-
tain
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83 CONCENTRATION INEQUALITY FOR TOTAL COUNTS

r(u) r(u)
_ A e (TYEw) T (100) (o) = T ¥ (x(w)))
C (A-u)? r(u) r(u)
(D) (1

We have again that part (II) is bounded, but for u — A, (I) < (A —u)~!
which completes the proof.
O

In addition to obeying a large deviation principle, we are interested in
the fluctuations for a finite number of counts. We will derive bounds for the
finite regime in the rest of this chapter.

83 CONCENTRATION INEQUALITY FOR TOTAL COUNTS

The FPT Ty (k) for the total number of counts Nj; is the time it takes to ob-
serve k counts of any kind on the system. Our first main result for quantum
Markov processes is a quantum version of Theorem 7.7: a bound on the
fluctuations of the FPT T;(k) for total jumps. We note that in the quantum
framework, “activity” is usually referred to as total “counts” or “jumps”
[62] (but other definitions exist [131]). From Equation (8.2), the asymptotic
mean in this case is

(tr) := —tr(cTL’al(l)).
We define
¢g =1Ly oo 8.7)

and note that this is the non-commutative counterpart of c., cf. Equation
(7.16).

Theorem 8.6. Assume that Hypothesis 5.4 holds (® be irreducible) and let € be
the absolute spectral gap of ®. Then, for every v > 0:

2
P, (Tllgk) > (t) +7> < C(p)exp <—"gc§h <Z>>

P, (Tllik) < () — 7) < C(p)exp (—kgjgh <57>> , keN,

2cq

where h(x) == (V1+x+%+1)71, Cp) := H(T*%p(f%
Equation (8.7).

i and c, is defined in
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83 CONCENTRATION INEQUALITY FOR TOTAL COUNTS 93

Proof. Applying Chernoff bound, we get, for u > 0

P, <T115k) > () 4_7) < e k(N [e”TI(k)} , (8.8)

For u < A, we define the tilted operator ®,(x) := F,®(x), with F,(x) :=
(ulpg,c) + Lo) 1 Lo(x). Using Lemma 8.2, for 0 < u < A we can write

E,[e 1] = tr (p@k (1)) = (020072, 0% (1))
o
1
< |lo~2po 2 lq |11 o | e,
—
=C(p) =1
where with a small abuse of notation ||®% ||, denotes the operator norm of

the map ®F with respect to the Kubo-Martin-Schwinger (KMS) inner prod-
uct associated to . We can further break up this operator norm

k k k
[Pulle < [[Pulle = [[FuPllo-

We now seek to upper bound || F,®,||s. Conversely to the classical case,
Fu® is not self-adjoint, but we can upper bound its norm with an operator
which is. This can be done using Lemma 7.6 with A = F,;,B = I, (¢) to
get | Fu@lls < [ FbFL3, with Fi(x) = To* o (L) +ulgl) ™ o T (x),
cf. Equation (5.6). Since ]-"udAD}":{ is a positive, self-adjoint, irreducible map,
operator Perron-Frobenius theory (cf. Theorem 5.5) says || F,®F} ||, = r(u),
where 7(u) = sup{|A| : A € Sp(F,®F})} is the spectral radius of F,dF}.
Hence, the Laplace transform is upper bounded by

E,[e"T®M] < C(p)r(u)?. (8.9)

For u small enough, we can expand F, ®F} as the power series

, i !
leqAD./T,:r = Zu] <_£1) odo Zul <—£1_0]_>

>0 0 1>0
! 1-j j
1 R 1
!
B8 e ()
>0 j=0 Lo 55
o)

which is the quantum analogue of Equation (7.19) from the classical case.
Again we bound each term in the power series in order to use operator per-
turbation theory [105] (cf. Section 4.4). Using the definition of ¢; in Equation
(8.7) and Cauchy-Schwarz, we can upper bound ®) in the form

@], < (14 1) < (2¢,)"

Using perturbation theory, we find that for u < m, the spectral radius
r(u) can then be expressed as

r(u) =1+ Y u'r®), (8.10)
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where

—1)
FD — y (-1) y TR (q)(Vl)S(Vl) . .q>(Vp)s(ﬂp)> . (8.11)
p=1 p v+ Fvp=Lv;>1
patetup=p=1,p;=0

We have $ = —TT,, SU) = (& — Ty ) +TIo) ' =TIy = —e 1 (Iyy,c) —
I1,), and S the ut power of S(), and also ||S™)||, = e * for u > 1. We
now want to bound the terms in the expression for (). For p = 1

(TR (cpm)s(m) . .cp(Vp)S(Hp)> ‘ _ ‘TR (q)(l)s(o)> ’

-ffvon).

< H]‘HUHq)(l)H(T (8.12)
< (2¢,)

ch 1-1
AN

since ¢ < 1. For p > 2, using the fact that one of y; is zero and using trace
cyclicity

‘TR <q>(V1)S(141) . .cp(vp)s(ﬂp)> ‘ - ‘<1I¢(V1)S(H1) e S(Hp—l)cp(vp)(l)>

g

(8.13)

We can explicitly calculate r()

A _ TR <®(1)(—HU)) = <1,q>(1)(1)>g

_ <1, <_‘M£(<)C>> ¢<1>>0 + <1,é> <—IME§’>> <1>>U_ = 2(ty).

The term |r(2)| can be bounded using Equations (8.12) and (8.13)

12| = ’TR (cp(z)s(m) _ <1,q>(1)s(1)<p(1)(1)>
o (@) | (20 _ 8

g

e £ £
Using the bound on the number of terms in (8.11), given by Equation (7.22),

10¢,\ !~
€

1
we can bound the (") by [r(V)| < ZSﬁ . Now we have all the ingredi-

ents in place, we can finish bounding r(u)
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r(u) <14 Z ul\r(l)

1>1

2 1-1

10c

<14 2(t) J 12 (105

+ 2t 3 ; 5 < 3 )

82 4c? 10c
=1+2(t)u+ 1 JZ < ")

S S I>1

8¢3 10c,u\ !
<14+ 2(t))u+ %uz (1 — 8")

8¢ 2 10 -1
§exp< (tHu+ ] 2(1— zqu) ,

which is valid for u < f— <
q

m. Putting this upper bound on r(u) back

into Equation (8.9) gives the upper bound on the Laplace transform of T; (k)

E, e eiTi0] < C(p) exp (k <<t1>u + 4ciu2 (1 _ 1Oun>1>> )

Applying the Chernoff bound in Equation (8.8) gives, Vu < [0

c2u?
P, <T11Ek) > (tr) +’Y> < C(p) exp <—k (*yu — 4 i <1 10cq ))
B =

2
Optimisation over the allowed u, using Equation (7.25), with « = T",
100q

gives the final concentration inequality for right deviations

P, <T1£k) > (1) +7) < C(p)exp ( kg;h (;Zq)) .

By considering u < 0 we can prove the bound for left deviations

P, (Tllik) < (tr) — 7) < e =g [ T0)].

Repeating the process we get a similar bound on the Laplace transform,
valid for 0 < |u| < ﬁ

E, [T ] < C(p) exp (k <<tr>“ + 4q (- H)>> |

One obtains the upper bound on left deviations, a symmetric bound to right
deviations

P, <T1]£k) < {t1) —'y) < C(p) exp ( kgcfh <§;:>> :
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83 CONCENTRATION INEQUALITY FOR TOTAL COUNTS 96

Theorem 8.6 provides a concentration inequality in terms of the absolute
spectral gap ¢ and the operator norm ¢;. As long as Hypothesis 5.4 is sat-
isfied, it is applicable with any jump operators L;. As in the classical case,
the following proposition follows from the proof of Theorem 8.6, where we
bound only the terms in the expression for r(u) which correspond to the
variance.

Proposition 8.6.1. The variance V, 1,(k) of the first passage time for total counts

is bounded from above by
Vor (k) 4 2
T’ < . (1—¢) ) cg

Proof. Notice that for u > 0 small enough, one has

log(Esle"™"]) = (t1)ku + 2 Voyr, (k) + 0(u?)

< X log(r(u) = 5/ (O)u+ 5((0)  (7(0)2)u +0(u)

where r(u) is given by Equation (8.10). We recall that

7"/(0) — 1) = 2(t;) = -2 <1’ £0—1(1)>U

O e (1,02 (1)), + <1,<1><1>(1Md(c) - &>)—1q><1>(1)>
=2(1, £5%(1))e + (1, L' D(LE) (D)o
+ (1, ((£5) " + L") (L) — D) (DL + L) (D)o
=2(1, L5 (1))5 +2(1, L5 (T, c) — o) £5 1 (1))
+ (1, LM O(LE) T (D)o + L (L£5) " (Tnyo)—0) £ ' (D)o
+ (1 —e)e (1, (L) Ty (e) — 1) (£3) 1 (D))o
+ (1, Ly Ty o) — T0) £57(1))0)
+(1—¢)’e (1, Ly Ty o) — 1) (£9) 71 (1))o

2(1,L51(1))2 + <§ —(1- s)> e

o

and we proved the statement.
O

Recall from Lemma 8.1 that if Hypothesis 5.3 holds (£, admits a unique
and strictly positive invariant state), then the uniqueness of the invariant
state of ®, is guaranteed, but not its strict positivity, hence the need for
Hypothesis 5.4. One can show however, that if Hypothesis 5.3 holds, then

the invariant state of @, is strictly positive if and only if ﬂ' | ker(L}) = @.
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84 CONCENTRATION INEQUALITY FOR TOTAL COUNTS OF RESET PRO-
CESSES

In Theorem 8.6 we proved a concentration bound for the FPT corresponding
to the total number of counts, under the assumption that Hypothesis 5.4
holds. In this section we consider quantum reset processes which are charac-
terised by jump operators that have rank one, and we derive a FPT concen-
tration bound using the weaker Hypothesis 5.3.

Let us assume that the jump operators are of the form

Li=lyi) (xil  xi,y: € €7\ {0}, (8.14)

Without any loss of generality, we can assume that ||y;|| = 1. After observing
a click of the i-th detector, the state of the system is known and is equal to
lyi) (vi|. In this case, by applying step 2 of the iterative procedure in Section
5.2.3 we find that the sequence of click indices is a classical Markov chain
on I with transition matrix P := (p;;)

pii = —(x1L5 (lyi) (wil)|x)- (8.15)

We remark that Hypothesis 5.3 is sufficient to imply the irreducibility of the
classical transition operator P. Indeed since £, (¢") = 0 with stationary state
0 > 0, we have

Lou(0) = =T2(0) = = ) {xilo]xi) - |yi) (vl

i€l
which implies

Y (xilolxi)py = =Y {xilolx) (gl Lo (lyi) (wil) %)) =

- <xj Lyl (Z@ci!tﬂxi) |yi) <J/i!>

i€l
so the stationary state of P is

xj> = (x]0]x;)

N (xlolx)
") = )

which is fully supported since & > 0. The holding times are not exponen-
tially distributed as in the case of a classical continuous time Markov pro-
cess, instead their probability density function after observing a click of the
type i is given by

£i(8) i= —tr(Lo-e"“ (|y) (yi])- (8.16)

In fact, quantum reset processes fall under the more general class of semi-

Markov processes. These are processes with a discrete jump component

driven by a transition matrix, but with arbitrary holding time distributions.
We now introduce the quantities used in the result of this section:
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1. asymptotic value of T;(k)/k:

- Lty (L5 (v (i) )

iel

2. average of 1-norm of £%* in stationarity:

=3 7(@) [[1£62(ya) (Wi 5

i€l

3. superoperator norm of Eg 1:
= L"lH = |£:1(1) ]| .
Cr H 0 H 0 ( )H

The last equality in the expression of ¢, is due to Theorem 5.6 and makes
the superoperator norm analytically computable.

Theorem 8.7. Assume that Hypothesis 5.3 holds (L be irreducible) the jump op-
erators are of the form (8.14) (reset process). Let ¢ be the spectral gap of PTP. For
every vy > 0

P (T > )+ ) < corew (<1250 (32))

nvv<ﬂz£k) s<t1>—7> = Cllep < kZb;h <52C£Z>>' o

where h(x) := (V1+x+ %+ 1)1 and C(v) := ||%||co. Here, P, is the probabil-
ity measure induced by the initial state given by

Zv lyi) ( Zv v(i) > 0.

iel iel

Proof. The general formula for the Laplace transform of T¢ (k) in the case of
reset processes reads

E, [*T10)] = <1/, (FuP)k1> ,  foru < A.

P is given by Equation (8.15) and F, is a diagonal matrix whose entries are
(Fu)ii = tr(lyi) (Wil Tvyc) + uly)~1(1)), yi € Cy4. Fy is self-adjoint and
we can use Lemmas 7.5 and 7.6 as in the classical case to upper bound the
norm | PF,|| .. We seek as before to expand PF, (P given by Definition 2.2)

PF, =P+ Y u'PDV,

agk

I

Il
—_

)
where D) is a diagonal matrix with entries tr <]yi> (i <_£6 1) (1)>

Note that contrary to the classical case this is not simply some diagonal
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matrix D raised to a power [. The LZ(E) norm |[D®]|, = D\, where

DI(Ill)aX is the maximum absolute element in D). Therefore, D) can be upper
bounded in Ly(7t) by

1 — sund te [ 10 ol (@Y
D0 = iello{t (ry» o (-79) @

l (8.17)
<[ =<
Lo co—300
Similarly, if we set b? = Y,y 7t(i) || £52(lyi) (vil)||;, we can upper bound
ID"1|
IDOLE = ¥ (it (\yl ] (-
iel

Yo)
< Ll (\yz il (-2 )
S%”(i)“« K ) (i ) (%

b2 2(1- 1)

) 1)) d

(8.18)

Therefore |[DW1||, < b,cl~1. The first inequality in the above is achieved
since

! l
o (|yi> il (-4 <1>> < sup {tr (ry» il (-4 <1>> }
<c, Viel

The final step which differs slightly from the classical case is in calculating
the () from Equation (7.21). We get the same results for r(o), (1) and r(2),
butfor/ >3and p =1

~u(PDO(~I1)) = (LDU1) <32,
T
in which we used the same trick as when bounding ||[D®)1||;. For p > 2

. <13D(V1)S(H1) . S(Hp)) — <L D)glu) ... fJD(Vn)1>

7T

p—1
< DU D1 |IS|l " [T D)
i=2

From here the proof for the reset and classical process are identical and so
we obtain Theorem 8.7. Note that for left deviations we can indeed repeat
the steps in the classical proof.

O
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85 TAIL BOUND FOR GENERAL COUNTING OBSERVABLES

Theorem 8.7 provides an analogous result to the classical dynamical activ-
ity result of Theorem 7.7, but instead features quantities which are derived
from the operators used in the quantum framework. We now state our up-
per bound on the variance for reset processes, which is obtained in a similar
fashion to Propositions 7.8.1 and 8.8.1.

Proposition 8.7.1. The variance V1, (k) of the first passage time for total counts
of reset processes is bounded from above by:

k - e)

Proof. Notice that for 1 > 0 small enough, one has
1
log(]En[e”T’(k)]) = (t;)ku + EanTl(k)uz + 0(u2)

< klog(r(u)) = kr'(0)u + Izc(r”(O) — (r'(0)*)u® + o(u?)

where r(u) is given by Equation (7.20). We recall using the definition of D
from the proof of Theorem 8.7 that for reset processes

7 (0) = A1) — (t;) = (D1,1)4,

P
'(0) = 2r®) = 2(D1,D1), +2 <DL . D1>
1-P /.

and remind ourselves that ||D1||; < b,. Therefore

70~ ("0 = L2 +2(DL 1 pp1) < (142)22

Hence V1, (k) < (1+ 2) b%k.

85 TAIL BOUND FOR GENERAL COUNTING OBSERVABLES

Our final result provides the quantum analogue to the bound of Theorem
7.8. We consider the FPT Ty (k) for the observable Ny; which counts the
number of jumps with label in the subset 2 C I, cf. Equation (5.7). The next
result gives an upper bound to the tails of the FPT distribution under the
assumption that Hypothesis 5.3 holds.

Recall that we introduced the generator decomposition

£ - jQ[ + LOO/
where Jy(x) = Y icq L7 xL;. We denote

Bi= ||t

151
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85 TAIL BOUND FOR GENERAL COUNTING OBSERVABLES

Theorem 8.8. Assume that Hypothesis 5.3 holds (L be irreducible), and let % C I
be non-empty. For every v > p — (ty) and k € N

(B8 ) oo (w2512

As mentioned above, and in contrast to the classical case, in general there
is no explicit expression for the 1 — 1 norm of a superoperator, but thanks
to Theorem 5.6, we know that

B=I1L5 eoseo = [1£51(1) oo (8.19)

Despite being in general computational demanding, at least there exists an
explicit formula for the new expression for . We can also derive an upper
bound on the variance, in terms of 3, stated below.

Proof. We once again use Chernoff bound to upper bound the probability
in terms of the Laplace transform

P, (ka(k) > (ta) + 7) < e HHUTNE [ W],y > 0.

Next, we write the Laplace transform in terms of the Hilbert-Schmidt inner
product

k
" In,(c
E,[e"Tx(®] = <p, <1d(+)uT> (1)>
M;(C) Lo HS

k
= i I C 1 -
=<p,<2u (—Aj;”)w) <1>> ,u < LS,
i=0 *© HS

k
2 myc
< lella (Zu o ] HTHM> (1
i=0 ook [l11
We can denote B := || L5l ]|1-1 to obtain
1 k
E, [evT2 (K] < <1 — [Su) = exp (—klog(1l— Bu)). (8.20)

From here on, the proof is identical to that of Theorem 7.8.
O

Theorem 8.8 provides a bound in terms of only the operator norm B.

The case for general counting observables is important as it encapsulates
many physical quantum devices, and includes the class of processes where
imperfect photon detection (dark counts) is taken in to account. To obtain
the variance bound, the exact expression of the variance (Lemma 8.3) can
be used to derive an inverse thermodynamic uncertainty relation (TUR)-type
bound.
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8.6 EXAMPLES

Proposition 8.8.1. Given any non-empty set of jumps 2, the variance V. t, of the
corresponding first passage time at stationarity is bounded from above by

VQTQl(k) 2 2
2 L _
k s (1 g B

where
§:=1-— maX{H‘P(x)Hoo%oo : HXHOO%OO = 1/ tr(gx) = 0}

Proof. From the proof of Lemma 8.3 one can see that
2
= tr (¢£31(1)) " +2tr (6L (i) — 1) £51(1))

2 B k i—1 ) B
+ ot <g£ool Y ) ¥ () — Hg)ﬁwl(1)>

i=2j=1

8.6 EXAMPLES
8.6.1 Total counts in three-level emitter with dephasing

We consider a three-level system, with one dissipative jump and one de-
phasing channel, as sketched in Figure 8.1 (a). The system has Hamiltonian

H = Q0 (10)(1] + [1)(0]) + Qu2(|1) (2] + [2) (1)
and jump operators
Li=w|) 2, Ly=won(0)O0] —[2){2)).

We count the total number of jumps of both the emission channel and the
dephasing channel and compare the lower bounds on the large deviation
rate function obtained from Theorems 8.6 and 8.8 with the exact rate func-
tion, see Figure 8.1(b). The exact rate function (full/black) is bounded in
the entire region by Theorem 8.6 (dashed/blue). Theorem 8.8 for general
counting observables allows one to bound (dotted /red) the right tail of the
rate function: as in the classical case, cf. Figure 7.2, this tail bound is tighter
than the activity bound for large enough deviations.
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Figure 8.1: Bounds on the rate function of the FPT of the total number of emissions
for a quantum three-level system: (a) Sketch of quantum three-level
system. The Hamiltonian (dashed /blue) drives the evolution coherently
while the jump operators (full/red) give rise to dissipative transitions.
(b) Exact rate function I(T;(k)/k) (full/black) of the FPT for the total
number of quantum jumps, for the case Qg1 = 10, Qpp = 1, wyp =
Oo1, wep = %001. Theorem 8.6 gives a lower bound on the entire rate
function (dashed/blue). Theorem 8.8 bounds the tail (dotted/red) in
the region Ty (k)/k > B.

8.6.2 Total counts in two-level emitter

We illustrate the results of Theorem 8.7 by considering a two level emitter
with driving Hamiltonian H = Q1 (|0) (1| + |0)(1|) and jump operator rep-
resenting the emitted photon L = wy; |0) (1|, see Figure 8.2(a). Since L is a
rank-one operator, the system jumps to the same state |0) every time there a
count. Therefore, the counts process is a renewal process with holding time
distribution computed using Equation (8.16). In Figure 8.2(b) we plot the
exact rate function (full/black) and two lower bounds, obtained from our
reset process bound of Theorem 8.7 (dashed /blue) and the counting observ-
able bound Theorem 8.8 (dotted/red). For comparison to known literature
we plot the upper bound on the rate function (dot-dashed /magenta) of re-
set processes obtained via large deviations [61]. As in the classical example
of Section 7.5.1, the bound of Theorem 8.8 outperforms that of Theorem 8.7
for larger deviations. This is because both the expressions for the bounds
on the rate function become linear, but the bound from Theorem 8.8 has the
steeper slope in this regime. For the two-level emitter, the absolute spectral
gap € = 1, so at least in terms of the spectral quantities, our concentration
inequalities and variance upper bound are as small as they can be. To re-
duce the maximum size of fluctuations further, the system would have to
be designed which has a minimal b?2.
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Figure 8.2: Bounds on the rate function of the FPT of the total number of emis-
sions for a two-level emitter: (a) Sketch of two-level emitter model. The
Hamiltonian (dashed/blue) drives the evolution coherently while the
jump operators (full/red) give rise to dissipative transitions. (b) Exact
rate function I(T;(k)/k) (full/black) of the FPT for the total number of
quantum jumps, for the case ()y; = 1, wp1 = 0.8QY;. As this is a quan-
tum reset process, Theorem 8.7 gives a lower bound on the entire rate
function (dashed/blue). Theorem 8.8 bounds the tail (dotted/red) in
the region Tj(k)/k > B. The result from [61] gives an upper bound on
the rate function (dash-dotted /magenta).

8.6.3 Dephasing jumps in three-level emitter

For our final example we consider a system in which we are only interested
in a subset of jumps. We use the same setup as in Section 8.6.1 but this
time we only count the number of dephasing jumps (jump operator L,). In
Figure 8.3 we show the exact rate function (full/black) and a lower bound
on its right tail from Theorem 8.8 (dotted /red).

104



8.6 EXAMPLES

25
—~ 2
~
~
~15
A2
—

= 1]
S
N
P~

o
o

Figure 8.3: Lower bound on the FPT rate function for a counting observable of a
quantum three-level system: exact rate function I(Ty (k)/k) (full/black)
of the FPT only counting the dephasing jumps (jump operator by L),
for the same model of Figure 8.1(a). Theorem 8.8 gives a lower bound
on right deviations (dotted/red) in the region Ty (k)/k > B.

The models discussed in Section 8.6.2 and 8.6.3 have direct application in
parameter estimation. First passage time statistics are used in [112] to test
a novel algorithm for fast Bayesian estimation in optomechanical devices.
These devices can be used to measure, for example, the signal strength in
a magnetic field. Optomechanical devices feature both observed and unob-
served detectors, so Theorem 8.8 would be required. The two-level atom
is used in [112] to demonstrate the Bayesian estimation algorithm and to
derive intuitive results. In the two-level atom case perfect detection is as-
sumed, so Theorem 8.7 could be applied. The variance bounds in Proposi-
tions 8.7.1and 8.8.1 correspond to a bound on the error bars of the FPTs in
Figure 5 of [112], whilst our concentration inequalities in Theorems 8.7 and
8.8 give a bound on the distribution. Our results could therefore be used
to design a setup which best constructs the distribution of the parameter in
question, for example, the bounds tell us that systems with a larger absolute
spectral gap will give a smaller upper bound on the variance of the FPT.

We generalised the results of Chapter 7 to include quantum Markov pro-
cesses. Because in this framework we deal with more general operators as
opposed to matrices, some of these quantum results are not as practical. For
example, there is no quantum equivalent to Proposition 7.8.2 which upper
bounds the quantity 8 used in the variance bound with quantities of the dy-
namics. Therefore, to compute the upper bound for general counts we must
compute  directly from Equation (8.19) and are at the mercy of dimension
scaling.
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As was the case in the classical setting, the spectral gap of the sym-
metrised generator also features in the quantum bounds. These spectral
quantities have been shown to be relevant in other recent works such as
[132, 133]. Our results complement the quantum TUR literature [61, 63, 64,
103] as well as the concentration inequalities for time-integrated quantities
for classical (Chapter 6) and quantum dynamics [65].



CONCLUSIONS

By employing techniques from probability theory, we have derived a se-
ries of concentration results in the study of stochastic dynamics. In Chap-
ter 2 we introduced continuous-time classical Markov processes, which are
ubiquitous in this field. The dynamics of Markov processes are typically
studied through two distinct but equivalent perspectives: (1) by examining
dynamical observables as functions of trajectories over a fixed time ¢, or (2)
by focusing on trajectories where a specific observable reaches a threshold,
with interest in the time taken to do so. It is therefore important to tackle
problems in both cases, which we have done in this thesis.

We introduced large deviations in Chapter 3 and presented fundamen-
tal results necessary to make useful statements in this field. Furthermore,
we discussed their relevance to Markov processes, and how bounds on the
large deviation rate function correspond to bounds on the fluctuations of
the dynamical observables we are interested in. In Chapter 4 we discussed
concentration inequalities and outlined the Cramér-Chernoff method which
is central to several of our theorems. Chapter 5 outlined how Markov pro-
cesses and trajectories are described in the non-commutative setting.

By upper bounding the moment generating function of time-integrated
observables, in Chapter 6 we derived a direct complement to the
thermodynamic uncertainty relations (TURs). Furthermore, we provided a
concentration inequality for these quantities. These results hold for all time,
and in the large deviation regime (large t) correspond to a lower bound
on the rate function. The bounds are in terms of simpler quantities than
would be required to compute the probability distribution explicitly and
include the maximum escape rate g and the spectral gap of the additive
symmetrisation of the generator.

We extended in Chapter 7 these methods to the fixed-observable regime.
We began by proving a large deviation principle for first passage times
of counting observables, followed by first passage time (FPT) concentra-
tion inequalities for dynamical activity and observables counting a subset
of jumps. As subsequent propositions, we derived inverse TUR-type upper
bounds on the variance of these first passage times.

In our final chapter, Chapter 8, we considered first passage times of quan-
tum Markov processes. We generalised our proof of the large deviation
principle of counting observable FPTs to the non-commutative setting. Af-
ter this we provided concentration inequalities for first passage times of
total and subsets of counts. In the case of reset processes, which do not in
general satisfy our ergodicity assumptions for general quantum processes,
we derived an extra concentration inequality. Again these were followed by
upper bounds on their variances.
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The most prominent consequence of our results, of the inverse TUR-type,
ensure we have both upper and lower bounds limiting the range of un-
certainty. Therefore, the fluctuations of dynamical observables (and if a
counting observable their respective first passage times) cannot be arbi-
trarily large. A two-sided uncertainty relation is crucial for precision esti-
mation. Instead of computing precision explicitly (although one could do
this with our Lemmas 6.1, 7.2 and 8.3), the upper and lower bounds are ex-
pressed in terms of operationally accessible quantities. In our upper bounds
these quantities are either spectral (spectral gap of additive/multiplicative
symmetrisations) or dynamical (such as minimum/maximum escape rates),
which could be estimated by observation. The inverse TUR-type bounds also
depend on the observable in question, whereas the TURs do not.

The spectral quantities in the upper bounds have recently been found to
be relevant in [132, 133] and clearly play a role in fluctuations, but they are
not as accessible as those found in the TUR. However, we showed in Figure
6.2 that in many cases our upper bounds on the precision are tighter and
therefore can have an advantage in estimation.

Since they are applicable in the finite regime (finite ¢ for fixed-time and
finite k for fixed-observable), our inequalities are of interest in experimental
setups. The results on first passage times provide upper bounds on fluc-
tuations in this alternative and often more practical ensemble. The quan-
tum case has implications in bounding the accuracy of quantum clocks [39].
Concentration inequalities also have application in constructing confidence
intervals for parameter estimation [65].

There are many possible directions of further study. Similar bounds can
be derived for discrete dynamics using the same perturbative techniques
described here. It would also be useful to bound the spectral quantities in
terms of other physical parameters which would provide more accessible
bounds and give a better intuition into the physics of the dynamics. Al-
though we obtain inequalities for general fluxes in the fixed-time case, for
first passage times we only consider bounds for counting observables. One
possible extension would be to find FPT bounds for more general observ-
ables such as currents, which are of interest in non-equilibrium physics.

Additionally in the first passage time case, even for the more general
counting observables which count subsets of jumps, a better understand-
ing of the transition operators in Equations (7.5) and (8.1) may provide FPT
bounds on the whole probability distribution and not just the tails. Finally,
recall how we can decompose the continuous-time trajectory in the fixed-
observable ensemble into the process which considers jumps and holding
times separately. It should therefore be possible to consider similar prob-
lems for semi-Markov processes, which would generalise both the classical
results and our result for quantum reset processes, as this would include
jump processes over discrete configurations with arbitrary holding time dis-
tributions.

108



BIBLIOGRAPHY

(1]
(2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

L. D. Landau and E. M. Lifshitz. Statistical Physics. 3rd. Vol. 5. Oxford: Pergamon Press, 1980.

D. Chandler. Introduction to Modern Statistical Mechanics. New York: Oxford University Press,
1987.
C. Jarzynski. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynam-

ics at the Nanoscale. Annual Review of Condensed Matter Physics 2.Volume 2, 2011 (Mar. 2011),
pPpP- 329-351. DOL: 10.1146/annurev- conmatphys-062910- 140506.

C. Bustamante, J. Liphardt, and F. Ritort. The Nonequilibrium Thermodynamics of Small Sys-
tems. Physics Today 58.7 (July 2005), pp. 43—48. DOIL: 10.1063/1.2012462.

H. Qian. Open-System Nonequilibrium Steady State: Statistical Thermodynamics, Fluctuations,
and Chemical Oscillations. The Journal of Physical Chemistry B 110.31 (Aug. 2006), pp. 15063—
15074. DOI: 10.1021/jp061858z.

C. V. d. Broeck. The many faces of the second law. Journal of Statistical Mechanics: Theory and
Experiment 2010.10 (Oct. 2010), P10009. DOI: 10.1088/1742-5468/2010/10/P10009.

R. L. Jack. Ergodicity and large deviations in physical systems with stochastic dynamics. The
European Physical Journal B 93.4 (Apr. 2020), p. 74. DOIL: 10.1140/epjb/e2020-100605- 3.

U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports
on Progress in Physics 75.12 (Nov. 2012), p. 126001. DOIL: 10.1088/0034-4885/75/12/126001.

U. Seifert. From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of
Condensed Matter Physics 10.Volume 10, 2019 (Mar. 2019), pp. 171-192. DOL: 10.1146/annurev -
conmatphys-031218-013554.

L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Macroscopic fluctuation
theory. Reviews of Modern Physics 87.2 (June 2015), pp. 593-636. DOI: 10.1103/RevModPhys . 87.
593.

C. Maes. Frenesy: Time-symmetric dynamical activity in nonequilibria. Physics Reports 850 (Mar.
2020), pp. 1-33. DOL: 10.1016/j .physrep.2020.01.002.

A. Dmitriev, V. Silchev, and V. Dmitriev. A Simple Econophysics Model of the Stock Market
as a Nonequilibrium Open System. Applied Physics, System Science and Computers 1I. Ed. by K.
Ntalianis and A. Croitoru. Cham: Springer International Publishing, 2019, pp. 237-243. poL:
10.1007/978-3-319-75605-9_33.

M. Gligor and M. Ignat. Non-Equilibrium Patterns in the Space of the Stock Market Prices. 27.4
(Nov. 2002), pp. 367-378. DOI: 10.1515/INETDY.2002.022.

T. Schmiedl and U. Seifert. Stochastic thermodynamics of chemical reaction networks. The Jour-
nal of Chemical Physics 126.4 (Jan. 2007), p. 044101. DOIL: 10.1063/1.2428297.

H. Ge, M. Qian, and H. Qian. Stochastic theory of nonequilibrium steady states. Part II: Ap-
plications in chemical biophysics. Physics Reports 510.3 (Jan. 2012), pp. 87-118. poL: 10.1016/j .
physrep.2011.09.001.

R. Rao and M. Esposito. Nonequilibrium Thermodynamics of Chemical Reaction Networks:
Wisdom from Stochastic Thermodynamics. Physical Review X 6.4 (Dec. 2016), p. 041064. DOL:
10.1103/PhysRevX.6.041064.

G. R. Bowman and V. S. Pande. Protein folded states are kinetic hubs. Proceedings of the National
Academy of Sciences 107.24 (June 2010), pp. 10890-10895. DOI: 10.1673/pnas.1003962107.

J. Stigler, F. Ziegler, A. Gieseke, ]J. C. M. Gebhardt, and M. Rief. The Complex Folding Net-
work of Single Calmodulin Molecules. Science 334.6055 (Oct. 2011), pp. 512-516. DOI: 10.1126/
science.1207598.

D. Holcman. Modeling DNA and Virus Trafficking in the Cell Cytoplasm. Journal of Statistical
Physics 1277.3 (May 2007), pp. 471—494. DOI: 10.1007/510955-007-9282- 4.

P. C. Bressloff and J. M. Newby. Stochastic models of intracellular transport. Reviews of Modern
Physics 85.1 (Jan. 2013), pp. 135-196. DOIL: 10.1103/RevModPhys.85.135.

E. L. Carroll et al. Incorporating non-equilibrium dynamics into demographic history inferences
of a migratory marine species. Heredity 122.1 (Jan. 2019), pp. 53-68. DOI: 10.1038/541437-018-
0077-y.

109


https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1063/1.2012462
https://doi.org/10.1021/jp061858z
https://doi.org/10.1088/1742-5468/2010/10/P10009
https://doi.org/10.1140/epjb/e2020-100605-3
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1016/j.physrep.2020.01.002
https://doi.org/10.1007/978-3-319-75605-9_33
https://doi.org/10.1515/JNETDY.2002.022
https://doi.org/10.1063/1.2428297
https://doi.org/10.1016/j.physrep.2011.09.001
https://doi.org/10.1016/j.physrep.2011.09.001
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1073/pnas.1003962107
https://doi.org/10.1126/science.1207598
https://doi.org/10.1126/science.1207598
https://doi.org/10.1007/s10955-007-9282-4
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1038/s41437-018-0077-y
https://doi.org/10.1038/s41437-018-0077-y

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

BIBLIOGRAPHY

D. Oro and A. Martinez-Abrain. Ecological non-equilibrium and biological conservation. Biolog-
ical Conservation 286 (Oct. 2023), p. 110258. DOI: 10.1016/].biocon.2023.110258.

T. J. Clark and A. D. Luis. Nonlinear population dynamics are ubiquitous in animals. Nature
Ecology & Evolution 4.1 (Jan. 2020), pp. 75-81. DOL: 10.1038/541559-019-1052- 6.

S. Whitelam and R. L. Jack. The statistical mechanics of dynamic pathways to self-assembly. An-
nual Review of Physical Chemistry 66 (Apr. 2015), pp. 143—163. DOI: 10.1146/annurev - physchem-
040214-121215.

M. Merolle, J. P. Garrahan, and D. Chandler. Space-time thermodynamics of the glass transition.
Proceedings of the National Academy of Sciences 102.31 (Aug. 2005), pp. 10837-10840. DOIL: 10.1073/
pnas.0504820102.

J. P. Garrahan. Aspects of non-equilibrium in classical and quantum systems: Slow relaxation
and glasses, dynamical large deviations, quantum non-ergodicity, and open quantum dynamics.
Physica A: Statistical Mechanics and its Applications 504 (Aug. 2018), pp. 130-154. DOL: 10.1016/j .
physa.2017.12.149.

J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, and F. van Wijland. Dynam-
ical First-Order Phase Transition in Kinetically Constrained Models of Glasses. Physical Review
Letters 98.19 (May 2007), p. 195702. DOL: 10.1103/PhysRevLett.98.195702.

J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. v. Duijvendijk, and F. v. Wijland. First-order
dynamical phase transition in models of glasses: an approach based on ensembles of histories.
Journal of Physics A: Mathematical and Theoretical 42.7 (Jan. 2009), p. 075007. DOIL: 10.1088/1751-
8113/42/7/075007.

D. Ruelle. Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechan-
ics. 2nd ed. Cambridge: Cambridge University Press, 2004. po1: 10.1017/CB09780511617546.

J. L. Lebowitz and H. Spohn. A Gallavotti-Cohen-Type Symmetry in the Large Deviation Func-
tional for Stochastic Dynamics. Journal of Statistical Physics 95.1 (Apr. 1999), pp. 333—365. DOL
10.1023/A:1004589714161.

V. Lecomte, C. Appert-Rolland, and F. van Wijland. Thermodynamic Formalism for Systems
with Markov Dynamics. Journal of Statistical Physics 127.1 (Apr. 2007), pp- 51—106. DOL: 10.1007/
510955-006-9254-0.

A. A. Budini, R. M. Turner, and J. P. Garrahan. Fluctuating observation time ensembles in
the thermodynamics of trajectories. Journal of Statistical Mechanics: Theory and Experiment 2014.3
(Mar. 2014), Po3o12. po1: 10.1088/1742-5468/2014/03/P03012.

P. Pietzonka, A. C. Barato, and U. Seifert. Universal bounds on current fluctuations. Physical
Review E 93.5 (May 2016), p. 052145. DOI: 10.1103/PhysRevE.93.052145.

T. R. Gingrich, ]J. M. Horowitz, N. Perunov, and J. L. England. Dissipation Bounds All Steady-
State Current Fluctuations. Physical Review Letters 116.12 (Mar. 2016), p. 120601. DOIL: 10.1103/
PhysRevLett.116.120601.

M. Kaiser, R. L. Jack, and J. Zimmer. Acceleration of Convergence to Equilibrium in Markov
Chains by Breaking Detailed Balance. Journal of Statistical Physics 168.2 (July 2017), pp. 259—287.
DOI: 10.1007/510955-017-1805- z.

P. Pietzonka, A. C. Barato, and U. Seifert. Universal bound on the efficiency of molecular motors.
Journal of Statistical Mechanics: Theory and Experiment 2016.12 (Dec. 2016), p. 124004. DOI: 10 .
1088/1742-5468/2016/12/124004.

A. C. Barato and U. Seifert. Thermodynamic Uncertainty Relation for Biomolecular Processes.
Physical Review Letters 114.15 (Apr. 2015), p. 158101. DOI: 10.1103/PhysRevLett.114.158101.

K. Prech, G. T. Landji, F. Meier, N. Nurgalieva, P. P. Potts, R. Silva, and M. T. Mitchison. Optimal
time estimation and the clock uncertainty relation for stochastic processes. June 2024. DOI: 10.
48550/arXiv.2406.19450.

P. Erker, M. T. Mitchison, R. Silva, M. P. Woods, N. Brunner, and M. Huber. Autonomous
Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time? Physical Review
X 7.3 (Aug. 2017), p. 031022. DOI: 10.1103/PhysRevX.7.031022.

K. Macieszczak. Ultimate Kinetic Uncertainty Relation and Optimal Performance of Stochastic
Clocks. July 2024. DoI: 10.48550/arXiv.2407.09839.

E. Roldén and J. M. R. Parrondo. Estimating Dissipation from Single Stationary Trajectories.
Physical Review Letters 105.15 (Oct. 2010), p. 150607. DOIL: 10.1103/PhysRevLett.105.150607.

A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Vol. 38. Berlin, Heidel-
berg: Springer, 2010. DOI: 10.1007/978-3-642-03311-7.

110


https://doi.org/10.1016/j.biocon.2023.110258
https://doi.org/10.1038/s41559-019-1052-6
https://doi.org/10.1146/annurev-physchem-040214-121215
https://doi.org/10.1146/annurev-physchem-040214-121215
https://doi.org/10.1073/pnas.0504820102
https://doi.org/10.1073/pnas.0504820102
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1017/CBO9780511617546
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1088/1742-5468/2014/03/P03012
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1007/s10955-017-1805-z
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.48550/arXiv.2406.19450
https://doi.org/10.48550/arXiv.2406.19450
https://doi.org/10.1103/PhysRevX.7.031022
https://doi.org/10.48550/arXiv.2407.09839
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1007/978-3-642-03311-7

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

BIBLIOGRAPHY

F. den Hollander. Large Deviations. June 2008. por: 10.1690/fim/014.

H. Touchette. The large deviation approach to statistical mechanics. Physics Reports 478.1 (July
2009), pp. 1-69. DOI: 10.1016/j .physrep.2009.05.002.

M. C. Bafiuls and J. P. Garrahan. Using Matrix Product States to Study the Dynamical Large De-
viations of Kinetically Constrained Models. Physical Review Letters 123.20 (Nov. 2019), p. 200601.
DOI: 10.1103/PhysRevLett.123.200601.

L. Causer, M. C. Bafiuls, and J. P. Garrahan. Optimal Sampling of Dynamical Large Deviations
in Two Dimensions via Tensor Networks. Physical Review Letters 130.14 (Apr. 2023), p. 147401.
DOI: 10.1103/PhysRevLett.130.147401.

M. Gorissen, ]J. Hooyberghs, and C. Vanderzande. Density-matrix renormalization-group study
of current and activity fluctuations near nonequilibrium phase transitions. Physical Review E
79.2 (Feb. 2009), p. 020101. DOI: 10.1103/PhysRevE.79.020101.

J. P. Garrahan. Simple bounds on fluctuations and uncertainty relations for first-passage times
of counting observables. Physical Review E 95.3 (Mar. 2017), p. 032134. DOL: 10.1103/PhysReVE.
95.032134.

J. Kiukas, M. Gutg, I. Lesanovsky, and J. P. Garrahan. Equivalence of matrix product ensembles
of trajectories in open quantum systems. Physical Review E 92.1 (July 2015), p. 012132. DOL
10.1103/PhysRevE.92.012132.

T. R. Gingrich and J. M. Horowitz. Fundamental Bounds on First Passage Time Fluctuations for
Currents. Physical Review Letters 119.17 (Oct. 2017), p. 170601. DOL: 10.1103/PhysRevLett.119.
170601.

S. Redner. A Guide to First-Passage Processes. Cambridge: Cambridge University Press, 2001. por:
10.1017/CB09780511606014.

S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and J. Klafter. First-passage times in complex
scale-invariant media. Nature 450.7166 (Nov. 2007), pp. 77-80. DOI: 10.1038/nature06201.

A. L. Lloyd and R. M. May. How Viruses Spread Among Computers and People. Science
292.5520 (May 2001), pp. 1316-1317. DOIL: 10.1126/science.1061076.

T. D. Swinburne, D. Kannan, D. J. Sharpe, and D. J. Wales. Rare events and first passage time
statistics from the energy landscape. The Journal of Chemical Physics 153.13 (Oct. 2020), p. 134115.
DOI: 10.1063/5.0016244.

A. Szabo, K. Schulten, and Z. Schulten. First passage time approach to diffusion controlled
reactions. The Journal of Chemical Physics 72.8 (Apr. 1980), pp. 4350—4357. DOL: 10.1063/1.439715.

D. S. Grebenkov, R. Metzler, and G. Oshanin. Towards a full quantitative description of single-
molecule reaction kinetics in biological cells. Physical Chemistry Chemical Physics 20.24 (June
2018), pp. 16393—-16401. DOI: 10.1039/C8CPO2043D.

V. P. Belavkin. A stochastic posterior Schrodinger equation for counting nondemolition mea-
surement. Letters in Mathematical Physics 20.2 (Aug. 1990), pp. 85-89. DOI: 10.1007/BF00398273.

L. Bouten, M. Guta, and H. Maassen. Stochastic Schrodinger equations. Journal of Physics A:
Mathematical and General 37.9 (Feb. 2004), p. 3189. DOI: 10.1688/0305-4470/37/9/010.

H. M. Wiseman and G. J. Milburn. Quantum Measurement and Control. Cambridge: Cambridge
University Press, 2009. Do1: 10.1017/CB09780511813948.

J. Gough and M. James. The Series Product and Its Application to Quantum Feedforward and
Feedback Networks. Automatic Control, IEEE Transactions on 54 (Dec. 2009), pp. 2530-2544. DOIL:
10.1109/TAC.2009.2031205.

F. Carollo, R. L. Jack, and J. P. Garrahan. Unraveling the Large Deviation Statistics of Markovian
Open Quantum Systems. Physical Review Letters 122.13 (Apr. 2019), p. 130605. DOL: 10.1103/
PhysRevLett.122.130605.

J. P. Garrahan and I. Lesanovsky. Thermodynamics of Quantum Jump Trajectories. Physical
Review Letters 104.16 (Apr. 2010), p. 160601. DOL: 10.1103/PhysRevLett.104.160601.

G. Guarnieri, G. T. Landj, S. R. Clark, and J. Goold. Thermodynamics of precision in quantum
nonequilibrium steady states. Physical Review Research 1.3 (Oct. 2019), p. 033021. DOI: 10.1163/
PhysRevResearch.1.033021.

Y. Hasegawa. Quantum Thermodynamic Uncertainty Relation for Continuous Measurement.
Physical Review Letters 125.5 (July 2020), p. 050601. DOL: 10.1103/PhysRevLett.125.050601.

F. Girotti, J. P. Garrahan, and M. Guta. Concentration Inequalities for Output Statistics of Quan-
tum Markov Processes. Annales Henri Poincaré 24.8 (Aug. 2023), pp. 2799—2832. poI: 10.1007/
s00023-023-01286-1.

111


https://doi.org/10.1090/fim/014
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevLett.123.200601
https://doi.org/10.1103/PhysRevLett.130.147401
https://doi.org/10.1103/PhysRevE.79.020101
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.92.012132
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1017/CBO9780511606014
https://doi.org/10.1038/nature06201
https://doi.org/10.1126/science.1061076
https://doi.org/10.1063/5.0016244
https://doi.org/10.1063/1.439715
https://doi.org/10.1039/C8CP02043D
https://doi.org/10.1007/BF00398273
https://doi.org/10.1088/0305-4470/37/9/010
https://doi.org/10.1017/CBO9780511813948
https://doi.org/10.1109/TAC.2009.2031205
https://doi.org/10.1103/PhysRevLett.122.130605
https://doi.org/10.1103/PhysRevLett.122.130605
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevLett.125.050601
https://doi.org/10.1007/s00023-023-01286-1
https://doi.org/10.1007/s00023-023-01286-1

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

BIBLIOGRAPHY

T. Benoist, L. Hanggli, and C. Rouzé. Deviation bounds and concentration inequalities for quan-
tum noises. Quantum 6 (Aug. 2022), p. 772. DOIL: 10.22331/q-2022-08-04-772.

P. Lezaud. Chernoff-type bound for finite Markov chains. The Annals of Applied Probability 8.3
(Aug. 1998), pp. 849-867. DOI: 10.1214/a0ap/1628903453.

J. Fan, B. Jiang, and Q. Sun. Hoeffding’s Inequality for General Markov Chains and Its Applica-
tions to Statistical Learning. Journal of Machine Learning Research 22.139 (2021), pp. 1-35.

B. Jiang, Q. Sun, and ]. Fan. Bernstein’s inequalities for general Markov chains. Jan. 2024. por:
10.48550/arXiv.1805.10721.

G. Bakewell-Smith, F. Girotti, M. Gutd, and ]. P. Garrahan. General Upper Bounds on Fluc-
tuations of Trajectory Observables. Physical Review Letters 131.19 (Nov. 2023), p. 197101. DOIL
10.1103/PhysRevLett.131.197101.

G. Bakewell-Smith, E. Girotti, M. Gutd, and J. P. Garrahan. Bounds on Fluctuations of First
Passage Times for Counting Observables in Classical and Quantum Markov Processes (May
2024). DOI: 10.48550/arXiv.2405.09669.

W.-K. Ching, X. Huang, M. K. Ng, and T.-K. Siu. Markov Chains: Models, Algorithms and Applica-
tions. Vol. 189. Boston, MA: Springer US, 2013. DOI: 10.1007/978-1-4614-6312-2.

R. Serfozo. Basics of applied stochastic processes. Berlin: Springer, 2009.

J. M. Horowitz and T. R. Gingrich. Thermodynamic uncertainty relations constrain non-equilib-
rium fluctuations. Nature Physics 16.1 (Jan. 2020), pp. 15—20. DOIL: 10.1038/541567-019-0702-6.

M. Esposito, K. Lindenberg, and C. V. d. Broeck. Thermoelectric efficiency at maximum power in
a quantum dot. Europhysics Letters 85.6 (Apr. 2009), p. 60010. DOL: 10.1209/60295-5075/85/60010.

H. Qian and D. A. Beard. Thermodynamics of stoichiometric biochemical networks in living
systems far from equilibrium. Biophysical Chemistry 114.2-3 (Apr. 2005), pp. 213—220. DOL 10.
1016/j .bpc.2004.12.001

S. Condamin, O. Bénichou, and M. Moreau. Random walks and Brownian motion: A method
of computation for first-passage times and related quantities in confined geometries. Physical
Review E 75.2 (Feb. 2007), p. 021111. DOL: 10.1103/PhysRevE.75.021111.

L. Hufnagel, D. Brockmann, and T. Geisel. Forecast and control of epidemics in a globalized
world. Proceedings of the National Academy of Sciences 101.42 (Oct. 2004), pp. 15124-15129. DOI:
10.1073/pnas.0308344101.

S. Sabhapandit and S. N. Majumdar. Freezing Transition in the Barrier Crossing Rate of a Dif-
fusing Particle. Physical Review Letters 125.20 (Nov. 2020), p. 200601. DOI: 10.1103/PhysRevLett.
125.200601.

R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. Berlin, Heidelberg: Springer, 2006.
DOI: 10.1007/3-540-29060- 5.

H. Cramér. Sur un nouveau théoréme-limite de la théorie des probabilités. Ed. by A. Martin-Lof.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 895-913. por: 10.1007/978- 3-642-
40607-2_8.

J. Gartner. On Large Deviations from the Invariant Measure. Theory of Probability and its Applica-
tions 22.1 (1977), p- 16. DOL: 10.1137/1122003.

R. S. Ellis. Large Deviations for a General Class of Random Vectors. The Annals of Probability
12.1 (Feb. 1984), pp. 1-12. DOI: 10.1214/a0p/1176993370.

C. Maes and K. Neto¢ny. Canonical structure of dynamical fluctuations in mesoscopic nonequi-
librium steady states. Europhysics Letters 82.3 (Apr. 2008), p. 30003. DOI: 10.1209/0295- 5075/
82/30003.

J. Hoppenau, D. Nickelsen, and A. Engel. Level 2 and level 2.5 large deviation functionals for
systems with and without detailed balance. New Journal of Physics 18.8 (July 2016), p. 083010.
DOI: 10.1088/1367-2630/18/8/083010.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process expecta-
tions for large time, 1. Communications on Pure and Applied Mathematics 28.1 (Jan. 1975), pp. 1-47.
DOI: 10.1002/cpa.3160280102.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process ex-
pectations for large time, II. Communications on Pure and Applied Mathematics 28.2 (Mar. 1975),
pPp- 279—301. DOL: 10.1002/cpa.3160280206.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process ex-
pectations for large time—III. Communications on Pure and Applied Mathematics 29.4 (July 1976),
pp- 389—461. DOL: 10.1002/cpa.3160290405.

112


https://doi.org/10.22331/q-2022-08-04-772
https://doi.org/10.1214/aoap/1028903453
https://doi.org/10.48550/arXiv.1805.10721
https://doi.org/10.1103/PhysRevLett.131.197101
https://doi.org/10.48550/arXiv.2405.09669
https://doi.org/10.1007/978-1-4614-6312-2
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1209/0295-5075/85/60010
https://doi.org/10.1016/j.bpc.2004.12.001
https://doi.org/10.1016/j.bpc.2004.12.001
https://doi.org/10.1103/PhysRevE.75.021111
https://doi.org/10.1073/pnas.0308344101
https://doi.org/10.1103/PhysRevLett.125.200601
https://doi.org/10.1103/PhysRevLett.125.200601
https://doi.org/10.1007/3-540-29060-5
https://doi.org/10.1007/978-3-642-40607-2_8
https://doi.org/10.1007/978-3-642-40607-2_8
https://doi.org/10.1137/1122003
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1088/1367-2630/18/8/083010
https://doi.org/10.1002/cpa.3160280102
https://doi.org/10.1002/cpa.3160280206
https://doi.org/10.1002/cpa.3160290405

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

BIBLIOGRAPHY

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain markov process ex-
pectations for large time. IV. Communications on Pure and Applied Mathematics 36.2 (Mar. 1983),
pp- 183—212. DOL: 10.1002/cpa.3160360204.

A. C. Barato and R. Chetrite. A Formal View on Level 2.5 Large Deviations and Fluctuation
Relations. Journal of Statistical Physics 160.5 (Sept. 2015), pp. 1154-1172. DOI: 10.1007/510955 -
015-1283-0.

L. Bertini, A. Faggionato, and D. Gabrielli. Large deviations of the empirical flow for continuous
time Markov chains. Annales de I'Institut Henri Poincaré, Probabilités et Statistiques 51.3 (Aug.
2015), pp. 867-900. DOI: 10.1214/14- ATHP601.

S. R. White. Density matrix formulation for quantum renormalization groups. Physical Review
Letters 69.19 (Nov. 1992), pp. 2863—2866. po1: 10.1103/PhysRevLett.69.2863.

F. Verstraete, ]. L. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf. Renormalization-Group Transfor-
mations on Quantum States. Physical Review Letters 94.14 (Apr. 2005), p. 140601. DOI: 10.1103/
PhysRevLett.94.140601.

M. Polettini, A. Lazarescu, and M. Esposito. Tightening the uncertainty principle for stochastic
currents. Physical Review E 94.5 (Nov. 2016), p. 052104. DOIL: 10.1103/PhysReVvE.94.052104.

T. Koyuk and U. Seifert. Operationally Accessible Bounds on Fluctuations and Entropy Produc-
tion in Periodically Driven Systems. Physical Review Letters 122.23 (June 2019), p. 230601. DOI:
10.1103/PhysRevLett.122.230601.

A. Dechant and S.-I. Sasa. Fluctuation-response inequality out of equilibrium. Proceedings of the
National Academy of Sciences of the United States of America 117.12 (Mar. 2020), pp. 6430-6436. DO
10.1073/pnas.1918386117.

L. P. Fischer, H.-M. Chun, and U. Seifert. Free diffusion bounds the precision of currents in
underdamped dynamics. Physical Review E 102.1 (July 2020), p. 012120. DOI: 10.1103/PhysRevE.
102.012120.

H.-M. Chun, L. P. Fischer, and U. Seifert. Effect of a magnetic field on the thermodynamic
uncertainty relation. Physical Review E 99.4 (Apr. 2019), p. 042128. DOI: 10.1103/PhysRevE.99.
042128.

A. Dechant and S.-i. Sasa. Entropic bounds on currents in Langevin systems. Physical Review E
97.6 (June 2018), p. 062101. DOI: 10.1103/PhysRevE.97.062101.

P. Pietzonka, F. Ritort, and U. Seifert. Finite-time generalization of the thermodynamic uncer-
tainty relation. Physical Review E 96.1 (July 2017), p. 012101. DOI: 10.1103/PhysRevE.96.012101.

J. M. Horowitz and T. R. Gingrich. Proof of the finite-time thermodynamic uncertainty relation
for steady-state currents. Physical Review E 96.2 (Aug. 2017), p. 020103. DOI: 10.1103/PhysReVE.
96.020103.

K. Proesmans and C. Broeck. Discrete-time thermodynamic-like uncertainty relation. EPL (Eu-
rophysics Letters) 119 (Sept. 2017). DOIL: 10.1209/0295-5075/119/20001.

K. Brandner, T. Hanazato, and K. Saito. Thermodynamic Bounds on Precision in Ballistic Multi-

terminal Transport. Physical Review Letters 120.9 (Mar. 2018), p. 09o601. DOI: 10.1103/PhysRevLett.

120.090601.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of
Independence. Oxford University Press, Feb. 2013. por: 10.1093/acprof: 0s0/9780199535255.
001.0001.

T. Kato. Perturbation Theory for Linear Operators. Vol. 132. Berlin, Heidelberg: Springer, 1995. por:
10.1007/978-3-642-66282-9.

C. J. Geyer. Practical Markov Chain Monte Carlo. Statistical Science 7.4 (Nov. 1992), pp. 473-483.
DOI: 10.1214/ss/1177011137.

S. Goel and M. J. Salganik. Respondent-driven sampling as Markov chain Monte Carlo. Statistics
in Medicine 28.17 (July 2009), pp. 2202-2229. DOI: 10.1002/sim.3613.

A. Wilinski. Time series modeling and forecasting based on a Markov chain with changing
transition matrices. Expert Systems with Applications 133 (Nov. 2019), pp. 163—172. DOI: 10.1016/
j.eswa.2019.04.067.

P. W. Glynn and D. Ormoneit. Hoeffding’s inequality for uniformly ergodic Markov chains.
Statistics & Probability Letters 56.2 (Jan. 2002), pp. 143-146. DOI: 10.1016/50167-7152(01)00158-
4.

C. Gardiner and P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum
Stochastic Methods with Applications to Quantum Optics. Springer Science & Business Media, Aug.
2004.

113


https://doi.org/10.1002/cpa.3160360204
https://doi.org/10.1007/s10955-015-1283-0
https://doi.org/10.1007/s10955-015-1283-0
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.94.140601
https://doi.org/10.1103/PhysRevLett.94.140601
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevLett.122.230601
https://doi.org/10.1073/pnas.1918386117
https://doi.org/10.1103/PhysRevE.102.012120
https://doi.org/10.1103/PhysRevE.102.012120
https://doi.org/10.1103/PhysRevE.99.042128
https://doi.org/10.1103/PhysRevE.99.042128
https://doi.org/10.1103/PhysRevE.97.062101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1007/978-3-642-66282-9
https://doi.org/10.1214/ss/1177011137
https://doi.org/10.1002/sim.3613
https://doi.org/10.1016/j.eswa.2019.04.067
https://doi.org/10.1016/j.eswa.2019.04.067
https://doi.org/10.1016/S0167-7152(01)00158-4
https://doi.org/10.1016/S0167-7152(01)00158-4

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

BIBLIOGRAPHY

L. A. Clark, B. Markowicz, and J. Kolodynski. Exploiting non-linear effects in optomechanical
sensors with continuous photon-counting. Quantum 6 (Sept. 20, 2022), p. 812. boI: 10.22331/q-
2022-09-20-812.

L. A. Clark and ]. Kolodynski. Efficient inference of quantum system parameters by Approxi-
mate Bayesian Computation. Feb. 23, 2025. po1: 10.48550/arXiv.2407.00724.

M. Tse et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave
Astronomy. Physical Review Letters 123.23 (Dec. 5, 2019), p. 231107. DOI: 10.1103/PhysRevLett.
123.231107.

S. Colombo, E. Pedrozo-Pefiafiel, and V. Vuleti¢. Entanglement-enhanced optical atomic clocks.
Applied Physics Letters 121.21 (Nov. 21, 2022), p. 210502. DOL: 10.1063/5.0121372.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 1oth An-
niversary Edition. Dec. 2010. po1: 10.1017/CB09780511976667.

V. Gorini, A. Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical semigroups
of N-level systems. Journal of Mathematical Physics 17.5 (May 1976), pp. 821-825. DoI: 10.16063/1.
522979.

G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathe-
matical Physics 48.2 (June 1976), pp. 119—130. DOI: 10.1007/BF01608499.

D. E. Evans and R. Heegh-Krohn. Spectral Properties of Positive Maps on C * -Algebras. Journal
of the London Mathematical Society s2-17.2 (Apr. 1978), pp. 345-355. DOL: 10 .1112/ jlms/s2 -
17.2.345.

K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations. Semigroup
Forum 63.2 (June 2001), pp. 278-280. DOI: 10.1007/5002330010042.

R. T. Rockafellar. Convex Analysis: (PMS-28). Princeton University Press, Apr. 2015. por: 10 .
1515/9781400873173.

A. Kolchinsky, N. Ohga, and S. Ito. Thermodynamic bound on spectral perturbations, with
applications to oscillations and relaxation dynamics. Physical Review Research 6.1 (Jan. 2024),
p- 013082. DOI: 10.1103/PhysRevResearch.6.013082.

I. D. Terlizzi and M. Baiesi. Kinetic uncertainty relation. Journal of Physics A: Mathematical and
Theoretical 52.2 (Dec. 2018), 02LTo3. por: 10.1088/1751-8121/aaee34.

S. Puntanen and G. P. H. Styan. Historical Introduction: Issai Schur and the Early Development
of the Schur Complement. The Schur Complement and Its Applications. Ed. by F. Zhang. Boston,
MA: Springer US, 2005, pp. 1-16. DOI: 10.1007/0-387-24273-2_1.

F. Noé and C. Clementi. Collective variables for the study of long-time kinetics from molecular
trajectories: theory and methods. Current Opinion in Structural Biology 43 (Apr. 2017), pp. 141—
147. DOT: 10.1016/j.sbi.2017.62.006.

L. Bonati, G. Piccini, and M. Parrinello. Deep learning the slow modes for rare events sampling.
Proceedings of the National Academy of Sciences 118.44 (Nov. 2021), e2113533118. DOI: 10.1073/
pnas.2113533118.

D. Freedman. Approximating Countable Markov Chains. New York, NY: Springer, 1983. por: 10.
1007/978-1-4613-8230-0.

R. Carbone and Y. Pautrat. Homogeneous Open Quantum Random Walks on a Lattice. Journal
of Statistical Physics 160.5 (Sept. 2015), pp. 1125-1153. DOL 10.1007/510955-015-1261-6.

N. G. Bean, M. Fackrell, and P. Taylor. Characterization of Matrix-Exponential Distributions.
Stochastic Models 24.3 (Aug. 2008), pp. 339—363. DOI: 10.1080/15326340802232186.

M. J. Kewming, A. Kiely, S. Campbell, and G. T. Landi. First passage times for continuous
quantum measurement currents. Physical Review A 109.5 (May 2024), p. Lo50202. po1: 10.1103/
PhysRevA.109.L050202.

M. Wolf. Quantum Channels & Operations Guided Tour. Online Lecture Notes (2012).

T. Nishiyama and Y. Hasegawa. Exact solution to quantum dynamical activity. Physical Review
E 109.4 (Apr. 2024), p. 044114. DOIL: 10.1103/PhysRevE.109.044114.

T. Mori and T. Shirai. Symmetrized Liouvillian Gap in Markovian Open Quantum Systems.
Physical Review Letters 130.23 (June 2023), p. 230404. DOI: 10.1103/PhysRevLett.130.230404.

A. Dechant. Thermodynamic constraints on the power spectral density in and out of equilib-
rium. June 2023. DOIL: 10.48550/arXiv.2306.00417.

114


https://doi.org/10.22331/q-2022-09-20-812
https://doi.org/10.22331/q-2022-09-20-812
https://doi.org/10.48550/arXiv.2407.00724
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1063/5.0121372
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1112/jlms/s2-17.2.345
https://doi.org/10.1112/jlms/s2-17.2.345
https://doi.org/10.1007/s002330010042
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1103/PhysRevResearch.6.013082
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1007/0-387-24273-2_1
https://doi.org/10.1016/j.sbi.2017.02.006
https://doi.org/10.1073/pnas.2113533118
https://doi.org/10.1073/pnas.2113533118
https://doi.org/10.1007/978-1-4613-8230-0
https://doi.org/10.1007/978-1-4613-8230-0
https://doi.org/10.1007/s10955-015-1261-6
https://doi.org/10.1080/15326340802232186
https://doi.org/10.1103/PhysRevA.109.L050202
https://doi.org/10.1103/PhysRevA.109.L050202
https://doi.org/10.1103/PhysRevE.109.044114
https://doi.org/10.1103/PhysRevLett.130.230404
https://doi.org/10.48550/arXiv.2306.00417

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	Dedication
	1 Introduction
	2 Classical Markov Processes
	2.1 Discrete-time
	2.2 Continuous-time
	2.3 Jumps and holding times
	2.4 Hilbert space
	2.5 Dynamical observables
	2.5.1 Counting observables
	2.5.2 Currents

	2.6 First passage times

	3 Large Deviations
	3.1 Large deviation principle
	3.2 Cramér's theorem
	3.3 Gärtner-Ellis theorem
	3.4 Rate functions for dynamical observables
	3.4.1 via level 2.5 of large deviations
	3.4.2 via tilted generator

	3.5 Thermodynamic uncertainty relations

	4 Concentration Inequalities
	4.1 Roadmap to the Cramér-Chernoff Method
	4.1.1 Markov's inequality
	4.1.2 Chebyshev's inequality
	4.1.3 Cramér-Chernoff method

	4.2 Sums of independent random variables
	4.2.1 Hoeffding's inequality
	4.2.2 Bernstein's inequality

	4.3 Connection to large deviations
	4.4 Perturbation theory in finite-dimensional spaces
	4.5 Extensions to Markov processes

	5 Quantum Markov Processes
	5.1 Quantum channels
	5.2 Quantum Markov semigroups
	5.2.1 GKLS generator
	5.2.2 Counting measurements
	5.2.3 Generating quantum trajectories

	5.3 Ergodicity
	5.4 Non-commutative Perron-Frobenius theorem
	5.5 Kubo-Martin-Schwinger inner product
	5.6 Quantum counting observables

	6 General Upper Bounds on Fluctuations of Trajectory Observables
	6.1 Explicit form of the variance
	6.2 Upper bound on the variance
	6.3 Concentration inequality
	6.4 Inverse thermodynamic uncertainty relations
	6.5 Closure of spectral gap
	6.6 Examples
	6.6.1 Comparison to thermodynamic uncertainty relations
	6.6.2 Analysis of model with phases


	7 Classical Upper Bounds on Fluctuations of First Passage Times
	7.1 Moment generating function
	7.2 Large deviation principle for general counting observables
	7.3 Concentration bound for dynamical activity
	7.4 Tail bound for general counting observables
	7.5 Examples
	7.5.1 Dynamical activity in a three-level system
	7.5.2 Metastability and the absolute spectral gap
	7.5.3 Three-level system counting subset of jumps


	8 Quantum Upper Bounds on Fluctuations of First Passage Times
	8.1 Moment generating function
	8.2 Large deviation principle for general counting observables
	8.3 Concentration inequality for total counts
	8.4 Concentration inequality for total counts of reset processes
	8.5 Tail bound for general counting observables
	8.6 Examples
	8.6.1 Total counts in three-level emitter with dephasing
	8.6.2 Total counts in two-level emitter
	8.6.3 Dephasing jumps in three-level emitter


	9 Conclusions
	Bibliography

